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This work presents a new law of the wall formulation for recirculating 

turbulent flows. An alternative expression for the internal length 

which can be applied in the separated region is also presented. The 
formulation is implemented in a numerical code which solves the k-

 model through a finite volume method. The theoretical results are 

compared with the experimental data of Vogel and Eaton (J. of Heat 

Transfer, Transactions of ASME, vol.107, pp. 922-929, 1985). The 
paper shows that the present formulation furnishes better results 

than the standard k- formulation.  
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Introduction 

In past years, the k- model has become one of the most popular 

turbulence models, having been applied to a host of practical 

problems. This popularity has arisen mainly due to the combination of 
two factors: i) a relatively simple implementation procedure and, ii) a 

certain degree of generality in application. Despite these advantages, 
the k- model still presents some difficulties, in particular, in the 

description of near wall flows. 

To overcome these difficulties, several schemes were proposed which 

can be basically divided into two groups. In the first group (see, e.g., 
Chieng and Launder(1980), Ciofalo and Collins(1989)), the so-called 

high Reynolds number models, analytic solutions are advanced for 
the near wall region which can the used as boundary conditions in 
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numerical simulations of flow; they require a coarse grid. In the 

second group (see Patel, Rodi and Sheuerer(1985)), the low Reynolds 
number models, dumping functions are used to model the turbulence 

right down to the wall where the viscous effects dominate; they 

require a fine grid and, consequently, large computational time. The 
two groups present distinct features. Models that lie in the first group 

normally converge easily and are robust; they do not, however, 
describe well flows in a recirculation region. Models in the second 

group, as mentioned before, are computationally expense and 
difficult to converge. Much of the difficulty with the high Reynolds 

number models lies in the manner in which the near wall analytical 
solution is prescribed. The classical logarithmic expression commonly 

used is an exact result for flow over a flat plate, so that it does not 
apply for flow in separating and recirculating flow regions. 

In the present work, a new version of the classical law of the wall will 
be presented which is general enough to be employed all along the 

flow, including any existing separating and recirculating flow regions. 
An alternative formulation for the characteristic length in the near 

wall region is also presented (Cruz and Silva Freire, 1995). All results 
here presented are implemented in a numerical code to describe the 

flow behind a back-ward facing step (Figure 1). A comparison with 
the experimental data of Vogel and Eaton(1985) and with the 

standard k- model of Spalding and Launder(1974) is then presented. 

  

 

  

Governing equations 

In the present analysis, the averaged Navier-Stokes equations for an 
incompressible flow were used. These were complemented by the 
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turbulent kinetic energy equation and the mean dissipation rate 

equation which are show below. 

 

 

where ; C =0,09, C1=1,44;C2=1,92;  t=1,3;  K=1. 

  

Law of the wall formulation 

In the near wall region, where the inertia terms are small, the 

momentum equation can be approximated by the following relation: 

 

where  is the kinematic viscosity, w is the shear stress at the wall, 

and is P the pressure.  represents the turbulent shear stress 

and  is the density. 

In the above equation, the left hand side represents the total shear 

stress, which is furnished by the sum of the laminar and turbulent 

terms as described below: 

 

To evaluate the wall shear stress a simplified version of the law of the 
wall proposed by Cruz and Silva Freire (1995) will be used. In 

addition, an alternative equation for the characteristic length in the 
inner regions of the flow will be used. Both equations are shown 

below. 

 



 

where k Vón Karmán’s constant (=0.41), u = (w /  )
1/2 is the friction 

velocity and uR is given by the following equation: 

 

Equations (5) and (6) furnish a generalised law of the wall that can 
be applied to any flow region. Far away from a separation point, the 

wall shear stress is positive and dP/dx y <<w. Thus, equations (5) 

and (6) are reduced to: 

 

 

That is, the classical law of the wall. Near to a separation point, 

where w=0 the equation reduces to: 

 

Equation (9) is similar to the expression proposed by Stratford 

(1959), which describes the velocity profile in the near wall region of 

a turbulent flow that approaches a separation point, that is, in the 
flow region where the wall shear stress tends to zero. 

In the flow recirculation region where dP/dx y >> equations (5) and 

(6) can be written as 

 

 

The main difference between equations (6) and (7) and equations 
(10) and (11), besides the negative sign related to the flow direction, 

is the flow characteristic length near to the wall (equation (11)), 
which differs from the classical characteristic length given by equation 

(8). A major difference is that now the characteristic length in the 



reverse flow region depends directly on the pressure gradient. The 

experimental works of Simpson et al.(1981) and Thompson and 
Whitelaw (1985) showed that the classical characteristic length in the 

wall region, /u , is not appropriated to describe the separation 

phenomenon in the reverse flow region. Besides, according to 
Simpson et al.(1981), whatever the value of LCin the reverse flow 

region, the characteristic length cannot vary inversely with the shear 
stress at the wall, as does the classical characteristic length. Here, we 

point out that as the pressure gradient tends to zero, equation (6) 
reduces to the classical characteristic length equation. 

With a view to avoid an additional iterative numerical procedure, 

which could make it difficult for the computer code to converge, the 
following set of equations was used for the evaluation of the shear 

stress at the wall. 

 

 

 

 

 

where E=9.8 

The above set of equations results in a linearized procedure for the 

evaluation of the shear stress at the wall, what makes the 
calculations more robust and easier convergence of the numerical 

code. A first estimate for the wall shear stress is obtained through 
equation (14), which is next used to linearize the calculation of the 

wall shear stress furnished by equation (17). The calculation of the 
pressure gradient is also made indirectly through equation (15). 



The above formulation was employed for y+ >5 where y+ = yu / ; 

below this value a completely viscous region was considered to exist. 
Usually, the value y+>11 is adopted to delimit the viscous region; this 

value is then normally taken as a lower bound for an application of 

the logarithmic law of the wall (Chieng and Launder(1980) Ciofalo 
and Collins(1989)). This value, however, was obtained for flow over a 

flat plate subjected to a zero pressure gradient; it is thus not valid in 
the regions of separated and reverse flows. A detailed analysis on the 

appropriate value that must be taken to correctly represent the 
boundary between the law of the wall region and the viscous region 

in the separation and reverse flow regions, can only be made with the 
help of experimental data which are still scarce in literature. The 

present study suggests that the search for this value must be made 
in terms of the values of y/Lc and not of y+. 

The dissipation and the production terms for the turbulent kinetic 
energy are then given by 

 

 

  

Results 

The present formulation was used in the calculation of a back-ward 

facing step flow. The flow conditions are the same as those presented 
in the work of Vogel and Eaton(1985). The governing equations are 

discretized using a finite volume formulation coupled with a hybrid 
scheme for the treatment of the convective and diffusive terms 

simultaneously. The resulting set of equations was solved iteratively 
through a robust and extensively tested version of the numerical code 

TEACH-2E (Teaching Elliptic Axi-Symmetrical Characteristic 
Heuristically), which incorporates the algorithm SIMPLE, specific for 

pressure-velocity coupling in incompressible flows. The best relation 

for CPU time versus accuracy was obtained for a grid with 146x102 
points. 

In the next two figures, the velocity profiles in the near separation 

point region are shown. A comparison between the present 
formulation and results obtained with the standard k-model of 



Launder and Spalding (1974) and the experimental data of Vogel e 

Eaton (1985) is made. The present formulation is clearly superior to 
the standard formulation, furnishing better results for the very near 

wall region. In fact, the calculations performed with the standard 

model needed a larger numbr of iterations to converge (1200) that 
the present model (1100). We point out that the proposed procedure 

pictures well the small secondary recirculation region present in the 
flow near to the vertical face of the step (Figure 1). Other 

formulations that employ the classical logarithmic law of the wall in 
the original k-model equations (Launder and Spalding, 1974) but 

divide the flow near the wall in several layers give better results that 
the classical formulation but are still unable to reproduce the 

secondary recirculation region (Bortolus and Giovannini, 1995). 
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The figure 4 compares the friction coefficient obtained with the 
procedure here developed with results obtained with the standard k-

 model and the experimental data. Again, the present results give a 

better representation of the phenomenon before and after the 
reattachment point. 
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In Table 1, values of the reattachment point obtained by both 
theories, together with the experimental data are shown. The 

calculation made with the proposed theory furnishes a length for the 
recirculation zone closer to the experimental value when compared 

with the value obtained through the k- standard model. This 

happens because equation (17) gives higher values for the dissipation 

rate close to the wall causing a decrease in the turbulent viscosity in 
this region, what causes an increase in the recirculation region 

  

 

  

In figures 5 and 6 the near wall behavior of the root mean square of 

the velocity calculated by the present formulation, is compared with 
the experimental data and the standard k-epsilon formulation for two 

stations in the redevelopment region. The present work reproduces 
much better the experimental data, giving higher levels of the 

velocity fluctuation than the standard k-epsilon model, in the very 
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near wall region. This better agreement occurs basically, because the 

proposed formulation takes into account the effects of the pressure 
gradient in the dissipation and production terms (equations 18 and 

19), in the region after the reattachment of the flow. 

  

 

  



 

  

Conclusion 

In this work, a new formulation was presented for the description of 

the flow near to a reattachment point. This formulation was 
implemented in a computer code which solves the averaged Navier-

Stokes equations together with the k- model through a finite volume 

method. The present formulation was shown to furnish better results 

than the classical formulation at a smaller computational cost. 

Thus, the results show that complex turbulent flows subjected to 

separation, reattachment and recirculating regions can be adequately 
described through the use of appropriate law of the wall formulation. 

In addition, the use of the law of the wall formulation results in codes 
which are robust and cheap to run, an important feature in the 

solution of engineering problems. 
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