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In this work, a method was developed for the application of red mud, an alkaline leaching waste, 
from a bauxite processing plant located in northern Brazil (Amazon region) as starting material for 
heavy clay products. Samples were prepared by pressing blends of red mud and clay, which were then 
fired at temperatures from 900 °C to 1190 °C. Characterization was carried out by chemical analysis, 
differential thermal analysis (DTA) and X-ray diffraction (XRD), and the following ceramic properties 
were evaluated: water absorption, linear shrinkage and flexural strength. In order to evaluate the Na+ 
stability in the dense ceramic, leaching tests were also carried out on the specimens after sintering 
process. Results indicated that samples with 50 and 70 wt% of red mud are proper for being used in 
the production of ceramic bodies, due to its excellent properties, mainly high mechanical resistance 
and low water absorption, showing thus, an option to minimizing the environmental impacts caused 
by the aluminum industry.
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1. Introduction
Mining wastes accumulate at higher rates as a 

consequence of the increasing consumption of metals in 
the world and the growing exploitation of mineral deposits. 
Their disposal raises several environmental situations. 
Special problems occur related to residues which contain 
heavy metal ions, surfactants, acids, etc., which may affect 
surface and underground water quality1,2. One of these 
wastes, known as red mud, contains a significant amount 
of oxides, such as ferric oxide, calcium oxide, titanium and 
sodium oxide, among others, that are the main constituents, 
besides trace elements like Ga, V, Sr, Zr, Y, Th, U, etc. Most 
of these compounds are originally present in the bauxites 
and others are added during Bayer process for the alumina 
production (e.g., NaO)[3]. The presence of such alkaline 
oxides in the red mud lead to a corrosive action on metals, 
siliceous materials and living beings4.

Solving or minimize these problems involves mainly 
an improvement and a better optimization of production 
in order to generate the least amount of waste. Among the 
several industrial segments, the alumina industry faces 
a world-class problem namely the increasing disposal of 
solid wastes that is very common in the Bayer processing5,6. 
Generally, 0.8-1.5 tons of red mud is generated from each 
ton of alumina produced. With the quick development of 
alumina industry all over the world, the disposal of red mud 
has caused serious environmental problems mainly due to 

its large quantities and strong alkalinity (pH 10.0-12.5)[7]. 
As same bauxites contain radioactive elements, the red mud, 
has characteristic radioactivity, which can accumulate in the 
dam construction and storage yards endanger human health4.

Tsakiridis et al.8 estimated that over 66 million tons of 
red mud is impounded annually in the world (around 85 
alumina plants worldwide). The disposal of such a huge 
amount of alkaline waste is very expensive (up to 1-2% of 
the alumina price), and requires large areas of occupation 
(approximately 1 km2 per 5 years for a 1 Mtpy alumina 
plant). Alunorte company, located at Pará State in the 
Brazilian Amazonia, produces 4.40 million tons/year of 
alumina, with an expected 6.26 million tons/year capacity9 
which will produce an even larger volume of red mud as 
waste.

As a corrosively hazardous material, the comprehensive 
utilization of red mud has attracted more and more interest 
from the scientific community. Thus, a number of efforts 
have been made in order to find possible applications for 
this material, as for example, as catalysts materials10, fillers 
in PVC11, pigment12, for the recovery of some valuable 
elements13, cements manufacturing8,14-16, water treatment17,18, 
among others. Unfortunately, several reuse techniques 
consume relatively small amounts of waste compared to 
the huge amount produced. Therefore, one of the most 
appealing application should be the reuse of red mud as 
a starting material for the production of construction and 
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building materials4,19-22. Sglavo et al.20 investigated the use 
of red mud as a raw component in clay mixtures for ceramic 
bodies production and the influence in the amount of red 
mud (0-20 wt%) and sintering temperature (950-1050 °C) on 
the final properties of the produced material was analyzed. 
Recently, Qin and Wu4, prepared a novel ceramic material 
at 1020-1050 °C using 30 wt% of red mud. The authors 
investigated the radiation level, and concluded that the 
ceramic materials produced using red mud are not harmful 
to humans beings or to the environment.

Considering all the concerns described above, the main 
purpose of the present work was to develop a method to 
verify how the bauxite waste (red mud) from Brazilian 
Amazon region could be used as a raw material in the 
ceramic industry, using it not only as an additive, i.e., in 
small quantities, but in high concentrations. Thus, studies 
were performed about the ceramic properties of the sintered 
material and the data were compared with the values found 
in scientific literature directed to red ceramics. Leaching 
tests on the final products were also carried.

2. Material and Methods

2.1. Raw materials

The red mud studied in this work was supplied by 
Alunorte company (Amazon region, Para State, Brazil. The 
sample was collected directly from the tailings basin and its 
moisture content is around 9%. The clay used for the blends 
occurs as a compact brown material with red mottling related 
to tertiary geological formations. Samples were collected 
from outcrops located nearby the Alunorte plant.

The raw materials were characterized by X-ray 
diffraction (XRD), differential thermal analysis (DTA) and 
chemical analysis. The mineralogical composition of the 
bulk materials (randomly oriented samples) was carried out 
by Powder X-ray diffractometry (XRD), using a Panalytical 
X’Pert PRO MPD (PW3040/60) diffractometer with a 
ceramic X-ray tube (λ CuKα1=0.1540598 nm), Kβ Ni filter 
and a X´celerator PSD (Position-Sensitive Detector). The 
following analysis conditions were used: scan range from 
5 to 70° 2θ, 40 kV and 30 mA, 0.02° step size and 10s 
time/step; divergent slit of 1/4° and anti scattering of 1/2°; 
mask of 10 mm; sample movement set to spinning with a 
rotation time of 1.0 s. Differential thermal analysis (DTA) 
of ≈ 17 mg of sample were carried out in a Thermal Science 
Thermoanalyzer model PL-STA. The experiments used 
alumina crucibles and N2 atmosphere with a flow rate of 
50 cc min–1 at a heating time of 20 °C min−1 to 1100 °C. Total 
chemical analysis (major oxides and trace elements) were 
obtained by using a combination of methods, including wet 
analytical methods and Atomic Absorption Spectrometry.

2.2. Sample preparation and sintering methods

Samples of clay and red mud were dried at 110 °C 
until constant weight, mixed and homogenized with water, 
using the following proportions: 70 wt% red mud / 30 wt% 
clay and 50 wt% red mud/50 wt% clay; the percentages 
of red mud were established from Hildebrando et al.23. 
The mixtures were then dried at 110° C/24 h, grinded and 
screened through a 80 Mesh Tyler sieve. Batches of eight 
green specimens (10.0 cm × 5.0 cm × 1.0 cm bodies) were 
pressed (axial compressive strength) at 20 MPa.

The ceramic bodies were named as follow: RM-50 
(50% red mud and 50% clay) and RM-70 (70% red mud 
and 30% clay). During firing in a muffle electrical furnace, 
the heating and cooling rates were kept at 10 ºC/min and the 
specimens were maintained at the maximum temperature 
(900 °C, 950 °C, 1000 °C, and 1190 °C) for 3 hours. Such 
sintering temperatures were used according to Monteiro and 
Vieira24, and several others references from the scientific and 
technological literature.

2.3. Mechanical properties

The samples were submitted to the following tests: water 
absorption (WA) determined from the weight differences 
between the as-sintered and water soaked samples (immersed 
in boiling water for 2 hours), linear shrinkage (LS) evaluated 
from the variation of the length of the rectangular pieces, 
and flexural strength (FS). Flexural strength was obtained 
by the three points bend test performed in a universal test 
machine25,26.

2.4. Sodium contents in the samples after 
sintering

Samples were submitted to leaching tests, according 
to the technical standard NBR 10005[27], in order to detect 
possible polluting factors from the soluble sodium in the 
ceramic bodies.

3. Results and Discussion
The chemical composition of the raw materials dried at 

110 °C is shown in Table 1.
Red mud possesses high amount of fusing material, as 

expected, such as sodium and iron which can reduce the 
sintering temperature for adequately formulated mixtures. 
The amount of silica (SiO2) present in the red mud is low 
(19.9%) so it cannot be used alone as it is not enough to 
form the glass that would give mechanical resistance to the 
sintered material.

The clay is mainly constituted by SiO2 (51.8%), Al2O3 
(24.5%) and Fe2O3 (10.9%) and a low amount of fusing 
compounds (Na2O + K2O < 0.35%). These features render 

Table 1. Chemical composition (wt %) of the raw materials.

Fe2O3 TiO2 CaO SiO2 Al2O3 Na2O K2O MgO LOI*

Red mud
Clay

38.0
10.9

3.83
1.72

0.87
0.02

19.9
51.8

19.0
24.5

8.58
< 0.06

0.12
0.27

0.04
0.09

10.1
10.3

*LOI (loss on ignition).
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the clay economically unfit for use in red ceramic products, 
due to its high sintering temperatures.

The differential thermal analysis (DTA) for the clay, 
shown in Figure 1, portrays two endothermic peaks, one 
at 130 °C due to water loss and another at 550 °C due to 
dehydroxilation that is characteristic to kaolinite. Right after 
these peaks a low intensity exothermic peak is observed near 
the 970 °C, characteristic of the formation of the silicon-
aluminum spinel28.

The DTA for the red mud, shown in Figure 1, portrays 
a wide endothermic band in the range 100 °C-280 °C 
and can be discussed in two parts. The first in the range 
100 °C-150 °C is related with the evaporation of physical 
water content of the red mud while the second part 
150 °C-280 °C can be explained by the loss of zeolitic 
water and by the dehydrolixation of ferrous compounds; 
these bands are in good agreement with the reported by 
Castaldi et al.29. The endothermic peak at 310 °C corresponds 
to the temperature of decomposition of gibbsite29, and that 
acoording to Atasoy30 gibbsite partially dehydroxylates to 
boehmite and the remained part of the gibbsite goes to a 
transition of alumina at 314 °C.

Figure 2 presents the X-ray patterns of red mud and clay 
dried at 110 °C. In general, the minerals that are present 

Figure 1. Differential thermal analysis (DTA) of red mud and clay.

Figure 2. X-ray patterns of red mud and clay.

Figure 3. Gresification diagram of samples RM-70 and RM-50.

in the sample of red mud, can be identify and classify in 
two categories. In the first, phases from bauxite such as 
gibbsite, hematite, goethite, anatase and quartz; this results 
are similar to those reported by Rivas Mercury et al.31. The 
second category, phases formed during Bayer process such 
as sodalite and cancrinite29. In turn, the clay is constituted 
mostly by the clay mineral kaolinite and other mineral 
phases such as hematite, quartz and anatase.

Figure 3 and 4 displays the results of ceramic properties 
conducted on the bodies after sintering process. Figure 3 
shows the curves for water absorption and linear shrinkage. 
This type of curves is also known as gresification diagram, 
which is associated with the efficiency of the sintering 
process. The sintering of a material usually causes many 
changes in its properties. In ceramics, the changes generally 
are accompanied by shrinkage as the temperature is 
increased. During this process, the particles are bound 
together, reducing porosity and making difficult the water 
absorption by the material23. In general, the curves in 
Figure 3 show a decrease in the water absorption values 
as the linear shrinkage is increased, while the sintering is 
carried out. According to Brazilian norms32,33 the maximum 
water absorption for bricks and roofing tiles are 22% 

Figure 4. Flexural strength of samples RM-70 and RM-50.
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and 20%, respectively. It is observed in Figure 3 that the 
specification for bricks roofing tiles was achieved in the 
studied temperature range (900-1150 °C) for sample RM-50 
while the sample RM-70 attained only above 950 °C

One of the most significant modifications of the ceramic 
products after sintering is the improvement in its mechanical 
resistance34. Samples RM-70 and RM-50 showed an 
increasing trend in such values, and this is substantiated 
by the presence of alkaline fluxes in the formulations 
from red mud, which cause densification by liquid phase 
sintering with the creating more glass phases to form glass 
network structures. It is important mentioning that the values 
measured (>10 MPa) were above the limits recommended 
for red ceramics by technical standards32,33 and were better 
that found in previous works20. Figure 4 evidenced the 
variation with temperature of the flexural strength for the 
samples studied.

As can be seen in Figure 5, the concentration of sodium 
decreased at higher sintering temperatures. This is due to 

reactions mainly between sodium present in the red mud and 
silicates in the clay, when both raw materials are blended. 
This strongly contributes for the formation of more vitreous 
phase in the sintered material.

For both samples (RM-70 and RM-50) the concentrations 
of sodium were into a tolerable range, given the limit of 
200 ppm adopted by the Ministry of Health – Brazilian 
Standard for Fresh Water. This reveals that products 
fabricated from the mixtures of red mud and clay in both 
compositions would not be aggressive to the environment 
and would classify as Waste Class III – inert according to 
standards NBR 1000435.

4. Conclusions
The application of red mud in mixtures with clay offers 

an interesting alternative for the fabrication of products of 
heavy clay industry, especially because of the low cost of raw 
materials, in particular the red mud which is produced in large 
quantities as bauxite processing waste. Samples with 50 and 
70 wt% of red mud demonstrated all the possibilities of being 
used in the production of bricks and compact blocks given 
their excellent qualities mainly high mechanical resistance 
and low water absorption. The sintering process that took 
place into the mixture of clay and red mud was able to fix 
the soluble sodium which was largely present in the mixture. 
The leaching tests showed that the increasing in sintering 
temperature led to a decreasing in concentration of sodium 
residuals, owing to reactions that occurred during sintering. 
Further studies should be performed in order to check the 
occurrence of efflorescence of soluble salts and leaching 
from other metals present in the red mud should be evaluated.
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Figure 5. Leaching tests of ceramic bodies (RM-70 and RM-50).
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