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ABSTRACT. The land seismic data suffers from effects due to the near surface irregularities and the existence of topography. For obtaining a high resolution seismic

image, these effects should be corrected by using seismic processing techniques, e.g. field and residual static corrections. The Common-Reflection-Surface (CRS)

stack method is a new processing technique to simulate zero-offset (ZO) seismic sections from multi-coverage seismic data. It is based on a second-order hyperbolic

paraxial traveltime approximation referred to a central normal ray. By considering a planar measurement surface, the CRS stacking operator is defined by means of three

parameters, namely the emergence angle of the normal ray, the curvature of the normal incidence point (NIP) wave, and the curvature of the normal (N) wave. In this

paper the 2-D ZO CRS stack method is modified in order to consider effects due to the smooth topography. By means of this new CRS formalism, we obtain a high

resolution ZO seismic section, without applying static corrections. As by-products the 2-D ZO CRS stack method we estimate at each point of the ZO seismic section the

three relevant parameters associated to the CRS stack process.

Keywords: CRS stack, smooth topography, measurement surface curvature, near-surface irregularities.

RESUMO. Os dados śısmicos terrestres são afetados pela existência de irregularidades na superf́ıcie de medição, e.g. a topografia. Neste sentido, para obter uma

imagem śısmica de alta resolução, faz-se necessário corrigir estas irregularidades usando técnicas de processamento sı́smico, e.g. correições estáticas residuais e

de campo. O método de empilhamento Superf́ıcie de Reflexão Comum, CRS (“Common-Reflection-Surface”, em inglês) é uma nova técnica de processamento para

simular seções śısmicas com afastamento-nulo, ZO (“Zero-Offset”, em inglês) a partir de dados sı́smicos de cobertura múltipla. Este método baseia-se na aproximação

hiperbólica de tempos de trânsito paraxiais de segunda ordem referido ao raio (central) normal. O operador de empilhamento CRS para uma superf ı́cie de medição

planar depende de três parâmetros, denominados o ângulo de emergência do raio normal, a curvatura da onda Ponto de Incidência Normal, NIP (“Normal Incidence

Point”, em inglês) e a curvatura da onda Normal, N. Neste artigo o método de empilhamento CRS ZO 2-D é modificado com a finalidade de considerar uma superf́ıcie de

medição com topografia suave também dependente desses parâmetros. Com este novo formalismo CRS, obtemos uma seção śısmica ZO de alta resolução, sem aplicar

as correições estáticas, onde em cada ponto desta seção são estimados os três parâmetros relevantes do processo de empilhamento CRS.

Palavras-chave: empilhamento CRS, topografia suave, curvatura da superf́ıcie de medição, irregularidades próximas da superf́ıcie.
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INTRODUCTION

In order to obtain a high-resolution image of the earth sub-surface
the geophysicists use the multi-coverage seismic data acquisi-
tion, that yields to overlap registers of geological targets. In time
domain, the ZO section is the seismic image obtained by con-
sidering coincident sources and receivers. This is simulated by
stacking the amplitudes using a traveltime operator, which is de-
fined by means of stack parameters.

By the conventional seismic processing, the ZO section is
simulated using the well-known normal moveout/dip moveout
(NMO/DMO) stack method. Mann et al. (1999) presented a new
stack method, so-called Common-Reflection-Surface (CRS), ba-
sed on a hyperbolic second-order paraxial approach. By consi-
dering a planar measurement surface, it depends on three para-
meters, namely, the emergence angle βo of the normal ray, the
curvatures KN I P and KN of the two hypothetic wavefront, so-
called NIP and N waves, respectively (Hubral, 1983).

Land seismic data are in general affected by the existence
of surface topography and irregularities in the near-surface (e.g.
weathering base and weathering velocity). In the conventional
seismic processing, these effects are interpreted by deviations
from hyperbolic NMO correction in the common-midpoint (CMP)
gather. The topography effects are corrected by using field and
residual static corrections. By applying specifically the field static
correction, based on refraction seismic data, we remove the most
part of these traveltime anomalies. Nevertheless, this correction
usually does not account for rapid changes of the topography, in
the weathering base, and of the weathering velocity. It is very sen-
sitive to the choice of parameters involved in the picking phase.

According to Guo & Fagin (2002), land surveys should always
be processed considering a floating datum that represents the to-
pography. They showed that velocity analysis from a flat seismic
reference datum creates errors to estimate the depth and interval
velocities, even in the case of a flat topography, due to deviations
of the take-off angles of the seismic ray paths.

Chira-Oliva & Hubral (2003) studied the sensibility of the
interval velocity and reflector depth by considering a hypothetical
circle measurement surface. They showed the NMO velocity by
considering the curvature of the earth surface is more accurate
to recover the interval velocities and the depths of the reflectors
than the NMO velocities obtained by using a planar measurement
surface approach. Chira-Oliva & Hubral (2003) and Zhang et
al. (2002), respectively, presented the 2-D ZO CRS formalism for
measurement surface with smooth and rugged topography. Chira-
Oliva et al. (2001) modified the 2-D ZO CRS operator for inclu-

ding effects of near-surface inhomogeneity. In this paper, the 2-D

ZO CRS stack performance is tested by considering a multi-layer
model with smooth topography.

THEORY

The 2-D ZO CRS stacking operator depends on three parameters of
two hypothetical waves, namely the normal-incidence-point (NIP)
and Normal (N) waves (Hubral, 1983). These parameters are the
emergence angle of the normal ray, and the radii of curvatures of
the NIP and N waves. The emergence point, X0, of the normal ray
is called central point. The NIP wave propagates upwards from a
point source located at the normal ray incidence point; and the N
wave propagates upwards starting at the reflector, like an explo-
ding reflector source.

Based on the hyperbolic second-order paraxial traveltime ap-
proach, the 2-D ZO CRS stacking operator with smooth topo-
graphy is given by (Chira-Oliva et al., 2001),

t2(xm, h) =
(

t0 + 2
sin β0

∗

v1
(xm − x0)

)2

+ 2 t0
v1

(
cos2 β∗

0

RN
− cos β∗

0 K0

)
(xm − x0)

2

+ 2 t0
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(
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0
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0 K0

)
h2 .

(1)

Equation (1) describes the reflection time t of the paraxial ray
S PG in the vicinity of a normal (ZO) ray X0 N I P X0 (Fi-
gure 1a). The ZO travel-time and the central point coordinate are
t0 and x0, and v1 is the near-surface velocity of the P-P wave at
the central point X0. The coordinates xm and h are, respectively,
the midpoint and half-offset referred to the x1-axis, that is tan-
gent to the topography surface with origin at the central point X0

(see Figures 1a,b). The emergence angle of the normal ray at the
central point is β∗

0 . The parameter K0 is the local curvature of
the earth surface at a point of the acquisition line, that is positive
(or negative) if this line falls below (or above) its tangent at X0.
The radii of curvatures of the emergence hypothetical NIP and N
wavefronts at X0 are RN I P and RN respectively.

In order to normalize the processing coordinates, we apply a
transformation from the local (x1, x3) into the global cartesian
system (x, z) in Figure 1b. The midpoint and half-offset coordi-
nates, (xm, h) and (x ′

m, h′), in the local and global coordinate
cartesian systems, respectively, are related by the expressions

h = h′

cos α∗
0

, xm = x ′
m

cos α∗
0

, (2)
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X
0

Figure 1 – a) Ray diagram for a paraxial ray in the vicinity of a normal ray in a 2-D laterally inhomogeneous medium. Local coordinates system (x1, x3) for a curved
measurement surface referred to point X0. b) Transformation of the local coordinates, xm and h, to its global coordinates xm

′ and h′. The local dip angle of the
tangent at X0 (x1-axis) is defined by α∗

0 . The angle between the normal ray and the vertical line through X0 (z-axis) is β0, and β∗
0 is the angle between the normal

ray and the normal to the tangent at X0.

where α∗
0 is the dip angle of the tangent x1-axis at point X0.

Introducing the relationships (2) into equation (1), we find
(e.g. Chira-Oliva & Hubral, 2003; Chira, 2003)
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(3)

We now consider a pure diffraction, i.e., the situation in which the reflector reduces to a single diffraction point. In this case, the NIP
and N waves are coincident, i.e. both propagate from a point source at NIP and have identical radii of curvatures at X0, RN ≡ RN I P .
As a consequence, equation (3) becomes
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(4)

Equation (4) depends on two CRS parameters (RN I P , β∗
0 )

associated to the NIP wave. This equation will be used at the first
step of the CRS strategy. The CRS stacking operator defined by
equation (4) is interpreted as an approach of the pre-stack Kir-
chhoff migration operator with smooth topography.

Setting the condition h′ = 0 to the general hyperbolic travel-
time equation (3), the CRS stacking operator for reflected events

in the ZO configuration becomes
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(5)
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Following Garabito et al. (2001) the three optimal CRS pa-
rameters (β∗

0 , RN I P , RN ) are searched by three steps. At the
first step we use formula (4) to determine β∗

0 and RN I P . At the
second step we use formula (5) to determine RN ; and at the third
step we use formula (3) to refine the three parameters.

2-D ZO CRS STACK

In the 2-D situation, for each point P0(x0, t0) at the ZO section
to be simulated, the amplitudes in the seismic data will be sum-
med (stacked) along the CRS surface defined by equation (3). The
resulting (stacked) amplitude is assigned to the point P0.

The three CRS stacking parameters are estimated by means
of an optimization process, having the semblance as objective
function. The CRS stacking optimization problem consists of
estimating the parameters that maximize the semblance. In ge-
neral, the problem requires a combination of multi-dimensional
global and local optimization algorithms. The mathematical in-
tervals defined for the parameters are −π/2 < β∗

0 < π/2,
−∞ < RN I P , RN < ∞. Optimization strategies to estimate
these parameters are found in the literature (e.g. Müller (1999);
Birgin et al. (1999); Garabito et al. (2001)).

In this paper, we apply the strategy given by Garabito et al.
(2001) to estimate the CRS parameters triplet, but using the new
equations (3), (4) and (5).

CRS STACK PROCESSING STRATEGY

The proposed strategy to carry out the CRS method involves a
combination of global and local search processes and is divided
into three steps. The curvature, K0, of the seismic line at each
central point is supposed to be a priori known or calculated by
means of some interpolation method by using elevation values. At
the first and second steps we used the Simulated Annealing (SA)
algorithm (Sen & Stoffa, 1995), and at the third step the Quasi-
Newton (QN) algorithm (Bard (1974); Bard (1981)). Each step is
performed on each sample point P0(x0, t0) that pertains to the
ZO section to be simulated. The objective function is the sem-
blance calculated for each point in the ZO section.

Step I: Pre-Stack Global Optimization

The multi-coverage pre-stack seismic data is the input. The in-
verse problem consists of simultaneously estimating the two pa-
rameters β∗

0 and RN I P that provide the maximum semblance
value, according equation (4). The results of this step are: 1) ma-
ximum coherence section, 2) emergence angle, β∗

0 - section,

3) NIP-wave radius of curvature, RN I P -section, and 4) simu-
lated (stacked) ZO section.

Step II: Post-Stack Global Optimization

The post-stack seismic data is the input. The inverse problem
consists of estimating the single parameter, RN , that provides
the maximum semblance according to equation (5), in which the
previously obtained parameter, β∗

0 , is kept fixed. In this step the
results are: 1) maximum coherence section, 2) N-wave radius of
curvature, RN -section, and 3) re-stacked simulated ZO (stacked)
section.

Step III: Pre-Stack Local Optimization

The multi-coverage pre-stack seismic data from step I is the input.
The inverse problem consists of estimating the best parameter tri-
plet (β∗

0 , RN I P , RN ) that provides the maximum semblance. In
this case the CRS stacking operator is equation (3), applied to the
full multi-coverage data set with suitable apertures. In this step
the results are: 1) maximum coherence section, 2) optimized β∗

0 -
section, 3) optimized RN I P -section, 4) optimized RN -section,
and 5) optimized ZO (stacked) section.

Example

In order to test the CRS stacking algorithm we applied it to a
synthetic data set computed for 2-D homogeneous layered mo-
del shown in Figure 2. The model is constituted of four layers
above a half-space. The acquisition system is lying on a smooth
topography line. Based on this model, we generated a synthe-
tic data set of multi-coverage primary reflections, using the ray-
tracing algorithm, SEIS88 (Červený & Psensik, 1988). In order to
test the accuracy of the CRS method, it was added random noise
with signal-to-noise ratio of S/N = 10. The data set consis-
ted of 201 common-shots (CS) with 72 receivers with interval of
50 meters. The minimum offset was 50 meters. The source signal
was a Gabor wavelet with 40 Hz dominant frequency and the time
sampling was 4 ms. An example of part of these data is presented
in Figure 3, represented by a CS section.

Figure 4 shows the ray-theoretical modelled ZO section with
random noise added. Figure 5 shows the simulated ZO section
that results from the application of the CRS stack method for a
curved measurement surface. Due to the fact that the CRS method
involves a larger number of traces during the stacking process,
the simulated ZO section presents enhanced primary reflection
events, with larger signal-to-noise ratio than the corresponding
ones in the modelled ZO section (Figure 4). Figure 6 shows the

Revista Brasileira de Geof́ısica, Vol. 23(1), 2005



PEDRO CHIRA-OLIVA, JOÃO CARLOS R. CRUZ, GERMAN GARABITO, PETER HUBRAL and MARTIN TYGEL 19

Figure 2 – 2-D model constituted of four isovelocity layers about a half-space with curved interfaces and curved measurement surface. Interval velocities are 1.75
km/s, 2.4 km/s, 3.5 km/s, 4.65 km/s and 5.5 km/s, respectively.
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Figure 3 – Example of a CS section of multi-coverage pre-stack seismic data of the model of Figure 2.
The ratio signal/noise is 10.

maximum coherence (semblance) section that corresponds to the
best parameters. We note that the coherence values become smal-
ler for larger traveltimes (deeper events). Figures 7, 8 and 9 show
the sections of emergence angle and radii of curvature of the NIP
and N waves, respectively. These sections correspond to global
maxima determined at the third step.

A comparison between the emergence angles, β∗
0 , estimated

by the CRS algorithm (curves of red points) and by modelling
(curves of blue points), respectively, is shown in Figure 10. We
can see the emergence angle has been well estimated along all
reflectors. Figures 11 and 12 show the analogous comparison
for the other parameters, RN I P e RN , respectively. These para-
meters are also well estimated, with the exception of the locations
where abrupt changes of the curvature K0 are present (Figure 13).
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Figure 4 – ZO section with random noise (ratio S/N = 10) obtained by forward modelling.
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Figure 5 – Simulated ZO section with the ZO CRS stack by using the multi-coverage seismic data
with random noise (ratio S/N = 10).

CONCLUSIONS

A new formula for the CRS stack method that considers the smo-
oth topography of the acquisition line has been tested in synthetic
data sets with successful results. The parameters were correctly
estimated, excepting the regions where there are abrupt changes
of the curvature of the topography line. In these regions, the er-
rors of the estimated parameters increase with depth. Besides the
simulated ZO sections, we have obtained the coherence section

and the sections referred to the attributes of the NIP and N waves.
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Figure 10 – Comparison between CRS (curve of red points) and model-derived (curve of blue points) emergence angles β∗
0 .

The parameter for each interface are plotted separately: a) first, b) second, c) third and d) fourth interface of the model of Figure 2.
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Figure 11 – Comparison between CRS (curve of red points) and model-derived (curve of blue points) radius of curvature, RN I P .
The parameter for each interface are plotted separately: a) first, b) second, c) third and d) fourth interface of the model of Figure 2.
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Figure 12 – Comparison between CRS (curve of red points) and model-derived (curve of blue points) radius of curvature, RN .
The parameter for each interface are plotted separately: a) first, b) second, c) third and d) fourth interface of the model of Figure 2.
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Figure 13 – Curvature of measurement surface along the acquisition line. It presents the points of abrupt changes of the
curvature of the model of Figure 2.
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