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Abstract - The thermal entry region in laminar forced 
convection of Herschel-Bulkley fluids is solved analytically 

through the integral transform technique, for both circular 
and parallel-plates ducts, which are maintained at a 

prescribed wall temperature or at a prescribed wall heat 
flux. The local Nusselt numbers are obtained with high 

accuracy in both developing and fully-developed thermal 
regions, and critical comparisons with previously reported 

numerical results are performed. 
Keywords: Integral transform technique, internal forced 

convection, Herschel-Bulkley fluids. 

  

  

INTRODUCTION 

The analysis of convection heat transfer to non-newtonian fluids 
inside ducts is of great importance in the design of thermal 

equipment in the pharmaceutical, food and petrochemical industries. 
This non-newtonian behavior is encountered in materials such as: 

solutions or melts of polymeric materials, oils and greases, cosmetics, 
toothpaste, soap and detergents, paints, cement and drilling muds. 

During the drilling operation, particularly in the petroleum industry, 
certain drilling muds and cements are of fundamental importance in 

providing a good operation and the well cementing. These drilling 
muds follow a non-newtonian behavior based on the Herschel-Bulkley 

model, a power-law fluid model with yield-stress, and their 
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rheological properties are sensitive to the temperature. Therefore, 

the determination of the temperature distributions in such fluids are 
necessary for the complete control of these properties during the 

drilling operation. 

Thus, in this context, the present work deals with the thermal 

problem in both the entry and fully-developed regions of fluids that 
follow the Herschel-Bulkley model, inside circular and parallel-plates 

ducts. The solution of this problem is obtained by applying the 
integral transform technique. 

The analytic solution in the thermal entry region for both laminar and 
turbulent forced convection inside ducts involves difficulties due to 

the related auxiliary eigenvalue problem (Özisik et al., 1989). 
Previous works have employed purely numerical techniques to solve 

the eigenvalue problem (Sellars et al., 1956; Shibani and Özisik, 
1977), such as the Runge-Kutta method, but only the first few 

eigenvalues can be determined by this technique. Consequently, it is 
not feasible to calculate heat transfer results in regions which are 

very close to the duct inlet because a large number of eigenvalues 
are needed for the computation of the series expansion based on the 

eigenfunctions. 

Alternatively, numerical methods as finite-difference schemes have 

been employed to solve the complete system of partial differential 
equations, but accurate results were not obtained by these numerical 

schemes (Forrest and Wilkinson, 1973; Lin and Shah, 1978; Nouar et 
al., 1994; Mendes and Naccache, 1995). 

In the 80’ s, Mikhailov and Vulchanov (1983) and Mikhailov and 

Özisik (1984) advanced the so-called Sign-Count Method based on 
the approaches of Wittrick and Williams (1971, 1974), in order to 

solve the related Sturm-Liouville type eigenvalue problem, which 

permits the automatic and .highly 
accurately .determination .of .as .many 

eigenvalues .and.eigenfunctions .as are needed. 

More recently, Cotta (1993) and Mikhailov and Cotta (1994), also 
developed an approach to solve eigenvalue problems based on the 

ideas of Generalized Integral Transform Technique (GITT) which was 
demonstrated to be as efficient and safe as the sign-count method. 

Therefore, to alleviate such difficulties pointed out in the solution of 
this heat transfer problem, and to be able to perform heat transfer 

calculations in regions very close to the duct inlet with a high degree 
of accuracy, the ideas on Integral Transform Technique in conjunction 

with the well-established sign-count method and GITT are used in the 



present work, aimed at establishing benchmark results for this 

problem. 

  

ANALYSIS 

The rheological behavior of the non-newtonian fluid described here is 

given by the Herschel-Bulkley model in the following form: 

 (1.a) 

 (1.b) 

where,  is the shear stress,  is the yield stress,  is the shear 

rate, K is the consistency index of the fluid and n is the power-law 
exponent which is less than unity for pseudoplastic fluids (shear 

thinning materials) and greater than unity for dilatant fluids (shear 

thickening materials). 

For the fully-developed region of a circular or a parallel-plates duct, 
the momentum equation in the axial coordinate z, is simplified to 

yield: 

, (2.a) 

in 0 < r < b, z > 0 

subjected to the following boundary conditions 

 (2.b) 

 (2.c) 

where the exponent p denotes the channel geometry and is written 

as: 

 (3.a, b) 

Then, introducing equations (1) in equation (2.a), noting 

that  and after the integrations are performed, the fully-

developed velocity profile for Herschel-Bulkley fluids is given by: 



 (4.a) 

and, 

 

 (4.b) 

where bo represents the radius of the plug-flow region defined as: 

 (5) 

The velocity profile given by equations (4) for a Herschel-Bulkley fluid 

is split in two distinct regions, one for  which denotes the plug-

flow region where , and the fluid behaves like a solid plug, and 

another region for  where , and refers to that part of the 
fluid which is in shear flow (Forrest and Wilkinson, 1973). 

In the analysis of the thermal problem, we consider steady-state 
laminar forced convection heat transfer to hydrodynamically 

developed flow in the thermal entry region of an incompressible non-
newtonian fluid that follows the Herschel-Bulkley model, described by 

equations (1) and (4), inside both circular and parallel-plates ducts 
maintained at a prescribed wall temperature Tw, or at a prescribed 

wall heat flux qw. The fluid enters the channels with a constant 
uniform temperature To. 

Axial heat conduction and viscous dissipation are neglected and the 
physical properties are considered temperature independent. 



Then, the mathematical formulation of this heat transfer problem in 

dimensionless form is defined by: 

 (6.a) 

subjected to the boundary and inlet conditions: 

 ; 

 (6.b, c) 

 (6.d) 

where in the boundary conditions (6.c), the coefficient m identifies 

whether the duct wall is subjected to a prescribed temperature or to 
a prescribed heat flux, in the following form: 

 (7.a, b) 

In equations (6) above the following dimensionless groups were 
used: 

 

 

 (8.a-g) 

where Dh is the hydraulic diameter, defined as: 

 (9) 



The velocity profile given by equations (4) is written in dimensionless 

form by introducing the groups (8), or: 

 (10.a) 

and, 

 (10.b) 

where the additional groups employed in the above equations are 

Ro (the dimensionless radius of the plug-flow region), Y (the yield 
number) and f (the Fanning friction factor), i. e., 

 (11.a-c) 

The Fanning friction factor and the dimensionless radius of the plug-
flow region are functions of the Reynolds and yield numbers. The 

determination of both quantities is obtained by resolution of a simple 
transcendental equation, and due to space limitations is not described 

here. Table 1 below shows some results for the product f Re. 

The problem given by equations (6) can be solved by the classical 
integral transform technique (Mikhailov and Özisik, 1984; Cotta, 

1993). In order to make the boundary conditions (6.c) homogeneous, 

so as to obtain a better computational performance in the series 
expansion, a splitting-up procedure is proposed as (Mikhailov, 1977; 

Mikhailov and Özisik, 1984): 

 (12) 

 is the average temperature, defined as: 
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 (13) 

and, for the case of a prescribed wall heat flux, when we have all 
boundary conditions of the second kind, the average temperature is 

given a priori in the form: 

 (14) 

  

Table 1: Product f Re computed from the present analysis 

Yield Parallel–Plates Channel Circular Tube 

number f Re f Re 

Y n = 0.5 n = 0.75 n = 1 n = 1.5 n = 0.5 n = 0.75 n = 1 n = 1.5 

0 8.00000 13.9552 24.0000 69.6745 6.32455 10.1023 16.0000 39.7175 

1 10.6139 16.7855 26.9945 72.8860 8.79215 12.6895 18.6659 42.4731 

5 20.3899 27.5582 38.6656 85.8155 18.1880 22.7189 29.1995 53.5825 

10 31.9097 40.2208 52.5515 101.836 29.3964 34.7020 41.9439 67.4775 

20 54.0525 64.2640 78.8535 132.929 51.1030 57.7230 66.4215 94.7670 

  

Now, introducing equation (12) into equations (6), the following 

problems for the potentials  and  are obtained: 

 (15.a) 

 (15.b, c) 

with its respective solution: 



 (16) 

and, 

 (17.a) 

with initial and boundary conditions: 

 (17.b) 

 

 (17.c, d) 

The homogeneous problem defined above by equations (17) can also 

be solved by the classical integral transform technique. Then, 
following the procedures of this technique, the appropriate eigenvalue 

problem needed for its solution is given by: 

 (18.a) 

 (18.b,c) 



where  and  are, respectively, the eigenfunctions and 

eigenvalues. The eigenvalue problem allows for the development of 
the 

following integral transform pair: 

 , (19.a,b) 

 

where the normalization integral is given by: 

 (20) 

Then, taking the integral transform of the system given by equation 

(17), these equations are operated with , and we 

obtain the following ordinary differential equation for the transformed 

potential, : 

 (21.a) 

with the transformed inlet condition given by: 

 (21.b) 

The solution for the transformed potential given by equations (21) is 
readily obtained in the form: 

 (22) 

Therefore, introducing equation (22) into the inversion formula 

(19.a), the solution for  is determined as: 



 (23) 

Thus, equation(23) in conjunction with equation (16) 

for  complete the solution for the potential defined in 
equation (12). For the case of a prescribed wall heat flux, the 

average temperature is given by equation (14). For the case 

of a prescribed wall temperature, when it isn’ t determined a priori, it 

may be readily obtained by substituting the solution for , 

equation (12), with m = 0, into equation (13) to yield: 

 (24) 

The local Nusselt number for both situations is defined as: 

 (25) 

after substituting equation (12) for , and equation (24), for the 
case of a prescribed wall temperature, into equation (25) above, the 

two distinct situations result: 

, (26) 

for m = 0 

the asymptotic Nusselt number, ,for this case, is obtained from 
equation (26), by considering only the first term in the summation, to 

yield: 

 (27) 

while, 



, (28) 

for m = 1 

where,  is obtained from equation (16) in the form 

 (29) 

and in this case the asymptotic Nusselt number, , is given by 

equation (28), making , so that 

 (30) 

To complete the solution it is necessary to evaluate the 

eigenvalues, , the eigenfunctions  and the normalization 

integral of the eigenvalue problem (18). Here, for instance, we 

have used both the sign-count method established in references 
(Mikhailov and Vulchanov, 1983; Mikhailov and Özisik, 1984) and the 

generalized integral transform technique (Cotta, 1993; Mikhailov and 

Cotta, 1994) to determine the eigenvalues and other related 
eigenquantities necessary to compute the average temperature and 

the local Nusselt numbers from equations (24) and (26-30). 

  

RESULTS AND DISCUSSION 

First, the eigenvalues and other related eigenquantities were obtained 

by the two approaches cited above. The results obtained through the 
two approaches are in perfect agreement. Due to space limitations 

they are not listed here. Then, the average temperature, , and 

the local Nusselt numbers, , were calculated. 

In Tables 2.a to 2.d, the present results are validated against 

previous results for power-law fluids presented by Cotta and Özisik 
(1986a, 1986b), in the thermal entry region, for the case of Y = 0 

and n = 1/3, 1 and 3. From these tables it can be noticed that the 
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results are in excellent agreement, providing a direct validation of the 

numerical code developed in this work. 

Table 3.a shows the asymptotic Nusselt number from the present 

analysis and its comparison with those computed by Lin and Shah 
(1978) for various power-law exponents and yield numbers for both 

circular tubes and parallel-plates channels and considering a 
prescribed wall temperature. A similar analysis is also shown in Table 

3.b for the case of a prescribed wall heat flux. An excellent 
agreement between the results can be observed from these tables. 

  

Table 2.a: Local Nusselt numbers for parallel-plates channel 
(prescribed wall heat flux) 

Z 
Nu(Z) 

n = 1/3 N = 1 n = 3 

0.000001 175.73+ 175.77* 148.78+ 148.78* 137.01+ 137.02* 

0.000005 102.47 102.48 86.955 86.954 80.162 80.165 

0.000010 81.207 81.216 69.011 69.011 63.660 63.662 

0.000050 47.335 47.338 40.420 40.420 37.361 37.361 

0.000100 37.549 37.551 32.156 32.156 29.758 29.758 

0.000500 22.115 22.115 19.113 19.112 17.753 17.753 

0.001000 17.757 17.757 15.427 15.427 14.360 14.360 

0.005000 11.311 11.311 9.9878 9.9878 9.3569 9.3569 

0.010000 9.8802 9.8803 8.8032 8.8031 8.2774 8.2774 

0.050000 9.1488 9.1489 8.2355 8.2355 7.7772 7.7773 

0.100000 9.1484 9.1485 8.2353 8.2353 7.7771 7.7771 

0.200000 9.1484 9.1485 8.2353 8.2353 7.7771 7.7771 

  

Table 2.b: Local Nusselt numbers for circular tube (prescribed 

wall heat flux) 

Z 
Nu(Z) 

n = 1/3 n = 1 n = 3 

0.000001 147.69+ 147.72* 129.18+ 129.21* 121.61+ 121.64* 

0.000005 85.882 85.891 75.180 75.191 70.796 70.806 

0.000010 67.940 67.946 59.504 59.510 56.043 56.049 

0.000050 39.341 39.343 34.508 34.511 32.516 32.518 
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0.000100 31.068 31.069 27.274 27.276 25.706 25.707 

0.000500 17.973 17.974 15.812 15.813 14.911 14.911 

0.001000 14.239 14.239 12.538 12.538 11.824 11.824 

0.005000 8.5065 8.5066 7.4936 7.4937 7.0609 7.0610 

0.010000 6.9893 6.9893 6.1481 6.1481 5.7849 5.7850 

0.050000 5.1947 5.1948 4.5138 4.5139 4.2098 4.2098 

0.100000 5.0613 5.0613 4.3748 4.3748 4.0640 4.0640 

0.200000 5.0526 5.0527 4.3637 4.3637 4.0507 4.0507 

+ - Present work 

* - Cotta and Ozisik (1986a) 

  

Table 2.c: Local Nusselt numbers for parallel-plates channel 

(prescribed wall temperature) 

Z 
Nu(Z) 

n = 1/3 n = 1 n = 3 

0.000001 145.06+ 145.06* 122.94+ 122.94* 113.29+ 113.29* 

0.000005 84.465 84.466 71.830 71.830 66.284 66.284 

0.000010 66.887 66.887 56.999 56.999 52.643 52.643 

0.000050 38.901 38.901 33.379 33.379 30.915 30.915 

0.000100 30.826 30.827 26.560 26.560 24.642 24.642 

0.000500 18.126 18.127 15.830 15.830 14.767 14.767 

0.001000 14.566 14.566 12.822 12.822 11.999 11.999 

0.005000 9.4438 9.4439 8.5166 8.5166 8.0479 8.0479 

0.010000 8.4902 8.4902 7.7405 7.7405 7.3495 7.3495 

0.050000 8.2274 8.2275 7.5407 7.5407 7.1776 7.1776 

0.100000 8.2274 8.2275 7.5407 7.5407 7.1776 7.1776 

0.200000 8.2274 8.2275 7.5407 7.5407 7.1776 7.1776 

  

Table 2.d: Local Nusselt numbers for circular tube (prescribed 
wall temperature) 

Z 
Nu(Z) 

n = 1/3 n = 1 n = 3 

0.000001 121.74+ 121.74* 106.54+ 106.54* 100.31+ 100.31* 

0.000005 70.623 70.623 61.877 61.876 58.284 58.284 



0.000010 55.789 55.788 48.914 48.913 46.084 46.084 

0.000050 32.153 32.153 28.254 28.254 26.638 26.638 

0.000100 25.321 25.321 22.279 22.279 21.012 21.012 

0.000500 14.523 14.523 12.824 12.824 12.107 12.107 

0.001000 11.452 11.452 10.130 10.130 9.5670 9.5670 

0.005000 6.7613 6.7613 6.0015 6.0015 5.6673 5.6673 

0.010000 5.5375 5.5375 4.9161 4.9161 4.6372 4.6372 

0.050000 4.2223 4.2223 3.7100 3.7100 3.4678 3.4678 

0.100000 4.1762 4.1762 3.6581 3.6581 3.4107 3.4107 

0.200000 4.1753 4.1753 3.6568 3.6568 3.4090 3.4090 

+ - Present work 

* - Cotta and Özisik (1986b) 

  

Table 3.a: Asymptotic Nusselt numbers for the case of 
prescribed wall temperature 

Parallel-Plates Channel 

Y 
Nu 

n = 0.5 n = 0.75 n = 1 n = 1.5 

0 7.9398+ 7.940* 7.6897+ 7.690* 7.5407+ 7.541* 7.3714+ 7.372* 

1 8.1813 8.182 7.8299 7.830 7.6182 7.619 7.3941 7.395 

5 8.7016 8.701 8.2281 8.228 7.8833 7.884 7.4872 7.488 

10 8.9859 8.985 8.5102 8.511 8.1150 8.115 7.5957 7.597 

20 9.2409 9.239 8.8101 8.810 8.4018 8.401 7.7737 7.774 

Circular Tube 

Y 
Nu 

n = 0.5 n = 0.75 n = 1 n = 1.5 

0 3.9494+ 3.947* 3.7634+ 3.760* 3.6568+ 3.654* 3.5392+ 3.536* 

1 4.1707 4.168 3.8914 3.888 3.7287 3.725 3.5619 3.559 

5 4.6722 4.668 4.2757 4.274 3.9899 3.987 3.6589 3.656 

10 4.9474 4.944 4.5487 4.545 4.2209 4.218 3.7773 3.775 

20 5.1921 5.189 4.8326 4.828 4.4986 4.495 3.9695 3.967 

+ - Present work 

*- Lin and Shah (1978) 

  

Table 3.b: Asymptotic Nusselt numbers for the case of 
prescribed wall heat flux 



Parallel-Plates Channel 

Y 
Nu 

n = 0.5 n = 0.75 n = 1 n = 1.5 

0 8.7568+ 8.762* 8.4275+ 8.431* 8.2353+ 8.239* 8.0201+ 8.024* 

1 9.0739 9.080 8.6037 8.609 8.3306 8.335 8.0475 8.051 

5 9.8097 9.818 9.1225 9.127 8.6611 8.666 8.1592 8.163 

10 10.256 10.27 9.5155 9.522 8.9610 8.966 8.2902 8.294 

20 10.693 10.71 9.9652 9.974 9.3520 9.357 8.5088 8.513 

Circular Tube 

Y 
Nu 

n = 0.5 n = 0.75 n = 1 n = 1.5 

0 4.7458+ 4.743* 4.5012+ 4.498* 4.3636+ 4.362* 4.2141+ 4.212* 

1 5.0337 5.034 4.6601 4.659 4.4510 4.449 4.2411 4.240 

5 5.7474 5.789 5.1586 5.182 4.7724 4.783 4.3552 4.356 

10 6.1953 6.292 5.5465 5.605 5.0727 5.107 4.4952 4.502 

20 6.1953 6.292 5.5465 5.605 5.0727 5.107 4.4952 4.502 

+ - Present work 

* - Lin and Shah (1978) 

  

For the case of prescribed wall heat flux in a circular duct, Figure 

1 shows the evolution of the local Nusselt number as a function of the 

axial coordinate, Z, in the thermal entry region. The power-law 
exponent here considered was n = 1 (newtonian situation) and the 

yield numbers were Y = 0, 5, 10 and 20. The analysis permits the 
comparison among the results from the present work and those 

obtained by Lin and Shah (1978) over the range 5x10-3  1, and 
those by Nouar et al. (1994) over the range of 5x10-6  10-1. 

From this figure only a reasonable agreement is observed between 
the results obtained by the two analyses, with a better agreement for 

increasing axial coordinate Z, i.e., only in the vicinity of the fully-
developed region. Therefore, the two previous works, that have 

employed finite-differences schemes could not obtain numerical 
results with high accuracy in the thermal entry region. 

In Figures 2 and 3 the local Nusselt numbers are shown in the 
thermal entry region for the case of prescribed wall temperature for 

both adopted geometries and for various power-law exponents and 
yield numbers. The increase of the power-law exponent shows a 

Nusselt number decrease, while for an increasing yield number there 
is an increase in the Nusselt number. These results are systematically 

larger for parallel-plates channels than for circular tubes. 

http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66321998000100008&lng=en&nrm=iso#fig1
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Figures 4 and 5 present a similar analysis for the case of a prescribed 

wall heat flux and the same observations are noted in relation to the 
parameters studied, i.e., power-law exponents, yield numbers and 

geometries of the channels. Finally, from these figures it is also 

observed that the Nusselt numbers for the case of a prescribed wall 
heat flux are larger than those for the case of a prescribed wall 

temperature. 
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Figure 1: Comparison of the Nusselt number in the thermal entry 

region for prescribed wall heat flux in a circular tube. 

 

 



Figure 2 - Local Nusselt number in the thermal entry region for 

prescribed wall temperature in a parallel-plates channel; (a) n = 0.5; 
(b) n = 1.5 

 

 

Figure 3 - Local Nusselt number in the thermal entry region for 
prescribed wall temperature in a circular tube; (a) n = 0.5; (b) n = 

1.5 



 

 

Figure 4 - Local Nusselt number in the thermal entry region for 

prescribed wall heat flux in a parallel-plates channel; (a) n = 0.5; (b) 
n = 1.5 



 

 

Figure 5 - Local Nusselt number in the thermal entry region for 
prescribed wall heat flux in a circular tube; (a) n = 0.5; (b) n = 1.5 

  

  

CONCLUSIONS 

The problem of laminar convective heat transfer in the thermal entry 

and fully-developed flow regions of a Herschel-Bulkley fluid, for both 
prescribed wall temperature and prescribed wall heat flux, and for 

circular and parallel-plates channel, has been analyzed, with excellent 
computational performance, through the Integral Transform 

Technique in conjunction with the Sign-Count method and 



Generalized Integral Transform Technique (GITT) approaches for the 

solution of the related eigenvalue problem. 

Benchmark results are then tabulated and graphically presented for 

various power-law exponents and yield numbers. 

  

NOMENCLATURE 

b Radius of circular duct or one half the spacing between parallel-

plates, m 
bo Radius of plug-flow region, m 

Dh Hydraulic diameter, m 
f Fanning friction factor 

h (z) Local heat transfer coefficient, W/m2.K 
k Thermal conductivity, W/m.K 

K Consistency index of the fluid, N.sn/m2 

m Coefficient defined in equations (7) 
n Power-law exponent 

Ni Normalization integral 
Nu (Z) Local Nusselt number 

 Asymptotic Nusselt number 
p Parameter of channel geometry or pressure 

Pr Prandtl number 
qw Prescribed wall heat flux, W/m2 

r, R Radial coordinate, dimensional and dimensionless 
Re Reynolds number 

Ro Dimensionless radius of plug-flow region 
To Inlet temperature (K) 

Tw Prescribed wall temperature, K 
um Average flow velocity, m/s 

u(r), U(R) Velocity distribution, dimensional and dimensionless 

W (R) Defined by equations (8) 
Y Yield number 

z, Z Axial coordinate, dimensional and dimensionless 

Greek Symbols 

 Fluid thermal diffusivity, m2/s 

 Shear rate, s-1 

 Eigenvalues of problem (18) 

 Eigenfunctions of problem (18) 

 Density, Kg/m3 
 Shear stress, N/m2 

 Yield stress, N/m2 



 Dimensionless temperature distribution 

 Dimensionless average temperature 
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