Periodic solutions for nonlinear telegraph equation via elliptic regularization

G.M. DE ARAÚJO¹, R.B. GÚZMAN¹ and SILVANO B. DE MENEZES²

¹Universidade Federal do Pará, FM, PA, Brasil
²Universidade Federal do Ceará, DM, CE, Brasil
E-mail: silvano@ufpa.br

Abstract. In this work we are concerned with the existence and uniqueness of T-periodic weak solutions for an initial-boundary value problem associated with nonlinear telegraph equations type in a domain $Q \subset \mathbb{R}^N$. Our arguments rely on elliptic regularization technics, tools from classical functional analysis as well as basic results from theory of monotone operators.

Mathematical subject classification: 35Q60, 35L15.

Key words: Telegraph equation, periodic solutions, elliptic regularization, Faedo–Galerkin method.

1 Introduction and description of the elliptic regularization method

In this paper we deal with the existence of time-periodic solutions for the nonlinear telegraph equation

$$w'' + w' - \Delta w + w + |w'|^{p-2}w' = f, \quad (x, t) \in Q = \Omega \times]0, T[. \quad (1.1)$$

Ω being a bounded domain in \mathbb{R}^N with a sufficiently regular boundary $\partial \Omega$.

All derivatives are in the sense of distributions, and by ξ' it denotes $\frac{\partial \xi}{\partial t}$. The function f we will be assumed as regular as necessary.

We shall use, throughout this paper, the same terminology of the functional spaces used, for instance, in the books of Lions [6]. In particular, we denote by
136 PERIODIC SOLUTIONS FOR NONLINEAR TELEGRAPH EQUATION

\[V = H_0^1(\Omega) \text{ and } H = L^2(\Omega). \]

The Hilbert space \(V \) has inner product \((.,.)\) and norm \(\|\cdot\|\) given by \((u, v) = \int_\Omega \nabla u . \nabla v \, dx, \|u\|^2 = \int_\Omega |\nabla u|^2 \, dx. \) For the Hilbert space \(H \) we represent its inner product and norm, respectively, by \((.,.)\) and \(|.|\), defined by \((u, v) = \int_\Omega uv \, dx, \|u\|^2 = \int_\Omega |u|^2 \, dx. \)

The telegraph equation appears when we look for a mathematical model for the electrical flow in a metallic cable. From the laws of electricity we deduce a system of partial differential equations where the unknown are the intensity of current \(i \) and the voltage \(u \), cf. Courant-Hilbert [4], p. 192–193, among others.

By algebraic calculations we eliminate \(i \) and we get the partial differential equation:

\[\frac{\partial^2 u}{\partial t^2} - C^2 \frac{\partial^2 u}{\partial x^2} + (\alpha + \beta) \frac{\partial u}{\partial t} + \alpha \beta u = 0, \]

called Telegraph Equation. In this case the coefficients \(C, \alpha, \beta \) are constants.

Motivated by this model, Prodi [10] investigated the existence of periodic solution in \(t \) for the equations

\[\frac{\partial^2 u}{\partial t^2} - \Delta u + u + \frac{\partial u}{\partial t} \frac{\partial u}{\partial t} = f, \]

in a bounded open set \(\Omega \) of \(R^N \) with Dirichlet zero conditions on the boundary.

\begin{align*}
|w'' - \Delta w + \gamma(w')| &= f \text{ in } Q = \Omega \times]0, T[, \\
w &= 0 \text{ on } \Sigma = \partial \Omega \times]0, T[, \\
w(0) &= w(T), \quad w'(0) = w'(T) \text{ in } \Omega,
\end{align*}

with \(\gamma(w') = |w'|^{p-2} w' \).

Because of this important physical background, the existence of time-periodic solutions of the telegraph equations with boundary condition for space variable \(x \) has been studied by many authors, see [7, 8, 9, 11] and the references therein.

We consider the existence of the solutions \(w(x, t) \) of Eq. (1.1), which satisfy the time-periodic (or \(T \)-periodic) condition

\[w(0) = w(x, T), \quad w'(x, 0) = w'(T), \quad x \in \Omega, \]

subject to the Dirichlet condition

\[w(x, t) = 0, \quad (x, t) \in \partial \Omega \times]0, T[. \]

(1.4)

Based on physical considerations, we restrict our analysis to the two dimensional space and standard hypothesis on \(f \) is assumed. Arguments within this paper are inspired by the work by Lions [6].

However, the classical energy method approach cannot be employed straightly, giving raise to a new mathematical difficulty. In fact, multiplying both sides of the equation (1.1) by \(w' \) and integrating on \(Q \), we have, using the periodicity condition, that

\[
\int_Q |w'(x, t)|^2 dx dt + \int_Q |w'(x, t)|^p dx dt = \int_Q f(x, t)w'(x, t) dx dt.
\]

In this way we obtain only estimates for

\[
\int_Q |w'(x, t)|^2 dx dt \quad \text{and} \quad \int_Q |w'(x, t)|^p dx dt,
\]

which is not sufficient to obtain solution for (1.1).

In view of this, as in Lions [6], we use an approach due to Prodi [10] which relies heavily on the following set of ideas: we investigate solutions for (1.1) of the type

\[
\begin{align*}
|w| &= u + u_0, \\
u_0 \text{ independent of } t \\
\int_0^T u(t) dt &= 0, \quad \text{the average of } u \text{ is zero.}
\end{align*}
\]

(1.5)

Substituting \(w \) given by (1.5) in (1.1), we obtain

\[
u'' + u' - \Delta u + u + |u'|^{p-2} u' = f + \Delta u_0 - u_0,
\]

(1.6)

which contains a new unknown \(u_0 \), independent of \(t \) by definition.

To eliminate \(u_0 \) in (1.6) we consider the derivative of (1.6) with respect to \(t \) obtaining

\[
\begin{align*}
\frac{d}{dt} (u'' + u' - \Delta u + u + |u'|^{p-2} u') &= \frac{df}{dt} \\
\int_0^T u(t) dt &= 0 \\
|u(0) = u(T), \quad u'(0) = u'(T). \end{align*}
\]

(1.7)
Suppose that we have found u by (1.7). Observe that by (1.7),
\[\frac{d}{dt}(u'' + u' - \Delta u + u + |u'|^{p-2}u' - f) = 0. \]
Thus u is solution of
\[u'' + u' - \Delta u + u + |u'|^{p-2}u' - f = g_0, \quad (1.8) \]
g_0 independent of t, in which g_0 is a known function.
Then u_0 is obtained as the solution of the Dirichlet problem:
\[\left| \begin{array}{l}
-\Delta u_0 + u_0 = -g_0 \\
u_0 = 0 \text{ on } \partial\Omega.
\end{array} \right. \quad (1.9) \]
Therefore, $w = u + u_0$ is the T – periodic solution of (1.1). We are going to resolve problem (1.7) by using elliptic regularization.
Observe that Lions [6] investigate the problem (1.2) by elliptic regularization, reducing the problem to the theory of monotonous operators, cf. Lions [6].
In this work we consider the time – periodic problem (1.1), (1.3) and (1.4) and solve it by elliptic regularization as an application of the monotony type results, cf. Browder [3]. Thus our proof is a simpler alternative to the earlier approaches existing in the current literature.
In fact, we consider the periodic problem
\[\left| \begin{array}{l}
w'' + w' - \Delta w + w + |w'|^{p-2}w' = f \quad \text{in } Q = \Omega \times]0, T[, \\
w = 0 \text{ on } \partial\Omega \times]0, T[, \\
w(x, 0) = w(x, T), \quad w'(x, 0) = w'(x, T) \quad \text{in } \Omega.
\end{array} \right. \quad (1.10) \]
Thus for $w = u + u_0$, the function u is determined by (1.7).
We begin the functional space
\[W = \left\{ v; \quad v \in L^2(0, T; V), \quad v' \in L^2(0, T; V) \cap L^p(Q), \\
v'' \in L^2(0, T; H), \quad \int_0^T v(s)ds = 0, \quad v(0) = v(T), \quad v'(0) = v'(T) \right\}. \quad (1.11) \]
The Banach structure of W is defined by
\[\|v\|_W = \|v\|_{L^2(0, T; V)} + \|v'\|_{L^2(0, T; V)} + \|v'\|_{L^p(0, T; L^p(\Omega))} + \|v''\|_{L^2(0, T; H)}. \]
In the sequel by $\langle \cdot, \cdot \rangle$ we will represent the duality pairing between X and X', X' being the topological dual of the space X, and by c (sometimes c_1, c_2, \ldots) we denote various positive constants.

Motivated by (1.7) we define the bilinear form $b(u, v)$ for $u, v \in W$ by

$$b(u, v) = \int_0^T \left[(u'' + u' + u, v') + (Au, v') + \langle \gamma(u'), v' \rangle \right] dt,$$

where $A = -\Delta$ and $\gamma(u') = |u'|^{p-2}u'$.

Then the weak formulation of (1.7) is to find $u \in W$ such that

$$b(u, v) = \int_0^T (f, v') dt,$$ \hspace{1cm} (1.12)

for all $v \in W$.

Let us point out that the main difficulty in applying standard techniques from classical functional is due to the fact that the bilinear form $b(u, v)$ is not coercive. To resolve this issue, we perform an elliptic regularization on $b(u, v)$, following the ideas of Lions [6]. Subsequently we apply Theorem 2.1, p. 171 of Lions [6] to finally establish existence and uniqueness of solution to elliptic problem (1.12).

2 Main result

As we said in the Section 1, the method developed in this article is a variant of the elliptic regularization method introduced in Lions [6] in the context of the telegraph equation.

Indeed, following the same type of reasoning cf. Lions [6], to obtain the elliptic regularization, given $\mu > 0$ and $u, v \in W$ we define

$$\pi_\mu(u, v) = \mu \int_0^T \left[(u'', v'') + (u', v') + (Au', v') \right] dt + \int_0^T (u'' + u' + Au + u + \gamma(u'), v') dt,$$ \hspace{1cm} (2.1)

where $A = -\Delta$ and $\gamma(u') = |u'|^{p-2}u'$.

It is easy to see, cf. Lemma 2.2, that the application $v \to \pi_{\mu}(u, v)$ is continuous on W. This allows to build a linear operator $B_{\mu} : W \to W', \langle B_{\mu}(u), v \rangle = \pi_{\mu}(u, v)$.

As we shall see, the linear operator B_{μ} satisfies the following properties:

(a) B_{μ} is a strictly monotonous operator; $\langle B_{\mu}(v) - B_{\mu}(z), v - z \rangle > 0$ for all $v, z \in W, v \neq z$;

(b) B_{μ} is a hemicontinuous operator; $\lambda \to \langle B_{\mu}(v + \lambda z), w \rangle$ is continuous in \mathbb{R};

(c) $B_{\mu}(S)$ is bounded in W' for all bounded set S in W;

(d) B_{μ} is coercive; $\frac{\langle B_{\mu}(v), v \rangle}{|v|_W} \to \infty$ as $|v|_W \to \infty$.

In view of these properties and as consequence of Theorem 2.1, p. 171 of Lions [6], the existence and uniqueness of a function $u_{\mu} \in W$ such that

$$\pi_{\mu}(u_{\mu}, v) = \int_0^T (f, v') \, dt, \quad \text{for all } v \in W,$$

follows immediately.

The Eq. (2.2) is called of elliptic regularization of problem (1.7).

Our main result is as follows

Theorem 2.1. Suppose $f \in L^{p'}(0, T; L^{p'}(\Omega))$, with $\frac{1}{p} + \frac{1}{p'} = 1$ and $p > 2$. Then there exists only one real function $w = w(x, t), (x, t) \in Q, w \in W$, such that

$$w = u + u_0, \quad u_0 \in H_0^1(\Omega) \quad (2.3)$$

$$u \in L^2(0, T; V) \quad (2.4)$$

$$u' \in L^p(0, T; L^p(\Omega)) \quad (2.5)$$

and w satisfying (1.1) in the sense of $L^2(0, T; V') + L^{p'}(0, T; L^{p'}(\Omega))$.

Now, we begin by stating some lemmas that will be used in the proof of the Theorem 2.1.
Lemma 2.1. If \(\int_0^T u(x, t) dt = 0 \) then
\[
\int_0^T \|u\|_V^2 dt \leq C \int_0^T \|u'\|_{L^p(\Omega)}^p dt \quad \text{and} \quad \int_0^T \|u\|_{L^2(0, T)}^2 dt \leq C \int_0^T \|u'\|_{L^p(\Omega)}^p dt,
\]
for \(u \) derivable with respect to \(t \) in \([0, T]\) and \(u \in L^2(0, T; V), u' \in L^2(0, T; V) \cap L^p(0, T; L^p(\Omega)) \).

Proof. The proof of Lemma 2.1 can be obtained with slight modifications from Lions [6] or Medeiros [8].

Lemma 2.2. The form \(v \rightarrow \pi_\mu(u, v) \) defined in (2.1) is continuous on \(W \).

Proof. By Cauchy-Schwarz inequality and Young’s inequality we have
\[
|\pi_\mu(u, v)| \leq c_\mu \|u\|_W \|v\|_{W'},
\]
where \(c_\mu \) is a constant positive that depend of \(\mu \). Then the result follows. \(\Box \)

Lemma 2.3. The operator \(B_\mu : W \rightarrow W', \langle B_\mu(u), v \rangle = \pi_\mu(u, v) \) is hemi-continuous, bounded, coercive and strictly monotonous from \(W \rightarrow W' \).

Proof. It follows of (2.6) that \(B_\mu(u) \) is bounded. From Lemma 2.1 and equality \(\int_0^T (\gamma(u'), u') dt = \|u'\|_{L^p(\Omega)}^p \), we obtain
\[
\langle B_\mu(v), v \rangle \geq c_\eta \|v\|_{W'}^2,
\]
because \(\int_0^T u(x, t) dt = 0 \). Thus \(B_\mu \) is \(W \)-coercive. The hemicontinuity of the operator \(v \rightarrow |v|^{p-2}v \) allow us to conclude that the operator \(B_\mu \) is hemicontinuous. Finally, the proof that the operator \(B_\mu \) is strictly monotonous follows as in Lions [6], p. 494. \(\Box \)

Proof of Theorem 2.1. The arguments above show that there exists a unique solution \(u_\mu \in W \) of the elliptic problem (2.2).

Explicitly the Eq. (2.2) has the form:

\[
\mu \int_0^T \left[(u''_\mu, \nu') + (u'_\mu, \nu') + ((u'_\mu, \nu')) \right] dt + \int_0^T (u''_\mu + u'_\mu + u_\mu, \nu') dt \\
+ \int_0^T (u_\mu, \nu') dt + \int_0^T \langle \gamma(u'_\mu), \nu' \rangle dt = \int_0^T (f, \nu') dt.
\]

(2.7)

We need let \(\mu \) goes to zero in order to obtain \(u_\mu \rightharpoonup u \) for the solution. Then we need estimates for \(u_\mu \).

In fact, setting \(v = u_\mu \) in (2.7) and observing that \(u_\mu \) and \(u'_\mu \) are periodic since they belongs to \(W \), we obtain

\[
\mu \int_0^T \left(|u''_\mu|^2 + |u'_\mu|^2 + \|u_\mu\|^2 \right) dt + \int_0^T |u'_\mu|^2 dt + \int_0^T \|u'_\mu\|^p_{L^p(\Omega)} dt \\
\leq \frac{1}{\epsilon p'} \int_0^T \|f\|_{L^{p'}(\Omega)}^{p'} dt + \frac{\epsilon}{p} \int_0^T |u'_\mu|^p_{L^p(\Omega)} dt.
\]

(2.8)

This implies that

\[
(u'_\mu) \text{ is bounded in } L^2(0, T; H) \text{ when } \mu \to 0
\]

(2.9)

\[
(u'_\mu) \text{ is bounded in } L^p(0, T; L^p(\Omega)) \text{ when } \mu \to 0
\]

(2.10)

\[
\mu \int_0^T \left(|u''_\mu|^2 + |u'_\mu|^2 + \|u'_\mu\|^2 \right) dt \leq c_1
\]

(2.11)

Since \(\int_0^T u_\mu dt = 0 \), we have by Lemma 2.1 that

\[
(u_\mu) \text{ is bounded in } L^p(0, T; L^p(\Omega))
\]

(2.12)

\[
\mu \int_0^T \|u_\mu\|^2 dt \leq c_2.
\]

(2.13)

Setting

\[
v(t) = \int_0^t u_\mu(\sigma) d\sigma - \frac{1}{T} \int_0^T (T - \sigma)u_\mu(\sigma) d\sigma,
\]

(2.14)
it implies
\[
\int_0^T v(t) \, dt = 0, \quad \forall v \in W
\tag{2.15}
\]
In fact, integrating both sides of the equation (2.14) on \([0, T]\), we obtain
\[
\int_0^T v(t) \, dt = \int_0^T \int_0^T u(\sigma) \, d\sigma \, dt - \int_0^T \int_0^T (T - \sigma)u(\sigma) \, d\sigma \, dt.
\]
On the other hand,
\[
\int_0^T \int_0^T (T - \sigma)u(\sigma) \, d\sigma \, dt = \int_0^T \int_0^T (T - \sigma)u(\sigma) \, d\sigma
\]
\[
= (T - \sigma) \int_0^T u(s) \, ds \bigg|_0^T + \int_0^T \int_0^\sigma u(s) \, ds \, d\sigma = \int_0^T \int_0^\sigma u(s) \, ds \, d\sigma.
\]
Therefore, we reach our aim (2.15).

Thus, taking into account (2.14) in (2.2) we get
\[
\mu \int_0^T [(u'' \mu, u'' \mu) + (u' \mu, u' \mu) + (Au' \mu, u' \mu)] \, dt
\]
\[
+ \int_0^T [(u'' \mu, u' \mu) + (u' \mu, u' \mu) + (Au' \mu, u' \mu) + (u' \mu, u' \mu) + (\gamma(u' \mu), u' \mu)] \, dt
\tag{2.16}
\]
\[
= \int_0^T (f, u \mu) \, dt.
\]

By using periodicity of \(u \mu, u'' \mu \in W\), we obtain
\[
\int_0^T (u'' \mu, u' \mu) \, dt = \int_0^T (u' \mu, u \mu) \, dt = \int_0^T (Au' \mu, u \mu) \, dt = 0.
\tag{2.17}
\]
On the other hand,
\[
\int_0^T (u'' \mu, u' \mu) \, dt = (u'' \mu(T), u' \mu(T)) - (u'' \mu(0), u' \mu(0))
\]
\[
- \int_0^T (u' \mu, u' \mu) \, dt = - \int_0^T |u' \mu|^2 \, dt.
\tag{2.18}
\]
From (2.17), (2.18) and estimate (2.9), we have
\[
\left| \int_0^T (u'' \mu, u' \mu) \, dt \right| \leq c_2 \quad \text{when } \mu \to 0. \tag{2.19}
\]
Also, from (2.10) and (2.12) we obtain
\[
\int_0^T |u'_\mu|^2 \, dt + \int_0^T (\gamma(u'_\mu), u_\mu) \, dt
\leq \int_0^T |u'_\mu|^2 \, dt + \|\gamma(u'_\mu)\|_{L^{p'}(0,T;L^{p'}(\Omega))} \|u_\mu\|_{L^p(0,T;L^p(\Omega))} \leq c_3.
\] (2.20)

Combining (2.17), (2.19) and (2.20) with (2.16) we deduce
\[
\int_0^T \|u'_\mu\|^2 \, dt \leq c_4.
\] (2.21)

It follows from (2.21) and (2.10) that there exists a subsequence from \((u_\mu)\), still denoted by \((u_\mu)\), such that
\[
\begin{align*}
 u_\mu &\longrightarrow u \text{ weak in } L^2(0, T; V) \\
 u'_\mu &\longrightarrow u' \text{ weak in } L^p(0, T; L^p(\Omega)) \\
 \gamma(u'_\mu) &\longrightarrow \chi \text{ weak in } L^{p'}(0, T; L^{p'}(\Omega)).
\end{align*}
\] (2.22) (2.23) (2.24)

Our next goal is to show that \(u\) verifies (1.7)_2 \(\sim\) (1.7)_3.

Indeed, it follows from (2.22) and (2.23) that \(u_\mu \in C^0([0, T]; H)\) and
\[
\lim_{\mu \to 0} \int_0^T (u'_\mu, \varphi) \, dt = \int_0^T (u', \varphi) \, dt, \ \forall \varphi \in L^2(0, T; H)
\] (2.25)
\[
\lim_{\mu \to 0} \int_0^T (u_\mu, \varphi) \, dt = \int_0^T (u, \varphi) \, dt, \ \forall \varphi \in L^2(0, T; V)
\] (2.26)

Setting \(\varphi = \theta v\) into (2.25) with \(\theta \in C^1([0, T]; \mathbb{R})\), \(\theta(0) = \theta(T)\) and \(v \in V\), we have
\[
\int_0^T (u'_\mu, \theta v) \, dt \longrightarrow \int_0^T (u', \theta v) \, dt
\] (2.27)
\[
\int_0^T (u_\mu, \theta' v) \, dt \longrightarrow \int_0^T (u, \theta' v) \, dt.
\] (2.28)

Again, by using periodicity of \(u_\mu\) and \(u'_\mu\), we obtain
\[
\int_0^T \frac{d}{dt} (u_\mu, \theta v) \, dt = (u_\mu(T), \theta(T)v) - (u_\mu(0), \theta(0)v) = 0.
\]
Thus
\[\int_0^T (u'_\mu, \theta v) \, dt + \int_0^T (u_\mu, \theta' v) \, dt = 0. \]

Since
\[\int_0^T (u', \theta v) \, dt + \int_0^T (u, \theta' v) \, dt = 0, \]
as \(\mu \to 0 \), we obtain
\[\int_0^T \frac{d}{dt}(u, \theta v) \, dt = 0. \]

This implies that
\[(u(T), \theta(T)v) - (u(0), \theta(0)v) = 0, \]
that is,
\[u(T) = u(0). \] (2.29)

The proof that \(u'(0) = u'(T) \) will be given later. Now, we go to prove that
\[\int_0^T u(t) \, dt = 0. \]

Taking the scalar product on \(H \) of \(\int_0^T u_\mu(\sigma) \, d\sigma = 0 \) with \(\varphi(t), \varphi \in L^2(0, T; H) \), we find
\[\left(\int_0^T u_\mu(\sigma) \, d\sigma, \varphi(t) \right) = 0. \]

Thus
\[\int_0^T (u_\mu(\sigma), \varphi(t)) \, d\sigma = 0. \]

Therefore,
\[\int_0^T (u(\sigma), \varphi(t)) \, d\sigma = \left(\int_0^T u(\sigma) \, d\sigma, \varphi(t) \right) = 0, \quad \forall \varphi(t) \in H, \] (2.30)
as \(\mu \to 0 \).

It follows from (2.30) that
\[\int_0^T u(t) \, dt = 0. \] (2.31)
From (2.9), (2.10), (2.11) and (2.13), we deduce

\[u'_\mu \rightharpoonup u' \text{ weak in } L^2(0, T; H), \]
\[u''_\mu \rightharpoonup u'' \text{ weak in } L^p(0, T; L^p(\Omega)), \]
\[\sqrt{\mu}u''_\mu \rightharpoonup \chi_1 \text{ weak in } L^2(0, T; H), \]
\[\sqrt{\mu}u'u_\mu \rightharpoonup \chi_2 \text{ weak in } L^2(0, T; H), \]
\[\sqrt{\mu}u'u_\mu \rightharpoonup \chi_3 \text{ weak in } L^2(0, T; V). \]

(2.32) \hspace{1cm} (2.33) \hspace{1cm} (2.34) \hspace{1cm} (2.35) \hspace{1cm} (2.36)

It follows from (2.34) that

\[\lim_{\mu \to 0} \sqrt{\mu} \int_0^T (u''_\mu, \varphi) \, dt = \int_0^T (\chi_1, \varphi) \, dt \quad \forall \varphi \in L^2(0, T; H). \]

(2.37)

Hence, taking \(\varphi = v'' \), \(v \in W \), in (2.37), we find

\[\lim_{\mu \to 0} \sqrt{\mu} \int_0^T (u''_\mu, v'') \, dt = \int_0^T (\chi_1, v'') \, dt. \]

Therefore

\[\lim_{\mu \to 0} \mu \int_0^T (u''_\mu, v'') \, dt = \lim_{\mu \to 0} \sqrt{\mu} \left(\int_0^T (u''_\mu, v'') \, dt \right) = 0. \]

(2.38)

By analogy, we prove that

\[\lim_{\mu \to 0} \mu \int_0^T (u'_\mu, v') \, dt = \lim_{\mu \to 0} \mu \int_0^T (Au'_\mu, v') \, dt = 0. \]

(2.39)

By using periodicity of \(u_\mu, v \in W \), we obtain

\[\int_0^T \frac{d}{dt}(u'_\mu, v') \, dt = 0. \]

This implies that

\[\int_0^T (u''_\mu, v') \, dt = - \int_0^T (u'_\mu, v'') \, dt. \]

(2.40)

It follows of (2.9) that

\[\int_0^T (u'_\mu, \varphi) \, dt \rightharpoonup \int_0^T (u', \varphi) \, dt \quad \forall \varphi \in L^2(0, T; H). \]

(2.41)
Taking \(\varphi = v'' \in L^2(0, T; H) \) in (2.41) we obtain

\[
\lim_{\mu \to 0} \int_0^T (u'_\mu, v'') \, dt = \int_0^T (u', v'') \, dt.
\] \hfill (2.42)

From (2.2), we can write

\[
\mu \int_0^T [(u''_\mu, v'') + (u'_\mu, v') + (Au'_\mu, v')] \, dt
\]

\[
+ \int_0^T [(u''_\mu, v') + (u'_\mu, v') + (Au'_\mu, v') + (u'_\mu, v') + (\gamma(u'_\mu), v')] \, dt
\]

\[
= \int_0^T (f, v') \, dt.
\] \hfill (2.43)

From (2.9), (2.10), (2.22), (2.38), (2.39), (2.40) and (2.42), we can pass to the limit in (2.43) when \(\mu \to 0 \) and obtain

\[
\int_0^T \left[(u', v'') + (u', v') + (Au', v') + (u, v') + (\chi, v') \right] \, dt
\]

\[
= \int_0^T (f, v') \, dt, \quad \forall v \in W.
\] \hfill (2.44)

Let \((\rho_v) \) be a regularizing sequence of even periodic functions in \(t \), with period \(T \).

Denote by \(\tilde{v} = u \ast \rho_v \ast \rho_v \), where \(\ast \) is the convolution operator. Integrating by parts, we find \(u' \ast \rho_v \ast \rho_v = u \ast \rho'_v \ast \rho_v \).

Observe by (2.12) and (2.21) that \(\tilde{v} \in C^\infty(\mathbb{R}; V) \), \(\tilde{v}' \in C^\infty(\mathbb{R}; L^p(\Omega)) \), \(\tilde{v}'' \in C^\infty(\mathbb{R}; H) \), \(v \) and \(\tilde{v}'' \) periodic in \(t \).

As in Brézis [2], p. 67, we to show that

\[
\int_0^T (u', \tilde{v}'') \, dt = 0.
\] \hfill (2.45)

In fact, we have

\[
\int_0^T \frac{d}{dt}(u', u' \ast \rho_v \ast \rho_v) \, dt = \int_0^T (u'', u' \ast \rho_v \ast \rho_v) + \int_0^T (u', u'' \ast \rho_v \ast \rho_v) \, dt
\]

\[
= 2 \int_0^T (u', u' \ast \rho'_v \ast \rho_v) \, dt = 2 \int_0^T (u', \tilde{v}'') \, dt.
\]
As
\[\int_0^T (u', u' \ast \rho_v) \, dt = \int_0^T \frac{1}{2} \frac{d}{dt} (u', u' \ast \rho_v) \, dt = 0,\]
due to periodicity of \(u'\) and \(\rho_v\), it follows (2.45).

Similarly, we show that
\[\int_0^T (u', \tilde{v}') \, dt = 0.\] (2.46)
\[\int_0^T (Au, \tilde{v}') \, dt = 0.\] (2.47)
\[\int_0^T (u, \tilde{v}') \, dt = 0.\] (2.48)

From (2.44) to (2.48) we obtain
\[\int_0^T (\chi, u') \, dt = \int_0^T (f, u') \, dt.\] (2.49)

Now, let us prove that \(\chi = \gamma(u')\).

In fact, from (2.2) and (2.1) we get
\[
\mu \int_0^T [\|u''_\mu\|^2 + |u'_\mu|^2 + \|u'_\mu\|^2] \, dt + \int_0^T [\|u'_\mu\|^2 + (\gamma(u'_\mu), u'_\mu)] \, dt
= \int_0^T (f, u'_\mu) \, dt.\]

(2.50)

We define
\[X_\mu = \int_0^T (\gamma(u'_\mu) - \gamma(\varphi), u'_\mu - \varphi) \, dt\]
\[+ \mu \int_0^T [\|u''_\mu\|^2 + |u'_\mu|^2 + \|u'_\mu\|^2] \, dt\]
\[+ \int_0^T |u'_\mu|^2 \, dt, \, \forall \varphi \in L^p(0, T; L^p(\Omega))\]

(2.51)

It follows from (2.50) and (2.51) that
\[X_\mu = \int_0^T (f, u'_\mu) \, dt - \int_0^T (\gamma(\varphi), u'_\mu - \varphi) \, dt - \int_0^T (\gamma(u'_\mu), \varphi) \, dt.\]

(2.52)
From the convergences above, we get

\[X_\mu \rightarrow X = \int_0^T (f, u') dt - \int_0^T (\gamma(\varphi), u' - \varphi) dt - \int_0^T (\chi, \varphi) dt. \quad (2.53) \]

Taking into account (2.53) into (2.49) yields

\[X = \int_0^T (\chi, u') dt - \int_0^T (\gamma(\varphi), u' - \varphi) dt - \int_0^T (\chi, \varphi) dt. \quad (2.54) \]

Combining (2.53) and (2.54), we obtain

\[X = \int_0^T (\chi - \gamma(\varphi), u' - \varphi) dt. \quad (2.55) \]

Since \(X_\mu \geq 0 \), for all \(\varphi \in L^p(0, T; L^p(\Omega)) \), then \(X \geq 0 \).

Thus,

\[\int_0^T (\chi - \gamma(\varphi), u' - \varphi) dt \geq 0, \quad \forall \varphi \in L^p(0, T; L^p(\Omega)). \quad (2.56) \]

Since \(\gamma : L^p(0, T; L^p(\Omega)) \rightarrow L^{p'}(0, T; L^{p'}(\Omega)), \gamma(u') = |u'|^{p-2}u' \), is hemicontinuous operator, the inequality above implies \(\chi = \gamma(u') \). It is sufficient to set \(\varphi(t) = u'(t) - \lambda w(t), \lambda > 0, w \in L^p(0, T; L^p(\Omega)) \) arbitrarily and let \(\lambda \rightarrow 0 \).

We consider \(\psi \in C^\infty([0, T]; V \cap L^p(\Omega)) \) satisfying

\[\begin{align*}
\int_0^T \psi \, dt &= 0, \\
\psi(0) &= \psi(T).
\end{align*} \quad (2.57) \]

Setting

\[v(t) = \int_0^T \psi \, d\sigma - \frac{1}{T} \int_0^T (T - \sigma) \psi(\sigma) \, d\sigma \quad (2.58) \]

in (2.44), yields

\[\int_0^T \left[(-u', \psi) + (u', \psi) + (Au, \psi) + (u, \psi) + (\gamma(u'), \psi) - (f, \psi) \right] dt = 0, \quad (2.59) \]

because \(v'(t) = \psi(t), \quad v''(t) = \psi'(t) \).
In particular, choosing \(\psi = \theta' v \), with \(\theta \in D[0, T[\) and \(v \in V \cap L^p(\Omega) \), in (2.59) we get

\[
\int_0^T \left[(-u', \theta'' v) + (u', \theta' v) + (Au, \theta' v) + (u, \theta' v) + (\gamma(u'), \theta' v) - (f, \theta' v) \right] dt = 0, \quad \forall \theta \in D[0, T[, \ v \in V \cap L^p(\Omega),
\]

or equivalently,

\[
\int_0^T (u'' + u' + Au + u + \gamma(u') - f, v) \theta' dt = 0,
\]

for all \(v \in V \cap L^4(\Omega) \) and \(\theta \in D[0, T[\).

Hence,

\[
\frac{d}{dt} [(u'' + u' + Au + u + \gamma(u') - f, v)] = 0, \quad \forall v \in V \cap L^p(\Omega).
\]

Consequently, there exists a function \(g_0 \) independent of \(t \) such that

\[
u'' + u' + Au + u + \gamma(u') - f = g_0, \text{ independent of } t.
\]

We verify that

\[
u''(\varphi) = \int_0^T u''(t)\varphi(t) dt = -\int_0^T u'(t)\varphi'(t) dt \in L^p(\Omega)
\]

\[
Au(\varphi) = \int_0^T (Au(t))\varphi(t) dt \in V'
\]

\[
\gamma(u')(\varphi) = \int_0^T \gamma(u')\varphi dt \in L^{p'}(\Omega)
\]

\[
u'(\varphi) = \int_0^T u'(t)\varphi(t) dt \in L^p(\Omega)
\]

\[
u(\varphi) = \int_0^T u(t)\varphi(t) dt \in L^2(\Omega)
\]

\[
f(\varphi) = \int_0^T f(t)\varphi(t) dt \in L^{p'}(\Omega),
\]

for all \(\varphi \in D[0, T[\), because \(u' \in L^p(0, T; L^p(\Omega)) \).

Thus, from (2.63) to (2.68) and (2.62), we can write

\[
g_0 \int_0^T \varphi(t) \, dt \in V' + L^p(\Omega).
\]

Therefore

\[
g_0 \in V' + L^p(\Omega). \tag{2.69}
\]

It follows from (2.62) that

\[
u'' = f + g_0 - u' - Au - u - \gamma(u') \in L^2(0, T; V') + L^p(0, T; L^p(\Omega)). \tag{2.70}
\]

Hence, we deduce from (2.62) that,

\[
\int_0^T (u'' + u' + Au + u + \gamma(u') - f - g_0, \psi) \, dt = 0, \tag{2.71}
\]

with \(\psi \) given in (2.57).

Thus

\[
\int_0^T (u'' + u' + Au + u + \gamma(u') - f - g_0, \psi) \, dt
\]

\[
= \int_0^T \frac{d}{dt} (u'(t), \psi) \, dt + \int_0^T \left[(-u'(t), \psi') + (u'(t), \psi) + (Au(t), \psi) + (u, \psi) + (\gamma(u'), \psi) - (f, \psi) - (g_0, \psi) \right] \, dt
\]

\[
= (u'(T), \psi(T)) - (u'(0), \psi(0)). \tag{2.72}
\]

Substituting (2.72) into (2.57) we obtain

\[
u'(0) = u'(T). \tag{2.73}
\]

Note that \(u'(0) \) and \(u'(T) \) make sense because \(u' \) and \(u'' \) belongs to \(L^p(0, T; L^p(\Omega)) \) and \(L^2(0, T; V') + L^p(0, T; L^p(\Omega)) \), respectively.

Let \(u_0 \) be defined by

\[
\begin{align*}
-\Delta u_0 + u_0 &= -g_0, \\
u_0 &= 0 \text{ on } \partial\Omega.
\end{align*} \tag{2.74}
\]
We recall that because \(n \leq 2 \) and \(p > 2 \), we have

\[
H_0^1(\Omega) \hookrightarrow L^p(\Omega) \hookrightarrow L^2(\Omega) \hookrightarrow L^p'(\Omega) \hookrightarrow H^{-1}(\Omega) = V',
\]

where each space is dense in the following one and the injections are continuous.

This and (2.69) implies that \(g_0 \in H^{-1}(\Omega) = V' \).

Finally, we apply the Lax-Milgram Theorem to find a unique solution \(u_0 \in H_0^1(\Omega) \) of the Dirichlet problem (2.74).

Thus, \(w = u + u_0 \in L^2(0, T; V) \) with \(w' \in L^p(0, T; L^p(\Omega)) \) satisfies

\[
\begin{align*}
|w'' + w' - \Delta w + w + |w'|^{p-2}w' &= f \\
in L^2(0, T; V') + L^p(0, T; L^p(\Omega)), \\
w(0) = w(T) \\
w'(0) = w'(T),
\end{align*}
\]

that is, \(w \) is a T-periodic weak solutions of problem (1.1).

Uniqueness. Let us consider \(w_1 \) and \(w_2 \) be two functions satisfying Theorem 2.1 and let \(\xi = w_1 - w_2 \).

We subtract the equations (1.1) corresponding to \(w_1 \) and \(w_2 \) and we obtain

\[
\xi'' + \xi' + A\xi + \xi + \gamma(w_1') - \gamma(w_2') = 0. \tag{2.75}
\]

Denoting by \((\rho_\mu)\) the regularizing sequence defined above, by a similar argument used in the proof of existence of solutions for Theorem 2.1 we obtain

\[
\xi' * \rho_\mu * \rho_\mu = \xi' * \rho_\mu' * \rho_\mu. \tag{2.76}
\]

Hence, by using (2.3) and (2.4), we can write

\[
\xi = \psi + \xi_0, \quad \text{with} \quad \xi_0 \in V \quad \text{and} \quad \psi \in L^2(0, T; V). \tag{2.77}
\]

Also, from (2.76) we get

\[
\xi' * \rho_\mu * \rho_\mu = \xi' * \rho_\mu' * \rho_\mu = \psi' * \rho_\mu * \rho_\mu. \tag{2.78}
\]

Thus, we have by (2.5) that \(\psi' \in L^p(0, T; L^p(\Omega)) \). Therefore \(\xi' * \rho_\mu * \rho_\mu \) is periodic and

\[
\xi' * \rho_\mu * \rho_\mu \in C^\infty([0, T]; L^p(\Omega)). \tag{2.79}
\]
Then by (2.70) we can write

$$\xi'' \in L^2(0, T; V') + L^{p'}(0, T; L^{p'}(\Omega)).$$

This and (2.79) show that \(\int_0^T (\xi'', \xi' \ast \rho_\mu \ast \rho_\mu) \, dt\) make sense and

$$\int_0^T (\xi'', \xi' \ast \rho_\mu \ast \rho_\mu) \, dt = 0. \quad (2.80)$$

Indeed,

$$\int_0^T \frac{d}{dt}(\xi', \xi' \ast \rho_\mu \ast \rho_\mu) \, dt = \int_0^T (\xi''', \xi' \ast \rho_\mu \ast \rho_\mu) \, dt$$

$$+ \int_0^T (\xi', \xi'' \ast \rho_\mu \ast \rho_\mu) \, dt = \int_0^T (\xi''', \xi' \ast \rho_\mu \ast \rho_\mu) \, dt$$

$$+ \int_0^T (\xi'', \xi' \ast \rho_\mu \ast \rho_\mu) \, dt. \quad (2.81)$$

Therefore,

$$\int_0^T (\xi'', \xi' \ast \rho_\mu \ast \rho_\mu) \, dt = \frac{1}{2} \int_0^T \frac{d}{dt}(\xi', \xi' \ast \rho_\mu \ast \rho_\mu) \, dt = 0, \quad (2.82)$$

because \(\xi'\) and \(\rho_\mu\) are periodic.

Similarly

$$\int_0^T (A\xi, \xi' \ast \rho_\mu \ast \rho_\mu) \, dt = 0 \quad (2.83)$$

$$\int_0^T (\xi', \xi' \ast \rho_\mu \ast \rho_\mu) \, dt = 0 \quad (2.84)$$

$$\int_0^T (\xi, \xi' \ast \rho_\mu \ast \rho_\mu) \, dt = 0. \quad (2.85)$$

Consequently, it follows from (2.75), (2.82), (2.83), (2.84) and (2.85) that

$$\int_0^T (\gamma(w'_1) - \gamma(w'_2), \xi' \ast \rho_\mu \ast \rho_\mu) \, dt = 0. \quad (2.86)$$

Hence using (2.86), letting \(\mu\) tend to zero, we have

$$\int_0^T (\gamma(w'_1) - \gamma(w'_2), w'_1 - w'_2) \, dt = 0, \quad (2.87)$$

that is, \(w_1' = w_2' \).

This implies that
\[
\xi = w_1 - w_2 = \theta, \quad \theta \text{ independent of } t.
\]

Integrating the last equality on \([0, T]\) and observing that \(w_i = u_i + u_0 \) yields
\[
\int_0^T (w_1 - w_2) \, dt = \theta \int_0^T \, dt = \theta T = T(u_0_1 - u_0_2),
\]
because \(\int_0^T u_i \, dt = 0 \). Thus \(\theta \in V \).

It follows from (2.83) that
\[
\int_0^T (A\xi, \xi' \ast \rho_\mu \ast \rho_\mu) \, dt = \int_0^T (A(w_1 - w_2), \xi' \ast \rho_\mu \ast \rho_\mu) \, dt = \int_0^T (A\theta, \theta' \ast \rho_\mu \ast \rho_\mu) \, dt = 0.
\]

This implies that, when \(\mu \to 0 \)
\[
\int_0^T (A\theta, \theta) = 0, \quad \forall \theta \in V.
\]

Therefore
\[
A\theta = 0, \quad \forall \theta \in V. \tag{2.88}
\]

Employing Green’s Theorem, we find
\[
(A\theta, \theta) = \int_\Omega -\Delta \theta \, dx = \int_\Omega (\nabla \theta)^2 \, dx - \int_{\Gamma} \theta \frac{\partial \theta}{\partial v} \, d\Gamma = \|\theta\|^2. \tag{2.89}
\]

Taking into account (2.89) into (2.88) yields \(\theta = 0 \), which proves the uniqueness of solutions of problem (1.2). Thus, the proof of Theorem 2.1 is complete. \(\square \)

REFERENCES

