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Abstract 
To discretize reinforced soil structures in plane strain and predict 
their collapse load, a simple three-node triangular finite element is 
formulated based on the static theorem of the limit analysis. The 
element satisfies the equilibrium equations and the mechanical 
boundary conditions in a weak sense. A modified Mohr-Coulomb 
yield surface is adopted to describe the reinforced soil behavior from 
a macromechanics point of view. It is also taken into account the 
possibility of tension failure of the reinforcement and failure of the 
reinforcement interface. The stated nonlinear convex optimization 
problem is cast as second-order cone programming. Numerical exam-
ples illustrate the predictive accuracy of the above scheme as well as 
the efficiency and speed of an interior-point method to reach optimal 
solutions. 
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1 INTRODUCTION 

In the design of reinforced soil structures, the maximum load to be resisted at the impending collapse 
must be evaluated. The ability of the methods to accurately estimate ultimate limit states depends 
on the fulfillment of theoretical requirements derived from continuum mechanics concerning the equi-
librium, strain-displacement relations, constitutive behavior and boundary conditions. Under certain 
restrictions, the theory of plasticity allows the prediction of the collapse load by means of the limit 
analysis based on the bound theorems (Drucker et al., 1952). Numerical solutions are most facilitated 
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in this case coupling such theorems with the finite element method, as originally proposed by Lysmer 
(1970) and Bottero et al. (1980). This is a straightforward approach for computing lower and upper 
bounds on the load at incipient collapse which have gained increasing attention (Lyamin and Sloan, 
2002; Krabbenhoft and Damkilde, 2003; Makrodimopoulos and Martin, 2006; Yu and Tin-Loi, 2006; 
Ciria et al., 2008; Munõz et al., 2009; Le et al., 2010; Bleyer and de Buhan, 2014; Nguyen-Thoi et al., 
2015). This is partly due to the development of robust optimization methods and solvers on which 
they strongly rely (Drud, 1996; Sturm, 1999; Lyamin and Sloan, 2002; Murtagh and Saunders, 2003; 
Tütüncü et al., 2003; Andersen et al., 2003; Krabbenhoft and Damkilde, 2003). 

The identification of failure modes through experiments has had an essential impact on the de-
velopment of reinforced soil mechanics. It has been realized that, in the case of sufficiently good 
bonding between soil and reinforcement, reinforced soil behaves, in the macroscopic scale, like a ho-
mogeneous material. This important observation was confirmed by laboratory investigations reported 
in Long et al. (1972) and Chapuis (1980). Reinforced soil can then be treated as a composite material 
formed by the association of frictional soil and tension-resistant fiber elements, such as geosynthetics, 
with behavior presumed homogeneous and anisotropic from a macromechanics point of view. The 
material strength is estimated from the strength characteristics of its components and the interaction 
between them. Limit analysis procedures derived from the referred macromechanics approach have 
been successfully applied to predict the observed response of reinforced superficial foundations and 
earth walls (Sawicki, 1983; Kulczykowski, 1985; Sawicki and Lesniewska, 1987, 1989; de Buhan et al., 
1989; de Buhan and Siad, 1989; Yu and Sloan, 1997). 

In this paper, specific attention is focused on the static approach of the limit analysis coupled 
with the finite element method to provide limit load solutions for reinforced soil structures in plane 
strain. In the description of the soil behavior, the isotropic Mohr-Coulomb yield surface is modified 
to include the effect of anisotropy caused by the presence of reinforcement. It is also taken into 
account the possibility of tension failure of the reinforcement and failure of the soil-reinforcement 
interface (de Buhan and Siad, 1989). The finite element proposed for limit analysis, which has its 
roots in the classic paper by Anderheggen and Knöpfel (1972), satisfies the equilibrium equations and 
the mechanical boundary conditions on average. In this sense, a solution obtained with this weak 
equilibrium model is not a strict lower bound. The formulation of the static theorem is then written 
within the framework of a nonlinear convex optimization technique, known as second-order cone 
programming (Lobo et al., 1998). 

There is no analytical approach for the solution of general convex optimization problems, but 
there are very effective methods for solving them (Boyd and Vandenberghe, 2009). The interior-point 
method employed in this paper works extremely well in practice. It was developed by Andersen et al. 
(2003) and implemented in the solver MOSEK (MOSEK ApS, 2016) to address nonlinear convex 
optimization problems, such as second-order cone programs. Predictions of the collapse load for some 
well-known stability problems of soil mechanics, namely the bearing capacity of footings and the 
stability of slopes, are computed after the soil is reinforced and the discrete problem is formulated as 
second-order cone programming (SOCP). For comparison, the examples are also treated as linear 
programming (LP) and the results with both schemes compared with exact or approximate solutions 
available in the literature. 
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Figure 1: Stresses on reinforced soil. 

 
2 FAILURE CONDITIONS 

The reinforced soil in this paper will be treated as a homogeneous composite material with anisotropic 
properties. The reinforcement is assumed to be unidirectional with thickness d  very small compared 

to the space h  between two reinforcements ( 1d h  ), as shown in Figure 1. Three stress tensors 

are defined at every point in the homogenized continuum: tensor 
T

t n tns s tê ú= ê úë ûs  for 

macrostresses, and tensors 
Ts s s s

t n tns s tê ú= ê úë ûs  and 
Tr r r r

t n tns s tê ú= ê úë ûs  for microstresses which 

act on the soil and reinforcement, respectively. The tensor components are related by 
 

s r s r
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where r r
td hs s=  (Yu and Sloan, 1997). 

The relations between the macrostress components in the orthogonal Cartesian coordinate sys-
tems xy  e tn  are 
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where q  represents the angle between the horizontal axis x  and the reinforcement direction t , meas-
ured counterclockwise. Substitution of (1) and relations 
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into (2) yields 
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The reinforcement inside the soil is supposed to act merely as tensile load carrying elements (de 

Buhan et al., 1989). The bounds 
 

o0 rs s£ £  (5)

 

are thereby imposed on ,rs  where ( )o yieldd hs s=  is the tensile yield strength yields  of the rein-

forcement times its volumetric fraction. 
The soil mass with cohesion c  and angle of internal friction f  is initially assumed to obey the 

Mohr-Coulomb yield surface in plane strain (Muñoz et al., 2009): 
 

( ) ( ) ( )2 2
2 2 cos sins s s s s

s x y xy x yF cs s t f s s fé ù= - + - - +ê úë û  
(6)

 
This expression is then modified to include the effect of anisotropy caused by the presence of 

reinforcement using relations (4): 
 

( ) ( ) ( )2 2
cos2 2 sin2 2 cos sinr r r

s x y xy x yF cs s s q t s q f s s s fé ù= - - + - - - + -ê úë û . (7)

 
The soil-reinforcement interface failure surface is assumed to be described by 

 
| | tani tn i n iF ct s f= - +  (8)

 
where ic  and if  denote the interface cohesion and angle of internal friction, respectively (Yu and 

Sloan, 1997). In view of (2), the failure surface (8) takes the form 
 

( ) ( )2 21
| sin2 2 cos2 | sin cos sin2 tan 0
2i y x xy i x y xy iF cs s q t q s q s q t q f= - + - + + - =  (9)

 

in the system xy . 
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3 STATIC THEOREM 

The limit analysis relies on the assumption of an elastic-perfectly plastic material with a flow rule 
associated to a convex yield surface, and also on small displacement gradients so that the body does 
not undergo large deformation at collapse (problem readily stated on the undeformed body geometry). 
The static approach of the limit analysis requires that the assumed stress field must satisfy the equi-
librium equations, the mechanical boundary conditions and the yield criterion everywhere. Under 
these idealized conditions, the computed limit load is a lower bound on the true collapse load (Chen, 
1975). 
 
3.1 Equilibrium Equations 

Let W  be the region occupied by the reinforced soil structure subjected to the body force 
T

x yb bê ú= ê úë ûb  expressed in the system xy . The macrostress field 
T

x y xys s tê ú= ê úë ûs  must satisfy 

the equilibrium equations 
 

+ = 0sD b  (10)
 
throughout the domain W , where the differential operator 
 

0

0

x y
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3.2 Mechanical Boundary Conditions 

Let G  be the boundary of the domain W , with unit outward normal vector denoted by 
T

x yn nê ú= ê úë ûn . In addition to (10), the macrostress field must also satisfy the mechanical boundary 

conditions 
 

= =st N t (12)
 

on the portion tG  of G  on which the traction (stress vector) 
T

x yt tê ú= ê úë ût  is prescribed as being .t  

Matrix 
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contains the components of n. 
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Figure 2: Finite element eW  with the unit normal vector n  on its boundary eG . 

 
 
3.3 Yield Criterion 

To assure that the yield criterion is satisfied it is necessary to impose simultaneously 
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As the function iF  defined in (9) has a term in modulus, the second of inequalities (14) splits 

into two other conditions given by 
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4 FINITE ELEMENT FORMULATION 

Suppose that the reinforced soil is divided into a number of triangular elements and treated as an 
assembly of them. To apply the above equations to a typical element eW  shown in Figure 2, the 

definition of the boundary should be extended to include the traction continuity on the interelement 
portion iG : 

 

( ) ( )+ -+ = 0t t  (17)

 

�

�

��

��

n�

�

� �� 	� 
� �

�� 	� 
� �

�� 	� 
� �



E.L.B. Cavalcante et al. / Static Limit Analysis of Reinforced Soil Structures by a Simple Finite Element and Second-Order Cone Programming     2503 

Latin American Journal of Solids and Structures 14 (2017) 2497-2517 

where the superscripts “+ ” and “- ” denote the two sides of iG . Expressions (10), (12) and (17) may 

now be viewed as the equilibrium within the element and on its boundary tG  and iG , respectively 

(Pian and Wu, 2006; Washizu, 1982). 
Equations (10), (12) and (17) can be enforced to be satisfied on average over the element and on 

its boundary by means of 
 

( ) ( ) 0

e t i

T T Tdx dy ds ds
W G G

+ - - - =ò ò òw D b w t t w ts , 
(18)

 

where 
T

x yw wê ú= ê úë ûw  is an arbitrary weight function that is continuous on the element domain and 

across its interfaces. The last integral when considered jointly with those of the neighborhood elements 

enforces (17), since it represents one of the terms in ( ) ( ) 0

i

T ds+ -

G

é ù+ =ê úë ûò w t t . 

In view of the divergence theorem, one writes 
 

( ) ( )
e e e

TT T Tdx dy ds dx dy
W G W

= -ò ò òs sw D w t D w  (19) 

 

where w  is additionally assumed to be differentiable once with respect to x  and y . Since 

e u t iG = G È G È G , expression (18) is then simplified to 
 

( ) 0

u t e e

TT T T Tds ds dx dy dx dy
G G W W

+ + - =ò ò ò ò sw t w t w b D w  (20)

 

where the portion uG  of the element boundary eG  falls on the reinforced soil boundary with pre-

scribed displacement. 
The macrostress field is linearly approximated over the element by 

 

1 1 2 2 3 3N N N= + +s s s s  (21)
 

where 
 

( )1
1,2,3

2

T

i xi yi xyi i i i iN x y i
A

s s t a b gê ú= = + + =ê úë ûs  (22)

 

are the macrostress nodal values and the shape functions, respectively, with A  standing for the 
triangle area. To evaluate 
 

i j k k j i j k i k jx y x y y y x xa b g= - = - = -  (23) 
 

from the node coordinates, the indices , ,i j k  should be permuted in a natural order ( i j k¹ ¹ ). 

The weight function is also taken to vary linearly, 
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1 1 2 2 3 3N N N= + +w w w w , (24)

with nodal values 
 

1,2,3
T

i xi yiw w iê ú= =ê úë ûw . (25)
 

Substitution of (21) and (24) into (20) yields 
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and 
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Because (26) holds for any arbitrary weight function, it follows that 
 

1
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ì üï ïï ïï ïï ïé ù =í ýê úë û ï ïï ïï ïï ïî þ

s
s
s
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Elimination of the integral over uG  by choosing w  null over there introduces zero components 

of 1w , 2w  or 3w  into (26) which must be accounted for in (29) by removing the respective equations. 

Thus, the element enforces the equilibrium equations (10) and the mechanical boundary conditions 
(12) by the discrete equation (29) on average according to (20). Note that the traction continuity 
(17) is rigorously enforced because the assumed stress field (21) is continuous across the element 
interfaces. The element development has its roots in the classic paper by Anderheggen and Knöpfel 
(1972). 
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5 THE SOCP PROBLEM 

In the static limit analysis, the structure equilibrium and the yield criterion, expressed in terms of 
nodal stresses, are constraints of an optimization problem for the applied load maximization. The 
optimal solution 
 

*
1 2 1 2 o{max , ( , ) , ( ) , }r rl l l= = + £ £ £ £0 0 0s s s s s sl f f g g  (30)

identifies the collapse load, where the applied load has been split into two parts: 1lf  which is adjusted 

during the optimization by means of the load factor l , and 2f  which is kept constant. Vectors s  

and rs  collect the nodal values of s  and ,rs  respectively. 

Under the continuity provided by the approximations (21) and (24), the equality constraint 
 

1 2l= +sl f f , (31)
 

which arises from the assembly of (29), represents the discrete equilibrium of the whole reinforced soil 
structure. The inequalities constraints 
 

1 2 o( , ) ( )r r£ £ £ £0 0 0s s s s sg g  (32) 

 

 

Figure 3: Second-order cone (34). 

 
stem from the evaluation at each node of the first, second and third of inequalities (14), respectively, 
since it is sufficient to enforce them at each node in order that they are satisfied throughout the mesh. 

The nonlinear convex optimization problem (30) is not a SOCP problem. To formulate it as such 
(Lobo et al., 1998), we introduce the auxiliary variables 
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into (7) to state 0sF £  as the three-dimensional second-order cone 

 
2 2
1 2 3 3 0v v v v+ £ ³  (34)

 

sketched in Figure 3. Now, the problem can be treated as SOCP by just replacing 1( , )r £ 0s sg  with 

 

1 2 3( , , ) ( )r = £ ³0 0 0s sh v h v v  (35)

 
where the vectors v  and 3v  collect the nodal values of v  and 3v . The new constraints (35) stem 

from the evaluation of (33) and (34) at each node, and all the problem nonlinearity concentrates in 
the constraint 2 £ 0h  related to the cone definition. 

The optimization problem solution is carried out following the steps: (a) set up of the SOCP 
problem with YALMIP (Löfberg, 2004) in the MATLAB environment: problem (30) with 1 £ 0g  

replaced by (35); (b) solution by MOSEK using the interior-point optimizer developed for nonlinear 
convex optimization by Andersen et al. (2003). 
 
6 RESULTS 

Predictions of the collapse load for some well-known stability problems of soil mechanics, namely the 
bearing capacity of footings and the stability of slopes, are computed after the soil is reinforced. This 
paper focuses on the limit analysis based on the static theorem as well as on the efficiency and speed 
with which the problems are solved as SOCP. For comparison, the piecewise linearization of sF  

adopted by Yu and Sloan (1997) is accomplished, using 48 sides in the linearized yield polygon pre-
sented therein, so that the problems can also be solved as LP by performing a sequence of optimization 
started with the Newton barrier method and concluded with the simplex method at FICO® Xpress 
Optimization Suite. The role played by the simplex method in such a procedure is to guarantee that 
the optimal solution is achieved. The computations are performed on a Sony VAIOTM All-in-One 
machine (i5 dual core 2.50 GHz CPU, 12 GB RAM), running a 64-bit Windows 7. The reported CPU 
times refer to the time spent on the optimization iterations. 
 
6.1 Strip Footing on Cohesionless Reinforced Soil 

For the strip footing of width B  indicated in Figure 4a, only half of the full geometry needs to be 
considered due to symmetry conditions. To deal with the semi-infinite domain, a rectangular portion 
is discretized as in Figure 4b extending horizontally from the symmetry plane to the right over a 
length 3B  and vertically downwards to a Depth 2B . This domain is sufficiently extended so that 
conditions at the far boundary do not have significant effect on the calculated limit load. 

In this example, 1,f  present in (30), denotes all the loads applied on tG  and 2 ,= 0f  also present 

in (30), accounts for the null body forces. The adopted mechanical boundary conditions are 
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0st =                     on the left (symmetric) edge 

0 0n st t= =       on the upper edge without strip footing 

nt q= -                   on the upper edge with strip footing 

(36)

 

where q  is the force per unit area exerted by the footing, nt  and st  are the traction components 

normal and tangential to the edges. 
The weight function components nw  and sw  are imposed to be null at nodes on the edges where 

the traction components nt  and st  are unknown, respectively: 

 

 

Figure 4: Strip footing: (a) half of the adopted domain with horizontal  

reinforcement; (b) unstructured mesh with 2051 elements. 
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0nw =       on the left (symmetric) edge 

0sw =         on the upper edge with strip footing. 
(37)

 
In addition, nw  and sw  are made to be null on the far right and bottom edges because nt  and 

st  are taken to be unknown over there. 

It is well-known that the bearing capacity of strip footing is null when the soil is purely frictional, 
weightless and subjected to no surcharge (Terzaghi, 1943; Davis and Booker, 1971). The simple in-
clusion of horizontal reinforcement, however, rises the bearing capacity to 
 

( )
tan

2e

o

1 sin
q

e

p
f f

f
s

æ ö÷ç ÷+ç ÷ç ÷çè ø= + . (38)

 
This is the exact solution, as demonstrated by Kulczykowski (1985), when the reinforced soil is 

treated as a homogeneous and anisotropic composite material with perfectly rough soil-reinforcement 
interface. Table 1 summarizes our results obtained by simulating the above property using 

0ic c= = , if f= . It is also depicted the number of iterations and the CPU time required to solve 

the SOCP and the LP problems. The small difference between the SOCP and LP predictions can be 
reduced increasing the number of sides in the linearized yield polygon. However, the computational 
cost of an LP solution may become prohibitive for a larger number of sides because of the amount of 
iterations and CPU time involved. The SOCP number of iterations agrees with already published 
numerical experiments, in the sense that an interior-point method demands typically between 5 and 
50 iterations to solve any SOCP problem (Lobo et al., 1998). In the LP solutions, the simplex phase 
answers for 99.2% to 99.9% of the total number of iterations. For instance, out of 10103 iterations for 

10f =   the count of 10037 takes place in the simplex phase. 

 
 

f  SOCP  LP 

  oq s  iter CPU  oq s  iter CPU 

10°  1.3370 36 0.95  1.3362 10103 24 

15°  1.8972 30 0.84  1.8953 6864 16 

20°  2.5239 37 0.95  2.5210 53023 150 

25°  3.4577 40 1.01  3.4511 137467 289 

30°  4.8029 26 0.73  4.7904 14094 37 

35°  7.0282 33 0.83  7.0000 11473 28 

                          iter: number of iterations      CPU: CPU time in seconds 

Table 1: Bearing capacity of strip footing on cohesionless reinforced soil. 

 
 

The exact solution (38) is graphically compared in Figure 5 to our SOCP predictions. The rigorous 
lower bounds provided by Yu and Sloan (1997) are also shown, which are based on the discretization 
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of the whole domain into triangular elements devised by Lysmer (1970) along with extension elements 
developed by Pastor (1978). In that work, as stated previously, the optimization problem is conceived 
as linear programming. For a given mesh, the scheme adopted by Yu and Sloan leads to a much 
larger problem size because of the use of Lysmer element and the piecewise linearization of sF . The 

gap to the exact solution displayed by our predictions is almost steady for all angles of internal friction 
considered, whereas it is noticeable the deterioration of Yu and Sloan lower bounds for higher values 
of f. 

 
 

 

Figure 5: Strip footing on cohesionless reinforced soil: oq s versus f . 

 
 
6.2 Strip Footing on Cohesive-Frictional Reinforced Soil 

The exact bearing capacity of strip footing on weightless unreinforced soil is given by 
 

tan 2
e tan 1 cot

4 2
q c ep f p f

f
é æ ö ù÷çê ú= + -÷ç ÷ç ÷ê úè øë û

, (39)

 
as demonstrated by Prandtl (1920). The advantage of having horizontal reinforcement can be esti-
mated by analyzing numerically the change in (39) due to the reinforcement inclusion. The same 
mesh of Figure 4b is adopted and the mechanical boundary conditions are taken as 
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0st =                       on the left (symmetric) edge 

0 0n st t= =        on the upper edge without strip footing 

0n st q t= - =        on the upper edge with strip footing. 

(40)

 

The weight function component nw  is imposed to be null at nodes on the left edge, and nw  and 

sw  are made to be null on the far right and bottom edges as before. 

Table 2 presents the ratio r eq q  between the bearing capacities of strip footing on reinforced and 

unreinforced soil for different o cs  and angles of internal friction. It is assumed perfectly rough soil-

reinforcement interface ( ic c= , if f= ). Although the SOCP and LP results differ from each other 

by a small amount, the difference of iterations and CPU time between both optimization techniques 
is remarkably large. Results for o 0cs =  illustrate the accuracy of our predictions for the bearing 

capacity of strip footing on unreinforced soil. 
 
 

o cs   10f =    20f =    30f =   

  r eq q  iter CPU  r eq q  iter CPU  r eq q  iter CPU 

0.0   1.0002†    20  0.67  0.9989    22  0.70  0.9789    21  0.67 

   0.9980‡ 2683   5  0.9959 2171   3  0.9742 2489   4 

0.5  1.0956    23  0.78  1.0896    28  0.78  1.0572    26  0.75 

  1.0935 3192   5  1.0865 2090   3  1.0521 5394   8 

1.0  1.1908    23  0.70  1.1802    27  0.78  1.1350    24  0.72 

  1.1887 4268   7  1.1770 2573   3  1.1301 4888   8 

1.5  1.2859    23  0.72  1.2707    26  0.75  1.2125    24  0.72 

  1.2838 4248   7  1.2674 2647   4  1.2073 6519  11 

2.0  1.3808    22  0.69  1.3611    25  0.73  1.2896    23  0.73 

  1.3788 3380   6  1.3577 2587   4  1.2842 4585   8 

  iter: number of iterations      CPU: CPU time in seconds      †SOCP      ‡LP 

Table 2: Ratio r eq q  between the bearing capacities of strip footing on cohesive-frictional soil. 

 
 

Figure 6 shows the bearing capacity ratio r uq q  obtained with SOCP, where uq  refers to the 

unreinforced scenario. For a given f , the advantage of the reinforcement increases with o cs . Indeed, 

the ratio r uq q  rises almost linearly with o cs , where os  can be augmented by either increasing the 

reinforcement yield strength yields  or the reinforcement volumetric fraction d h . We can observe 

that the benefit from horizontal reinforcement is less for soils with higher angle of internal friction. 
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Figure 6: Strip footing on cohesive-frictional soil: r uq q versus o cs  for different angles of internal friction f . 

 
 
6.3 Cohesionless Reinforced Earth Wall 

To deal with the reinforced earth wall, the dimensions depicted in Figure 7a are considered sufficiently 
large to represent adequately the semi-infinite domain and the mesh adopted in the analysis is shown 
in Figure 7b. In this example, 1f , present in (30), represents the vertical body force and 2 = 0f , also 

present in (30), accounts for the null loads acting on tG . The mechanical boundary conditions are 

 
0 0n st t= =       on the three free edges. (41)

 
On the far left, right and bottom edges, where nt  and st  are supposed to be unknown, nw  and 

sw  are set equal to zero. 

Table 3 condenses our results for horizontal reinforcement under perfectly rough soil-reinforce-
ment interface ( 0ic c= = , if f= ). Note again the small difference between SOCP and LP predic-

tions, but a much higher computational cost of an LP solution. Figure 8 shows that our results 
obtained with SOCP are bracketed by the lower bounds of Yu and Sloan (1997) and the upper bounds 
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of Sawicki and Lesniewska (1987). 
 
 

 

Figure 7: Earth wall: (a) adopted domain with horizontal reinforcement; (b) unstructured mesh with 4147 elements. 
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f   SOCP  LP 

  oHg s  iter CPU  oHg s  iter CPU 

10°  2.0428 24 2.18  2.0415 222199 1223 
15°  2.6837 25 1.90  2.6814 348539 1792 
20°  3.4463 23 2.04  3.4435 415115 2796 
25°  4.3886 24 3.63  4.3832 428370 2439 
30°  5.5307 25 2.00  5.5231 469423 2422 
35°  6.9380 25 1.90  6.9269 541160 2836 

                          iter: number of iterations      CPU: CPU time in seconds 

Table 3: Critical height of cohesionless reinforced earth wall. 

 

 

Figure 8: Cohesionless reinforced earth wall: oHg s  versus f . 

 
6.4 Cohesive-Frictional Reinforced Earth Wall 

To estimate the advantage of having horizontal reinforcement in cohesive-frictional earth walls, anal-
yses are performed for cases with and without reinforcement. The same mesh and boundary conditions 
of the previous example are considered. Assuming perfectly rough soil-reinforcement interface 
( ic c= , if f= ), Table 4 presents the ratio r cH H  between the critical heights of reinforced and 

unreinforced earth wall for different o cs  and angles of internal friction. The values cH  are elaborate 

upper bounds computed by Chen (1975) for the unreinforced soil using a logarithmic spiral surface 
discontinuity mechanism passing through the vertical slope toe. Although the difference between the 
SOCP and LP solutions is small, the computational cost of one technique differs excessively from the 


� 
� � � �� �� �



�

�

�

��

��

upper

present

Yu and Sloan (1997)



2514     E.L.B. Cavalcante et al. / Static Limit Analysis of Reinforced Soil Structures by a Simple Finite Element and Second-Order Cone Programming 

Latin American Journal of Solids and Structures 14 (2017) 2497-2517 

other. Results for o 0cs =  illustrate that our solutions and Chen upper bounds are in close agree-

ment. 
 

o cs   10f =    20f =    30f =   

  r cH H  iter CPU  r cH H  iter CPU  r cH H  iter CPU 

0.0   0.9938†     23  2.48  1.0004     23  2.40  1.0037     23 2.50 
   0.9924‡ 231096 1283  0.9990 242228 1279  1.0017 264709 1401 

0.5  1.2734     25  3.45  1.3440     25  3.42  1.4284     27  3.26 
  1.2722 319168 1636  1.3423 403088 2017  1.4259 490291 2449 

1.0  1.5477     26  3.63  1.6840     25  3.46  1.8508     27  3.31 
  1.5462 300305 1559  1.6820 427462 2157  1.8480 515209 2613 

1.5  1.8163     24  3.74  2.0215     24  3.43  2.2715     27  3.17 
  1.8149 296787 1474  2.0192 435428 2207  2.2681 547401 2712 

2.0  2.0786     24  3.26  2.3566     23  2.98  2.6909     24  5.51 
  2.0769 319057  1561  2.3537 461221 2343  2.6871 533469 2637 

  iter: number of iterations      CPU: CPU time in seconds      †SOCP      ‡LP 

Table 4: Ratio r cH H  between the critical heights of cohesive-frictional earth wall. 

 
Figure 9 depicts the ratio r uH H  predicted with SOCP, where uH  refers to the critical height 

of unreinforced soil. The ratio increases almost linearly with o cs  for a given f , similar to what is 

observed in Figure 6 for strip footing. However, the benefit of reinforcement inclusion in earth wall is 
greater for soils with higher angle of internal friction and shows to be more dependent on that angle. 
 
6.5 Cohesionless Reinforced Earth Wall Under Surcharge 

Suppose the earth wall treated in the third example is now replaced by one which is weightless and 
subjected to a vertical load p  (force per unit area) applied to the upper edge. The load is uniformly 

distributed over a length H  measured from the vertical edge. Sawicki and Lesniewska (1987) man-
aged to identify 
 

2e

o

tan
4 2

p p f
s

æ ö÷ç= + ÷ç ÷ç ÷è ø
 (43)

 
as the exact solution for the collapse load of this problem. Our analysis is carried out using the mesh 
of Figure 7b and the mechanical boundary conditions 
 

0n st p t= - =     on the upper edge with surcharge 

0 0n st t= =     on the upper edge without surcharge and on the two free edges. 
(44)
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Figure 9: Cohesive-frictional earth wall: r uH H versus o cs  for different angles of internal friction f . 

 
The weight function components nw  and sw  are made to be null on the far left, right and bottom 

edges as before. 
Table 5 outlines our results normalized to the exact solution (43), where excellent accuracy is 

observed for all angles of internal friction considered. Any attempt to solve the problem as LP has 
faced significant slowness in the simplex phase ( 3600> s). 
 

f  20° 25° 30° 35° 40° 45° 

ep p  0.9986 1.0000 1.0000 1.0000 1.0000 1.0000 

iter 32 27 28 27 29 28 
CPU 2.87 2.51 2.78 2.73 2.65 2.76 

                  iter: number of iterations      CPU: CPU time in seconds 

Table 5: Bearing capacity of cohesionless reinforced earth wall under surcharge. 

 
7 CONCLUSIONS 

The paper proposes a numerical approach for computing static limit loads of reinforced soil structures 
by combining discretization into simple triangular elements and SOCP. Examples illustrate that the 
above scheme provides excellent results and the fact of not satisfying the equilibrium equations and 
the mechanical boundary conditions rigorously is far from being a severe handicap for the developed 
element. For comparison, the examples are also treated as LP after a piecewise linearization of the 
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reinforced soil yield condition. All the optimization problems idealized either as SOCP or LP are of 
large scale in the sense that they involve more than 10000 variables and constraints. The SOCP 
problems are solved by MOSEK and the LP problems are solved by FICO® Xpress Optimization 
Suite, both of which are state of the art optimization packages. It is clear from the results that the 
solution of large scale SOCP problems with the MOSEK interior-point optimizer is highly efficient 
and fast when compared with the combination of Newton barrier and simplex methods at FICO® 
Xpress Optimization Suite. 
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