

# DISSERTAÇÃO DE MESTRADO Nº 501

## GRANITOIDES COLISIONAIS MESOARQUEANOS DE OURILÂNDIA DO NORTE (PA): GEOLOGIA, MICROESTRUTURAL, AFINIDADES PETROLÓGICAS E IMPLICAÇÕES TECTÔNICAS PARA A PROVÍNCIA CARAJÁS

Dissertação apresentada por:

LUCIANO RIBEIRO DA SILVA Orientador: Prof. Dr. Davis Carvalho de Oliveira (UFPA)

> BELÉM 2017

Dados Internacionais de Catalogação de Publicação (CIP) Biblioteca do Instituto de Geociências/SIBI/UFPA

Silva, Luciano Ribeiro da, 1991-

Granitoides colisionais mesoarqueanos de Ourilândia do Norte (PA): geologia, microestrutural, afinidades petrológicas e implicações tectônicas para a Província Carajás / Luciano Ribeiro da Silva. – 2017.

xv, 72 f. : il. ; 30 cm

Inclui bibliografias

Orientador: Davis Carvalho de Oliveira

Dissertação (Mestrado) – Universidade Federal do Pará, Instituto de Geociências, Programa de Pós-Graduação em Geologia e Geoquímica, Belém, 2017.

1. Granito – Ourilândia do Norte (PA). 2. Petrologia – Ourilândia do Norte (PA). 3. Geoquímica – Ourilândia do Norte (PA). I. Título.

CDD 22. ed. 553.52098115



Universidade Federal do Pará Instituto de Geociências Programa de Pós-Graduação em Geologia e Geoquímica

# **GRANITOIDES COLISIONAIS MESOARQUEANOS DE OURILÂNDIA DO NORTE (PA): GEOLOGIA,** MICROESTRUTURAL, AFINIDADES PETROLÓGICAS E IMPLICAÇÕES TECTÔNICAS PARA A PROVÍNCIA CARAJÁS

### DISSERTAÇÃO APRESENTADA POR

### LUCIANO RIBEIRO DA SILVA

Como requisito parcial à obtenção do Grau de Mestre em Ciências na Área de GEOQUÍMICA E PETROLOGIA.

Data de Aprovação: 17/06/2017

Banca Examinadora:

Prof. Dr. Davis Carvalho de Oliveira

(Orientador-UFPA)

Dr.ª Luana Moreira Florisbal

(Membro-UFSC)

Prof. Dr. José de Arimatéia Costa de

(Membro-UNIFESSPA)

À família, senseis e amigos.

#### AGRADECIMENTOS

O autor expressa seus sinceros e profundos agradecimentos a todas as pessoas e entidades que contribuíram para a realização deste trabalho e em especial:

- Ao Programa de Pós-Graduação de Geologia e Geoquímica da Universidade Federal do Pará (UFPA) pelo fornecimento de infraestrutura.
- A Capes pela concessão da bolsa de mestrado;
- Aos convênios VALE-FAPESPA (Edital 01/2010 ICAFF 053/2011) e INCT/GEOCIAM (Proc. 573733 / 2008-2) pelo suporte financeiro;
- Aos membros do Grupo de Pesquisa Petrologia de Granitoides (GPPG) do Instituto de Geociências da UFPA, pelo suporte técnico-científico durante as diversas fases deste trabalho, em especial a Maria Nattânia dos Santos, Fernando Fernandes, Pablo Leite, Bhrenno Marangoanha, Eleison Garbriel, Jean Machado, Diwhemerson Sousa, Marcela Santos e Rodrigo Santos pelos inúmeros momentos de reflexão e auxílio nas etapas de campo;
- Aos funcionários Cleida e Joelma Lobo da UFPA;
- À minha família, em especial ao meu irmão Brendo Ribeiro e aos meus pais pelas diversas formas de insentivo e companherismo ao longo da confecção deste trabalho;
- A minha namorada Letícia do Carmo pelo apoio nas últimas etapas deste trabalho;
- Aos amigos Rômulo Rosa, José Arimateia Correia, Maicon Silva, Yuri Rafael e Emanuel Aguiar pela ajuda, insentivo e momentos de descontração;
- Por fim, ao professor Davis Carvalho de Oliveira pela oportunidade de realizar este trabalho, com tranquilidade, sob sua orientação e aos professores José de Arimateia, Cládio Lamarão, Cândido Moura, Paulo Gorayeb, Sergio Valente e Renato Morais pelo incentivo e ensinamento referente à petrologia e deformação de granitoides.

"O presente pertence a eles, mas o futuro pelo qual sempre trabalhei pertence a mim." Nikola Tesla

#### RESUMO

Este estudo investiga a diversidade, origem e significado tectônico dos granitoides mesoarqueanos de Ourilândia do Norte, que ocorrem próximo ao limite entre os domínios Rio Maria e Carajás, no sudeste do Craton Amazônico. Trabalhos anteriores, realizados nesta região, identificaram sanukitoides (~2,87 Ga), (quartzo) dioritos de afinidade BADR (basaltoandesito-dacito-riolito) e leucogranitos indiferenciados. Monzogranitos de afinidade charnokítica seccionam tais unidades. Os novos dados de mapeamento geológico obtidos neste trabalho permitiram definir a natureza e aspectos estruturais dos leucogranitos até então indiferenciados. Assim, foi possível diferenciar três novos grupos de granitoides: (i) biotita monzogranitos (BMzG); (ii) epidoto-biotita granodioritos (EBGd); e (iii) granitoides porfiríticos (Grtp). Com base nestas informações, esta dissertação visa definir a classificação, natureza, processos de formação e aspectos de deformação dessas rochas, e discutir, a partir da integração desses dados com aqueles gerados em trabalhos anteriores, as relações entre plutonismo e deformação para formação e colocação dos granitoides mesoarqueanos de Ourilândia do Norte. Para tanto, foi utilizada uma abordagem integrada de dados de campo, petrografia, microestrutural e geoquímica. Os dados de petrografia mostram que todos os grupos identificados são subdividos em duas fácies. Aquele de composição BMzG é diferenciado em uma fácies equigranular (BMzGe) e outra heterogranular (BMzGh) e o EBGd em epidoto-biotita granodiorito heterogranular (EBGdh) e titanita-epidoto-biotita granodiorito esparsamente porfirítico (TEBGdep). Esses granitoides compõem dois batólitos separados por uma faixa de sanukitoide e rochas de afinidade BADR. O batólito situado na porção central da área tem forma elipsoidal, com maior eixo orientado na direção ENE-WSW, e o outro, localizado na porção sudeste, é arciforme. Ambos são amplamente dominados por BMzG, com menor ocorrência de lentes de EBGd. O Grtp é individualizado em biotitahornblenda granodiorito porfirítico (BHGdp) e epidoto-biotita trondhjemito porfirítico (EBTdp), e ocorre como corpos menores, espacialmente associados com as rochas de afinidade sanukitoide e BADR, respectivamente. As relações de mingling estabeleceram a contemporaneidade entre todos os granitoides de Ourilândia do Norte, incluindo os de assinatura sanukitoide e BADR. Em termos de geologia estrutural, esses plútons foram afetados por deformação heterogênea. Suas porções centrais representam domínios de menor strain, onde mostram foliação magmática de direção principal ENE-WSW e mergulho subvertical, com fraca superimposição de deformação em estado sólido. Por outro lado, as bordas desses plútons são marcadas por zonas de cisalhamento de grande escala, onde foliações miloníticas são tipicamente desenvolvidas, com trend subparalelo às bordas e

mergulho subvertical. Os dados meso- e microestruturais indicam que as rochas estudadas são sin- a tardi-tectônicas e foram afetadas por deformação de alta temperatura (> 500 °C) e baixo esforço diferencial, em regime de transpressão sinistral, controlado predominantemente por cisalhamento puro, indicando que as tramas magmáticas e de estado sólido estão relacionadas a um mesmo evento deformacional. Geoquimicamente, com exceção do EBTdp que tem afinidade Mg-Na, os granitoides de Ourilândia do Norte podem ser agrupados em duas suítes: (i) suíte Fe-K que integra o grupo BMzG e a fácies TEBGdep; e (ii) suíte Mg-K composta por granitoides de afinidade sanukitoide (incluindo EBGdh e BHGdp) e (quartzo) dioritos de afinidade BADR. Ambos os grupos são cálcico-alcalinos a alcalino-cálcicos e diferem entre si com base em suas relações FeO<sup>t</sup>/MgO, Al<sub>2</sub>O<sub>3</sub>, K<sub>2</sub>O e alguns elementos traços (Sr, Ba, Rb). A origem do BMzGe é atribuída à anatexia de uma crosta TTG (2,92-2,98 Ga). O EBGdh tem afinidade sanukitoide e foi produzido por intenso fracionamento de hornblenda ±clinopiroxênio. Os granitoides de fácies TEBGdep, BMzGh, BHGdp e EBTdp mostram evidências de *mingling* entre magmas contrastantes, indicando que suas origens requerem interação entre magmas derivados do manto metassomatizado e da crosta. Dados geoquímicos e modelagem foram utilizados para identificar os diferentes processos relacionados à origem e formação destes granitoides: (i) o TEBGdep é enriquecido em HFSE (Ti, Zr e Y) e LILE (Ba e Sr) e foi admitido como produto da fusão parcial de uma fonte mantélica enriquecida, provavelmente em um ambiente de pós-subducção, com participação de magmas crustais; (i) o BMzGh é gerado pela interação entre magmas de composição TEBGdep (60%) e eBMzG (40%); (iii) o BHGdp é formado pela hibridização entre magmas sanukitoide (80%) e leucomonzogranítico (20%); e (iv) o EBTdp é originado por uma mistura incompleta entre líquido trondhjemítico de assinatura TTG (70-80%) e magma de afinidade BADR (20-30%). Portanto, podemos concluir que em ~2,87 Ga ocorreu um significativo crescimento e retrabalhamento crustal, nas fases finais de estabilização do primeiro ciclo geotectônico registrado na Província Carajás. Isto nos leva a sugerir que todos os granitoides mesoarqueanos de Ourilândia do Norte foram alojados durante a segunda etapa de um modelo tectono-magmático de dois estágios (subducção-colisão): (i) primeiro estágio (2.98-2.92 Ga) subducção de baixo ângulo com colocação de *slab-melt* e consequente metassomatismo da cunha mantélica; (ii) segundo estágio (~2,87 Ga) – ambiente colisional, onde zonas de cisalhamento condicionaram a ascensão e colocação dos magmas, atuando como condutos pré-existentes para o transporte e interação entre magmas mantélicos e crustais.

Palavras-chave: Geoquímica. Microestrutural. Granitoides. Arqueano. Província Carajás.

#### ABSTRACT

This study investigates the diversity, origin and tectonic significance of the Mesoarchean granitoids of Ourilândia do Norte, emplaced near Rio Maria-Canãa dos Carajás domains boundary, southeastern Amazonian Craton (Brazil). Previous work, done in this region, has identified granitoids of sanukitoid affinity (~ 2.87 Ga), (quartz) diorites of BADR (basalt, andesite, dacite, rhyolite) affinity and undifferentiated leucogranites. In addition there are monzogranites with clinopyroxene, cross-cutting the Mesoarchean granitoids. In this study, new geological mapping data allowed to define the nature and structural aspects of the leucogranites undifferentiated. These data allowed to differentiate three new groups of granitoids, classified as: (i) biotite monzogranites (BMzG); (ii) epitote-biotite granodiorites (EBGd); and (iii) porphyritic granitoids (pGrt). In this respect, this dissertation aims to define the classification, nature, formation processes and deformation aspects of these rocks, and discuss, from the integration of these data with those generated in previous works, the relations between plutonism and deformation for the formation of the Ourilandia do Norte granitoids. For this was used an integrated approach of field, petrography, microstructural and geochemistry data. The petrography data show that the first two groups (BMzG and EBGd) are both subdivided into two facies. The BMzG is differentiated into equigranular (eBMzG) and heterogranular (hBMzG) facies and the EBGd into heterogranular epitope-biotite granodiorite (hEBGd) and sparsely porphyritic titanite-epitoto-biotite granodiorites (spTEBGd). These granitoids constitute two batholiths separated by a rock strip of sanukitoid and BADR affinity. The main batholith has an ellipsoidal shape, with the largest axis oriented in the ENE-WSW direction, and other is arc-shape. Both are largely dominated by BMzG rocks, with less occurrence of EBGd lenses. The pGrt is individualized in porphyritic biotitehornblende granodiorite (pBHGd) and porphyritic epidote-biotite trondhjemite (pEBTd), and occurs as smaller bodies, spatially associated with rocks of sanukitoid and BADR affinities, respectively. The mingling relationships established the contemporaneity between all the Ourilândia do Norte granitoids, including those of sanukitoid and BADR signatures. In terms of structural geology, these plutons were affected by heterogeneous deformation. Their central portions represent lower strain domains, where ocours magmatic foliation of ENE-WSW main direction and subvertical dip, with weak superimposition of solid-state deformation. On the other hand, the borders of these plutons are marked by large-scale shear zones, where milonitic foliations are typically developed, with suballel trend to the batholith border and subvertical dip. The meso- and microstructural data indicate that the rocks studied are syn- to late-tectonic and were affected by high temperature deformation (> 500 °C) and low

differential stress, in a sinistral transpression regime, predominantly controlled by pure shear, indicating that the magmatic and solid-state fabrics are related to the a same deformational event. Geochemically, except the EBTdp facies that has Mg-Na affinity, the Ourilândia do Norte granitoids can be grouped into two suites: (i) Fe-K suite that integrates the BMzG group and the spTEBGd facies; and (ii) Mg-K suite composed of granitoids (including EBGdh and BHGdp) and (quartz) diorites of sanukitoid and BADR affinities, respectively. Both groups are alkali-calcic to calc-alkaline and they differ on the basis of their FeO<sup>t</sup>/MgO ratios, Al<sub>2</sub>O<sub>3</sub>, K<sub>2</sub>O and some trace elements (Sr, Ba, Rb). The origin of the eBMzG is attributed anatexis a 2.92-2.98 Ga old TTG crust. The hEBGd has sanukitoid affinity and could have been produced by intense fractionation of hornblende  $\pm$  clinopyroxene. The granitoids of spTEBGd, hBMzG, pBHGd and pEBTd facies show evidence of mingling between contrasting magmas, indicating that their origins require interaction between metassomatized mantle- and crustal derived magmas. Geochemical data and modeling were used to identify the different processes related to the origin and formation of these granitoids: (i) spTEBGd is enriched in HFSE (Ti, Zr and Y) and LILE (Ba and Sr) and was admitted as product of the partial melting of an enriched mantle source, with participation of crustal liquids, probably in a post-subduction setting; (ii) hBMzG is generated by the interaction between magmas of spTEBGd (60%) and eBMzG (40%) composition; (iii) pBHGd is formed by the hybridization between sanukitoid (80%) and leucomonzogranitic (20%) magmas; and (iv) pEBTd is formed by an incomplete mixture between TTG signature trondhjemitic liquid (70-80%) and magma of BARD affinity (20-30%). Therefore, we can conclude that in ~2.87 Ga a significant crustal growth and reworking occurred in the final stages of stabilization of the first geotectonic cycle of Carajás province. This leads us to suggest that all the Ourilândia do Norte Mesoarchean granitoids were emplacement during the second stage of a tectonomagmatic two-stage (subduction-collision) model: (i) first stage (2.98-2.92 Ga) - low-angle subduction with emplacement of slab-melt and consequent mantle wedge metasomatism; (Ii) second stage (~ 2.87 Ga) - emplacement of the granitoids studied in a collisional environment, where shear zones conditioned the rise and emplacement of magmas, acting as deep-reaching discontinuities and important conduit for transport and interaction between mantle- and crustal-derived magmas.

Keywords: Geochemistry. Microstructural. Granitoids. Archean. Carajás Province.

### LISTA DE ILUSTRAÇÕES

### 1 INTRODUÇÃO

| Figura | 1 - | - Localização e acesso da área de Ourilândia do Norte2                           |
|--------|-----|----------------------------------------------------------------------------------|
| Figura | 2   | - Localização da Província Carajás no Cráton Amazônico, compartimentação         |
|        |     | tectônica da Província Carajás e mapa geológico regional desta com a localização |
|        |     | da área de estudo5                                                               |
|        | ~   |                                                                                  |

Figura 3 - Mapa de amostragem do mapeamento geológico da área de Ourilândia do Norte. 11

### 2 DIVERSITY, ORIGIN AND TECTONIC SIGINIFICANCE OF THE MESOARCHEAN GRANITOIDS OF OURILÂNDIA DO NORTE, CARAJÁS PROVINCE (BRAZIL)

| Figure 1 - (a) Geochronological provinces of the Amazonian Craton and geological map of        |
|------------------------------------------------------------------------------------------------|
| the Carajás Province18                                                                         |
| Figure 2 - Ourilândia do Norte geological map20                                                |
| Box 1- Synthesis of the field aspects of the Ourilândia do Norte granitoids                    |
| Figure 3 - General aspects                                                                     |
| Figure 4 - Field relationship                                                                  |
| Figure 5 - Deformation aspects                                                                 |
| Figure 6 - Q-(A+P)-M' and Q-A-P plots                                                          |
| Box 2 - Mineralogy and microstructural typology of the Ourilândia do Norte granitoids 28       |
| Figure 7 - Microstructural aspects of the granitoids, located in lower strain domains, central |
| portions of the batholiths under study29                                                       |
| Figure 8 - Deformation, recovery and recrystallization microstructures of the granitoids       |
| studied                                                                                        |
| Figure 9 - Tardi- to post-magmatic transformation microstructures                              |
| Figure 10 – Major and minor elements Harker diagrams                                           |
| Figure 11 - Trace elements Harker diagrams                                                     |
| Figure 12 - Geochemical classification and magmatic series plots                               |
| Figure 13 - Chondrite-normalized REE patterns and primordial mantle-normalized spider          |
| diagrams40                                                                                     |
| Figure 14 - Petrogenetic aspects and magmatic evolution                                        |

- Figure 15 Binary mixing model for Ourilandia do Norte hybrid granitoids in Chondritenormalized REE and primordial mantle-normalized multi-elements diagrams 45

#### LISTA DE TABELAS

### 2 DIVERSITY, ORIGIN AND TECTONIC SIGINIFICANCE OF THE MESOARCHEAN GRANITOIDS OF OURILÂNDIA DO NORTE, CARAJÁS PROVINCE (BRAZIL)

| Table | 1 - | Modal | compositions   | of the   | granitoids  | of the   | Ourilândia | do l  | Norte   | area     | ••••• |     |
|-------|-----|-------|----------------|----------|-------------|----------|------------|-------|---------|----------|-------|-----|
| Table | 2 - | Chemi | cal compositio | on of th | ne Ourilând | lia do I | Norte gran | odioi | rites-g | granites | 5     | .34 |

| SUMÁRIO DEDICATÓRIA                                       |         |
|-----------------------------------------------------------|---------|
| AGRADECIMENTOS                                            | v       |
| EPÍGRAFE                                                  | vi      |
| RESUMO                                                    | vii     |
| ABSTRACT                                                  | iix     |
| LISTA DE ILUSTRAÇÕES                                      | xi      |
| LISTA DE TABELAS                                          | xiiii   |
| CAPÍTULO 1 - INTRODUÇÃO                                   | 1       |
| 1.1 APRESENTAÇÃO                                          | 1       |
| 1.2 CONTEXTO GEOLÓGICO-GEOTECTÔNICO REGIONAL              | 4       |
| 1.3 APRESENTAÇÃO DO PROBLEMA                              | 8       |
| 1.4 OBJETIVOS                                             | 9       |
| 1.5 MATERIAIS E MÉTODOS                                   | 10      |
| 1.5.1 Pesquisa bibliográfica                              | 10      |
| 1.5.2 Mapeamento geológico e geologia estrutural          | 10      |
| 1.5.3 Petrografia e microestrutural                       | 12      |
| 1.5.4 Geoquímica                                          | 13      |
| CAPÍTULO 2 - DIVERSITY, ORIGIN AND TECTONIC SIGINIFICANCE | OF THE  |
| MESOARCHEAN GRANITOIDS OF OURILÂNDIA DO NORTE, O          | CARAJÁS |
| PROVINCE (BRAZIL)                                         | 15      |
| 1 INTRODUCTION                                            | 16      |
| 2 REGIONAL GEOLOGY                                        | 17      |
| 3 GEOLOGY AND STRUCTURAL FRAMEWORK                        | 19      |
| 4 PETROGRAPHY                                             | 25      |
| 4.1 MODAL COMPOSITION AND CLASSIFICATION                  | 25      |
| 4.2 MINERALOGY, MICROSTRUCTURAL ASPECTS AND INTRACRIST    | ALLINE  |
| DEFORMATION MECHANISMS                                    | 27      |
| 5 GEOCHEMISTRY                                            |         |
| 5.1 MAJOR AND TRACE ELEMENTS                              |         |
| 5.2 CLASSIFICATION AND MAGMATIC SERIES                    |         |
| 5.3 RARE EARTH AND MULTI-ELEMENTS PATTERNS                |         |
| 6 DISCUSSION                                              | 41      |
| 6.1 PETROGENESIS AND MAGMATIC EVOLUTION                   | 41      |

| 6.1.1 Biotite monzogranite                            |                  |
|-------------------------------------------------------|------------------|
| 6.1.2 Titanite-rich biotite granodiorite              |                  |
| 6.1.3 Biotite granodiorite and porphyritic granitoids |                  |
| 6.2 MICROSTRUCTURAL CONSIDERATIONS                    |                  |
| 6.2.1 Deformation temperature                         |                  |
| 6.2.2 Tardi- to post-magmatic transformations         |                  |
| 6.3 ASCENT AND EMPLACEMENT MECHANISMS AND TECTONIC    | C SIGNIFICANCE49 |
| 7 CONCLUSIONS                                         |                  |
| ACKNOWLEDGEMENTS                                      |                  |
| REFERENCES                                            |                  |
| APPENDIX A. ANALYTICAL PROCEDURES                     |                  |
| CAPÍTULO 3 - CONSIDERAÇÕES FINAIS                     |                  |
| REFERÊNCIAS                                           |                  |

#### CAPÍTULO 1 - INTRODUÇÃO

#### 1.1 APRESENTAÇÃO

A região de Ourilândia do Norte (Fig. 1) está localizada na parte sudeste do Estado do Pará, porção centro-oeste da Província Carajás (Santos 2003, Vasquez et al. 2008). Esta província é considerada o maior núcleo arqueano preservado do Cráton Amazônico (Almeida et al. 1981) e tem sido alvo de diversos estudos em função do seu amplo potencial metalogenético. Nas últimas décadas, pesquisadores do Grupo de Pesquisa Petrologia de Granitoides (GPPG), em cooperação com aqueles do Laboratório de Geologia Isotópica (PARA-ISO), ambos vinculados ao Programa de Pós-graduação de Geologia e Geoquímica (PPGG) do Instituto de Geociências (IG) da Universidade Federal do Pará (UFPA), vem desenvolvendo diversos estudos de cunho petrológico e geocronológico nas rochas do embasamento da província, sobretudo naquelas que ocorrem nas porções central do Domínio Rio Maria, principalmente nas áreas de Rio Maria, Xinguara, Marajoara e a leste de Bannach (Macambira & Lafon 1995, Macambira & Lancelot 1996; Althoff et al. 2000, Oliveira et al. 2009, Almeida et al. 2011, 2013) e centro-leste do Domínio Carajás, que abrange as áreas de Canaã dos Carajás (Feio & Dall'Agnol 2012, Feio et al. 2012, 2013), Sapucaia (Santos et al. 2013b, Teixeira et al. 2013) e Água Azul do Norte (Rodrigues et al. 2014, Gabriel & Oliveira 2014, Leite-Santos & Oliveira 2014, 2016). No entanto, diversas áreas desta província ainda permanecem pobremente caracterizadas e inseridas no contexto geológico do Complexo Xingu (Silva et al. 1974).

Nesse contexto, estudos de mapeamento geológico realizados recentemente pelo GPPG na área de Ourilândia do Norte permitiram um significativo avanço no conhecimento sobre as associações magmáticas que ali ocorrem (Santos *et al.* 2013a, Santos & Oliveira 2016; este trabalho). Santos & Oliveira (2016) mostraram que esta área é marcada por uma ampla ocorrência de granitoides de afinidade sanukitoide, dioritos e quartzo dioritos de afinidade BADR (basalto-andesito-dacito-riolito) e diversos tipos de granitos até então indiferenciados, todos com um padrão deformacional distinto daquele identificado nas demais áreas do Domínio Rio Maria. Além disso esses autores ainda apontaram que todas essas litologias são cortadas por monzogranitos com clinopiroxênio. Na presente pesquisa, novos dados de mapeamento geológico da área de Ourilândia do Norte aliados a estudos petrográficos e geoquímicos, permitiram distinguir pelo menos mais três grupos de granitoides, a saber: (i) biotita monzogranitos; (ii) epidoto-biotita granodioritos; e (iii) granitoides porfiríticos.



Figura 1 - Localização e acesso da área de Ourilândia do Norte.

Levando-se em consideração de que a área proposta para o desenvolvimento desta dissertação está localizada no limite entre dois domínios tectônicos - Rio Maria e Carajás, a caracterização de sua geologia e da natureza e aspectos deformacionais dos granitoides ali identificados, permitiram um avanço significativo na compreensão dos processos que levaram à formação e estabilização da crosta arqueana dessa região, e que poderão contribuir para um melhor entendimento sobre a zona de interferência entre tais domínios. Para isso, foi necessária a integração das informações obtidas neste estudo com aquelas geradas pelo desenvolvimento da dissertação de Maria Nattânia Sampaio dos Santos (Santos & Oliveira 2016). Tais atividades fazem parte da linha de pesquisa Petrologia e Evolução Crustal desenvolvida pelo GPPG/PPGG e estão vinculadas às metas e objetivos propostos pelos convênios VALE-FAPESPA (Edital 01/2010 - ICAFF 053/2011) e INCT/GEOCIAM (Proc. 573733 / 2008-2).

Os dados obtidos durante o desenvovimento desta dissertação são apresentados na forma de um artigo científico, sendo que a mesma compreende um capítulo introdutório (Capítulo 1), que aborda os pontos relacionados à localização da área de estudo, o contexto geológico-geotectônico regional da Província Carajás, assim como a apresentação do problema, dos objetivos gerais e específicos e dos materiais e métodos utilizados na pesquisa. O Capítulo 2 (artigo científico) compreende os principais resultados obtidos, onde são apresentados os aspectos geológicos, petrográficos, microestruturais e geoquímicos dos granitoides de Ourilândia do Norte, assim como uma discussão sobre suas afinidades petrológicas e as relações entre plutonismo e deformação - "DIVERSITY, ORIGIN AND TECTONIC SIGINIFICANCE OF THE MESOARCHEAN GRANITOIDS OF OURILÂNDIA DO NORTE, CARAJÁS PROVINCE (BRAZIL)". Este artigo deverá ser submetido para publicação ao periódico Journal of South American Earth Sciences ou outro de classificação similar (Qualis/CAPES). No terceiro e último capítulo, é apresentada uma descrição conjunta dos principais aspectos conclusivos abordados no artigo mencionado acima, buscando-se com isso, fornecer uma visão integrada dos principais resultados e contribuições para a evolução do conhecimento geológico na área de Ourilândia do Norte.

#### 1.2 CONTEXTO GEOLÓGICO-GEOTECTÔNICO REGIONAL

A Província Carajás (Fig. 2), está situada na porção sudeste do Estado do Pará e representa o principal núcleo arqueano preservado do Cráton Amazônico (Almeida et al. 1981). Ela é considerada como uma província geocronológica independente por Santos (2003) ou como parte integrante da Província Amazônia Central (Tassinari & Macambira 2004), a qual é subdividida em dois domínios denominados de blocos Carajás e Xingu-Iricoumé (Fig. 2a). Em decorrência de seu enorme potencial metalogenético, a Província Carajás tem sido alvo de diversos estudos geológicos ao longo das últimas décadas, o que resultou na individualização de diversos granitoides a partir do que era considerado como domínio de ocorrência das rochas do Complexo Xingu (Silva et al. 1974). Tais pesquisas aliadas a estudos geofísicos e estruturais permitiram que surgissem propostas de sua compartimentação em segmentos crustais tectonicamente distintos (Costa et al. 1995, Souza et al. 1996, Althoff et al. 2000; Dall'Agnol et al. 2006, 2013). Inicialmente, Souza et al. (1996) subdividiram esta província em Terreno Granito Greenstone de Rio Maria (TGGRM), a sul, e a Bacia Carajás (BC), a norte. O primeiro compreenderia as rochas mais antigas e de características ígneas bem preservadas, enquanto que a porção norte manteria um embasamento mesoarqueano, afetado por eventos tectonotermais de idade neoarqueana, representado por uma vasta sequência vulcanossedimentar e intrusões granitoides. Posteriormente, Vasquez et al. (2008) em revisão à geologia do Estado do Pará e seguindo a proposta de Santos (2003), subdividiram a província em dois domínios tectônicos distintos: (i) Domínio Rio Maria (DRM), de idade mesoarqueana, composto por greenstone belts do Supergrupo Andorinhas (3,0 e 2,9 Ga) e por granitoides tipo TTG e cálcico-alcalinos alto-K (suítes Xinguara, Guarantã e Rio Maria), colocados entre 2,98 e 2,86 Ga (Oliveira et al. 2009, Almeida et al. 2011, 2013); e (ii) Domínio Carajás (DC), composto pelos greenstones belts de idade neoarqueana que compõem a Bacia Carajás (~2,76 Ga), por rochas indiferenciadas do Complexo Xingu (2,97 - 2,86 Ga) e por granitoides diversos de idade meso- a neoarquena (3,0 – 2,73 Ga; Feio & Dall'Agnol 2012, Feio *et al.* 2012).

Trabalhos realizados de mapeamento geológico em escala de semi-detalhe por pesquisadores do Grupo de Pesquisa Petrologia de Granitoides (GPPG-UFPA) na porção norte da Província Carajás, mostraram que a área considerada como embasamento da Bacia Carajás, que se estenderia desde a sua borda sul até o limite com o TGGRM, não corresponderia a uma crosta arqueana tectonicamente homogênea, o que levou à adoção das denominações Subomínio Canaã dos Carajás (SCC) e Subomínio Sapucaia (SS) para as



Figura 2 - (a) Localização do Cráton Amazônico na Plataforma Sul Americana (Almeida *et al.* 1981); (b) Localização da Província Carajás no Cráton Amazônico (Tassinari & Macambira 2004); (c) Compartimentação tectônica da Província Carajás segundo Dall'Agnol *et al.* (2013), com a localização da área sob estudo; e (d) mapa geológico regional da Província Carajás (modificado de Oliveira et al. 2014) com a localização da área de estudo. Na parte esquerda é mostrado a proposta de compartimentação tectônica de acordo com Vasquez et al. (2008) e a direita a proposta de Feio & Dall'Agnol (2012).

porções norte e sul deste segmento crustal da província, respectivamente (Fig. 2c; Dall'Agnol *et al.* 2013). O SCC é caracterizado pela predominância de granitos *stricto sensu* e associações charnockíticas (Suíte Planalto e Diopsídio-Norito Pium), com raras ocorrências de TTG e granitos anorogênicos, enquanto que o SS seria formado por granitoides TTG, sanukitoides e leucogranitos diversos, análogos àqueles identificados no Domínio Rio Maria, sendo, porém, afetados por eventos neoarqueanos.

O Domínio Rio Maria, ao sul, é essencialmente Mesoarqueano, e caracterizado por associações greenstone belt do Supergrupo Andorinhas de 3,0 a 2,9 Ga (Macambira & Lancelot 1991, Pimentel & Machado 1994, Avelar 1996, Souza et al. 2001, Rolando & Macambira 2003, Lafon et al. 2000), o qual inclui o Grupo Tucumã (Araújo & Maia 1991). Os granitoides englobam: (a) *rochas TTG* de 2,98-2,92 Ga, representados pelo Tonalito Arco Verde, Trondhjemito Mogno e Tonalito Mariazinha (Macambira & Lafon 1995, Rolando & Macambira 2003, Almeida et al. 2008, 2011); (b) Sanukitoide Rio Maria de 2,87 Ga e rochas associadas (Medeiros & Dall'Agnol 1988, Oliveira et al. 2009, Santos et al. 2013a, Santos & Oliveira 2016); (c) *leucogranodioritos-granitos de alto Ba-Sr* representados pelos plútons Guarantã, Trairão e Azulona, os quais foram agrupados na Suíte Guarantã de 2,87 a 2,86 Ga por Almeida et al. (2010); (d) leucogranitos potássicos de afinidade cálcio-alcalina, caraterizados pelo Granito Mata Surrão e afins e datados em 2,87 Ga (Lafon et al. 1994, Almeida et al. 2013). Tais rochas foram recobertas pelas rochas sedimentares clásticas, transgressivas, do Grupo Rio Fresco (Docegeo 1988). Já no Paleoproterozóico, este terreno foi intrudido por granitos Tipo-A de 1,88 Ga da Suíte Jamon (Dall'Agnol et al. 2005, Dall'Agnol & Oliveira 2007). Diques associados a este magmatismo também são frequentes (Rivalenti et al. 1998, Silva Jr. 1999, Silva et al. 2016).

O **Subdomínio Canaã dos Carajás**, de idade meso- a neoarqueana (3,0-2,73 Ga), é caracterizado pela predominância de granitos cálcico-alcalinos de alto-K e provavelmente representa o embasamento da Bacia Carajás. É formado pelo Ortogranulito Chicrim-Cateté (3,0 Ga), pelas rochas do Complexo Xingu (2,97-2,86 Ga), pelo Diopsídio-Norito Pium (2,74 Ga) e por seis grupos de granitoides, listados a seguir: (i) tonalitos com anfibólio representado pelo Tonalito Bacaba (3,0 Ga) e pelo Complexo Tonalítico Campina Verde (2,87-2,85 Ga); (ii) associação TTG, com baixa expressividade areal, composta pelo Trondhjemito Rio Verde (2,93 Ga); (iii) Granito Canaã dos Carajás cálcico-alcalino de alto-K e com afinidade sódica, datados entre 2,95-2,93 Ga; (iv) granitos cálcico-alcalinos de alto-K, com grande expressividade areal nas áreas geologicamente mais conhecidas do SCC, formados pelos granitos Bom Jesus (sem idade definida), Cruzadão (2,86-2,85 Ga), Serra Dourada (2,85-2,83

Ga) e Boa Sorte (2,86 Ga); (v) Suíte Pedra Branca de idade 2,75; e (vi) Suíte Planalto e rochas charnockíticas associadas, de idade 2,73 Ga (Feio *et al.* 2012, Feio & Dall'Agnol 2012, Feio *et al.* 2013, Santos *et al.* 2013c, Rodrigues *et al.* 2014).

O **Subdomínio Sapucaia**, também de idade meso- e neoarqueana, é dominado por associações TTG similar ao Domínio Rio Maria, mas as rochas mesoarqueanas que o constituem foram intensamente deformadas e seccionadas por granitoides das suítes Vila Jussara e Planalto. Nesse sentido, no SS temos: (i) associações TTG representadas pelo Trondhjemito Colorado (2,87 Ga) e Trondhjemito Água Fria (2,86 Ga); (ii) tonalito com anfibólio composto pelo Tonalito São Carlos; (iii) granodioritos de alto-Mg formados pelos granodioritos Água Ázul e Água Limpa, colocados em 2,87 Ga; (iv) granitos cálcico-alcalinos alto Ba-Sr representados pelos leucogranodioritos Pantanal e Nova Canadá; e (v) granitos cálcico-alcalinos alto-K representados pelos leucogranitos Xinguara e Velha Canadá (Santos *et al.* 2013b, Teixeira *et al.* 2013, Silva *et al.* 2014, Gabriel & Oliveira 2014, Oliveira *et al.* 2014, Leite-Santos & Oliveira 2016).

No Paleoproterozóico (1,88 Ga), a Província foi intrudida por granitos Tipo-A das suítes Jamon (plútons Redenção, Musa, Jamon e Bannach), Serra dos Carajás (plútons Central e Rio Branco) e Velho Guilherme (maciços Central, Cigano, Pojuca e Rio Branco) - Dall'Agnol *et al.* (2005) e Dall'Agnol & Oliveira (2007), e diques associados (Rivalenti *et al.* 1998; Silva Jr. 1999; Silva *et al.* 2016).

#### 1.3 APRESENTAÇÃO DO PROBLEMA

Nas últimas décadas a realização de diversas etapas de trabalho de campo, aliado aos estudos petrográficos, geoquímicos e geocronológicos, contribuíram para a individualização de várias unidades da Província Carajás, anteriormente associadas ao Complexo Xingu. Apesar do avanço do conhecimento científico nesta província, diversas áreas ainda são pobremente caracterizadas e permanecem inseridas neste complexo. Nesse contexto, pesquisas recentes realizadas pelo GPPG permitiram um significativo avanço no conhecimento das associações magmáticas e aspecto estrutural do embasamento arqueano da área de Ourilândia do Norte.

Santos & Oliveira (2016) definiram nessa região os granitoides de afinidade sanukitoide, dioritos e quartzo dioritos de afinidade BADR e granitos indiferenciados, além de apontar a ocorrência de monzogranitos com clinopiroxênio, cortando os demais granitoides. Nesta dissertação, o mapeamento geológico em escala de semi-detalhe (~1:50.000) realizado na área de Ourilândia do Norte permitiu distinguir pelo menos mais três grupos de granitoides arqueanos representados por biotita monzogranitos; epidoto-biotita granodioritos e granitoides porfiríticos. Assim, abaixo são listados alguns problemas que foram esclarecidos com o objetivo de propor um modelo de evolução tectono-magmática para a região de Ourilândia do Norte:

- i. Indefinição da posição estratigráfica dos granitoides identificados nesta dissertação com os demais granitoides da área;
- ii. Incerteza sobre classificação, afinidades petrológicas, origem, evolução magmática, aspectos estruturais e ambiente de formação dos granitoides estudados;
- iii. Indefinições dos mecanismo de ascensão e colocação e história de deformação das rochas de Ourilândia do Norte; e
- iv. Dúvida sobre o real significado desta área no contexto dos domínios Rio Maria e Carajás. Seria este uma possível extensão do Domínio Rio Maria afetado por eventos neoarqueanos (Subomínio Sapucaia) ou uma crosta retrabalhada com evolução geológica semelhante ao Subomínio Canaã dos Carajás?

#### **1.4 OBJETIVOS**

Este trabalho tem como objetivo geral definir a classificação, natureza, processos de formação e aspectos de deformação dos biotita monzogranitos, epidoto-biotita granodioritos e granitoides porfiríticos da área de Ourilândia do Norte, além de discutir, a partir da integração desses dados com aqueles de trabalhos anteriores, as relações entre plutonismo e tectonismo para origem, ascensão e colocação dos magmas geradores dessas rochas. Para isso, foram atingidos os seguintes objetivos específicos:

Individualização e classificação petrográfica das rochas identificadas neste trabalho;

 Caracterização das microestruturas magmáticas e de deformação, transformações tardia pós-magmáticas e dos mecanismos de deformação intracristalina que afetaram essas rochas;

 Definição de tipologia, série magmática e ambiente de formação para os granitoides estudados;

 Comparação das rochas estudadas com granitoides de áreas adjacentes da Província Carajás, contribuindo para um melhor entendimento de suas afinidades petrológicas;

 Realização de modelagem geoquímica para auxiliar na discussão sobre petrogênese e evolução magmática dessas rochas;

 Estimativa da temperatura e intensidade do campo diferencial que atuaram durante o fim da deformação cristal-plástica que afetou essas rochas;

Elaboração de mapa geológico em escala de semi-detalhe (~1:50.000) para a área de Ourilândia do Norte, a partir de dados de mapeamento geológico, fotointerpretação de imagens de radar, petrografia, microestrutural e geoquímica, visando uma melhor delimitação dos corpos e suas fácies, além de traçar as estruturas dúcteis e rúpteis de grande escala;

 Discussão sobre a evolução do nível de erosão e sobre o significado tectônico das estruturas dúcteis e rúpteis identificadas e fotointerpretadas na área.

 Caracterização do limite entre os domínios Rio Maria e Carajás (Vasquez *et al.* 2008) de acordo com os resultados obtidos.

#### **1.5 MATERIAIS E MÉTODOS**

#### 1.5.1 Pesquisa bibliográfica

Consistiu do levantamento bibliográfico de livros, relatórios, artigos, dissertações e teses sobre a Província Carajás (Silva et al. 1974, Araújo & Maia 1991, Costa et al. 1995, Souza et al. 1996, Pinheiro & Holdsworth 1997, Althoff et al. 2000, Dall'Agnol et al. 2006, Vasquez et al. 2008, Docegeo 1988, Oliveira et al. 2009, 2010, 2011, Almeida et al. 2010, 2011, 2013, Feio & Dall'Agnol 2012, Feio et al. 2012, 2013, Ronaib & Oliveira 2013, Santos et al. 2013a, 2013b, 2013c, Dall'Agnol et al. 2013, Teixeira et al. 2013, Rodrigues et al. 2014, Silva et al. 2014, Gabriel & Oliveira 2014, Oliveira et al. 2014, Leite-Santos & Oliveira 2016, Teixeira 2015, Santos & Oliveira 2016, Santos 2017, Dall'Agnol 2017), complementado pela leitura de diversos artigos, com temas relacionados à geologia de terrenos arqueanos, voltados principalmente para a petrogênese, evolução magmática e ambiente geodinâmico (Condie 1993, Sylvester 1994, Matin 1994, Frost et al. 1998, Champion & Smithies 2001, 2003, Moyen et al. 2003a, Heilimo et al. 2010, Laurent et al. 2014a, 2014b). Adicionalmente, foram consultados atlas, livros e artigos visando aprofundar os conhecimentos do autor sobre geoquímica de rocha total (Ragland 1989, Rollinson 1993, Gill 2010), além do reconhecimento de fases primárias e secundárias (Mackenzie et al. 1982, Best 2003, Vernon 2004), meso- e microestrutural de granitoides e estilos de colocação de magmas (Hibbard 1987, Peterson et al. 1989, Blenkinsop 2000, Moyen et al. 2003b, Vernon 2004, Passchier & Trouw 2005, Trouw et al. 2010, Fossen 2012, Neves 2012, Florisbal 2012).

#### 1.5.2 Mapeamento geológico e geologia estrutural

Primeiramente, foram integrados em ambiente SIG (Sistema de Informação Geográfica) um conjunto de mapas litogeofísicos, confeccionados a partir da fotointerpretação de imagens aeromagnetométricas e aerogamaespectrométricas, e de lineamentos extraídos a partir de Modelo Digital de Terreno (*Shuttle Radar Topography Mission -* SRTM), com resolução espacial interpolada para 15 m (banda C). Esses dados aliados aos estudos de campo, petrografia, microestrutural e geoquímica foram de fundamental importância para a confecção do mapa geológico da área de Ourilândia do Norte, em escala de semi-detalhe (~1:50.000). O mapeamento geológico dessa região foi realizado em três etapas durante os períodos de 18-26/10/2010, 18-27/10/2013, e 23-25/07/2014 (com participação do autor deste trabalho apenas nesta última etapa), somando um total de 197 pontos, que visaram a descrição



Figura 3 - Mapa de amostragem referente às três etapas de mapeamento geológico realizadas na área de Ourilândia do Norte.

de afloramentos e relevo, com destaque para os aspectos litológicos e estruturais, o que possibilitou diversas observações das relações de contato entre os granitoides estudados e suas rochas encaixantes. Durante o mapeamento, houve uma coleta sistemática de amostras de mão, réplica, lâmina e geoquímica, todas devidamente identificadas e etiquetadas, totalizando 293 amostras, das quais 85 compõem este trabalho (Fig. 3). Adicionalmente, foram mensurados os valores de susceptibilidade magnética das diversas litologias a partir de susceptibilímetro de modelo SM-30, fabricado pela *ZH Instruments*. Para a localização desses pontos foi utilizado um aparelho GPS (*Global Position System*) com precisão de ~3 m.

Em termos de geologia estrutural, vale a pena ressaltar que os dados de foliação não foram coletados com a devida discriminação dos tipos de foliação (magmática ou tectônica, ou ainda uma superimposta pela outra), além disso, não foram coletadas amostras orientadas e os dados de lineação, quando obervadas, não foram mensurados. Entretanto, mesmo diante dessa escassez de atitudes mesoestruturais, as análises de fotografias de campo e de imagens de radar, combinadas com os estudos microestruturais nos permitiram inferir a história deformacional dessas rochas. Nesse contexto, para uma melhor compreensão da evolução estrutural interpretada para esses granitoides, será necessário aprofundar os estudos de mapeamento estrutural e/ou confecção de painéis em afloramentos chaves, com o objetivo de melhorar a aquisição de atitudes estruturais, tanto planares quanto lineares, assim como realizar a coleta de amostras orientadas.

#### 1.5.3 Petrografia e microestrutural

A princípio as amostras de mão foram descritas e agrupadas com base na composição mineralógica e nos aspectos texturais. Seguido da confecção de lâminas polidas ou delgadas na Oficina de Laminação do Instituto de Geociências da UFPA, com secções de corte aproximadamente perpendicular à foliação da rocha. Em escala microscópica, a descrição das lâminas permitiu um reagrupamento das amostras de mão de acordo com as proporções dos minerais essenciais e varietais, enquanto que a análise mineralógica quantitativa foi adquirida a partir da contagem modal de 2000 pontos, em 54 lâminas das diversas variedades de granitoides estudados, distribuídos numa malha de 0,4 mm de espaçamento em contador de pontos automático do *software Hardledge* (versão *Worsktation 1.3.6.1111; ENDEEPER*) e utilizando os princípios de Chayes (1956) e Hutchison (1974). Durante a análise modal, os minerais secundários foram contabilizados como seus minerais primários formadores, visando reconstituir a mineralogia ígnea dessas rochas. Esses dados foram descritos em texto corrido e

plotados nos diagramas de classificação Q-A-P e Q-A+P-M (Streckeisen 1976, Le Maitre 2002), conforme estabelecido pela IUGS (*International Union of Geological Sciences*).

Em termos microestruturais, foi realizado um reconhecimento detalhado da mineralogia e das diversas microestruturas formadas tanto durante a cristalização magmática (Mackenzie *et al.* 1982, Blenkinsop 2000, Best 2003, Vernon 2004, Passchier & Trouw 2005), quanto durante a recristalização e alteração (Hibbard 1987, Peterson *et al.* 1989, Blenkinsop 2000, Best 2003, Vernon 2004, Passchier & Trouw 2005, Trouw *et al.* 2010). A análise das microestruturas primárias observadas nessas rochas foi essencial para auxiliar na interpretação sobre suas origens e evoluções magmáticas, ao passo que, a identificação das microestruturas de deformação e dos mecanismos de deformação intracristalina nos permitiram inferir a relação entre as deformações magmáticas/submagmáticas e de estado sólido que afetaram essas rochas, além de estimar as condições de temperatura atuantes durante as fases finais desta deformação cristal-plástica. A análise das transformações tardi- a pós-magmáticas nos permitiu inferir as condições de alteração deutérica em que essas rochas foram submetidas.

#### 1.5.4 Geoquímica

Foram tratadas 56 amostras representativas dos granitoides identificados neste trabalho: (i) 31 amostras do grupo biotita monzogranito; (ii) 18 amostras do grupo epidotobiotita granodiorito; (iii) 07 do grupo de granitoides porfiríticos. Além disso, embora não utilizadas neste trabalho, foram adquiridas as composições de 04 amostras de enclaves, relacionados ao grupo EBGd, 03 de enclaves máficos e 01 de epidoto-biotita tonalito. As amostras foram trituradas, pulverizadas, homogeneizadas e quarteadas no Laboratório de Preparação de Amostras (OPA) do Instituto de Geociências da UFPA e as análises químicas foram realizadas pela ACME *Analytical Laboratories* Ltda. (Vancouver, Canadá), onde os conteúdos de elementos maiores e menores (SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub><sup>t</sup>, MgO, CaO, Na<sub>2</sub>O, TiO<sub>2</sub>, Cr<sub>2</sub>O<sub>3</sub>, P<sub>2</sub>O<sub>5</sub>, PF) foram analisados por ICP-ES (*Inductively Coupled Plasma Emission Spectroscopy*) e os elementos traços (Zn, Cu, Pb, Ba, Be, Cs, Ga, Hf, Nb, Rb, Sn, Sr, Ta, Th, U, W, Zr, Bi) e terras raras (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb e Lu) por ICP-MS (*Inductively coupled plasma mass spectrometry*).

Para a geração dos diagramas desse trabalho, inicialmente foi confeccionada uma planilha no Excel<sup>®</sup>, com os cálculos dos diversos parâmetros geoquímicos, em que as transformações de óxidos para proporção molar, porcentagem catiônica e de  $Fe_2O_3^{t}$  em FeO<sup>t</sup> foram realizadas a partir de proporção estequiométrica. Além das amostras deste trabalho,

essa planilha também integra um banco de dados para comparação, com 256 amostras, representativas de diversas unidades granitoides da Província Carajás, a saber: leucogranitos alto-K (Almeida et al. 2013, Feio & Dall'Agnol 2012, Rodrigues et al. 2014, Leite-Santos & Oliveira 2016), leucogranodiorito-granitos alto Ba-Sr (Almeida et al. 2013, Teixeira et al. 2013, Ronaib & Oliveira 2013, Leite-Santos & Oliveira 2016) e associações granodioritotonalíticas de afinidade sanukitoide (Santos & Oliveira 2016). Em sequência, foram realizados diversos testes a partir da confecção de vários diagramas utilizando o software GCDkit<sup>®</sup> versão 2.2 e subsequente selecão daqueles que de fato foram inseridos neste trabalho, baseado nos princípios recomendados em Ragland (1989), Rollinson (1993) e Gill (2010). Nesse contexto, as composições dos granitoides estudados foram plotadas em: (i) diagramas de Harker para melhor compreender a evolução composicional dentro de cada grupo e possíveis relações entre eles; (ii) diagramas de classificação (O'Connor. 1965; Barker 1979, Debon & Le Fort 1983) e séries magmáticas (Shand 1943, Nockoids & Allen 1953, Peccerillo & Taylor 1976, Barker & Arth 1976, Frost et al. 2001) afim de aperfeiçoar nossa compreensão sobre as afinidades geoquímicas dessas rochas; (iii) diagramas ETRs (Elementos Terras Raras) e multielementos, normalizados para condrito (Evensen et al. 1978) e manto primitivo (Taylor & Mclennan 1985), respetivamente; e (iv) diagramas selecionados (Moyen et al. 2003a, Heilimo et al. 2010, Larurent et al. 2014a) para auxiliar os anteriores na discussão sobre a petrogênese e evolução magmática. Adicionalmente, foram utilizados estudos de modelagem geoquímica de elementos traços para melhor entender os processos que formaram essas rochas.

#### CAPÍTULO 2

# DIVERSITY, ORIGIN AND TECTONIC SIGNIFICANCE OF THE MESOARCHEAN GRANITOIDS OF OURILÂNDIA DO NORTE, CARAJÁS PROVINCE (BRAZIL)

Luciano Ribeiro da Silva<sup>1,2</sup> (<u>lucianor@ufpa.br</u>), Davis Carvalho de Oliveira<sup>1,2</sup> (<u>davis@ufpa.br</u>), Maria Nattânia Sampaio dos Santos<sup>2</sup> (<u>nattania@ufpa.br</u>)

<sup>1</sup>Graduate Program in Geology and Geochemistry (GPGG), Institute of Geosciences (IG), Federal University of Pará (UFPA), Post office box8608, CEP-66075-110, Belém, Pará, Brazil.

<sup>2</sup> Group of Research on Granitoids Petrology (GPGP), IG, UFPA, Brazil.

#### Abstract:

This study investigates the diversity, origin and tectonic significance of the Ourilândia do Norte Mesoarchean granitoids, emplaced near Rio Maria-Canãa dos Carajás domains boundary, southeastern Amazonian Craton (Brazil). In this area, previous works has identified sanukitoids (~ 2.87 Ga), (quartz) diorites of BADR affinity and undifferentiated leucogranites, with charnockites crosscutting the other granitoids. New geological mapping data allowed to differentiate three new groups of granitoids: (i) biotite monzogranites (BMzG); (ii) epitote-biotite granodiorites (EBGd); and (iii) porphyritic granitoids (pGrt). Thus, this paper aims to define their classification, nature, formation processes and deformation aspects, and discuss the relations between plutonism and deformation for the Ourilandia do Norte granitoids. The petrographic data showed that each one of these groups can be subdivided into two facies. The BMzG is differentiated into equigranular (eBMzG) and heterogranular (hBMzG) and the EBGd into heterogranular (hEBGd) and sparsely porphyritic (spTEBGd). These granitoids constitute two batholiths separated by a rock strip of sanukitoid and BADR affinities. Both are largely dominated by BMzG rocks, with less occurrence of EBGd lenses. The pGrt is individualized in porphyritic granodiorites (pBHGd) and trondhjemites (pEBTd), which occur as smaller bodies. Structurally, the central portions these plutons represent lower strain domains, while their borders are marked by large-scale shear zones, where occur magmatic and milonitic fabrics of ENE-WSW main direction and subvertical dip, respectively. The meso- and microstructural data indicate that the rocks studied are syn- to late-tectonic and were affected by high temperature deformation (> 500 °C) and low differential stress, in a sinistral transpression regime, indicating that both fabrics are related to the a same deformational event. Geochemically, except the EBTdp that has Mg-Na affinity, the Ourilândia do Norte granitoids can be grouped into two suites: (i) Fe-K suite formed by BMzG and spTEBGd; and (ii) Mg-K suite composed for sanukitoids (including hEBGd and pBHGd) and (quartz) diorites of BADR affinity. The origin of the eBMzG is attributed to anatexis of a 2.92-2.98 Ga old TTG crust. The hEBGd has sanukitoid affinity and was produced by intense fractionation of hornblende  $\pm$  clinopyroxene. The granitoids of spTEBGd, hBMzG, pBHGd and pEBTd facies show mingling evidence between contrasting magmas, indicating that their origins require interaction between metassomatized mantleand crustal derived magmas. Geochemical data and modeling were used to identify their different formation processes: (i) spTEBGd is enriched in HFSE (Ti, Zr and Y) and LILE (Ba and Sr) and it was admitted as product of the partial melting of an enriched mantle source, with participation of crustal liquids; (ii) hBMzG is generated by the interaction between spTEBGd (60%) and eBMzG (40%) magmas; (iii) pBHGd by hybridization between sanukitoid (80%) and eBMzG (20%); and (iv) pEBTd by mixture between trondhjemitic (70-80%) and BARD-affinity (20-30%) liquids. Therefore, in ~2.87 Ga a significant crustal growth and reworking occurred in the final stages of stabilization of the first geotectonic cycle of Carajás province, where all the Ourilândia do Norte Mesoarchean granitoids were emplacement during the second stage of a tectono-magmatic two-stage (subduction-collision) model: (i) first stage (2.98-2.92 Ga) - low-angle subduction with emplacement of slab-melt and mantle wedge metasomatism; (ii) second stage (~ 2.87 Ga) - collisional environment, where shear zones conditioned the rise and emplacement of the Ourilândia do Norte magmas.

Keywords: Geochemistry; Microstructural; Granitoids; Archean; Carajás province.

#### 1. Introduction

The continental crust has been continuously extracted from the mantle, with a consequence of the Earth's cooling and differentiation, but growth rates and mechanisms have changed over geological time and at least 50% of the present-day continental volume was formed prior to 2.5 Ga (Taylor & McLennan, 1985, 1995; Kramers & Tolstikhin, 1997; Belousova et al., 2010; Dhuime et al., 2011; Guitreau et al., 2012). Thus, the end of the Archean has long been regarded as a period of fundamental geodynamic changes (Taylor & McLennan, 1995; Condie & O'Neill, 2010; Laurent et al., 2014a). The Archean terranes worldwide are composed primarily of three contrasting lithologies: (i) the so-called "grey gneisses", composed by a complex, deformed and often migmatitic assemblage, geochemically defined as TTG (tonalite-trondhjemite-granodiorite) suites; (ii) the greenstone belts formed by supracrustal, meta-volcanic and meta-sedimentary rocks commonly metamorphosed under greenschist to amphibolite facies; and (iii) high-K granitoid plutons, usually emplaced in a late context, intruding into the two older lithologies. These rocks cover a wide compositional range and can be subdivided into three main groups: high-K calcalkaline, slightly peraluminous, biotite-bearing leucogranites; metaluminous Mg- and K-rich rocks from the sanukitoid suite; and calc-alkaline hybrid granitoids commonly enriched in Ba and Sr or with assimilation of sodic material. These granitoids generally represent the last Archean geological event in every craton worldwide and appear to be related to final stabilization of the Archean cratonic lithosphere. Although this event is diachronous from one craton to another, it occurred

between 3.0 and 2.5 Ga ago on a planetary scale (Condie, 1981; Martin, 1994; Sylvester, 1994; Frost et al., 1998; Champion & Smithies, 1999; Moyen et al., 2003a; Oliveira et al., 2009; Heilimo et al., 2013; Almeida et al., 2011, 2013; Laurent et al., 2014a).

The Carajás province is the largest and best preserved Archean segment of the Amazonian craton, in northern Brazil, and comprises the Rio Maria (RMD), Sapucaia (SD) and Canaã dos Carajás (CCD) domains (Fig. 1; Vasquez et al., 2008; Dall'Agnol et al., 2013). The granitoid magmatism and evolution of the Mesoarchean RMD have been more extensively studied. It is formed mainly by greenstone belts, TTG suites, sanukitoid affinity granodiorites, high Ba-Sr leucogranodiorite-granites and potassic leucogranites (Althoff et al., 2000; Souza et al., 2001; Leite et al., 2004; Oliveira et al., 2009; Almeida et al., 2011, 2013). The Meso- to Neoarchean CCD represents the basement of the Neoarchean Carajás basin and remains poorly characterized. The best known areas of this domain show lithologic associations distinct from RMD and they are dominated by potassic granites and granulitic and charnockitic rocks, with subordinate TTG series (Feio & Dall'Agnol, 2012; Feio et al., 2012, 2013; Santos et al., 2013c; Cunha et al., 2016). The SD is considered an extension of the RMD affected by Neoarchean events that gave rise to the Carajás basin (Gabriel & Oliveira, 2014; Leite-Santos & Oliveira, 2016; Dall'Agnol et al., 2016; Santos, 2017).

The Ourilândia do Norte area is located in the central-west portion of the Carajás province, straddling the RMD-CCD border. It is predominantly formed by 2.87 Ga old Mesoarchean granitoids of sanukitoid affinity, (quartz) diorites of BADR (Basalt-Andesite-Dacite-Rhyolite) affinity, undifferentiated leucogranites, and younger intrusion of clinopiroxene-bearing monzogranite (Santos et al., 2013a; Santos & Oliveira, 2016). As a result of the present study, the geological mapping performed in the Ourilândia do Norte area distinguished at least three more groups of Mesoarchean granitoids: (i) biotite monzogranites; (ii) epidote-biotite granodiorites; and (iii) porphyritic granitoids. Accordingly, this paper aims to define: (i) the field relationships and structural framework of these rocks, from geologic and photointerpretation data; (ii) the petrographical and geochemical classifications; (iii) the magmatic and deformation fabrics and microstructures; and (iv) the relationships between plutonism and deformation for the origin, emplacement and tectono-magmatic evolution of the Ourilândia do Norte granitoids.

#### 2. Regional geology

The Carajás Province (Fig. 1) is the main preserved Archean domain of the Amazonian Craton (Almeida et al., 1981). Santos (2003) considers it to be an independent geochronological province, while Tassinari & Macambira (2004) interpret it as to be part of the Central Amazon province, which is subdivided into two blocks (Carajás and Xingu-Iricoumé) (Fig. 1a). A new configuration initially proposed by Souza et al. (1996), and revised by Santos (2003) and Vasquez et al. (2008), subdivided the province into two distinct tectonic domains: the Mesoarchean Rio Maria domain (3.0-2.86 Ga) and Meso- to Neoarchean Carajás domain (3.0 – 2.75 Ga). Geophysical data suggest that the border between the two domains coincides with a regional ~E-W trending discontinuity, extending from the southern Xinguara region on the eastern border of the province to São Félix do Xingu on the western border. Dall'Agnol et al. (2013), using an integrated approach for geophysical and geological data, showed that the CD does not correspond to a tectonically homogeneous Archean crust, which led to the designation of the names Canaã dos Carajás and Sapucaia subdomain for its northern and southern portions, respectively (Figure 1b).

The RMD is composed of greenstone belt sequences of the Andorinhas supergroup (3.0 and 2.9 Ga) and four granitoids suites, emplaced between 2.98 and 2.86 Ga (Althoff et al., 2000; Oliveira et al., 2009; Almeida et al., 2011; 2013; Ronaib & Oliveira, 2013). These include: (i) TTG associations represented by Arco Verde, Caracol and Mariazinha tonalities and Mogno trondhjemite, formed during two main magmatic events  $2.96 \pm 0.2$  Ga and  $2.93 \pm 0.1$  Ga ago; (ii) the 2.87 Ga Rio Maria sanukitoid suite, consisting primarily of epidote-hornblende-bearing granodiorite, with associated mafic and intermediate rocks forming enclaves or, locally, layered rocks; (iii) the 2.87 Ga Guarantã suite formed by high Ba-Sr calc-alkaline leucogranodiorite-granites; and (iv) the 2.87–2.86 Ga potassic leucogranites of calc-alkaline affinity, represented by Xinguara and Mata Surrão granites and small stocks, where biotite is the only varietal phase and epidote may be an important accessory phase. These rocks are weakly deformed, showing a WNW-ESE planar fabric (magmatic and tectonic), and intruded by 1.88 Ga Paleoproterozoic anorogenic granites (Barbosa et al., 1995; Paiva Jr. et al., 2011).

The CCS is dominated by 2.87-2.85 Ga high-K calc-alkaline granites (Boa Sorte, Bom Jesus, Cruzadão and Serra Dourada granites) and 2.74 Ga enderbite-charnokite-granites (Planalto suite and Pium diopside-norite) with rare occurrences of TTG (Rio Verde trondhjemite 4–2.93 Ga), amphibole-bearing tonalite represented by Bacaba tonalite (3.0 Ga) and Campina Verde tonalitic complex (2.87 to 2.85 Ga), sodium leucogranites of calc-alkaline affinity (Canaã dos Carajás granite – 2.93 Ga) and 1.88 Ga anorogenic plutons (Feio et al., 2012, 2013; Santos et al., 2013c; Rodrigues et al., 2014). The SS is dominated by Mesoarchean TTG associations similar to those of the Rio Maria domain, but these were intensely deformed and intruded by granite plutons during the Neoarchean. It consists of TTG (Colorado and Água Fria trondhjemites), amphibole-bearing tonalite (São Carlos tonalite), Água Azul and Água Limpa sanukitoids composed mainly of porphyritic granodiorites, high Ba-Sr calc-alkaline leucogranodiorite-granites (Pantanal and Nova Canadá), and neoarchan high-K calc-alkaline and A-type granites represented by the Velha Canadá and Vila Jussara suites, respectively (Santos et al., 2013b; Teixeira et al., 2013; Silva et al., 2014; Gabriel & Oliveira, 2014; Leite-Santos & Oliveira, 2014, 2016; Dall'Agnol et al., 2016). The structural pattern identified in the SS and CCS is marked by moderate-to-strong heterogeneous deformation when compared to Rio Maria. Both domains are composed of E-W oriented plutonic bodies, which show E-W magmatic and tectonic foliations and subvertical dip.



**Figure 1** - (a) Geochronological provinces of the Amazonian Craton (Santos, 2003; Vasquez et al., 2008); and (b) Geological map of the Carajás province, with location of the studied area. Modified from Dall'Agnol et al. (2013). In the left part is shown the tectonic compartmentation according to Vasquez et al. (2008) and in the right part is shown the proposal of Dall'Agnol et al. (2013).

#### 3. Geology and structural framework

Recent studies have resulted in significant advances in knowledge about the magmatic associations and structural aspects of the Mesoarchean crustal segment of Ourilândia do Norte (Fig. 2; Santos et al., 2013a; Santos & Oliveira, 2016), previously mapped as the Xingu complex, Rio Maria and Plaque suites (Vasquez et al., 2008). Santos & Oliveira (2016) recently defined high-Mg granitoids of sanukitoid affinity, correlated to the Rio Maria suite (RMS), (quartz) diorites of BADR affinity and undifferentiated leucogranites. Moreover, they identified small bodies of clinopiroxene-bearing monzogranite cross-cutting the other granitoids. In this study, the semi-detailed scale (~1:50,000) geological mapping performed in the Ourilândia do Norte area distinguished at least three additional groups of Archean granitoids, all separated into two facies (Box 1; Fig. 2 and 3), as follows: (i) biotite monzogranite (BMzG) showing even-grained (eBMzG) and heterogranular (hBMzG) textures, with subordinate granodiorite; (ii) epidote-biotite granodiorite (EBGd), heterogranular (hEBGd) and sparsely porphyritic (spTEBGd); and (iii) porphyritic granitoids (pGrt), porphyritic epidote-biotite trondhjemite (pEBTd) and porphyritic biotite-hornblende granodiorite (pBHGd).

The geological map of the area shows that the BMzG rocks are predominant and constitute two composite batholiths with minor occurrence of EBGd rock lenses separated by a strip constituted of RMS sanukitoids with subordinated BADR-affinity rocks (Fig. 2). Field relationships suggest that both are intrusive in high-Mg granitoids and in those undifferentiated from the Xingu complex, where the main pluton, located in the northern part of the area, is ellipsoidal with dimensions of ~37x8 Km and its major axis shows a ENE-WSW trend. A second arc-shaped pluton in the southeastern portion is intruded by Paleoproterozoic Seringa granite. The eBMzG variety is predominant throughout these two batholiths, while the hEBGd and spTEBGd facies have a subordinate spatial distribution and occur as E-W lenses within these larger leucogranitic bodies. The hBMzG rocks shows a closed spatial relationship with those of spTEBGd variety. In turn, the porphyritic granitoids (pEBTd and pBHGd) occur as small bodies associated with the BADR-affinity diorites and RMS high-Mg granitoids, respectively. The pEBTd variety was mapped as a E-W lens with dimensions of ~2x1 Km situated in the central portion of the area, while the pBHGd variety form two larger stocks with dimensions of ~7x4 Km and ~7x2 Km, separated by a strip of RMS granitoids in the southwestern part of the map.

The representative rocks of the EBGd and pGrt groups exhibit a large number of mafic enclaves, which are elongated according to regional foliation (Fig. 4a and 4g), similar to those commonly observed in the RMS granitoids. Granites from the BMzG group show ambiguous cross-cutting relationships with the granodiorites (EBGd). In this respect, rocks from the hBMzG facies frequently exhibit rounded hEBGd and spTEBGd enclaves (Fig. 4c and 4d), often with mingling features, suggesting low viscosity contrast between these rocks (e.g. Fig. 4b, 4c, 4d and 4f). On the other hand, the common occurrence of eBMzG veins cross-cutting EBGd rocks (e.g. Fig. 4a) indicates that the BMzG magma is slightly or partially younger than those that gave rise to the granodiorites (hEBGd and spTEBGd). However, it cannot be ruled out that these melts may have coexisted during the accommodation processes.

The field observations, petrography, photointerpretation [Shuttle Radar Topography Mission (SRTM) image interpolated to 15 m, C-band] and microstructural (see section 4.2) data allowed to define the structural framework of the Ourilândia do Norte granitoids. Although these rocks show well-preserved igneous features, they are affected by heterogeneous deformation defined by magmatic or mylonitic foliation of ENE-WSW main trend and subvertical dip (Fig. 2), where the fabrics are subparallels to the main axis of the bodies and concordant with the regional deformation pattern. The local variation in the intensities and orientations of these fabrics can be seen in the stereograms of the Fig. 2.

The lower strain domains occur predominantly in the central parts of the batholiths and commonly show  $(S_0)$  magmatic foliations marked by the alignment of biotite ±hornblende crystals,



Figure 2 - Ourilândia do Norte geological map and location of the A-A' and B-B' schematic geological profiles shown in the lower right portion. In the upper right portion is displayed equal-area (Schimdt-Lambert) stereographic projections with the main attitude of measured foliation.

| Group                                                     | Biotite Monzograpite - RMzC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                             | Enidote-biotite Gra                                                                                                                                                                                                                                                                                                                                                                                                                    | nodiorite - EBGd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Porphyritic granitoids-pGrt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Facies                                                    | Even-grained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Heterogranular                                                                                                                                                                                              | Heterogranular                                                                                                                                                                                                                                                                                                                                                                                                                         | Sparsely porphyritic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Porphyritic Porphyritic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| abbreviation                                              | eBMzG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | hBMzG                                                                                                                                                                                                       | hEBGd                                                                                                                                                                                                                                                                                                                                                                                                                                  | spTEBGd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pEBTd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pBHGd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Colour Index                                              | Holo- to leucocratic<br>M'=1.6-11.7%c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Holo- to leucocratic<br>M' = 5.4-13.6%                                                                                                                                                                      | Holo- to leucocratic<br>M' = 2.95-18.80%                                                                                                                                                                                                                                                                                                                                                                                               | Leucocratic M'<br>= 13.7-19.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hololeucocratic<br>M' = 4.20-8.75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Holo- to leucocratic<br>M' = 7.60-15.70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| lithology                                                 | LMzG and MzG Gd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>MzG</u> Gd                                                                                                                                                                                               | Granodiorite                                                                                                                                                                                                                                                                                                                                                                                                                           | Granodiorite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Granodiorite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Monzogranite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Samples                                                   | NLD-03A         LD-04B         LD-04B;         NLD-05;         NLD-05;         NLD-05;           NLD-06E         JLD-07F         JLD-104;         JLD-104;         JLD-11B         NLD-25;           NLD-154         JLD-104;         JLD-17C;         JLD-17C;         NLD-27;           NLD-18         JLD-20E         NLD-29;         JLD-30A;         NDP-63A;           NDP-76         NDP-80;         NDP-89A;         VDP-89B;         -           NDP-118;         VDP-127;         -         -         -                                                                                           | stdp-11c         stdp-03/v           NLD-14         NDP-05/v           NDP-91         NDP-95A           NDP-92E         -           IDP-117/v         -           IDP-117/v         -           -         - | VLD-02A         VLD-02A         VLD-02A         VLD-06A         ILD-03I           VLD-04A         VLD-06A         ILD-07,         ILD-07,           VLD-10E         VLD-11A         ILD-16,           NLD-23         VLD-26A         ILD-26,           VDP-100         VDP-101         IDP-12,           VDP-125         VDP-126         IDP-12,           VDP-130         IDP-112         VDP-70           NDP-71         -         - | ID-04A:         ID-05F         ID-05F         ID-06C           NLD-17A         -         -         -         -           -         -         -         -         -         -           -         -         -         -         -         -         -           -         -         -         -         -         -         -         -           -         -         -         -         -         -         -         -         -           -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         < | IDP-113         NDP-115         -           -         -         -         -           -         -         -         -           -         -         -         -           -         -         -         -           -         -         -         -           -         -         -         -           -         -         -         -           -         -         -         -           -         -         -         -           -         -         -         -           -         -         -         -           -         -         -         -           -         -         -         -           -         -         -         -           -         -         -         -           -         -         -         -           -         -         -         -           -         -         -         -           -         -         -         - | NDP-21         NDP-23         NDP-27           VDP-84A         NDP-87         -           -         -         -         -           -         -         -         -         -           -         -         -         -         -         -           -         -         -         -         -         -         -           -         -         -         -         -         -         -         -           -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -< |  |
| Color                                                     | Grevish nink                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · • • •                                                                                                                                                                                                     | Grev or g                                                                                                                                                                                                                                                                                                                                                                                                                              | reenish grav                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Grev or pi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nkish grev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Overall texture                                           | <ul> <li>Granites of eBMZG facies have medium to coarse (1.0-5.0 mm<br/>with feldspar crystals exhibiting subhedral shapes, irregular bou<br/>quartz crystals defining a preferred alignment (Fig. 3c);</li> <li>The hBMZG rocks exhibit medium- to coarse-grained (1.0-10.<br/>texture. The feldspar crystals display euhedral to subhedral shap<br/>boundaries and may occur with lenght of up to 3 cm. The matri<br/>alignment and is formed by mafic minerals and quartz aggregate<br/>- Pl/Kfs ratios of both facies can change considerably, leading to<br/>some samples as granodiorites.</li> </ul> | n) even-granned texture,<br>undaries and mafic and<br>0 mm), heterogranular<br>pes, irregular<br>x shows a preferred<br>es;<br>o the classification of                                                      | <ul> <li>The hEBGd rocks exhibit medium-<br/>heterogranular texture. Feldspar crys<br/>shapes and irregular boundaries imm<br/>grained matrix (Fig. 3e);</li> <li>The spTEBGd granodiorites have to<br/>centimetric (0.5-3.0 cm), subhedral for<br/>boundary and immersed in medium (<br/>groundmass. Wherein phenocrysts do<br/>total absent of phenocrysts.</li> </ul>                                                               | to coarse-grained (1.0-8.0 mm),<br>tals show euhedral and subhedral<br>ersed in medium (1.0-3.0 mm) even-<br>exture defined by millimetric to<br>eldspar phenocrysts, with irregular<br>1.0-3.0 mm) even- grained igneous<br>ensity ranging from decimetric to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>The pEBTd rocks have a texture defined by euhedral to subhedral feldspar phenocrysts with millimetric to centimetric (0.5-1.5 cm) size, immersed in medium (1.0-3.0 mm) even-grained igneous groundmass (Fig. 3g);</li> <li>The pBHGd rocks are formed by, euhedral to subhedral feldspar phenocrysts with centimetric (1.0-3.5 cm) size immersed in medium (1.0-3.0 mm) even-grained igneous groundmass (Fig. 3g).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Field<br>relations                                        | <ul> <li>Veins of eBMzG composition cross-cutting hEBGd rocks;</li> <li>Rocks of hBMzG variety have rounded enclaves of spTEBGd suggesting low viscosity contrast among themselves (Fig. 4d);</li> <li>Sinuous contacts between rocks of hBMzG and spTEBGd com with the presence of feldspar phenocrysts mechanically infiltra granodiorites indicate mingling features between hBMzG and s 5e).</li> </ul>                                                                                                                                                                                                 | composition,<br>npositions combined<br>ted in the spTEBGd<br>pTEBGd rocks (Fig.                                                                                                                             | <ul> <li>Both hEBGd and spTEBGd rocks s<br/>enclaves, generally oriented parallel<br/>while the spTEBGd rocks also have s<br/>xenoliths (Fig. 4g);</li> <li>spTEBGd and hBMzG show sinuon<br/>where are observed feldspar phenoer<br/>mechanically infiltrated in the spTEI<br/>viscosity contrast and mingling evided</li> </ul>                                                                                                      | how several mafic to intermediate<br>the magmatic foliation (Fig. 4a,g),<br>strongly foliated, digested tonalitic<br>us contacts among themselves,<br>ysts of the hBMzG rocks<br>3Gd rocks (Fig. 5e), indicating low<br>ences;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Rocks the both pEBTd and pBHGd varieties also have many mafic enclaves, but not allways aligned parallel to the foliation (Fig. 3g,h);</li> <li>Rocks of the pEBTd facies occurs in contact with (quartz) diorites of BADR affinity, possibly indicating a genetic relationship between them</li> <li>The pBHGd granodiorites are spatially associated with leucogranites (eBMzG) and sanukitoids (Fig. 2).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Fabrics and<br>mesostructures<br>Lower strain<br>domains  | <ul> <li>In the central portion of the batholiths studied, the granites of of magmatic foliation of ENE-WSW direction and subvertical dip. preferred orientation of mica and quartz aggregates;</li> <li>Granites of hBMzG facies show a magmatic fabric defined by of euhedral and subhedral phenocrysts and mafic minerals of the aggregates with concordant preferential orientation to the magma weak superimposition of solid-state deformation.</li> </ul>                                                                                                                                            | eBMzG variety show<br>, defined by the<br>preferential orientation<br>e matrix. Quartz<br>natic foliation, indicate                                                                                         | <ul> <li>The hEBGd rocks exhibit magmatic<br/>orientation of euhedral to subhedral f<br/>minerals of the groundmass, with we<br/>deformation, evidenced by the prefer<br/>aggregates.</li> <li>spTEBGd rocks show a magmatic f<br/>orientation of euhedral to subhedral f<br/>mafic minerals of the groundmass.</li> </ul>                                                                                                             | c fabric defined by preferred<br>eldspar phenocrysts and mafic<br>ak superimposition of solid-state<br>ential orientation of quartz<br>oliation defined by preferred<br>eldspar phenocrysts and quartz and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>pEBTd rocks show a weak magmatic foliation defined by preferred orientation of mafic minerals of the groundmass and less often by euhedral to subhedral feldspar phenocrysts;</li> <li>The rocks of pBHGd facies exhibit a magmatic foliation formed by preferential alignment of hornblende ± biotite crystals of the groundmaw While their centimetric, euhedral feldspar phenocrysts do not show a c preferred orientation (Fig. 3g).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Fabrics and<br>mesostructures<br>Higher strain<br>domains | <ul> <li>In the higher strain domains located near the batholith borders<br/>exhibits subvertical, primary compositional banding, sometime<br/>have centimetric to decimetric thickness. This magnatic bandir<br/>disharmonic, complex and rootless folds, as well as magmatic f</li> <li>The hBMzG facies show protomylonitic to mylonitic foliation<br/>rounded or augen feldspar porphyroclasts, contoured by biotite<br/>aggregate, where S-C microstructures are occasionally observed</li> </ul>                                                                                                      | , the eBMzG facies<br>s undulated. The bands<br>ng often develops<br>faults (Fig. 5a);<br>, defined by<br>and quartz<br>d (Fig. 3d).                                                                        | <ul> <li>In the peripheral domains of batholi<br/>display protomylonitic to mylonitic f<br/>orientation of augen or rounded felds<br/>biotite ± hornblende crystals and qua<br/>microstructures can be observed.</li> <li>Granodioritic lenses of spTEBGd v<br/>magmatic fabric, which is consistent<br/>portion of batholiths (Fig. 2).</li> </ul>                                                                                    | iths, rocks of hEBGd variety can<br>obliations defined by preferred<br>par porphyroclasts, contoured by<br>rtz aggregate, wherein S-C<br>ariety are less deformed and show<br>with its location situated on central                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Milonitic foliations were not identified in the pEBTd and pBHGd granitoids, which are affected by weak solid-state deformation, preserving their primary fabric in all described samples;</li> <li>The pBHGd granodiorites show high amphibole/(quartz + micas) rati which may indicate a compositional control on the deformation resistar of these rocks when compared to quartz- and micas-rich rocks of the BMzG and EBGd groups (Paterson et al., 1989).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Photointerpretation<br>data                               | <ul> <li>Photointerpretation study in radar images [Shuttle Radar Topolarge-scale shear zones (Fig. 2);</li> <li>Photointerpretation of SRTM images combined with the meas</li> <li>Photointerpretation of SRTM images indicates that these bathers</li> </ul>                                                                                                                                                                                                                                                                                                                                              | ography Mission (SRTM) i<br>sured planar fabric data allo<br>oliths are cross-cut by two                                                                                                                    | mage interpolated to 15 m, C-band] C<br>owed to trace the foliation trajectory ain<br>faults families, the first one has N-S to                                                                                                                                                                                                                                                                                                        | ombined with mesostructural observation<br>ning to infer the relations between interna<br>NNE-SSW direction and second has NW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | al structure of the batholiths and country<br>/-SE direction, where the former family                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | se batholiths are marked by rocks.<br>cross-cuts the last (Fig. 2).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |

Box 1 - Synthesis of the field aspects of the granitoids studied. Colour index according Le Maitre (2002). Legend: M' = Colour Index; and RMS = Rio Maria Suite.


**Figure 3** - General aspects of the granitoids under study. (a) and (b) these rocks commonly outcrop as rolled or in situ blocks. The granites supporting mound relief and granodiorites dominate the more razed portions of the area; (c) evengrained biotite monzogranite (eBMzG), show spaced foliation defined by the alignment of biotite; (d) heterogranular biotite monzogranite (hBMzG), showing mylonitic foliation defined by feldspar porphyroclasts contoured by biotite and stretched quartz; (e) heterogranular epidote-biotite granodiorite (hEBGd), exhibiting partially digested mafic enclave; (f) sparsely porphyritic titanite-epidote-biotite granodiorite (spTEBGd) show digested biotite tonalite xenolith; (g) porphyritic epidote-biotite trondhjemite (pEBTd), displaying small mafic microgranular enclaves and (h) porphyritic hornblende-biotite granodiorite (pBHGd), with centimetric feldspar phenocrysts.



**Figure 4** - Field relationship of the granitoids studied. (a) injections of eBMzG composition cross-cutting the hEBGd. Note the mafic to intermediate enclaves, oriented according to the foliation; (b) straight contact between hBMzG and spTEBGd, suggesting low viscosity contrast; (c) and (d) rounded or slightly angular enclaves of spTEBGd composition in hBMzG, indicating material partially digested within the host granitoid; (e) compositional banding between hBMzG and hEBGd, indicating low viscosity contrast; (f) spTEBGd displaying digested enclave (hBMzG composition?); and (g) spTEBGd shows angular enclave of mafic composition and digested xenoliths of biotite tonalitic composition, suggesting higher viscosity contrast between these rocks.



**Figure 5** - Deformation aspects of the granitoids under study. (a) Primary compositional banding in rocks of the eBMzG facies shows magmatic fault, healed by melt (Neves, 2012); (b) complex folds observed in primary planar fabric; (c) magmatic foliation defined by aligned euhedral feldspar phenocrysts (Paterson et al., 1989); (d) alkali feldspar fenocristal shows deformation feature; (e) heterogranular granite (hBMzG) cross-cutting the rocks of spTEBGd facies. Note the presence of well-developed magmatic foliation in the hBMzG and sinuous contacts with the spTEBGd, indicating low viscosity contrast between them; e (f) fractures filled by granitic material in rocks of hEBGd facies.

euhedral feldspars and stretched quartz aggregates, indicating the presence of magmatic defomation for these rocks (e.g. Fig. 5c; Paterson et al., 1989). On the other hand, the higher strain domains show ( $S_1$ ) proto- to mylonitic foliation (e.g. Fig. 3d) and are located primarily near the pluton borders, defining an anastomosed geometry and suggesting that these batholiths are limited by large-scale shear zones (see geological map and sections of the Fig. 2). This mylonitic foliation is defined by rounded or augen feldspar porphyroclasts, contoured by biotite and quartz aggregates, where S-C fabric occasionally may occur (e.g. Fig. 3d and 8a). In addition, it is worth mentioning that eBMzG rocks often show magmatic banding (Fig. 5a), wherein both bands are mineralogically similar, but the darker ones are biotite-enriched. This compositional banding commonly develops disharmonic and complex folds (e. g. Fig. 5b).

The structural history of the Carajás region was registred on the undifferentiated Mesoarchean ganitoids of the Xingu complex from the occurrence of oblique lineation, and kinematic indicators which suggest a regime of high temperature sinistral transpression with partitioning of deformation producing linked systems of ductile strike-slip and thrust dominated shear zones (Araújo and Maia, 1991; Pinheiro and Holdsworth, 1997). For the Ourilândia do Norte region the kinematic indicators and local variation in intensity and orientation of the fabric suggest that the deformation was predominantly controlled by pure shear, under conditions of high temperature and low differential stress. Such information is reinforced by microstructural observations (see section 4.2).

# 4. Petrography

### 4.1. Modal composition and classification

Meso- and microscopic petrographic analysis coupled with modal compositional data performed on 54 polished or thin sections (2000 points per section from a mesh of 0.4 mm counted in Endeeper Hardledge software; Table 1) enabled individualization and classification (Fig. 6; Le Maitre, 2002) of the aforementioned varieties (see Box 1). The BMzG rocks are divided into equigranular leuco- to biotite monzogranite (eBMzG) and heterogranular biotite monzogranite (hBMzG), which are predominantly hololeucocratic with color index M', ranging from 1.6 to 11.7% and from 5.4 to 13.6%, respectively. Their essential mineralogy is composed of quartz (22.7-41.2%), plagioclase (27.10-48.80%) and alkali feldspar (12.4-39.6%). Biotite represents the single varietal mineral from both the eBMzG (0.6-9.9%) and hBMzG (3.7-10.7%) varieties and the primary accessory phases are epidote, titanite, apatite, zircon, allanite and opaque minerals, whereas the secondary accessories are chlorite, muscovite, epidote and titanite.

Granitoids from the **EBGd** group were differentiated into heterogranular epidote-biotite granodiorite (hEBGd) and sparsely porphyritic titanite-epidote-biotite granodiorite (spTEBGd), the former with scarce tonalite and monzogranite. The **hEBGd** rocks are holo- to leucocratic (M'= 2.9-18.8%) and the **spTEBGd** are leucocratic (M'=13.7-19.9%). They are essentially composed of quartz (19.6-38.9%), plagioclase (29.7-56.4%) and alkali feldspar (3.1-24.5%). Biotite (2.8-17.4%) and epidote (0.1-2.8%) are common varietal minerals, while hornblende (0.2-1.0%) and titanite (1.2-2.4%) are important accessory phases in the hEBGd and spTEBGd varieties, respectively. Other minor primary phases comprise allanite, apatite, zircon and magnetite and the secondary mineral paragenesis is represented by chlorite, muscovite, epidote, biotite and titanite.

Rocks from the **pGrt** group are classified into two facies: porphyritic epidote-biotite trondhjemite (pEBTd) and porphyritic biotite-hornblende granodiorite (pBHGd). The **pEBTd** facies is formed by hololeucocratic (M'= 4.2-8.7%) trondhjemite, while the **pBHGd** facies is composed of holo- to leucocratic (M'= 7.6-15.7%) granodiorite, with subordinate monzogranite and quartz monzonite. In these varieties, quartz content varies from 24.6-32.2% and 13.5-30.2%, plagioclase from 62.1 to 65.1% and 33.8 to 64.5% and alkali feldspar 0.9 to 1.1% and 9.1 to 25.9%, respectively. Epidote (0.8-1.9%) and hornblernde (3.9-12.0%) occur as varietal minerals in the pEBTd and pBHGd varieties, respectively, whereas biotite is common in both, with higher modal content in the former (2.4-6.3%) than the latter (0.1-2.0%). Their primary accessory phases are titanite, apatite, zircon and opaque minerals, while post-magmatic mineral assemblage consists of chlorite, muscovite, epidote, biotite and titanite.

| Group                                                                                                                                                                                                                                                                                                                                                          | Biotite monzogranite - BMzG                                                                                                                             |                                                                                                                                                            |                                                                                                                                                |                                                                                                                                                         |                                                                                                                                                           |                                                                                                                                                                |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                            |                                                                                                                                                                               |                                                                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                            |                                                                                                                                                       |                                                                                                                                                            |                                                                                                                                                     |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                            |                                                                                                                                                                                            |                                                                                                                                                            |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                 |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Facies                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                         |                                                                                                                                                            |                                                                                                                                                |                                                                                                                                                         |                                                                                                                                                           |                                                                                                                                                                |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                      | e B                                                                                                                                                                        | MzG                                                                                                                                                                           |                                                                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                            |                                                                                                                                                       |                                                                                                                                                            |                                                                                                                                                     |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                            |                                                                                                                                                                                            |                                                                                                                                                            |                                                                                                                                                                                   | hBMz                                                                                                                                                                                                                                                                                                           | G                                                                                                                                                               |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                             |
| Litology                                                                                                                                                                                                                                                                                                                                                       | MzG                                                                                                                                                     | MzG                                                                                                                                                        | Gd                                                                                                                                             | MzG                                                                                                                                                     | Gd                                                                                                                                                        | MzG                                                                                                                                                            | MzG                                                                                                                                                      | LMzG                                                                                                                                                                                                                                                                                                                                 | LGd                                                                                                                                                                        | LMzG                                                                                                                                                                          | LMzG                                                                                                                                                                                            | LMzG                                                                                                                                                       | LMzG                                                                                                                                                                       | LMzG                                                                                                                                                  | LMzG                                                                                                                                                       | LMzG                                                                                                                                                | LMzG                                                                                                                                                         | LGd                                                                                                                                                                                                                                                                                                          | Gd                                                                                                                                                         | Gd                                                                                                                                                                                         | MzG                                                                                                                                                        | MzG                                                                                                                                                                               | Gd                                                                                                                                                                                                                                                                                                             | MzG                                                                                                                                                             | MzG                                                                                                                                                                        | MzG                                                                                                                                                                                                                                                                                              | MzG                                                                                                                                                         |
| Samples                                                                                                                                                                                                                                                                                                                                                        | NLD                                                                                                                                                     | NLD                                                                                                                                                        | NLD                                                                                                                                            | NLD                                                                                                                                                     | NDP                                                                                                                                                       | NLD                                                                                                                                                            | NLD                                                                                                                                                      | NLD                                                                                                                                                                                                                                                                                                                                  | NLD                                                                                                                                                                        | NLD                                                                                                                                                                           | NLD                                                                                                                                                                                             | NLD                                                                                                                                                        | NLD                                                                                                                                                                        | NDP                                                                                                                                                   | NLD                                                                                                                                                        | NLD                                                                                                                                                 | NDP                                                                                                                                                          | NLD                                                                                                                                                                                                                                                                                                          | NDP                                                                                                                                                        | NLD                                                                                                                                                                                        | NLD                                                                                                                                                        | NLD                                                                                                                                                                               | NLD                                                                                                                                                                                                                                                                                                            | NLD                                                                                                                                                             | NDP                                                                                                                                                                        | NDP                                                                                                                                                                                                                                                                                              | NDP                                                                                                                                                         |
| Minerals (%)                                                                                                                                                                                                                                                                                                                                                   | 04B                                                                                                                                                     | 06B                                                                                                                                                        | 25                                                                                                                                             | 30B                                                                                                                                                     | 127                                                                                                                                                       | 29                                                                                                                                                             | 07B                                                                                                                                                      | 10A                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                          | 30A                                                                                                                                                                           | 17B                                                                                                                                                                                             | 27                                                                                                                                                         | IIB                                                                                                                                                                        | 118                                                                                                                                                   | 18                                                                                                                                                         | T/C                                                                                                                                                 | 89B                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                            | 117B                                                                                                                                                       | 03A                                                                                                                                                                                        | 14                                                                                                                                                         | 20A                                                                                                                                                                               | 16B                                                                                                                                                                                                                                                                                                            | IIC                                                                                                                                                             | 91                                                                                                                                                                         | 92B                                                                                                                                                                                                                                                                                              | 117A                                                                                                                                                        |
| Quartz                                                                                                                                                                                                                                                                                                                                                         | 25.40                                                                                                                                                   | 30.35                                                                                                                                                      | 28.40                                                                                                                                          | 34.55                                                                                                                                                   | 27.75                                                                                                                                                     | 28.35                                                                                                                                                          | 32.90                                                                                                                                                    | 28.95                                                                                                                                                                                                                                                                                                                                | 34.85                                                                                                                                                                      | 33.70                                                                                                                                                                         | 39.20                                                                                                                                                                                           | 34.45                                                                                                                                                      | 31.25                                                                                                                                                                      | 24.65                                                                                                                                                 | 37.05                                                                                                                                                      | 32.65                                                                                                                                               | 30.95                                                                                                                                                        | 32.60                                                                                                                                                                                                                                                                                                        | 30.05                                                                                                                                                      | 30.15                                                                                                                                                                                      | 41.20                                                                                                                                                      | 28.60                                                                                                                                                                             | 35.73                                                                                                                                                                                                                                                                                                          | 29.50                                                                                                                                                           | 35.25                                                                                                                                                                      | 22.75                                                                                                                                                                                                                                                                                            | 32.95                                                                                                                                                       |
| Plagioclase                                                                                                                                                                                                                                                                                                                                                    | 40.65                                                                                                                                                   | 29.20                                                                                                                                                      | 42.55                                                                                                                                          | 32.95                                                                                                                                                   | 42.80                                                                                                                                                     | 27.45                                                                                                                                                          | 38.95                                                                                                                                                    | 38.20                                                                                                                                                                                                                                                                                                                                | 48.80                                                                                                                                                                      | 34.25                                                                                                                                                                         | 27.20                                                                                                                                                                                           | 32.10                                                                                                                                                      | 36.80                                                                                                                                                                      | 40.10                                                                                                                                                 | 32.60                                                                                                                                                      | 30.20                                                                                                                                               | 27.80                                                                                                                                                        | 47.25                                                                                                                                                                                                                                                                                                        | 39.70                                                                                                                                                      | 40.45                                                                                                                                                                                      | 27.10                                                                                                                                                      | 31.70                                                                                                                                                                             | 40.10                                                                                                                                                                                                                                                                                                          | 35.15                                                                                                                                                           | 35.25                                                                                                                                                                      | 43.85                                                                                                                                                                                                                                                                                            | 39.35                                                                                                                                                       |
| Microcline                                                                                                                                                                                                                                                                                                                                                     | 21.80                                                                                                                                                   | 31.80                                                                                                                                                      | 19.65                                                                                                                                          | 23.95                                                                                                                                                   | 23.05                                                                                                                                                     | 37.75                                                                                                                                                          | 22.55                                                                                                                                                    | 28.80                                                                                                                                                                                                                                                                                                                                | 12.40                                                                                                                                                                      | 27.50                                                                                                                                                                         | 30.20                                                                                                                                                                                           | 29.90                                                                                                                                                      | 29.20                                                                                                                                                                      | 32.75                                                                                                                                                 | 27.90                                                                                                                                                      | 35.45                                                                                                                                               | 39.55                                                                                                                                                        | 19.05                                                                                                                                                                                                                                                                                                        | 16.65                                                                                                                                                      | 18.90                                                                                                                                                                                      | 21.40                                                                                                                                                      | 30.45                                                                                                                                                                             | 15.34                                                                                                                                                                                                                                                                                                          | 26.95                                                                                                                                                           | 21.05                                                                                                                                                                      | 27.10                                                                                                                                                                                                                                                                                            | 22.10                                                                                                                                                       |
| Hornblende                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                       | -                                                                                                                                                          | -                                                                                                                                              | -                                                                                                                                                       | -                                                                                                                                                         | -                                                                                                                                                              | -                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                          | -                                                                                                                                                                             | -                                                                                                                                                                                               | -                                                                                                                                                          | -                                                                                                                                                                          | -                                                                                                                                                     | -                                                                                                                                                          | -                                                                                                                                                   | -                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                            | 2.25                                                                                                                                                       | -                                                                                                                                                                                          | -                                                                                                                                                          | -                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                               | -                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                | -                                                                                                                                                           |
| Biotite                                                                                                                                                                                                                                                                                                                                                        | 9.90                                                                                                                                                    | 7.90                                                                                                                                                       | 6.95                                                                                                                                           | 6.90                                                                                                                                                    | 5.20                                                                                                                                                      | 5.10                                                                                                                                                           | 3.90                                                                                                                                                     | 3.85                                                                                                                                                                                                                                                                                                                                 | 3.40                                                                                                                                                                       | 3.35                                                                                                                                                                          | 2.25                                                                                                                                                                                            | 2.15                                                                                                                                                       | 2.25                                                                                                                                                                       | 1.60                                                                                                                                                  | 1.45                                                                                                                                                       | 0.80                                                                                                                                                | 0.60                                                                                                                                                         | 0.60                                                                                                                                                                                                                                                                                                         | 10.70                                                                                                                                                      | 8.50                                                                                                                                                                                       | 8.80                                                                                                                                                       | 6.55                                                                                                                                                                              | 5.96                                                                                                                                                                                                                                                                                                           | 6.80                                                                                                                                                            | 5.55                                                                                                                                                                       | 4.80                                                                                                                                                                                                                                                                                             | 3.65                                                                                                                                                        |
| Epidote                                                                                                                                                                                                                                                                                                                                                        | 0.05                                                                                                                                                    | Tr                                                                                                                                                         | 1.05                                                                                                                                           | 0.35                                                                                                                                                    | 0.30                                                                                                                                                      | 0.15                                                                                                                                                           | 0.20                                                                                                                                                     | Tr                                                                                                                                                                                                                                                                                                                                   | Tr                                                                                                                                                                         | 0.10                                                                                                                                                                          | 0.30                                                                                                                                                                                            | 0.60                                                                                                                                                       | Tr                                                                                                                                                                         | 0.20                                                                                                                                                  | 0.15                                                                                                                                                       | 0.05                                                                                                                                                | 0.65                                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                                                         | 0.35                                                                                                                                                       | 1.00                                                                                                                                                                                       | 0.10                                                                                                                                                       | 0.30                                                                                                                                                                              | 0.91                                                                                                                                                                                                                                                                                                           | Tr                                                                                                                                                              | 1.70                                                                                                                                                                       | 0.15                                                                                                                                                                                                                                                                                             | 0.35                                                                                                                                                        |
| Muscovite                                                                                                                                                                                                                                                                                                                                                      | 0.15                                                                                                                                                    | 0.05                                                                                                                                                       | 0.80                                                                                                                                           | 0.65                                                                                                                                                    | 0.25                                                                                                                                                      | 0.90                                                                                                                                                           | -                                                                                                                                                        | Tr                                                                                                                                                                                                                                                                                                                                   | Tr                                                                                                                                                                         | 0.25                                                                                                                                                                          | 0.35                                                                                                                                                                                            | 0.45                                                                                                                                                       | Tr                                                                                                                                                                         | 0.05                                                                                                                                                  | 0.15                                                                                                                                                       | -                                                                                                                                                   | 0.05                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                          | 0.20                                                                                                                                                                                       | 0.40                                                                                                                                                       | 0.10                                                                                                                                                                              | 0.16                                                                                                                                                                                                                                                                                                           | Tr                                                                                                                                                              | 0.40                                                                                                                                                                       | 0.05                                                                                                                                                                                                                                                                                             | 0.20                                                                                                                                                        |
| Titanite                                                                                                                                                                                                                                                                                                                                                       | 0.85                                                                                                                                                    | 0.50                                                                                                                                                       | Tr                                                                                                                                             | Tr                                                                                                                                                      | 0.15                                                                                                                                                      | 0.10                                                                                                                                                           | 0.10                                                                                                                                                     | Tr                                                                                                                                                                                                                                                                                                                                   | Tr                                                                                                                                                                         | 0.15                                                                                                                                                                          | 0.05                                                                                                                                                                                            | Tr                                                                                                                                                         | Tr                                                                                                                                                                         | 0.20                                                                                                                                                  | 0.25                                                                                                                                                       | 0.05                                                                                                                                                | Tr                                                                                                                                                           | Tr                                                                                                                                                                                                                                                                                                           | 0.15                                                                                                                                                       | 0.15                                                                                                                                                                                       | 0.15                                                                                                                                                       | 0.50                                                                                                                                                                              | 0.64                                                                                                                                                                                                                                                                                                           | 0.10                                                                                                                                                            | 0.15                                                                                                                                                                       | 0.10                                                                                                                                                                                                                                                                                             | 0.75                                                                                                                                                        |
| Allanite                                                                                                                                                                                                                                                                                                                                                       | 0.10                                                                                                                                                    | 0.05                                                                                                                                                       | -                                                                                                                                              | -                                                                                                                                                       | 0.05                                                                                                                                                      | -                                                                                                                                                              | -                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                          | -                                                                                                                                                                             | -                                                                                                                                                                                               | -                                                                                                                                                          | -                                                                                                                                                                          | -                                                                                                                                                     | -                                                                                                                                                          | 0.05                                                                                                                                                | 0.10                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                            | 0.15                                                                                                                                                       | 0.10                                                                                                                                                                                       | 0.20                                                                                                                                                       | 0.30                                                                                                                                                                              | Tr                                                                                                                                                                                                                                                                                                             | 0.15                                                                                                                                                            | Tr                                                                                                                                                                         | 0.20                                                                                                                                                                                                                                                                                             | 0.10                                                                                                                                                        |
| Apatite                                                                                                                                                                                                                                                                                                                                                        | 0.20                                                                                                                                                    | Tr                                                                                                                                                         | 0.45                                                                                                                                           | 0.30                                                                                                                                                    | 0.05                                                                                                                                                      | Tr                                                                                                                                                             | 0.30                                                                                                                                                     | Tr                                                                                                                                                                                                                                                                                                                                   | 0.05                                                                                                                                                                       | 0.45                                                                                                                                                                          | Tr                                                                                                                                                                                              | 0.10                                                                                                                                                       | Tr                                                                                                                                                                         | Tr                                                                                                                                                    | 0.05                                                                                                                                                       | Tr                                                                                                                                                  | 0.05                                                                                                                                                         | Tr                                                                                                                                                                                                                                                                                                           | Tr                                                                                                                                                         | 0.10                                                                                                                                                                                       | 0.15                                                                                                                                                       | 0.35                                                                                                                                                                              | 0.16                                                                                                                                                                                                                                                                                                           | 0.35                                                                                                                                                            | 0.05                                                                                                                                                                       | Tr                                                                                                                                                                                                                                                                                               | Tr                                                                                                                                                          |
| Zircon                                                                                                                                                                                                                                                                                                                                                         | 0.15                                                                                                                                                    | Tr                                                                                                                                                         | 0.10                                                                                                                                           | 0.05                                                                                                                                                    | Tr                                                                                                                                                        | Tr                                                                                                                                                             | 0.05                                                                                                                                                     | Tr                                                                                                                                                                                                                                                                                                                                   | Tr                                                                                                                                                                         | 0.15                                                                                                                                                                          | Tr                                                                                                                                                                                              | Tr                                                                                                                                                         | Tr                                                                                                                                                                         | Tr                                                                                                                                                    | 0.05                                                                                                                                                       | Tr                                                                                                                                                  | Tr                                                                                                                                                           | Tr                                                                                                                                                                                                                                                                                                           | Tr                                                                                                                                                         | 0.05                                                                                                                                                                                       | Tr                                                                                                                                                         | 0.15                                                                                                                                                                              | 0.05                                                                                                                                                                                                                                                                                                           | Tr                                                                                                                                                              | 0.20                                                                                                                                                                       | Tr                                                                                                                                                                                                                                                                                               | Tr                                                                                                                                                          |
| Opaques                                                                                                                                                                                                                                                                                                                                                        | 0.75                                                                                                                                                    | 0.15                                                                                                                                                       | 0.05                                                                                                                                           | 0.30                                                                                                                                                    | 0.40                                                                                                                                                      | 0.20                                                                                                                                                           | 1.05                                                                                                                                                     | 0.20                                                                                                                                                                                                                                                                                                                                 | 0.50                                                                                                                                                                       | 0.15                                                                                                                                                                          | 0.45                                                                                                                                                                                            | 0.25                                                                                                                                                       | 0.50                                                                                                                                                                       | 0.45                                                                                                                                                  | 0.35                                                                                                                                                       | 0.75                                                                                                                                                | 0.25                                                                                                                                                         | 0.45                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                          | 0.40                                                                                                                                                                                       | 0.50                                                                                                                                                       | 1.00                                                                                                                                                                              | 0.96                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                            | 0.35                                                                                                                                                                       | 1.00                                                                                                                                                                                                                                                                                             | 0.55                                                                                                                                                        |
| Σfelsic                                                                                                                                                                                                                                                                                                                                                        | 87.95                                                                                                                                                   | 91.40                                                                                                                                                      | 91.40                                                                                                                                          | 92.10                                                                                                                                                   | 93.85                                                                                                                                                     | 94.45                                                                                                                                                          | 94.40                                                                                                                                                    | 95.95                                                                                                                                                                                                                                                                                                                                | 96.05                                                                                                                                                                      | 95.70                                                                                                                                                                         | 96.95                                                                                                                                                                                           | 96.90                                                                                                                                                      | 97.25                                                                                                                                                                      | 97.55                                                                                                                                                 | 97.70                                                                                                                                                      | 98.25                                                                                                                                               | 98.35                                                                                                                                                        | 98.90                                                                                                                                                                                                                                                                                                        | 86.40                                                                                                                                                      | 89.70                                                                                                                                                                                      | 90.10                                                                                                                                                      | 90.85                                                                                                                                                                             | 91.32                                                                                                                                                                                                                                                                                                          | 91.60                                                                                                                                                           | 91.95                                                                                                                                                                      | 93.75                                                                                                                                                                                                                                                                                            | 94.60                                                                                                                                                       |
| A+P                                                                                                                                                                                                                                                                                                                                                            | 62.45                                                                                                                                                   | 61.00                                                                                                                                                      | 62.20                                                                                                                                          | 56.90                                                                                                                                                   | 65.85                                                                                                                                                     | 65.20                                                                                                                                                          | 61.50                                                                                                                                                    | 67.00                                                                                                                                                                                                                                                                                                                                | 61.20                                                                                                                                                                      | 61.75                                                                                                                                                                         | 57.40                                                                                                                                                                                           | 62.00                                                                                                                                                      | 66.00                                                                                                                                                                      | 72.85                                                                                                                                                 | 60.50                                                                                                                                                      | 79.85                                                                                                                                               | 67.35                                                                                                                                                        | 66.30                                                                                                                                                                                                                                                                                                        | 56.35                                                                                                                                                      | 59.35                                                                                                                                                                                      | 48.50                                                                                                                                                      | 62.15                                                                                                                                                                             | 55.44                                                                                                                                                                                                                                                                                                          | 62.10                                                                                                                                                           | 56.30                                                                                                                                                                      | 70.95                                                                                                                                                                                                                                                                                            | 61.45                                                                                                                                                       |
| Color index (M')                                                                                                                                                                                                                                                                                                                                               | 11.65                                                                                                                                                   | 8.60                                                                                                                                                       | 8.05                                                                                                                                           | 7.55                                                                                                                                                    | 6.10                                                                                                                                                      | 5.55                                                                                                                                                           | 5.25                                                                                                                                                     | 4.05                                                                                                                                                                                                                                                                                                                                 | 3.90                                                                                                                                                                       | 3.75                                                                                                                                                                          | 3.05                                                                                                                                                                                            | 3.00                                                                                                                                                       | 2.75                                                                                                                                                                       | 2.45                                                                                                                                                  | 2.20                                                                                                                                                       | 1.70                                                                                                                                                | 1.60                                                                                                                                                         | 1.10                                                                                                                                                                                                                                                                                                         | 13.60                                                                                                                                                      | 10.15                                                                                                                                                                                      | 9.75                                                                                                                                                       | 8.65                                                                                                                                                                              | 8.47                                                                                                                                                                                                                                                                                                           | 8.05                                                                                                                                                            | 7.80                                                                                                                                                                       | 6.25                                                                                                                                                                                                                                                                                             | 5.40                                                                                                                                                        |
| Quartz                                                                                                                                                                                                                                                                                                                                                         | 28.92                                                                                                                                                   | 33.23                                                                                                                                                      | 31.35                                                                                                                                          | 37.77                                                                                                                                                   | 29.65                                                                                                                                                     | 30.30                                                                                                                                                          | 34.85                                                                                                                                                    | 30.18                                                                                                                                                                                                                                                                                                                                | 36.29                                                                                                                                                                      | 35.31                                                                                                                                                                         | 40.29                                                                                                                                                                                           | 36.32                                                                                                                                                      | 32.14                                                                                                                                                                      | 25.28                                                                                                                                                 | 37.97                                                                                                                                                      | 33.22                                                                                                                                               | 31.49                                                                                                                                                        | 32.96                                                                                                                                                                                                                                                                                                        | 34.78                                                                                                                                                      | 33.68                                                                                                                                                                                      | 45.94                                                                                                                                                      | 31.52                                                                                                                                                                             | 39.19                                                                                                                                                                                                                                                                                                          | 32.20                                                                                                                                                           | 38.51                                                                                                                                                                      | 24.16                                                                                                                                                                                                                                                                                            | 34.91                                                                                                                                                       |
| K-feldspar                                                                                                                                                                                                                                                                                                                                                     | 24.81                                                                                                                                                   | 34.81                                                                                                                                                      | 21.68                                                                                                                                          | 26.19                                                                                                                                                   | 24.62                                                                                                                                                     | 40.36                                                                                                                                                          | 23.89                                                                                                                                                    | 30.01                                                                                                                                                                                                                                                                                                                                | 12.90                                                                                                                                                                      | 28.81                                                                                                                                                                         | 31.29                                                                                                                                                                                           | 31.31                                                                                                                                                      | 30.02                                                                                                                                                                      | 33.60                                                                                                                                                 | 28.60                                                                                                                                                      | 36.07                                                                                                                                               | 40.23                                                                                                                                                        | 19.26                                                                                                                                                                                                                                                                                                        | 19.26                                                                                                                                                      | 21.11                                                                                                                                                                                      | 23.85                                                                                                                                                      | 33.55                                                                                                                                                                             | 16.82                                                                                                                                                                                                                                                                                                          | 29.42                                                                                                                                                           | 22.98                                                                                                                                                                      | 29.30                                                                                                                                                                                                                                                                                            | 23.41                                                                                                                                                       |
| D1 · 1                                                                                                                                                                                                                                                                                                                                                         | 16.28                                                                                                                                                   | 21.06                                                                                                                                                      | 46.06                                                                                                                                          | 26.02                                                                                                                                                   | 15 73                                                                                                                                                     | 20.35                                                                                                                                                          | 41.26                                                                                                                                                    | 39.82                                                                                                                                                                                                                                                                                                                                | 50.81                                                                                                                                                                      | 35.88                                                                                                                                                                         | 28.41                                                                                                                                                                                           | 32.36                                                                                                                                                      | 37.84                                                                                                                                                                      | 41.13                                                                                                                                                 | 33.42                                                                                                                                                      | 30.72                                                                                                                                               | 28.28                                                                                                                                                        | 47.78                                                                                                                                                                                                                                                                                                        | 45.96                                                                                                                                                      | 45.21                                                                                                                                                                                      | 30.22                                                                                                                                                      | 34.93                                                                                                                                                                             | 43.99                                                                                                                                                                                                                                                                                                          | 38.38                                                                                                                                                           | 38.51                                                                                                                                                                      | 46.54                                                                                                                                                                                                                                                                                            | 41.68                                                                                                                                                       |
| Plagioclase                                                                                                                                                                                                                                                                                                                                                    | 40.28                                                                                                                                                   | 51.90                                                                                                                                                      | 40.90                                                                                                                                          | 50.05                                                                                                                                                   | 45.75                                                                                                                                                     | 27.55                                                                                                                                                          |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                            |                                                                                                                                                                               |                                                                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                            |                                                                                                                                                       |                                                                                                                                                            |                                                                                                                                                     |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                            |                                                                                                                                                                                            |                                                                                                                                                            |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                 |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                             |
| Group                                                                                                                                                                                                                                                                                                                                                          | 40.28                                                                                                                                                   | 31.90                                                                                                                                                      | 40.90                                                                                                                                          | 30.03                                                                                                                                                   | 45.75                                                                                                                                                     | 27.35                                                                                                                                                          | 11.20                                                                                                                                                    | Epi                                                                                                                                                                                                                                                                                                                                  | dote-bi                                                                                                                                                                    | otite gr                                                                                                                                                                      | anodio                                                                                                                                                                                          | rite - F                                                                                                                                                   | BGd                                                                                                                                                                        |                                                                                                                                                       |                                                                                                                                                            |                                                                                                                                                     |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                            |                                                                                                                                                                                            |                                                                                                                                                            | Por                                                                                                                                                                               | ohyritic                                                                                                                                                                                                                                                                                                       | grani                                                                                                                                                           | toids -                                                                                                                                                                    | pGnt                                                                                                                                                                                                                                                                                             |                                                                                                                                                             |
| Group<br>Facies                                                                                                                                                                                                                                                                                                                                                | 40.28                                                                                                                                                   | 31.90                                                                                                                                                      | 40.90                                                                                                                                          | 30.03                                                                                                                                                   | 43.73                                                                                                                                                     | 27.33                                                                                                                                                          | 11120                                                                                                                                                    | Epi                                                                                                                                                                                                                                                                                                                                  | dote-bio<br>hEBG                                                                                                                                                           | otite gr<br>d                                                                                                                                                                 | anodio                                                                                                                                                                                          | rite - F                                                                                                                                                   | EBGd                                                                                                                                                                       |                                                                                                                                                       |                                                                                                                                                            |                                                                                                                                                     |                                                                                                                                                              | s                                                                                                                                                                                                                                                                                                            | PTEBG                                                                                                                                                      | d                                                                                                                                                                                          | pE                                                                                                                                                         | Porj<br>BTd                                                                                                                                                                       | phyritic                                                                                                                                                                                                                                                                                                       | grani                                                                                                                                                           | toids -<br>pBHG                                                                                                                                                            | pGnt<br>d                                                                                                                                                                                                                                                                                        |                                                                                                                                                             |
| Group<br>Facies<br>Litology                                                                                                                                                                                                                                                                                                                                    | Gd                                                                                                                                                      | Gd                                                                                                                                                         | Gd                                                                                                                                             | Tnl                                                                                                                                                     | Gd                                                                                                                                                        | MzG                                                                                                                                                            | Gd                                                                                                                                                       | Epi                                                                                                                                                                                                                                                                                                                                  | dote-bio<br>hEBG<br>Gd                                                                                                                                                     | d<br>Gd                                                                                                                                                                       | <b>anodio</b><br>MzG                                                                                                                                                                            | rite - F                                                                                                                                                   | EBGd<br>MzG                                                                                                                                                                | Gd                                                                                                                                                    | MzG                                                                                                                                                        | LGd                                                                                                                                                 | LGd                                                                                                                                                          | sj<br>Gd                                                                                                                                                                                                                                                                                                     | p <b>TEBG</b><br>Gd                                                                                                                                        | d<br>Gd                                                                                                                                                                                    | <b>pE</b><br>Td                                                                                                                                            | Porj<br>BTd<br>Td                                                                                                                                                                 | ohyritic<br>MzG                                                                                                                                                                                                                                                                                                | <b>grani</b> t<br>Gd                                                                                                                                            | toids -<br>pBHG<br>Gd                                                                                                                                                      | pGnt<br>d<br>Gd                                                                                                                                                                                                                                                                                  | QMzD                                                                                                                                                        |
| Group<br>Facies<br>Litology<br>Samples                                                                                                                                                                                                                                                                                                                         | Gd NDP                                                                                                                                                  | Gd NDP                                                                                                                                                     | Gd NDP                                                                                                                                         | Tnl                                                                                                                                                     | Gd NDP                                                                                                                                                    | MzG<br>NDP                                                                                                                                                     | Gd                                                                                                                                                       | Epi<br>Tnl<br>NLD                                                                                                                                                                                                                                                                                                                    | dote-bio<br>hEBG<br>Gd<br>NLD                                                                                                                                              | otite gr<br>d<br>Gd<br>NLD                                                                                                                                                    | MzG<br>NDP                                                                                                                                                                                      | rite - E<br>Gd<br>NDP                                                                                                                                      | MzG<br>NLD                                                                                                                                                                 | Gd<br>NDP                                                                                                                                             | MzG<br>NLD                                                                                                                                                 | LGd<br>NDP                                                                                                                                          | LGd<br>NLD                                                                                                                                                   | Gd<br>NLD                                                                                                                                                                                                                                                                                                    | p <b>TEBG</b><br>Gd<br>NLD                                                                                                                                 | d<br>Gd<br>NLD                                                                                                                                                                             | pE<br>Td<br>NDP                                                                                                                                            | Porj<br>BTd<br>Td<br>NDP                                                                                                                                                          | hyritic<br>MzG<br>NDP                                                                                                                                                                                                                                                                                          | granit<br>Gd<br>NDP                                                                                                                                             | toids -<br>pBHG<br>Gd<br>NDP                                                                                                                                               | pGnt<br>d<br>Gd<br>NDP                                                                                                                                                                                                                                                                           | QMzD<br>NDP                                                                                                                                                 |
| Group<br>Facies<br>Litology<br>Samples<br>Minerals (%)                                                                                                                                                                                                                                                                                                         | Gd<br>NDP<br>126                                                                                                                                        | Gd<br>NDP<br>100                                                                                                                                           | Gd<br>NDP<br>101                                                                                                                               | Tnl<br>NLD<br>02B                                                                                                                                       | Gd<br>NDP<br>130                                                                                                                                          | MzG<br>NDP<br>124                                                                                                                                              | Gd<br>NLD<br>07A                                                                                                                                         | Epi<br>Tnl<br>NLD<br>04A1                                                                                                                                                                                                                                                                                                            | dote-bio<br>hEBG<br>Gd<br>NLD<br>06A                                                                                                                                       | otite gr<br>d<br>Gd<br>NLD<br>10B                                                                                                                                             | MzG<br>NDP<br>128A                                                                                                                                                                              | rite - E<br>Gd<br>NDP<br>71                                                                                                                                | MzG<br>NLD<br>03B                                                                                                                                                          | Gd<br>NDP<br>70                                                                                                                                       | MzG<br>NLD<br>23                                                                                                                                           | LGd<br>NDP<br>68                                                                                                                                    | LGd<br>NLD<br>26A                                                                                                                                            | Gd<br>NLD<br>15B                                                                                                                                                                                                                                                                                             | p <b>TEBG</b><br>Gd<br>NLD<br>16C                                                                                                                          | d<br>Gd<br>NLD<br>17A                                                                                                                                                                      | pE<br>Td<br>NDP<br>113B                                                                                                                                    | Porj<br>BTd<br>Td<br>NDP<br>115                                                                                                                                                   | MzG<br>NDP<br>23                                                                                                                                                                                                                                                                                               | grani<br>Gd<br>NDP<br>87                                                                                                                                        | toids -<br>pBHG<br>Gd<br>NDP<br>25A                                                                                                                                        | pGnt<br>d<br>Gd<br>NDP<br>21                                                                                                                                                                                                                                                                     | QMzD<br>NDP<br>84A                                                                                                                                          |
| Plagioclase       Group       Facies       Litology       Samples       Minerals (%)       Quartz                                                                                                                                                                                                                                                              | Gd<br>NDP<br>126<br>29.25                                                                                                                               | Gd<br>NDP<br>100<br>35.65                                                                                                                                  | Gd<br>NDP<br>101<br>34.00                                                                                                                      | Tnl<br>NLD<br>02B<br>25.85                                                                                                                              | Gd<br>NDP<br>130<br>33.00                                                                                                                                 | MzG<br>NDP<br>124<br>32.80                                                                                                                                     | Gd<br>NLD<br>07A<br>19.65                                                                                                                                | <b>Fpi</b><br>Tnl<br>NLD<br>04A1<br>26.15                                                                                                                                                                                                                                                                                            | dote-bio<br>hEBG<br>Gd<br>NLD<br>06A<br>25.70                                                                                                                              | d<br>Gd<br>NLD<br>10B<br>28.65                                                                                                                                                | MzG<br>NDP<br>128A<br>22.15                                                                                                                                                                     | rite - H<br>Gd<br>NDP<br>71<br>19.95                                                                                                                       | EBGd<br>MzG<br>NLD<br>03B<br>19.95                                                                                                                                         | Gd<br>NDP<br>70<br>23.45                                                                                                                              | MzG<br>NLD<br>23<br>33.45                                                                                                                                  | LGd<br>NDP<br>68<br>26.75                                                                                                                           | LGd<br>NLD<br>26A<br>38.90                                                                                                                                   | Gd<br>NLD<br>15B<br>31.90                                                                                                                                                                                                                                                                                    | <b>TEBG</b><br>Gd<br>NLD<br>16C<br>29.45                                                                                                                   | 6d<br>Gd<br>NLD<br>17A<br>22.20                                                                                                                                                            | <b>pE</b><br>Td<br>NDP<br>113B<br>24.60                                                                                                                    | Porj<br>BTd<br>Td<br>NDP<br>115<br>32.20                                                                                                                                          | MzG<br>NDP<br>23<br>24.40                                                                                                                                                                                                                                                                                      | Gd<br>NDP<br>87<br>24.64                                                                                                                                        | toids -<br>pBHG<br>Gd<br>NDP<br>25A<br>19.90                                                                                                                               | <b>pGnt</b><br>d<br>Gd<br>NDP<br>21<br>30.15                                                                                                                                                                                                                                                     | QMzD<br>NDP<br>84A<br>13.50                                                                                                                                 |
| Plagioclase       Group       Facies       Litology       Samples       Minerals (%)       Quartz       Plagioclase                                                                                                                                                                                                                                            | Gd<br>NDP<br>126<br>29.25<br>38.05                                                                                                                      | Gd<br>NDP<br>100<br>35.65<br>37.10                                                                                                                         | Gd<br>NDP<br>101<br>34.00<br>39.35                                                                                                             | Tnl<br>NLD<br>02B<br>25.85<br>50.15                                                                                                                     | Gd<br>NDP<br>130<br>33.00<br>40.00                                                                                                                        | MzG<br>NDP<br>124<br>32.80<br>33.70                                                                                                                            | Gd<br>NLD<br>07A<br>19.65<br>45.55                                                                                                                       | <b>Epi</b><br>Tnl<br>NLD<br>04A1<br>26.15<br>56.35                                                                                                                                                                                                                                                                                   | dote-bio<br>hEBG<br>Gd<br>NLD<br>06A<br>25.70<br>39.75                                                                                                                     | otite         gr           d         Gd           NLD         10B           28.65         44.45                                                                               | MzG<br>NDP<br>128A<br>22.15<br>39.90                                                                                                                                                            | Gd<br>NDP<br>71<br>19.95<br>56.35                                                                                                                          | EBGd<br>MzG<br>NLD<br>03B<br>19.95<br>44.30                                                                                                                                | Gd<br>NDP<br>70<br>23.45<br>48.05                                                                                                                     | MzG<br>NLD<br>23<br>33.45<br>38.20                                                                                                                         | LGd<br>NDP<br>68<br>26.75<br>48.50                                                                                                                  | LGd<br>NLD<br>26A<br>38.90<br>44.40                                                                                                                          | Gd<br>NLD<br>15B<br>31.90<br>29.65                                                                                                                                                                                                                                                                           | <b>TEBG</b><br>Gd<br>NLD<br>16C<br>29.45<br>46.35                                                                                                          | 6d<br>Gd<br>NLD<br>17A<br>22.20<br>51.85                                                                                                                                                   | <b>p</b> El<br>Td<br>NDP<br>113B<br>24.60<br>65.05                                                                                                         | Porj<br>BTd<br>Td<br>NDP<br>115<br>32.20<br>62.10                                                                                                                                 | MzG<br>NDP<br>23<br>24.40<br>33.80                                                                                                                                                                                                                                                                             | granit<br>Gd<br>NDP<br>87<br>24.64<br>52.33                                                                                                                     | toids -<br>pBHG<br>Gd<br>NDP<br>25A<br>19.90<br>56.45                                                                                                                      | <b>pGnt</b><br>d<br>Gd<br>NDP<br>21<br>30.15<br>39.79                                                                                                                                                                                                                                            | QMzD<br>NDP<br>84A<br>13.50<br>64.45                                                                                                                        |
| Plagioclase       Group       Facies       Litology       Samples       Minerals (%)       Quartz       Plagioclase       Microcline                                                                                                                                                                                                                           | Gd<br>NDP<br>126<br>29.25<br>38.05<br>13.90                                                                                                             | Gd<br>NDP<br>100<br>35.65<br>37.10<br>9.85                                                                                                                 | Gd<br>NDP<br>101<br>34.00<br>39.35<br>9.95                                                                                                     | Tnl<br>NLD<br>02B<br>25.85<br>50.15<br>6.50                                                                                                             | Gd<br>NDP<br>130<br>33.00<br>40.00<br>11.85                                                                                                               | MzG<br>NDP<br>124<br>32.80<br>33.70<br>18.50                                                                                                                   | Gd<br>NLD<br>07A<br>19.65<br>45.55<br>19.65                                                                                                              | <b>Epi</b><br>Tnl<br>NLD<br>04A1<br>26.15<br>56.35<br>3.10                                                                                                                                                                                                                                                                           | dote-bio<br>hEBG<br>Gd<br>NLD<br>06A<br>25.70<br>39.75<br>20.25                                                                                                            | Gd           Gd           NLD           10B           28.65           44.45           13.50                                                                                   | MzG<br>NDP<br>128A<br>22.15<br>39.90<br>24.35                                                                                                                                                   | Gd<br>NDP<br>71<br>19.95<br>56.35<br>10.45                                                                                                                 | EBGd<br>MzG<br>NLD<br>03B<br>19.95<br>44.30<br>24.45                                                                                                                       | Gd<br>NDP<br>70<br>23.45<br>48.05<br>19.40                                                                                                            | MzG<br>NLD<br>23<br>33.45<br>38.20<br>22.50                                                                                                                | LGd<br>NDP<br>68<br>26.75<br>48.50<br>21.65                                                                                                         | LGd<br>NLD<br>26A<br>38.90<br>44.40<br>13.40                                                                                                                 | Gd<br>NLD<br>15B<br>31.90<br>29.65<br>17.25                                                                                                                                                                                                                                                                  | <b>TEBG</b><br>Gd<br>NLD<br>16C<br>29.45<br>46.35<br>5.65                                                                                                  | d<br>Gd<br>NLD<br>17A<br>22.20<br>51.85<br>11.40                                                                                                                                           | <b>pE</b><br>Td<br>NDP<br>113B<br>24.60<br>65.05<br>0.95                                                                                                   | Por<br>BTd<br>Td<br>NDP<br>115<br>32.20<br>62.10<br>1.10                                                                                                                          | MzG           NDP           23           24.40           33.80           25.90                                                                                                                                                                                                                                 | Gd<br>NDP<br>87<br>24.64<br>52.33<br>9.10                                                                                                                       | toids -<br>pBHG<br>Gd<br>NDP<br>25A<br>19.90<br>56.45<br>13.45                                                                                                             | pGnt           d           Gd           NDP           21           30.15           39.79           20.75                                                                                                                                                                                         | QMzD<br>NDP<br>84A<br>13.50<br>64.45<br>13.65                                                                                                               |
| Plagioclase       Group       Facies       Litology       Samples       Minerals (%)       Quartz       Plagioclase       Microcline       Hornblende                                                                                                                                                                                                          | Gd<br>NDP<br>126<br>29.25<br>38.05<br>13.90<br>0.90                                                                                                     | Gd<br>NDP<br>100<br>35.65<br>37.10<br>9.85<br>1.00                                                                                                         | Gd<br>NDP<br>101<br>34.00<br>39.35<br>9.95<br>0.15                                                                                             | Tnl<br>NLD<br>02B<br>25.85<br>50.15<br>6.50                                                                                                             | Gd<br>NDP<br>130<br>33.00<br>40.00<br>11.85<br>0.20                                                                                                       | MzG<br>NDP<br>124<br>32.80<br>33.70<br>18.50<br>0.45                                                                                                           | Gd<br>NLD<br>07A<br>19.65<br>45.55<br>19.65                                                                                                              | <b>Epi</b><br>Tnl<br>NLD<br>04A1<br>26.15<br>56.35<br>3.10<br>0.15                                                                                                                                                                                                                                                                   | dote-bio<br>hEBG<br>Gd<br>NLD<br>06A<br>25.70<br>39.75<br>20.25                                                                                                            | otite         gr           d         Gd           NLD         10B           28.65         44.45           13.50         -                                                     | MzG<br>NDP<br>128A<br>22.15<br>39.90<br>24.35                                                                                                                                                   | rite - F<br>Gd<br>NDP<br>71<br>19.95<br>56.35<br>10.45                                                                                                     | EBGd<br>MzG<br>NLD<br>03B<br>19.95<br>44.30<br>24.45                                                                                                                       | Gd<br>NDP<br>70<br>23.45<br>48.05<br>19.40                                                                                                            | MzG<br>NLD<br>23<br>33.45<br>38.20<br>22.50                                                                                                                | LGd<br>NDP<br>68<br>26.75<br>48.50<br>21.65                                                                                                         | LGd<br>NLD<br>26A<br>38.90<br>44.40<br>13.40                                                                                                                 | sj<br>Gd<br>NLD<br>15B<br>31.90<br>29.65<br>17.25                                                                                                                                                                                                                                                            | PTEBG<br>Gd<br>NLD<br>16C<br>29.45<br>46.35<br>5.65                                                                                                        | rd<br>Gd<br>NLD<br>17A<br>22.20<br>51.85<br>11.40                                                                                                                                          | <b>pE</b><br>Td<br>NDP<br>113B<br>24.60<br>65.05<br>0.95<br>-                                                                                              | Por<br>BTd<br>Td<br>NDP<br>115<br>32.20<br>62.10<br>1.10<br>0.80                                                                                                                  | hyritic           MzG           NDP           23           24.40           33.80           25.90           12.05                                                                                                                                                                                               | Gd<br>NDP<br>87<br>24.64<br>52.33<br>9.10<br>10.60                                                                                                              | toids -<br>pBHG<br>Gd<br>NDP<br>25A<br>19.90<br>56.45<br>13.45<br>8.85                                                                                                     | <b>pGnt</b><br>d<br>Gd<br>NDP<br>21<br>30.15<br>39.79<br>20.75<br>6.65                                                                                                                                                                                                                           | QMzD<br>NDP<br>84A<br>13.50<br>64.45<br>13.65<br>3.90                                                                                                       |
| Plagioclase<br>Group<br>Facies<br>Litology<br>Samples<br>Minerals (%)<br>Quartz<br>Plagioclase<br>Microcline<br>Hornblende<br>Biotite                                                                                                                                                                                                                          | Gd<br>NDP<br>126<br>29.25<br>38.05<br>13.90<br>0.90<br>17.40                                                                                            | Gd<br>NDP<br>100<br>35.65<br>37.10<br>9.85<br>1.00<br>14.80                                                                                                | Gd<br>NDP<br>101<br>34.00<br>39.35<br>9.95<br>0.15<br>13.70                                                                                    | Tnl<br>NLD<br>02B<br>25.85<br>50.15<br>6.50<br>-<br>15.10                                                                                               | Gd<br>NDP<br>130<br>33.00<br>40.00<br>11.85<br>0.20<br>14.35                                                                                              | MzG<br>NDP<br>124<br>32.80<br>33.70<br>18.50<br>0.45<br>13.55                                                                                                  | Gd<br>NLD<br>07A<br>19.65<br>45.55<br>19.65<br>-<br>14.00                                                                                                | <b>Epi</b><br>Tnl<br>NLD<br>04A1<br>26.15<br>56.35<br>3.10<br>0.15<br>13.65                                                                                                                                                                                                                                                          | dote-bio<br>hEBG<br>Gd<br>NLD<br>06A<br>25.70<br>39.75<br>20.25<br>-<br>10.95                                                                                              | otite         gr           d         Gd           NLD         10B           28.65         44.45           13.50         -           13.15         -                           | MzG<br>NDP<br>128A<br>22.15<br>39.90<br>24.35<br>-<br>11.10                                                                                                                                     | rite - F<br>Gd<br>NDP<br>71<br>19.95<br>56.35<br>10.45<br>-<br>8.30                                                                                        | EBGd<br>MzG<br>NLD<br>03B<br>19.95<br>44.30<br>24.45<br>-<br>10.10                                                                                                         | Gd<br>NDP<br>70<br>23.45<br>48.05<br>19.40<br>-<br>5.75                                                                                               | MzG<br>NLD<br>23<br>33.45<br>38.20<br>22.50<br>-<br>4.60                                                                                                   | LGd<br>NDP<br>68<br>26.75<br>48.50<br>21.65<br>-<br>2.10                                                                                            | LGd<br>NLD<br>26A<br>38.90<br>44.40<br>13.40<br>-<br>2.80                                                                                                    | <b>s</b><br>Gd<br>NLD<br>15B<br>31.90<br>29.65<br>17.25<br>-<br>14.50                                                                                                                                                                                                                                        | DTEBG<br>Gd<br>NLD<br>16C<br>29.45<br>46.35<br>5.65<br>-<br>12.55                                                                                          | d<br>Gd<br>NLD<br>17A<br>22.20<br>51.85<br>11.40<br>-<br>6.65                                                                                                                              | <b>pE</b><br>Td<br>NDP<br>113B<br>24.60<br>65.05<br>0.95<br>-<br>6.30                                                                                      | Por<br>BTd<br>Td<br>NDP<br>115<br>32.20<br>62.10<br>1.10<br>0.80<br>2.40                                                                                                          | Myritic           MzG           NDP           23           24.40           33.80           25.90           12.05           0.05                                                                                                                                                                                | Gd<br>NDP<br>87<br>24.64<br>52.33<br>9.10<br>10.60<br>2.00                                                                                                      | toids -<br>pBHG<br>Gd<br>NDP<br>25A<br>19.90<br>56.45<br>13.45<br>8.85<br>0.60                                                                                             | pGnt           d           Gd           NDP           21           30.15           39.79           20.75           6.65           1.55                                                                                                                                                           | QMzD<br>NDP<br>84A<br>13.50<br>64.45<br>13.65<br>3.90<br>1.95                                                                                               |
| Plagioclase         Group         Facies         Litology         Samples         Minerals (%)         Quartz         Plagioclase         Microcline         Hornblende         Biotite         Epidote                                                                                                                                                        | Gd<br>NDP<br>126<br>29.25<br>38.05<br>13.90<br>0.90<br>17.40<br>0.40                                                                                    | Gd<br>NDP<br>100<br>35.65<br>37.10<br>9.85<br>1.00<br>14.80<br>1.30                                                                                        | Gd<br>NDP<br>101<br>34.00<br>39.35<br>9.95<br>0.15<br>13.70<br>2.30                                                                            | Tnl<br>NLD<br>02B<br>25.85<br>50.15<br>6.50<br>-<br>15.10<br>0.85                                                                                       | Gd<br>NDP<br>130<br>33.00<br>40.00<br>11.85<br>0.20<br>14.35<br>0.35                                                                                      | MzG<br>NDP<br>124<br>32.80<br>33.70<br>18.50<br>0.45<br>13.55<br>0.80                                                                                          | Gd<br>NLD<br>07A<br>19.65<br>45.55<br>19.65<br>-<br>14.00<br>0.20                                                                                        | <b>Epi</b><br>Tnl<br>NLD<br>04A1<br>26.15<br>56.35<br>3.10<br>0.15<br>13.65<br>0.25                                                                                                                                                                                                                                                  | dote-bio<br>hEBG<br>Gd<br>NLD<br>06A<br>25.70<br>39.75<br>20.25<br>-<br>10.95<br>2.85                                                                                      | otite gr<br>d<br>Gd<br>NLD<br>10B<br>28.65<br>44.45<br>13.50<br>-<br>13.15<br>Tr                                                                                              | MzG<br>NDP<br>128A<br>22.15<br>39.90<br>24.35<br>-<br>11.10<br>2.10                                                                                                                             | rite - F<br>Gd<br>NDP<br>71<br>19.95<br>56.35<br>10.45<br>-<br>8.30<br>1.85                                                                                | <b>EBGd</b><br>MzG<br>NLD<br>03B<br>19.95<br>44.30<br>24.45<br>-<br>10.10<br>0.65                                                                                          | Gd<br>NDP<br>70<br>23.45<br>48.05<br>19.40<br>-<br>5.75<br>1.40                                                                                       | MzG<br>NLD<br>23<br>33.45<br>38.20<br>22.50<br>-<br>4.60<br>0.25                                                                                           | LGd<br>NDP<br>68<br>26.75<br>48.50<br>21.65<br>-<br>2.10<br>0.60                                                                                    | LGd<br>NLD<br>26A<br>38.90<br>44.40<br>13.40<br>-<br>2.80<br>0.10                                                                                            | Gd<br>NLD<br>15B<br>31.90<br>29.65<br>17.25<br>-<br>14.50<br>1.05                                                                                                                                                                                                                                            | DTEBG<br>Gd<br>NLD<br>16C<br>29.45<br>46.35<br>5.65<br>-<br>12.55<br>2.80                                                                                  | d<br>Gd<br>NLD<br>17A<br>22.20<br>51.85<br>11.40<br>-<br>6.65<br>1.55                                                                                                                      | <b>pE</b><br>Td<br>NDP<br>113B<br>24.60<br>65.05<br>0.95<br>-<br>6.30<br>1.90                                                                              | Por<br>BTd<br>Td<br>NDP<br>115<br>32.20<br>62.10<br>1.10<br>0.80<br>2.40<br>0.80                                                                                                  | Myritic           MzG           NDP           23           24.40           33.80           25.90           12.05           0.05           1.55                                                                                                                                                                 | Gd<br>NDP<br>87<br>24.64<br>52.33<br>9.10<br>10.60<br>2.00<br>0.44                                                                                              | toids -<br>pBHG<br>Gd<br>NDP<br>25A<br>19.90<br>56.45<br>13.45<br>8.85<br>0.60<br>0.20                                                                                     | pGnt           d           Gd           NDP           21           30.15           39.79           20.75           6.65           1.55           0.10                                                                                                                                            | QMzD<br>NDP<br>84A<br>13.50<br>64.45<br>13.65<br>3.90<br>1.95<br>0.75                                                                                       |
| Plagioclase         Group         Facies         Litology         Samples         Minerals (%)         Quartz         Plagioclase         Microcline         Hornblende         Biotite         Epidote         Muscovite                                                                                                                                      | Gd<br>NDP<br>126<br>29.25<br>38.05<br>13.90<br>0.90<br>17.40<br>0.40                                                                                    | Gd<br>NDP<br>100<br>35.65<br>37.10<br>9.85<br>1.00<br>14.80<br>1.30                                                                                        | Gd<br>NDP<br>101<br>34.00<br>39.35<br>9.95<br>0.15<br>13.70<br>2.30                                                                            | Tnl<br>NLD<br>02B<br>25.85<br>50.15<br>6.50<br>-<br>15.10<br>0.85<br>0.85                                                                               | Gd<br>NDP<br>130<br>33.00<br>40.00<br>11.85<br>0.20<br>14.35<br>0.35                                                                                      | MzG<br>NDP<br>124<br>32.80<br>33.70<br>18.50<br>0.45<br>13.55<br>0.80                                                                                          | Gd<br>NLD<br>07A<br>19.65<br>45.55<br>19.65<br>-<br>14.00<br>0.20<br>-                                                                                   | Tnl           NLD           04A1           26.15           56.35           3.10           0.15           13.65           0.25                                                                                                                                                                                                        | dote-bid<br>hEBG<br>Gd<br>NLD<br>06A<br>25.70<br>39.75<br>20.25<br>-<br>10.95<br>2.85<br>-                                                                                 | otite         gr           d         Gd           NLD         10B           28.65         44.45           13.50         -           13.15         Tr           -         -    | mzG           NDP           128A           22.15           39.90           24.35           -           11.10           2.10                                                                     | rite - F<br>Gd<br>NDP<br>71<br>19.95<br>56.35<br>10.45<br>-<br>8.30<br>1.85<br>-                                                                           | EBGd<br>MzG<br>NLD<br>03B<br>19.95<br>44.30<br>24.45<br>-<br>10.10<br>0.65<br>-                                                                                            | Gd<br>NDP<br>70<br>23.45<br>48.05<br>19.40<br>-<br>5.75<br>1.40<br>-                                                                                  | MzG<br>NLD<br>23<br>33.45<br>38.20<br>22.50<br>-<br>4.60<br>0.25<br>0.40                                                                                   | LGd<br>NDP<br>68<br>26.75<br>48.50<br>21.65<br>-<br>2.10<br>0.60<br>Tr                                                                              | LGd<br>NLD<br>26A<br>38.90<br>44.40<br>13.40<br>-<br>2.80<br>0.10<br>0.35                                                                                    | Gd<br>NLD<br>15B<br>31.90<br>29.65<br>17.25<br>-<br>14.50<br>1.05<br>-                                                                                                                                                                                                                                       | PTEBG<br>Gd<br>NLD<br>16C<br>29.45<br>46.35<br>5.65<br>-<br>12.55<br>2.80<br>-                                                                             | d<br>Gd<br>NLD<br>17A<br>22.20<br>51.85<br>11.40<br>-<br>6.65<br>1.55<br>0.10                                                                                                              | <b>pE</b><br>Td<br>NDP<br>113B<br>24.60<br>65.05<br>0.95<br>-<br>6.30<br>1.90<br>0.10                                                                      | Por<br>BTd<br>Td<br>NDP<br>115<br>32.20<br>62.10<br>1.10<br>0.80<br>2.40<br>0.80                                                                                                  | MzG           MZG           NDP           23           24.40           33.80           25.90           12.05           0.05           1.55                                                                                                                                                                     | Gd<br>NDP<br>87<br>24.64<br>52.33<br>9.10<br>10.60<br>2.00<br>0.44                                                                                              | toids -<br>pBHG<br>Gd<br>NDP<br>25A<br>19.90<br>56.45<br>13.45<br>8.85<br>0.60<br>0.20                                                                                     | <b>pGnt</b><br>d<br>Gd<br>NDP<br>21<br>30.15<br>39.79<br>20.75<br>6.65<br>1.55<br>0.10                                                                                                                                                                                                           | QMzD<br>NDP<br>84A<br>13.50<br>64.45<br>13.65<br>3.90<br>1.95<br>0.75                                                                                       |
| Plagioclase         Group         Facies         Litology         Samples         Minerals (%)         Quartz         Plagioclase         Microcline         Hornblende         Biotite         Epidote         Muscovite         Titanite                                                                                                                     | Gd<br>NDP<br>126<br>29.25<br>38.05<br>13.90<br>0.90<br>17.40<br>0.40<br>-<br>0.05                                                                       | Gd<br>NDP<br>100<br>35.65<br>37.10<br>9.85<br>1.00<br>14.80<br>1.30<br>-<br>0.30                                                                           | Gd<br>NDP<br>101<br>34.00<br>39.35<br>9.95<br>0.15<br>13.70<br>2.30<br>-<br>0.35                                                               | Tnl<br>NLD<br>02B<br>25.85<br>50.15<br>6.50<br>-<br>15.10<br>0.85<br>0.85<br>0.35                                                                       | Gd<br>NDP<br>130<br>33.00<br>40.00<br>11.85<br>0.20<br>14.35<br>0.35<br>-<br>0.10                                                                         | MzG<br>NDP<br>124<br>32.80<br>33.70<br>18.50<br>0.45<br>13.55<br>0.80<br>-<br>0.10                                                                             | Gd<br>NLD<br>07A<br>19.65<br>45.55<br>19.65<br>-<br>14.00<br>0.20<br>-<br>0.45                                                                           | Tnl           NLD           04A1           26.15           56.35           3.10           0.15           13.65           0.25           -           0.15                                                                                                                                                                             | dote-bid<br>hEBG<br>Gd<br>NLD<br>06A<br>25.70<br>39.75<br>20.25<br>-<br>10.95<br>2.85<br>-<br>0.15                                                                         | otite         gr           d         Gd           NLD         10B           28.65         44.45           13.50         -           13.15         Tr           -         0.25 | mzG           NDP           128A           22.15           39.90           24.35           -           11.10           2.10           -           0.25                                          | rite - F<br>Gd<br>NDP<br>71<br>19.95<br>56.35<br>10.45<br>-<br>8.30<br>1.85<br>-<br>1.10                                                                   | EBGd<br>MzG<br>NLD<br>03B<br>19.95<br>44.30<br>24.45<br>-<br>10.10<br>0.65<br>-<br>0.30                                                                                    | Gd<br>NDP<br>70<br>23.45<br>48.05<br>19.40<br>-<br>5.75<br>1.40<br>-<br>1.25                                                                          | MzG<br>NLD<br>23<br>33.45<br>38.20<br>22.50<br>-<br>4.60<br>0.25<br>0.40<br>0.10                                                                           | LGd<br>NDP<br>68<br>26.75<br>48.50<br>21.65<br>-<br>2.10<br>0.60<br>Tr<br>0.25                                                                      | LGd<br>NLD<br>26A<br>38.90<br>44.40<br>13.40<br>-<br>2.80<br>0.10<br>0.35<br>0.05                                                                            | Gd<br>NLD<br>15B<br>31.90<br>29.65<br>17.25<br>-<br>14.50<br>1.05<br>-<br>2.20                                                                                                                                                                                                                               | PTEBG<br>Gd<br>NLD<br>16C<br>29.45<br>46.35<br>5.65<br>-<br>12.55<br>2.80<br>-<br>1.20                                                                     | d<br>Gd<br>NLD<br>17A<br>22.20<br>51.85<br>11.40<br>-<br>6.65<br>1.55<br>0.10<br>2.40                                                                                                      | <b>pE</b><br>Td<br>NDP<br>113B<br>24.60<br>65.05<br>0.95<br>-<br>6.30<br>1.90<br>0.10<br>0.55                                                              | Porp<br>BTd<br>Td<br>NDP<br>115<br>32.20<br>62.10<br>1.10<br>0.80<br>2.40<br>0.80<br>-<br>0.20                                                                                    | MzG           MZG           NDP           23           24.40           33.80           25.90           12.05           0.05           1.55           -           Tr                                                                                                                                            | <b>grani</b><br>Gd<br>NDP<br>87<br>24.64<br>52.33<br>9.10<br>10.60<br>2.00<br>0.44<br>-<br>0.78                                                                 | toids -<br>pBHG<br>Gd<br>NDP<br>25A<br>19.90<br>56.45<br>13.45<br>8.85<br>0.60<br>0.20<br>-<br>0.30                                                                        | pGnt           d           Gd           NDP           21           30.15           39.79           20.75           6.65           1.55           0.10           -           0.55                                                                                                                 | QMzD<br>NDP<br>84A<br>13.50<br>64.45<br>13.65<br>3.90<br>1.95<br>0.75<br>-<br>0.95                                                                          |
| Plagioclase<br>Group<br>Facies<br>Litology<br>Samples<br>Minerals (%)<br>Quartz<br>Plagioclase<br>Microcline<br>Hornblende<br>Biotite<br>Epidote<br>Muscovite<br>Titanite<br>Allanite                                                                                                                                                                          | Gd<br>NDP<br>126<br>29.25<br>38.05<br>13.90<br>0.90<br>17.40<br>0.40<br>-<br>0.05<br>0.05                                                               | Gd<br>NDP<br>100<br>35.65<br>37.10<br>9.85<br>1.00<br>14.80<br>1.30<br>-<br>0.30<br>-                                                                      | Gd<br>NDP<br>101<br>34.00<br>39.35<br>9.95<br>0.15<br>13.70<br>2.30<br>-<br>0.35<br>0.20                                                       | Tnl<br>NLD<br>02B<br>25.85<br>50.15<br>6.50<br>-<br>15.10<br>0.85<br>0.85<br>0.35<br>-                                                                  | Gd<br>NDP<br>130<br>33.00<br>40.00<br>11.85<br>0.20<br>14.35<br>0.35<br>-<br>0.10<br>0.10                                                                 | MzG<br>NDP<br>124<br>32.80<br>33.70<br>18.50<br>0.45<br>13.55<br>0.80<br>-<br>0.10<br>0.10                                                                     | Gd<br>NLD<br>07A<br>19.65<br>45.55<br>19.65<br>-<br>14.00<br>0.20<br>-<br>0.45<br>0.05                                                                   | Fpi           Tnl           NLD           04A1           26.15           56.35           3.10           0.15           13.65           0.25           -           0.15                                                                                                                                                               | dote-bio<br>hEBG<br>Gd<br>06A<br>25.70<br>39.75<br>20.25<br>-<br>10.95<br>2.85<br>-<br>0.15<br>0.10                                                                        | Gd         Gd           Gd         NLD           10B         28.65           44.45         13.50           -         13.15           Tr         -           0.25         -    | MzG<br>NDP<br>128A<br>22.15<br>39.90<br>24.35<br>-<br>11.10<br>2.10<br>-<br>0.25<br>Tr                                                                                                          | rite - F<br>Gd<br>NDP<br>71<br>19.95<br>56.35<br>10.45<br>-<br>8.30<br>1.85<br>-<br>1.10<br>0.35                                                           | BGd<br>MzG<br>NLD<br>03B<br>19.95<br>44.30<br>24.45<br>-<br>10.10<br>0.65<br>-<br>0.30                                                                                     | Gd<br>NDP<br>70<br>23.45<br>48.05<br>19.40<br>-<br>5.75<br>1.40<br>-<br>1.25                                                                          | MzG<br>NLD<br>23<br>33.45<br>38.20<br>22.50<br>-<br>4.60<br>0.25<br>0.40<br>0.10<br>0.20                                                                   | LGd<br>NDP<br>68<br>26.75<br>48.50<br>21.65<br>-<br>2.10<br>0.60<br>Tr<br>0.25                                                                      | LGd<br>NLD<br>26A<br>38.90<br>44.40<br>13.40<br>-<br>2.80<br>0.10<br>0.35<br>0.05                                                                            | Gd<br>NLD<br>15B<br>31.90<br>29.65<br>17.25<br>-<br>14.50<br>1.05<br>-<br>2.20<br>0.70                                                                                                                                                                                                                       | PTEBG<br>Gd<br>NLD<br>16C<br>29.45<br>46.35<br>5.65<br>-<br>12.55<br>2.80<br>-<br>1.20<br>0.45                                                             | d<br>Gd<br>NLD<br>17A<br>22.20<br>51.85<br>11.40<br>-<br>6.65<br>1.55<br>0.10<br>2.40<br>0.40                                                                                              | <b>pE</b><br>Td<br>NDP<br>113B<br>24.60<br>65.05<br>0.95<br>-<br>6.30<br>1.90<br>0.10<br>0.55                                                              | Porp<br>BTd<br>Td<br>NDP<br>115<br>32.20<br>62.10<br>1.10<br>0.80<br>2.40<br>0.80<br>-<br>0.20                                                                                    | MzG<br>NDP<br>23<br>24.40<br>33.80<br>25.90<br>12.05<br>0.05<br>1.55<br>-<br>Tr                                                                                                                                                                                                                                | granii<br>Gd<br>NDP<br>87<br>24.64<br>52.33<br>9.10<br>10.60<br>2.00<br>0.44<br>-<br>0.78<br>-                                                                  | toids -<br>pBHG<br>Gd<br>NDP<br>25A<br>19.90<br>56.45<br>13.45<br>8.85<br>0.60<br>0.20<br>-<br>0.30                                                                        | pGnt           Gd           NDP           21           30.15           39.79           20.75           6.65           1.55           0.10           -           0.55                                                                                                                             | QMzD<br>NDP<br>84A<br>13.50<br>64.45<br>13.65<br>3.90<br>1.95<br>0.75<br>-<br>0.95                                                                          |
| Plagioclase<br>Group<br>Facies<br>Litology<br>Samples<br>Minerals (%)<br>Quartz<br>Plagioclase<br>Microcline<br>Hornblende<br>Biotite<br>Epidote<br>Muscovite<br>Titanite<br>Allanite<br>Apatite                                                                                                                                                               | Gd<br>NDP<br>126<br>29.25<br>38.05<br>13.90<br>0.90<br>17.40<br>0.40<br>-<br>0.05<br>0.05<br>Tr                                                         | Gd<br>NDP<br>100<br>35.65<br>37.10<br>9.85<br>1.00<br>14.80<br>1.30<br>-<br>0.30<br>-<br>Tr                                                                | Gd<br>NDP<br>101<br>34.00<br>39.35<br>9.95<br>0.15<br>13.70<br>2.30<br>-<br>0.35<br>0.20<br>Tr                                                 | Tnl<br>NLD<br>02B<br>25.85<br>50.15<br>6.50<br>-<br>15.10<br>0.85<br>0.85<br>0.35<br>-<br>0.25                                                          | Gd<br>NDP<br>130<br>33.00<br>40.00<br>11.85<br>0.20<br>14.35<br>0.35<br>-<br>0.10<br>0.10<br>0.05                                                         | MzG<br>NDP<br>124<br>32.80<br>33.70<br>18.50<br>0.45<br>13.55<br>0.80<br>-<br>0.10<br>0.10<br>Tr                                                               | Gd<br>NLD<br>07A<br>19.65<br>45.55<br>19.65<br>-<br>14.00<br>0.20<br>-<br>0.45<br>0.05<br>0.35                                                           | Tnl           NLD           04A1           26.15           56.35           3.10           0.15           13.65           0.25           -           0.15                                                                                                                                                                             | dote-bio<br>hEBG<br>Gd<br>25.70<br>39.75<br>20.25<br>-<br>10.95<br>2.85<br>-<br>0.15<br>0.10<br>0.25                                                                       | Gd           Gd           10B           28.65           44.45           13.50           -           13.15           Tr           0.25           -           Tr                | MzG<br>NDP<br>128A<br>22.15<br>39.90<br>24.35<br>-<br>11.10<br>2.10<br>-<br>0.25<br>Tr<br>0.15                                                                                                  | rite - F<br>Gd<br>NDP<br>71<br>19.95<br>56.35<br>10.45<br>-<br>8.30<br>1.85<br>-<br>1.10<br>0.35<br>0.05                                                   | BGd<br>MzG<br>NLD<br>03B<br>19.95<br>44.30<br>24.45<br>-<br>10.10<br>0.65<br>-<br>0.30<br>-<br>0.15                                                                        | Gd<br>NDP<br>70<br>23.45<br>48.05<br>19.40<br>-<br>5.75<br>1.40<br>-<br>1.25<br>-<br>0.40                                                             | MzG<br>NLD<br>23<br>33.45<br>38.20<br>22.50<br>-<br>4.60<br>0.25<br>0.40<br>0.10<br>0.20<br>0.25                                                           | LGd<br>NDP<br>68<br>26.75<br>48.50<br>21.65<br>-<br>2.10<br>0.60<br>Tr<br>0.25<br>-<br>0.15                                                         | LGd<br>NLD<br>26A<br>38.90<br>44.40<br>13.40<br>-<br>2.80<br>0.10<br>0.35<br>0.05<br>-<br>Tr                                                                 | S           Gd           NLD           15B           31.90           29.65           17.25           -           14.50           1.05           -           2.20           0.70           1.00                                                                                                               | PTEBG<br>Gd<br>NLD<br>16C<br>29.45<br>46.35<br>5.65<br>-<br>12.55<br>2.80<br>-<br>1.20<br>0.45<br>0.75                                                     | d<br>Gd<br>NLD<br>17A<br>22.20<br>51.85<br>11.40<br>-<br>6.65<br>1.55<br>0.10<br>2.40<br>0.40<br>0.70                                                                                      | PE<br>Td<br>NDP<br>113B<br>24.60<br>65.05<br>0.95<br>-<br>6.30<br>1.90<br>0.10<br>0.55<br>-<br>0.50                                                        | Por<br>BTd<br>Td<br>NDP<br>115<br>32.20<br>62.10<br>1.10<br>0.80<br>2.40<br>0.80<br>-<br>0.20<br>-<br>0.20                                                                        | MzG           MzG           NDP           23           24.40           33.80           25.90           12.05           0.05           1.55           -           Tr           -           0.20                                                                                                                 | granii<br>Gd<br>NDP<br>87<br>24.64<br>52.33<br>9.10<br>10.60<br>2.00<br>0.44<br>-<br>0.78<br>-<br>Tr                                                            | toids -<br>pBHG<br>Gd<br>NDP<br>25A<br>19.90<br>56.45<br>13.45<br>8.85<br>0.60<br>0.20<br>-<br>0.30<br>-<br>Tr                                                             | PGnt<br>d<br>Gd<br>NDP<br>21<br>30.15<br>39.79<br>20.75<br>6.65<br>1.55<br>0.10<br>-<br>0.55<br>-<br>0.20                                                                                                                                                                                        | QMzD<br>NDP<br>84A<br>13.50<br>64.45<br>13.65<br>3.90<br>1.95<br>0.75<br>-<br>0.95<br>-<br>0.70                                                             |
| Plagioclase<br>Group<br>Facies<br>Litology<br>Samples<br>Minerals (%)<br>Quartz<br>Plagioclase<br>Microcline<br>Hornblende<br>Biotite<br>Epidote<br>Muscovite<br>Titanite<br>Aplatite<br>Zircon                                                                                                                                                                | Gd<br>NDP<br>126<br>29.25<br>38.05<br>13.90<br>0.90<br>17.40<br>0.40<br>-<br>0.05<br>0.05<br>Tr<br>Tr                                                   | Gd<br>NDP<br>100<br>35.65<br>37.10<br>9.85<br>1.00<br>14.80<br>1.30<br>-<br>0.30<br>-<br>Tr<br>Tr                                                          | Gd<br>NDP<br>101<br>34.00<br>39.35<br>9.95<br>0.15<br>13.70<br>2.30<br>-<br>0.35<br>0.20<br>Tr<br>Tr                                           | Tnl<br>NLD<br>02B<br>25.85<br>50.15<br>6.50<br>-<br>15.10<br>0.85<br>0.85<br>0.35<br>-<br>0.25<br>0.10                                                  | Gd<br>NDP<br>130<br>33.00<br>40.00<br>11.85<br>0.20<br>14.35<br>0.35<br>-<br>0.10<br>0.10<br>0.05<br>Tr                                                   | MzG<br>NDP<br>124<br>32.80<br>33.70<br>18.50<br>0.45<br>13.55<br>0.80<br>-<br>0.10<br>0.10<br>Tr<br>Tr                                                         | Gd<br>NLD<br>07A<br>19.65<br>45.55<br>19.65<br>-<br>14.00<br>0.20<br>-<br>0.45<br>0.05<br>0.35<br>0.10                                                   | Tnl<br>NLD<br>04A1<br>26.15<br>56.35<br>3.10<br>0.15<br>13.65<br>0.25<br>-<br>0.15<br>-<br>0.20<br>Tr                                                                                                                                                                                                                                | dote-bid<br>hEBG<br>Gd<br>NLD<br>06A<br>25.70<br>39.75<br>20.25<br>-<br>10.95<br>2.85<br>-<br>0.15<br>0.10<br>0.25<br>Tr                                                   | Gd         Gd           10B         28.65           44.45         13.55           13.15         Tr           -         0.25           -         Tr           Tr         Tr    | mzG           NDP           128A           22.15           39.90           24.35           -           11.10           2.10           -           0.25           Tr           0.15           Tr | rite - F<br>Gd<br>NDP<br>71<br>19.95<br>56.35<br>10.45<br>-<br>8.30<br>1.85<br>-<br>1.10<br>0.35<br>0.05<br>0.15                                           | BGd<br>MzG<br>NLD<br>03B<br>19.95<br>44.30<br>24.45<br>-<br>10.10<br>0.65<br>-<br>0.30<br>-<br>0.15<br>0.10                                                                | Gd<br>NDP<br>70<br>23.45<br>48.05<br>19.40<br>-<br>5.75<br>1.40<br>-<br>1.25<br>-<br>0.40<br>0.25                                                     | MzG<br>NLD<br>23<br>33.45<br>38.20<br>22.50<br>-<br>4.60<br>0.25<br>0.40<br>0.10<br>0.20<br>0.25<br>Tr                                                     | LGd<br>NDP<br>68<br>26.75<br>48.50<br>21.65<br>-<br>2.10<br>0.60<br>Tr<br>0.25<br>-<br>0.15<br>Tr                                                   | LGd<br>NLD<br>26A<br>38.90<br>44.40<br>13.40<br>-<br>2.80<br>0.10<br>0.35<br>0.05<br>-<br>Tr<br>Tr                                                           | sg           Gd           NLD           15B           31.90           29.65           17.25           -           14.50           1.05           -           2.20           0.700           1.000           0.25                                                                                             | PTEBG<br>Gd<br>NLD<br>16C<br>29.45<br>46.35<br>5.65<br>-<br>12.55<br>2.80<br>-<br>1.20<br>0.45<br>0.75<br>0.05                                             | d<br>Gd<br>NLD<br>17A<br>22.20<br>51.85<br>11.40<br>-<br>6.65<br>1.55<br>0.10<br>2.40<br>0.70<br>0.05                                                                                      | PE<br>Td<br>NDP<br>113B<br>24.60<br>65.05<br>0.95<br>-<br>6.30<br>1.90<br>0.10<br>0.55<br>-<br>0.50<br>0.05                                                | Por<br>BTd<br>Td<br>NDP<br>115<br>32.20<br>62.10<br>1.10<br>0.80<br>2.40<br>0.80<br>-<br>0.20<br>-<br>0.20<br>0.20<br>0.20                                                        | hyritic<br>MzG<br>NDP<br>23<br>24.40<br>33.80<br>25.90<br>12.05<br>0.05<br>1.55<br>-<br>Tr<br>-<br>0.20<br>Tr                                                                                                                                                                                                  | granii<br>Gd<br>NDP<br>87<br>24.64<br>52.33<br>9.10<br>10.60<br>2.00<br>0.44<br>-<br>0.78<br>-<br>Tr<br>Tr                                                      | toids -<br>pBHG<br>Gd<br>NDP<br>25A<br>19.90<br>56.45<br>13.45<br>8.85<br>0.60<br>0.20<br>-<br>0.30<br>-<br>Tr<br>Tr                                                       | PGnt<br>d<br>Gd<br>NDP<br>21<br>30.15<br>39.79<br>20.75<br>6.65<br>1.55<br>0.10<br>-<br>0.55<br>-<br>0.20<br>Tr                                                                                                                                                                                  | QMzD<br>NDP<br>84A<br>13.50<br>64.45<br>13.65<br>3.90<br>1.95<br>0.75<br>-<br>0.95<br>-<br>0.70<br>0.10                                                     |
| Plagioclase<br>Group<br>Facies<br>Litology<br>Samples<br>Minerals (%)<br>Quartz<br>Plagioclase<br>Microcline<br>Hornblende<br>Biotite<br>Epidote<br>Muscovite<br>Titanite<br>Allanite<br>Apatite<br>Zircon<br>Onaques                                                                                                                                          | Gd<br>NDP<br>126<br>29.25<br>38.05<br>13.90<br>0.90<br>17.40<br>0.40<br>-<br>0.05<br>0.05<br>Tr<br>Tr<br>Tr<br>-                                        | Gd<br>NDP<br>100<br>35.65<br>37.10<br>9.85<br>1.00<br>14.80<br>1.30<br>-<br>Tr<br>Tr<br>Tr                                                                 | Gd<br>NDP<br>101<br>34.00<br>39.35<br>9.95<br>0.15<br>13.70<br>2.30<br>-<br>0.35<br>0.20<br>Tr<br>Tr<br>-                                      | Tnl<br>NLD<br>02B<br>25.85<br>50.15<br>6.50<br>-<br>15.10<br>0.85<br>0.85<br>0.85<br>0.35<br>-<br>0.25<br>0.10                                          | Gd<br>NDP<br>130<br>33.00<br>40.00<br>11.85<br>0.20<br>14.35<br>0.35<br>-<br>0.10<br>0.10<br>0.10<br>0.05<br>Tr                                           | MzG<br>NDP<br>124<br>32.80<br>0.45<br>13.55<br>0.80<br>-<br>0.10<br>0.10<br>Tr<br>Tr                                                                           | Gd<br>NLD<br>07A<br>19.65<br>45.55<br>19.65<br>-<br>14.00<br>0.20<br>-<br>0.45<br>0.05<br>0.35<br>0.10                                                   | Tnl<br>NLD<br>04A1<br>26.15<br>56.35<br>3.10<br>0.15<br>13.65<br>0.25<br>-<br>0.15<br>-<br>0.20<br>Tr                                                                                                                                                                                                                                | dote-bid<br>hEBG<br>Gd<br>NLD<br>06A<br>25.70<br>39.75<br>20.25<br>-<br>10.95<br>2.85<br>-<br>0.15<br>0.10<br>0.25<br>Tr                                                   | Gd         Gd           10B         28.65           44.45         13.50           -         13.15           Tr         -           0.25         -           Tr         -      | anodio<br>MzG<br>NDP<br>128A<br>22.15<br>39.90<br>24.35<br>-<br>11.10<br>2.10<br>-<br>0.25<br>Tr<br>0.15<br>Tr<br>-                                                                             | rite - F<br>Gd<br>NDP<br>71<br>19.95<br>56.35<br>10.45<br>-<br>8.30<br>1.85<br>-<br>1.10<br>0.35<br>0.05<br>0.15                                           | BGd<br>MzG<br>NLD<br>03B<br>19.95<br>44.30<br>24.45<br>-<br>10.10<br>0.65<br>-<br>0.30<br>-<br>0.15<br>0.10                                                                | Gd<br>NDP<br>70<br>23.45<br>48.05<br>19.40<br>-<br>5.75<br>1.40<br>-<br>1.25<br>-<br>0.40<br>0.25<br>0.05                                             | MzG<br>NLD<br>23<br>33.45<br>38.20<br>22.50<br>-<br>4.60<br>0.25<br>0.40<br>0.25<br>0.40<br>0.10<br>0.25<br>Tr<br>0.05                                     | LGd<br>NDP<br>68<br>26.75<br>48.50<br>21.65<br>-<br>2.10<br>0.60<br>Tr<br>0.25<br>-<br>0.15<br>Tr<br>Tr                                             | LGd<br>NLD<br>26A<br>38.90<br>44.40<br>13.40<br>-<br>2.80<br>0.10<br>0.35<br>0.05<br>-<br>Tr<br>Tr<br>Tr                                                     | sg           Gd           NLD           15B           31.90           29.65           17.25           -           14.50           1.05           -           2.20           0.700           1.000           0.25           1.50                                                                              | PTEBG<br>Gd<br>NLD<br>16C<br>29.45<br>46.35<br>5.65<br>-<br>12.55<br>2.80<br>-<br>1.20<br>0.45<br>0.75<br>0.05<br>0.75                                     | d<br>Gd<br>NLD<br>17A<br>22.20<br>51.85<br>11.40<br>-<br>6.65<br>1.55<br>0.10<br>2.40<br>0.70<br>0.05<br>2.70                                                                              | <b>pE</b><br>Td<br>NDP<br>113B<br>24.60<br>65.05<br>0.95<br>-<br>6.30<br>1.90<br>0.10<br>0.55<br>-<br>0.50<br>0.05                                         | Por<br>BTd<br>Td<br>NDP<br>115<br>32.20<br>62.10<br>1.10<br>0.80<br>2.40<br>0.80<br>-<br>0.20<br>0.20<br>0.20                                                                     | hyritic<br>MzG<br>NDP<br>23<br>24.40<br>33.80<br>25.90<br>12.05<br>0.05<br>1.55<br>-<br>Tr<br>-<br>0.20<br>Tr<br>2.05                                                                                                                                                                                          | granii<br>Gd<br>NDP<br>87<br>24.64<br>52.33<br>9.10<br>10.60<br>2.00<br>0.44<br>-<br>0.78<br>-<br>Tr<br>Tr<br>Tr<br>0.11                                        | toids -<br>pBHG<br>Gd<br>NDP<br>25A<br>19.90<br>56.45<br>13.45<br>8.85<br>0.60<br>0.20<br>-<br>0.30<br>-<br>Tr<br>Tr<br>Tr<br>0.25                                         | PGnt<br>d<br>Gd<br>NDP<br>21<br>30.15<br>39.79<br>20.75<br>6.65<br>1.55<br>0.10<br>-<br>0.55<br>-<br>0.20<br>Tr<br>0.25                                                                                                                                                                          | QMzD<br>NDP<br>84A<br>13.50<br>64.45<br>13.65<br>3.90<br>1.95<br>0.75<br>-<br>0.95<br>-<br>0.70<br>0.10<br>0.05                                             |
| Plagioclase         Group         Facies         Litology         Samples         Minerals (%)         Quartz         Plagioclase         Microcline         Hornblende         Biotite         Epidote         Muscovite         Titanite         Allanite         Zircon         Opaques         Efelsic                                                     | Gd<br>NDP<br>126<br>29.25<br>38.05<br>13.90<br>0.90<br>17.40<br>0.40<br>-<br>0.05<br>0.05<br>Tr<br>Tr<br>Tr<br>-<br>81.20                               | Gd<br>NDP<br>100<br>35.65<br>37.10<br>9.85<br>1.00<br>14.80<br>1.30<br>-<br>Tr<br>Tr<br>Tr<br>-<br>82.60                                                   | Gd<br>NDP<br>101<br>34.00<br>39.35<br>9.95<br>0.15<br>13.70<br>2.30<br>-<br>0.35<br>0.20<br>Tr<br>Tr<br>-<br>83.30                             | Tnl<br>NLD<br>02B<br>25.85<br>50.15<br>6.50<br>-<br>15.10<br>0.85<br>0.85<br>0.85<br>0.35<br>-<br>0.25<br>0.10<br>-<br>83.35                            | Gd<br>NDP<br>130<br>33.00<br>40.00<br>11.85<br>0.20<br>14.35<br>0.35<br>-<br>0.10<br>0.10<br>0.10<br>0.05<br>Tr<br>-<br>84.85                             | MzG<br>NDP<br>124<br>32.80<br>0.45<br>13.55<br>0.80<br>-<br>0.10<br>0.10<br>Tr<br>Tr<br>-<br>85.00                                                             | Gd<br>NLD<br>07A<br>19.65<br>45.55<br>19.65<br>-<br>14.00<br>0.20<br>-<br>0.45<br>0.05<br>0.35<br>0.10<br>-<br>84.85                                     | Fpi           Tnl           NLD           04A1           26.15           56.35           3.10           0.15           13.65           0.25           -           0.15           -           0.20           Tr           -           0.20           T           -           85.60                                                    | dote-bid<br>hEBG<br>Gd<br>NLD<br>06A<br>25.70<br>39.75<br>20.25<br>-<br>10.95<br>2.85<br>-<br>0.15<br>0.10<br>0.25<br>Tr<br>-                                              | bite gr<br>d<br>Gd<br>NLD<br>10B<br>28.65<br>44.45<br>13.50<br>-<br>13.15<br>Tr<br>-<br>0.25<br>-<br>Tr<br>Tr<br>Tr<br>-<br>86.60                                             | anodio<br>MzG<br>NDP<br>128A<br>22.15<br>39.90<br>24.35<br>-<br>11.10<br>2.10<br>-<br>0.25<br>Tr<br>0.15<br>Tr<br>0.15<br>Tr<br>-<br>86.40                                                      | rite - F<br>Gd<br>NDP<br>71<br>19.95<br>56.35<br>10.45<br>-<br>8.30<br>1.85<br>-<br>1.10<br>0.35<br>0.05<br>0.15<br>-<br>-<br>86.75                        | BGd<br>MzG<br>NLD<br>03B<br>19.95<br>44.30<br>24.45<br>-<br>10.10<br>0.65<br>-<br>0.30<br>-<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15                                        | Gd<br>NDP<br>70<br>23.45<br>48.05<br>19.40<br>-<br>5.75<br>1.40<br>-<br>1.25<br>-<br>0.40<br>0.25<br>0.05<br>90.90                                    | MzG<br>NLD<br>23<br>33.45<br>38.20<br>22.50<br>-<br>4.60<br>0.25<br>0.40<br>0.25<br>0.40<br>0.20<br>0.25<br>Tr<br>0.05<br>94.55                            | LGd<br>NDP<br>68<br>26.75<br>48.50<br>21.65<br>-<br>2.10<br>0.60<br>Tr<br>0.25<br>-<br>0.15<br>Tr<br>Tr<br>96.90                                    | LGd<br>NLD<br>26A<br>38.90<br>44.40<br>13.40<br>-<br>2.80<br>0.10<br>0.35<br>0.05<br>-<br>Tr<br>Tr<br>Tr<br>-<br>97.05                                       | sg           Gd           NLD           15B           31.90           29.65           17.25           -           14.50           1.05           -           22.0           0.70           1.00           0.25           1.50           78.80                                                                | PTEBG<br>Gd<br>NLD<br>16C<br>29.45<br>46.35<br>5.65<br>-<br>12.55<br>2.80<br>-<br>1.20<br>0.45<br>0.75<br>0.05<br>0.75<br>81.45                            | d<br>Gd<br>NLD<br>17A<br>22.20<br>51.85<br>11.40<br>-<br>6.65<br>1.55<br>0.10<br>2.40<br>0.40<br>0.40<br>0.70<br>0.70<br>2.70<br>85.55                                                     | <b>pE</b><br>Td<br>NDP<br>113B<br>24.60<br>65.05<br>0.95<br>-<br>6.30<br>1.90<br>0.10<br>0.55<br>-<br>0.50<br>0.05<br>-<br>90.70                           | Porj<br>BTd<br>Td<br>NDP<br>115<br>32.20<br>62.10<br>1.10<br>0.80<br>2.40<br>0.80<br>-<br>0.20<br>0.20<br>0.20<br>-<br>0.20<br>0.20                                               | hyritic           MzG           NDP           23           24.40           33.80           25.90           12.05           0.05           1.55           -           Tr           -           0.20           Tr           2.05           84.10                                                                 | granii<br>Gd<br>NDP<br>87<br>24.64<br>52.33<br>9.10<br>10.60<br>2.00<br>0.44<br>-<br>0.78<br>-<br>Tr<br>Tr<br>Tr<br>0.11<br>86.07                               | toids -<br>pBHG<br>Gd<br>NDP<br>25A<br>19.90<br>56.45<br>13.45<br>8.85<br>0.60<br>0.20<br>-<br>0.30<br>-<br>Tr<br>Tr<br>Tr<br>0.25<br>89.80                                | pGnt           d           Gd           NDP           21           30.15           39.79           20.75           6.65           1.55           0.10           -           0.555           -           0.00           Tr           0.25           90.70                                         | QMzD<br>NDP<br>84A<br>13.50<br>64.45<br>13.65<br>3.90<br>1.95<br>0.75<br>-<br>0.95<br>-<br>0.95<br>-<br>0.70<br>0.10<br>0.05<br>91.60                       |
| Plagioclase         Group         Facies         Litology         Samples         Minerals (%)         Quartz         Plagioclase         Microcline         Hornblende         Biotite         Epidote         Muscovite         Titanite         Aplatite         Zircon         Opaques         Stelsic         A+P                                         | Gd<br>NDP<br>126<br>29.25<br>38.05<br>13.90<br>0.90<br>17.40<br>0.40<br>-<br>0.05<br>0.05<br>Tr<br>Tr<br>Tr<br>-<br>81.20<br>51.95                      | Gd<br>NDP<br>100<br>35.65<br>37.10<br>9.85<br>1.00<br>14.80<br>1.30<br>-<br>0.30<br>-<br>Tr<br>Tr<br>Tr<br>-<br>82.60<br>46.95                             | Gd<br>NDP<br>101<br>34.00<br>39.35<br>9.95<br>0.15<br>13.70<br>2.30<br>-<br>0.35<br>0.20<br>Tr<br>Tr<br>-<br>83.30<br>49.30                    | Tnl<br>NLD<br>02B<br>25.85<br>50.15<br>6.50<br>-<br>15.10<br>0.85<br>0.85<br>0.85<br>0.35<br>-<br>0.25<br>0.10<br>-<br>83.35<br>56.65                   | Gd<br>NDP<br>130<br>33.00<br>40.00<br>11.85<br>0.20<br>14.35<br>0.35<br>-<br>0.10<br>0.05<br>Tr<br>-<br>84.85<br>51.85                                    | MzG<br>NDP<br>124<br>32.80<br>33.70<br>18.50<br>0.45<br>13.55<br>0.80<br>-<br>0.10<br>0.10<br>Tr<br>Tr<br>Tr<br>55.00<br>52.20                                 | Gd<br>NLD<br>07A<br>19.65<br>45.55<br>19.65<br>-<br>14.00<br>0.20<br>-<br>0.45<br>0.05<br>0.35<br>0.35<br>0.35<br>0.10<br>-                              | Fpi           Tnl           NLD           04A1           26.15           56.35           3.10           0.15           13.65           0.25           -           0.15           -           0.20           Tr           -           85.60           59.45                                                                           | dote-bid<br>hEBG<br>Gd<br>NLD<br>06A<br>25.70<br>39.75<br>20.25<br>-<br>10.95<br>2.85<br>-<br>0.15<br>0.10<br>0.25<br>Tr<br>-<br>85.70<br>60.00                            | bite gr<br>d<br>Gd<br>NLD<br>10B<br>28.65<br>44.45<br>13.50<br>-<br>13.15<br>Tr<br>-<br>0.25<br>-<br>Tr<br>Tr<br>Tr<br>-<br>86.60<br>57.95                                    | anodio<br>MzG<br>NDP<br>128A<br>22.15<br>39.90<br>24.35<br>-<br>11.10<br>2.10<br>-<br>0.25<br>Tr<br>0.15<br>Tr<br>0.15<br>S<br>r<br>86.40<br>64.25                                              | rite - F<br>Gd<br>NDP<br>71<br>19.95<br>56.35<br>10.45<br>-<br>8.30<br>1.85<br>-<br>1.10<br>0.35<br>0.05<br>0.15<br>-<br>86.75<br>66.80                    | BGd<br>MzG<br>NLD<br>03B<br>19.95<br>44.30<br>24.45<br>-<br>10.10<br>0.65<br>-<br>0.30<br>-<br>0.15<br>0.15<br>0.10<br>-<br>88.70<br>68.75                                 | Gd<br>NDP<br>70<br>23.45<br>48.05<br>19.40<br>-<br>5.75<br>1.40<br>-<br>1.25<br>-<br>0.40<br>0.25<br>0.05<br>90.90<br>67.45                           | MzG<br>NLD<br>23<br>33.45<br>38.20<br>22.50<br>-<br>4.60<br>0.25<br>0.40<br>0.25<br>0.40<br>0.20<br>0.25<br>Tr<br>0.25<br>Tr<br>0.05<br>94.55<br>60.70     | LGd<br>NDP<br>68<br>26.75<br>48.50<br>21.65<br>-<br>2.10<br>0.60<br>Tr<br>0.25<br>-<br>0.15<br>Tr<br>96.90<br>70.15                                 | LGd<br>NLD<br>26A<br>38.90<br>44.40<br>13.40<br>-<br>2.80<br>0.10<br>0.35<br>0.05<br>-<br>Tr<br>Tr<br>Tr<br>-<br>97.05<br>57.80                              | sg           Gd           NLD           15B           31.90           29.65           17.25           -           14.50           1.05           -           22.0           0.70           1.00           0.25           78.80           46.90                                                               | PTEBG<br>Gd<br>NLD<br>16C<br>29.45<br>46.35<br>5.65<br>-<br>12.55<br>2.80<br>-<br>1.20<br>0.45<br>0.75<br>0.75<br>0.75<br>81.45<br>52.00                   | d<br>Gd<br>NLD<br>17A<br>22.20<br>51.85<br>11.40<br>-<br>6.65<br>1.55<br>0.10<br>2.40<br>0.40<br>0.70<br>0.40<br>0.70<br>0.70<br>0.70<br>0.70<br>0                                         | PE<br>Td<br>NDP<br>113B<br>24.60<br>65.05<br>0.95<br>-<br>6.30<br>1.90<br>0.10<br>0.55<br>-<br>0.50<br>0.50<br>0.50<br>-<br>90.70<br>66.00                 | Por<br>BTd<br>Td<br>NDP<br>115<br>32.20<br>62.10<br>1.10<br>0.80<br>2.40<br>0.80<br>-<br>0.20<br>-<br>0.20<br>-<br>0.20<br>-<br>0.20<br>-<br>0.20<br>-<br>0.20<br>0.20            | Myritic           MzG           NDP           23           24.40           33.80           25.90           12.05           0.05           1.55           -           Tr           -           0.20r           Tr           2.05           84.10           59.70                                                | granit<br>Gd<br>NDP<br>87<br>24.64<br>52.33<br>9.10<br>10.60<br>2.00<br>0.44<br>-<br>0.78<br>-<br>Tr<br>Tr<br>0.11<br>86.07<br>61.43                            | toids -<br>pBHG<br>Gd<br>NDP<br>25A<br>19.90<br>56.45<br>13.45<br>8.85<br>0.60<br>0.20<br>-<br>0.30<br>-<br>Tr<br>0.30<br>-<br>Tr<br>Tr<br>0.25<br>89.80<br>69.90          | pGnt           d           Gd           NDP           21           30.15           39.79           20.75           6.65           1.55           0.10           -           0.555           -           0.20           Tr           0.25           90.70           60.54                         | QMzD<br>NDP<br>84A<br>13.50<br>64.45<br>13.65<br>3.90<br>1.95<br>0.75<br>-<br>0.95<br>-<br>0.70<br>0.10<br>0.05<br>91.60<br>78.10                           |
| Plagioclase         Group         Facies         Litology         Samples         Minerals (%)         Quartz         Plagioclase         Microcline         Hornblende         Biotite         Epidote         Muscovite         Titanite         Allanite         Zircon         Opaques         Stelsic         A+P         Color index (M')                | Gd<br>NDP<br>126<br>29.25<br>38.05<br>13.90<br>0.90<br>17.40<br>0.40<br>-<br>0.05<br>0.05<br>Tr<br>Tr<br>Tr<br>81.20<br>51.95<br>18.80                  | Gd<br>NDP<br>100<br>35.65<br>37.10<br>9.85<br>1.00<br>14.80<br>1.30<br>-<br>0.30<br>-<br>Tr<br>Tr<br>Tr<br>5.60<br>46.95<br>17.40                          | Gd<br>NDP<br>101<br>34.00<br>39.35<br>9.95<br>0.15<br>13.70<br>2.30<br>-<br>0.35<br>0.20<br>Tr<br>Tr<br>Tr<br>Tr<br>83.30<br>49.30             | Tnl<br>NLD<br>02B<br>25.85<br>50.15<br>6.50<br>-<br>15.10<br>0.85<br>0.85<br>0.35<br>-<br>0.25<br>0.10<br>-<br>83.35<br>56.65<br>16.30                  | Gd<br>NDP<br>130<br>33.00<br>40.00<br>11.85<br>0.20<br>14.35<br>0.35<br>-<br>0.10<br>0.05<br>Tr<br>-<br>84.85<br>51.85<br>15.10                           | MzG<br>NDP<br>124<br>32.80<br>33.70<br>18.50<br>0.45<br>13.55<br>0.80<br>-<br>0.10<br>0.10<br>Tr<br>Tr<br>Tr<br>85.00<br>52.20<br>15.00                        | Gd<br>NLD<br>07A<br>19.65<br>45.55<br>19.65<br>-<br>14.00<br>0.20<br>-<br>0.45<br>0.05<br>0.35<br>0.10<br>-<br>84.85<br>65.20<br>14.70                   | Fpi           Tnl           NLD           04A1           26.15           56.35           3.10           0.15           13.65           0.25           -           0.15           -           0.20           Tr           85.60           59.45           14.20                                                                       | dote-bio<br>hEBG<br>Gd<br>NLD<br>06A<br>25.70<br>39.75<br>20.25<br>-<br>10.95<br>2.85<br>-<br>0.15<br>0.10<br>0.25<br>Tr<br>-<br>85.70<br>60.00<br>14.05                   | bite gr<br>d<br>Gd<br>NLD<br>10B<br>28.65<br>44.45<br>13.50<br>-<br>13.15<br>Tr<br>-<br>0.25<br>-<br>Tr<br>Tr<br>Tr<br>-<br>86.60<br>57.95<br>13.40                           | anodio<br>MzG<br>NDP<br>128A<br>22.15<br>39.90<br>24.35<br>-<br>11.10<br>2.10<br>-<br>0.25<br>Tr<br>0.15<br>Tr<br>0.15<br>Tr<br>86.40<br>64.25<br>13.45                                         | rite - F<br>Gd<br>NDP<br>71<br>19.95<br>56.35<br>10.45<br>-<br>8.30<br>1.85<br>-<br>1.10<br>0.35<br>0.05<br>0.15<br>-<br>86.75<br>66.80<br>11.60           | BGd<br>MzG<br>NLD<br>03B<br>19.95<br>44.30<br>24.45<br>-<br>10.10<br>0.65<br>-<br>0.30<br>-<br>0.15<br>0.15<br>0.10<br>-<br>88.70<br>68.75<br>11.05                        | Gd<br>NDP<br>70<br>23.45<br>48.05<br>19.40<br>-<br>5.75<br>1.40<br>-<br>1.25<br>-<br>0.40<br>0.25<br>0.05<br>90.90<br>90.50<br>67.45<br>8.45          | MzG<br>NLD<br>23<br>33.45<br>38.20<br>22.50<br>-<br>4.60<br>0.25<br>0.40<br>0.25<br>0.40<br>0.20<br>0.25<br>Tr<br>0.25<br>Tr<br>0.25<br>60.70<br>5.20      | LGd<br>NDP<br>68<br>26.75<br>48.50<br>21.65<br>-<br>2.10<br>0.60<br>Tr<br>0.25<br>-<br>0.15<br>Tr<br>96.90<br>70.15<br>2.95                         | LGd<br>NLD<br>26A<br>38.90<br>44.40<br>13.40<br>-<br>2.80<br>0.10<br>0.35<br>0.05<br>-<br>Tr<br>Tr<br>Tr<br>Tr<br>7<br>7.05<br>57.80<br>2.95                 | sg           Gd           NLD           15B           31.90           29.65           17.25           -           14.50           1.05           -           22.0           0.70           1.00           0.25           78.80           46.90           19.95                                               | DTEBG<br>Gd<br>NLD<br>16C<br>29.45<br>46.35<br>5.65<br>-<br>12.55<br>2.80<br>-<br>1.20<br>0.45<br>0.75<br>81.45<br>52.00<br>17.75                          | d<br>Gd<br>NLD<br>17A<br>22.20<br>51.85<br>11.40<br>-<br>6.65<br>1.55<br>0.10<br>2.40<br>0.40<br>0.70<br>0.40<br>0.70<br>0.70<br>0.70<br>0.70<br>0                                         | PE<br>Td<br>NDP<br>113B<br>24.60<br>65.05<br>0.95<br>-<br>6.30<br>1.90<br>0.10<br>0.55<br>-<br>0.50<br>0.50<br>0.50<br>0.55<br>-<br>90.70<br>66.00<br>8.75 | Por<br>BTd<br>Td<br>NDP<br>115<br>32.20<br>62.10<br>1.10<br>0.80<br>2.40<br>0.80<br>-<br>0.20<br>-<br>0.20<br>-<br>0.20<br>0.20<br>-<br>0.20<br>0.20                              | Myritic           MzG           NDP           23           24.40           33.80           25.90           12.05           0.05           1.55           -           Tr           -           0.20           Tr           2.05           84.10           59.70           15.70                                 | granii<br>Gd<br>NDP<br>87<br>24.64<br>52.33<br>9.10<br>10.60<br>2.00<br>0.44<br>-<br>0.78<br>-<br>Tr<br>Tr<br>Tr<br>Tr<br>Tr<br>61.43<br>13.93                  | toids -<br>pBHG<br>Gd<br>NDP<br>25A<br>19.90<br>56.45<br>13.45<br>8.85<br>0.60<br>0.20<br>-<br>0.30<br>-<br>Tr<br>0.30<br>-<br>Tr<br>Tr<br>0.25<br>89.80<br>69.90<br>10.20 | pGnt           d           Gd           NDP           21           30.15           39.79           20.75           6.65           1.55           0.10           -           0.555           -           0.200           Tr           0.205           90.70           60.54           9.10        | QMzD<br>NDP<br>84A<br>13.50<br>64.45<br>13.65<br>3.90<br>1.95<br>0.75<br>-<br>0.95<br>-<br>0.70<br>0.05<br>91.60<br>78.10<br>7.60                           |
| Plagioclase         Group         Facies         Litology         Samples         Minerals (%)         Quartz         Plagioclase         Microcline         Hornblende         Biotite         Epidote         Muscovite         Titanite         Allanite         Zircon         Opaques         Selesic         A+P         Color index (M')         Ouartz | Gd<br>NDP<br>126<br>29.25<br>38.05<br>13.90<br>0.90<br>17.40<br>0.40<br>-<br>0.05<br>0.05<br>Tr<br>Tr<br>-<br>81.20<br>51.95<br>18.80<br>36.02          | Gd<br>NDP<br>100<br>35.65<br>37.10<br>9.85<br>1.00<br>14.80<br>1.30<br>-<br>0.30<br>-<br>Tr<br>Tr<br>Tr<br>-<br>82.60<br>46.95<br>17.40<br>43.16           | Gd<br>NDP<br>101<br>34.00<br>39.35<br>9.95<br>0.15<br>13.70<br>2.30<br>-<br>0.35<br>0.20<br>Tr<br>Tr<br>-<br>83.30<br>49.30<br>16.70<br>40.81  | Tnl<br>NLD<br>02B<br>25.85<br>50.15<br>6.50<br>-<br>15.10<br>0.85<br>0.85<br>0.35<br>-<br>0.25<br>0.10<br>-<br>83.35<br>56.65<br>16.30<br>31.33         | Gd<br>NDP<br>130<br>33.00<br>40.00<br>11.85<br>0.20<br>14.35<br>0.35<br>-<br>0.10<br>0.05<br>Tr<br>-<br>84.85<br>51.85<br>15.10<br>38.88                  | MzG<br>NDP<br>124<br>32.80<br>33.70<br>18.50<br>0.45<br>13.55<br>0.80<br>-<br>0.10<br>0.10<br>Tr<br>Tr<br>Tr<br>-<br>85.00<br>52.20<br>15.00<br>38.59          | Gd<br>NLD<br>07A<br>19.65<br>45.55<br>19.65<br>-<br>14.00<br>0.20<br>-<br>0.45<br>0.05<br>0.35<br>0.10<br>-<br>84.85<br>65.20<br>14.70<br>23.15          | Fpi           Tnl           NLD           04A1           26.15           56.35           3.10           0.15           13.65           0.25           -           0.15           -           0.20           Tr           -           0.20           Tr           -           0.56.60           59.45           14.20           30.55 | dote-bio<br>hEBG<br>Gd<br>NLD<br>06A<br>25.70<br>39.75<br>20.25<br>-<br>10.95<br>2.85<br>-<br>0.15<br>0.10<br>0.25<br>Tr<br>-<br>85.70<br>60.00<br>14.05<br>29.99          | bite gr<br>d<br>Gd<br>NLD<br>10B<br>28.65<br>44.45<br>13.50<br>-<br>13.15<br>Tr<br>-<br>0.25<br>-<br>Tr<br>Tr<br>Tr<br>-<br>86.60<br>57.95<br>13.40<br>33.08                  | anodio<br>MzG<br>NDP<br>128A<br>22.15<br>39.90<br>24.35<br>-<br>11.10<br>2.10<br>-<br>0.25<br>Tr<br>0.15<br>Tr<br>0.15<br>Tr<br>86.40<br>64.25<br>13.45<br>25.63                                | rite - F<br>Gd<br>NDP<br>71<br>19.95<br>56.35<br>10.45<br>-<br>8.30<br>1.85<br>-<br>1.10<br>0.35<br>0.15<br>-<br>86.75<br>66.80<br>11.60<br>22.99          | BGd<br>MzG<br>NLD<br>03B<br>19.95<br>44.30<br>24.45<br>-<br>10.10<br>0.65<br>-<br>0.30<br>-<br>0.30<br>-<br>0.15<br>0.10<br>-<br>88.70<br>68.75<br>11.05<br>22.49          | Gd<br>NDP<br>70<br>23.45<br>48.05<br>19.40<br>-<br>5.75<br>1.40<br>-<br>1.25<br>-<br>0.40<br>0.25<br>0.05<br>90.90<br>90.90<br>67.45<br>8.45<br>25.80 | MzG<br>NLD<br>23<br>33.45<br>38.20<br>22.50<br>-<br>4.60<br>0.25<br>0.40<br>0.25<br>0.40<br>0.25<br>Tr<br>0.25<br>Tr<br>0.055<br>60.70<br>5.20<br>35.53    | LGd<br>NDP<br>68<br>26.75<br>48.50<br>21.65<br>-<br>2.10<br>0.60<br>Tr<br>0.25<br>-<br>0.15<br>Tr<br>Tr<br>96.90<br>70.15<br>2.95<br>27.61          | LGd<br>NLD<br>26A<br>38.90<br>44.40<br>13.40<br>-<br>2.80<br>0.10<br>0.35<br>0.05<br>-<br>Tr<br>Tr<br>Tr<br>Tr<br>57.80<br>2.95<br>40.23                     | sg           Gd           NLD           15B           31.90           29.65           17.25           -           14.50           1.05           -           2.20           0.70           1.00           0.25           1.50           78.80           46.90           19.95           40.49                | DTEBG<br>Gd<br>NLD<br>16C<br>29.45<br>46.35<br>5.65<br>-<br>12.55<br>2.80<br>-<br>1.20<br>0.45<br>0.75<br>0.05<br>81.45<br>52.00<br>17.75<br>52.00         | d<br>Gd<br>NLD<br>17A<br>22.20<br>51.85<br>11.40<br>-<br>6.65<br>1.55<br>0.10<br>2.40<br>0.40<br>0.70<br>0.40<br>0.70<br>0.05<br>2.70<br>85.55<br>63.25<br>13.70<br>25.99                  | PE<br>Td<br>NDP<br>113B<br>24.60<br>65.05<br>0.95<br>-<br>6.30<br>1.90<br>0.10<br>0.55<br>-<br>0.50<br>0.05<br>-<br>90.70<br>66.00<br>8.75<br>27.16        | Por<br>BTd<br>Td<br>NDP<br>115<br>32.20<br>62.10<br>1.10<br>0.80<br>2.40<br>0.80<br>-<br>0.20<br>-<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>63.20<br>4.20<br>33.76              | Myritic           MzG           NDP           23           24.40           33.80           25.90           12.05           0.05           1.55           -           Tr           -           0.20           Tr           2.05           84.10           59.70           15.70           29.01                 | granii<br>Gd<br>NDP<br>87<br>24.64<br>52.33<br>9.10<br>10.60<br>2.00<br>0.44<br>-<br>0.78<br>-<br>Tr<br>Tr<br>Tr<br>0.11<br>86.07<br>61.43<br>13.93<br>28.62    | toids -<br>pBHG<br>Gd<br>NDP<br>25A<br>19.90<br>56.45<br>13.45<br>8.85<br>0.60<br>0.20<br>-<br>0.30<br>-<br>Tr<br>Tr<br>0.25<br>89.80<br>69.90<br>10.20<br>22.16           | pGnt           d           Gd           NDP           21           30.15           39.79           20.75           6.65           1.55           0.10           -           0.200           Tr           0.205           90.70           60.54           9.10           33.24                    | QMzD<br>NDP<br>84A<br>13.50<br>64.45<br>13.65<br>3.90<br>1.95<br>0.75<br>-<br>0.95<br>-<br>0.70<br>0.10<br>0.05<br>91.60<br>78.10<br>7.60<br>14.74          |
| Plagioclase<br>Group<br>Facies<br>Litology<br>Minerals (%)<br>Quartz<br>Plagioclase<br>Microcline<br>Hornblende<br>Biotite<br>Epidote<br>Muscovite<br>Titanite<br>Allanite<br>Apatite<br>Zircon<br>Opaques<br>Efelsic<br>A+P<br>Color index (M')<br>Quartz<br>K-feldspar                                                                                       | Gd<br>NDP<br>126<br>29.25<br>38.05<br>13.90<br>0.90<br>17.40<br>0.40<br>-<br>0.05<br>0.05<br>Tr<br>Tr<br>-<br>81.20<br>51.95<br>18.80<br>36.02<br>17.11 | Gd<br>NDP<br>100<br>35.65<br>37.10<br>9.85<br>1.00<br>14.80<br>1.30<br>-<br>0.30<br>-<br>Tr<br>Tr<br>Tr<br>Tr<br>82.60<br>46.95<br>17.40<br>43.16<br>43.16 | Gd<br>NDP<br>101<br>34.00<br>39.35<br>9.95<br>0.15<br>13.70<br>2.30<br>-<br>0.20<br>Tr<br>Tr<br>-<br>83.30<br>49.30<br>16.70<br>40.81<br>11.94 | Tnl<br>NLD<br>02B<br>25.85<br>50.15<br>6.50<br>-<br>15.10<br>0.85<br>0.85<br>0.35<br>-<br>0.25<br>0.10<br>-<br>83.35<br>56.65<br>16.30<br>31.33<br>7.88 | Gd<br>NDP<br>130<br>33.00<br>40.00<br>11.85<br>0.20<br>14.35<br>0.35<br>-<br>0.10<br>0.10<br>0.05<br>Tr<br>-<br>84.85<br>51.85<br>15.10<br>38.88<br>13.97 | MzG<br>NDP<br>124<br>32.80<br>33.70<br>18.50<br>0.45<br>13.55<br>0.80<br>-<br>0.10<br>0.10<br>Tr<br>Tr<br>Tr<br>-<br>85.00<br>52.20<br>15.00<br>15.00<br>21.76 | Gd<br>NLD<br>07A<br>19.65<br>45.55<br>19.65<br>-<br>14.00<br>0.20<br>-<br>0.45<br>0.05<br>0.35<br>0.10<br>-<br>84.85<br>65.20<br>14.70<br>23.15<br>23.15 | Fpi           Tnl           NLD           04A1           26.15           56.35           3.10           0.15           13.65           0.25           -           0.15           -           0.20           Tr           -           0.20           Tr           -           0.55           14.20           30.55           3.61     | dote-bio<br>hEBG<br>Gd<br>NLD<br>06A<br>25.70<br>39.75<br>20.25<br>-<br>10.95<br>2.85<br>-<br>0.15<br>0.10<br>0.25<br>Tr<br>-<br>85.70<br>60.00<br>14.05<br>29.99<br>23.63 | bite gr<br>d<br>Gd<br>NLD<br>10B<br>28.65<br>44.45<br>13.50<br>-<br>13.15<br>Tr<br>-<br>0.25<br>-<br>Tr<br>Tr<br>Tr<br>-<br>86.60<br>57.95<br>13.40<br>33.08<br>15.59         | anodio<br>MzG<br>NDP<br>128A<br>22.15<br>39.90<br>24.35<br>-<br>11.10<br>2.10<br>-<br>0.25<br>Tr<br>0.15<br>Tr<br>0.15<br>Tr<br>0.15<br>Tr<br>86.40<br>64.25<br>13.45<br>25.63<br>28.18         | rite - F<br>Gd<br>NDP<br>71<br>19.95<br>56.35<br>10.45<br>-<br>8.30<br>1.85<br>-<br>1.10<br>0.35<br>0.15<br>-<br>86.75<br>66.80<br>11.60<br>22.99<br>12.05 | BGd<br>MzG<br>NLD<br>03B<br>19.95<br>44.30<br>24.45<br>-<br>10.10<br>0.65<br>-<br>0.30<br>-<br>0.30<br>-<br>0.15<br>0.10<br>-<br>88.70<br>68.75<br>11.05<br>22.49<br>27.56 | Gd<br>NDP<br>70<br>23.45<br>48.05<br>19.40<br>-<br>5.75<br>1.40<br>-<br>1.25<br>-<br>0.40<br>0.25<br>0.05<br>90.90<br>67.45<br>8.45<br>25.80<br>21.34 | MzG<br>NLD<br>23<br>33.45<br>38.20<br>22.50<br>-<br>4.60<br>0.25<br>0.40<br>0.25<br>0.40<br>0.25<br>Tr<br>0.05<br>94.55<br>60.70<br>5.20<br>35.53<br>23.90 | LGd<br>NDP<br>68<br>26.75<br>48.50<br>21.65<br>-<br>2.10<br>0.60<br>Tr<br>0.25<br>-<br>0.15<br>Tr<br>Tr<br>96.90<br>70.15<br>2.95<br>27.61<br>22.33 | LGd<br>NLD<br>26A<br>38.90<br>44.40<br>13.40<br>-<br>2.80<br>0.10<br>0.35<br>0.05<br>-<br>Tr<br>Tr<br>Tr<br>Tr<br>7.97.05<br>57.80<br>2.95<br>40.23<br>13.86 | s           Gd           NLD           15B           31.90           29.65           17.25           -           14.50           1.05           -           2.20           0.70           1.00           0.25           1.50           78.80           46.90           19.95           40.49           21.89 | DTEBG<br>Gd<br>NLD<br>16C<br>29.45<br>46.35<br>5.65<br>-<br>12.55<br>2.80<br>-<br>1.20<br>0.45<br>0.75<br>0.05<br>81.45<br>52.00<br>17.75<br>36.15<br>6.94 | d<br>Gd<br>NLD<br>17A<br>22.20<br>51.85<br>11.40<br>-<br>6.65<br>1.55<br>0.10<br>2.40<br>0.40<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>51.55<br>63.25<br>13.70<br>25.99<br>13.33 | <b>pE</b><br>Td<br>NDP<br>113B<br>24.60<br>65.05<br>0.95<br>-<br>6.30<br>1.90<br>0.10<br>0.55<br>-<br>0.50<br>0.05<br>-<br>90.70<br>66.00<br>8.75<br>27.16 | Por<br>BTd<br>Td<br>NDP<br>115<br>32.20<br>62.10<br>1.10<br>0.80<br>2.40<br>0.80<br>-<br>0.20<br>-<br>0.20<br>0.20<br>-<br>0.20<br>0.20<br>0.20<br>63.20<br>4.20<br>33.76<br>1.15 | hyritic           MzG           NDP           23           24.40           33.80           25.90           12.05           0.05           1.55           -           Tr           -           0.20           Tr           2.05           84.10           59.70           15.70           29.01           30.80 | granii<br>Gd<br>NDP<br>87<br>24.64<br>52.33<br>9.10<br>10.60<br>2.00<br>0.44<br>-<br>0.78<br>-<br>Tr<br>Tr<br>0.11<br>86.07<br>61.43<br>13.93<br>28.62<br>10.57 | toids -<br>pBHG<br>Gd<br>NDP<br>25A<br>19.90<br>56.45<br>13.45<br>8.85<br>0.60<br>0.20<br>-<br>0.30<br>-<br>Tr<br>Tr<br>0.25<br>89.80<br>69.90<br>10.20<br>22.16<br>14.97  | pGnt           d           Gd           NDP           21           30.15           39.79           20.75           6.65           1.55           0.10           -           0.200           Tr           0.205           90.704           90.704           9.10           33.244           22.88 | QMzD<br>NDP<br>84A<br>13.50<br>64.45<br>13.65<br>3.90<br>1.95<br>0.75<br>-<br>0.75<br>-<br>0.70<br>0.10<br>0.05<br>91.60<br>78.10<br>7.60<br>14.74<br>14.89 |

Table 1 -Modal compositions of the granitoids under study (2000 points from 54 polished or thin sections; Le Maitre, 2002).



**Figure 6** - Q-(A+P)-M' and Q-A-P plots for petrographic classification of the granitoids studied (Le Maitre, 2002). Granitic series and their evolutionary trends from Lameyre & Bowden (1982) and Bowden (1984). Fields for the comparison: K-high leucogranites and Ba-Sr high leucogranodiorite-granite (Almeida et al. 2013); and Rio Maria Sanukitoid Suite of the Ourilândia do Norte area (Santos & Oliveira 2016).

4.2. Mineralogy, microstructural aspects and intracristalline deformation mechanisms

Although the rocks from the different varieties of granitoids identified in this study show some mineralogical and textural differences, they display many petrographic similarity under the microscope, enabling a general description of the microstructural typology of their mineral assemblages (Box 2). The Fig. 7 shows the microstructural aspects of representative samples of the different varieties, collected in the lower strain domains, located in the central portions of the batholiths, whereas Fig. 8 illustrates the deformation microstructures in the higher strain domains, near the batholith borders. The Fig. 9 displays the tardi- to post-magmatic transformation microstructures, common in both higher and lower strain domains.

In the central parts of the plutons, the Ourilândia do Norte granitoids show well-preserved igneous features, where feldspar ( $Pl_1$  and  $Kfs_1$ ) and mafic ( $Bt_1$ ,  $Hbl_1$  and primary accessory) crystals show typical igneous textures, for instance hypidiomorphic equigranular plagioclase and alkali feldspar crystals (e.g. 7a), oscillatory zoning in idiomorphic plagioclase crystal (e.g. 7c) and idiomorphic to hypidiomorphic hornblende and biotite crystals (e.g. 7b, 7k and 7l). However, even the less deformed or undeformed rocks display strain features, such as alkali feldspar phenocryst with intragranular microfractures filled by minerals of the matrix, which indicates deformation in the presence of melt (e.g. 8d; Vernon, 2004). Primary quartz (Qtz<sub>1</sub>) crystals often occur as reliquiar cores in core-mantle microstructures, show weak to moderate undulatory extinction, intracrystalline deformation bands and lobated to sutured grain boundary shapes. The mantle is represented for medium- to fine-grained recrystallized quartz ( $Qtz_2$ ) crystals with sutured or straight grain boundary shapes. In quartz, this sutured shape indicate that the deformation was controlled by high temperature grain boundary migration (GBM) and subgrain rotation (SGR) mechanisms, which suggests high deformation temperature and low differential stress (Hirth & Tullis, 1992). On the other hand, the straight shape evidence grain boundary area reduction (GBAR), responsible by granoblastic polygonal microstructure formation (Blenkinsop, 2000; Passchier & Trouw, 2005).

The batholiths are limited by large-scale shear zones and their borders are marked by development of milonitic foliation characterized by rounded or augen feldspar porphyroclasts, contoured by recrystallized biotite and quartz aggregates (e.g. Fig. 8a). The primary feldspar (Pl<sub>1</sub>

| N     | line | ralogy           | Microstructure and texture terms are used as synonyms - Medium to coarse-grained (<8.0 mm) idiomorphic to |                                                                                  |                                                           |  |  |  |  |  |  |  |  |  |  |  |
|-------|------|------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
|       |      |                  | - Medium to coarse-grained (<8.0 mm), idiomorphic to                                                      | - Partially transformed for Ms <sub>2</sub> and Ep <sub>2</sub>                  | - Subordinated recrystallization;                         |  |  |  |  |  |  |  |  |  |  |  |
|       |      | D1.              | hypidiomorphic primary crystals;                                                                          | (saussuritization);                                                              | - In core-mantle microstructure                           |  |  |  |  |  |  |  |  |  |  |  |
|       |      | F1]              | - In spiteBGd, pEB1d and pBHGd varieties it also represents                                               | - Normal and oscillatory zoning;                                                 | Proformed orientation can occur:                          |  |  |  |  |  |  |  |  |  |  |  |
|       | 0    |                  | - Lobate to sutured or less often straight grain boundary shapes:                                         | - Soft to moderate undulatory extinction:                                        | - Intragranular microcracks.                              |  |  |  |  |  |  |  |  |  |  |  |
|       | las  |                  | - Very fine- (<0.1 mm; xenomorphic) to fine-grained (<1.0 mm;                                             | - Straight grain boundary shapes;                                                | - In core-mantle microstructures                          |  |  |  |  |  |  |  |  |  |  |  |
|       | gioc | $Pl_2$           | hypidiomorphic) subgrains and new grains;                                                                 | - Granoblastic polygonal microstructure;                                         | represents the recrystallized mantle;                     |  |  |  |  |  |  |  |  |  |  |  |
|       | Plag |                  | - Sutured to lobate grain boundary shapes;                                                                | - No or gentle undulatory extinction;                                            | - Intragranular microcracks.                              |  |  |  |  |  |  |  |  |  |  |  |
|       |      | Pl <sub>2</sub>  | - Fine-grained (<1.0 mm), idiomorphic to hypidiomorphic solid                                             | (magmatic flow?):                                                                | - No recrystallization;                                   |  |  |  |  |  |  |  |  |  |  |  |
|       |      | •••              | - Partially transformed for $Ms_2 e Ep_2$ (saussuritization);                                             | - No or gentle undulatory extinction;                                            | mitugranum meroeraeks,                                    |  |  |  |  |  |  |  |  |  |  |  |
|       |      | PL.              | - Fine-grained (<0.5 mm), xenomorphic crystals;                                                           | - Associated with the Pl <sub>1</sub> -Kfs <sub>1</sub> boundary;                | - Usually, no recrystallization;                          |  |  |  |  |  |  |  |  |  |  |  |
|       |      | 1 14             | - Defines myrmekite texture, together with Qtz <sub>4</sub> ;                                             | - Grows in lobes or colonies replacing Kfs <sub>1</sub> ;                        | - No intragranular microcracks.                           |  |  |  |  |  |  |  |  |  |  |  |
|       |      |                  | - Medium to coarse-grained (<8.0 mm), predominantly                                                       | - Poikilitic microstructure;                                                     | - In core-mantle microstructure                           |  |  |  |  |  |  |  |  |  |  |  |
|       |      | Kfs <sub>1</sub> | - Lobate to sutured or less often straight grain boundary shapes:                                         | - Soft to moderate undulatory extinction:                                        | - Preferred orientation can occur:                        |  |  |  |  |  |  |  |  |  |  |  |
| F     | ar   |                  | - String-type perthitic microstructure;                                                                   | - Subordinated recrystallization;                                                | - Intragranular microcracks.                              |  |  |  |  |  |  |  |  |  |  |  |
| ntia  | dsb  |                  | - Very fine- (<0.1 mm; xenomorphic) to fine-grained (<1.0 mm;                                             | - Straight grain boundary shapes;                                                | - In core-mantle microstructures                          |  |  |  |  |  |  |  |  |  |  |  |
| Esse  | -fel | Kfs <sub>2</sub> | hypidiomorphic) subgrains and new grains;                                                                 | - Granoblastic polygonal microstructure;                                         | represents the recrystallized mantle;                     |  |  |  |  |  |  |  |  |  |  |  |
| щ     | Х    |                  | - Sutured to lobate grain boundary shapes;                                                                | - No or soft undulatory extinction;                                              | - Intragranular microcracks.                              |  |  |  |  |  |  |  |  |  |  |  |
|       |      | Kfs2             | - rine-granied (<1.0 min), xenomorpine, interstitiat primary crystals:                                    | - Deformation twins:                                                             | - Intragranular microcracks                               |  |  |  |  |  |  |  |  |  |  |  |
|       |      |                  | - Lobate to straight grain boundary shapes;                                                               | - Soft to moderate undulatory extinction;                                        |                                                           |  |  |  |  |  |  |  |  |  |  |  |
|       | _    |                  | - Medium to fine-grained (< 3.0 mm), xenomorphic to                                                       | - Soft to moderate undulatory extinction;                                        | - In core-mantle microstructure                           |  |  |  |  |  |  |  |  |  |  |  |
|       |      | $Qtz_1$          | hypidiomorphic primary crystals;                                                                          | - Intracrystalline deformation bands;                                            | represents the reliquiar core;                            |  |  |  |  |  |  |  |  |  |  |  |
|       |      |                  | - Bt], Tull, Zhi, Ap and Op solid inclusions,                                                             | - Straight grain boundary shapes:                                                | - Incore-mantle microstructures                           |  |  |  |  |  |  |  |  |  |  |  |
|       |      | 0                | subgrains and new grains;                                                                                 | - Granoblastic polygonal microstructure;                                         | represents the recrystallized mantle;                     |  |  |  |  |  |  |  |  |  |  |  |
|       | tz   | $Qtz_2$          | - Can produce elongated polycrystalline aggregates;                                                       | - No or soft undulatory extinction;                                              | - Intragranular microcracks.                              |  |  |  |  |  |  |  |  |  |  |  |
|       | uar  |                  | - Sutured to lobate grain boundary shapes;                                                                |                                                                                  |                                                           |  |  |  |  |  |  |  |  |  |  |  |
|       | 0    | Qtz <sub>3</sub> | - Fine-grained (<1.0 mm), xenomorfic or rounded solid                                                     | - Curved grain boundary shapes;                                                  | - No recrystallization;                                   |  |  |  |  |  |  |  |  |  |  |  |
|       |      |                  | - Vermicular grain shape giving rise myrmekite texture                                                    | - Very fine-grained (<0.1 mm):                                                   | - No intragranular interocracks.                          |  |  |  |  |  |  |  |  |  |  |  |
|       |      | Qtz <sub>4</sub> | together with Pl <sub>4</sub> ;                                                                           | - Associated with the Pl <sub>1</sub> -Kfs <sub>1</sub> boundary;                | - No intragranular microcracks.                           |  |  |  |  |  |  |  |  |  |  |  |
|       |      | Otz <sub>5</sub> | - Very fine-grained (<0.1 mm), xenomorphic crystals;                                                      | - Irregular grain boundary shapes;                                               | - No recrystallization;                                   |  |  |  |  |  |  |  |  |  |  |  |
|       |      |                  | - Grows, together with $Bt_4$ and $Ttn_2$ , along the Hbl cleavage;                                       | - No undulatory extinction;                                                      | - Intragranular microcracks.                              |  |  |  |  |  |  |  |  |  |  |  |
|       |      | Bti              | - Preferred orientation of single crystal or cluster:                                                     | - Partially transformed for Chl and Ttn <sub>3</sub> :                           | - Moderate to strong recrystallized:                      |  |  |  |  |  |  |  |  |  |  |  |
|       |      |                  | - Straight to Sutured grain boundary shapes;                                                              | - Soft to moderate undulatory extinction;                                        | - Intragranular microcracks.                              |  |  |  |  |  |  |  |  |  |  |  |
|       | ite  | Bt <sub>2</sub>  | - Fine-grained (<0.5 mm), idiomorphic subgrains and new grains                                            | - Straight grain boundary shapes;                                                | - No recrystallization;                                   |  |  |  |  |  |  |  |  |  |  |  |
|       | Biot |                  | - Preferred orientation of cluster often occur;                                                           | - No or gentle undulatory extinction;<br>Proferred orientation parallel to major | - Intragranular microcracks.                              |  |  |  |  |  |  |  |  |  |  |  |
|       |      | Bt <sub>3</sub>  | inclusions in Kfs <sub>1</sub> or Pl <sub>1</sub> ;                                                       | axis of the host crystal (magmatic flow?);                                       | - No recrystallization;                                   |  |  |  |  |  |  |  |  |  |  |  |
|       |      | Bt               | - Very fine-grained (<0.1 mm), xenomorphic crystals;                                                      | - Irregular grain boundary shapes;                                               | - No recrystallization;                                   |  |  |  |  |  |  |  |  |  |  |  |
|       |      |                  | - Grows, together with Qtz <sub>5</sub> and Ttn <sub>2</sub> , along the Hbl cleavage                     | - No undulatory extinction;                                                      | - Intragranular microcracks.                              |  |  |  |  |  |  |  |  |  |  |  |
|       |      | $Ep_1$           | - Very fine-grained (<0.5 mm), idiomorphic to hypidiomorphic                                              | - Zoning can occur;                                                              | - No recrystallization;                                   |  |  |  |  |  |  |  |  |  |  |  |
|       |      |                  | - Fine-grained (<1.0 mm), xenomorphic neocrystals, associated,                                            | - Straight or irregular boundary shapes:                                         | - No recrystallization:                                   |  |  |  |  |  |  |  |  |  |  |  |
|       | dote | Ep <sub>2</sub>  | together with Ms <sub>2</sub> , the calcic plagioclase saussuritization;                                  | - No undulatory extinction;                                                      | - Intragranular microcracks.                              |  |  |  |  |  |  |  |  |  |  |  |
|       | Epi  | Ep <sub>3</sub>  | - Very fine-grained (<0.1 mm), xenomorphic crystals                                                       | - Irregular grain boundary shapes;                                               | - No undulatory extinction;                               |  |  |  |  |  |  |  |  |  |  |  |
| ies   |      |                  | - Very fine-grained (<0.1 mm), hypidiomorphic clinozoisite                                                | -Corona microstructure, with All core;                                           | - Intragranular Interocracks.                             |  |  |  |  |  |  |  |  |  |  |  |
| SSOI  |      | $Ep_4$           | crystals (only in spTEBGd);                                                                               | - No undulatory extinction;                                                      | - Intragranular microcracks.                              |  |  |  |  |  |  |  |  |  |  |  |
| Ace   | e    | Msı              | - Fine-grained (<0.5 mm), idiomorphic to hypidiomorphic                                                   | - Straight or irregular boundary shapes;                                         | - Moderate recrystallization;                             |  |  |  |  |  |  |  |  |  |  |  |
| put   | ovit |                  | primary crystals;                                                                                         | - No or gentle undulatory extinction;                                            | - Intragranular microcracks.                              |  |  |  |  |  |  |  |  |  |  |  |
| tal a | lusc | Ms <sub>2</sub>  | xenomorphic neocristals, associated, together with Ep <sub>2</sub> , the                                  | - Grows often along the cleavage:                                                | - No recrystalization;<br>- No Intragranular microcracks. |  |  |  |  |  |  |  |  |  |  |  |
| arie  | Σ    | - 2              | calcic plagioclase saussuritization;                                                                      | - No undulatory extinction;                                                      | 6                                                         |  |  |  |  |  |  |  |  |  |  |  |
| >     |      | Ttn              | - Fine-grained (<1.0 mm), predominantly hypidiomorphic                                                    | - Straight or irregular boundary shapes;                                         | - No recrystallization;                                   |  |  |  |  |  |  |  |  |  |  |  |
|       |      |                  | primary crystals;                                                                                         | - No undulatory extinction;                                                      | - Intragranular microcracks.                              |  |  |  |  |  |  |  |  |  |  |  |
|       | mite | $Ttn_2$          | - Grows, together with $Qtz_5$ and $Bt_4$ , along the Hbl cleavage;                                       | - No undulatory extinction;                                                      | - No recrystalization;<br>- No intragranular microcracks. |  |  |  |  |  |  |  |  |  |  |  |
|       | Tita | Ttn <sub>3</sub> | - Very fine-grained (<0.01 mm), hypidiomorphic neocrystals;                                               | - Irregular grain boundary shapes;                                               | - No recrystallization;                                   |  |  |  |  |  |  |  |  |  |  |  |
|       |      | Ttm              | - Grows, together with Chi, along the Bt <sub>1</sub> cleavage;                                           | - no undulatory extinction;                                                      | - INO INITAGRATULAR MICROCIACKS.                          |  |  |  |  |  |  |  |  |  |  |  |
|       | —    | $1 \text{ m}_4$  | - very me-grained (<0.1 mm), xenomorphic crystals;                                                        | - Twinning can occur:                                                            | - meguai gram boundary snapes.                            |  |  |  |  |  |  |  |  |  |  |  |
|       |      | Hbl              | primary crystals (only in pBHGd and hEBGd facies);                                                        | - Soft to moderate undulatory extinction:                                        | - Ttn <sub>1</sub> , Zrn, Ap and Op Inclusions:           |  |  |  |  |  |  |  |  |  |  |  |
|       |      |                  | - Partially transformed to Qtz <sub>5</sub> , Bt <sub>4</sub> and Ttn <sub>2</sub> ;                      | - Straight or irregular boundary shapes;                                         | - Intragranular microcracks.                              |  |  |  |  |  |  |  |  |  |  |  |
|       |      | Ap,              | - Very fine-grained (<0.1 mm), idiomorphic to hypidiomorphic                                              | - Straight or irregular boundary shapes;                                         | - Can occur as inclusions in $Qtz_1$ ,                    |  |  |  |  |  |  |  |  |  |  |  |
|       | Al   | Op               | - Commonly occur associate with Bt <sub>1</sub> or Hbl:                                                   | - No recrystallization;                                                          | - Intragranular microcracks.                              |  |  |  |  |  |  |  |  |  |  |  |
|       |      | Chl              | - Fine-grained (<0.1 mm), xenomorphic neocrystals;                                                        | - Irregular grain boundary shapes;                                               | - No recrystallization;                                   |  |  |  |  |  |  |  |  |  |  |  |

Box 2 - Mineralogy and microstructural typology of the Ourilândia do Norte granitoids.

and  $Kfs_1$ ) crystals commonly occur as reliquiar cores in core-mantle microstructures. They present weak undulatory extinction and have irregular to sutured grain boundary shapes. The mantle is represented for very fine-grained recrystallized feldspar ( $Pl_2$  and  $Kfs_2$ ) crystals or less frequently form coarser subgrains and new grains, with sutured or straight grain boundary shapes (e.g. 8b and



**Figure 7** - Microstructural aspects of the granitoids, located in lower strain domains, central portions of the batholiths under study. The photomicrographs show samples of eBMzG variety in (a) and (b), hBMzG in (c) and (d) and hEBGd in (e) and (f). Thus have: (a) plagioclase and alkali feldspar crystals show hypidiomorphic equigranular texture; (b) idiomorphic to hypidiomorphic biotite and opaque crystals; (c) idiomorphic, inequigranular plagioclase crystal exhibiting oscillatory zoning. Note that quartz of the matrix shows granoblastic polygonal microstructure; (d) hypidiomorphic allanite armored by epidote; (e) hypidiomorphic plagioclase crystal display deformation twinning and high temperature recrystallization microstructures, indicating new grain formation in early stage; (f) hypidiomorphic biotite and epidote crystals. Photomicrography (b), (d) and (f) plane-polarized light and (a), (c) and (e) crossed nicois.



**Figure 7** (continued) - Microstructural aspects of the granitoids, located in lower strain domains, central portions of the batholiths under study. The photomicrographs show samples of spTEBGd facies in (g) and (h), pEBTd in (i) and (j) and pBHGd in (k) and (l). Thus have: (g) centimetric, idiomorphic plagioclase phenocryst immersed in fine- to mediumgrained matrix. Note that the quartz of the matrix is strongly recrystallized, defining polygonal or sutured granoblastic aggregates. These aggregates combined with titanite and biotite crystals show a foliation of perpendicular direction to the largest axis of the phenocrystal; (h) idiomorphic to hypidiomorphic titanite and allanite crystals; (i) plagioclase phenocrysts display idiomorphic inequigranular texture. Note that the central phenocryst shows deformation twinning and intragranular microcracks, while the quartz of the matrix is strongly recrystallized, defining polygonal or sutured granoblastic aggregates; (j) biotite and epidote primary crystals; (k) centimetric, idiomorphic alkali feldspar phenocryst and idiomorphic hornblende crystals; (l) coarse-grained, idiomorphic hornblende crystals. Photomicrography (h), (j) and (l) in plane-polarized light and (g), (i) and (k) in crossed nicois.



Figure 8 - Deformation, recovery and recrystallization microstructures of the granitoids studied. The samples NLD-20A and NLD-17C are located near the north border of the ellipsoidal shape batholith, in the northern portion of the geological map (Fig. 2); the samples NLD-02B, NDP-115 and NDP-127 are associated with shear zones located near the north border of the arc-shape batholith, in the southern portion of the map; and the sample NLD-06A is located in central domain of the arc-shape batholith. (a) Mylonitic foliation defined by feldspar crystals contoured by biotite and quartz aggregates in rocks of hEBGd facies; (b) core-mantle microstructure in alkali feldspar phenocryst formed by subgrains rotation (SGR) and low temperature grain boundary migration (bulging, BLG) in rocks of the spTEBGd variety; (c) BLG recrystallization in alkali feldspar of sample of the hBMzG facies. Note the presence of granoblastic polygonal microstructure in quartz.; (d) idiomorphic alkali feldspar phenocryst of centimetric size and displaying intragranular microfractures filled by matrix minerals, which indicates deformation in the presence of melt for the granitoids of hEBGd facies. Note the presence of smooth to moderate undulatory extinction; (e) core-mantle microstructure in quartz formed by SGR and high temperature grain boundary migration (GBM), which suggests differents dynamic recrystallization regimes for quartz and feldspar; (f) Detail of GBM recrystallization in quartz of granite of the eBMzG variety. The sutured contacts of quartz crystals indicate GBM still in progress and those with straight shape evidence GBAR (grain boundary area reduction) process. Photomicrography (a) plane-polarized light and (b), (c), (d), (e) and (f) crossed nicois.



**Figure 9** - Tardi- to post-magmatic transformation microstructures of the granitoids under study. (a) saussuritization of the calcic plagioclase, evidencing normal zoning in exemplary of the eBMzG variety; (b) xenomorphic, Fe-Ti oxide crystal armored by titanite in granitoid of the spTEBGd facies; (c) exsolution lamellae in alkali feldspar in specimen of the eBMzG variety. ; (d) biotite chloritization commonly observed, in greater or lesser degree of transformation, in all the granitoids of the Ourilândia do Norte area. Note that the growth of chlorite is along the host biotite cleavage; (e) transformation microstructure of hornblende to biotite and titanite in granitoid of the pBHGd variety;(f) myrmekite texture replacing alkali feldspar in rocks of the hEBGd facies. Photomicrography (b), (d) and (e) plane-polarized light and (a), (c) and (f) crossed nicois.

8c). These features indicate that feldspar recrystallization occurred mainly via low temperature grain boundary migration (bulging, BLG) and SGR. In feldspars, these intracristalline deformation mechanisms mean moderate to high deformation temperature (Passchier & Trouw, 2005). Primary

quartz (Qtz<sub>1</sub>) crystals, when present in the more intensely deformed rocks, they are observed as small reliquiar cores in core-mantle microstructures. However, quartz commonly occur as medium-to fine-grained recrystallized (Qtz<sub>2</sub>) crystals defining polycrystalline aggregates elongated parallel to the mylonitic foliation (e.g. 8a). The grain boundary shapes of the Qtz<sub>2</sub> crystals generally are sutured or straight (e.g. 8f), which is consistent with high deformation temperature and low differential stress (Hirth & Tullis, 1992). Primary biotite (Bt<sub>1</sub>) crystals may be present and often occur chloritized (Fig. 9d). However, due to the higher deformation intensity, the biotite commonly is observed as very fine-grained recrystallized (Bt<sub>2</sub>) crystal clusters, with irregular or straight grain boundary shapes. Magmatic (Hbl<sub>1</sub>) hornblende, as well as the primary accessory minerals, show predominantly brittle deformational behavior, though Hbl<sub>1</sub> may occur with weak undulatory extinction and subgrain formation.

## 5. Geochemistry

The geochemical data of the granitoids, summarized in Table 2, comprise 56 whole rock chemical analyses for the different granitoid varieties identified, as follows: (i) 31 samples of the biotite monzogranite group - 23 of eBMzG and 8 of hBMzG facies; (ii) 18 specimens of the epidote-biotite granodiorite - 15 of the hEBGd and 3 of the spTEBGd variety; and (iii) 7 samples of porphyritic granitoids - 2 of the pEBTd group and 5 of pBHGd facies. The analytical methods used for major and trace elements are described in Appendix A. The comparison database contains 256 samples from Carajas Province high-K leucogranites (Almeida et al., 2013; Feio & Dall'Agnol, 2012; Rodrigues et al., 2014; Leite-Santos & Oliveira, 2016) and Carajas Province high Ba-Sr leucogranodiorite-granites (Almeida et al., 2013; Teixeira et al., 2013; Ronaib & Oliveira, 2013; Leite-Santos & Oliveira, 2016), in addition to tonalite-granodiorite associations of sanukitoid affinity from the Ourilândia do Norte area (Santos & Oliveira, 2016).

### 5.1. Major and trace elements

The granitoids were allocated to three main groups, based on field and petrography criteria (see Box 1 and Table 1). Fig. 10 and 11 show Harker variation diagrams of selected major and trace elements for the different facies of these rocks. Although these varieties may show some common characteristics, their geochemical signatures are distinct. The BMzG rocks are the most evolved of the granitoids identified, where  $SiO_2$  content ranges from 75.9-69.6 wt.% in eBMzG facies to 72.3-69.3 wt.% in the hBMzG. Both varieties display a positive correlation for K<sub>2</sub>O and negative for Al<sub>2</sub>O<sub>3</sub>, CaO, Fe<sub>2</sub>O<sub>3</sub><sup>t</sup>, MgO and TiO<sub>2</sub>, with an increase in SiO<sub>2</sub> (Fig. 10a-f). Despite the wide overlap between the major element contents of these granitoids, the eBMzG variety shows slightly higher  $K_2O$  content (5.37-2.47 wt.%) and lower of  $Al_2O_3$  (15.34-12.99 wt.%), CaO (2.22 to 0.87 wt.%),  $Fe_2O_3^{t}$  (3.13 to 0.67 wt.%), MgO (1.05 to 0.07 wt.%) and TiO<sub>2</sub> (0.36 to 0.06 wt.%) compared to hBMzG facies (K<sub>2</sub>O = 4.37-3.83 wt.%; Al<sub>2</sub>O<sub>3</sub> = 14.63-13.9 wt.%; CaO = 2.09-1.62 wt.%; Fe<sub>2</sub>O<sub>3</sub><sup>t</sup> = 3.40-2.26 wt.%; MgO = 0.81-0.47 wt.%; and TiO<sub>2</sub> = 0.44-0.25 wt.%). These granites exhibit an increase in Rb and decrease in Ba, Sr, Ni and La with a rise in SiO<sub>2</sub>. The Ba, Sr, Ni and La contents are lower in eBMzG rocks (Ba = 1677-446 ppm; Sr = 824-127 ppm; Ni = 16.1-1.6 ppm; and La = 80-13.7 ppm) than the hBMzG facies (Ba = 1969-1242 ppm; Sr = 386-231 ppm; Ni = 14.7-6.8 ppm; and La = 107-69.8 ppm; Fig. 11a-d). The Rb/Sr and Ba/Sr ratios (Fig. 11e and 11f) are higher and wider-ranging in the former group (Rb/Sr = 1.93-0.12; and Ba/Sr = 6.72-1.48) than the latter (Rb/Sr= 0.83-0.39; Ba/Sr = 6.0-4.42). The NLD-05 sample shows depleted anomalous geochemical behavior in K<sub>2</sub>O and is enriched in Al<sub>2</sub>O<sub>3</sub>, CaO and Na<sub>2</sub>O, while the NLD-26A sample exhibits a

| Table 2                                    | - Cher     | nical c   | ompos         | sition of       | of the        | grnaito       | oids st       | udied (       | major      | and n         | ninor e       | lemen        | ts are      | given      | in per    | centag        | e and      | trace         | in part    | s per n       | nillion    | )         |               |               | (conti    | nued).        |
|--------------------------------------------|------------|-----------|---------------|-----------------|---------------|---------------|---------------|---------------|------------|---------------|---------------|--------------|-------------|------------|-----------|---------------|------------|---------------|------------|---------------|------------|-----------|---------------|---------------|-----------|---------------|
| Group                                      |            |           | 1             |                 |               | 0             |               |               | <u> </u>   |               |               | Bioti        | te monzo    | ogranite · | BMzG      |               |            |               | 1          | 1             |            | •         |               |               |           |               |
| Facies                                     |            |           |               |                 |               |               |               |               | eBM        | IzG           |               |              |             |            |           |               |            |               |            |               |            | hBN       | MzG           |               |           |               |
| Samples                                    | NLD<br>04B | NLD<br>25 | NLD<br>30B    | NLD<br>05*      | NLD<br>06B    | NLD<br>29     | NLD<br>30A    | NLD<br>8      | NLD<br>17B | NLD<br>27     | NDP<br>127    | NLD<br>07B   | NDP<br>1184 | NLD<br>10A | NLD<br>18 | NDP<br>89B    | NLD<br>17C | NLD<br>11B    | NLD<br>16B | NLD<br>03A    | NDP<br>92B | NDP<br>93 | NLD<br>11C    | NDP<br>117B   | NLD<br>14 | NLD<br>20A    |
| SiO <sub>2</sub>                           | 69.56      | 70.53     | 71.43         | 72.04           | 72.04         | 72.46         | 73.05         | 73.10         | 73.65      | 73.66         | 73.79         | 73.81        | 73.92       | 74.01      | 74.05     | 74.33         | 74.64      | 74.69         | 69.30      | 70.80         | 71.13      | 71.20     | 71.30         | 71.46         | 71.60     | 72.30         |
| TiO <sub>2</sub>                           | 0.32       | 0.18      | 0.31          | 0.36            | 0.20          | 0.20          | 0.15          | 0.19          | 0.13       | 0.14          | 0.18          | 0.17         | 0.16        | 0.08       | 0.11      | 0.16          | 0.08       | 0.14          | 0.44       | 0.28          | 0.33       | 0.28      | 0.31          | 0.25          | 0.30      | 0.28          |
| $Al_2O_3$                                  | 15.31      | 15.25     | 14.82         | 15.95           | 14.41         | 14.13         | 14.53         | 14.10         | 14.07      | 13.96         | 14.16         | 13.66        | 13.93       | 14.01      | 13.75     | 13.75         | 13.49      | 13.22         | 14.50      | 14.40         | 14.40      | 14.63     | 13.90         | 14.43         | 14.00     | 13.90         |
| Fe <sub>2</sub> O <sub>3</sub>             | 2.74       | 1.95      | 2.05          | 1.04            | 1.86          | 1.63          | 1.21          | 2.02          | 1.34       | 1.44          | 1.40          | 1.67         | 1.37        | 1.21       | 1.27      | 1.52          | 1.21       | 1.42          | 3.40       | 2.57          | 2.65       | 2.54      | 2.66          | 2.36          | 2.54      | 2.26          |
| MnO                                        | 0.02       | 0.03      | 0.03          | 0.02            | 0.01          | 0.03          | 0.02          | 0.03          | 0.03       | 0.02          | 0.02          | 0.01         | 0.03        | 0.01       | 0.03      | 0.02          | 0.03       | 0.01          | 0.04       | 0.02          | 0.02       | 0.01      | 0.01          | 0.05          | 0.03      | 0.03          |
| MgO<br>CaO                                 | 0.68       | 0.74      | 0.53          | 0.12            | 0.44          | 0.43          | 0.28          | 0.43          | 0.25       | 0.32          | 0.27          | 0.27         | 0.27        | 0.25       | 0.24      | 0.22          | 0.18       | 0.24          | 0.81       | 0.57          | 1.00       | 0.58      | 1.80          | 0.47          | 1.92      | 0.47          |
| Na <sub>2</sub> O                          | 4 48       | 4 19      | 4.28          | 5 4 9           | 3.71          | 3.77          | 4.21          | 4.13          | 3 70       | 3.66          | 4.18          | 3.60         | 3.89        | 4.04       | 3.67      | 3.60          | 3.72       | 3.73          | 3.83       | 3.94          | 3.60       | 3.86      | 3.73          | 3.94          | 3.56      | 3.67          |
| K <sub>2</sub> O                           | 3.30       | 4.33      | 4.17          | 0.70            | 4.48          | 4.99          | 4.44          | 4.12          | 4.60       | 4.57          | 4.01          | 4.68         | 4.45        | 4.08       | 4.77      | 4.77          | 4.38       | 4.44          | 4.05       | 3.96          | 4.00       | 4.37      | 3.83          | 4.23          | 4.18      | 4.36          |
| P2O5                                       | 0.11       | 0.09      | 0.13          | 0.06            | 0.06          | 0.08          | 0.06          | 0.06          | 0.04       | 0.04          | 0.04          | 0.04         | 0.03        | 0.02       | 0.03      | 0.04          | 0.02       | 0.03          | 0.17       | 0.09          | 0.10       | 0.08      | 0.10          | 0.08          | 0.09      | 0.11          |
| LOI                                        | 1.00       | 0.70      | 0.40          | 0.70            | 0.80          | 0.90          | 0.50          | 0.30          | 0.70       | 0.60          | 0.60          | 0.70         | 0.60        | 0.90       | 0.70      | 0.30          | 0.80       | 0.80          | 0.90       | 1.00          | 0.90       | 0.60      | 1.30          | 0.70          | 0.90      | 0.50          |
| Total                                      | 99.74      | 99.68     | 99.78         | 99.83           | 99.67         | 99.76         | 99.80         | 99.74         | 99.81      | 99.76         | 99.86         | 99.77        | 99.82       | 99.86      | 99.82     | 99.81         | 99.81      | 99.81         | 99.59      | 99.68         | 99.66      | 99.77     | 99.70         | 99.68         | 99.71     | 99.66         |
| Ba                                         | 1428.00    | 1334.00   | 861.00        | 275.00          | 1420.00       | 901.00        | 800.00        | 1176.00       | 598.00     | 1002.00       | 771.00        | 1069.00      | 653.00      | 825.00     | 558.00    | 1053.00       | 446.00     | 877.00        | 1969.00    | 1569.00       | 1690.00    | 1430.00   | 1815.00       | 1242.00       | 1657.00   | 1475.00       |
| Sr                                         | 343.80     | 386.20    | 292.10        | 590.40          | 289.90        | 241.30        | 261.10        | 249.20        | 197.20     | 281.40        | 153.30        | 167.90       | 127.50      | 180.10     | 182.50    | 156.60        | 158.30     | 151.30        | 386.60     | 339.20        | 311.80     | 268.00    | 302.50        | 231.30        | 296.70    | 312.40        |
| KD<br>Zr                                   | 13 00      | 41.00     | 55.00         | 33.70<br>130.30 | 149.50        | 31.00         | 30.00         | 1/5.20        | 26.00      | 32.00         | 162.20        | 255.20       | 245.60      | 9.00       | 25.00     | 254.50        | 27.00      | 232.80        | 48.00      | 20.00         | 268.90     | 236.00    | 8.00          | 237.40        | 48.00     | 31.00         |
| Y                                          | 11.10      | 4.10      | 9.00          | 17.20           | 7.60          | 8.10          | 4.50          | 14.60         | 8.30       | 8.00          | 18.20         | 10.40        | 21.80       | 13.40      | 7.90      | 11.70         | 5.90       | 10.30         | 22.20      | 14.90         | 200.00     | 15.60     | 13.80         | 15.80         | 15.80     | 21.20         |
| Hf                                         | 7.50       | 6.00      | 4.90          | 3.50            | 6.20          | 5.10          | 3.90          | 6.00          | 3.80       | 4.80          | 4.50          | 5.00         | 4.10        | 3.00       | 4.30      | 5.50          | 7.50       | 4.20          | 8.00       | 7.30          | 6.70       | 6.00      | 7.30          | 6.10          | 7.00      | 5.90          |
| Cr                                         | 20.53      | 13.68     | 13.68         | 75.26           | 13.68         | 20.53         | 13.68         | 13.68         | 13.68      | 13.68         | 13.68         | 13.68        | 13.68       | 13.68      | 13.68     | 13.68         | 13.68      | 13.68         | 20.53      | 13.68         | 13.68      | 13.68     | 13.68         | 13.70         | 13.68     | 13.68         |
| Ni                                         | 9.70       | 13.90     | 6.00          | 8.20            | 9.40          | 14.80         | 5.70          | 5.50          | 6.60       | 5.10          | 8.30          | 3.40         | 4.50        | 4.10       | 7.40      | 1.60          | 3.00       | 3.60          | 14.70      | 7.90          | 9.30       | 7.40      | 8.50          | 6.80          | 18.40     | 8.80          |
| Nb                                         | 10.40      | 2.90      | 5.20          | 7.10            | 7.00          | 5.10          | 2.60          | 13.20         | 5.80       | 4.50          | 12.90         | 8.50         | 11.90       | 9.70       | 4.40      | 13.40         | 3.20       | 9.60          | 13.60      | 10.90         | 8.80       | 9.10      | 10.80         | 8.20          | 8.50      | 12.10         |
| Та                                         | 1.10       | 1.40      | 1.00          | 0.90            | 1.10          | 1.70          | 1.00          | 2.80          | 1.50       | 2.00          | 1.40          | 0.90         | 1.60        | 2.00       | 1.80      | 1.60          | 0.90       | 1.10          | 1.50       | 1.90          | 0.70       | 1.20      | 1.20          | 1.50          | 1.10      | 1.70          |
| Th                                         | 20.50      | 42.90     | 29.90         | 13.40           | 33.60         | 36.70         | 23.10         | 35.10         | 38.10      | 44.60         | 20.10         | 38.60        | 21.70       | 31.10      | 29.30     | 34.10         | 47.80      | 30.50         | 25.50      | 22.70         | 22.00      | 19.50     | 25.40         | 22.40         | 23.50     | 46.60         |
| Ga                                         | 2.70       | 17.50     | 5.40<br>19.90 | 17 70           | 5.50<br>17.90 | 2.50          | 5.20<br>17.40 | 8.50<br>19.60 | 14.50      | 8.00<br>18.30 | 4.50          | 4.20         | 4.70        | 16.80      | 14.70     | 8.20<br>17.00 | 16.90      | 4.50          | 19.20      | 5.90<br>19.10 | 2.50       | 18.00     | 3.80<br>19.10 | 5.60<br>17.80 | 18 20     | 5.50<br>18.10 |
| La                                         | 80.00      | 65.60     | 49.70         | 11.90           | 61.00         | 68.80         | 34.30         | 70.80         | 41.70      | 62.00         | 65.30         | 51.90        | 53.40       | 35.00      | 31.40     | 70.10         | 32.70      | 36.80         | 101.40     | 85.60         | 89.50      | 70.20     | 87.00         | 117.00        | 88.40     | 69.80         |
| Ce                                         | 138.60     | 98.00     | 88.80         | 21.00           | 101.20        | 98.00         | 60.30         | 118.80        | 79.50      | 106.90        | 112.80        | 99.00        | 91.70       | 59.40      | 61.50     | 126.40        | 59.90      | 67.40         | 187.40     | 145.70        | 170.00     | 144.50    | 148.30        | 162.90        | 163.60    | 128.20        |
| Pr                                         | 14.07      | 11.68     | 9.18          | 2.75            | 10.22         | 12.32         | 6.48          | 12.68         | 8.58       | 11.78         | 12.66         | 10.41        | 9.99        | 6.01       | 6.75      | 13.28         | 6.76       | 7.07          | 20.40      | 14.79         | 16.77      | 14.53     | 15.42         | 20.19         | 17.30     | 13.38         |
| Nd                                         | 43.50      | 36.80     | 30.20         | 10.10           | 30.80         | 40.70         | 19.40         | 39.80         | 27.10      | 37.20         | 38.40         | 32.10        | 32.60       | 20.10      | 23.60     | 42.10         | 22.20      | 22.10         | 70.30      | 47.70         | 55.80      | 47.00     | 49.40         | 60.60         | 56.60     | 44.20         |
| Sm                                         | 5.05       | 4.35      | 4.98          | 2.67            | 3.92          | 6.06          | 3.46          | 4.89          | 4.87       | 4.96          | 6.45          | 4.47         | 5.33        | 2.96       | 4.22      | 6.07          | 3.41       | 3.60          | 10.34      | 6.31          | 7.31       | 6.90      | 6.33          | 8.12          | 7.91      | 7.03          |
| Eu                                         | 0.82       | 0.66      | 0.55          | 0.42            | 0.59          | 0.68          | 0.50          | 0.53          | 0.57       | 0.58          | 0.72          | 0.39         | 0.69        | 0.47       | 0.52      | 0.71          | 0.51       | 0.41          | 1.57       | 1.00          | 1.10       | 0.74      | 1.08          | 0.91          | 1.08      | 1.14          |
| Gd<br>ТЪ                                   | 3.98       | 2.63      | 3.89<br>0.47  | 2.33            | 2.91          | 4.16          | 2.55          | 3.83          | 3.28       | 3.43<br>0.34  | 4.88          | 3.38         | 4.77        | 2.65       | 3.09      | 4.17          | 2.49       | 2.84          | 7.91       | 4.87          | 5.48       | 4.65      | 4.97          | 5.18          | 0.30      | 5.61          |
| Dv                                         | 2.05       | 0.25      | 2.13          | 2 72            | 1.61          | 1.87          | 1.09          | 2 43          | 1.58       | 1.57          | 3.26          | 1.87         | 3.57        | 2 10       | 1 4 9     | 2 54          | 1.20       | 1.88          | 4 68       | 2.59          | 3.27       | 2 70      | 2 71          | 2.73          | 3 34      | 3.57          |
| Ho                                         | 0.38       | 0.15      | 0.30          | 0.58            | 0.28          | 0.25          | 0.16          | 0.49          | 0.30       | 0.22          | 0.53          | 0.34         | 0.63        | 0.39       | 0.25      | 0.42          | 0.21       | 0.33          | 0.79       | 0.44          | 0.60       | 0.42      | 0.49          | 0.50          | 0.58      | 0.59          |
| Er                                         | 1.05       | 0.38      | 0.75          | 1.77            | 0.78          | 0.61          | 0.38          | 1.33          | 0.78       | 0.64          | 1.67          | 0.87         | 1.94        | 1.20       | 0.62      | 1.31          | 0.64       | 0.88          | 2.22       | 1.33          | 1.96       | 1.37      | 1.40          | 1.37          | 1.34      | 1.83          |
| Tm                                         | 0.17       | 0.05      | 0.09          | 0.28            | 0.13          | 0.08          | 0.05          | 0.22          | 0.13       | 0.09          | 0.25          | 0.14         | 0.27        | 0.18       | 0.10      | 0.18          | 0.12       | 0.13          | 0.30       | 0.21          | 0.31       | 0.18      | 0.21          | 0.20          | 0.19      | 0.26          |
| Yb                                         | 1.12       | 0.37      | 0.58          | 1.83            | 0.85          | 0.58          | 0.33          | 1.49          | 0.90       | 0.65          | 1.77          | 0.98         | 1.71        | 1.27       | 0.81      | 1.15          | 0.72       | 0.86          | 1.98       | 1.26          | 2.26       | 1.17      | 1.51          | 1.37          | 1.24      | 1.62          |
| Lu                                         | 0.17       | 0.05      | 0.09          | 0.24            | 0.13          | 0.09          | 0.05          | 0.25          | 0.13       | 0.09          | 0.23          | 0.15         | 0.26        | 0.19       | 0.12      | 0.20          | 0.13       | 0.14          | 0.29       | 0.21          | 0.31       | 0.16      | 0.24          | 0.20          | 0.16      | 0.25          |
| A/CNK                                      | 1.02       | 1.04      | 1.02          | 1.01            | 1.03          | 1.03          | 1.02          | 1.05          | 1.05       | 1.04          | 1.06          | 1.04         | 1.04        | 1.05       | 1.03      | 1.05          | 1.03       | 1.02          | 1.01       | 1.01          | 1.05       | 1.04      | 1.02          | 1.02          | 1.02      | 1.02          |
| κ <sub>2</sub> Ο/Na <sub>2</sub> C<br>ΜΔΙΙ | 5 56       | 6.83      | 6.82          | 2.85            | 6.53          | 7.62          | 7.30          | 7.01          | 7.00       | 6.88          | 6.98          | 7.12         | 1.14        | 6.87       | 7.24      | 1.55          | 6.84       | 7.08          | 5.79       | 5.92          | 5.70       | 6.61      | 5.67          | 6.46          | 5.91      | 6.38          |
| *Fe                                        | 0.78       | 0.70      | 0.78          | 0.89            | 0.79          | 0.77          | 0.80          | 0.81          | 0.83       | 0.80          | 0.82          | 0.85         | 0.82        | 0.81       | 0.83      | 0.86          | 0.86       | 0.84          | 0.79       | 0.80          | 0.79       | 0.80      | 0.80          | 0.82          | 0.80      | 0.81          |
| #Mg                                        | 0.33       | 0.43      | 0.34          | 0.19            | 0.32          | 0.34          | 0.31          | 0.30          | 0.27       | 0.31          | 0.28          | 0.24         | 0.28        | 0.29       | 0.27      | 0.22          | 0.23       | 0.25          | 0.32       | 0.31          | 0.32       | 0.31      | 0.31          | 0.28          | 0.30      | 0.29          |
| Ba/Sr                                      | 4.15       | 3.45      | 2.95          | 0.47            | 4.90          | 3.73          | 3.06          | 4.72          | 3.03       | 3.56          | 5.03          | 6.37         | 5.12        | 4.58       | 3.06      | 6.72          | 2.82       | 5.80          | 5.09       | 4.63          | 5.42       | 5.34      | 6.00          | 5.37          | 5.58      | 4.72          |
| Rb/Sr                                      | 0.46       | 0.30      | 0.35          | 0.06            | 0.52          | 0.55          | 0.39          | 0.70          | 0.98       | 0.67          | 1.38          | 1.40         | 1.93        | 1.24       | 1.05      | 1.50          | 1.08       | 1.54          | 0.39       | 0.45          | 0.51       | 0.65      | 0.52          | 0.83          | 0.48      | 0.49          |
| Rb/Y                                       | 14.32      | 28.34     | 11.42         | 1.96            | 19.67         | 16.52         | 22.89         | 12.00         | 23.18      | 23.54         | 11.59         | 22.62        | 11.27       | 16.66      | 24.37     | 20.04         | 28.93      | 22.60         | 6.84       | 10.15         | 7.90       | 11.13     | 11.38         | 12.16         | 9.06      | 7.19          |
| Sr/Y                                       | 30.97      | 94.20     | 32.46         | 34.33           | 38.14         | 29.79         | 58.02         | 17.07         | 23.76      | 35.18         | 8.42          | 16.14        | 5.85        | 13.44      | 23.10     | 13.38         | 26.83      | 14.69         | 17.41      | 22.77         | 15.51      | 17.18     | 21.92         | 14.64         | 18.78     | 14.74         |
| Nb/Ta                                      | 9.45       | 2.07      | 5.20          | 7.89            | 6.36          | 3.00          | 2.60          | 4.71          | 3.87       | 2.25          | 9.21          | 9.44         | 7.44        | 4.85       | 2.44      | 8.38          | 3.56       | 8.73          | 9.07       | 5.74          | 12.57      | 7.58      | 9.00          | 5.47          | 7.73      | 7.12          |
| (La/Yb) <sub>N</sub>                       | 48.21      | 9.49      | 57.84<br>6.28 | 4.39            | 48.44         | 80.07<br>7.15 | 6 24          | 52.07<br>9.12 | 5 39       | 04.38<br>7.87 | 24.90<br>6.37 | 55.75<br>731 | 21.08       | 7 44       | 20.17     | 41.14         | 50.66      | 28.88<br>6.44 | 54.57      | 45.86         | 20.73      | 40.50     | 28.89<br>8.65 | 9.07          | 48.12     | 29.08         |
| (Gd/Yb)                                    | 2.87       | 5.74      | 5.42          | 1.03            | 2.77          | 5.80          | 6.24          | 2.08          | 2.95       | 4.26          | 2.23          | 2.79         | 2.25        | 1.69       | 3.08      | 2.93          | 2.79       | 2.67          | 3.23       | 3.12          | 1.96       | 3.21      | 2.66          | 3.06          | 4.14      | 2.80          |
| Eu/Eu*                                     | 0.56       | 0.60      | 0.38          | 0.51            | 0.53          | 0.41          | 0.51          | 0.37          | 0.44       | 0.43          | 0.39          | 0.31         | 0.42        | 0.51       | 0.44      | 0.43          | 0.54       | 0.39          | 0.53       | 0.55          | 0.53       | 0.40      | 0.59          | 0.43          | 0.47      | 0.55          |

Legend: LOI = loss on ignition; A/CNK = [Al<sub>2</sub>O<sub>3</sub>/(CaO+Na<sub>2</sub>O+K<sub>2</sub>O)]mol; MALI = Na<sub>2</sub>O+K<sub>2</sub>O-CaO; Fe\* = FeO<sup>1</sup>/(FeO<sup>1</sup>+MgO); Mg# = (MgO/(MgO+FeO<sup>1</sup>)mol; Eu/Eu\* = Eu<sub>N</sub>/(Sm<sub>N</sub> x Gd<sub>N</sub>)<sup>2</sup>.

| Table 2 | - Continued. |  |
|---------|--------------|--|
|         | commuca.     |  |

|                                            | e 2 - C                           | Contin     | uea.   |             |             |            |            |                                     |               |            |            |        |            |            |            |            |            |            |           |                               |            |            |            | <b>2 1 1 1 1 1 1 1</b> |            |           |            |             |                 |               |
|--------------------------------------------|-----------------------------------|------------|--------|-------------|-------------|------------|------------|-------------------------------------|---------------|------------|------------|--------|------------|------------|------------|------------|------------|------------|-----------|-------------------------------|------------|------------|------------|------------------------|------------|-----------|------------|-------------|-----------------|---------------|
| Group                                      | Group Biotite monzogranite - BMzG |            |        |             |             |            |            | Epidote-biotite granodiorite - EBGd |               |            |            |        |            |            |            |            |            |            |           | Porphyritic granitoids - pGrt |            |            |            |                        |            |           |            |             |                 |               |
| Facies                                     |                                   |            | eBMzG  |             |             |            |            |                                     |               |            |            |        | hEBGo      | 1          |            |            |            |            |           |                               |            | spTEBGo    | 1          | pEBTd                  |            |           |            | pBHGd       |                 |               |
| Samples                                    | NDP<br>112B*                      | NLD<br>23* | NDP    | NLD<br>26A* | NLD<br>16A* | NDP<br>100 | NLD<br>11A | NLD<br>10B                          | NDP<br>125    | NDP<br>128 | NDP<br>124 | NDP    | NLD<br>03B | NLD<br>06A | NDP<br>101 | NLD<br>04A | NLD<br>02B | NLD<br>07A | NDP<br>71 | NLD<br>26B                    | NLD<br>16C | NLD<br>15B | NLD<br>17A | NDP<br>113B            | NDP<br>115 | NDP<br>87 | NDP<br>84A | NDP<br>25 A | NDP<br>21       | NDP<br>23*    |
| SiO                                        | 70.60                             | 72.30      | 73.91  | 73.09       | 75.90       | 66.62      | 67.52      | 67.56                               | 67.84         | 67.94      | 68.00      | 68.03  | 68.20      | 68.39      | 68.34      | 69.04      | 69.23      | 69.24      | 69.29     | 70.65                         | 66.34      | 67.65      | 68.08      | 71.53                  | 72.66      | 65.77     | 66.58      | 66.88       | 67.26           | 67.80         |
| TiO <sub>2</sub>                           | 0.25                              | 0.22       | 0.11   | 0.09        | 0.06        | 0.44       | 0.39       | 0.39                                | 0.37          | 0.39       | 0.38       | 0.38   | 0.36       | 0.37       | 0.35       | 0.38       | 0.36       | 0.34       | 0.37      | 0.34                          | 0.55       | 0.60       | 0.54       | 0.26                   | 0.23       | 0.41      | 0.38       | 0.38        | 0.36            | 0.37          |
| Al <sub>2</sub> O <sub>3</sub>             | 14.22                             | 14.16      | 14.37  | 15.34       | 12.99       | 15.32      | 14.96      | 15.18                               | 15.20         | 15.41      | 15.18      | 14.99  | 15.33      | 15.18      | 15.10      | 15.26      | 15.55      | 14.91      | 15.57     | 15.55                         | 15.30      | 15.09      | 14.90      | 14.98                  | 14.36      | 15.74     | 15.51      | 15.51       | 15.65           | 14.62         |
| Fe <sub>2</sub> O <sub>3</sub>             | 3.13                              | 1.61       | 0.92   | 0.90        | 0.67        | 3.90       | 3.37       | 3.11                                | 3.31          | 3.09       | 3.42       | 3.71   | 3.24       | 2.97       | 3.51       | 2.54       | 2.49       | 2.76       | 2.22      | 2.20                          | 4.38       | 4.02       | 3.74       | 1.98                   | 1.74       | 3.53      | 3.25       | 3.13        | 3.01            | 3.11          |
| MnO                                        | 0.02                              | 0.02       | 0.02   | 0.01        | 0.01        | 0.03       | 0.04       | 0.03                                | 0.03          | 0.03       | 0.03       | 0.03   | 0.03       | 0.03       | 0.03       | 0.02       | 0.02       | 0.02       | 0.02      | 0.03                          | 0.05       | 0.03       | 0.04       | 0.01                   | 0.01       | 0.04      | 0.04       | 0.04        | 0.04            | 0.05          |
| MgO                                        | 1.05                              | 0.49       | 0.39   | 0.27        | 0.07        | 2.26       | 2.14       | 1.87                                | 1.70          | 1.84       | 1.85       | 1.76   | 1.73       | 1.69       | 1.64       | 1.80       | 1.50       | 1.59       | 1.04      | 0.88                          | 1.24       | 0.93       | 0.74       | 1.06                   | 0.99       | 2.03      | 1.78       | 1.78        | 1.75            | 1.42          |
| CaO                                        | 1.36                              | 1.50       | 1.51   | 2.21        | 0.87        | 2.89       | 2.93       | 2.61                                | 2.42          | 2.72       | 2.41       | 2.44   | 2.52       | 2.65       | 2.91       | 2.92       | 2.67       | 2.43       | 2.63      | 2.50                          | 3.03       | 2.55       | 2.42       | 2.55                   | 2.66       | 3.62      | 3.43       | 3.18        | 3.28            | 1.83          |
| Na <sub>2</sub> O                          | 4.31                              | 3.82       | 4.77   | 4.95        | 3.01        | 4.54       | 3.91       | 4.05                                | 4.01          | 3.86       | 3.90       | 4.22   | 3.84       | 4.06       | 4.36       | 4.61       | 4.32       | 3.96       | 4.83      | 5.29                          | 3.84       | 3.68       | 3.94       | 5.48                   | 5.22       | 4.90      | 5.01       | 4.82        | 5.04            | 4.53          |
| $K_2O$                                     | 3.88                              | 4.56       | 3.30   | 2.47        | 5.37        | 2.38       | 3.43       | 3.61                                | 3.61          | 3.21       | 3.66       | 2.88   | 3.64       | 3.57       | 2.37       | 1.81       | 2.52       | 3.37       | 3.10      | 1.76                          | 3.63       | 4.28       | 3.86       | 1.12                   | 1.01       | 2.43      | 2.27       | 2.79        | 2.45            | 4.79          |
| $P_2O_5$                                   | 0.09                              | 0.08       | 0.03   | 0.01        | 0.01        | 0.16       | 0.15       | 0.14                                | 0.13          | 0.14       | 0.13       | 0.13   | 0.13       | 0.12       | 0.12       | 0.14       | 0.10       | 0.12       | 0.13      | 0.08                          | 0.28       | 0.21       | 0.18       | 0.08                   | 0.08       | 0.16      | 0.14       | 0.14        | 0.14            | 0.15          |
| LOI                                        | 0.70                              | 1.00       | 0.50   | 0.40        | 0.90        | 1.10       | 0.80       | 1.10                                | 1.00          | 1.10       | 0.60       | 1.10   | 0.70       | 0.60       | 0.90       | 1.20       | 1.00       | 0.90       | 0.50      | 0.50                          | 0.70       | 0.40       | 1.00       | 0.80                   | 0.90       | 1.00      | 1.30       | 1.00        | 0.70            | 0.90          |
| Total                                      | 99.62                             | 99.76      | 99.83  | 99.74       | 99.86       | 99.65      | 99.66      | 99.66                               | 99.63         | 99.74      | 99.58      | 99.68  | 99.73      | 99.64      | 99.64      | 99.73      | 99.77      | 99.65      | 99.70     | 99.78                         | 99.34      | 99.44      | 99.44      | 99.86                  | 99.87      | 99.64     | 99.70      | 99.66       | 99.69           | 99.58         |
| Ba                                         | 1568.00                           | 1197.00    | 869.00 | 1677.00     | 524.00      | 821.00     | 1333.00    | 1463.00                             | 1194.00       | 1173.00    | 1322.00    | 889.00 | 1220.00    | 1297.00    | 1147.00    | 306.00 1   | 011.00     | 1194.00    | 1200.00   | 545.00                        | 3485.00    | 2877.00    | 3410.00    | 170.00                 | 169.00     | 1456.00   | 1139.00    | 1644.00     | 1171.00         | 2247.00       |
| Sr                                         | 824.50                            | 348.00     | 588.50 | 483.40      | 137.10      | 789.20     | 698.10     | 756.30                              | 671.70        | 631.50     | 634.50     | 618.30 | 602.70     | 723.30     | 788.40     | 651.60     | 598.10     | 624.30     | 857.20    | 571.00                        | 782.70     | 513.30     | 585.40     | 776.70                 | 719.30     | 965.30    | 818.90     | 986.80      | 985.70          | 758.10        |
| Rb                                         | 105.90                            | 101.90     | 74.40  | 57.20       | 154.60      | 124.40     | 143.90     | 158.20                              | 186.10        | 116.80     | 232.10     | 205.30 | 144.60     | 150.40     | 134.20     | 119.30     | 181.70     | 171.90     | 95.30     | 79.70                         | 126.90     | 117.70     | 145.20     | 62.10                  | 53.90      | 67.60     | 72.60      | 73.10       | 69.90           | 159.50        |
| Zr                                         | 132.80                            | 169.60     | 55.70  | 75.00       | 71.20       | 152.60     | 125.90     | 137.50                              | 133.80        | 133.20     | 130.80     | 135.00 | 110.30     | 132.60     | 122.50     | 147.70     | 136.10     | 130.20     | 114.20    | 83.70                         | 340.50     | 455.00     | 346.40     | 134.30                 | 114.80     | 133.70    | 145.60     | 131.70      | 135.90          | 203.90        |
| Y                                          | 5.10                              | 3.10       | 2.60   | 1.50        | 2.60        | 8.70       | 6.30       | 6.10                                | 5.40          | 10.80      | 9.10       | 13.40  | 9.40       | 5.00       | 5.60       | 8.40       | 5.70       | 8.40       | 3.30      | 5.60                          | 22.10      | 26.70      | 16.00      | 6.50                   | 6.90       | 7.50      | 6.30       | 5.70        | 6.40            | 7.50          |
| Hf                                         | 4.20                              | 4.70       | 1.60   | 2.40        | 2.50        | 4.00       | 3.30       | 3.50                                | 3.50          | 4.20       | 3.20       | 3.60   | 3.10       | 3.80       | 3.80       | 4.10       | 3.80       | 3.80       | 3.30      | 2.30                          | 8.50       | 11.30      | 8.40       | 4.00                   | 3.20       | 3.60      | 4.00       | 3.40        | 4.00            | 6.10          |
| Cr                                         | 34.21                             | 13.68      | 13.68  | 13.68       | 13.68       | 82.10      | 109.47     | 88.94                               | 88.94         | 75.26      | 129.99     | 88.94  | 68.42      | 68.42      | 68.42      | 68.42      | 68.42      | 75.26      | 13.68     | 13.68                         | 20.53      | 20.53      | 13.68      | 34.21                  | 34.21      | 75.26     | 61.58      | 54.73       | 54.73           | 54.73         |
| Ni                                         | 16.10                             | 15.70      | 9.90   | 31.60       | 7.00        | 41.50      | 45.60      | 46.20                               | 37.10         | 39.50      | 52.60      | 35.50  | 37.40      | 33.70      | 32.50      | 44.40      | 40.20      | 42.20      | 10.50     | 12.10                         | 22.10      | 11.40      | 8.80       | 19.20                  | 15.10      | 24.40     | 27.30      | 20.60       | 20.70           | 5.20          |
| Nb                                         | 4.80                              | 2.50       | 2.00   | 1.90        | 1.80        | 5.50       | 5.00       | 4.70                                | 4.20          | 4.50       | 4.60       | 9.80   | 4.10       | 6.30       | 4.70       | 5.50       | 7.80       | 6.30       | 3.60      | 4.60                          | 14.70      | 17.70      | 14.60      | 4.80                   | 4.40       | 3.60      | 3.90       | 3.50        | 3.30            | 8.90          |
| Та                                         | 0.40                              | 1.70       | 0.60   | 1.70        | 1.10        | 0.70       | 1.00       | 0.90                                | 0.70          | 0.80       | 0.60       | 1.70   | 0.70       | 1.20       | 0.60       | 1.00       | 0.90       | 1.10       | 0.40      | 0.80                          | 1.50       | 1.50       | 1.30       | 0.80                   | 0.50       | 0.90      | 0.70       | 0.60        | 0.70            | 1.10          |
| Th                                         | 10.80                             | 13.50      | 8.80   | 8.40        | 24.00       | 7.20       | 13.10      | 11.20                               | 10.30         | 11.30      | 11.70      | 12.30  | 12.50      | 11.70      | 8.50       | 12.50      | 10.70      | 14.10      | 7.70      | 1.10                          | 30.30      | 28.50      | 32.50      | 12.10                  | 12.80      | 7.40      | 6.80       | 8.30        | 7.70            | 27.00         |
| U                                          | 3.30                              | 0.90       | 3.40   | 0.20        | 7.60        | 1.70       | 4.60       | 3.90                                | 2.70          | 3.50       | 6.20       | 4.10   | 6.40       | 4.90       | 3.10       | 2.50       | 1.80       | 6.20       | 2.70      | 0.50                          | 2.20       | 2.60       | 4.90       | 1.60                   | 2.20       | 3.40      | 2.20       | 2.20        | 2.00            | 5.80          |
| Ga                                         | 21.90                             | 16.60      | 16.70  | 16.90       | 14.00       | 21.30      | 22.50      | 22.60                               | 21.20         | 20.40      | 21.30      | 25.40  | 19.80      | 23.90      | 20.50      | 23.80      | 21.90      | 23.20      | 19.90     | 19.60                         | 19.60      | 18.20      | 19.90      | 18.80                  | 17.50      | 20.00     | 19.20      | 18.70       | 19.80           | 17.10         |
| La                                         | 29.40                             | 39.20      | 13.70  | 22.60       | 16.60       | 23.70      | 38.90      | 37.50                               | 27.60         | 48.00      | 44.50      | 65.90  | 37.80      | 35.80      | 29.30      | 45.10      | 16.30      | 35.70      | 29.80     | 7.10                          | 124.80     | 124.60     | 115.80     | 27.60                  | 38.00      | 31.20     | 30.30      | 32.00       | 28.80           | 51.90         |
| Ce                                         | 57.00                             | 53.60      | 27.90  | 39.30       | 31.40       | 47.90      | 69.00      | 65.60                               | 59.10         | 71.70      | 84.90      | 94.30  | 69.50      | 66.40      | 58.90      | 83.60      | 45.20      | 62.40      | 59.40     | 12.50                         | 223.60     | 241.60     | 199.10     | 56.90                  | 74.50      | 64.10     | 61.00      | 65.30       | 59.00           | 115.50        |
| Pr                                         | 6.72                              | 6.26       | 2.66   | 4.02        | 3.82        | 5.52       | 8.29       | 7.70                                | 5.80          | 9.36       | 9.40       | 12.40  | 7.54       | 7.18       | 6.60       | 9.48       | 3.63       | 7.45       | 6.29      | 1.65                          | 24.03      | 24.09      | 20.72      | 6.61                   | 8.29       | 7.04      | 7.03       | 6.95        | 6.54            | 12.12         |
| Nd                                         | 25.80                             | 21.00      | 9.50   | 14.30       | 13.40       | 21.70      | 29.10      | 27.40                               | 20.50         | 34.20      | 35.50      | 44.50  | 27.80      | 25.90      | 24.20      | 33.50      | 12.60      | 26.80      | 23.10     | 6.40                          | 83.10      | 81.20      | 66.90      | 25.30                  | 33.00      | 27.10     | 25.40      | 25.40       | 24.60           | 44.40         |
| Sm                                         | 4.29                              | 2.45       | 1.38   | 1.44        | 2.03        | 3.63       | 4.46       | 4.05                                | 3.42          | 5.44       | 5.55       | 6.73   | 4.26       | 3.99       | 3.65       | 4.64       | 1.97       | 4.25       | 3.30      | 1.67                          | 11.40      | 11.41      | 8.95       | 4.55                   | 5.14       | 4.74      | 4.36       | 4.51        | 4.05            | 6.89          |
| Eu                                         | 0.99                              | 0.71       | 0.37   | 0.36        | 0.47        | 0.94       | 0.97       | 0.99                                | 0.93          | 1.24       | 1.35       | 1.43   | 1.09       | 0.97       | 0.93       | 0.72       | 0.51       | 0.93       | 0.81      | 0.52                          | 2.09       | 1.92       | 1.92       | 0.97                   | 1.36       | 1.20      | 1.06       | 1.12        | 1.01            | 1.63          |
| Gd                                         | 2.91                              | 1.58       | 1.07   | 0.97        | 1.23        | 2.66       | 3.05       | 2.83                                | 2.22          | 3.78       | 3.50       | 4.59   | 2.82       | 2.82       | 2.52       | 3.11       | 1.63       | 2.90       | 2.20      | 1.57                          | 8.58       | 8.15       | 7.08       | 3.07                   | 3.54       | 2.77      | 2.80       | 2.67        | 2.52            | 4.37          |
| Tb                                         | 0.27                              | 0.12       | 0.09   | 0.08        | 0.13        | 0.32       | 0.31       | 0.27                                | 0.25          | 0.36       | 0.38       | 0.53   | 0.29       | 0.25       | 0.28       | 0.35       | 0.18       | 0.29       | 0.18      | 0.23                          | 0.93       | 0.96       | 0.73       | 0.29                   | 0.31       | 0.29      | 0.28       | 0.28        | 0.26            | 0.44          |
| Dy                                         | 1.14                              | 0.53       | 0.45   | 0.29        | 0.52        | 1.50       | 1.33       | 1.18                                | 1.06          | 1.84       | 1.76       | 2.32   | 1.54       | 1.05       | 1.43       | 1.80       | 1.03       | 1.47       | 0.96      | 1.05                          | 4.45       | 5.04       | 3.37       | 1.24                   | 1.48       | 1.55      | 1.41       | 1.32        | 1.25            | 2.17          |
| Ho                                         | 0.14                              | 0.09       | 0.07   | 0.04        | 0.10        | 0.27       | 0.23       | 0.18                                | 0.16          | 0.26       | 0.30       | 0.40   | 0.23       | 0.20       | 0.19       | 0.24       | 0.18       | 0.24       | 0.11      | 0.21                          | 0.76       | 0.86       | 0.55       | 0.21                   | 0.18       | 0.17      | 0.21       | 0.17        | 0.22            | 0.27          |
| Er                                         | 0.36                              | 0.22       | 0.18   | 0.09        | 0.33        | 0.64       | 0.58       | 0.51                                | 0.49          | 0.84       | 0.69       | 0.90   | 0.69       | 0.53       | 0.56       | 0.83       | 0.52       | 0.64       | 0.30      | 0.53                          | 1.95       | 2.23       | 1.45       | 0.56                   | 0.55       | 0.58      | 0.53       | 0.44        | 0.46            | 0.80          |
| Tm                                         | 0.05                              | 0.03       | 0.03   | 0.01        | 0.03        | 0.10       | 0.08       | 0.07                                | 0.06          | 0.11       | 0.09       | 0.14   | 0.09       | 0.08       | 0.07       | 0.11       | 0.07       | 0.10       | 0.03      | 0.08                          | 0.32       | 0.30       | 0.22       | 0.09                   | 0.05       | 0.06      | 0.06       | 0.07        | 0.06            | 0.10          |
| YD                                         | 0.55                              | 0.25       | 0.21   | 0.09        | 0.51        | 0.01       | 0.56       | 0.47                                | 0.58          | 0.01       | 0.67       | 0.85   | 0.71       | 0.42       | 0.42       | 0.75       | 0.56       | 0.59       | 0.22      | 0.45                          | 1.85       | 2.07       | 0.24       | 0.48                   | 0.45       | 0.51      | 0.47       | 0.42        | 0.44            | 0.78          |
| LU                                         | 1.02                              | 0.03       | 1.01   | 0.01        | 0.05        | 0.07       | 0.07       | 0.06                                | 1.02          | 1.04       | 0.10       | 0.11   | 0.10       | 0.07       | 1.00       | 1.02       | 0.07       | 0.09       | 0.03      | 1.02                          | 0.28       | 0.30       | 0.24       | 0.03                   | 0.08       | 0.06      | 0.08       | 0.08        | 0.03            | 0.08          |
| A/CNK                                      | 1.05                              | 1.02       | 1.01   | 1.05        | 1.05        | 1.00       | 0.97       | 0.99                                | 0.00          | 0.82       | 1.05       | 1.05   | 1.05       | 0.99       | 1.00       | 0.20       | 1.00       | 1.02       | 0.97      | 0.22                          | 0.97       | 0.98       | 0.99       | 0.20                   | 0.99       | 0.91      | 0.92       | 0.95        | 0.95            | 1.06          |
| K <sub>2</sub> O/Na <sub>2</sub> O<br>MALI | 6.90                              | 1.19       | 6.56   | 5.21        | 1.78        | 0.52       | 0.88       | 5.05                                | 5.20          | 0.85       | 5.15       | 0.08   | 0.95       | 4.08       | 2.82       | 2.50       | 0.58       | 4.00       | 5.20      | 0.55                          | 0.95       | 5.41       | 5.28       | 0.20                   | 2.57       | 2.71      | 2.95       | 0.58        | 0.49            | 7.40          |
| MALI<br>*E-                                | 0.85                              | 0.88       | 0.50   | 5.21        | 7.51        | 4.05       | 4.41       | 5.05                                | 5.20          | 4.55       | 5.15       | 4.00   | 4.96       | 4.98       | 5.82       | 5.50       | 4.17       | 4.90       | 5.50      | 4.55                          | 4.44       | 5.41       | 5.58       | 4.05                   | 3.57       | 5./1      | 3.85       | 4.45        | 4.21            | 7.49          |
| ~ге<br>#М-                                 | 0.73                              | 0.75       | 0.68   | 0.75        | 0.90        | 0.61       | 0.59       | 0.60                                | 0.64          | 0.60       | 0.62       | 0.65   | 0.63       | 0.61       | 0.66       | 0.56       | 0.60       | 0.61       | 0.66      | 0.69                          | 0.76       | 0.80       | 0.82       | 0.63                   | 0.61       | 0.61      | 0.62       | 0.61        | 0.61            | 0.66          |
| #Mg                                        | 1.00                              | 0.58       | 1.49   | 0.57        | 0.17        | 0.55       | 0.56       | 1.02                                | 1.79          | 1.84       | 0.52       | 0.48   | 0.51       | 1.70       | 0.48       | 0.58       | 0.54       | 0.55       | 0.48      | 0.44                          | 0.50       | 0.51       | 0.28       | 0.51                   | 0.55       | 0.55      | 1.20       | 0.55        | 0.54            | 0.47          |
| Da/Si<br>Db/Cr                             | 0.12                              | 5.44       | 1.48   | 5.47        | 5.82        | 0.16       | 0.21       | 0.21                                | 1.78          | 0.18       | 2.08       | 1.44   | 2.02       | 0.21       | 0.17       | 0.47       | 0.20       | 0.28       | 1.40      | 0.95                          | 4.45       | 0.00       | 0.05       | 0.22                   | 0.25       | 1.51      | 1.39       | 1.07        | 1.19            | 2.96          |
| Db/V                                       | 0.15                              | 22.87      | 28.62  | 28.12       | 1.15        | 14.20      | 22.84      | 25.02                               | 24.46         | 10.18      | 25.51      | 0.55   | 15 29      | 20.08      | 22.06      | 14.20      | 21.99      | 20.46      | 20.00     | 14 22                         | 5.74       | 0.25       | 0.25       | 0.08                   | 7.81       | 0.07      | 11.52      | 12.82       | 10.07           | 0.21          |
| K0/ I<br>Se/V                              | 20.70                             | 112.07     | 20.02  | 202.15      | 52 72       | 14.50      | 110.81     | 122.95                              | 124.20        | 59 47      | 23.31      | 15.52  | 64.12      | 144.66     | 23.90      | 77 57      | 104.02     | 20.40      | 20.00     | 101.06                        | 25.74      | 4.41       | 9.00       | 9.55                   | 104.25     | 9.01      | 120.08     | 12.62       | 154.02          | 101.08        |
| Nh/Ta                                      | 12.00                             | 1 47       | 220.33 | 1 12        | 1 64        | 7 86       | 5.00       | 5 22                                | 6.00          | 5 62       | 7 67       | 5 76   | 5.84       | 5 25       | 7 87       | 5 50       | 8 67       | 572        | 239.70    | 5 75                          | 9.80       | 19.22      | 11 22      | 6.00                   | 8 80       | 4.00      | 5 57       | 5.82        | 1 J4.02<br>A 71 | 8.00          |
| (La/Vb)                                    | 60.13                             | 1.47       | 2.22   | 1.12        | 36.14       | 26.22      | 46.80      | 53.85                               | 49.00         | 52 11      | 1.07       | 53 50  | 35.00      | 57 52      | 47.00      | 41.70      | 10 65      | 2.13       | 9.00      | 11 15                         | 45 53      | 40.63      | 55.04      | 38.81                  | 59.65      | 4.00      | 43 51      | 51 42       | 4.71            | 0.09<br>44 01 |
| $(La/10)_N$                                | 4 31                              | 10.07      | 6.25   | 9.88        | 5 15        | 4 11       | 5 49       | 5.83                                | 49.02<br>5.08 | 5 56       | 5.05       | 617    | 5 50       | 5 65       | 5.05       | 6.12       | 5 21       | 5 20       | 5 60      | 2.68                          | 6.89       | 6.88       | 8 15       | 3 82                   | 4 65       | 4 14      | 4 38       | 4 47        | 4 4 8           | 4 74          |
| (Cd/ML)                                    | 7 13                              | 5 11       | 4.12   | 8 71        | 3 21        | 3.52       | 4 40       | 4 87                                | 4 72          | 5.01       | 4 22       | 4 47   | 3 21       | 5 43       | 4.85       | 3 44       | 2 35       | 3.29       | 8.09      | 2.08                          | 3 75       | 3 1 8      | 4.03       | 5.17                   | 6.65       | 4.14      | 4.50       | 5 14        | 4.40            | 4.74          |
| (Gu/YD) <sub>N</sub><br>Eu/Eu*             | 0.86                              | 1.10       | 0.93   | 0.93        | 0.91        | 0.92       | 0.80       | 0.89                                | 1.03          | 0.84       | 0.94       | 0.79   | 0.96       | 0.88       | 4.05       | 0.58       | 0.87       | 0.81       | 0.00      | 0.98                          | 0.65       | 0.61       | 0.74       | 0.79                   | 0.05       | 1.01      | 0.93       | 0.99        | 0.97            | 0.91          |
| Lu Lu                                      | 0.00                              | 1.10       | 0.25   | 0.95        | 0.91        | 0.72       | 0.00       | 0.09                                | 1.05          | 0.04       | 0.24       | 0.19   | 0.70       | 0.08       | 0.94       | 0.58       | 0.07       | 0.01       | 0.92      | 0.28                          | 0.05       | 0.01       | 0.74       | 0.79                   | 0.27       | 1.01      | 0.95       | 0.22        | 0.21            | 0.91          |



**Figure 10** – Major and minor elements Harker diagrams for the Ourilândia do Norte granitoids. (a)  $K_2O$  vs.  $SiO_2$  (Peccerillo & Taylor 1976); (b)  $Al_2O_3$  vs.  $SiO_2$ ; (c) CaO vs.  $SiO_2$ ; (d)  $Fe_2O_3^{t}$  vs.  $SiO_2$ ; (e) MgO vs.  $SiO_2$ ; and (f)  $Na_2O$  vs.  $SiO_2$ . Data source of the fields for comparison: (i) Carajás Province high-K leucogranites (Almeida et al. 2013; Feio & Dall'Agnol 2012; Rodrigues et al. 2014; Leite-Santos & Oliveira 2016); (ii) Carajás Province high Ba-Sr leucogranodiorite-granites (Almeida et al. 2013; Teixeira et al. 2013; Ronaib & Oliveira 2013; Leite-Santos & Oliveira 2016); and (iii) Ourilândia do Norte tonalite-granodiorite associations of sanukitoid affinity (Santos & Oliveira 2016).



**Figure 11** - Trace elements Harker diagrams for the Ourilândia do Norte granitoids. (a) Ba vs. SiO<sub>2</sub>. (b) Sr vs. SiO<sub>2</sub>. (c) Rb vs. SiO<sub>2</sub> (d) Rb/Sr vs. SiO<sub>2</sub>. (e) Ba/Sr vs. Sr. (f) Ba vs. Sr. Data source of the fields for comparison: (i) Carajás Province high-K leucogranites (Almeida et al. 2013; Feio & Dall'Agnol 2012; Rodrigues et al. 2014; Leite-Santos & Oliveira 2016); (ii) Carajás Province high Ba-Sr leucogranodiorite-granites (Almeida et al. 2013; Teixeira et al. 2013; Ronaib & Oliveira 2013; Leite-Santos & Oliveira 2016); and (iii) Ourilândia do Norte tonalite-granodiorite associations of sanukitoid affinity (Santos & Oliveira 2016).

higher mean Ni content (32 ppm) compared to eBMzG (14.8-1.6).

The granitoids of the EBGd group are clearly less evolved than those of the BMzG group, which can be denounced by significantly lower K<sub>2</sub>O content, as well as higher Al<sub>2</sub>O<sub>3</sub>, CaO, Fe<sub>2</sub>O<sub>3</sub><sup>t</sup>, MgO, TiO<sub>2</sub>, Sr and Ni content and Rb/Sr ratio (Fig. 11). The hEBGd and spTEBGd varieties are compositionally distinct and can be easily distinguished from Harker diagrams, where they exhibit a negative correlation for Al<sub>2</sub>O<sub>3</sub>, CaO, Fe<sub>2</sub>O<sub>3</sub><sup>t</sup> and MgO with increasing SiO<sub>2</sub>, in non-colinear trends. The granitoids of the hEBGd facies display a scattered trend and are more enriched in SiO<sub>2</sub> (70.65-66.62 wt.%), Al<sub>2</sub>O<sub>3</sub> (15.57-14.90 wt.%), CaO (2.93-2.41 wt.%) and MgO (2.26-0.88 wt.%) and slightly depleted in K<sub>2</sub>O (3.66-1.76 wt.%), Fe<sub>2</sub>O<sub>3</sub><sup>t</sup> (3.90-2.20 wt.%) and TiO<sub>2</sub> (0.44-0.34 wt.%) when compared to those of the spTEBGd variety, whose SiO<sub>2</sub> content ranges from 68.08 to 66.34 wt.%, whereas those of Al<sub>2</sub>O<sub>3</sub>, CaO, MgO, K<sub>2</sub>O, Fe<sub>2</sub>O<sub>3</sub><sup>t</sup> and TiO<sub>2</sub> vary between 15.30 and14.90 wt.%, 3.03 and 2.42 wt.%, 1.24 and 0.74 wt.%, 4.28 and 3.63 wt.%, 4.38 and 3.74 wt.% and 0.60 and 0.54 wt.%, respectively (Fig. 10a-f). In these granitoids, Ba, Sr, Ni and La decresase and Rb increases with a rise in  $SiO_2$  (Fig. 11); however, for samples with the same  $SiO_2$  content, the granitoids of the hEBGd facies are more enriched in Sr (857-571 ppm) and Ni (52-10 ppm) and depleted in Ba (1463-306 ppm) and La (65-71 ppm) in relation to those of the spTEBGd variety (Ba = 3485-2877 ppm; Sr = 782.7-513.3 ppm; Ni = 22.1-8.8 ppm; and La = 124.8-115.2 ppm; Fig. 11ad). The Rb/Sr ratio values (Fig. 11e) for the rocks of both varieties overlap, but are wider-ranging in the hEBGd facies samples (Rb/Sr = 0.37-0.11) than those of the spTEBGd facies (Rb/Sr = 0.25-0.16). Ba/Sr ratio values (Fig. 11f) are lower for hEBGd facies rocks (Ba/Sr = 2.08-0.47) than those of the spTEBGd variety (Ba/Sr = 5.83-4.45).

The granitoids that constitute the pGrt group are compositionally distinct and can be readily differentiated from Harker diagrams, where SiO<sub>2</sub> contents range from 72.66 to 70.60 wt.% in the pEBTd and 67.80 to 65.77 wt.% in the pBHGd varieties (Fig. 10). The less evolved character of the pBHGd variety is also evidenced by higher contents of Al<sub>2</sub>O<sub>3</sub> (15.74-14.62 wt.%), CaO (3.62-1.83 wt.%), Fe<sub>2</sub>O<sub>3</sub><sup>t</sup> (3.53-3.01 wt.%), MgO (2.03-1.42 wt.%) and TiO<sub>2</sub> (0.41-0.36 wt.%), compared to those of the pEBTd variety (Al<sub>2</sub>O<sub>3</sub> = 14.98-14.22; CaO = 2.66-1.36; Fe<sub>2</sub>O<sub>3</sub><sup>t</sup> = 3.13-1.74 wt.%; MgO =1.06-0.99 wt.%; and TiO<sub>2</sub> = 0.26-0.23 wt.%) – Fig. 10a-f. In this regard, the former is more enriched in Ni (27-5 ppm), Sr (987-758 ppm) and Ba (2247-1139 ppm) than the rocks with the highest SiO<sub>2</sub> content in this group (Ni = 19-15 ppm; Sr = 824-719 ppm; Ba = 1568-170 ppm), and both varieties show higher Ni and Sr content than those of the BMzG group, with similar Sr and lower Ni and Ba in relation to the EBGd group, hEBGd and spTEBGd varieties, respectively (Fig. 11a-c). The La (52-27 ppm) and K<sub>2</sub>O (3.88-1.01 wt.%) contents and Rb/Sr (0.21-0.07) and Ba/Sr (2.96-0.23) ratios are similar in both facies of the pGrt group and clearly lower than those of the BMzG and spTEBGd varieties (Fig. 10a and 11d-f). The NDP-23 sample is anomalously enriched in K<sub>2</sub>O and Ba and depleted in Al<sub>2</sub>O<sub>3</sub>, CaO, and Ni.

#### 5.2. Classification and magmatic series

In the P–Q cationic classification (Fig. 12a; Debon & Le Fort, 1983) and normative feldspar triangle (Fig. 12b; O'Connor, 1965; fields of Barker, 1979) diagrams, the BMzG and EBGd rocks plot predominantly in the (monzo) granite and granodiorite fields, respectively, which is consistent with modal analysis data. Based on these diagrams, the pEBTd and pBHGd (pGrt group) samples tend to reproduce the classification obtained from modal analysis (Fig. 6).

With the exception of the pEBTd variety, all the granitoids studied display affinity with the calc-alkaline series in the K-Na-Ca diagram [Fig. 12c; Nockoids & Allen (1953); trend defined by Barker & Arth (1976)]. On the other hand, in the K<sub>2</sub>O vs. SiO<sub>2</sub> diagram (Fig. 10a; Peccerillo & Taylor, 1976), the granites of the BMzG group and the spTEBGd variety can be assigned to a high-K calc-alkaline series, while hEBGd and pBHGd rocks show affinity with the calc-alkaline to high-K calc-alkaline series and the pEBTd variety with the tholeitic series (Fig. 10a).

In the Shand (1943) diagram, the BMzG samples plot in the peraluminous field, with



**Figure 12** - Geochemical classification and magmatic series plots for the Ourilândia do Norte granitoids. (a) P–Q diagram (Debon & Le Fort 1983); (b) Normative feldspar triangle (O'Connor 1965; fields of Barker 1979); (c) K-Na-Ca diagram, calc-alkaline trend defined by Nockoids & Allen (1953) and trend and field trondhjemitic defined by Barker & Arth (1976). (d) A/CNK [Al<sub>2</sub>O<sub>3</sub>/(CaO+Na<sub>2</sub>O+K<sub>2</sub>O)]mol vs. SiO<sub>2</sub> diagram (Shand 1943); (e) Fe\* or FeO<sup>t</sup>/(FeO<sup>t</sup>+MgO) vs. SiO<sub>2</sub> (Frost et al. 2001); and (f) Na<sub>2</sub>O+K<sub>2</sub>O-CaO (MALI) vs. SiO<sub>2</sub> diagram (Frost et al. 2001). Data source of the fields for comparison: (i) Carajás Province high-K leucogranites (Almeida et al. 2013; Feio & Dall'Agnol 2012; Rodrigues et al. 2014; Leite-Santos & Oliveira 2016); (ii) Carajás Province high Ba-Sr leucogranodiorite-granites (Almeida et al. 2013; Teixeira et al. 2013; Ronaib & Oliveira 2013; Leite-Santos & Oliveira 2016); and (iii) Ourilândia do Norte tonalite-granodiorite associations of sanukitoid affinity (Santos & Oliveira 2016).





000

00

(a)

000

00

Boa Sorte granite

high (La/Yb), variety

Figure 13 - Chondrite-normalized (Evensen et al., 1978) REE patterns and primordial mantle-normalized (Taylor & Mclennan, 1985) spider diagrams. (a) and (b) eBMzG facies; (c) and (d) hBMzG and spTEBGd varieties; (e) and (f) hEBGd group; (g) and (h) pEBTd and pBHGd facies. Data source of the fields for comparison: Xingura, Mata Surrão and Guranta granites (Almeida et al. 2013); Boa Sorte granite (Rodrigues et al., 2014); Cruzadão granite (Feio & Dall'Agnol, 2012); Velha Canadá granite (Leite-Santos & Oliveira, 2016); Ourilândia do Norte tonalite-granodiorite associations of sanukitoid affinity (Santos & Oliveira, 2016).

A/CNK values [molecular ratio of Al<sub>2</sub>O<sub>3</sub>/(CaO+Na<sub>2</sub>O+K<sub>2</sub>O)] ranging between 1.06 and 1.01, whereas the hEBGd and pEBTd varieties are meta- to peraluminous, with A/CNK values varying from 1.06 to 0.97, and the spTEBGd and pBHGd rocks are strictly metaluminous, with A/CNK values varying from 0.99 to 0.97 and 0.93 to 0.92, respectively (Fig. 12d). The MALI (alkali-lime index = Na<sub>2</sub>O+K<sub>2</sub>O-CaO) vs. SiO<sub>2</sub> diagram (Fig. 12e; Frost et al., 2001) shows that the granites of the BMzG group and the spTEBGd variety have calc-alkalic to alkali-calcic affinity, while the remaining granitoids present overall calc-alkalic character, except pEBTd rocks, which display a calcic tendency. According to the iron index diagram (Fig. 12f; Frost et al., 2001), the BMzG and spTEBGd varieties range from magnesian to slightly ferroan, with Fe\* [FeO<sup>t</sup>/(FeO<sup>t</sup>+MgO)] values between 0.90 and 0.70, whereas hEBGd and porphyritic granitoid (pEBTd and pBHGd) samples plot in the magnesian field with significantly lower Fe\* values (0.69-0.56) than previously reported.

### 5.3. Rare earth and multi-elements patterns

Trace element concentrations (Table 2) are reported in chondrite-normalized REE patterns and primitive mantle-normalized multi-element diagrams (Fig. 13). The varieties belonging to the BMzG group show slightly distinct rare earth and multi-element patterns. Granites from the eBMzG facies have moderately fractionated rare earth element (REE) patterns (Fig. 13a), defined by relative enrichment in light REEs (LREE) and depletion in heavy REEs (HREE), as indicated by values of the (La/Yb)<sub>N</sub> ratios ranging from 169.4 to 18.60. These rocks also exhibit a moderate negative Eu anomaly (Eu/Eu\*= 0.60-0.31) and smooth concave shape in HREE, which may suggest amphibole fractionation during their magmatic evolution. The NLD-05 sample shows an anomalous pattern with marked LREE impoverishment and the lowest (La/Yb)<sub>N</sub> (4.39) ratio. In the primitive mantle normalized spidergram, these granites display moderate to strong negative Ba-Nb-Ta-Sr-P-Ti anomalies (Fig. 13b). On the other hand, rocks from the hBMzG facies exhibit a less fractionated REE pattern with values of the (La/Yb)<sub>N</sub> ratios of 57.64-29.08 and weakly negative Eu anomaly (Eu/Eu\* = 0.59-0.40) – Fig. 13c. In addition, these granitoids display less pronounced negative Nb-Ta-Sr-P-Ti anomalies than those of the eBMzG facies (Fig. 13d).

The granitoids that constitute the EBGd group exhibit significantly distinct REE and multielement patterns, whereas those of the spTEBGd variety are similar to the hBMzG granitoids, although they show lower (La/Yb)<sub>N</sub> ratios (55.04-40.63), a much weaker negative Eu anomaly (Eu/Eu\* = 0.74-0.65), fewer negative Nb-Ta-Sr-P-Ti anomalies and a slightly positive Ba anomaly (Fig. 13d). In turn, the hEBGd variety, as well as samples of the pGrt group (pEBTd and pBHGd varieties), are markedly impoverished in overall REE content ( $\Sigma$ REE = 235.08 to 34.01 ppm and 241.45 to 127.92 ppm), with nearly constant (La/Yb)<sub>N</sub> ratios (91.43 to 11.15 and 60.13 to 38.81, respectively) and slightly negative to absent Eu anomalies (Eu/Eu\* = 1.10 to 0.79 and 1.01 to 0.79, respectively) - Fig. 13e,g. Furthermore, the hEBGd, pEBTd and pBHGd varieties display moderately negative Nb-Ta-P-Ti and slightly positive Ba and Sr anomalies (Fig. 13f,h). Martin et al. (2005) suggest that moderate negative Nb-Ta-Ti anomalies indicate the presence of amphibole and/or iron and titanium oxides as residual phases, whereas P and Th are related to low apatite and zircon content, respectively. The NLD-16, NLD-23 and NDP-68 samples show ambiguous behavior and are akin to granites from the eBMzG facies; however, their REE pattern is similar to those of the hEBGd variety and pGrt group, with a concave shape in HREE (Fig. 13e).

## 6. Discussion

#### 6.1. Petrogenesis and magmatic evolution

According to Almeida et al. (2013), the three most common types of Mesoarchean granites of calc-alkaline affinity exposed in the Rio Maria domain are potassic leucogranites (Xinguara and Mata Surrão granites), the leucogranodiorite-granite group (Guarantã suite and similar rocks) and

42

amphibole-bioite monzogranites (Rancho de Deus granite). An association of high-Mg dioritegranodiorite ± granite was collectively termed the Rio Maria sanukiotid suite (Oliveira et al., 2009, Santos & Oliveira, 2016). In contrast to this terrane, the Canaã dos Carajás domain is broadly dominated by high-K leucogranites (e.g. Cruzadão and Boa Sorte granites). Geochemical modelling suggests that the three granite groups cannot be derived from a common precursor magma (Almeida et al., 2013; Feio & Dall'Agnol, 2012). In Figs. 10, 11, 12 and 13, the major and trace element contents of the granitoid group samples identified in the Ouriladia do Norte area are compared to the compositions of these three granite groups and sanukitoid rocks.

The Mesoarchean Ourilândia plutons consist of granodiorites and monzogranites with subordinate trondhjemites. Petrography and whole-rock major and trace element compositions of these granitoids are similar to those of collisional "magnesio-potassic"(Mg-K) and "ferro-potassic" (Fe-K) suites. Both Mg- and Fe-rich groups are alkali-calcic to calc-alkaline and differ in their FeO<sup>t</sup>/MgO ratio, Al<sub>2</sub>O<sub>3</sub>, K<sub>2</sub>O and some trace elements (Sr, Ba, Rb). The origin of the Mg-K suites is better understood, which requires only metasomatized mantle (Heilimo et al., 2010; Laurent et al., 2014a; Santos and Oliveira, 2016). In contrast, there is no consensus about the petrogenesis of the Fe-K associations, with models ranging from melting of juvenile lower crust (Duchesne et al., 2010), old felsic crustal lithologies (Tagne-Kamga, 2003), metasomatized mantle (Ferré et al., 1998) or two contrasted sources involving enriched sub-continental lithospheric mantle and asthenospheric mantle (Laurent et al., 2014b).

#### 6.1.1. Biotite monzogranite

The eBMzG and hBMzG rocks (BMzG group) have high \*Fe and low Mg# values (Figs. 12f and 14a), and can be assembled into the Fe-rich or Fe-K group. They exhibit modal and geochemistry compositions akin to Archean potassic calc-alkaline leucogranites identified in other areas of the Carajás province that are interpreted as the product of crustal anatexis of TTG-type rocks in the plagioclase stability zone (<1.0 GPa) (Almeida et al., 2013; Feio & Dall'Agnol, 2012), as evidenced by their moderate to pronounced negative Eu and Sr anomalies (Fig. 13a,c). In addition, the major element compositions of these granites are consistent with those of experimental melts derived from tonalites (Fig. 14c). The BMzG granitoids show internal compositional variation, suggesting that their magmas evolved through fractionated crystallization controlled by plagioclase (Fig. 14d), K-feldspar and biotite (Fig. 14e).

Despite the fact that the hBMzG variety shows compositional similarity to eBMzG rocks, their REE and multi-element patterns reveal greater affinity with those of the spTEBGd variety (Fig. 13c,d). The field relationships and the slightly less evolved aspect of the hBMzG variety in relation to eBMzG rocks suggest that the generation of hBMzG rocks likely involves some degree of mixing between eBMzG and spTEBGd magmas. This hypothesis is reinforced by the spatial distribution of these granitoids, which are mingled synplutonically (Fig. 4b,f), and the presence of oscillatory zoning in the plagioclase of the hBMzG variety (Fig. 7c). A model based on binary mixing can be seen through normalized REE and multi-element diagrams, suggesting a mixture of 60% spTEBGd (NLD-15B sample) and 40% eBMzG (NLD-18 sample) to explain the origin of the hBMzG granites (Fig. 15a,b).

#### 6.1.2. Titanite-rich biotite granodiorite

The presence of varietal titanite combined with high LILE and REE content, and the slightly fractioned patterns with moderate negative Eu anomaly, indicate that spTEBGd rocks had a felsic parental magma. However, the large number of microgranular mafic enclaves (Fig. 4g) and the high modal content of mafic minerals (M'= 8.45-19.95%) suggest that a mafic component likely participated in the origin of these rocks. The discriminant diagram of trace elements (Fig. 14b)



**Figure 14** - Petrogenetic aspects and magmatic evolution of the Ourilândia do Norte granitoids. (a) Mg#  $(MgO/(MgO+FeO^{1})_{mol} vs. K/Na (Moyen et al., 2003a);$  (b) Zr vs. Ni with closepet granite and TTGs fields for comparison (Moyen et al., 2003a); (c) Petrogenetic classification diagram with fields determined from major-element compositions of experimental studies (Laurent et al., 2014a); (d) Eu/Eu\* vs. Sr; (e) Ba vs. Sr; and (f) Cr vs. Ni. Distribution coefficients are mainly from Rollison (1993) for granitic composition (black vector) and Villemant et al. (1981) for mafic composition (blue vector). Abbreviations: Pl = plagioclase, Kfs = alkali feldspar, Bt = biotite, Cpx = clinopyroxene e Hlb = hornblende.

44

shows that spTEBGd samples have a clear affinity with Closepet-type granites (denominated high-Mg and high-K granites) from the Dharwar Craton (Moyen et al., 2003a). These rocks exhibit several petrographic [granodiorites, highly porphyritic, with large (2–5 cm) K-feldspar phenocrysts and abundant accessory minerals including titanite] and geochemical [LILE enriched (such as K, Ba and Sr), moderate MgO, Cr and Ni, high HFSE (such as Ti, Zr and Y) and REE contents] similarities. In addition, large, dioritic to monzonitic enclaves with rare K-feldspar phenocrysts, are found within the spTEBGd, which are analogous to those considered comagmatic from Closepet-type granites (Jayananda et al., 1995). Thus, to explain the moderate LILE enrichment (Ba + Sr < 1000 ppm) of the mafic enclaves associated with Ourilândia granitoids, their mafic parent magma would be generated at shallow depths from a fluid-metasomatized mantle (fluid-assisted flux melting) in a subduction environment (Santos & Oliveira, 2016).

Close compositional similarities between spTEBGd and Closepet-type granites strongly suggest a petrogenetic analogy (high- Ti and Ba magmas), which can be formed by partial melting of an enriched mantle source (Moyen et al., 2003a) or high-K mafic source (Fig. 14c; Laurent et al., 2014a). Subsequent melting of this enriched mantle (probably in a post-subduction setting) gave rise to uncommon high-HFSE, Mg, REE and K magmas. As demonstrated for the Closepet Granite (Dharwar Craton), a hot mantle-derived magma can induce continental crust melting and mix with the anatectic products (Moyen et al., 2003a).

### 6.1.3 Biotite granodiorite and porphyritic granitoids

In contrast to the Fe-K granitoid group, the hEBGd and porphyritic granitoid (pEBTd and pBHGd) varieties have low \*Fe and high #Mg values, showing remarkable sanukitoid affinity (Mg-K suite) (Figs. 12f and 14a,b). The granodiorite rocks (hEBGd and pBHGd) are more enriched in MgO, Ni and Sr and more depleted in FeO, K<sub>2</sub>O, TiO<sub>2</sub>, Ba and HREE, when compared to their spTEBGd counterparts, and resemble only those most impoverished in SiO<sub>2</sub> (< 70 wt.%) from the high Ba- and Sr-enriched leucogranodiorite-granite group (Guarantã suite) of the Carajás province (see aforementioned diagrams). Accordingly, considering that the proposed model to explain the origin of the Guarantã suite granitoids involves mixing between a Ba- and Sr-enriched granite magma and trondhjemitic liquids, generating rocks with a wide variation in SiO<sub>2</sub> content (68.20 to 73.14 wt%) (Almeida et al., 2013), it is assumed a minimum or no participation of magma akin to TTG rocks in the hEBGd and pBHGd granitoid genesis. The normalized REE and multi-element patterns show the chemical affinity between them and Rancho de Deus granite (Fig. 13e-h), an amphibole-bearing monzogranite generated by fractional crystallization and differentiation of sanukitoid magmas.

The behavior of some major (e.g. MgO, Fe<sub>2</sub>O<sub>3</sub> and TiO<sub>2</sub>) and compatible trace (e.g. Ni and Cr) elements from the hEBGd and pBHGd sample groups does not represent collinear trends, suggesting the existence of distinct parental liquids and/or different processes responsible for their origin and evolution. The hEBGd samples form linear continuous trends with Rio Maria sanukitoids, overlapping the field relative to its more evolved rocks, which strongly suggests that these rocks are ultimately related through fractional crystallization processes. The Rayleigh mineral fractionation modeled for the Cr-Ni vector diagram (Fig. 14f) indicates that the hEBGd variety could have been produced by intense fractionation of hornblende  $\pm$  clinopyroxene and biotite during the evolution of the Rio Maria sanukitoid, justifying its greater impoverishment in HREE compared to Rancho de Deus granite. Furthermore, the Eu/Eu\* vs. Sr diagram (Fig. 14d) shows that during the evolution of the Mg-K rock groups, the Eu/Eu\* ratio remained constant with increasing Sr contents, which is not compatible with plagioclase fractionation. Despite the fact that the pBHGd variety shows affinity with these petrological features, its rocks are distinguished from those of the hEBGd group for presenting a slightly less evolved character which are more depleted in SiO<sub>2</sub> and K<sub>2</sub>O and enriched in CaO, even though Ni and Cr content are contradictorily lower in a context of

magmatic evolution by fractional crystallization of the sanukitoid magma. Thus, the frequent presence of partially digested microgranular mafic enclaves suggest a more complex process to explain the ambiguous geochemical features of the pBHGd rocks (Fig. 3h). A petrogenetic model that combines this geochemical behavior and textural aspects is shown through normalized REE



 $C_{La}$  Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu C B Ba K Nb La Ce Sr Nd P Hf Zr Sm Ti Tb Figure 15 - Binary mixing model for Ourilandia do Norte hybrid granitoids in Chondrite-normalized (Evensen et al., 1978) REE and primordial mantle-normalized (Taylor & Mclennan, 1985) multi-elements diagrams. The calculations were performed using the  $X_M = X_A f + X_B (1- f)$  equation, wherein  $X_A$  and  $X_B$  are the concentration of trace elements in the end members of the mixing,  $X_M$  is the content of trace element in the calculated mixture and f an index described by A/(A+B). (a) and (b) model for the origin of the hBMzG granites (NLD-14 sample) from the mixture of 60% spTEBGd (NLD-15B sample) and 40% eBMzG (NLD-18 sample); (c) and (d) model for the formation of pBHGd rocks (NDP-87 sample) from the mixture of 80% eEHBGd (BRM-112 sample) and 20% eBMzG (NLD-18 sample); and (e) and (f) model for the formation of trondhjemite (NDP-113B sample) from the mixture of 70-80% TTG-type melt (trondhjmitic liquid like TTG of the Água Azul do Norte area; the EDC-10 sample was used for modeling) and 20-30% mafic enclave (NDP-49 sample).

and multi-element diagrams (Fig. 15c,d), which depict the results of the binary mixture, modelling between 80% sanukitoid (BRM-112 samples) and 20% leucogranite (NLD-18) to explain the origin of the pBHGd variety.

The chemical composition of the trondhjemite variety (pEBTd) is very similar to that of typical TTG granitoids; however, they are slightly more enriched in Sr, #Mg and Ni. Their textural features resemble those identified in the other porphyritic variety (Fig. 3g). The small, scattered, equant subrounded mafic microgranular enclaves (blob of coeval magma that has sharp contact with its host) are the most common heterogeneities present in the pEBTd rocks. Thus, within a model in which mafic rocks have mingled and mixed synplutonically with granitic rocks, we hypothesize that the Ourilandia do Norte Mg-Na granitoids (pEBTd) likely derived from incomplete mixing of 70-80% TTG-type liquid, akin to 2.93 Ga Água Azul do Norte trondhjemite (Santos, 2017), and 30-20% mantle-derived magma (Fig. 15e,f) represented by diorite enclaves generated from a fluidmetasomatized mantle at shallower depths (Santos & Oliveira, 2016). This model contends that 2.87 Ga trondhjemite liquid would be the product of partial melting of a low-K mafic source (Fig. 14c; Laurent et al., 2014a), under the base of thickened metavolcanic piles, caused by the ascension mantle-derived magmas and consequent crust underplate (Almeida et al., 2013, Oliveira et al., 2011). The mingling relationships established the contemporaneity between all the Ourilândia do Norte granitoids, including those of sanukitoid and BADR (enclaves) signatures, suggesting that significant crustal growth and recycling occurred during the final phases of stabilization of the first Mesoarchean orogenic cycle registered in the Carajás province.

### 6.2. Microstructural considerations

#### 6.2.1. Deformation temperature

Laboratory experiments and observation of naturally deformed minerals have generated a large amount of information about the temperature and pressure conditions under which these minerals were deformed and recrystallized, mainly quartz, feldspars and micas (Tullis, 1983; Tullis & Yund, 1985, 1987; Kronenberg et al., 1990; Hirth & Tullis, 1992; Kohlstedt et al., 1995; Blenkinsop, 2000; Vernon, 2004; Passchier & Trouw, 2005). The creep microstructures and intracrystalline deformation mechanisms identified in Ourilândia do Norte granitoids allowed to investigate the effects of temperature and strain rate on the structural control of magma emplacement by regional deformation. The deformation history of these rocks is represented by a sequence of submagmatic to subsolidus microstructures resulting from intracrystalline plasticity: (i) undulatory extinction in primary crystal; (ii) deformation bands; (iii) subgrains; (iv) new grains; (v) core-and-mantle microstructure; (vi) undulatory extinction in new grains; (vii) subgrain formation from new grains; and (viii) granoblastic polygonal microstructure in quartz  $\pm$  feldspars. All primary phases exhibit intragranular microcracks. The occurrence of intragranular microfractures in feldspars filled by residual minerals petrographically continuous with the igneous groundmass indicate deformation in the presence of melt (e.g. 8d; Blenkinsop, 2000; Vernon, 2004). Furthermore, the coexistence of deformation and melt can be ratified by the occurrence of biotite and primary accessory crystals trapped within the feldspar microfractures (Bouchez et al., 1992; Blenkinsop, 2000; Passchier & Trouw, 2005).

Temperature is not the only factor that determines deformation behavior in quartz, since it also depends strongly on strain rate, differential stress and the presence of water in the lattice and along grain boundaries (Kronenberg, 1994; Luan & Paterson, 1992; Gleason & Tullis, 1995; Kohlstedt et al., 1995; Post et al., 1996). The quartz crystals of the three granitoid groups indicate that their dynamic recrystallizations occurred mainly by subgrain rotation (SGR) and high temperature grain boundary migration (GBM) (Fig. 8e and 8f), followed by grain boundary area reduction (GBAR), which is illustrated by the granoblastic polygonal microstructures and suggests post-deformation static recrystallization. These observations indicate that quartz recrystallization

was controlled by regime 3 of Hirth & Tullis (1992) and occurred at higher temperatures (>500°C, Fig. 16) and lower strain rate, differential stress and dislocation density. This recrystallization regime is characterized by core-and-mantle microstructures, which often define a planar fabric. Paterson et al. (1989), Blenkinsop (2000) and Vernon (2004) indicate that GBM recrystallization in quartz, although not proving deformation in the presence of melt, may suggest continuity between magmatic and high-temperature solid-state deformation. Stipp et al. (2002) report that at higher temperatures (above 700°C), the rapid recovery and recrystallization of quartz give rise to new grains with strain-free appearance, which is commonly observed in the Ourilândia granitoids.



**Figure 16** - Schematic diagram showing the relation between temperature of deformation and dynamic recrystallization regimes in quartz, feldspars, biotite and amphibole during D1 event [modified from Passchier & Trouw (2005)]. The gray field is the temperature spectrum for the occurrence of dynamic recrystallization in each mineral. Legend: BLG = bulging or low temperature grain boundary migration; SGR = subgrain rotation; GBM = high temperature grain boundary migration.

Feldspar deformation is strongly dependent on temperature (Tullis, 1983; Tullis & Yund, 1985, 1987). The microstructures identified in feldspars from these granitoids suggest that their dynamic recrystallization was controlled mainly by bulging (BLG) and SGR, followed by GBAR. Passchier & Trouw (2005) indicate that under medium-grade conditions (450-600 °C) dislocation climb is possible in feldspars; thus, recrystallization process may occur along their rims. Under these conditions, the main recrystallization mechanism is BLG and core-and-mantle microstructure develops. Dynamic recrystallization by SGR in feldspars is activated at temperatures above 600 °C (Gapais, 1989; Tullis & Yund, 1991), which would be coherent to admit an ultimate deformation temperature above 500 °C for the rocks under study (Fig. 16). At temperatures above 600 °C myrmekite and intragranular microcracks are common, and core-and-mantle microstructures still occur (Kruse et al., 2001), indicating continuity between magmatic and state-solid deformation. Like quartz, the occurrence of GBAR in feldspars suggests post-deformation static recrystallization, which is consistent with the relatively high temperature at the end of the crystal-plastic deformation that affected these granitoids. In this case, or if a large amount of water was present along grain boundaries, recovery, recrystallization and GBAR processes can continue in the absence of deformation towards a lower internal energy configuration of the crystal (Passchier & Trouw, 2005).

The micas show abundant evidence of deformational accommodation mechanisms (Kronenberg et al., 1990; Wilson, 1980), but amphibole deformation remains poorly understood (Imon et al., 2004). Biotite is commonly recrystallized and behaves ductilely at temperatures above 250 °C, whereas GBM recrystallization in biotite becomes significant at medium to high-grade conditions (Stesky, 1978; Bell, 1998). Due to its broad recrystallization temperature spectrum,

biotite is not a good mineral to estimate the deformation temperatures of Ourilândia do Norte granitoids (Fig. 16). Hornblende, if present, is deformed predominantly by microcracking, as well as the primary accessory minerals. These observations are consistent with amphibole deformation experiments, since at temperatures below 650-700 °C, it is deformed primarily by brittle mechanisms (Allison & LaTour, 1977; Imon et al., 2004). However, in Ourilândia amphibole-bearing granitoids, hornblende can occur with smooth undulatory extinction and subgrain formation, reinforcing the idea that these rocks started to deform at high temperatures.

## 6.2.2. Tardi- to post-magmatic transformations

Deformation of granitoid rocks involves grainsize reduction and foliation development, with recrystallization and neocrystallization associated with both processes (Vernon, 2004). In the Ourilândia do Norte area, all granitoids studied preserve various transformation microstructures related to the magmatic or subsolidus stages in which secondary mineralogy includes chlorite, muscovite, epidote, titanite and biotite (only when hornblende is present). Thus, the following microstructures occur: (i) calcium plagioclase partially transformed to sericite+epidote (saussuritization); (ii) K-feldspar to sericite (sericitization); (iii) K-feldspar replaced by vermicular intergrowth of quartz and sodic plagioclase (myrmekite); (iv) exsolution lamellae in alkali feldspar (perthite); (v) biotite partially transformed to chlorite+titanite; (vi) hornblende to biotite+quartz; (vii) hornblende to biotite+titanite+epidote, (viii) allanite to epidote; and (ix) Fe-Ti oxides to titanite. In addition, both intragranular and intergranular microfractures filled with quartz, quartz+feldspar, sericite+epidote or sericite+epidote+titanite can also occur. In this respect, transformation microstructures (vi), (viii) and (ix) can be formed in the magmatic stage from reequilibrium on the peritectic point and can be represented by general reactions (1), (2) and (3), respectively:

hornblende + liquid (melt) → biotite +SiO<sub>2</sub> (1) allanite + liquid (melt) → epidote + liquid (melt) (2) Fe-Ti oxides + liquid (melt) → titanite + liquid (melt) (3)

The transformation microstructures (i), (ii), (v) and (vii) may be formed in the presence of fluids in both tardi-magmatic and subsolidus stages (Hibbard, 1987; Best, 2003; Vernon, 2004). In addition to producing sericite and epidote, plagioclase saussuritization can also form calcite, if  $CO_2$  fugacity is sufficiently high, and zoisite (Al analog of Fe-bearing epidote) (Vernon, 2004; Best, 2003). These transformations involve reactions of higher-T, primary magmatic mineral to lower-T, secondary, more hydrated subsolidus mineral or assemblage (Best, 2003). Thus, the aforementioned transformation microstructures can be represented by the general reactions (4), (5), (6) and (7), respectively:

plagioclase + Ca + Fe → epidote + water (4) feldspars + water → sericite + Si + K (5) biotite + water → chlorite + titanite + K + Si (6) hornblende + water → chlorite + titanite + Si + Ca (7)

Vernon (2004) undercores that these reactions are cyclic, whereby the chemical components released in one local reaction are used in another, without modifying whole rock chemicals. Although myrmekitic intergrowth can form in the tardi-magmatic stage (Hibbard, 1987), it is very common in deformed granitoids, and its origin is often attributed to solid-state replacement of K-feldspar accompanying deformation (Tsurumi et al., 2003; Paterson et al., 1989; Vernon, 2004). Albite exsolution lamellae are formed below the solvus curve by alkali feldspar

reequilibrium at lower temperatures. The widespread occurrence of these transformation microstructures in all Ourilândia do Norte granitoids, as well as in those of adjacent areas, indicate that the transformation microstructures (i, ii, iii, v, and vii) were formed in the tardi-magmatic/subsolidus stage, during the cooling these granitoids until the moderate deformation temperatures (above 500 °C). This hypothesis is reinforced by the presence of sericite on feldspar transformation, once at lower temperatures would be expected neocrystallization of clay minerals, instead of sericite (Best, 2003).

The water required for these transformations can have different sources. In closed magma systems, juvenile water exsolved from the crystallizing melt reacts at subsolidus temperatures with the primary magmatic minerals in a process where the rock effectively "stews in its own juices" during autometamorphism or deuteric alteration (Best, 2003). Oliveira et al. (2009, 2010) indicate that the sanukitoid affinity Rio Maria granodiorite magmas have high H<sub>2</sub>O content, which suggests that the alteration of these rocks was controlled by juvenile fluids. In open magma systems, water may be drawn into a cooling dike from water-bearing wallrock and become a potential model to explain the fluid source in water-poor magma (e.g. Fig. 5f) (Best, 2003). As such, secondary mineral paragenesis analysis indicate that Ourilândia do Norte plutonic rocks were submitted to deuteric alteration under conditions compatible with lower amphibolite to higher greenschist facies.

#### 6.3. Ascent and emplacement mechanisms and tectonic significance

The shape and internal structure study of plutons combined with the microstructural observations and country rock structural pattern can provide valuable information about the ascent and emplacement processes of granitic magmas. Granitoids are excellent tectonic markers and when emplaced in a orogenic system may register their different stages (pre- syn- or post-collision), due to the narrow time span of the crystallization processes when compared to the total duration of the orogenesis. After complete crystallization, the granitoids show high deformation resistance, preserving in their fabrics the record of the tectonic processes that acted during their formation time (Paterson et al., 1989; Blenkinsop, 2000; Bitencourt & Nardi, 2000; Best, 2003; Moyen et al., 2003b; Vernon, 2004; Passchier & Trouw, 2005; Peternell et al., 2010; Neves, 2012; Florisbal, 2012). Paterson et al. (1989) report that a continuum likely exists between magmatic and solid-state processes operating during fabric development in orogenic granitoids. The authors divide this continuum into four types: (i) magmatic flow with less than 70% crystals and suspension-like behavior, without sufficient interference between crystals to cause plastic deformation; (ii) submagmatic flow with more than 70% crystals and plastic deformation of previously formed crystals; (iii) high-temperature solid-state flow; and (iv) moderate- to low-temperature solid-state flow. These supplemental information are coupled with field, photointerpretation and microstructural data and with the advancement of knowledge in the Ourilândia do Norte granitoid petrogenesis to suggest a tectono-magmatic model in which plutonism and regional deformation operated concurrently during the origin, ascent and emplacement of their magmas.

Field relationships indicate that the Mg-K granitoids are coeval to slightly older than Fe-K rocks, which allows to suggest a common deformation history for all the Ourilândia do Norte granitoids. In this regard, an integrated analysis of the data obtained in this research with those reported in previous works resulted in the following criteria aimed at inferring the interaction between magmatism and tectonism: (i) elongated or ellipsoidal shape of all batholiths and stocks studied; (ii) aligned pattern of these bodies, at regional-scale, with strips of EW-trending greenstone belt sequence, indicating that they were emplaced in a regional suture zone between Carajás and Rio Maria blocks; (iii) magmatic or mylonitic foliations showing subparallel direction with the main pluton trend, and a continuous arrangement with foliation in the country rocks; (iv) close relationship between these plutons and shear zones, where increasing higher strain domains toward their border zones, indicating that they are limited by large-scale shear zones; (v) microstructures

indicative of a continuum between magmatic and high-temperature solid-state processes during planar fabric development; (vi) evidence of oblique lineation and kinematic indicators which suggest a regime of high temperature sinistral transpression (Araújo & Maia, 1991; Pinheiro & Holdsworth, 1997); (vii) all plutons studied went originated and emplaced within a narrow time span at 2875-2884 Ma (single-zircon Pb-evaporation ages of Mg-K granodiorite; Santos et al., 2013a); (viii) rocks of the EBGd group occur as lenses and show diffuse internal contacts with granites of the BMzG group, indicating that these batholiths were constructed by multiple magma pulses; (ix) petrogenetic evidence indicates that the origin of both Mg-K and Fe-K granitoids require syn-plutonic interaction of mantle- and crust-derived materials in a post-subduction setting; (x) U-Pb SHRIMP zircon dating of the enderbitic gneiss basement from Canaã dos Carajás area yelded ages of 3.0 Ga (cores) and 2.86 Ga (rims), in which the latter is attributed to granulite metamofism and can be considered as the regional metamorphism peak of the Carajás province (Pidgeon et al., 2000); and (xi) trace element composition in granitoids are a function of their sources and melt crystallization history, where the tectonic environment is not a major determinant. Regarding the last criterion, it is important to note that in a tectonic setting discriminantion diagrams (e.g. Harris et al., 1986; Fig. 17), the Fe-K and Mg-K granitoids show ambiguous trace element signatures, with their samples concentrated in the boundary between the pre-collision and late- or post-collision fields. The coeval evidence and the different petrogenetic histories of these granitoids would be inconsistent with their generation in a pre-collision (subduction) setting.



Figure 17 - Discriminant diagram of tectonic setting (Harris et al., 1989) showing ambiguous affinities for the Mg-K and Fe-K granitoids, with their samples concentrated in the boundary between the pre-collision and late- or post-collision fields.

The low viscosity contrast and mixing and/or mingling evidence indicate that Ourilândia Mesoarchean granitoids were emplaced near-synchronously at 2870 Ma, where these plutons might be at least 50 Ma younger than the older TTG basement from the Carajás province (~2.98-2.92 Ga). The previously described criteria indicate that the ascent and emplacement mechanisms of the magmas that gave rise to Ourilândia do Norte granitoids were controlled by tectonic processes and conditioned by trans-lithospheric shear zones in a sinistral transpressive tectonic regime. In this respect, the presence of pre-existing deep-reaching discontinuities combined with the occurrence of a voluminous crust-derived leucogranitic magmatism indicate that shear heating could contribute as heat source and crustal anatexis. Hutton and Reavy (1992) and Ingran and Hutton (1994) proposed that transpression in transcurrent or inverse shear zones can produce protuberances at the crust base.

These protuberances could be partially melted either because the crust is carried to deeper levels or because mantle-derived magmas would tend to remove these irregularities before causing large-scale crustal anatexis. Thus, such mechanism could collaborate as heat source, as well as for canalization and interaction of mantle- and crust-derived magmas. However, magma generation exclusively by tectonic control of local scale as shear heating is not sufficient to explain the heat source required to originate all granitoids studied, mainly those derived from the metassomatized mantle. It would also be inconsistent with the wide occurrence of analogous granitoids in the Carajás province.

Thus, in order to explain the formation of the voluminous and diversified Mesoarquean syntectonic Mg-K and Fe-K magmatism within a post-subduction setting is necessary to involve tectonic processes of regional amplitude scale capable of triggering a lithospheric reworking over a short interval of geologic time. Several models has been proposed to explain how a strong, shortlived external heat source could be responsible by granitoid formation in the final stages of the late-Archean geotectonic cycle (e.g. Moyen et al., 2003b; Heilimo et al., 2010; Almeida et al., 2011, 2013; Laurent et al., 2014a; 2014b): (i) breakoff of the subducted slab which causes an inflow of mantle asthenosphere beneath the orogenic prism, resulting in a thermal anomaly and partial melting of the metassomatized lithospheric mantle; (ii) crustal thickening developed by amalgamation of arcs or protocontinents; (iii) retreat ("rollback") of the lithospheric mantle in the subducted slab; or (iv) delamination of the subcontinental lithospheric mantle beneath the upper plate. Almeida et al. (2011) indicate that in the RMD a thermal event related to slab breakoff and asthenosphere mantle upwelling induced the melting of the metasomatized mantle, generating sanukitoid magmas. This model seems to be coherent for the Ourilândia granitoids; however, it is worth highlighting that crustal thickening and deep-reaching shear zones filled by mantle-derived magmas may have contributed as heat source for crust-derived magma formation.

We propose that all the Mesoarchean granitoids from Ourilândia area were formed in the second stage of a two-stage tectono-magmatic model schematically illustrated in the flowchart of the Fig. 18. It summarizes the main mechanisms and processes involved in the origin and diversification of these rocks. Thus, according to this information, it can be inferred that, although Ourilândia granitoids are not cogenetic, they are syn- to tardi-tectonic and were emplaced in a collisional setting during lithospheric reworking (second stage; Fig. 18), where trans-lithospheric active shear zones acted as important conduits for magma transport and emplacement and were responsible for mantle decompression, reworking of pre-existing crustal sources and interaction between non-cogenetic magmas.

In orogenic setting, transport by tabular conduits is a important granitic magma ascent mechanism (D'Lemos et al., 1992; Brown and Solar, 1998; Weinberg, 1999; Rosenberg, 2004; Neves 2012). The previously listed criteria indicate that the ascent mechanisms of the magmas that gave rise to Ourilândia granitoids involved magma migration by penetrative flow during active deformation, through a pre-existing channel network, characterizing the crust segment studied as a multiple injection complex of mantle- and crust-derived magmas. Therefore, the accommodation of various mantle- and crust-derived magma pulses in a narrow time span built the studied batholiths. The space creation for the construction these batholiths could involve deformation and lateral translation of the country rocks, as a result of the injection of new pulses in the emplacement level (Cruden, 1998, 2006; Neves, 2012). Finally, according to aferementioned criteria, we can infer that the deformation history of the plutons studied transcends their magmatic history. Thus, hightemperature solid-state deformation continued as part of the same deformation event (D1; Fig.18) demonstrated by submagmatic microstructures down to moderate temperatures, above ~500 °C. As a result, the end of this ductile deformation at relatively high temperatures allowed the occurrence of static recrystallization observed in both the quartz and feldspars of all the granitoids studied. Superimposition of a second deformation event (D2) occasioned by reactivated shear zones due to the first inversion of the Carajas Basin (2.68-2.63 Ga; Tavares, 2015) and/or emplacement of



syntectonic Neoarchean granitoids (2.75 Ga; Barros et al., 2001; Feio et al., 2013) can be inferred for the Ourilândia do Norte area (Santos and Oliveira, 2016).

**Figure 18** - Flowchart summarizing a two-stage tectono-magmatic model for the origin of the Ourilândia do Norte Mesoarchean Mg-K and Fe-K granitoids. First stage (2.98-2.92 Ga): low angle continuous subduction during basin closure, causing emplacement of sodium magmatism and mantle wedge metassomatism by slab melt/fluid. Second stage (~2.87 Ga): collision environment responsible for the origin of all granitoids studied, during lithospheric reworking induced by slab break off and crustal thickening. The former process causes an inflow of mantle asthenosphere beneath the orogenic prism, resulting a thermal anomaly and triggering the partial fusion of the previously enriched lithospheric mantle. Crustal melting, in turn, is favored by both mantle-derived magma underplating and crustal thickening. The magma ascent and emplacement process were controlled by deep-reaching and possibly trans-lithospheric active shear zones, which facilitated the interaction between mantle- and crustal-derived melts.

# 7. Conclusions

Mesoarchean Ourilândia do Norte plutons consist of granodiorites and monzogranites, with subordinate trondhjemites and (quartz) diorites (Santos & Oliveira 2016). New geological mapping data, obtained in this study, allowed to individualize three new groups of Mesoarchean granitoids: (i) biotite monzogranites (BMzG); (ii) epitoto-biotite granodiorites (EBGd); and (iii) porphyritic granitoids (pGrt). The petrographic study showed that the granitoids of these groups are subdivided into two facies. The BMzG can be differentiated in equigranular (eBMzG) and heterogranular (hBMzG) facies, while the EBGd group is distinguished in heterogranular epitope-biotite granodiorite (hEBGd) and sparsely porphyritic titanite-epitoto-biotite granodiorite (spTEBGd). These granitoids constitute two batholiths dominated by BMzG rocks, with less occurrence of EBGd lenses. The pGrt is individualized in porphyritic biotite-hornblende granodiorite (pBHGd) and porphyritic epidote-biotite trondhjemite (pEBTd), and occurs as smaller bodies, spatially associated with rocks of sanukitoid and BADR affinities, respectively. The mingling relationships established the contemporaneity between all the Ourilândia do Norte granitoids, including those of sanukitoid and BADR signatures.

These plutons were affected by heterogeneous deformation which are delimitaded by large-scale shear zones. The meso- and microstructural data indicate that the rocks studied are synto late-tectonic and were affected by high temperature deformation (> 500 °C) and low differential stress, in a sinistral transpression regime, predominantly controlled by pure shear, indicating that the magmatic and solid-state fabrics are related to the a same deformational event. Geochemically, except the EBTdp facies that has Mg-Na affinity, the Ourilândia do Norte granitoids can be grouped into two suites: (i) Fe-K suite that integrates the BMzG group and the spTEBGd facies; and (ii) Mg-K suite composed of granitoids (including hEBGd and pBHGd) and (quartz) diorites of sanukitoid and BADR affinities, respectively. Both groups are alkali-calcic to calc-alkaline and they differ on the basis of their FeO<sup>t</sup>/MgO ratios, Al<sub>2</sub>O<sub>3</sub>, K<sub>2</sub>O and some trace elements (Sr, Ba, Rb). The origin of the eBMzG is attributed anatexis a 2.92-2.98 Ga old TTG crust. The hEBGd has sanukitoid affinity and could have been produced by intense fractionation of hornblende  $\pm$  clinopyroxene. The granitoids of spTEBGd, hBMzG, pBHGd and pEBTd facies show evidence of mingling and/or mixing between contrasting magmas, indicating that their origins require interaction between metassomatized mantle- and crustal derived magmas. Geochemical data and modeling were used to identify the different processes related to the origin and formation of these granitoids: (i) spTEBGd is enriched in HFSE (Ti, Zr and Y) and LILE (Ba and Sr) and was admitted as product of the partial melting of an enriched mantle source, with participation of crustal liquids, probably in a postsubduction setting; (ii) hBMzG is generated by the interaction between magmas of spTEBGd (60%) and eBMzG (40%) composition; (iii) pBHGd is formed by the hybridization between sanukitoid (80%) and leucomonzogranitic (20%) magmas; and (iv) pEBTd is formed by an incomplete mixture between TTG signature trondhjemitic liquid (70-80%) and magma of BARD affinity (20-30%). Therefore, we can conclude that in ~2.87 Ga a significant crustal growth and reworking occurred in the final stages of stabilization of the first geotectonic cycle of the Carajás province. This leads us to suggest that all the Ourilândia do Norte Mesoarchean granitoids were emplacement during the second stage of a tectono-magmatic two-stage (subduction-collision) model: (i) first stage (2.98-2.92 Ga) - low-angle subduction with emplacement of slab-melt and consequent mantle wedge metasomatism; (ii) second stage (~ 2.87 Ga) - collisional environment where large-scale shear zones conditioned the rise and emplacement of magmas, acting as deep-reaching discontinuities and important conduit for transport and interaction between mantle- and crustalderived magmas.

### Acknowledgements

The authors thanks the members of the Research Group on Granitoids Petrology (RGGP) by support in the various stages of this work, especially Fernando Fernandes, Pablo Leite, Bhrenno Marangoanha, Eleison Garbriel, Jean Machado, Diwhemerson Sousa and Marcela Santos; and to the Post-Graduate Program in Geology and Geochemical (PPGG) of the Institute of Geosciences (IG) of the Federal University of Pará (UFPA) by ceded infrastructure. This research received financial support from CNPq (D. C. Oliveira - Grants – Proc. 485806/2013-4 and 311610/2012-9; M. N. S. Santos - scholarship - Proc. 133917/2013-4); Vale/FAPESPA (01/2010) and National Institute of Science aand Technology-Geosciences in Amazon (INCT-GEOCIAM – CNPq/MCT/FAPESPA – Process n<sup>o</sup> 573733/2008-2).

### References

- Allison, I., LaTour, T.E., 1977. Brittle deformation of hornblende in a mylonite: a direct geometrical analogue of ductile deformation by translation gliding. Canadian Journal of Earth Sciences, 14, 1953-1958.
- Almeida, F.F.M., Hasui, Y., Brito Neves, B.B., Fuck, R.A., 1981. Brazilian Structural Provinces: an introduction. Earth Science Review, 17, 1-29.
- Almeida, J.A.C., Dall'Agnol, R., Leite, A.A.S., 2013. Geochemistry and zircon geochronology of the Archean granite suites of the Rio Maria granite-greenstone terrane, Carajas Province, Brazil. Journal of South American Earth Sciences, 42, 103-126.
- Almeida, J.A.C., Dall'Agnol, R., Oliveira, M.A., Macambira, M.J.B., Pimentel, M.M., Rämö, O.T., Guimarães, F.V., Leite, A.A.S., 2011. Zircon geochronology, geochemistry and origin of the TTG suites of the Rio Maria granite-greenstone terrane: implications for the growth of the Archean crust of the Carajás Province, Brazil. Precambriam Research, 187, 201-221.
- Althoff, F.J., Barbey, P., Boullier, A. M., 2000. 2.8-3.0 Ga plutonism and deformation in the SE Amazonian craton: the Archean granitoids of Marajoara (Carajás Mineral province, Brazil). Precambrian Research, 104, 187-206.
- Araújo, O.J.B., Maia, R.G.N., 1991. Serra dos Carajás, Folha SB-22-Z-A. CPRM, Rio de Janeiro, 136p.(final report).
- Barbosa, A.A., Lafon, J.M., Neves, A.P., Vale, A.G., 1995. Geocronologia Rb-Sr e Pb-Pb do Granito Redenção, SE do Pará: implicações para a evolução do magmatismo proterozóico da região de Redenção. Boletim do Museu Paraense Emílio Goeldi. Série Ciências da Terra, 7, 147-164.
- Barker, F., 1979. Trondhjemites: definition, environment and hypotheses of origin. In: Barker, F. (Ed.) Trondhjemites, dacites and related rocks. Amsterdam, Elsevier, p.1-12.
- Barker, F., Arth, J.G., 1976. Generation of trondhjemite-tonalite liquids and Archean bimodal trondhjemite-basalt suites. Geology, 4, 596-600.
- Barros C.E.M., Sardinha A.S., Barbosa J.P.O., Krimski R., Macambira M.J. B. 2001. Pb-Pb and zircon ages of Archean sytectonic granites of the Carajás metallogenic province, Northern Brazil. In: Serviço Nacional de Geologia e Mineral, 3º Simpósio Sul-Americano de Geologia Isotópica, Resumos Expandidos, Pucon, Chile, 1 CD-ROM.
- Bell, T.H., 1998. Recrystallization of biotite by subgrain rotation. In: Snoke A, Tullis J, Todd VR (eds) Fault related rocks a photographic atlas. Princeton University Press, New Jersey, pp 272-273.
- Belousova, E.A., Kostitsyn, Y.A., Griffin, W.L., Begg, G.C., O'Reilly, S.Y., Pearson, N.J. 2010. The growth of the continental crust: constraints from zircon Hf-isotope data. Lithos. 119 (3-4), 457-466.
- Best, M.G., 2003. Igneous and metamorphic petrology. Freeman, New York, 758 pp.

- Bitencourt, M.F., Nardi, L.V.S., 2000. Tectonic setting and sources of magmatism related to the Southern Brazilian shear Belt. Revista Brasileira de Geociências, 30, 186-189.
- Blenkinsop, T.G., 2000. Defomation Microstructures and Mechanisms in Minerals and Rocks. Kluwer Academic Publishers, Dordrecht, 150p.
- Bouchez, J.L., Delas, C., Gleizes, G., Nédélec, A., Cuney, M., 1992. Submagmatic microfractures in granites. Geology, 20, 35-38.
- Bowden, P., Batchelor, R.A., Chapell, B.W., Didier, J., Lameyre, J., 1984. Petrological, geochemical and source criteria for the classification of granitic rocks: a discussion. Physics, Earth Planet Sciences, 35, 1-11.
- Brown, M., Solar, G.S., 1998. Shear-zone system and melts: feedblack relations and self-organization in orogenic belts. Journal of Structural Geology, 20, 1365-1393.
- Champion, D.C., Smithies, R.H., 2001. Archaean granites of the Yilgarn and Pilbara cratons, Western Australia. In: Cassidy K.F., Dunphy J.M., Van Kranendonk M.J. (Eds.), Proceedings of the Fourth International Archaean Symposium. AGSO-Geoscience Australia, Perth, Australia, 37, 134-136.
- Champion, D.C., Smithies, R.H., 2003. Archaean granites. In: Blevin P.L., Chappell B.W., Jones M. (Eds.), Magmas to Mineralisation: The Ishihara Symposium, AGSO-Geoscience Australia, 14, 19-24.
- Condie, K.C., 1981. Archaean greenstone belts. In: Windley, B.F. (Ed.), Developments in Precambrian Geology, 3, 434 pp.
- Condie, K.C., O'Neill, C., 2010. The Archean-Proterozoic boundary: 500 my of tectonic transition in Earth history. American Journal of Science. 310, 775-790.
- Cruden, A.R., 1998. On the emplacement of tabular granites. Journal of the Geological Society. Lodon, 155, 835-862.
- Cruden, A.R., 2006. Emplacement and growth of plutons: implications for rates of melting and mass transfer in continental crust. In: Brown, M., Rushmer, T. (Eds.) Evolution and Differentiation of the Continental Crust. Cambridge University Press, 455-519.
- Cunha, I.R.V., Dall'Agnol, R., Feio, G.R.L., 2016. Mineral chemistry and magnetic petrology of the Archean Planalto Suite, Carajás Province Amazonian Craton: implications for the evolution of ferroan Archean granites. Journal of South American Earth Sciences, 67, 100-121.
- D'Lemos, R.S., Bronw, M., Strachan, R.A.,1992. Granite magma generation and emplacement within a transpressional orogen. Journal of the Geological Society, London, 149, 487-490.
- Dall'Agnol, R., Oliveira, D.C., Guimarães, F.V., Gabriel, E.O., Feio, G.R.L., Lamarão, C.N., Althoff, F.J., Santos, P.A., Teixeira, M.F.B., Silva, A.C., Rodrigues, D.S., Santos, M.J.P., Silva, C.R.P., Santos, R.D., Santos, P.J.L., 2013. Geologia do Subdomínio de Transição do Domínio Carajás – Implicações para a Evolução Arqueana da Província Carajás – Pará. Anais do 13° Simpósio de Geologia da Amazônia, Belém.
- Dall'Agnol, R., Cunha, I.R.V., Guimarães, F.V., Oliveira, D.C., Teixeira, M.F.B., Feio, G.R.L., Lamarão, C.N., 2016. Mineralogy, geochemistry, and petrology of Neoarchean ferroan to magnesian granites of Carajás Province, Amazonian Craton: The origin of hydrated granites associated with charnockites. Lithos, 277, 3-32. http://dx.doi.org/10.1016/j.lithos.2016.09.032
- Debon, F., Le Fort, P., 1983. A chemical-mineralogical classification of common plutonic rocks and associations. Transactions of the Royal Society of Edinburgh, Earth Sciences, 73, 135-149.
- Dhuime, B., Hawkesworth, C.J., Cawood, P.A., Storey, C.D., 2011. A change in the geodynamics of continental growth 3 billion years ago. Science, 335, 1334-1336.
- Evensen, N.M., Hamilton, P.T., O'nions, R.K., 1978. Rare earth abondances in chondritic meteorites. Geochimica ET Cosmochimica Acta, 39, 55-64.
- Feio, G.R.L., Dall'Agnol, R., 2012. Geochemistry and petrogenesis of the Mesoarchean granites from the Canaã dos Carajás area, Carajás Province, Brazil: Implications for the origin of Archean granites. Lithos, 154, 33-52.

- Feio, G.R.L., Dall'Agnol, R., Dantas, E.L., Macambira, M.J.B., Gomes, A.C.B., Sardinha, A.S., Oliveira, D.C., Santos, R.D., Santos P.A., 2012. Geochemistry, geochronology, and origin of the Neoarchean Planalto Granite suite, Carajás, Amazonian craton: A-type or hydrated charnockitic granites? Lithos, 151, 57-73.
- Feio, G.R.L., Dall'Agnol, R., Dantas, E.L., Macambira, M.J.B., Santos, J.O.S., Althoff, F.J., Soares, J.E.B., 2013. Archean granitoid magmatism in the Canaã dos Carajás area: Implications for crustal evolution of the Carajás province, Amazonian craton, Brazil. Precambrian Research, 227, 157-185.
- Florisbal, L.M., 2012. Petrogênese de granitos sintectônicos em ambiente pós-colisional do escudo catarinense: estudo integrado de geologia estrutural, geoquímica elemental e isotópica Sr-Nd-Pb e geocronologia U-Pb em zircão. Tese de doutorado, Instituto de Geociências, Universidade de São Paulo, 218 p.
- Frost B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42, 2033-2048.
- Frost, C.D., Frost, B.R., Chamberlain, K.R., Hulsebosch, T.P., 1998. The Late Archean history of the Wyoming province as recorded by granitic magmatism in the Wind River Range, Wyoming. Precambrian Research, 89, 145-173.
- Gabriel, E.O., Oliveira, D.C., 2014. Geologia, petrografia e geoquímica dos granitoides arqueanos de alto magnésio da região de Água Azul do Norte, porção sul do Domínio Carajás, Pará. Boletim do Museu Paraense Emílio Goeldi, Ciências Naturais, 9(3):533-564.
- Gapais, D., 1989. Shear structures within deformed granites: mechanical and thermal indications. Geology, 17, 1144-1147.
- Gleason, G.C., Tullis J., 1995. A flow law for dislocation creep of quartz aggregates determined with the molten salt cell. Tectonophysics, 247, 1-23.
- Guitreau, M., Blichert-Toft, J., Martin, H., Mojzsis, S., Albarède, F., 2012. Hafnium isotope evidence from Archean granitic rocks for deep-mantle origin of continental crust. Earth and Planetary Science Letters, 337, 211–223.
- Harris, N.B.W., Pearce, A.J., Tindle, A.G., 1986. Geochemical characteristics of collision-zone magmatism. In: Coward, M.P., Ries, A.C. (Eds.), Collision Tectonics, Geological Society of America Special, 19, 115-158.
- Heilimo, E., Halla, J., Adersen, T., 2013. Neoarchean crustal recycling and mantle metasomatism: Hf-Nd-Pb-O isotope evidence from sanukitoids of the Fennoscandian shield. Precambrian Research, 228, 250-266.
- Heilimo, E., Halla, J., Hölttä, P., 2010. Discrimination and origin of the sanukitoid series: geochemical constraints from the Neoarchean western Karelian Province (Finland). Lithos, 115, 27-39.
- Hibbard, M.J., 1987. Deformation of incompletely crystallised magma systems: granitic gneisses and their tectonic implications. J. Geol., 951, 543-561.
- Hirth, G., Tullis, J., 1992. Dislocation creep regimes in quartz aggregates. J. Struct. Geol., 14, 145-159.
- Hutton, D.H.W., Reavy, R.J., 1992. Strick-slip tectonics and granite petrogenesis. Tectonics, 11 (5), 960-967.
- Imon, R., Okudaira, T., Kanagawa, K., 2004. Development of shape- and lattice-preferred orientations of amphibole grains during initial cataclastic deformation and subsequent deformation by dissolution, precipitation creep in amphibolites from the Ryoke metamorphic belt, SW Japan. J Struct Geol., 26, 793-805.
- Ingran, G.M., Hutton, D.H.W., 1994. The Great Tonalite Sill: emplacement into a contractional shear zone and implications for late Cretaceous to early Eocene tectonics in southeastern Alaska and British Columbia. Geological Society of America Bulletin, 106, 715-728.

- Jayananda, M., Martin, H., Peucat, J.-J., Mahabaleswar, B., 1995. Late Archaean crust–mantle interactions: geochemistry of LREE-enriched mantle derived magmas. Example of the Closepet batholith, Southern India. Contributions to Mineralogy and Petrology,199, 314-329.
- Kohlstedt, D.L., Evans, B., Mackwell, S.J., 1995. Strength of the lithosphere: constraints imposed by laboratory experiments. J. Geophys. Res., 100, 17587-17602.
- Kramers, J.D., Tolstikhin, I.N., 1997. Two major terrestrial Pb isotope paradoxes, forward transport modeling, core formation and the history of the continental crust. Chemical Geology, 139, 75-110.
- Kronenberg, A.K., 1994. Hydrogen speciation and chemical weakening of quartz. In: Heaney P.J., Prewitt C.T., Gibbs G.V. (eds) Silica: physical behavior, geochemistry, and materials applications. Mineral Soc. Am. Rev. Mineral, 29, 123-176.
- Kronenberg, A.K., Kirby, S.H., Pikston, J.C., 1990. Basal slip and mechanical anisotropy of biotite. J. Geophys. Res., 95, 19257-19278.
- Kruse, R., Stünitz, H., Kunze, K., 2001. Dynamic recrystallisation processes in plagioclase porphyroclasts. J. Struct. Geol., 23, 1781-1802.
- Lameyre, J., Bowden, P., 1982. Plutonic rock type series: discrimination of various granitoid series and related rocks. Journal of Volcanology and Geothermal Research, 14, 169-186.
- Laurent, O., Martin, H., Moyen, J.F., Doucelance, R., 2014a. The diversity and evolution of late-Archean granitoids: evidence for the onset of "modern-style" plate tectonics between 3.0 and 2.5 Ga. Lithos, 205, 208-235.
- Laurent, O., Rapopo, M., Stevens, G., Moyen, J.F., Martin, H., Doucelance, R., Bosq, C., 2014b. Contrasting petrogenesis of Mg-K and Fe-K granitoids and implications for post-collisional magmatism: case study from the Late-Archean Matok pluton (Pietersburg block, South Africa). Lithos, 196-197, 131-149.
- Le Maitre, R.W., 2002. A classification of igneous rocks and glossary of terms. 2nd Edition, London, 193p.
- Leite, A.A.S., Dall'Agnol, R., Macambira, M.J.B., Althoff, F.J., 2004. Geologia e geocronologia dos granitóides arqueanos da região de Xinguara (PA) e suas implicações na evolução do terreno granito-greenstone de Rio Maria. Revista Brasileira de Geociências, 34, 447-458.
- Leite-Santos, P.J. and Oliveira, D.C., 2014. Trondhjemitos da área de Nova Canadá: novas ocorrências de associações magmáticas tipo TTG no Domínio Carajás. Boletim do Museu Paraense Emílio Goeldi, Ciências Naturais, Belém, 9(3), 635-659.
- Leite-Santos, P.J., Oliveira, D.C., 2016. Geologia, petrografia e geoquímica das associações leucograníticas arqueanas da área de Nova Canadá Província Carajás. Boletim IG-USP Série Científica. 16 (2), 37-66.
- Luan, F.C., Paterson, M.S., 1992. Preparation and deformation of synthetic aggregates of quartz. J. Geophys. Res., 97, 301-320.
- Martin, H., 1994. The Archean grey gneisses and the gneisses of continental crust. In: Condie K.C. (Ed.), Developments in Precambrian Geology. Archean Crustal Evolution. Elsevier, Amsterdam, 11, 205-259.
- Martin, H., Smithies, R., Rapp, R.P., Moyen, J.F., Champion, D., 2005. An overview of adakite, TTG, and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79(1–2), 1-24.
- Moreto, C.P.N., Monteiro, L.V.S., Xavier, R.P., Amaral, W.S., Santos, T.J.S., Juliani, C., Souza, Filho, C.R., 2011. Mesoarchean (3.0 and 2.86 Ga) host rocks of the iron oxide-Cu-Au Bacaba deposit, Carajás Mineral Province: U-Pb geochronology and metallogenetic implications. Mineralium Deposita 46, 789–811.
- Moyen J.F., Nédélec A., Martin H., Jayananda M. 2003b. Syntectonic granite emplacement at different structural levels: the Closepet granite, South India. Journal of Structural Geology 25, 611-631.
- Moyen, J.F., Martin, H., Jayananda, M., Auvray, B., 2003a. Late Archaean granites: a typology based on the Dharwar Craton (India). Precambrian Research, 127, 103-123.
- Neves, S.P., 2012. Granitos orogênicos: da geração dos magmas à intrusão e deformação. Synergia, Rio de Janeiro, 147 p.
- Nockolds, S.R., Aleen, R., 1953. The geochemistry of some igneous rock series, Part I. Geochemical Cosmochemical Acta, 4, 105-142.
- O'Connor, J.T., 1965. A classification for quartz-rich igneous rocks based on feldspar ratios. US Geological Survey Professional Papers, 525B,79-84.
- Oliveira, M.A., Dall'Agnol, R., Almeida, J.A.C., 2011. Petrology of the Mesoarchean Rio Maria suite: implications for the genesis of sanukitoid rocks. J. Petrology, 51(10), 2121-2148.
- Oliveira, M.A., Dall'Agnol, R., Althoff, F.J., Leite, A.A.S., 2009. Mesoarchean sanukitoid rocks of the Rio Maria Granite-Greenstone Terrane, Amazonian craton, Brazil. Journal of South American Earth Sciences, 27, 146-160.
- Oliveira, M.A., Dall'Agnol, R., Scaillet, B., 2010. Petrological constraints on crystallization conditions of Mesoarchean sanukitoid rocks, southeastern Amazonian Craton, Brazil. Journal of Petrology, 51, 2121-2148.
- Paiva, Jr. A.L., Lamarão, C.N., Lima, P.H.A., 2011. Geologia, Petrografia e Geoquímica do Batólito Seringa, Província Carajás, SSE do Pará. Revista Brasileira de Geociências, 41(2), 185-202.
- Passchier, C.W., Trouw, R.A.J., 2005. Microtectonics, 2nd ed., Germany, Springer-Verlag, 366 p.
- Paterson, S.R., Vernon, R.H., Tobisch, O.T., 1989. A review of criteria for the identification of magmatic and tectonic foliations in granitoids. J. Struct. Geol., 11, 349-364.
- Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamoru area, Northern Turkey. Contributions to Mineralogy and Petrology, 58, 63-81.
- Peternell, M., Bitencourt, M.F., Kruhl, J.H., Stäb, C., 2010. Macro and microstructures as indicators of the development of syntectonic granitoids and host rocks in the Camboriú region, Santa Catarina, Brazil. Journal of South American Earth Sciences, 29, 738-750.
- Pidgeon, R.T., Macambira, M.J.B., Lafon, J.M., 2000. Th-U-Pb isotopic systems and internal structures of complex zircons from the Pium complex, Carajás province, Brazil: evidence for the ages of the granulite facies metamorphism and the protolith of the enderbite. Chemical Geology, 166, 159-171.
- Pinheiro, R.V.L., Holdsworth, R.E., 1997. Reactivation of Archaean strike-slip fault systems, Amazon region, Brazil. Journal of the Geological Society, 154, 99-103.
- Post, A.D., Tullis, J., Yund, R.A., 1996. Effects of chemical environment on dislocation creep of quartzite. J. Geophys. Res. 101, 22143-22155.
- Rodrigues, D.S., Oliveira, D.C., Macambira, M.J.B., 2014. Geologia, geoquímica e geocronologia do Granito Mesoarqueano Boa Sorte, município de Água Azul do Norte, Pará Província Carajás. Boletim do Museu Paraense Emílio Goeldi, Ciências Naturais, 9(3), 597-633.
- Rollinson, H. 1993. Using geochemical data: evaluation, presentation, interpretation, Zimbabwe, 344p.
- Ronaib, C.P.S., Oliveira, D.C., 2013. Geologia, petrografia e geoquímica das associações TTG e leucogranodioritos do extremo norte do Domínio Rio Maria, Província Carajás. Boletim do Museu Paraense Emílio Goeldi, Ciências Naturais, 8 (3): 383-415.
- Rosenberg, C.L., 2004. Sher zone and magma ascent: a model based on a review of the Tertiary magmatism in the Alps. Tectonics, 23(3).
- Santos, J.O.S., 2003. Geotectônica do Escudo das Guianas e Brasil-Central. In: Bizzi, L. A. et al. (Ed.). Geologia, tectônica e recursos minerais do Brasil: texto, mapas e SIG. Brasília. CPRM-Serviço Geológico do Brasil, 169-226p.
- Santos, M.J.P., Lamarão, C.N., Lima, P.H.A., Galarza, M.A., Mesquita, J.C.L., 2013a. Granitoides arqueanos da região de Água Azul do Norte, Província Carajás, sudeste do estado do Pará:

petrografia, geoquímica e geocronologia. Boletim do Museu Paraense Emílio Goeldi. Ciências Naturais, 8(3), 325-354.

- Santos, M.N.S., Oliveira, D.C. 2016. Rio Maria granodiorite and associated rocks of Ourilândia do Norte - Carajás province: Petrography, geochemistry and implications for sanukitoid petrogenesis. Journal of South American Earth Sciences, 72, 279-301
- Santos, M.S., 2017. Granitoides TTG de Água Azul do Norte. MS thesis. Post-Graduate Program in Geology and Geochemical of the Institute of Geosciences of the Federal University of Pará (UFPA), Brazil, 64p.
- Santos, P.A., Teixeira, M.F.B., Dall'Agnoll, R., Guimarães, A.V., 2013b. Geologia, petrografia e geoquímica da associação Tonalito-Trondhjemito-Granodiorito (TTG) do extremo leste do Subdomínio de Transição, Província Carajás, Pará. Boletim do Museu Paraense Emílio Goeldi, Ciências Naturais, 8(3), 257-290.
- Santos, R.D., Galarza, M.A., Oliveira, D.C., 2013c. Geologia, geoquímica e geocronologia do Diopsídio-Norito Pium, Província Carajás. Boletim do Museu Paraense Emílio Goeldi, Ciências Naturais, 8(3), 355-382.
- Shand, S.J., 1943. The Eruptive Rocks, 2nd edn. (New York: John Wiley), 444p.
- Silva, A.C., Dall'Agnol, R., Guimarães, F.V., Oliveira, D.C., 2014. Geologia, petrografia e geoquímica de Associações Tonalíticas e Trondhjemíticas Arqueanas de Vila Jussara, Província Mineral de Carajás, Pará. Boletim do Museu Paraense Emílio Goeldi, Ciências Naturais, 9(1), 13-46.
- Souza, S.Z., Dall'Agnol, R., Althoff, F.J., Leite, A.A.S., Barros, C.E.M., 1996. Carajás mineral province: geological, geochronological and tectonic constrasts on the Archean evolution of the Rio Maria granite-greenstone Terrain and the Carajás block. Extended abstracts. In: Simp. Arch. Terr. South Amer. Plataform, Brasîlia. SBG, Brasília, 31-32p.
- Souza, Z.S., Potrel, A., Lafon, J.M., Althoff, F.J., Pimentel, M.M., Dall'Agnol, R., Oliveira, C.G., 2001. Nd, Pb and Sr isotopes in the Identidade Belt, an Archean greenstone belt of Rio Maria region (Carajás Province, Brazil): implications for the geodynamic evolution of the Amazonian craton. Precambrian Research, 109, 293-315.
- Stesky, R.M., 1978. Mechanisms of high temperature frictional sliding in Westerly granite. Can. J. Earth. Sci., 15, 361-375.
- Stipp, M., Stünitz, H., Heilbronner, R., Schmid, S.M., 2002. The eastern Tonale fault zone: a "natural laboratory" for crystal plastic deformation of quartz over a temperature range from 250 to 700 °C. J. Struct. Geol., 24, 1861-1884.
- Sylvester, P.J., 1994. Archean granite plutons. In: CONDIE, K. C. (ed.). Archean crustal evolution. Developments in precambrian geology 11. Amsterdam, Elsevier. p. 261-314.
- Tassinari, C.C.G., Macambira, M.J.B., 2004. Evolução tectônica do Cráton Amazônico. In: Mantesso Neto, V., Bartorelli, A., Carneiro, C.D.R., Brito Neves, B.B. de (org). Geologia do continente Sul Americano. Evolução da obra de F.F.M. de Almeida. São Paulo BECA, 471-486p.
- Tavares F.M., 2015. Evolução geotectônica do nordeste da Província Carajás. Tese. Universidade Federal do Rio de Janeiro, Rio de Janeiro, 115p.
- Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Backwell Scientific, Oxford. 321p.
- Taylor, S.R., McLennan, S.M., 1995. The geochemical evolution of the continental crust. Reviews of Geophysics. 33 (2), 241–265.
- Teixeira, M.F.B., Dall'Agnol, R., Silva, A.C., Santos, P.A., 2013. Geologia, petrografia e geoquímica do Leucogranodiorito Pantanal e dos leucogranitos arqueanos da área a norte de Sapucaia, Província Carajás, Pará: implicações petrogenéticas. Boletim do Museu Paraense Emílio Goeldi, Ciências Naturais, 8 (3), 291-323.

- Tsurumi, J., Hosonuma, H., Kanagawa, K., 2003. Strain localization due to a positive feedback of deformation and myrmekite-forming reaction in granite and aplite mylonites along the Hatagawa Shear Zone of NE Japan. J. Struct. Geol., 25, 557-574.
- Tullis, J., 1983. Deformation of feldspars. In: Ribbe P.H. (ed) Feldspar mineralogy. Mineral Soc. Am. Rev. Mineral, 2, 297-323.
- Tullis, J., Yund, R.A., 1985. Dynamic recrystallisation of feldspar: a mechanism for ductile shear zone formation. Geology, 13, 238-241.
- Tullis, J., Yund, R.A., 1987. Transition from cataclastic flow to dislocation creep of feldspar: mechanisms and microstructures. Geology, 15, 606-609.
- Tullis, J., Yund, R.A., 1991. Diffusion creep in feldspar aggregates: experimental evidence. J. Struct. Geol., 13, 987-1000.
- Vasquez, L.V., Rosa-Costa, L.R., Silva, C.G., Ricci, P.F., Barbosa, J.O., Klein, E.L., Lopes, E.S., Macambira, E.B., Chaves, C.L., Carvalho, J.M., Oliveira, J.G., Anjos, G.C., Silva, H.R., 2008. Geologia e Recursos Minerais do Estado do Pará: Sistema de Informações Geográficas SIG: texto explicativo dos mapas Geológico e Tectônico e de Recursos Minerais do Estado do Pará. CPRM. Belém. 329 p.
- Vernon, R.H., 2004. A practical guide to rock microstructures. Cambridge University Press, 594p.
- Villemant, B., Jaffrezic, H., Joron, J.L., Treuil, M., 1981. Distribution coefficients of major and trace elements, fractional crystallisation in the alkali basalt series of Chaine des Puys (Massif Central, France). Geochimica et Cosmochimica Acta, 45, 1997-2016.
- Weinberg, R.F., 1999. Mesoscopic pervasive felsic magma migration: alternatives to diking. Lithos, 46, 393-410.
- Wilson, C.J.L., 1980. Shear zones in a pegmatite: a study of albite-mica-quartz deformation. J. Struct. Geol., 2, 203-209.

## **Appendix A. Analytical procedures**

All the 56 samples were processed in the Rock Processing Laboratory of the Federal University of Pará. They had their weathered rims removed and were previously squashed and comminuted to millimeter-size (90% < 200 mesh). These rock hand specimens were crushed by stainless steel jaw crusher and then pulverized in stainless steel bowl. This material was sent to ACME ANALYTICAL LABORATORIES LTD and used for major, minor and trace elements analyses, according to total whole rock characterization with AQ200 (GROUP LF202). The information regarding the description of the methods applied and the detection limits are available in laboratory website http://acmelab.com/pdfs/Acme\_Price\_Brochure.pdf). Major and minor elements concentrations were determined using ICP-ES (Inductively Coupled Plasma - Emission Spectrometry) whiles the trace elements and Rare Earth Elements were analyzed by ICP-MS (Inductively Coupled Plasma - Mass Spectrometry).

## **CAPÍTULO 3 - CONSIDERAÇÕES FINAIS**

Trabalhos de mapeamento geológico realizados na área de Ourilândia do Norte, pelo Grupo de Pesquisa Petrologia de Granitoides, mostraram que esse segmento de crosta é formado predominantemente por granitoides mesoarqueanos de afinidade sanukitoide (~2,87 Ga), (quartzo) dioritos de afinidade BADR (basalto-andesito-dacito-riolito) e domínios com ocorrência de leucogranitos indiferenciados (Santos *et al.* 2013a, Santos & Oliveira 2016). Além de monzogranitos com clinopiroxênio, cortando os demais granitoides. Novos dados de mapeamento geológico obtidos neste estudo permitiram definir a natureza e aspectos deformacionais dos leucogranitos até então indiferenciados, levando a individualização de três novos grupos de granitoides, classificados como: (i) biotita monzogranitos (BMzG); (ii) epidoto-biotita granodioritos (EBGd); e (iii) granitoides porfiríticos (Grtp).

O estudo petrográfico mostrou que os granitoides de cada grupo são subdividos em duas fácies. As rochas do grupo BMzG são diferenciadas em fácies biotita monzogranito equigranular (BMzGe) e biotita monzogranito heterogranular (BMzGh) e as do grupo EBGd em epidoto-biotita granodiorito heterogranular (EBGdh) e titanita-epidoto-biotita granodiorito esparsamente porfirítico (TEBGdep). Esses granitoides compõem dois batólitos separados por uma faixa, de *trend* ENE-WSW, formada por sanukitoides e rochas de afinidade BADR. O batólito situado na porção central da área mostra uma forma elipsoidal, com maior eixo orientado na direção ENE-WSW; e o outro, localizado a sudeste, tem uma forma de arco. Ambos são amplamente dominados por granitos do grupo BMzG, com menor ocorrência de lentes formadas por rochas do grupo EBGd. Os granitoides do grupo Grtp são separados em fácies biotita-horblenda granodiorito porfirítico (BHGdp) e epidto-biotita trondhjemito porfirítico (EBTdp) e ocorrem como corpos menores, espacialmente associados com as rochas de afinidade entre todos os granitoides de Ourilândia do Norte, incluindo os de assinatura sanukitoide e BADR.

Em termos de geologia estrutural, esses plútons foram afetados por deformação heterogênea, suas porções centrais representam domínios de menor *strain* e frequentemente mostram foliação magmática de direção principal ENE-WSW e mergulho subvertical, definida pela orientação preferencial de fenocristais euédricos de feldspato e fases máficas, comumente superimposta por fraca deformação em estado sólido. Enquanto as bordas desses plútons são marcadas por zonas de cisalhamento de grande escala, mostrando uma geometria

anastomosada, onde foliações miloníticas são tipicamente desenvolvidas. Os dados meso- e microestruturais indicam que as rochas estudadas são sin- a tardi-tectônicas e foram afetadas por deformação de alta temperatura (> 500 °C), sob baixo esforço diferencial e taxa de deformação, em regime de transpressão sinistral (Araújo & Maia 1991, Pinheiro & Holdsworth 1997), controlado predominantemente por cisalhamento puro, indicando que as tramas magmáticas e de estado sólido estão relacionadas a um mesmo evento deformacional.

Os dados de geoquímica em rocha total indicam que com exceção dos trondhjemitos de fácies EBTdp que têm afinidade Mg-Na, os demais granitoides de Ourilândia do Norte podem ser agrupados em duas suítes: (i) suíte Fe-K que integra os leuco- a biotita monzogranitos do grupo BMzG e as rochas de fácies TEBGdep; e (ii) suíte Mg-K composta por granitoides de afinidade sanukitoide (incluindo os granodioritos de fácies EBGdh e BHGdp) e (quartzo) dioritos de afinidade BADR. Ambos os grupos são cálcico-alcalinos a alcalino-cálcicos e diferem entre si com base em suas relações FeO<sup>t</sup>/MgO, Al<sub>2</sub>O<sub>3</sub>, K<sub>2</sub>O e alguns elementos traços (Sr, Ba, Rb). Em termos petrogenéticos, a origem dos BMzGe é atribuída à anatexia crustal durante retrabalhamento de uma crosta TTG (2,92-2,98 Ga). O EBGdh tem afinidade sanukitoide e pode ser produzido por intenso fracionamento de hornblenda ±clinopiroxênio. Os granitoides de fácies TEBGdep, BMzGh, BHGdp e EBTdp mostram evidências de mingling entre magmas contrastantes, indicando que sua origem requer interação entre magmas derivados da fusão parcial do manto metassomatizado e da crosta. Dados geoquímicos e modelagem foram utilizados para identificar os diferentes processos relacionados à origem e formação destes granitoides: (i) As rochas de fácies TEBGdep são enriquecidas em HFSE (Ti, Zr e Y) e LILE (Ba e Sr) e foram formadas por fusão parcial de uma fonte mantélica enriquecida, provavelmente em um ambiente de póssubducção, com participação de líquidos anatéticos crustais; (ii) os granitos do BMzGh são gerados pela interação entre magmas de composição TEBGdep (60%) e eBMzG (40%); (iii) as granodioritos de fácies BHGdp são formadas pela interação entre magmas sanukitoide (80%) e leucomonzogranítico (20%); e (iv) as rochas de EBTdp são originadas por uma mistura incompleta entre líquido trondhjemítico de assinatura TTG (70-80%) e magma derivado do manto metassomatizado por fluidos (20-30%).

Portanto, podemos concluir que no final do Mesoarqueano, em ~2,87 Ga, ocorreu um significativo crescimento e retrabalhamento crustal, nas fases finais de estabilização do primeiro ciclo geotectônico registrado na Província Carajás. Nos levando a sugerir que todos os granitoides mesoarqueanos de Ourilândia do Norte foram alojados durante a segunda etapa de um modelo tectono-magmático de dois estágios (subducção-colisão): (i) primeiro estágio

(2.98-2.92 Ga) - subducção contínua de baixo ângulo com geração e colocação de *slab-melt* e consequente metassomatismo da cunha mantélica; (ii) segundo estágio (~2,87 Ga) – pequeno intervalo de tempo em que todos os granitoides estudados foram posicionados, em um ambiente colisional, durante retrabalhamento litosférico, onde zonas de cisalhamento translitosféricas, em regime transpressivo sinistral, condicionaram a ascensão e colocação dos magmas, servindo como condutos para o transporte e interação entre magmas não cogenéticos.

Os mecanismos de ascensão dos magmas que deram origem aos granitoides de Ourilândia do Norte envolveram migração de magma por fluxo penetrativo durante deformação ativa, através de uma rede de canais pré-existentes, caracterizando o segmento de crosta estudado como um complexo de múltiplas injeções de magma (D'Lemos *et al.* 1992, Weinberg 1999, Neves 2012). A construção desses plútons requer a injeções de vários pulsos derivados do manto e da crosta, em um curto intervalo de tempo geológico. Assim, a criação do espaço ocorreu via deformação e translação lateral das rochas encaixantes, como resultado da injeção de novos pulsos no nível de alojamento (Cruden 2006, Neves 2012).

A história de deformação desses plútons transcende no tempo suas histórias magmáticas. Assim, deformação de estado sólido em alta temperatura continuou como parte do mesmo evento de deformação (D1) demonstrado pelas microestruturas submagmáticas e pode ter atingido temperaturas moderadas de até ~500 °C. Como resultado, o fim desta deformação dúctil em temperaturas relativamente elevadas permitiu a ocorrência de recristalização estática observada nos cristais de quartzo e feldspato de todos os granitoides estudados.

Para a área de Ourilândia do Norte, pode ser inferido a superimposição de um segundo evento de deformação (D2) ocasionado pela reativação de zonas de cisalhamento durante a colocação de granitoides neoarqueanos sintectônicos (2,75 Ga; Barros *et al.* 2001, Feio *et al.* 2013, Dall'Agnol *et al.* 2017) e/ou a primeira inversão da Bacia Carajas (2,68-2,63 Ga; Tavares 2015). Neste contexto, estudos futuros sobre os granitos com clinopiroxênio, integrando dados de petrologia e geologia estrutural, são de fundamental importância para uma melhor compreensão de como o evento D2 afetou a área estudada.

O nível de erosão dos granitoides estudados está provavelmente nas proximidades da fronteira entre os ambientes mesozonal e catazonal. Por outro lado, além dos eventos de deformação dúctil D1 e D2, essas rochas são afetadas por pelo menos dois eventos de deformação rúptil mais jovens, em níveis progressivamente mais rasos. O primeiro evento, representado por uma família de lineamentos NW-SE, os quais são interpretados como falhas

normais relacionadas à ascensão e colocação de magmatismo intraplaca paleoproterozóico (por exemplo, granito Seringa) – Oliveira *et al.* (2008). O segundo evento, evidenciado por uma família de lineamentos N-S a NNE-SSW, os quais são interpretados como falhas inversas ou de cavalgamento relacionadas à amalgamação do cinturão Araguaia no Neoproterozóico (Marangoanha & Oliveira 2014). Essas inferências refletem os processos de exumação e evolução do nível de erosão da área de Ourilândia do Norte, uma vez que, para um mesmo nível de erosão, os plútons estudados, que foram posicionados em um ambiente dúctil mais profundo, foram afetados por deformação rúptil em menores profundidades após um longo intervalo de tempo a partir de suas colocações.

Finalmente, baseado nas informações obtidas para a área de Ourilândia do Norte podemos concluir que a ocorrência do Granodiorito Rio Maria nessa região indica que a mesma faz parte do Domínio Rio Maria (Oliveira *et al.* 2009). No entanto, a presença de intrusões mais jovens de monzogranitos com clinopiroxênio sugere que o segmento de crosta compreendido pela área de Ourilândia seria melhor interpretado como fazendo parte do Subdomínio Sapucaia, definido como uma extensão do Domínio Rio Maria afetado pelos eventos neoarqueanos que deram origem à Bacia Carajás (Dall'Agnol *et al.* 2013). Por outro lado, a ampla ocorrência de granitoides alto-K e a ausência de rochas representativas do embasamento TTG apontam que essa região sofreu intenso retrabalhamento crustal, semelhante ao que foi atribuído ao Subdomínio Canaã dos Carajás (Feio & Dall'Agnol 2012, Dall'Agnol *et al.* 2013). Nesse contexto, o atual estágio do conhecimento nos permite interpretar que, ao invés de um limite entre domínios distintos, o segmento de crosta compreendido pela área de Ourilândia do Norte seria melhor interpretado como uma zona de interferência entre domínios tectônicos, em que o alojamento de um volumoso e diversificado magmatismo cálcico-alcalino alto-K (suítes Mg-K e Fe-K) marca a "zona de sutura".

## REFERÊNCIAS

Almeida F.F.M., Hasui Y., Brito Neves B.B., Fuck R.A. 1981. Brazilian structural Provinces: an introduction. *Earth Science Review*, **17** (1-2): 1-29.

Almeida J.A.C., Dall'Agnol R., Dias S.B., Althoff F.J. 2010. Origin of the Archean leucogranodiorite-granite suites: evidence from the Rio Maria terrane and implications for the granite magmatism in the Archean. *Lithos*, **120** (3): 235-257.

Almeida J.A.C., Dall'Agnol R., Leite A.A.S. 2013. Geochemistry and zircon geochronology of the Archean granite suites of the Rio Maria granite-greenstone terrane, Carajas Province, Brazil. *Journal of South American Earth Sciences*, **42**:103-126.

Almeida J.A.C., Dall'Agnol R., Oliveira M.A., Macambira M.J.B., Pimentel M.M., Rämö O.T., Guimarães F.V., Leite A.A.S. 2011. Zircon geochronology, geochemistry and origin of the TTG suites of the Rio Maria granite-greenstone terrane: implications for the growth of the Archean crust of the Carajás Province, Brazil. *Precambriam Research*, **187**: 201-221.

Almeida J.A.C., Oliveira M.A., Dall'Agnol R., Althoff, F.J., Borges R.M.K. 2008. *Relatório de mapeamento geológico na escala 1:100.000 da Folha Marajoara (SB-22-ZC V)*. Belém, CPRM – Serviço Geológico do Brasil, 147 p. (Programa Geobrasil).

Althoff F.J., Barbey P., Boullier A. M. 2000. 2.8-3.0 Ga plutonism and deformation in the SE Amazonian craton: the Archean granitoids of Marajoara (Carajás Mineral Province, Brazil). *Precambrian Research*, **104**: 187-206.

Araújo O.J.B., Maia R.G.N. 1991. Serra dos Carajás, Folha SB-22-Z-A. CPRM, Rio de Janeiro, 136p.(Relatório Final).

Avelar, V.G. 1996. Geocronologia Pb-Pb por evaporação em monocristal de zircão do magmatismo da região de Tucumã, SE do estado do Pará, Amazônia Oriental. MS Dissertation, Programa de Pós-graduação em Geologia e Geoquímica, Instituto de Geociências, Universidade Federal do Pará, Belém, 149p.

Barker F. 1979. Trondhjemites: definition, environment and hypotheses of origin. *In:* Barker F. (ed.). *Trondhjemites, dacites and related rocks*. Amsterdam, Elsevier, p.1-12.

Barker F., Arth J.G. 1976. Generation of trondhjemite-tonalite liquids and Archean bimodal trondhjemite-basalt suites. *Geology*, **4** (10): 596-600.

Barros C.E.M., Sardinha A.S., Barbosa J.P.O., Krimski R., Macambira M.J. B. 2001. Pb-Pb and zircon ages of Archean sytectonic granites of the Carajás metallogenic province, Northern Brazil. *In*: Serviço Nacional de Geologia e Mineral, 3° Simpósio Sul-Americano de Geologia Isotópica, *Resumos Expandidos*, Pucon, Chile, 1 CD-ROM.

Best M.G. 2003. Igneous and metamorphic petrology. New York, Freeman, 758 p.

Blenkinsop T.G. 2000. *Defomation microstructures and mechanisms in minerals and rocks*. Dordrecht, Kluwer Academic Publishers, 150p.

Champion D.C., Smithies R.H. 2001. Archaean granites of the Yilgarn and Pilbara cratons, Western Australia. *In:* Cassidy K.F., Dunphy J.M., Van Kranendonk M.J. (eds.). Fourth International Archaean Symposium. *Proceedings*... AGSO-Geoscience Australia, Perth, Australia, **37**: 134-136.

Champion D.C., Smithies R.H. 2003. Archaean granites. *In:* Blevin P.L., Chappell B.W., Jones M. (eds.). *Magmas to mineralisation*: the Ishihara Symposium, Australia, AGSO-Geoscience, **14**: 19-24.

Chayes F. 1956. Petrographic modal analysis. New York, John Willey e Sons, 113p.

Condie K.C. 1993. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. *Chemical Geology*, **104** (1-4): 1-37.

Costa J.B.S., Araújo J.B., Santos A., Jorge João X.S., Macambira M.J.B., Lafon J.M. 1995. A Província Mineral de Carajás: aspectos tectono-estruturais, estratigráficos e geocronológicos. *Boletim Museu Paraense Emílio Goeldi*, Série Ciências da Terra, Belém, **7**: 199-235.

Cruden A.R. 2006. Emplacement and growth of plutons: implications for rates of melting and mass transfer in continental crust. *In:* Brown M., Rushmer T. (ed.). *Evolution and Differentiation of the Continental Crust*. Cambridge University Press, p. 455-519.

D'Lemos R.S., Bronw M., Strachan R.A.1992. Granite magma generation and emplacement within a transpressional orogen. *Journal of the Geological Society*, London, **149**: 487-490.

Dall'Agnol R., Oliveira D.C., Guimarães F.V., Gabriel E.O., Feio G.R.L., Lamarão C.N., Althoff F.J., Santos P.A., Teixeira M.F.B., Silva A.C., Rodrigues D.S., Santos M.J.P., Silva C.R.P., Santos R.D., Santos P.J.L. 2013. Geologia do subdomínio de transição do Domínio Carajás – implicações para a evolução Arqueana da Província Carajás – Pará. *In:* 13° Simpósio de Geologia da Amazônia, Belém, *Anais...*, p.00-00.

Dall'Agnol R., Oliveira M.A., Almeida J.A.C., Althoff F.J., Leite A.A.S., Oliveira D.C., Barros C.E.M. 2006. Archean and Paleoproterozoic granitoids of the Carajás metallogenic province, eastern Amazonian craton. *In:* Dall'Agnol R., Rosa-Costa L.T., Klein E.L. (eds.). Symposium on Magmatism, Crustal Evolution, and Metallogenesis of the Amazonian Craton. *Abstracts volume and Field Trips Guide*. Belém, PRONEX-UFPA/SBG-NO, 150p. ou p. 150

Dall'Agnol R., Teixeira N.P., Rämo O.T., Moura C.A.V., Macambira M.J.B., Oliveira D.C. 2005. Petrogenesis of the Paleoproterozoic rapakivi A-type granites of the Archean Carajás metallogenic province. *Lithos*, Brazil, **80**: 101-129.

Dall'Agnol R., Cunha I.R.V., Guimarães F.V., Oliveira D.C., Teixeira M.F.B., Feio G.R.L., Lamarão C.N. 2016. Mineralogy, geochemistry, and petrology of Neoarchean ferroan to magnesian granites of Carajás Province, Amazonian Craton: The origin of hydrated granites associated charnockites. *Lithos*, **277**: 3-32.

Dall'Agnol R., Oliveira D.C. 2007. Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: implications for classification and petrogenesis of A-type granites. *Lithos*, **93** (3): 215-233.

Debon F., Le Fort P. 1983. A chemical-mineralogical classification of common plutonic rocks and associations. *Earth and Environmental Science Transactions of The Royal Society of Edinburgh*, **73** (3): 135-149.

Docegeo E. D. A. 1988. Revisão litoestratigráfica da Província Mineral de Carajás. *In:* 35° Congresso Brasileiro de Geologia, CVRD, Belém. *Anais...* p.10-54.

Evensen N.M., Hamilton P.T., O'Nions R.K. 1978. Rare earth abondances in chondritic meteorites. *Geochimica ET Cosmochimica Acta*, **42** (8): 1199-1212.

Feio G.R.L., Dall'Agnol R. 2012. Geochemistry and petrogenesis of the Mesoarchean granites from the Canaã dos Carajás area, Carajás Province, Brazil: implications for the origin of Archean granites, *Lithos*, **154**:33-52.

Feio G.R.L., Dall'Agnol R., Dantas E.L., Macambira M.J.B., Gomes A.C.B., Sardinha A.S., Oliveira D.C., Santos R.D., Santos P.A. 2012. Geochemistry, geochronology, and origin of the Neoarchean Planalto Granite suite, Carajás, Amazonian craton: A-type or hydrated charnockitic granites? *Lithos*, **151**: 57-73.

Feio G.R.L., Dall'Agnol R., Dantas E.L., Macambira M.J.B., Santos J.O.S., Althoff F.J., Soares J.E.B. 2013. Archean granitoid magmatism in the Canaã dos Carajás area: Implications for crustal evolution of the Carajás province, Amazonian craton, Brazil, *Precambrian Research*, **227**: 157-185.

Florisbal L.M. 2012. *Petrogênese de granitos sintectônicos em ambiente pós-colisional do escudo catarinense*: estudo integrado de geologia estrutural, geoquímica elemental e isotópica Sr-Nd-Pb e geocronologia U-Pb em zircão. PhD Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo, 218 p.

Fossen H., tradução: Andrade, R.D.F. 2012. *Geologia estrutural*. São Paulo, Editora Oficina de Textos, 584p.

Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D. 2001. A geochemical classification for granitic rocks. *Journal of Petrology*, **42**: 2033-2048.

Frost C.D., Frost B.R., Chamberlain K.R., Hulsebosch T.P. 1998. The Late Archean history of the Wyoming province as recorded by granitic magmatism in the Wind River Range, Wyoming. *Precambrian Research*, **89** (3-4): 145-173.

Gabriel E.O., Oliveira D.C. 2014. Geologia, petrografia e geoquímica dos granitoides arqueanos de alto magnésio da região de Água Azul do Norte, porção Sul do Domínio Carajás, Pará. Belém, *Boletim do Museu Paraense Emílio Goeldi, Ciências Naturais*, **9** (3): 533-564.

Gill R. 2010. Igneous rocks and processes: a practical guide. [S.l.], Wiley-Blackwell. 472p.

Heilimo E., Halla J., Hölttä P. 2010. Discrimination and origin of the sanukitoid series: geochemical constraints from the Neoarchean western Karelian Province (Finland). *Lithos*, **115**: 27-39.

Hibbard M.J. 1987. Deformation of incompletely crystallised magma systems: granitic gneisses and their tectonic implications. *J. Geol.*, **951**: 543-561.

Hutchison C.S. 1974. *Laboratory handbook of petrography techniques*. London, John Wiley e Sons, 527p.

Lafon J.M., Macambira M.J.B., Pidgeon R.T. 2000. Zircon U-Pb SHRIMP dating of Neoarchean magmatism in the southwestern part of the Carajás Province (eastern Amazonian Craton, Brazil). *In*: SBG, 31° International Geological Congress, *Abstracts*, Rio de Janeiro, 1 CD-ROM.

Lafon J.M., Rodrigues E., Duarte K.D. 1994. Le granite Mata Surrão: un magmatisme monzogranitique contemporain des associations tonalitiques trondhjemitiquesgranodioritiques archéennes de la région de Rio Maria (Amazonie Orientale, Brésil). *Comptes Rendus de la Academie de Sciences de Paris*, **318**(5): 643–649.

Laurent O., Martin H., Moyen J.F., Doucelance R. 2014a. The diversity and evolution of late-Archean granitoids: evidence for the onset of "modern-style" plate tectonics between 3.0 and 2.5 Ga. *Lithos*, **205**: 208-235.

Laurent O., Rapopo M., Stevens G., Moyen J.F., Martin H., Doucelance R., Bosq C. 2014b. Contrasting petrogenesis of Mg-K and Fe-K granitoids and implications for post-collisional magmatism: case study from the Late-Archean Matok pluton (Pietersburg block, South Africa). *Lithos*, **196**: 131-149.

Le Maitre R.W. 2002. A classification of igneous rocks and glossary of terms. 2nd Edition, London, 193p.

Leite-Santos P.J. Oliveira D.C. 2014. Trondhjemitos da área de Nova Canadá: novas ocorrências de associações magmáticas tipo TTG no Domínio Carajás. *Boletim do Museu Paraense Emílio Goeldi*, Ciências Naturais, Belém, **9**(3): 635-659.

Leite-Santos P.J., Oliveira D.C. 2016. Geologia, petrografia e geoquímica das associações leucograníticas arqueanas da área de Nova Canadá – Província Carajás. *Boletim IG-USP – Série Científica*, Belém, **16** (2): 37-66.

Macambira M.J.B., Lafon J.M. 1995. Geocronologia da Província Mineral de Carajás; síntese dos dados e novos desafios. *Boletim do Museu Paraense Emílio Goeldi*, Belém, **7**: 263-288.

Macambira M.J.B., Lancelot J. 1991. Em busca do embasamento arqueano da região de Rio Maria, sudeste do Estado do Pará. *In:* RBG, Simpósio de Geologia da Amazônia, 3, *Resumos Expandidos*, Belém, 49-58.

Macambira M.J.B., Lancelot J. 1996. Time constraints for the formation of the Archean Rio Maria crust, southeastern Amazonian Craton, Brazil. *International Geology Review.*, **38** (12):1134-1142.

Mackenzie W.S., Donaldson C.H., Guilford C. 1982. *Atlas de igneous rocks and their textures*. Harlow Essex, England, Longman Group Ltda, 148p.

Marangoanha B., Oliveira D.C. 2014. Diabásios e anfibolitos da área de Nova Canadá: natureza e implicações tectônicas para a Província Carajás. *Boletim do Museu Paraense Emílio Goeldi*, Ciências Naturais, Belém, **9** (3): 565-596.

Martin H. 1994. The Archean grey gneisses and the gneisses of continental crust. *In:* Condie K.C. (ed.), *Developments in precambrian geology*. Archean crustal evolution. Amsterdam, Elsevier, **11**: 205-259.

Medeiros H., Dall'Agnol R. 1988. Petrologia da porção leste do Batólito Granodiorítico Rio Maria, Sudeste do Pará. *In:* 35° Congresso Brasileiro de Geologia, *Anais de Congresso Brasileiro de Geologia*, **3**: 1488-1499.

Moyen J.F., Martin H., Jayananda M., Auvray B. 2003a. Late Archaean granites: a typology based on the Dharwar Craton (India). *Precambrian Research*, **127**: 103-123.

Moyen J.F., Nédélec A., Martin H., Jayananda M. 2003b. Syntectonic granite emplacement at different structural levels: the Closepet granite, South India. *Journal of Structural Geology*, **25**: 611-631.

Neves S.P. 2012. *Granitos orogênicos*: da geração dos magmas à intrusão e deformação. Synergia, Rio de Janeiro, 147 p.

Nockolds S.R., Aleen R. 1953. The geochemistry of some igneous rock series, Part I. *Geochemical Cosmochemical Acta*, **4**:105-142.

O'Connor J.T. 1965. A classification for quartz-rich igneous rocks based on feldspar ratios. *US Geological Survey Professional Papers B*, **525**:79-84.

Oliveira D.C. Gabriel E.O., Santos P.J.L., Silva C.R.P., Rodrigues D.S., Santos R.D., Galarza M.A., Marangoanha B., Santos M.S., Souza D.B. 2014. Geologia da região de Água Azul do Norte (PA) - Implicações para a compartimentação tectônica do Domínio Carajás. *In:* 47° Congresso Brasileiro de Geologia, Salvador. *Anais...* 1 CD-ROM.

Oliveira D.C., Dall'Agnol R., Silva J.B.C., Almeida J.A.C. 2008. Gravimetric, radiometric, and magnetic susceptibility study of the Paleoproterozoic Redenção and Bannach plutons: implications for architecture and zoning of A-type granites. *Journal of South American Earth Sciences*, **25** (1): 100-115.

Oliveira M.A., Dall'Agnol R., Almeida J.A.C. 2011. Petrology of the mesoarchean Rio Maria suite: implications for the genesis of sanukitoid rocks. *J. Petrology*, **51**(10): 2121-2148.

Oliveira M.A., Dall'Agnol R., Althoff F.J., Leite A.A.S. 2009. Mesoarchean sanukitoid rocks of the Rio Maria Granite-Greenstone Terrane, Amazonian craton, Brazil. *Journal of South American Earth Sciences*, **27** (2):146-160.

Oliveira M.A., Dall'Agnol R., Scaillet B. 2010. Petrological constraints on crystallization conditions of Mesoarchean sanukitoid rocks, southeastern Amazonian Craton, Brazil. *Journal of Petrology*, **51**:2121-2148.

Passchier C.W., Trouw R.A.J. 2005. *Microtectonics*, 2nd ed., Germany, Springer-Verlag, 366 p.

Paterson S.R., Vernon R.H., Tobisch O.T. 1989. A review of criteria for the identification of magmatic and tectonic foliations in granitoids. *Journal of Structural Geology*, **11**: 349-364.

Peccerillo A., Taylor S.R. 1976. Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamoru area, Northern Turkey. *Contributions to Mineralogy and Petrology*, **58**: 63-81.

Pimentel M.M., Machado N. 1994. Geocronologia U-Pb dos Terrenos Granito-*Greenstone* de Rio Maria, Pará. In: 38° Congresso Brasileiro de Geologia, *Resumos Expandidos*, Camboriú, p.390-391.

Pinheiro R.V.L., Holdsworth R.E. 1997. Reactivation of Archaean strike-slip fault systems, Amazon region, Brazil. *Journal of the Geological Society*, **154**: 99-103.

Ragland P.C. 1989. Basic analytical petrology. New York, Oxford University Press.

Rivalenti G., Mazzuchelli M., Girardi V.A.V., Cavazzini G., Finatti C., Barbieri M.A., Teixeira W. 1998. Petrogenesis of the Paleoproterozoic basaltic-andesite-rhyolite dyke association in the Carajás region, Amazonian craton. *Lithos*, **43**: 235-265.

Rodrigues D.S., Oliveira D.C., Macambira M.J.B. 2014. Geologia, geoquímica e geocronologia do Granito Mesoarqueano Boa Sorte, município de Água Azul do Norte, Pará – Província Carajás. *Boletim do Museu Paraense Emílio Goeldi*, Ciências Naturais, Belém, **9** (3): 597-633.

Rolando A.P., Macambira M.J.B. 2003. Archean crust formation in Inajá range area, SSE of Amazonian Craton, Brazil, based on zircon ages and Nd isotopes. *In:* South American Symposium on Isotope Geology, 4, *Expanded Abstracts*, Salvador, 1 CD-ROM.

Rollinson H. 1993. *Using geochemical data*: evaluation, presentation, interpretation, Zimbabwe, [s.n], 344p.

Ronaib C.P.S., Oliveira D.C. 2013. Geologia, petrografia e geoquímica das associações TTG e leucogranodioritos do extremo norte do Domínio Rio Maria, Província Carajás. *Boletim do Museu Paraense Emílio Goeldi*, Ciências Naturais, **8** (3): 383-415.

Santos J.O.S. 2003. Geotectônica do Escudo das Guianas e Brasil-Central. *In:* Bizzi, L. A. *et al.* (ed.). *Geologia, tectônica e recursos minerais do Brasil*: texto, mapas e SIG. Brasília. CPRM- Serviço Geológico do Brasil, 169-226p.

Santos M.J.P., Lamarão C.N., Lima P.H.A., Galarza M.A., Mesquita J.C.L. 2013a. Granitoides arqueanos da região de Água Azul do Norte, Província Carajás, sudeste do estado do Pará: petrografia, geoquímica e geocronologia. *Boletim do Museu Paraense Emílio Goeldi*. Ciências Naturais, **8** (3): 325-354.

Santos M.N.S., Oliveira D.C. 2016. Rio Maria granodiorite and associated rocks of Ourilândia do Norte - Carajás province: Petrography, geochemistry and implications for sanukitoid petrogenesis. *Journal of South American Earth Sciences*, **72**: 279-301

Santos M.S. 2017. *Granitoides TTG de Água Azul do Norte*. MS Dissertation, Programa de Pós-Graduação em Geologia e Geoquímica, Instituto de Geociências, Universidade Federal do Pará, Belém, 64p.

Santos P.A., Teixeira M.F.B., Dall'Agnol R., Guimarães A.V. 2013b. Geologia, petrografia e geoquímica da associação Tonalito-Trondhjemito-Granodiorito (TTG) do extremo leste do Subdomínio de Transição, Província Carajás, Pará. *Boletim do Museu Paraense Emílio Goeldi*, Ciências Naturais, Belém, **8** (3): 257-290.

Santos R.D., Galarza M.A., Oliveira D.C. 2013c. Geologia, geoquímica e geocronologia do Diopsídio-Norito Pium, Província Carajás. *Boletim do Museu Paraense Emílio Goeldi*, Ciências Naturais, Belém, **8** (3): 355-382.

Shand S.J. 1943. The eruptive rocks, 2nd edn. New York, John Wiley, 444p.

Silva A.C., Dall'Agnol R., Guimarães F.V., Oliveira D.C. 2014. Geologia, petrografia e geoquímica de Associações Tonalíticas e Trondhjemíticas Arqueanas de Vila Jussara, Província Mineral de Carajás, Pará. *Boletim do Museu Paraense Emílio Goeldi*, Ciências Naturais, Belém, **9** (1): 13-46.

Silva F.F., Oliveira D.C., Antonio P.J., D'Agrella Filho M.S., Lamarão C.N. 2016. Bimodal magmatism of the Tucumã area, Caraj as province: U-Pb geochronology, classification and processes. *Journal of South American Earth Sciences*, **72**: 95-114.

Silva G.G., Lima M.I.C., Andrade A.R.F., Issler R.S., Guimarães G. 1974. Folha SB-22 Araguaia e parte da SC-22 Tocantins. Geologia. *In:* BRASIL-MME. Projeto RADAM BRASIL. *Folhas SC-22 Tocantins. Geologia, geomorfologia, pedologia, vegetação e uso potencial da terra.* DNPM, Rio de Janeiro, **4**: 1-143.

Silva Jr., R.O., Dall'Agnol R., Oliveira E.P. 1999. Geologia, petrografia e geoquímica dos diques proterozoicos da região de Rio Maria, sudeste do Pará. *Geochim. Bras.* **13**(2): 163-181.

Souza S.Z., Dall'Agnol R., Althoff F.J., Leite A.A.S., Barros C.E.M. 1996. Carajás mineral province: geological, geochronological and tectonic constrasts on the Archean evolution of the Rio Maria granite-greenstone Terrain and the Carajás block. Extended abstracts. *In:* Symposium on Archean Terranes of South America Platform, Brasília, *Extended abstracts*, 31-32p.

Souza Z.S., Potrel A., Lafon J.M., Althoff F.J., Pimentel M.M., Dall'Agnol R., Oliveira C.G. 2001. Nd, Pb and Sr isotopes in the Identidade Belt, an Archean greenstone belt of Rio Maria region (Carajás Province, Brazil): implications for the geodynamic evolution of the Amazonian craton. *Precambrian Research*, **109**: 293-315.

Streckeisen A. 1976. To each plutonic rock its proper name. *Earth-Science Reviews*, 12:1-13.

Sylvester P.J. 1994. Archean granite plutons. *In:* Condie, K. C. (ed.). *Archean crustal evolution. Developments in precambrian geology*, Amsterdam, Elsevier, 261-314p.

Tassinari C.C.G., Macambira M.J.B. 2004. Evolução tectônica do Cráton Amazônico. *In:* Mantesso Neto, V., Bartorelli, A., Carneiro, C.D.R., Brito Neves, B.B. de (org). *Geologia do continente Sul Americano*. Evolução da obra de F.F.M. de Almeida. São Paulo BECA, 471-486p.

Tavares F.M. 2015. *Evolução geotectônica do nordeste da Província Carajás*. TS Doutorado, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 115p.

Taylor S.R., McLennan S.M. 1985. *The continental crust*: its composition and evolution. Oxford, Backwell Scientific, 321p.

Teixeira M.F.B., Dall'Agnol R., Silva A.C., Santos P.A. 2013. Geologia, petrografia e geoquímica do Leucogranodiorito Pantanal e dos leucogranitos arqueanos da área a norte de Sapucaia, Província Carajás, Pará: implicações petrogenéticas. *Boletim do Museu Paraense Emílio Goeldi*, Ciências Naturais, Belém, **8** (3): 291-323.

Throw A.J.R., Passchier C.W., Wiersma D.J. 2010. Atlas of mylonites and related microstructures. [S.I.], Springer, 322p.

Vasquez L.V., Rosa-Costa L.R., Silva C.G., Ricc, P.F., Barbosa J.O., Klein E.L., Lopes E.S., Macambira E.B., Chaves C.L., Carvalho J.M., Oliveira J.G., Anjos G.C., Silva H.R. 2008. *Geologia e recursos minerais do estado do Pará*: Sistema de Informações Geográficas. texto explicativo dos mapas Geológico e Tectônico e de Recursos Minerais do Estado do Pará. CPRM, Belém, 329p.

Vernon R.H. 2004. A practical guide to rock microstructures. Cambridge, Cambridge University Press, 594p.

Weinberg R.F. 1999. Mesoscopic pervasive felsic magma migration: alternatives to diking. *Lithos*, **46**: 393-410.