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Abstract

In the structural health monitoring (SHM) Ąeld, vibration-based damage
identiĄcation has become a crucial research area due to its potential to be applied
in real-world engineering structures. Assuming that the vibration signals can be
measured by employing diferent types of monitoring systems, when one applies
appropriate data treatment, damage-sensitive features can be extracted and used
to assess early and progressive structural damage. However, real-world structures
are subjected to regular changes in operational and environmental conditions (e.g.,
temperature, relative humidity, traic loading and so on) which impose diicul-
ties to identify structural damage as these changes inĆuence diferent features in
a distinguish manner. In this thesis by papers, to overcome this drawback, novel
output-only methods are proposed for detecting and quantifying damage on struc-
tures under unmeasured operational and environmental inĆuences. The methods are
based on the machine learning and artiĄcial intelligence Ąelds and can be classiĄed
as kernel- and cluster-based techniques. When the novel methods are compared to
the state-of-the-art ones, the results demonstrated that the former ones have better
damage detection performance in terms of false-positive (ranging between 3.6Ű5.4%)
and false-negative (ranging between 0Ű2.6%) indications of damage, suggesting their
applicability for real-world SHM solutions. If the proposed methods are compared
to each other, the cluster-based ones, namely the global expectationŰmaximization
approaches based on memetic algorithms, proved to be the best techniques to learn
the normal structural condition, without loss of information or sensitivity to the
initial parameters, and to detect damage (total errors equal to 4.4%).

Keywords: Structural health monitoring, Machine learning, Damage identiĄcation,
Damage detection, Environmental conditions, Operational conditions.



Resumo

No campo da monitorização de integridade estrutural (SHM), a identiĄ-
cação de dano baseada em vibração tem se tornado uma área de pesquisa crucial
devido a sua potencial aplicação em estruturas de engenharia do mundo real. As-
sumindo que os sinais de vibração podem ser medidos pelo emprego de diferentes
tipos de sistemas de monitorização, quando aplica-se o tratamento de dados ade-
quado, as características sensíveis a dano podem ser extraídas e usadas para avaliar
dano estrutural incipiente ou progressivo. Entretanto, as estruturas do mundo real
estão sujeitas às mudanças regulares nas condições operacionais e ambientais (e.g.,
temperatura, umidade relativa, massa de tráfego e outros), as quais impõem diĄcul-
dades na identiĄcação do dano estrutural uma vez que essas mudanças inĆuenciam
diferentes características de forma distinta. Nesta tese por agregação de artigos, a
Ąm de superar essa limitação, novos métodos output-only são propostos para de-
tectar e quantiĄcar dano em estruturas sob inĆuências operacionais e ambientais
não medidas. Os métodos são baseados nos campos de aprendizagem de máquina
e inteligência artiĄcial e podem ser classiĄcados como técnicas baseadas em kernel
e clusterização. Quando os novos métodos são comparados àqueles do estado da
arte, os resultados demonstraram que os primeiros possuem melhor performance de
detecção de dano em termos de indicações de dano falso-positivas (variando entre
3,6Ű5,4%) e falso-negativas (variando entre 0Ű2,6%), sugerindo potencial aplicabili-
dade em soluções práticas de SHM. Se os métodos propostos são comparados entre
si, aqueles baseados em clusterização, nomeadamente as abordagens de expectânciaŰ
maximização global via algoritmos meméticos, provaram ser as melhores técnicas
para aprender a condição estrutural normal, sem perda de informação ou sensibili-
dade aos parâmetros iniciais, e para detectar dano (erros totais iguais a 4,4%).

Palavras-chave: Monitorização de integridade estrutural, Aprendizado de máquina,
IdentiĄcação de dano, Detecção de dano, Condições ambientais, Condições opera-
cionais.
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1 Introduction

1.1 Research context

Engineering structures such as aircraft, buildings, roads, railways, bridges, tun-

nels, dams, power generation systems, rotating machinery and offshore oil platforms are

present and play a crucial role in modern societies, regardless of geographical location or

economical development. The safest, economical and most durable structures are those

that are well managed and maintained. Health monitoring represents an important tool

in management activities as it permits one to identify early and progressive structural

damage (FARRAR; WORDEN, 2007). The massive data obtained from monitoring must

be transformed in meaningful information to support the planning and designing mainte-

nance activities, increase the safety, verify hypotheses, reduce uncertainty and to widen

the knowledge and insight concerning the monitored structure.

Structural health monitoring (SHM) is certainly one of the most powerful tools for

infrastructure management (BROWNJOHN, 2007). The SHM process involves the obser-

vation of a structural system over time using periodically sampled response measurements

from an array of sensors, the extraction of damage-sensitive features from these measure-

ments, and the statistical analysis of these features to discriminate the actual structural

condition. For long-term SHM, the output of this monitoring process is periodically up-

dated, providing information regarding the ability of the structure to perform its intended

function in light of the inevitable aging and degradation due to the operational and en-

vironmental variability (SOHN, 2007; KULLAA, 2011). After extreme events such as

earthquakes or blast loadings, SHM is used for rapid condition screening and aims to

provide, in nearly real time, reliable information regarding the integrity of the structure.

The process of implementing an autonomous damage identification strategy for

civil, mechanical, and aerospace engineering infrastructure is traditionally referred to as

SHM (FARRAR; DOEBLING; NIX, 2001). This strategy should be as detailed as possi-

ble to describe the abnormal impact on the structural system. In a broad sense, develop-

ments on this area can be broken down into damage detection, diagnosis, and prognosis.

Nonetheless, damage diagnosis can be subdivided into location, type, and severity. Thus,

as depicted in Figure 1, the hierarchical structure of damage identification can be decom-

posed in five levels, which answer the following questions (FIGUEIREDO, 2010).
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1. Is the damage present in the system (detection)?

2. Where is the damage (localization)?

3. What kind of damage is present (type)?

4. What is the extent of damage (severity)?

5. How much useful lifetime remains (prognosis)?

Detection

Localization

Type

Severity

Prognosis

Diagnosis

Level 5

Level 4

Level 3

Level 2

Level 1

Figure 1 – Hierarchical structure of damage identification (FIGUEIREDO, 2010).

Usually, the answers to the aforementioned questions can be made in a sequential

manner. For example, the answer to the severity of damage can be made with a priori

knowledge of the type of damage. Note that damage prognosis at step five can not be

accomplished without an understanding of the damage accumulation process. For further

discussion on the concept of damage prognosis, one should see (FARRAR; J.LIEVEN,

2007). Even though the damage identification hierarchy is composed of five levels, this

thesis poses the SHM process mostly in the context of the first level (damage detection)

and, for some extent, the fourth level is also addressed through damage quantification.

There are arguably two main approaches to SHM: physics- and data-based. The

physics-based approach uses the inverse problem technique to calibrate numerical models

(e.g., finite element models) and attempts to identify damage by relating the measured

data from the structures to the estimated data from the models. On the other hand, the

data-based approach is rooted in the machine learning field, where algorithms are essential

to learn (or to model) the structural behavior from the experience (or past monitoring

data), following the same principle of the human brain, and to perform pattern recognition
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for damage identification. These algorithms can be applied in supervised or unsupervised

learning (WORDEN; MANSON, 2007).

In the SHM field, supervised learning refers to the case where data from undam-

aged and damaged conditions are available to train the algorithms. When applied in a

supervised manner and coupled with physics-based models, the algorithms can be used to

better determine the type of damage, the severity of damage, and the remaining useful life-

time. Unsupervised learning refers to the case where training data are only available from

the undamaged condition. When applied in an unsupervised manner, machine learning

algorithms are typically used to answer questions regarding the detection and localization.

Nevertheless, in certain cases, it can also perform relative quantification of damage. Note

that for high capital expenditure structures where the SHM systems are applied, such

as most civil infrastructure, the unsupervised algorithms are often required because only

data from the undamaged condition are normally available (FARRAR; WORDEN, 2013).

Several unsupervised methods have been proposed to detect structural damage

by combining pattern recognition and machine learning (FIGUEIREDO et al., 2011;

TORRES-ARREDONDO et al., 2014; SANTOS et al., 2016). This combination is of-

ten accomplished through a phase of a statistical pattern recognition (SPR) paradigm

that establishes two steps:

1. Learn a model which comprises undamaged data from the normal structural condi-

tion, considering nearly all operational and environmental influences.

2. Test the learned model by classifying new undamaged or damaged data, i.e., assess-

ing the actual condition of the monitored structure.

It is important to emphasize that, currently, most of the techniques used in the

SPR are output-only, i.e., only the damage-sensitive features (often derived from vibration

response measurements (CARDEN; FANNING, 2004)) need to be measured, not the

operational and environmental parameters.

In this thesis, novel output-only methods are proposed for damage detection in

the context of the SPR for SHM. These techniques are relevant in cases where damage-

sensitive features extracted from the structural responses are affected by changes caused

by operational and environmental variability and changes caused by damage.
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1.2 Motivation

The motivations of this study are related to economic and safety considerations.

The complete transition of the SHM technology from research to practice depends deeply

on the economical and life safety benefits it can provide (CHANG; FLATAU; LIU, 2003).

Besides the main goal to prevent catastrophic failures and the usefulness to evaluate the

structure performance, as any investment, the SHM systems must prove to be a manner

of reducing the overall life-cycle maintenance costs related to a structure. For example,

currently for new bridges, the initial investment of an SHM system ranges between 0.5%

and 3% of the total bridge construction cost. Additionally, every year the maintenance

and data management typically add 5–20% of the SHM system cost. Thereby, over the

first 10 years of a medium-size bridge, the SHM system may require an investment in the

order of 4.5–9% of the total construction cost (INAUDI; MANETTI; GLISIC, 2009).

In the light of the above cost estimates, an SHM system must be designed as an

integrated system that can be developed and maintained during the construction stage,

as well as over the structure lifetime. During the construction stage, the SHM system can

potentially be used to supervise the construction and thus put pressure on the contractors

to deliver a high-quality product, as well as to support the construction of new lightweight

structures. Monitoring during service stage provides information related to structural

behavior under predicted loads (also registers the effects of unpredicted overloading). For

instance, overviews of the motivations to deploy the SHM systems on bridges are well

discussed by several authors (KO; NI, 2005; MAGALHAES; CUNHA; CAETANO, 2012;

FIGUEIREDO; MOLDOVAN; MARQUES, 2013; YAPAR et al., 2015).

Therefore, the data obtained by monitoring are useful for damage detection, evalu-

ation of safety and determination of the residual capacity of structures. Incipient damage

detection via robust data-based methods – the main goal of this thesis – is particularly im-

portant because it leads to appropriate and timely interventions, avoiding refurbishment

costs or, in some cases, the closure, dismantling and even collapse of structures.

In Brazil, for example, there have been several cases of structural collapses (as de-

picted in Figure 2), such as the Guararapes Battle Viaduct (Minas Gerais, 2014) (GLOBO,

2016b), the Bridge over the Aracatú River (Pará, 2014) (GLOBO, 2014), and the Bridge

over the Santo Antônio River (Mato Grosso do Sul, 2016) (GLOBO, 2016a). The former

collapse occurred during the construction stage of the viaduct (evaluated at that moment

in R$ 905 million), killing two people and injuring other twenty-two. In the other cases,

although there were no injuries, the collapses blocked the crucial connection between two

cities during many days, impacting negatively on the local economy and daily activi-

ties. These scenarios demonstrate a clear demand for structural monitoring and incipient

damage detection to assist timely maintenance during construction or service.
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Figure 2 – Structural collapses in Brazil (from left to right): the Guararapes Battle Viaduct
(Minas Gerais, 2014), the Bridge over the Aracatú River (Pará, 2014), and the Bridge
over the Santo Antônio River (Mato Grosso do Sul, 2016).

To summarize, even though the main goal of the SHM systems is for incipient dam-

age identification and, ultimately, to prevent catastrophic failures, from a more general

perspective, these systems can be designed to:

1. Provide structural monitoring during the construction stage with the potential ben-

efit of reducing manufacturing costs and to permit the construction of lightweight

structures by fully exploiting the material strength;

2. Validate design assumptions by measuring the actual structural response, which can

be used to improve design specifications for future structures;

3. Detect anomalies and/or damage at early stages;

4. Reduce and/or support visual inspections;

5. Provide the owners with a real-time tool to support the decision-making process,

i.e., reduce unnecessary ad hoc maintenance, extend the structures’ lifetime by pre-

ventive maintenance, and reduce downtime costs, traffic management and control;

6. After extreme events, such as earthquakes and blast loading, the SHM systems can

be used for condition assessment regarding the integrity of the structure;

7. Finally, the main goal to deploy the SHM systems in engineering structures will

always be to prevent catastrophic failures.

1.3 Problem

SHM performs the continuous monitoring of damage-sensitive features which are

responsive to a certain type of structural damage. Among several feasible features (see

section 2.4), the natural frequencies are usually considered, as they are intrinsically related

to the global and local stiffness of a monitored structure.
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Through the monitoring of damage-sensitive features over time structural damage

can be detected. However, in real-world SHM applications, this approach requires some

precaution to be applied because of two drawbacks. Firstly, many features are not mea-

sured directly, instead they are estimated from monitoring data using feature extraction

techniques. Natural frequencies, for example, can be estimated from vibration response

measurements, such as accelerations, which may introduce estimation errors. Secondly,

almost all features are sensitive not only to changes caused by structural damage but also

to changes in temperature, traffic loading, wind speed or relative humidity. These prob-

lems highlight that, in practical SHM solutions, the accuracy of the estimated features

and the operational and environmental variability should be accounted for. In this thesis,

the main focus is on the second problem.

When the environmental variability on features is considered, an important issue

is that the changes in environmental conditions are much slower than the lowest struc-

tural eigenperiod for fixed conditions (REYNDERS; WURSTEN; ROECK, 2014). If a

structure is monitored for a short period of time (seconds or minutes), it acts as a linear

time-invariant system. This structural dynamics behavior may change when a long-term

monitoring (hours, days, months or years) is performed, i.e., becomes a time-varying sys-

tem. The variations in temperature can be pointed out as the main cause for this change,

due to the nonlinear temperature-stiffness relationships of structural materials.

One of the main real examples presented in literature is the long-term monitoring

performed in the Z-24 Bridge, subjected to environmental variability (ROECK, 2003).

The damage-sensitive features extracted from vibration response measurements of the

Z-24 Bridge were natural frequencies which combine one-year monitoring of the healthy

condition, influenced by operational and environmental variability, with realistic damage

scenarios. As demonstrated in Figure 3, the first 3470 observations correspond to the

features extracted within the undamaged condition under operational and environmental

variability. The last 462 observations correspond to the damage progressive testing period,

which is highlighted, especially in the second frequency, by a clear decay in the magnitude

of this frequency.

For the baseline condition period of the Z-24 Bridge, the observed jumps in the

natural frequencies are associated to the asphalt layer in cold periods, which contributes

significantly to the stiffness of the bridge, as evidenced in Figure 3. This fact indicates the

need for a data normalization procedure (see subsection 2.5.1) to attenuate environmental

variability, i.e., a means of removing the normal influences on features. Note that in this

case, the changes caused by temperature are larger compared to those caused by damage.

If not properly accounted for, changes in the structural response characteristics caused

by temperature can, potentially, result in false indications of damage.
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Figure 3 – Influence of temperature on the first four natural frequencies of the Z-24 Bridge:
1–3470 baseline condition (BC) and 3471–3932 damaged condition (DC).

Currently, there are two data-driven approaches to separate changes in features

caused by operational and environmental influences from those caused by damage. The

first approach, also known as input-output, consists of measuring the parameters related

to operational and environmental variations, such as traffic loading, temperature, wind

speed or relative humidity, as well as the structural response at different locations. Then,

a data-driven (or black-box) model can be identified with these parameters as inputs and

the corresponding features as outputs, i.e., the features corresponding to the normal con-

dition can be parametrized as a function of the measured operational and environmental

conditions (PEETERS; ROECK, 2001; NI et al., 2005). However, a major challenge with

this approach is to determine which operational and environmental influences should be

measured and where the corresponding sensors should be placed.

As an alternative, the second approach, also known as output-only, and the one

used in this thesis, consists of applying the machine learning algorithms to develop

data-driven models that assess the influence of operational and environmental variability

on damage-sensitive features, i.e., only through features extracted from the structural

response measurements the algorithms can eliminate the undesired normal influences

(FIGUEIREDO, 2010). This approach intends to avoid the measure of operational and

environmental variations and physics-based approaches (e.g., finite element models) and,

therefore, pave the way for output-only data-based models applicable to structural sys-

tems of arbitrary complexity.
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1.4 Related work

In this section, by considering output-only approaches and unsupervised learning,

the state-of-the-art machine learning algorithms and their adaptations for data normal-

ization and damage detection are reviewed and discussed.

1.4.1 Classical methods

Mahalanobis squared-distance (MSD) algorithm is one of the most classical meth-

ods for damage detection, having widespread use in real scenarios due to its ability to

identify outliers (WORDEN et al., 2007; WORDEN; MANSON, 2007; NGUYEN; CHAN;

THAMBIRATNAM, 2014; ZHOU et al., 2015). When abnormal observations appear sta-

tistically inconsistent with the rest of the data, it is conjectured that these observations

have been generated by an alternative mechanism, which is not related to the normal

condition established with a mean vector and a covariance matrix derived from the base-

line data sets, obtained under operational and environmental conditions. However, when

nonlinearities are present in the undamaged observations, the MSD fails in modeling the

normal condition of a structure because it assumes the baseline data modeled by an unique

cluster from a multivariate Gaussian distribution.

Kullaa (KULLAA, 1993) proposed to use the factor analysis (FA) algorithm in

SHM to eliminate the effects of operational and environmental variations on the damage-

sensitive features. Statistically, FA is a multivariate technique used to estimate the linear

correlation among a number of observed dependent variables (features) in terms of a small

number of unobserved independent variables (or operational and environmental factors).

The main challenge associated with the FA-based method is the supposition, in advance,

of the number of factors that influence the damage-sensitive features (DERAEMAEKER

et al., 2008). Similar to the MSD, this method can not address satisfactorily nonlinearities

present in the monitoring data.

In turn, Ruotolo and Surage (RUOTOLO; SURACE, 1999) proposed an output-

only data normalization method based on the singular value decomposition (SVD) algo-

rithm. This technique relies on the determination of the rank of a state matrix. If the

potential outlier comes from the undamaged condition, it is expected that the rank will

not change. On the other hand, if the potential outlier comes from the damaged condition,

and it is independent from the others, the rank will be increased. However, when dealing

with real-world monitoring data, noise is often present, which may affect the rank and

introduce residual singular values (VANLANDUIT et al., 2005).

Another classical output-only technique that has been applied for eliminating oper-

ational and environmental influences is the linear principal component analysis (PCA), for

which a linear static relationship between the observed features and unknown operational
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and environmental factors is estimated and model residuals are then produced to sup-

port the damage detection (YAN et al., 2005a; SHAO et al., 2014). In practice, however,

for long-term monitoring this relationship is in general nonlinear (PEETERS; ROECK,

2001; PEETERS; MAECK; ROECK, 2001; MOSER; MOAVENI, 2011), demanding other

techniques to address this issue.

As an alternative, a piecewise linear relationship between the observed features can

be determined by clustering and subsequently the linear PCA is applied for each piece

(YAN et al., 2005b; KULLAA, 2006). Unfortunately, this method has narrow applicability

because its parameters (e.g., number of nonlinearity tuning points) should be chosen with

great care, without an effective criterion, to obtain acceptable results.

In an attempt to accommodate nonlinear environmental effects for improving the

feature discrimination process, an auto-associative neural network (AANN), also known as

autoencoder, has been proposed (SOHN; WORDEN; FARRAR, 2002; HSU; LOH, 2010;

HAKIM; RAZAK, 2014). Leaving aside the sensitivity of neural networks to the initial

weights, the AANN suffers with the definition of its architecture composed of three differ-

ent layers, for which several combinations concerning the number of neurons and initial

weights must be performed to select the best model via an information criterion. Similar

to the FA, this technique previously assumes the number of factors (usually unknown)

that influence the damage-sensitive features.

Figueiredo et al. (FIGUEIREDO et al., 2011) performed a comparison study of

several output-only machine learning algorithms for data normalization and damage de-

tection on standard data sets. This study was performed upon experimental vibration

monitoring tests in the laboratory using a three-story frame structure with different struc-

tural state configurations. The operational and environmental effects were simulated by

stiffness or mass changes, while damage was simulated with a bumper mechanism causing

a nonlinear effect due to collisions. The four output-only methods chosen were based on

the MSD, FA, SVD and AANN algorithms. A prominence of the MSD and AANN al-

gorithms was attested when one wants to minimize false-negative indications of damage,

i.e., life-safety is the primary motivation for deploying SHM systems. However, as those

data sets were acquired in laboratory conditions, further analysis is required to test their

applicability on real-world data sets.

1.4.2 Kernel-based methods

More recently, robust kernel-based methods have been proposed to deal with linear

and nonlinear operational and environmental factors aggregated in the features. This has

been accomplished by means of support vector machine (SVM) or a generalized nonlinear

PCA in a high-dimensional space, which employ a kernel function and solve a simple

optimization or an eigenvalue problem in a nonlinear mapped feature space, respectively.
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Khoa et al. (KHOA et al., 2014) adapted the one-class SVM algorithm for learning

the normal structural condition and detecting possible structural anomalies. This unsuper-

vised method finds a small hyperplane, containing most of the undamaged observations

and the anomalies elsewhere, by mapping observations into a high-dimensional feature

space using a kernel and thereafter separating them from the origin with maximum mar-

gin. However, in this study, the parameters related to the bandwidth of the kernel and

regularization should be provided by the user, i.e., there is no heuristic to automatically

define these parameters, which naturally influence the quality of the results.

As a nonlinear version of the PCA, the kernel principal component analysis (KPCA)

has been used for data normalization in changing operational and environmental condi-

tions (OH; SOHN; BAE, 2009; CHENG et al., 2015; YUQING et al., 2015), revealing

the nonlinear correlations present in the extracted features through a nonlinear mapping

from an original space into a possible very high-dimensional space. After the nonlinear

projection, the linear PCA is applied in the mapped feature space to retain the principal

components that explain the variability in the data. In opposition to the AANN, as a

kernel function is used, the type of nonlinearity is not explicitly defined and the KPCA is

computationally very robust and efficient. However, again, this version of KPCA requires

the specification by the user of two crucial parameters; the bandwidth of the kernel and a

minimal percentage of the variance to explain the variability in the data, i.e., the number

of principal components retained in the high-dimensional feature space.

An improved output-only method based on the KPCA was proposed by Reynders

et al. (REYNDERS; WURSTEN; ROECK, 2014) for eliminating nonlinear environmental

and operational influences on the monitored features. It was based on Gaussian KPCA,

where the two parameters of the learned model are automatically determined. The first

parameter, which represents the bandwidth of the Gaussian kernel, is chosen based on

the maximization of Shannon’s information entropy from the kernel matrix. The sec-

ond parameter, which corresponds to the number of principal components in the high-

dimensional feature space, is selected in such a way that the retained principal components

account for nearly all normal environmental and operational variability. Although, this

technique achieved satisfactory results for data normalization and can be easily adapted

for damage detection, it also revealed some loss of information as the principal compo-

nents are retained based on 99% of the data variability. This ensures only the fitting of a

fraction of the normal condition under operational and environmental effects.
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1.4.3 Cluster-based methods

Linear output-only methods to model nonlinearities in long-term monitoring of

structures have been developed by means of a new concept based on a two-step strategy

(FIGUEIREDO et al., 2012): (i) data normalization procedure by clustering the training

observations into different data clusters and (ii) damage detection by identifying possible

outliers through a distance metric between the learned clusters and a new observation.

In the study performed by Figueiredo and Cross (FIGUEIREDO; CROSS, 2013),

an approach based on Gaussian mixture models (GMMs) is applied to model the main

clusters that correspond to the normal or undamaged state conditions of a structural

system, even when it is affected by unknown operational and environmental effects. The

parameters of the GMMs are estimated from the training data, using the classical maxi-

mum likelihood (ML) estimation based on the expectation-maximization (EM) algorithm.

Afterwards, the damage detection is performed on the basis of multiples MSD algorithms

regarding the chosen clusters of main states. This method outperforms the MSD, AANN

and PCA algorithms for damage detection when nonlinear environmental effects are pre-

sented in the measured vibration data from the Z-24 Bridge. However, the performance

of the EM algorithm was shown to be strongly affected by the initial parameters.

The drawback highlighted above is also discussed by Kulla (KULLAA, 2014),

where an approach, composed of GMMs, local linear models using minimum mean square

error, PCA and control charts, is used to eliminate the underlying effects and detect

damage from the residuals between the monitoring data and the identified model. The

main disadvantages are: the EM algorithm is not guaranteed to find the global maximum;

and the training phase is quite slow because it is advised to run this algorithm a couple

of times with different initial parameters to find, without any guarantee, a satisfactory

maximum. In consequence, this degenerated behavior of the EM algorithm may affect the

stability of the results and the number of data clusters estimated for each different run.

To improve the parameter estimation of the finite mixture of Gaussian distribu-

tions, Figueiredo et al. (FIGUEIREDO et al., 2014) presented a Bayesian approach based

on a Markov-chain Monte Carlo (MCMC) method to cluster structural responses into a

reduced number of global state conditions, by taking into account eventual multimodality

and heterogeneity of the data distribution. This approach showed some improvement over

the classical ML estimation based on the EM algorithm. The Bayes approach has the

advantage of providing an estimate of the marginal likelihood by an integration of the

likelihood function over all possible parameters. However, in terms of damage-detection

performance, both methods (GMM with EM and GMM with MCMC) achieved the same

results considering the data sets used in (FIGUEIREDO et al., 2014).
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1.5 Justification

In the above section, the advantages and limitations of several output-only meth-

ods (some of them are presented in more detail in subsection 2.5.1) were discussed in the

context of data normalization and damage detection for SHM. In general, the methods

based on nonlinear or cluster assumptions were most prominent to deal with challenging

SHM scenarios under operational and environmental variability. However, these state-of-

the-art techniques have some limitations related to their working principles, such as some

loss of information (e.g., the PCA, FA, KPCA and AANN) or high sensitivity to the

chosen initial parameters (e.g., the EM-GMM and MC-GMM). This fact highlights the

need for novel methods, as the ones proposed in this study, to overcome these limitations.

Thus, novel output-only methods based on the machine learning and artificial in-

telligence fields are proposed to detect incipient or progressive structural damage. These

techniques allow to learn the undamaged condition of a structure by considering all nor-

mal variability, without loss of information or sensitivity to the initial parameters. Since

this undamaged model is determined, the proposed methods can discriminate the actual

condition of the structure (i.e., undamaged or damaged) with high stability and reliability.

The improvement on the estimation of the normal condition and damage detection

provided by the development of these new methods is critical for current SHM solutions,

as much attention has been paid on the declining state of the aging infrastructure around

the world. This concern applies not only to civil infrastructures, such as bridges, high-

ways, and buildings, but also to other types of structures, such as aircraft. The ability to

continuously assess the integrity of engineering structures in real time offers the opportu-

nity to reduce maintenance and inspection costs, while providing increased safety to the

public. Addressing these issues is the goal of this thesis.

In addition, the novel methods coupled with the SHM systems can also contribute

to the aid of visual inspections. For instance, the bridge management systems (BMSs)

still depend deeply on sporadic structural inspections, especially on the qualitative and

not necessarily consistent or reliable visual inspections, which may impact the struc-

tural evaluation and, consequently, the maintenance decisions to avoid structural collapses

(FIGUEIREDO; MOLDOVAN; MARQUES, 2013). In a cooperative sense, the SHM can

aid the structural management with more reliable and quantitative information processed

through data-based methods. Theses techniques are capable of reducing the global state

conditions of a structure into, for example, a daily indicator that quantifies the damage

level according to a predetermined threshold.
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1.6 Objectives

In the hierarchical structure of damage identification, this thesis addresses the need

for robust vibration-based damage detection methods. Therefore, this study is mainly

concerned with detection of damage in engineering structures. Although locating and

assessing the severity of damage are important in terms of estimating the residual lifetime

of structures, the complete and reliable detection of damage existence must precede these

more detailed damage descriptions. Damage quantification is also a final result provided

by the damage detection process.

The general objective of this thesis is to adapt, develop, and apply several output-

only methods for statistical modeling and feature classification, in the context of the SPR

paradigm for SHM, capable of detecting and quantifying damage on structures under

unmeasured operational and environmental influences. To achieve this general objective,

particular objectives are addressed:

∙ Adapt unsupervised algorithms from the machine learning field as data normaliza-

tion approaches, combining them with statistical distance metrics as a means of

detecting and quantifying structural damage;

∙ Develop novel output-only methods based on the machine learning and artificial

intelligence fields to establish the normal condition of structures and detect damage

under operational and environmental conditions, such that these approaches can be

applied to engineering infrastructure of arbitrary complexity;

∙ To test the performance of adapted and novel methods, as well as to compare them

to state-of-the-art methods, the approaches are first applied on standard data sets

measured from a laboratory structure and afterwards on response data from real-

world structures – the Z-24 and Tamar Bridges.

Note that the novel output-only methods developed in this study can be applied

in any (e.g., civil, mechanical or aerospace) engineering structure. However, the data sets

available to test the damage detection performance of these methods are only from civil

engineering infrastructures.

1.7 Original contributions

This thesis is a contribution to output-only data-based methods, with emphasis

on the statistical modeling development for feature classification, which includes data

normalization and damage detection. The following content attempts to highlight the

original contributions of the papers (Appendices from A to F) which compose this study.
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In Appendices A and E, several machine learning algorithms based on kernel as-

sumptions are adapted to work as data normalization procedures to support damage detec-

tion and quantification via statistical distance metrics. The methods are based on the one-

class SVM, support vector data description (SVDD), KPCA, greedy KPCA (GKPCA),

and mean shift clustering (MSC) algorithms.

Particularly, in Appendix A, the main contribution is the adaptation of the pro-

posed kernel-based algorithms for damage detection. Specifically, other contributions are:

the first-known adaptation of two algorithms (the KPCA and GKPCA) for damage detec-

tion in the SHM field; and the combination between other two algorithms (the one-class

SVM and SVDD) and an outlier detection method (the MSD) for data normalization

purposes in the SHM field. In a different manner, in Appendix E, the MSC-based method

is presented to discover the number of clusters that correspond to the normal state con-

ditions of a structure. The main contribution is that the method is a nonparametric

technique that does not require prior knowledge of the number of clusters and can iden-

tify groups of distinct shapes, sizes and density. This reliable estimation enhances the

subsequent damage detection process.

Novel nonparametric methods are proposed in Appendices B and F to support

the structural damage detection process, in the presence of linear and nonlinear effects

caused by operational and environmental variability. A genetic algorithm for decision

boundary analysis (GADBA) is described in Appendix B as a technique which searches

for an optimal number of clusters in the feature space, representing the main state con-

ditions of a structural system. This genetic-based clustering approach is supported by a

novel concentric hypersphere algorithm to regularize the number of clusters and mitigate

the cluster redundancy. An improved and simplified version of this method is highlighted

in Appendix F as an agglomerative clustering procedure, the agglomerative concentric

hypersphere (ACH), to automatically discover the optimal number of clusters as a means

to assist the damage detection and quantification in engineering structures. This straight-

forward method does not require any input parameter, except the training data.

As an attempt to add quantitative information from the SHM systems into the

visual inspections and to assess the structural integrity, in Appendices C and D, two

novel methods are proposed based on the memetic algorithm (MA) theory supported by

a genetic algorithm (GA) and a particle swarm optimization (PSO). They are stable and

reliable versions of the classical EM-GMM, also known as the global EM-PSO (GEM-

PSO) and EM-GA (GEM-GA) approaches. Thus, the main contribution of these two

methods is the high reproducibility on the estimation of the normal structural condition

by clustering and damage-detection results, regardless of the choice of initial parameters.

The bioinspired hybridization between a local search method (the EM algorithm) and

a global search method (the GA or PSO) avoids unfeasible solutions such as the ones
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produced in different executions by the EM-GMM or MC-GMM approaches.

Furthermore, for the cluster-based methods proposed herein, another contribution

is related to the physical interpretations about the undamaged condition under normal

variability. The discovered clusters allow a better understanding of the operational and

environmental sources of variability, as demonstrated in Appendices E and F.

When the novel methods are compared to the state-of-the-art ones, they clearly

demonstrate their superiority in terms of data normalization and damage detection on

laboratory and real-world data sets. Nevertheless, a comparison between the proposed

methods is imperative to derive more conclusions related to their applicability on real-

world SHM applications. This comparison is highlighted in chapter 3 with these methods

applied on natural frequencies from the Z-24 Bridge, where a wide spectrum of challenges

encountered in practical SHM problems were presented.

1.8 Organization of the thesis

The remainder of this thesis by papers is organized as follows. The SPR paradigm

for SHM considered in this study is discussed in chapter 2, highlighting all phases of

this paradigm with their advantages, limitations and challenges as well as providing the

necessary background related to the state-of-the-art approaches for data normalization

and structural damage detection. Taking into account the background presented in the

previous chapter, the novel output-only methods proposed in this thesis are summarized

and evaluated in chapter 3 (a complete version of them can be found in Appendices from

A to F). Finally, chapter 4 synthesizes the main conclusions and contributions of this

study, as well as points out future research topics.
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2 Statistical pattern recognition paradigm for

structural health monitoring

This chapter is concerned with the discussion of the SPR-SHM phases, as well as

other background issues, presenting the main challenges associated to each phase. Thus,

the issues related to operational evaluation and data acquisition are briefly highlighted.

Feature extraction techniques used in this study are presented in terms of advantages

and limitations. Finally, a major focus is given to the statistical modeling for feature

classification: output-only machine learning algorithms for data normalization and damage

detection based on residual errors or central Chi-square hypothesis. The methods based

on the MSD, PCA, AANN, KPCA and GMMs algorithms are considered, because they

are the basis for the understanding of novel methods proposed in this thesis.

2.1 Main objective of the paradigm

In this study, the output-only approaches to SHM presented in section 2.5 are

posed in the context of a pattern recognition problem. Thereby, the SPR paradigm for

the development of the SHM systems and solutions, SPR-SHM, can be described as a

four-phase process (FARRAR; DOEBLING; NIX, 2001), as illustrated in Figure 4.
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Figure 4 – The SHM process based on the SPR paradigm (FIGUEIREDO, 2010).
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In the context of the SHM applications, the main objective of the SPR paradigm

is to recognize and distinguish between the patterns related to an undamaged structure

under operational and environmental influences and those associated to the same struc-

ture under the damaged condition. This process starts from sensor measurements of the

monitored structure and ends with the assessment of the actual structural condition.

2.2 Operational evaluation

An important first phase for developing the SHM capability is to perform an

operational evaluation. This part of the SHM process attempts to answer four essential

questions regarding the implementation of an SHM system (FARRAR; WORDEN, 2007):

∙ What are the life safety and/or economic justifications for monitoring the structure?

∙ How is damage defined for the structural system being monitored?

∙ What are the operational and environmental conditions under which the structural

system of interest operates?

∙ What are the limitations on acquiring data in the operational environment?

The operational evaluation phase defines, and to the greatest extent possible quan-

tifies, the damage that should be identified. It also establishes the benefits to be gained

from the deployment of the SHM system. This process also begins to impose limitations

on what will be monitored and how to perform this task, as well as adapting the SHM

system to the unique aspects of the chosen structure and unique characteristics of the

damage that should be identified and analyzed.

The main challenges of the operational evaluation phase are presented in the fol-

lowing:

∙ Most high-capital-expenditure engineering structures, such as bridges, are one-of-a-

kind systems, influenced by the physical environment where they are built; there-

fore, it is more difficult to incorporate lessons learned from other nominally similar

structural systems to define anticipated damage;

∙ Structural designs are often driven by low-probability, but extreme-impact events,

such as earthquakes, hurricanes, terrorist actions or floods;

∙ Generally, the structural systems degrade slowly under normal use: corrosion and

fatigue cracking, freeze-thaw/thermal damage, loss of pre-stressing forces, vibration-

induced connectivity degradation, and hydrogen enbrittlement;
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∙ There is no widely accepted procedure yet to demonstrate the rate of return of the

investment in an SHM system.

2.3 Data acquisition

The data acquisition phase of the SHM process, based on the SPR paradigm,

involves selecting the excitation methods; the sensor types, numbers, and locations; and

the data acquisition/storage/processing/transmittal hardware. The interval at which the

data should be collected (e.g., daily or hourly) is another consideration that must be

addressed. The actual implementation of the data acquisition systems is application-

specific, where economic issues play a fundamental role in making the aforementioned

choices (GLISIC; INAUDI, 2007).

A crucial premise regarding sensing and data acquisition is that these systems do

not measure damage. Rather, they measure the response of a structure to its operational

and environmental conditions or the response to inputs from actuators embedded with

the sensing system (WORDEN; DULIEU-BARTON, 2004). Depending on the sensing

technology and the type of damage to be identified, the sensor readings may be more or

less directly correlated to the presence and location of damage. Data interrogation proce-

dures (feature extraction and statistical modeling for feature classification) are necessary

components of an SHM system. They convert the sensor data into information about the

structural condition. Moreover, to achieve successful SHM, the data acquisition systems

have to be developed in conjunction with these procedures.

The main challenges of the data acquisition phase are listed below:

∙ Currently, there is no sensor that measures damage. However, it is not possible to

implement the SHM process without sensing;

∙ Definition of the data to be acquired and the data to be used in the feature extraction

process: types of data to be acquired, sensor types and locations, bandwidth and sen-

sitivity (e.g., dynamic range), data acquisition/transmittal/storage system, power

requirements (e.g., energy harvesting), sampling frequencies, processor/memory re-

quirements, excitation source (e.g., active sensing), and sensor diagnostics;

∙ Number of sensors. Instrumenting large structures with lots of sensors still represents

a sparsely instrumented system. Large sensor systems pose many challenges for

reliability and data management;
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∙ Ruggedness of sensors. Sensing systems must last for many years with minimal

maintenance. The existence of harsh environments (e.g., thermal, mechanical, mois-

ture, radiation, and corrosion) compromises the sensor durability. Need of sensor

diagnostic capability;

∙ The sensing system must be developed integrally with the feature selection and

extraction as well as feature classification.

2.4 Feature extraction

A damage-sensitive feature is some quantity extracted from the structural re-

sponse data which is correlated with the presence of damage in a structure, such as

modal parameters (REYNDERS, 2012), quasi-static strains (GLISIC; INAUDI, 2012),

auto-regressive model parameters and residual errors (FIGUEIREDO et al., 2011), lo-

cal flexibilities (REYNDERS; ROECK, 2010), and electromechanical impedances (BAP-

TISTA; FILHO; INMAN, 2012). Ideally, a damage-sensitive feature will change in some

consistent manner as the level of damage increases. Identifying features that can accu-

rately distinguish a damaged structure from its undamaged condition is the focus of most

SHM technical literature. Fundamentally, the feature extraction process is based on fitting

some model, either physics- or data-based, to the measured response data. The param-

eters of the models, or the predictive errors associated with them, become the damage-

sensitive features. An alternative approach is to identify features that directly compare

the sensor waveforms (e.g., influence lines and acceleration time series) or spectra of these

waveforms (e.g., power spectra density) measured before and after damage. Many of the

features identified for impedance- and wave propagation-based SHM studies fall into this

category (KESSLER; SPEARING; SOUTIS, 2002; PARK HOON SOHN; INMAN, 2003;

IHN; CHANG, 2004; SOHN et al., 2004).

In the feature extraction phase, it is imperative to derive damage-sensitive features

correlated with the severity of damage present in a monitored structure, minimizing false

judgements in the following classification phase. Nevertheless, in real-world SHM appli-

cations, operational and environmental effects can mask damage-related changes in the

features as well as alter the correlation between the magnitude of the features and the

level of damage. Commonly, the more sensitive a feature is to damage, the more sensitive

it is to changing in the operational and environmental conditions (e.g., temperature or

wind speed). To overcome this impact, robust feature extraction procedures are usually

required (MATTSON; PANDIT, 2006; FIGUEIREDO et al., 2010; FIGUEIREDO, 2010)

and the primary properties of damage-sensitive features are defined as follows:

∙ Sensitivity – a feature should be sensitive to damage and completely insensitive to

everything else, which rarely occurs in practical SHM applications.
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∙ Dimensionality – a feature vector should have the lowest dimension without signif-

icant loss of information; high dimensionality induces undesirable complexity into

the statistical models and storage mechanisms.

∙ Computational requirements – minimal assumptions and minimal processor cycles,

which facilitates the embedded systems.

∙ Consistency – feature’s magnitude should change monotonically with damage level.

One wants to use the simplest feature to distinguish between the undamaged and

damaged conditions of a structure. However, there are a couple of challenges for feature

selection and extraction, as described below:

∙ Feature selection is still based almost exclusively on engineering judgement;

∙ Quantifying the features’ sensitivity to damage;

∙ Quantifying how the feature changes with the level of damage;

∙ Understanding how the feature varies with changing operational and environmental

conditions.

For completeness, this section briefly reviews the theory behind of some of the

widely feature extraction techniques used in different engineering fields, based on time

and frequency domain analysis. It is shown that the appropriate sort of feature to use

is damage-specific, and so each feature has its advantages and limitations regarding its

sensitivity to a particular type of damage. Notice that this section intends to summarize

some advantages and limitations of the feature extraction techniques used in this thesis,

rather than showing all possible techniques presented in the SHM literature.

2.4.1 Modal parameters

Modal parameters as damage-sensitive features have been widely used in several

SHM studies. The motivation behind this approach is that the modal parameters (natural

frequencies, damping ratios, mode shapes, and modal scaling factors) extracted from mon-

itoring data are strongly correlated to the physical properties of structures (mass, damp-

ing and stiffness). Therefore, any changes in the physical properties caused by structural

damage will result in changes in the modal parameters. The theory behind the modal

parameters has been extensively discussed in the literature related to operational modal

analysis. Thus, the author recommends further reading (REYNDERS, 2012).
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The most prominent dynamic system identification techniques for modal analysis

are: classic and reference-based stochastic subspace identification (SSI), considering both

data-driven and covariance-driven versions (PEETERS; ROECK, 1999); SSI with vari-

ance estimation (REYNDERS; PINTELON; ROECK, 2008); classic and reference-based

combined deterministic-SSI (REYNDERS; ROECK, 2008); and frequency response func-

tion (GUILLAUME; PINTELON; SCHOUKENS, 1992; SAMPAIO; MAIA; SILVA, 1999;

MAIA et al., 2003). Depending on the system identification method used, the modal

parameter estimation can be performed, for instance, via peak picking or stabilization

diagram strategy (PEETERS, 2000; REYNDERS; HOUBRECHTS; ROECK, 2012).

The applicability of the modal parameters as damage-sensitive features is subject

to the operational and environmental variability, which may cause changes in the modal

parameters and mask the changes resulting from damage (KIM et al., 2003; XIA et al.,

2006; SOYOZ; FENG, 2009). Additionally, in many cases, modal parameters do not have

the required sensitivity to small cracks in a structure (FARRAR; DOEBLING, 1997).

2.4.2 Autoregressive model

Usually, for various applications in the SHM field, the modal parameters have

been used as features that characterize the global condition of structures. However, in

this study, the AR model can also be used to extract damage-sensitive features, because

the underlying linear stationary assumption makes it possible to detect the presence of

damage state conditions as nonlinearities in the time-series. It is considered that in a

structural system where different dynamics are present at different times, the estimated

parameters should change between intervals (KANTZ; SCHREIBER, 2003).

Alternatively, the AR models have been also used in the SHM field to extract

damage-sensitive features from time-series data, either using the model parameters or

residual errors (FIGUEIREDO et al., 2011; YAO; PAKZAD, 2012). For a measured time-

series �1, �2, ..., �N the AR(�) model of order � is given by:

�i =
p︁

j=1

ãj�i−j + �i, (2.1)

where �i is the measured signal and �i is an unobservable random error at discrete time

index �. The unknown AR parameters, ãj, can be estimated using the least squares or

the Yule-Walker equations (BOX; JENKINS; REINSEL, 2008). The order of the model

is always an unknown integer that needs to be estimated from the data. The Akaike

information criterion (AIC) has been reported as one of the most efficient techniques for

order optimization (KOTHAMASU et al., 2004). The AIC is a measure of the goodness-of-

fit of an estimated statistical model that is based on the tradeoff between fitting accuracy
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and number of estimated parameters. In the context of AR models:

AIC = �tln(�) + 2�p, (2.2)

where �p is the number of estimated parameters, �t is the number of predicted data

points, and � = ���/�t is the average sum-of-square residual (���) errors. The AR

model with the lowest AIC value gives the optimal order �.

The appropriate order estimation of an AR model remains a very complex issue.

A high-order model may better fit the training data, but may not generalize well to other

test data sets. On the other hand, a low-order model may not necessarily capture the

underlying physical system dynamics.

2.5 Statistical modeling for feature classification

The development of statistical models to enhance the damage detection process

is the phase concerning the implementation of machine learning algorithms to normalize

the monitoring data and to analyze the distributions of the extracted features in an

effort to determine the structural condition. Even though several statistical modeling

approaches have been proposed in the literature, this section only makes reference to the

state-of-the-art ones used in this study. Herein, the unsupervised algorithms described in

subsection 2.5.1 are used for outlier detection based on residuals errors or central Chi-

square hypothesis. Additionally, the performance evaluation of feature classification for

damage detection is described on the basis of Type I/Type II error tradeoffs.

2.5.1 Machine learning algorithms for data normalization

The data normalization procedure is fully connected to the data acquisition, fea-

ture extraction and statistical modeling phases of the SHM process. This procedure in-

cludes a wide range of steps for mitigating (or even removing) the effects of operational

and environmental variations on the extracted features. It is also used for separating

changes in features caused by damage from those caused by operational and environ-

mental influences (SOHN; WORDEN; FARRAR, 2002). This procedure often contributes

significantly to the structural damage detection process.

In the SPR-SHM, the objective of the machine learning algorithms is to enhance

the damage detection in the presence of varying operational and environmental conditions

under which the structural response is measured (FARRAR; WORDEN, 2013). Several

output-only methods have been reported in the literature related to the data normalization

procedure and damage detection (FIGUEIREDO et al., 2011; SANTOS et al., 2016).

However, in this study, only the methods based on the MSD, PCA, AANN, KPCA and
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GMMs algorithms are considered, because they are the basis for the understanding of

novel methods proposed in Appendices from A to F. These state-of-the-art algorithms

are designed and developed in such a way that their performance is improved based on

the analysis of normal condition data, i.e, they learn from data acquired under operational

and environmental conditions and when the structure is supposed to be undamaged.

Basically, these output-only methods develop a functional relationship that models

how changing operational and environmental conditions influence the underlying distri-

bution of the damage-sensitive features (WORDEN; MANSON, 2007). When subsequent

features are analyzed with these methods and a new set of features are shown not to fit

into an appropriate distribution, they might be more confidently classified as outliers or,

potentially, features from a damaged structure, because the operational and environmen-

tal influences have been incorporated into the learning procedure.

Although the methods have different underlying mathematical formulations, they

are implemented in a common sequence of steps. First, each algorithm is trained and its

parameters are adjusted using features extracted from the normal condition. Second, in

the test phase, the methods (with exception of the MSD- and GMM-based ones) transform

each new input feature vector into an output residual vector of the same dimension.

For general purposes, one should consider a training data matrix composed of

normal condition data, X ∈ R
m×n, with �-dimensional feature vectors from � different

operational and environmental conditions when the structure is undamaged and a test

data matrix, Z ∈ R
l×n, where � is the number of feature vectors from the undamaged

and/or damaged conditions. In this context, a feature vector (or an observation) represents

some property of the structural system at a given time.

2.5.1.1 Mahalanobis squared-distance

The Mahalanobis distance differs from the Euclidean distance because it takes into

account the correlation between the features and does not depend on the scale of them.

Considering the training matrix X with multivariate mean vector, µ, and covariance

matrix, Σ, the MSD (or damage indicator, DI, in the context of this study) between the

feature vectors of the training matrix and any new feature vector (or observation) from

the test matrix Z is defined as (WORDEN; MANSON; FIELLER, 2000)

d2 = (z ⊗ µ)T Σ−1 (z ⊗ µ) . (2.3)

The assumption is that if a new observation z is obtained from data collected

on the damaged condition, which might include sources of operational and environmental

variability, the observation is further from the mean of the normal condition. On the other

hand, if an observation is obtained from a structure within its undamaged condition, even
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with operational and environmental variability, this feature vector is closer to the mean

of the normal condition.

2.5.1.2 Principal component analysis

PCA is a linear method for mapping multidimensional data (input space) into

a lower dimension (feature space) with minimal loss of information (JOLLIFFE, 2002).

Herein, PCA is used as a data normalization method as follows (YAN et al., 2005a).

Assuming the training data matrix X decomposed in the form of

X = TUT =
n︁

i=1

tiu
T
i , (2.4)

where T is the scores matrix and U is a set of � orthogonal vectors, ui, also called the

loadings matrix. The orthogonal vectors can be obtained by decomposing the covariance

matrix of X in the form of Σ = UΛUT , where Λ is a diagonal matrix containing the

ranked eigenvalues Úi, and U is the matrix containing the corresponding eigenvectors.

The eigenvectors associated with the higher eigenvalues are the principal components of

the data matrix and they correspond to the dimensions that have the largest variability

in the data. Basically, this method permits one to perform an orthogonal transformation

by retaining only the principal components � (⊘ �), also known as the number of factors

(DERAEMAEKER et al., 2008). Precisely, choosing only the first � eigenvectors, the final

matrix can be rewritten without significant loss of information as

X = TrU
T
r + E =

r︁

i=1

tiu
T
i + E, (2.5)

where E is the residual matrix resulting by the � factors. The coefficients of the linear

transformation are such that if the feature transformation is applied to the data set and

then reversed, there will be a negligible difference between the original and reconstructed

data. The � factors can be automatically estimated by test the minimal percentage of the

variance Γ (usually from 0.9 to 0.95) to explain the variability in the matrix X

Γ ⊘

r︁

i=1

Úi,i

n︁

i=1

Úi,i

. (2.6)
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In the context of data normalization, the PCA algorithm can be summarized as

follows: the loadings matrix, U, is obtained from X, the test matrix Z is mapped onto

the feature space R
r and reversed back to the original space R

n, the residual matrix E is

computed as the difference between the original and the reconstructed test matrix

E = Z ⊗ (ZUr) UT
r . (2.7)

2.5.1.3 Auto-associative neural network

The AANN, also known as nonlinear PCA, is trained to characterize the underlying

dependency of the identified features on the unobserved operational and environmental

factors by treating this unobserved dependency as hidden intrinsic variables in the network

architecture (HSU; LOH, 2010). As illustrated in Figure 5, the AANN architecture consists

of three hidden layers: mapping, bottleneck, and de-mapping. The mapping layers consist

of hyperbolic tangent sigmoid transfer functions. On the other hand, the bottleneck and

output layers are formed with linear transfer functions. More details on the network,

including the number of nodes to use, can be found in the reference (KRAMER, 1991).
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Figure 5 – Standard architecture of the AANN.

In the context of data normalization for SHM, the AANN is first trained to learn

the correlations between features from the training matrix X. Then the network should

be able to quantify the unmeasured sources of variability that influence the structural

response. This variability is represented at the bottleneck output, where the number of

nodes (or factors) should correspond to the number of unobserved independent factors
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that influence the structural response (SOHN; WORDEN; FARRAR, 2002). Second, for

the test matrix Z, the residual matrix E reads

E = Z ⊗ Ẑ, (2.8)

where Ẑ corresponds to the estimated feature vectors that are the output of the network.

Assuming that the network is trained with the normal condition data, the residuals will

grow when the features which are fed to the network come from the damaged condition,

otherwise z ≡ ẑ (undamaged).

This type of network is related to a nonlinear PCA, where the target outputs are

simply the inputs of the network. Thereby, the method presented herein is a mixture

of two different learning approaches, i.e., supervised learning is used to quantify the op-

erational and environmental conditions dependency although without direct measure of

these conditions, while unsupervised learning is used to detect damage. A key issue is to

appropriately define the number of nodes in the bottleneck layer, which depends on the

independent sources of variability present in the structural response measurements and

influences the damage detection performance.

2.5.1.4 Kernel principal component analysis

The KPCA method extends the standard linear PCA for dimensionality reduction

in a very high-dimensional space (SCHOLKOPF; SMOLA; MULLER, 1998). This algo-

rithm identifies a nonlinear model by fitting it to the features during a phase in which the

structure is undamaged. Afterwards, the structure is monitored by comparing the model

predictions with the observed features (REYNDERS; WURSTEN; ROECK, 2014).

Basically, for a feature vector � (� = 1, 2, . . . , �), the part of the residual that is

uncorrelated with the unknown operational and environmental variability is

ef = U2U
T
2 Φ (zf ) , (2.9)

where U = [U1 U2] is the eigenvectors matrix partitioned into U1 that contains the

� largest eigenvectors and U2 that comprises the (� ⊗ �) shortest eigenvectors. These

eigenvectors are derived from an eigenvalue decomposition of the mapped output corre-

lation during the training phase. A nonlinear mapping of the output sequence, zf , onto a

possibly very high-dimensional is represented by Φ (zf ).

However, two issues arise: the specification of the nonlinear mapping Φ and an

appropriate input dimension �. The number of principal components, �, to be retained in

the high-dimensional can be estimated via Equation 2.6 using the �th diagonal elements

of Λ. A value of Γ = 0.99 can be adopted, implying that the model should account for
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nearly all normal variability (REYNDERS; WURSTEN; ROECK, 2014). Note that as

in KPCA the mapped feature space is very high-dimensional, Γ (or �) might be larger

than the values normally used in linear PCA. The issue of specifying Φ can be derived

by considering that there exists an eigenvector matrix A for which

U = Φ̃A, (2.10)

where

Φ̃ :=
1√
�

[Φ (x1) . . . Φ (xm)] . (2.11)

Therefore, all relevant solutions are contained in the following standard eigenvalue

problem (SCHOLKOPF; SMOLA; MULLER, 1998)

KA = AΛ, (2.12)

being Λ a diagonal matrix containing the ranked eigenvalues Úi and K a kernel matrix

denoted as

K := Φ̃
T
Φ̃ ∈ R

m×m. (2.13)

In Equation 2.13, the nonlinear mapping Φ only appears in inner products of the

form Φ (xi)
T Φ (xj). Thus, a kernel function representation for the inner product reads

� (xi, xj) := Φ (xi)
T Φ (xj) . (2.14)

The well-known kernel trick consists of specifying the kernel � (xi, xj) instead of the

nonlinear mapping Φ, which enables to operate in a very high-dimensional feature space.

A radial basis function (RBF) or Gaussian kernel is most often applied, as it implicitly

defines an infinite-dimensional feature space with a single parameter

� (xi, xj) = exp

⎠

⊗‖ xi ⊗ xj ‖2

2à2

⎜

, (2.15)

where à > 0 is the bandwidth of the RBF kernel and can be determined by requiring

that the corresponding inner product matrix K is maximally informative as measured by

Shannon’s information entropy. A detailed step-by-step to choose the optimal value of à

is described by Reynders et al (REYNDERS; WURSTEN; ROECK, 2014).
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Finally, the Euclidean norm of the residual feature vector ef , which is evaluated

with the kernel function only (without carrying out the nonlinear mapping), can be com-

puted as (REYNDERS; WURSTEN; ROECK, 2014)

‖ ef ‖=

︂

Φ (zf )T Φ̃A2AT
2 Φ̃

T
Φ (zf ), (2.16)

being A2 defined by partitioning A in the ranked form of

A = [A1 A2] , A2 ∈ R
m×(m−r). (2.17)

2.5.1.5 Gaussian mixture models

First, this method carries out a cluster-based model using GMMs that aim to

capture the main clusters of features, which correspond to the normal and stable state

conditions of a structure, even when it is affected by extreme operational and environ-

mental conditions. Afterwards, an outlier detection strategy is implemented in relation to

the chosen main groups of states (FIGUEIREDO; CROSS, 2013). Basically, the damage

detection is performed on the basis of multiples MSD algorithms, where the mean vectors

and covariance matrices are obtained from the learned clusters.

A finite mixture model, � (x♣Θ), is the weighted sum of � > 1 clusters � (x♣θq) in

R
n (MCLACHLAN; PEEL, 2000),

� (x♣Θ) =
Q︁

q=1

Ðq� (x♣θq) , (2.18)

where x is an �-dimensional feature vector and Ðq corresponds to the weight of each cluster

� = 1, . . . , �. These weights are constrained to be positive Ðq > 0 with
︀Q

q=1 Ðq = 1. For

a GMM, each cluster � (x♣θq) is represented as a Gaussian distribution

� (x♣θq) =
exp

⎭

⊗1
2

⎞

x ⊗ µq

⎡T
Σ−1

q

⎞

x ⊗ µq

⎡

⎨

(2Þ)n/2
︁

det (Σq)
, (2.19)

being each cluster denoted by the parameters θq = ¶µq, Σq♢, composed of the mean

vector µq and the covariance matrix Σq. Thus, a GMM is completely specified by the set

of parameters Θ = ¶Ð1, Ð2, . . . , ÐQ, θ1, θ2, . . . , θQ♢.

The EM algorithm is the most common local search method used to estimate the

parameters of the GMMs (DEMPSTER; LAIRD; RUBIN, 1977; MCLACHLAN; PEEL,

2000). This method consists of an expectation and a maximization step, which are al-

ternately applied until the log likelihood, log � (X♣Θ) = log
︀m

i=1 � (xi♣Θ), converges to a
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local optimum. The performance of the EM algorithm depends directly on the choice of

the initial parameters, Θt=0, which may imply many replications of this method during

an execution without guarantees of acceptable results. To select the best GMM by means

of goodness-of-fit and parsimony, the Bayesian information criterion (BIC) is used and

minimized (BOX; JENKINS; REINSEL, 2008),

BIC = ⊗2 log � (X♣Θ) +
⎭

��
⎦⎤

� + 1
2

⎣

+ 1
⎢

+ � ⊗ 1
⎨

log (�) . (2.20)

Similar to AIC, BIC uses the optimal log likelihood function value and penalizes

for more complex models, i.e., models with additional parameters. The penalty term of

BIC is a function of the training data size, and so it is often more severe than AIC.

Since the best model is selected, in the damage detection process, for each obser-

vation z, one needs to estimate � DIs. Particularly, for each main cluster �,

DIq(z) =
⎞

z ⊗ µq

⎡

Σ−1
q

⎞

z ⊗ µq

⎡T
, (2.21)

where µq and Σq represent all the observations from the cluster �, when the structure

is undamaged even though under varying operational and environmental conditions. For

each cluster �, if a new observation z is extracted from the same cluster as the undamaged

data, then the test statistic MSD will be Chi-square distributed with � degrees of freedom,

ä2
n (see subsection 2.5.3). Finally, for each new observation, the DI is given by the smallest

DI estimated on each cluster,

DI(z) = min [DI1(z), . . . , DIQ(z)] . (2.22)

2.5.2 Outlier detection based on residual errors

In the test phase, the data normalization methods presented in subsection 2.5.1,

namely based on the PCA, AANN, and KPCA algorithms, output a residual feature

vector with dimension equal to the dimension of the input feature vector. For instance,

from Equations 2.7, 2.8, and 2.16, a quantitative measure of damage for each feature vector

can be established in the form of score. Herein, a DI is adopted in the form of the squared

root of the sum-of-square errors (Euclidean norm) for each residual feature vector. Thus,

a DI for each feature vector � (� = 1, 2, ..., �) of a test matrix Z is given by

DI(zf ) = ‖ ef ‖ . (2.23)
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If the feature vector � is related to the undamaged condition, then zf ≡ ẑf and

DI(zf ) ≡ 0. On the other hand, if the feature vector comes from the damaged condi-

tion, the residual errors increase, and the DI deviates from zero, indicating an abnormal

condition in the monitored structure.

To take into account variability, uncertainty, and to detect or classify those DIs

that significantly deviates from zero, it is necessary to establish confidence intervals. When

considerable training data are available from the undamaged condition, one can estimate

ad hoc thresholds based on values corresponding to a certain percentage of confidence

(for example, 95%) over the training data. Therefore, multivariate outliers are defined as

test observations having DIs beyond a specific threshold.

2.5.3 Outlier detection based on central Chi-square hypothesis

The MSD algorithm has been used as a distance measure for multivariate statis-

tics outlier detection. Alternatively, in the outlier detection approach described herein,

a hypothesis test can be established, where the null hypothesis, �0, is the undamaged

condition and the alternative hypothesis, �1, is presumably the damaged condition. To

determine whether a feature vector is from a structure within the undamaged condition,

a quantitative measure of separation between a new feature vector and an existing dis-

tribution is established. In SHM, this value is often referred to as DI. In Equation 2.3 or

2.21, if a multivariate feature vector z is extracted from the undamaged condition that

supposedly corresponds to a multivariate Gaussian random distribution, then the d2 or

DI will be Chi-square distributed with � degrees of freedom

DI ≍ ä2
n. (2.24)

When � increases the probability density function (PDF) begins to approach a

normal PDF, as predicted by the central limit theorem. Therefore, multivariate outliers

can simply be defined as observations having DIs above a certain level. The assumption

of a Chi-square distribution is indispensable for outlier detection because it permits one

to defined a cut-off value or threshold, �, for a level of significance, Ñ, in the form of

� = inv�χ2
n

(1 ⊗ Ñ) , (2.25)

where inv�χ2
n

is the inverse cumulative distribution function of the central Chi-square

distribution. Thus, a feature vector is considered to be a multivariate outlier (the null

hypothesis is rejected) when its DI is equal or greater than �. The selection of Ñ carries

a tradeoff between the false-positive and false-negative indications of damage. A level

of significance equal to 5% is normally acceptable. In addition, this outlier detection
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approach can be also applied on the residuals produced by the PCA, AANN and KPCA,

as demonstrated in (FIGUEIREDO; CROSS, 2013).

By assuming this outlier detection approach, a schematic representation of the

MSD-based method combining data normalization and statistical classification is depicted

in Figure 6. First, the feature vectors extracted from time series are divided into training

matrix X composed of undamaged data, and test matrix Z composed of both undamaged

and damaged data. The training data sets should be representative of the operational

and environmental variations present in the structure. Second, the mean vector and co-

variance matrix of X are estimated as parameters for calculating the distances. Third,

the d2 (or DI) for each feature vector of the test data is computed. If a DI is below the

chosen threshold, �, the null hypothesis is accepted, otherwise it is rejected. This approach

assumes that the original features from the undamaged condition follow a multidimen-

sional Gaussian distribution, � , and the features from the damaged condition follow an

unknown distribution, �. Note that the hypothesis � is not tested since no assumptions

are made regarding the form of structural damage or its effect on the feature vector.
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Figure 6 – The MSD-based method combining data normalization and statistical modeling
for feature classification.

2.5.4 Performance evaluation of feature classification for damage detection

The performance evaluation of damage detection is a fundamental aspect for com-

paring models and methods. For the two-class problem (binary classification) in SHM,

in which the two sets of cases are labeled as damaged (or positive, P) or undamaged (or

negative, N), assuming a given threshold, there are four possible outcomes as synthesized

in Table 1 and Figure 7. For a positive outcome, the case can be either true positive (TP),

if the observed is positive, or false positive (FP), if the observed is negative. On the other
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hand, for a negative outcome, the case can be either false negative (FN), if the observed is

positive, or true negative (TN), if the observed is negative. The shaded portion of Table 1

represents the confusion matrix (also known as contingency table), where the numbers

along the major diagonal represent the correct classifications, and the numbers out of the

diagonal represent misclassifications, also known as Type I (FP) and Type II (FN) errors.

Table 1 – Accuracy of binary classification.

Observed
Outcome

Positive Negative Total
Positive True Positive (TP) False Positive (FP) TP+FP
Negative False Negative (FN) True Negative (TN) FN+TN
Total TP+FN FP+TN TP+FN+FP+TN
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Figure 7 – Distributions from the undamaged and damaged conditions.

Therefore, false indications of damage fall into two categories: (i) false-positive

(indication of damage when none is present, Type I error) and (ii) false-negative (no

indication of damage when damage is present, Type II error). Errors of the first type are

undesirable, as they cause unnecessary downtime and consequent loss of revenue as well

as loss of confidence in the monitoring system. More importantly, there are clear safety

issues if misclassifications of the second type occur (FARRAR; WORDEN, 2007). Pattern

recognition algorithms allow one to weigh one type of error above the other; this weighting

may be one of the questions answered at the operational evaluation phase.

Also receiver operating characteristic (ROC) curves provide a comprehensive and

graphical manner to summarize the performance of different methods (BRADLEY, 1997).

The ROC curves were introduced in signal detection theory by electrical and radar en-

gineers during the World War II for detecting enemy objects in battle fields. Since that

time, the ROC curves have become increasingly common in fields, such as finance, atmo-

sphere science, engineering and medicine. In the field of machine learning, these curves

have become a standard tool to evaluate the performance of binary classifiers.
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The ROC curves focus on the tradeoff between sensitivity and 1-specificity. As

shown in Figure 8, the sensitivity is sometimes called the true-positive rate, TPR =

TP/(TP+FN), and defines the fraction of true detection. The 1-specificity is sometimes

called false-positive rate, FPR = FP/(FP+TN), and defines the fraction of false alarm.

Each point on the ROC curve corresponds to a specific threshold, although the values

of thresholds are not evident from the square plot. The diagonal line divides the ROC

space into two parts and represents a classifier that performs random classifications. Any

point in the upper-left triangle means that the classifier has some understanding of the

classes. Moreover, the closer the ROC plot is to the upper-left corner, the higher the

overall accuracy of the classifier. On the other hand, any point in the lower-right triangle

means that the classifier is performing worse than random, i.e., the classifier has some

underlying information about the classes but applies it in the opposite manner.
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Figure 8 – Example of a ROC curve; the diagonal line divides the ROC space into two
parts and represents a classifier which performs random classifications.

2.6 Challenges for statistical modeling for feature classification

In this chapter, an overview related to the SPR paradigm for SHM solutions was

presented. The challenges of the first two phases of this paradigm were discussed in terms

of planning for the deployment and operation of the SHM systems. In the feature extrac-

tion phase, the need for damage-sensitive features correlated to damage and completely

uncorrelated to everything else was demonstrated and the techniques used in this thesis

were briefly highlighted. A major focus was dedicated to the fourth phase (statistical

modeling for feature classification) because the mathematical formulations of the state-
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of-the-art machine learning algorithms for data normalization and the statistical models

for damage detection, as well as other important issues discussed in this phase, are the

basis for the understanding of novel methods proposed in Appendices from A to F.

Finally, based on the major focus of this study, some of the challenges for statistical

modeling for feature classification are discussed in the following:

∙ The damage detection process is currently posed in the context of false-positive and

false-negative indications of damage. This technique recognizes that a false-positive

classification may have different consequences than false-negative ones. Thereby,

analytical approaches to defining threshold levels must: balance tradeoffs between

false-positive and false-negative indications of damage, minimizing false-positives

when economic concerns drive the SHM applications, and minimizing false-negatives

when life-safety issues are the motivations to deploy the SHM systems;

∙ Updating statistical models as new training data become available;

∙ Managing the massive volumes of data that will be produced hourly or daily by an

online monitoring system;

∙ Learning the normal condition of a structure considering all normal variability (e.g.,

temperature and traffic loading) and yielding reliable results, i.e., estimating the

undamaged model with a method that takes into account minimal loss of information

and avoids dependence on the initial parameters;

∙ The choice of a method for a specific application must be done as a function of the

damage-sensitive features used, as well as the distribution of these features when

influenced by linear or nonlinear operational and environmental variability.
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3 Summary of original work and discussion

This chapter summarizes the original methods proposed in this study for damage

identification in SHM. First, the overall methodology for damage detection and quantifi-

cation is presented and important rules are discussed to accomplish it. Second, the papers

which composed this thesis are summarized. A brief comparison between the proposed

methods is then performed on natural frequencies from the Z-24 Bridge. In addition, a

list of publications in the context of this thesis is also highlighted.

3.1 Methodology for damage detection and quantification

The overall methodology for damage detection and quantification used in all papers

(Appendices from A to F) is depicted in Figure 9. This flow chart shows that after several

vibration signals have been acquired, the feature extraction phase estimates the damage-

sensitive features, which can be natural frequencies or parameters/residuals from an AR

model. Afterwards, some part of the undamaged features is used as learning data to the

model and threshold estimations. Note that this selected part should cover all operational

and environmental variability. The test phase is then accomplished by computing a DI

(i.e., quantifying the damage) for any new feature, with support from the undamaged

model estimated in the training phase. Finally, the damage detection is performed by

classifying the DI as undamaged or damaged according to the threshold.

A graphic representation of the expected results from the damage detection pro-

cess is shown in Figure 10. In this case, the test matrix is composed of � undamaged

observations and (� ⊗ �) damaged observations. After the test phase, the DIs computed

from new features are classified according to a threshold with a given confidence level.

The Type I errors are DIs that exceed the threshold value in the undamaged condition

domain, (1 to �). On the other hand, the Type II errors are DIs that do not surpass

the threshold value in the damaged condition domain, ((� + 1) to �). Additionally, note

that through the amplitude of the DIs it is possible to relatively quantify the damage.

This fact can be used to discover which test case is the most severe one, and to determine

whether a method can remove operational and environmental variability in the training

and test phases (for example, see Appendix A).
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Figure 9 – Flow chart of the methodology for damage detection and quantification.
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Figure 10 – Graphic representation of the statistical modeling for feature classification
and results related to damage detection and quantification.

A wide range of algorithms can be employed to the training phase, test phase

and threshold estimation, thus many combinations of different algorithms are available to

compose a method. To avoid unfeasible combinations and to easily define the training data

matrix and thresholds, some general rules applied in all papers are enumerated below.

1. The training data matrix should cover all operational and environmental variability

under which the structure of interest operates. Therefore, it was assumed the need

for training the machine learning algorithms with almost one-year baseline data to
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cover one seasonal cycle, taking into account the temperature and humidity effects

of winter and summer;

2. If the training phase is performed by the kernel- or PCA-based methods, there

are three possible results from this procedure depending on the availability of the

residual matrix E during the test phase (see subsections 2.5.2 and 2.5.3);

a) If a method explicitly computes the matrix E, one can estimate an ad hoc

threshold and compute the DIs with the Euclidean distance or a threshold

based on central Chi-square hypothesis and compute the DIs with the MSD;

b) If a method implicitly estimates the matrix E, one can estimate an ad hoc

threshold and compute the DIs with the Euclidean distance;

c) If a method does not estimate the matrix E, one can estimate an ad hoc

threshold and compute the DIs with the Euclidean distance or MSD (depending

on the undamaged model available from the training phase);

3. When the training phase or data normalization is performed by clustering, there are

two possible results from this procedure: only a mean vector (also known as centroid)

for each cluster, or a mean vector and a covariance matrix for each cluster;

a) For the first case, one should estimate an ad hoc threshold and compute the

DIs with the Euclidean distance;

b) For the second case, one should estimate a threshold based on central Chi-

square hypothesis and compute the DIs with the MSD. Note that the second

case includes the first one when only the centroids are used.

For general purposes of correspondence, all cases from rule 2 are applicable to the

proposed methods in Appendix A. The first case from rule 3 is applicable to the proposed

methods in Appendices from B to F. The second case from rule 3 is applicable only to

the proposed methods in Appendices C and D.

3.2 Papers which compose the thesis and enhancements

This section summarizes the six papers (Appendices from A to F) which com-

pose this thesis. The proposed methods, data sets, and experimental results are briefly

described and discussed. The general enhancements provided by these methods to the

state-of-the-art damage detection process in SHM are also synthesized.
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3.2.1 Paper A: Machine learning algorithms for damage detection: Kernel-

based approaches

Kernel-based machine learning algorithms have been widely applied to detect dam-

age in the SHM applications. These algorithms, mostly based on SVMs, have revealed high

sensitivity and accuracy in the damage classification. This paper presents the adaptation

of four kernel-based methods, based on the one-class SVM, SVDD, KPCA and GKPCA,

for damage detection under operational and environmental influences. Acceleration time-

series from an array of accelerometers were obtained from a laboratory structure and used

for performance comparisons. The main contributions are: the first-known adaptation of

two algorithms (KPCA and GKPCA) for damage detection in the SHM field; and the

combination between other two algorithms (one-class SVM and SVDD) and an outlier

detection method (MSD) for data normalization purposes in the SHM field. All proposed

methods revealed to have better classification performance in terms of Type I (ranging

between 4.7%–8.2%) and Type II (ranging between 0.8%–1.1%) errors than the state-

of-the-art ones (the MSD, AANN, FA, and SVD); with special emphasis to the KPCA,

which can learn the normal structural condition with minimal loss of information and

detect undamaged and damaged cases on these data sets with only 2.7% of total errors.

This paper has been published in Journal of Sound and Vibration, vol. 363, 2015.

3.2.2 Paper B: A novel unsupervised approach based on a genetic algorithm

for structural damage detection in bridges

This paper proposes the GADBA-based method to support the damage detection

process, in the presence of linear and nonlinear effects caused by normal variability. This

approach is rooted in the search of an optimal number of clusters, representing the main

state conditions of a structure. The method is supported by a novel CH algorithm to

mitigate the cluster redundancy. The superiority of the GADBA is compared to state-

of-the-art methods based on the GMM and MSD algorithms, on data sets from the Z-24

(Switzerland) and Tamar (United Kingdom) Bridges. In terms of formulation, the pro-

posed method assumes no particular underlying distribution and its genetically guided

characteristic increases the chance to obtain a solution close to the global optimal. Be-

sides, the CH algorithm provides special capabilities (inflation and observation density

analysis) to regularize the number of clusters and define better clusters, resulting in more

accurate models to accomplish data normalization. In addition, compared to the GMM,

the GADBA-based method demonstrates faster convergence in both case studies. In terms

of result analysis, as verified on both test cases, the GADBA demonstrates to be: as robust

as the GMM to detect the existence of damage (2.6% of Type II errors); and potentially

more effective to model the baseline condition and attenuate the effects of the normal
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variability, as suggested by the minimization of false alarms (5.6% of Type I errors) on

data sets from the Tamar Bridge.

This paper has been published in Engineering Applications of Artificial Intelli-

gence, vol. 52, 2016.

3.2.3 Paper C: A Global Expectation-Maximization Approach Based on Memetic

Algorithm for Vibration-Based Structural Damage Detection

In this paper, the GEM-GA approach is proposed, for which an MA based on GA

was used to improve the stability and reliability of the EM algorithm in searching for the

optimal number of data clusters and their parameters (training phase). After the main

state conditions of the structure are determined, assuming multivariate Gaussian distri-

butions, the damage detection strategy implemented through the MSD can be applied.

The proposed approach is compared to the state-of-the-art ones based on the EM-GMM,

MC-GMM, AANN, and KPCA, by taking into account real-world data sets from the Z-24

Bridge, where several damage scenarios were performed. The GEM-GA consists of two

main parts: a global one that conducts the global search in the feature space, and a local

one, which performs a more refined search around candidate solutions of the current dam-

age detection problem. This strategy has led the GEM-GA to overcome the instability

related to the alternative GMM-based approaches, providing data models with stable and

reliable number of data clusters (herein 7 clusters) and approximately the same likelihood

(14456.84 ∘ 0.04). When the GEM-GA is compared to the alternative methods, the im-

provements on the stability and reliability of the EM algorithm demonstrated to have a

direct and positive impact on the identification of reliable data clusters (data normaliza-

tion) and damage detection; reaching, in its worst case, approximately 3.6% of Type I

errors and 0.6% of Type II errors, while the EM-GMM, MC-GMM, AANN, and KPCA

have 2.7% and 13%, 3.2% and 1.7%, 5.3% and 0.9%, 5% and 0.9%, respectively. In con-

clusion,the GEM-GA not only deals with nonlinear relationships in the monitoring data,

but also provides stable results in terms of data normalization and damage detection.

This paper has been published in IEEE Transactions on Instrumentation and

Measurement, vol. 66, no. 4, 2017.

3.2.4 Paper D: A global expectation-maximization based on memetic swarm

optimization for structural damage detection

Also considering the limitations of the EM-GMM for damage detection in SHM

(see subsection 3.2.3), and as an attempt to add quantitative information from the SHM

systems into the BMSs, this paper proposes an MA based on PSO, the GEM-PSO, for data

normalization by clustering and damage detection process based on the Mahalanobis and



Chapter 3. Summary of original work and discussion 40

Euclidean distances. The superiority of the GEM-PSO over the state-of-the-art methods

(the EM-GMM and KPCA) is attested using data sets from the Z-24 and Tamar Bridges.

The damage detection on the monitoring data from the first scenario highlights that

the GEM-PSO, KPCA, and EM-GMM can identify 99.35% (standard deviation of 0.2),

99.13%, and 87% (standard deviation of 30) of damaged cases and 96% (standard devi-

ation of 5), 95%, and 98% (standard deviation of 26) of undamaged cases, respectively.

For the second scenario, the GEM-PSO, KPCA, and EM-GMM can detect undamaged

observations with accuracy of 94%, 80%, and 89%, respectively. Similar to the GEM-

GA, the GEM-PSO has high reproducibility on the estimation of the normal structural

condition and damage-detection results, regardless of the choice of initial parameters.

This bioinspired hybridization between a local search method (the EM algorithm) and a

global search method (the PSO) avoids unfeasible solutions eventually found in different

executions of the alternative approaches. As demonstrated through the results, this hy-

bridization proved to be a pronounced technique that can be used to add quantitative

information from the SHM systems into the BMSs or visual inspections, in a controlled

manner, as the main state conditions of a structure are mapped into a global DI.

This paper has been published in Structural Health Monitoring (Print), vol. 15,

no. 5, 2016.

3.2.5 Paper E: Output-only structural health monitoring based on mean shift

clustering for vibration-based damage detection

This paper presents a technique based on the MSC to automatically discover an

unknown number of clusters that correspond to the normal state conditions of a struc-

ture. Unlike most methods in the literature, the MSC is a nonparametric technique that

does not require prior knowledge of the number of clusters and can identify clusters of

distinct shapes, sizes and density. This reliable estimation of clusters enhances the sub-

sequent damage detection process, ensuring the monotonic relationship between the level

of damage and the amplitude of the DI. The superiority of the MSC technique, over the

alternative ones (the K-means, Fuzzy c-means, and EM-GMM), is attested by applying a

damage detection strategy implemented through the Euclidean distance, using daily data

sets from the Z-24 Bridge. From the results, it is possible to infer the positive impact of a

data normalization procedure without sensitivity to the initialization procedure. In con-

trast to the alternative methods, the MSC can discriminate the normal condition of the

Z-24 Bridge in a better manner, separating changes caused by regular temperatures from

changes caused by extreme cold temperatures. It also can distinguish different damage

levels, ignored by other approaches, when all monitoring data are clustered.

This paper has been published in 8th European Workshop On Structural Health

Monitoring (EWSHM), Bilbao, Spain, 2016.
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3.2.6 Paper F: Agglomerative concentric hypersphere clustering applied to

structural damage detection

An improved and simplified version of the GADBA approach is highlighted in this

paper as an agglomerative clustering procedure - the ACH method. It automatically dis-

covers the structural state conditions as a means to assist the damage detection and quan-

tification in engineering structures. This straightforward and nonparametric method does

not require any input parameter (except the training data) and applies a density-based

technique to identify groups of similar observations represented as inflated hyperspheres.

Three initialization procedures are introduced to evaluate the impact of deterministic and

stochastic initializations on the performance of this method. The ACH is compared to

the EM-GMM and MSD, on daily and hourly data sets from the Z-24 Bridge. The per-

formances of the ACH-, MSD-, and GMM-based methods are compared on the basis of

Type I/II errors, as well as on their capabilities to filter nonlinear changes, when dealing

with environmental effects. In terms of general results, the ACH (with the divisive initial-

ization) demonstrated to be as effective and robust as the GMM to detect the existence

of damage, and potentially more effective to model the normal condition and to attenu-

ate the effects of normal variability as suggested by the monotonic relationship between

the amplitude of the DIs and the gradual increasing of damage level. In particular, the

ACH can identify 98.7% of the damaged cases, maintaining an acceptable rate of 90.8%

of undamaged cases correctly assessed, while the EM-GMM and MSD can detect 97.8%

and 58.7% of damaged cases, and 84.4% and 98.3% of undamaged cases, respectively.

This paper has been published in Mechanical Systems and Signal Processing, vol.

92, 2017.

3.2.7 Enhancements of the damage detection process

In the SHM literature inherent to the data-based damage detection, the state-

of-the-art methods have been developed without a tradeoff between Type I/II errors.

The result of this lack of proportionality has provided approaches that are very efficient

at detecting damage but having a high false alarm rate, or vice versa. Usually, a poor

data normalization performed by these methods is the main cause, i.e., all operational

and environmental variability is not properly accounted for due to the limited nonlinear

capability, some loss of information or sensitivity to the choice of the initial parameters.

In this context, one of the main enhancements of the proposed methods against

the alternative ones is the estimation of the normal condition of a structure, without loss

of information or sensitivity to the initialization procedure, regardless of the structural

response being influenced by linear or nonlinear normal variability. This improvement on

the data normalization contributes not only to minimize false alarms, but also to maximize
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the damaged cases correctly identified. Thus, a high reproducibility on the estimation of

the normal structural condition and damage-detection results is achieved.

For example, in Appendices C and D, it was highlighted that, via the MA-based

approaches, one can estimate approximately the same undamaged model for different

executions, with low standard deviation in terms of likelihood. The bioinspired clustering

procedure provided by these methods covers all normal variability when the observations

under the same unmeasured normal effect are grouped into a cluster. This type of learning

phase improves the results of the classification phase, ensuring an acceptable tradeoff

between Type I/II errors (3.7% and 0.6%, respectively).

In terms of numerical results, when the novel methods are compared to the state-

of-the-art ones, the results demonstrated that the former ones have better damage detec-

tion performance in terms of false-positive (ranging between 3.6–5.4%) and false-negative

(ranging between 0–2.6%) indications of damage, suggesting their applicability for real-

world SHM solutions. This fact shows that the proposed techniques can detect damage

with high accuracy, without diminishing their sensitivity to classify undamaged cases,

i.e., they reach the desired tradeoff between economical/reliability (Type I errors) and life

safety (Type II errors) issues, not accounted for by the other correlated approaches.

Furthermore, for the cluster-based methods proposed herein, another crucial en-

hancement is related to the physical interpretations about the undamaged structural

condition under normal variability. The discovered clusters allow a better understanding

of the operational and environmental sources of variability under which the structure of

interest operates. For instance, from the clustering results provided by the GADBA, MSC,

and ACH (see Appendices B, E, and F, respectively) on daily data sets from the Z-24

Bridge, one can distinguish between the normal condition under regular temperatures and

extreme cold temperatures (which cause some changes in the structural stiffness). These

methods can be also employed to identify the aforesaid normal clusters and damaged

clusters when all monitoring data are used in the training phase. In Appendix E, it was

evidenced that the MSC can discover distinct damaged clusters grouping observations

from different levels of damage.

An undamaged model with physical interpretations is not yielded by several state-

of-the-art methods, such as the PCA, SVD, MSD, AANN, and KPCA. The EM-GMM

and MC-GMM, in principle, can provide this model. However, as theses approaches have

sensitivity to the choice of the initial parameters, they may present different number of

clusters in distinct executions. This unstable behavior limits the reliability and interpre-

tation of the normal structural state conditions estimated by such methods.
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3.3 Comparison between the proposed methods and discussion

When the novel methods are compared to the state-of-the-art ones, they clearly

demonstrate their superiority in terms of data normalization and damage detection on

laboratory and real-world data sets. Nevertheless, a comparison between the proposed

methods is imperative to derive more conclusions related to their applicability on real-

world SHM applications. This comparative study is highlighted by applying these methods

on hourly natural frequencies from the Z-24 Bridge.

Some considerations should be provided before the discussion of the results. First,

the hourly data sets from the Z-24 Bridge are chosen because they are more challenging

regarding environmental influences and damage scenarios than the alternative data sets

also used in the papers. Second, from Appendix A, only the KPCA-based method is

selected for this comparison because this techniques prove to be the most promising one

when applied on laboratory and real-world data sets. Finally, as the ACH is an improved

version of the GADBA, only the first method is considered to simplify this comparative

study. Besides, the other methods which integrate this comparison are the MSC, GEM-

PSO, and GEM-GA.

For damage detection purposes, the feature vectors (or observations) are split into

the training and test matrices. The training data X3123×4 is composed of 90% of the feature

vectors from the undamaged condition. The remaining 10% of these features vectors are

used during the test phase to make sure that the DIs do not fire off before the damage

starts. The test data Z3932×4 is composed of all data sets (undamaged and damaged), even

the ones used during the training phase. For more information about this setting, as well

as about the major environmental influence and damage scenarios of the Z-24 Bridge, one

can consult Appendix C.

In terms of the input parameters of the KPCA and GEM-GA, they have the same

configurations defined in Appendix C, while the configurations of the GEM-PSO and

ACH are obtained from Appendices D and F, respectively. In the case of the MSC, which

had not yet been applied on these monitoring data, its bandwidth parameter equal to 0.25

was selected based on the best compromise between the bias and variance (COMANICIU;

MEER, 2002). To ensure equality in this comparative study, for all methods, an ad hoc

threshold is estimated based on the 95% cut-off value of confidence over the training data.

Note that the GEM-PSO and GEM-GA can yield a centroid (similar to the ACH and

MSC) and a covariance matrix for each discovered cluster. However, as a means of being

consistent with the defined threshold and some rules established in section 3.1, only the

centroids provided by the bioinspired methods are used in the test phase, i.e., the DIs are

computed through the Euclidean distance.
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The damage detection performance of all proposed methods selected for this com-

parison is shown in Table 2. The number of clusters discovered by each cluster-based

method is also highlighted. In a first general analysis, one may conclude that the KPCA

is the best method to minimize Type II errors, and the GEM-PSO and GEM-GA are

the most reliable methods to minimize Type I errors. However, one should consider that

the current SHM applications are typically more interested in a tradeoff between the true

positive (Type II errors) and false alarm (Type I errors) rates.

Table 2 – Damage detection performance and number of clusters for each method (average
∘ standard deviation for 20 different executions when the method is bioinspired).

Method Type I errors Type II errors #Clusters

KPCA 172 (95.04%) 4 (99.13%) –
MSC 168 (95.16%) 12 (97.40%) 2
ACH 188 (94.58%) 6 (98.70%) 3

GEM-PSO 166.05 ∘ 0.22 (95.21%) 6.00 ∘ 0.00 (98.70%) 7.00 ∘ 0.00
GEM-GA 166.00 ∘ 0.00 (95.22%) 6.00 ∘ 0.00 (98.70%) 7.00 ∘ 0.00

Considering that all methods must misclassify 5% of the undamaged observations

in the range 1–3123 (data from the training used in the test) due to the threshold of 95%

of confidence, at least 156 Type I errors are expected. This range is only considered in

Table 2, not in the following discussion. Although the KPCA can detect 99% of damaged

cases and 95.4% of undamaged cases not used in the training (3124–3470), the GEM-PSO

and GEM-GA can obtain 98.7% and 97%, respectively, which is a better tradeoff between

Type I/II errors. This result is easily justified by the fact that the KPCA is only able

to fit a fraction of the normal structural condition (see subsection 1.4.2). Thus, some

part of the normal variability is not accounted for, yielding more Type I errors than the

bioinspired methods, which can learn the normal condition with more robustness via a

clustering procedure.

By analyzing the performance of all cluster-based approaches, the MSC can cor-

rectly classify 96.5% of undamaged cases and the ACH can identify 98.7% of damaged

cases. However, for the first method, the Type II errors increase, and for the second

one, the false alarm rate reaches 9%. The reason for such results is that, while both

methods can estimate the normal condition without loss of information, their local opti-

mizations/criteria to create new clusters play a crucial role in the characterization of all

normal state conditions of the structure. In other words, the number of clusters estimated

by both methods seems to be less than necessary to deal with the multimodality and

heterogeneity of the present data sets. On the other hand, by using a global optimiza-

tion, the GEM-PSO and GEM-GA can handle the challenges of the monitoring data and

discriminate the undamaged condition with an appropriate number of clusters.
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To avoid duplication of published results, only the DIs calculated from the MSC

and GEM-GA methods are shown in Figure 11. Note that the DIs computed from the

KPCA, GEM-PSO, and ACH, under this setting and on the same data sets, can be

visualized in Appendices C, D, and F, respectively. From Figure 11, it is possible to confirm

the better performance of the GEM-GA (or of the GEM-PSO) to classify undamaged

and damaged observations included only in the test phase. Through the DIs from both

methods, during the damaged condition, one can infer a monotonic relationship between

the level of damage and the amplitude of the DIs, even with the presence of operational

and environmental influences. This relationship reveals the damage progressive testing

period on the Z-24 Bridge, which indicates cumulative damage on long-term monitoring.
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Figure 11 – DIs estimated from the application of the MSC (left) and GEM-GA (right)
methods on hourly data sets from the Z-24 Bridge.

To synthesize this brief comparative study, three main conclusions related to the

proposed methods are highlighted below, considering a possible extension of their appli-

cability to other real-world SHM scenarios.

∙ The KPCA proved to be a method capable of detecting damage with high accuracy.

However, some loss of information on the estimation of the normal structural con-

dition is inevitable due to the working principle of this approach. Therefore, this

method should be applied when life safety issues are the primary motivations of an

SHM system, i.e., the minimization of Type II errors is the reason of the monitoring;

∙ The MSC and ACH (divisive version) methods can determine the normal condition

without loss of information or sensitivity to the initialization procedure. However,

their local optimizations to create the necessary number of clusters to deal with the

heterogeneity of the present hourly data arise as a limitation. Nevertheless, they

achieved 100% of accuracy on daily data from the Z-24 Bridge (see Appendices

E and F). Thus, these approaches are appropriate to handle less complex data,

possibly from an SHM system with daily frequency of data acquisition;
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∙ When a better tradeoff between economical/reliability and life safety issues is desired

for an SHM system, the bioinspired methods GEM-PSO and GEM-GA are the best

indications to discriminate all normal state conditions of a structure and then to

classify new observations with high confidence. The global search applied by these

techniques makes them the more attractive solutions for data normalization and

damage detection, regardless the different levels of practical challenges in the data.
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4 Conclusions and future research

This chapter presents the main conclusions of this thesis related to the results

achieved and limitations encountered. It also discusses future research topics for which

the methods proposed in this study can be the fundamental basis or integrating parts.

4.1 Conclusions

In any engineering structure monitored during in-service stage, the separation of

changes in features caused by damage from those caused by normal variability is one

of the biggest challenges for the application of SHM technology. In some cases, changes

caused by normal variability may be even larger than those caused by damage. If not

properly accounted for by a data normalization procedure, changes in the structural re-

sponse characteristics caused by operational or environmental influences can, potentially,

result in false indications of damage during the detection process.

Output-only methods are an alternative approach to handle this drawback. They

apply algorithms to develop data-driven models that can eliminate the unmeasured in-

fluences of operational and environmental variability on features, i.e., they perform data

normalization. When well accomplished, this procedure contributes, significantly, to en-

hance damage detection and quantification. In the current SHM literature on this subject,

the techniques employed to normalize the monitoring data have some limitations related

to their working principles, such as limited nonlinear capability (e.g., the MSD, PCA,

and FA), some loss of information (e.g., the KPCA and AANN), or high sensitivity to the

initialization procedure (e.g., the EM-GMM and MC-GMM).

Therefore, to address the aforesaid problem and tackle the limitations found in the

SHM literature, this thesis applied the SHM process in the context of the SPR paradigm,

where novel output-only methods were proposed for damage detection and quantification

based on measured vibration data from engineering structures under normal variability.

These approaches are mostly based on the machine learning and artificial intelligence

fields, being capable of learning from monitoring data and discovering/characterizing dif-

ferent patterns associated to the undamaged and damaged conditions of a structure.
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As demonstrated in the published papers (Appendices from A to F) which com-

pose this study, when the proposed methods are compared to the ones from the literature,

one of the main enhancements is on the estimation of the normal condition of a structure,

without loss of information or sensitivity to the initialization procedure, regardless of the

structure is under linear or nonlinear variability. This improvement on the data normal-

ization contributes not only to minimize false alarms, but also to maximize the number

of damaged cases correctly identified. Thus, a high reproducibility on the estimation of

the normal structural condition and damage-detection results was reached.

In terms of numerical results, the novel methods have better damage detection

performance in terms of undamaged (ranging between 94.6–96.4%) and damaged (ranging

between 97.4–100%) cases properly identified, suggesting their applicability for current

SHM solutions. This fact shows that the proposed techniques can detect damage with

high accuracy, without diminishing their sensitivity to classify undamaged cases, i.e.,

they reach the desired tradeoff between economical/reliability (Type I errors) and life

safety (Type II errors) issues, not addressed by the state-of-the-art approaches.

In particular, it was demonstrated through the MA-based approaches that one

can determine, approximately, the same baseline model for different executions, with

low standard deviation in terms of likelihood. This improvement is explained by the

bioinspired clustering procedure provided by these methods, where all normal variability

is covered when the observations under the same unmeasured normal effect are grouped

into a cluster. This type of learning improves the results of the damage classification phase,

ensuring an acceptable tradeoff between TypeI/II errors (3.7% and 0.6%, respectively).

The physical interpretations about the undamaged structural condition under nor-

mal variability is another appealing improvement. The discovered clusters allow a general

comprehension of the sources of variability present in the structures under normal op-

eration. From the clustering results provided by the GADBA, MSC, and ACH on daily

data sets from the Z-24 Bridge, one can distinguish between the normal condition under

regular temperatures and extreme cold temperatures. These methods can be also em-

ployed to identify the normal and damaged clusters when all monitoring data are used

in the training phase. It was shown that the MSC can discover distinct damaged clusters

grouping observations from different levels of damage and have effective meaning.

When the proposed methods are compared to each other, on hourly natural fre-

quencies from the Z-24 Bridge, the GEM-PSO and GEM-GA prevailed with a better

tradeoff between Type I/II errors, detecting 98.7% of damaged and 97% of undamaged

cases. Thus, when a better tradeoff between economical/reliability and life safety issues

is desired for an SHM system, the bioinspired methods are the best indications for data

normalization and damage detection. The global search applied by these techniques makes

them the more reliable solutions, regardless the different levels of multimodality and het-
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erogeneity in the monitoring data.

In turn, the KPCA proved to be a method capable of detecting damage with high

accuracy (99% of damaged cases). However, some loss of information on the estimation

of the normal structural condition is expected due to its working principle. Thereby, this

method should be applied when life safety issues are the primary motivations of an SHM

system, i.e., the false-negative indications of damage are more relevant.

In the case of the MSC and ACH methods, although they can determine the normal

condition without loss of information or sensitivity to the initialization procedure, their

intrinsic local optimizations to create the number and shape of clusters to deal with the

heterogeneity of complex hourly data may limit their range of applicability. Nevertheless,

they achieved 100% of accuracy in terms of damage detection on daily data from the Z-24

Bridge. Thus, these approaches are appropriate to handle less complex data, possibly from

an SHM system with daily frequency of data acquisition.

In a general analysis, the proposed approaches intend to avoid the measure of

operational and environmental parameters and physics-based approaches, such as finite

element models. In other words, they are output-only and data-based techniques appli-

cable to engineering structures of arbitrary complexity. It is worth noting that the novel

methods developed in this thesis can be applied on vibration response measurements of

any structure from civil, mechanical or aerospace engineering.

One of the main benefits delivered by the developed methods to the SHM technol-

ogy is the ability to continuously assess the integrity of engineering structures, offering the

opportunity to reduce maintenance and inspection costs (minimization of Type I errors,

reliability/economical issues), while providing increased safety to the public (minimiza-

tion of Type II errors, life safety issues). This advantage can be applied on the declining

state of aging infrastructure, as well as on the construction stage of new structures.

Additionally, the novel methods can also contribute to the aid of quantitative

information from the SHM systems into the BMSs or visual inspections. Theses techniques

are capable of reducing the global state conditions of a structure into a global DI that

quantifies the level of damage according to a predefined threshold at a given period. This

information can be then registered into a BMS for further comparisons.

In terms of limitations encountered, the ones that have attracted more attention

are the dependence of the proposed methods on the sensitivity of the features and the

quality of the monitoring data used in the training phase.

For example, the detection of small cracks depends on the severity of these cracks.

The cracks need to change the stiffness significantly, as the natural frequencies are natu-

rally related to the stiffness of the structural system. Therefore, the success of the proposed

methods depends highly on the sensitivity of the extracted features.



Chapter 4. Conclusions and future research 51

It is also important to consider that there are potential problems if the training

data can cover only a limited range of operational and environmental variability. Hence,

all sources of variability must be well characterized by the training data such that the

techniques learn their influence on the structural response and perform the data normal-

ization procedure. Thus, one should note that there is no guarantee that these approaches

will work effectively when applied to new monitoring data under normal variability not

included in the training phase.

4.2 Future research

Future research topics which can be derived from this thesis are pointed out below.

∙ The clustering procedure performed by the MSC may not be satisfactory if in the

input space the clusters are not linearly separable or the distance measure is not

adequate. The kernel MSC, improved for SHM purposes, can be a solution to this

drawback as it maps the data to a high-dimensional space in which the clusters are

often estimated in a better manner (VEDALDI; SOATTO, 2008);

∙ The ACH can be extended to provide a set of optimal clustering solutions, where

some of them were eventually disregarded in the original agglomerative procedure.

This improvement can be accomplished by means of a dendrogram along with an

information criterion to decide whether a clustering solution has the required qual-

ity to the data normalization problem. Besides, to comprise the identification of

clusters with distinct shapes, the distance metric of the ACH can be modified to

the Mahalanobis or diagonal distances, for instance;

∙ To circumvent the problems related to the PCA-based approaches, data-based meth-

ods from a relatively new branch of machine learning – deep learning – can be

developed. For example, the deep stacked autoencoder can be employed as a data

normalization procedure in the context of SHM. This type of deep neural network

allows to learn robust undamaged models in terms of generalization capabilities due

to the enhancements in its two-step training phase. Thus, it is expected that the

learned model can generalize the normal condition under normal variability from

the training to the test with more reliability and without loss of information;

∙ Development of an output-only approach that combines transmissibility measure-

ments, feature extraction, dimensionality reduction and feature classification to de-

tect structural damage. The motivation of using the transmissibilities to detect

damage relies on the assumption that they are local quantities (MAIA et al., 2011),

which suggests a high sensitivity to detect changes in the structural dynamics caused
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by some kind of damage. In this context, for example, a method was proposed com-

bining transmissibilities with the KPCA. First, the dimensionality of the transmissi-

bilities is appropriately reduced by applying the KPCA. Second, an outlier detection

strategy determines the condition of the instrumented structure. The method was

experimentally validated with transmissibilities acquired from a laboratory beam

instrumented with accelerometers. The results demonstrated that the approach has

high potential to be applied when only the structural response is available;

∙ An holistic pattern recognition paradigm for the SHM applications can be also

considered. It takes into account physical modeling, structural monitoring and in-

formation from visual inspections, as illustrated in Figure 12. In this data fusion

approach, the machine learning algorithms can learn from several physics-, data-

and visual-based sources, which potentially improves their knowledge regarding the

monitored structures to better identify damage at early stages. For instance, this

methodology was applied on the Z-24 Bridge from physics- and data-based models.

From new data yielded by the physical modeling of the structure and past monitor-

ing data acquired on a long-term monitoring, it is possible to verify the performance

of a data-based method in classifying some undamaged or damaged scenarios which

were reproduced or created.

Figure 12 – A new holistic pattern recognition paradigm to comprise physical modeling,
structural monitoring, and information from visual inspections.
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a b s t r a c t

This paper presents four kernel-based algorithms for damage detection under varying

operational and environmental conditions, namely based on one-class support vector

machine, support vector data description, kernel principal component analysis and greedy

kernel principal component analysis. Acceleration time-series from an array of accel-

erometers were obtained from a laboratory structure and used for performance com-

parison. The main contribution of this study is the applicability of the proposed algo-

rithms for damage detection as well as the comparison of the classification performance

between these algorithms and other four ones already considered as reliable approaches

in the literature. All proposed algorithms revealed to have better classification perfor-

mance than the previous ones.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Civil structures such as buildings, roads, railways, bridges, tunnels and dams are present in every society, regardless of

culture, geographical location or economical development. The safest and most durable structures are those that are well

managed and maintained. Health monitoring plays an important role in management activities [1]. The massive data

obtained from monitoring must be transformed in meaningful information to support the planning and designing main-

tenance activities, increase the safety, verify hypotheses, reduce uncertainty and to widen the knowledge and insight

concerning the monitored structure.

Structural health monitoring (SHM) is certainly one of the most powerful tools for civil infrastructure management. The

SHM process consists of permanent, continuous, periodic or periodically continuous acquisition of parameters by a sensor

network, feature extraction and statistical modeling for feature classification to detect possible structural damages and to

support the decision making [2,3]. Damage is traditionally defined as changes in the material and/or geometric properties of

the structures, including variations in the boundary conditions and system connectivity, which adversely affect the system's

current or future performance. In contrast, normal condition refers to data acquired under different operational and

environmental variability when the structure is known to be undamaged [4,5].

In the feature extraction phase is imperative to derive damage-sensitive features correlated with the severity of damage

present in monitored structures, minimizing false judgements in the classification phase. Nevertheless, in real-world SHM

applications, operational and environmental effects can camouflage damage-related changes in the features as well as alter

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jsvi

Journal of Sound and Vibration

http://dx.doi.org/10.1016/j.jsv.2015.11.008

0022-460X/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author.

E-mail address: adamdreyton@ufpa.br (A. Santos).

Journal of Sound and Vibration 363 (2016) 584–599



the correlation between the magnitude of the features and the damage level. Commonly, the more sensitive a feature is to

damage, the more sensitive it is to changing in the operational and environmental conditions (e.g., temperature and wind

speed). To overcome this impact, robust feature extraction procedures are usually required [6–8].

Statistical modeling for feature classification phase is concerned with the implementation of machine learning algo-

rithms that analyze the distributions of the extracted features and generate a data model in an effort to determine the

structural health of the system. The algorithms used in statistical modeling usually fall into the outlier detection category,

i.e., unsupervised learning is applied when training data are only available from the normal condition of the structure [9,10].

The data normalization procedure is normally present in the data acquisition, feature extraction and statistical modeling

phases of the SHM process. Herein, data normalization includes a wide range of steps for removing the effect of operational

and environmental variations on the extracted features [11].

Kernel-based machine learning algorithms have been widely applied to detect damage in SHM applications [12–16].

These algorithms, mostly based on support vector machines (SVMs), have revealed high sensitivity and accuracy in the

damage classification. Mita and Hagiwara proposed a method using the supervised SVM to detect local damages in a

building structure with limited number of sensors [17]. This method has been extended in several studies. For instance, a

hybrid technique (wavelet SVM) may be considered, where damage-sensitive features are extracted through the wavelet

energy spectrum and classified using the SVM [18]. In turn, a combined methodology between symbolic data analysis and

classification techniques (e.g., SVM) is developed for damage assessment [19]. And, finally, an approach for detecting

damage on shear structures using the SVM and the first three natural frequencies of the translational modes is assumed

[20]. However, these approaches have not been implemented to remove the operational and environmental effects

aggregated in extracted features; rather, they have been used to classify directly the extracted features in a supervised way,

i.e., when data from the undamaged and damaged conditions are available.

However, for most civil engineering infrastructure where SHM systems are applied, the unsupervised learning algo-

rithms are often required because only data from the undamaged condition are available [21,22]. Therefore, in this paper, an

autoregressive (AR) model is used to extract damage-sensitive features upon time-series measured from an array of

accelerometers, when the structure operates in different structural state conditions. Then, four unsupervised kernel-based

machine learning algorithms are adapted for data normalization and damage detection. Firstly, they model the effects of the

operational and environmental variability on the extracted features. Secondly, each algorithm produces a scalar output as a

damage indicator (DI), which should be nearly invariant when features are extracted from the normal condition. Finally, DIs

from the feature vectors of the test data are classified through a threshold defined based on the 95 percent cut-off value over

the training data. The implemented algorithms are based on one-class support vector machine (one-class SVM), support

vector data description (SVDD), kernel principal component analysis (KPCA) and greedy KPCA (GKPCA).

The main contribution of this study is the applicability of the proposed kernel-based algorithms for damage detection as

well as the comparison of the classification performance, between these kernel-based algorithms and other reliable algo-

rithms described in the literature [9,23–26], such as the auto-associative neural network (AANN) [11,27], factor analysis (FA)

[28], Mahalanobis squared distance (MSD) [29], and singular value decomposition (SVD) [30], on standard data sets from a

laboratory three-story frame aluminum structure. The performance is evaluated through receiver operating characteristic

(ROC) curves, which are a means of determining performance on the basis of Type I/Type II error trade-offs. In SHM, in the

context of damage detection, a Type I error is a false-positive indication of damage and a Type II error is a false-negative

indication of damage. Besides, other contributions attested by the authors are the following: the first-time adaptation of the

KPCA and GKPCA algorithms for damage detection in the SHM field; and the combination between one-class SVM/SVDD and

MSD for data normalization purposes in the SHM field, particularly in the statistical modeling for feature

classification phase.

This paper is organized as follows. Section 2 gives an explanation about the AR model for feature extraction, a brief

background about the supervised SVM with the kernel trick for efficient optimization and the methodology of the four

kernel-based machine learning algorithms for feature classification. A description of the test bed structure, the simulated

operational and environmental variability, and a summary of the data sets is provided in Section 3. In Section 4, a com-

parative study between kernel-based algorithms and alternative approaches is carried out using features extracted from

time-series data sets measured with accelerometers deployed on the test bed structure. Finally, Section 5 highlights a

summary and discussion of the implementation and analysis carried out in this paper.

2. Feature extraction and kernel-based machine learning algorithms

The complete methodology applied in this study is depicted in Fig. 1. Basically, AR models are fitted to time series from

an array of accelerometers when the structure is in different structural state conditions and their parameters are used as

damage-sensitive features. Then, a training matrix, X, is composed of undamaged state conditions and a test matrix is

composed of undamaged and damaged state conditions. Next, an unsupervised machine learning algorithm is trained and

its parameters are adjusted using feature vectors from the training matrix only. In the test phase, the machine learning

algorithmwill transform each input feature vector from the test matrix, Z, into a global DI; the DIs should be nearly invariant

for feature vectors extracted from the normal condition, assuming that the test data have been obtained from operational

and environmental conditions represented in the training data. Finally, the classification is performed using one-sided
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threshold for certain level of significance. If robust data normalization has been achieved, the DIs should be classified as

outliers when feature vectors come from the damaged condition even when they include operational and environmental

variability. All the methods for feature extraction and feature classification are described in detail in the next sections.

2.1. Autoregressive model for feature extraction

Usually, the modal parameters have been used in the SHM field for various applications as features that characterize the

global condition of the structure. However, in this study, the AR model is used to extract damage-sensitive features, because

the underlying linear stationary assumption makes it possible to detect the presence of nonlinearities in the time-series. It is

considered that in a system where different dynamics are present at different times, the estimated parameters should

change between intervals [31].

Alternatively, the AR models have been also used in SHM to extract damage-sensitive features from time-series data,

either using the model parameters or residual errors [32,33]. For a measured time-series s1; s2;…; sN the AR(p) model of

order p is given by:

si ¼
X

p

j ¼ 1

ϕjsi� jþei; (1)

where si is the measured signal and ei is an unobservable random error at discrete time index i. The unknown AR para-

meters, ϕj, can be estimated using the least squares or the Yule–Walker equations [34]. The order of the model is always an

unknown integer that needs to be estimated from the data. The Akaike information criterion (AIC) has been reported as one

Fig. 1. Feature extraction and feature classification to determine the structural health of a system.
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of the most efficient techniques for order optimization [35]. The AIC is a measure of the goodness-of-fit of an estimated

statistical model that is based on the trade-off between fitting accuracy and number of estimated parameters. In the context

of AR models:

AIC¼Nt lnðεÞþ2Np; (2)

where Np is the number of estimated parameters, Nt is the number of predicted data points, and ε¼ SSR=Nt is the average

sum-of-square residual (SSR) errors. The AR model with the lowest AIC value gives the optimal order p.

2.2. Support vector machine and kernel trick background

SVM is a powerful machine learning technique with strong regularization property for classification, regression, outlier

detection and other learning tasks [36,37]. Given training vectors xiAR
n, i¼ 1;…;m, in two classes, and a label vector yARm

such that yiA 1; �1f g, supervised SVM solves the following primal optimization problem:

min
w;ξ;b

1

2
wTwþC

X

m

i ¼ 1

ξi;

s:t: yiðw
TϕðxiÞþbÞZ1�ξi;

ξiZ0; i¼ 1;…;m; (3)

where ϕðxiÞ maps xi into a high-dimensional space, ξi is the intermediate parameter, C is the regularization or penalty

parameter and b is the adjustable parameter of the decision function; ξi is a slack variable for controlling howmuch training

error is allowed and C is a parameter for balancing between ξi (the training error) and w (the margin). SVM finds a linear

separating hyperplane with the maximal margin in the high-dimensional space. This minimization problem can be solved

by Lagrangian multiplier or quadratic programming. Due to the possible high dimensionality of the vector w, usually the

problem must be transformed to the dual equivalent problem for solving:

min
α

1

2
αTQα�eTα;

s:t: yTα¼ 0;

0rαirC; i¼ 1;…;m; (4)

where α is the Lagrange multipliers, e¼ ½1;…;1�T is a vector of all ones, Q is a positive semi-definite matrix,

Q i;j � yiyjKðxi; xjÞ, and Kðxi;xjÞ �ϕðxiÞ
TϕðxjÞ is a kernel function.

After the dual problem is solved, using the primal-dual relationship, the optimal w reads

w¼
X

m

i ¼ 1

yiαiϕðxiÞ (5)

and the decision function is

sgnðwTϕðxÞþbÞ ¼ sgn
X

m

i ¼ 1

yiαiKðxi; xÞþb

 !

: (6)

Then, yiαi8 i;b, label names, support vectors, and other information such as kernel parameters are stored in the trained

model for future predictions.

The SVM algorithm mentioned early is a supervised linear classifier. In order to capture nonlinearity, nonlinear kernel

function must be used. Some basic kernels are [38]:

� linear: Kðxi; xjÞ ¼ xT
i xj;

� polynomial: Kðxi; xjÞ ¼ ðγxT
i xjþrÞd, γ40;

� radial basis function: Kðxi; xjÞ ¼ expð�γ Jxi�xj J
2Þ, γ40;

� sigmoid: Kðxi; xjÞ ¼ tanhðγxT
i xjþrÞ;

where γ, r, and d are kernel parameters. The radial basis function (RBF) kernel option is most commonly used in a large

range of applications [39]. This kernel maps examples into a high-dimensional space so it, unlike the linear kernel, can

handle the case when the relationship between class labels and features is nonlinear.

2.3. Feature classification

For general purposes, consider a training data matrix composed of normal condition data, XAR
m�n, with n-dimensional

feature vectors fromm different operational and environmental conditions when the structure is undamaged and a test data

matrix, ZARk�n, where k is the number of feature vectors from the undamaged and/or damage conditions. Note that a

feature vector represents some property of the system at a given time.
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2.3.1. One-class support vector machine

The one-class SVM algorithm or distribution estimation was proposed by Schölkopf [40] for estimating the support of a

high-dimensional distribution in an unsupervised way. Given training vectors xiAR
n, i¼ 1;…;m, without any class infor-

mation (no labels), the primal problem of one-class SVM is

min
w;ξ;ρ

1

2
wTw�ρþ

1

νm

X

m

i ¼ 1

ξi;

s:t: wTϕðxiÞZρ�ξi;

ξiZ0; i¼ 1;…;m: (7)

The distribution estimation SVM introduces a new parameter νAð0;1�. This parameter is an upper bound on the fraction of

training errors and a lower bound of the fraction of support vectors [41]. In other words, ν has a similar effect of C for

supervised SVM. Furthermore, the dual problem or unsupervised learning phase is

min
α

1

2
αTQα;

s:t: eTα¼ 1;

0rαir1=ðνmÞ; i¼ 1;…;m; (8)

where Q i;j ¼Kðxi; xjÞ ¼ϕðxiÞ
TϕðxjÞ. The decision function is defined as

sgn
X

m

i ¼ 1

αiKðxi;xÞ�ρ

 !

: (9)

When the model is obtained, a damage indicator can be generated by applying the MSD algorithm for each test vector z

and the support vectors from the model,

DI¼ z�μ
� �T

Σ
�1

z�μ
� �

; (10)

where μ is the mean of the support vectors from the model and Σ is the covariance matrix of these support vectors.

Therefore, this approach combines the robustness of the one-class SVM algorithm to derive a nonlinear model from

undamaged data and the effectiveness of an outlier detection metric by means of the MSD.

2.3.2. Support vector data description

The SVDD algorithm, proposed by Tax and Duin [42], is an unsupervised method to find the boundary around a data set

(a hypersphere). Given a set of training data xiAR
n, i¼ 1;…;m, the SVDD solves the following primal optimization problem:

min
R;a;ξ

R2þC
X

m

i ¼ 1

ξi;

s:t: JϕðxiÞ�aJ2rR2þξi; i¼ 1;…;m;

ξiZ0; i¼ 1;…;m; (11)

where the sphere is characterized by center a and radius R40, and ϕ is a function mapping data to a high-dimensional

space. After Eq. (11) is solved, a test instance z is detected as an outlier if JϕðzÞ�aJ24R2, i.e., if z is outside the boundary

set by the SVDD model.

Because of the large number of variables in a after data mapping, the following Lagrange dual problem is solved in the

training phase:

min
α

X

m

i ¼ 1

αiQ i;i�αTQα;

s:t: eTα¼ 1;

0rαirC; i¼ 1;…;m; (12)

where e¼ ½1;…;1�T , α¼ ½α1;…;αm�
T , and Q is the kernel matrix such that Q i;j ¼ϕðxiÞ

TϕðxjÞ; 81r i; jrm. The DIs are

generated by the same procedure described for the one-class SVM algorithm. However, in this case, the support vectors

represent a hypersphere, instead of a hyperplane.

A relationship between one-class SVM and SVDD algorithms can be established by the following expression [43]:

C¼
1

νm
: (13)

2.3.3. Kernel principal component analysis

The KPCA algorithm is the nonlinear extension of the linear principal component analysis (PCA) [44]. The input training

matrix X is mapped by ϕ: X-F to a high-dimensional feature space F . The linear PCA is applied on the mapped data

T Φ ¼ fϕðx1Þ;…;ϕðxmÞg. The computation of the principal components and the projection on these components can be
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expressed in terms of dot products thus the kernel functions can be employed. The KPCA trains the kernel data projection:

y¼ATkðxÞþo; (14)

where AAR
m�d is the projection matrix, kðxÞ ¼ ½kðx; x1Þ;…;kðx;xmÞ�

T is a vector of kernel functions centered in the training

vectors and oARd is the bias vector. Additionally, A is the matrix containing the corresponding eigenvectors. The eigen-

vectors associated with the higher eigenvalues are the principal components of the data matrix and they correspond to the

dimensions that have the largest variability in the data. Basically, this method permits one to perform a transformation by

retaining only the principal components d, also known as the number of factors, in a high-dimensional feature space Rm�m.

The kernel mean squared reconstruction error, which must be minimized, is defined as

εKMS A;oð Þ ¼
1

m

X

m

i ¼ 1

Jϕ xið Þ� ~ϕ xið ÞJ2; (15)

where the reconstructed vector ~ϕðxÞ is given as a linear combination of the mapped data T Φ:

~ϕðxÞ ¼
X

m

i ¼ 1

βiϕðxiÞ; β¼Aðy�oÞ: (16)

In contrast to the linear PCA, the explicit projection from the feature space F to the input space usually does not exist

[45]. The problem is to find the vector x and its image ϕðxÞAF that well approximates the reconstructed vector ~ϕðxÞAF .

This procedure consists of the following steps:

Step 1: Project the input vector xinAR
n onto its lower-dimensional representation yARd using Eq. (14).

Step 2: Compute the output vector xoutAR
n which is satisfactory pre-image of the reconstructed vector ~ϕðxinÞ, such that

xout ¼ argmin
x

JϕðxÞ� ~ϕðxinÞJ
2: (17)

For the test matrix Z , the residual errors matrix E is given by:

E¼ Z� Ẑ; (18)

where Ẑ corresponds to the estimated feature vectors that are the output of the pre-image computation from the model

obtained by KPCA in the training phase. In other words, the pre-image problem maps the feature vectors from the high-

dimensional feature space back to the input space. An iterative fixed point algorithm is used for this purpose [46]. In order to

establish a quantitative measure of damage, for the feature vector f (f ¼ 1;2;…; k), a DI is adopted in the form of the squared

root of the sum-of-square errors (Euclidean norm):

DIðf Þ ¼ Jef J : (19)

If f feature vector is related to the undamaged condition, zf � ẑf and DIðf Þ � 0. On the other hand, if the feature vector

comes from the damaged condition, the residual errors increase, and the DI deviates from zero, indicating an abnormal

condition in the structure.

2.3.4. Greedy kernel principal component analysis

The GKPCA algorithm is an efficient method to compute the KPCA algorithm [47]. Let T X ¼ fx1;…;xmg, xiAR
n, i¼ 1;…;m,

be the set of input training vectors. The goal is to train the kernel data projection:

y¼ATkSðxÞþo; (20)

where kSðxÞ ¼ ½kðx; s1Þ;…;kðx; smÞ�
T are the kernel functions centered in the vectors from T S ¼ fs1;…; smg. The vector set T S

is a subset of training data T X.

In opposition to the PCA, the basis vectors of the lower-dimensional space used for data representation are properly

selected vectors from the training set and not as their linear combinations. The basis vectors can be selected by a simple

algorithm which has low computational requirements and allows real-time processing by approximating the training set in

the high-dimensional space [47]. Moreover, in contrast to the original KPCA, the subset T S does not contain all the training

vectors in T X thus the complexity of the projection in Eq. (20) is reduced compared to Eq. (14). The objective of the GKPCA is

to minimize the reconstruction error while the size of the subset T S is kept small. The DIs are generated by the same

procedure described for KPCA, considering the residuals from E.

3. Test bed structure and data

The standard data sets used in this study are from a three-story frame aluminum structure reported in [48], and has been

intensively used for SHM validation in recent statistical damage identification approaches [13,23,25]. These data were

collected by four accelerometers mounted on a test bed building model, as shown in Fig. 2, forming a essentially four-

degree-of-freedom system with varied practical conditions, including variations in stiffness (e.g., to simulate temperature
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variations) and in mass-loading (e.g., to simulate traffic). Those changes were designed to introduce variability in the

fundamental natural frequency up to approximately 7 percent from the baseline condition, which is within the range

normally observed in real-world structures [49,50]. Nonlinear damage was introduced by contacting a suspended column

with a bumper mounted on the floor below to simulate fatigue crack that can open and close under loading conditions or

loose connections in structures. Different levels of damage were created by adjusting the gap between the column and the

bumper (smaller the gap, higher the level of damage). More details about the test structure can be found in [48].

Acceleration time-series (discretized into 4096 data points sampled at 3.125 ms intervals corresponding to a sampling

frequency of 320 Hz) from 17 different structural state conditions were collected, as described in Table 1. For each structural

state condition, data were acquired from 100 separate tests. According to the test description [51], state1 is the baseline

condition (reference state) of the structure and states2–9 include those states with simulated operational and environ-

mental variability. State14 is considered as the most severe damaged one as it corresponds to the smallest gap case, which

induces the highest number of impacts. State10 is the least severe damaged scenario and states11–13 represent mid-level

damage scenarios. States15–17 are the variant states of either state10 or state13 with mass added effect in order to create

more realistic conditions.

4. Experimental results and analysis

In this study, the AR parameters from response time series are used as damage-sensitive features. Thus, for each test of

each state condition, the parameters are estimated using the least squares technique applied upon time-series from all four

accelerometers (channels 2–5) and stored into a feature vector. For each test, the number of estimated parameters is p� 4

and ε is the sum of the average sum-of-square errors of channels 2–5. In this analysis is assumed an output-only damage

detection approach, and so data from the channel 1 (the input force) is not used.

The linear AR models achieve enough small AIC value around p¼10 [23]. Based on that evaluation, for each test, four

individual AR(10) models are used to fit the corresponding time series from the four accelerometers and their parameters

are used as damage-sensitive features in concatenated format, yielding 40-dimensional feature vectors. Note that AR

parameters should be constant when estimated based on time-series data obtained from time-invariant systems. However,

in the presence of operational and environmental conditions as well as damage, the parameters are expected to change

Fig. 2. Three-story frame aluminum structure and shaker.
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accordantly, as shown in Fig. 3, for instance, for one test corresponding to states1, 3, 5, 7, 9, 10, 14 and 17. The feature vectors

are divided according to their structural condition into two major groups: undamaged and damaged conditions. Particular

changes are noticed in the amplitude of the AR parameters at channels 4 and 5 when features are from the damaged

condition (those channels are closer to the source of damage). Clearly, the AR parameters reveal high sensitivity to the

presence of damage. In general, the higher the level of damage (the smaller the gap), the lower the amplitude of the AR

parameters.

For generalization purposes, the feature vectors are split into the training and test matrices. The training matrix, X,

permits each algorithm to learn the underlying distribution and dependency of all undamaged states on the simulated

operational and environmental variability. Thus, this matrix is composed of AR parameters from 50 out of 100 tests of each

undamaged state (states1–9), and so it has a dimension of 450�40. The test matrix Z (1250�40) is composed of AR

parameters from the remaining 50 tests of each undamaged state together with AR parameters from all the 100 tests of each

damaged state (states10–17). This procedure permits one to evaluate the generalization performance of the machine

learning algorithms in an exclusive manner, because time-series used in the test phase are not included in the training

phase. During the test phase, the algorithms are expected to detect deviations from the normal condition when feature

vectors come from damaged states, even in the presence of operational and environmental effects.

The next step is to carry out statistical modeling for feature classification. In that regard, the algorithms based on one-

class SVM, SVDD, KPCA and GKPCA are implemented in an unsupervised learning mode by first taking into account features

from all the undamaged state conditions (training matrix). All kernel-based algorithms use the RBF kernel with parameter

γ ¼ 0:025. The regularization parameter is defined as ν¼ 0:8 (C is obtained by the equivalence between one-class SVM and

SVDD). The KPCA and GKPCA algorithms are configured to retain 90 percent of the variability in the data after dimension

reduction. The subset of 25 percent of the training data is used for GKPCA kernel projection. The algorithms based on AANN,

FA, MSD and SVD are implemented and configured as described in [23]. Finally, for each algorithm, the DIs are stored into a

1250-length vector.

The ROC curves provide a comprehensive means of summarizing the performance of classifiers. They focus on the trade-

off between true detection and false alarm rates. The point at the left-upper corner of the plot (0, 1) is called a perfect

classification. Fig. 4 plots, partially, the ROC curves for the kernel-based algorithms. Qualitatively, looking at the curves, one

can verify that none of the algorithms can have a perfect classification with a linear threshold because none of the curves go

through the left-upper corner, neither have supremacy in terms of true detection rate for all the false alarm domain. Fur-

thermore, one can figure out that for levels of significance around 5 percent, the KPCA and GKPCA have better true detection

rate than one-class SVM and SVDD, i.e., the approaches that maximize the true detection of damaged cases with similar

performances in terms of false alarm rate. Nonetheless, for low probabilities of false alarm, all the algorithms show to have

acceptable true detection rate (for instance, for a false alarm rate of 0.05, the minimal true detection rate is around 0.98,

given by the one-class SVM and SVDD). Note that all proposed algorithms apply data transformation in the high-

dimensional feature space to achieve a data model that represents the normal structural condition. Nevertheless, the one-

class SVM and SVDD algorithms discover nonlinear relationship in the data via hyperplane and hypersphere separations. On

the other hand, the KPCA and GKPCA algorithms reduce the data dimensionality in high-dimensional space, storing the

principal components that have the largest variability in the data.

Due to the similar classification performances of the one-class SVM and SVDD, and the superiority of the GKPCA relative

to the KPCA, the authors chose the one-class SVM and GKPCA algorithms for a comparative analysis with algorithms already

analyzed in the literature. In the first case, Fig. 5 shows a comparison between the FA, SVD, one-class SVM and GKPCA

Table 1

Data labels of the structural state conditions.

Label State condition Description

State1 Undamaged Baseline condition

State2 Undamaged Added mass (1:2 kg) at the base

State3 Undamaged Added mass (1:2 kg) on the 1st floor

State4 Undamaged

State5 Undamaged States4–9: 87.5% stiffness reduction at

State6 Undamaged various positions to simulate temperature

State7 Undamaged impact (more details in [48])

State8 Undamaged

State9 Undamaged

State10 Damaged Gap (0:20 mm)

State11 Damaged Gap (0:15 mm)

State12 Damaged Gap (0:13 mm)

State13 Damaged Gap (0:10 mm)

State14 Damaged Gap (0:05 mm)

State15 Damaged Gap (0:20 mm) and mass (1:2 kg) at the base

State16 Damaged Gap (0:20 mm) and mass (1:2 kg) on the 1st floor

State17 Damaged Gap (0:10 mm) and mass (1:2 kg) on the 1st floor
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algorithms. In the whole false alarm range and for a given threshold, the kernel-based algorithms have, clearly, better

performance to detect abnormal conditions in the test structure than the FA and SVD algorithms, which is expected as the

FA and SVD algorithms can only capture linear patterns in the data. In the second case, Fig. 6 shows a comparison between
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Fig. 3. Feature vectors from one test of states1, 3, 5, 7 and 9 (undamaged) and states10, 14 and 17 (damaged): AR parameters from channels 2 (upper left), 3

(upper right), 4 (lower left) and 5 (lower right).
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Fig. 4. Partial ROC curves for the kernel-based algorithms.
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the AANN, MSD, one-class SVM and GKPCA algorithms. In general, the ROC curve of the one-class SVM follows the same

behavior as the ROC curve of the MSD algorithm; the GKPCA and AANN algorithms also output similar ROC curves. In

particular, the one-class SVM has superior performance in feature classification than MSD in whole false alarm rate range, by

properly selecting the support vectors to represent an optimal subset of the undamaged condition; whereas the GKPCA

seems to be more effective than the AANN in most points of the ROC curves by assimilating the normal structural condition

embedded into the principal components, especially for false alarm rates around 5 percent (the threshold normally used in

real-world scenarios).

In order to quantify the performance of the classifiers for a given threshold, Figs. 7 and 8 plot the DIs for the feature

vectors of the entire test data along with a threshold defined based on the 95 percent cut-off value over the training data. All

the algorithms show a monotonic relationship between the level of damage and the amplitude of the DI, even when

operational and environmental variability is present, i.e., the approaches are able to remove the operational and environ-

mental effects in such a way that DIs from states15, 16 and 10 have similar amplitude, as well as state17 is associated with

state13. Recall that states15–17 are the variant states of either state10 or state13 with operational effects.

The Type I (false-positive indication of damage) and Type II (false-negative indication of damage) errors are traditionally

used to report the performance of a binary classification. This technique recognizes that a false-positive classification may

have different consequences than false-negative one. In Figs. 7 and 8, the Type I errors are DIs that exceed the threshold

value in the undamaged condition domain (1–450). On the other hand, the Type II errors are DIs that do not surpass the

threshold value in the damaged condition domain (451–1250). Table 2 summarizes the number and percentage of Type I
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Fig. 5. ROC curves for the FA, SVD, one-class SVM and GKPCA algorithms.
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and Type II errors for each algorithm (based on the composition of the test matrix Z), demonstrating a trade-off between

Type I and Type II errors for all eight algorithms.

In terms of an overall analysis, the one-class SVM and SVDD algorithms have similar performance and the best per-

formance overall to detect damage (0.75 percent); however they output a relatively high false alarm rate ðZ8 percentÞ, as

the selected support vectors can easily identify the damaged data, but are not properly representing the normal condition as

the number of Type I errors is higher than 5 percent. The FA algorithm has the better performance to avoid false indications

of damage (2.22 percent), but the worst performance to detect damage (5.38 percent) due to its sensitivity to the number of

factors driving changes in features. The AANN reveals the worst performance in terms of Type I errors (9.78 percent), but a

relatively good performance in terms of minimization of Type II errors (1.25 percent), which gives indications that when the

sensitivity (the portion of damaged cases correctly identified) of the classifier is increased, and so it detects more damaged

cases, it also increases the number to mislabels of undamaged cases. Thus, as the sensitivity goes up, specificity (the portion

of undamaged cases which are correctly identified) goes down. The KPCA and GKPCA attempt a balancing between Type I

and Type II errors, having the minimum errors in total, which is supported by the retention of principal components in the

high-dimensional space, which eliminates variability caused by operational and environmental effects. Finally, the proposed

four algorithms have a tendency to reduce the total number of misclassifications (average of 3.04 percent) when compared

with the four approaches previously tested (average of 4.3 percent). This superiority might be related with the ability of the

proposed algorithms to find nonlinear patterns in the data via the kernel trick, as well as the independence on the choice of

the initial parameters (unlike the FA, for instance, where one needs to set the number of hidden factors driving changes in

the damage-sensitive features).

In particular, and for the proposed algorithms, the one-class SVM and SVDD algorithms have similar performance in the

feature classification (changing only Type I error), demonstrating the relationship between them via the regularization

parameters ν and C. In turn, the KPCA and GKPCA algorithms have also similar performance; however, both Type I and Type
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Fig. 7. DIs calculated based on feature vectors from the undamaged/baseline condition (BC) and damaged condition (DC) using the four kernel-based

algorithms along with thresholds defined by the 95% cut-off value over the training data: one-class SVM (upper left), SVDD (upper right), KPCA (lower left),

and GKPCA (lower right).

A. Santos et al. / Journal of Sound and Vibration 363 (2016) 584–599594



II errors change slightly and show clearly a trade-off. One should note that the indications given by the ROC curves from

Fig. 4, about the true detection rate, are not consistent with the results from Table 2. Basically, from the ROC curves, one

might infer that the KPCA and GKPCA have better true detection rate for a level of significance around 5 percent than the

one-class SVM and SVDD. However, the table shows that the one-class SVM and SVDD minimize the number of Type II

errors, i.e., maximize the true detection rate. This phenomenon is related with the threshold definition, as it was defined

based only on 50 percent of the undamaged data. Additionally, for the KPCA and GKPCA, as the level of false alarm rate is

very close to the 5 percent level of significance assumed to set up the threshold, it gives indications that these algorithms
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Fig. 8. DIs calculated based on feature vectors from the undamaged/baseline condition (BC) and damaged condition (DC) using the state-of-the-art

algorithms along with thresholds defined by the 95% cut-off value over the training data: AANN (upper left), FA (upper right), MSD (lower left), and SVD

(lower right).

Table 2

Number and percentage of Type I and Type II errors for each algorithm.

Algorithm Error

Type I Type II Total

AANN 44 (9.78%) 10 (1.25%) 54 (4.32%)

FA 10 (2.22%) 43 (5.38%) 53 (4.24%)

MSD 42 (9.33%) 8 (1.00%) 50 (4.00%)

SVD 29 (6.44%) 29 (3.62%) 58 (4.64%)

One-class SVM 36 (8.00%) 6 (0.75%) 42 (3.36%)

SVDD 37 (8.22%) 6 (0.75%) 43 (3.44%)

KPCA 21 (4.67%) 13 (1.62%) 34 (2.72%)

GKPCA 24 (5.33%) 9 (1.12%) 33 (2.64%)
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have learnt the baseline condition during the training phase and they can generalize well for new undamaged data not used

in the training phase.

Nevertheless, all kernel-based algorithms perform relatively well on these standard data sets with percent of total

misclassifications (Type I and Type II errors) ranging between 2.64 percent and 3.44 percent of the total number of test

observations, which can be considered an acceptable result. Additionally, based on Table 2 and for these specific data sets,

one can infer that the one-class SVM and SVDD algorithms are preferred when one wants to minimize false-negative

indications of damage and when life safety issues are the main reason for deploying a SHM system. On the other hand, the

KPCA and GKPCA algorithms are more appropriate when one wants to minimize false-positive indications of damage

without increasing, significantly, the false-negative indications of damage, and reliability issues are driving a SHM system.

However, the KPCA and GKPCA have shown to have better generalization performance, which is a very important advantage

for real-world applications, where the thresholds are defined based on undamaged data used in the training phase.

Finally, note that the classification performance of the one-class SVM and SVDD algorithms can potentially be improved

by adjusting the regularization parameters ν and C, respectively. To highlight the influence of the regularization parameter

assumed on both algorithms, Fig. 9 shows the distance between the mean of the DIs from the undamaged and damaged

conditions along with the number of Type II errors as a function of the regularization parameter ν. Based on the distance

between means and the minimization of number of Type II errors, the appropriate regularization parameter is 0.8 (based on

the converging point) and approximately 0.0028 for the one-class SVM and SVDD algorithms, respectively. This result gives

an indication that the regularization parameter assumed in the previous analysis is nearly the optimal solution.
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Nonetheless, alternative solutions can be found in Fig. 10. Basically, when ν is equal to 0.2, 0.7 and 0.9, the total errors are

46 (3.68 percent), 45 (3.6 percent) and 47 (3.76 percent), respectively, which are still less than the total errors outputted by

the AANN, FA, MSD and SVD. Note that when the regularization parameter increases, the number of support vectors also

increases. Therefore, the choice of a regularization parameter with a small value may lead to underfitting as well as the

choice of a regularization parameter with high value may lead to overfitting.

5. Summary and conclusions

In this paper, the performance of four kernel-based algorithms (one-class SVM, SVDD, KPCA and GKPCA) for structural

damage detection, under varying operational and environmental conditions, was compared using benchmark data sets from

a well-known base-excited three-story frame structure. The data sets are characterized by 17 different structural state

conditions, including linear changes caused by varying stiffness and mass-loading conditions as well as nonlinear effects

caused by damage. Different levels of damage were created by adjusting the gap between a suspended column and a

bumper.

The kernel-based algorithms were shown to be reliable approaches to create a global DI that can separate damaged from

undamaged conditions, even when the structure is operating under varying operational and environmental conditions. The

comparison between the proposed four kernel-based algorithms and alternative algorithms studied before (AANN, FA, MSD

and SVD) permitted one to conclude that the proposed ones have better classification performance as given by the lower

number of misclassifications (both Type I and Type II errors). Two fundamental reasons are given to justify the general

improvement of the proposed algorithms over the previous ones: (i) the previous algorithms were essentially linear in their

formulation, with exception of the AANN; (ii) all the proposed algorithms (SVM, SVDD, KPCA and GKPCA) operate, essen-

tially, in the high-dimensional space, giving them capabilities to model nonlinear patterns presented in the original

observation space.

Within the four proposed algorithms, the KPCA and GKPCA outputted better results in terms of minimization of total

misclassifications; two fundamental reasons are also proposed for that behavior: (i) all four algorithms map the original

observations into the high-dimensional space; however, the KPCA and GKPCA map the original observations into the high-

dimensional space, in order to capture the operational and environmental effects with a known percentage, and back to the

original space to perform the damage detection; conversely, the SVM and SVDD performs the data normalization by means

of a data subset (support vectors) selected in the high-dimensional space, which accounts for an unknown percentage of the

variability; (ii) the GKPCA and KPCA perform the damage detection by retaining the principal components that take into

account 90 percent of the data variability, which might be useful to discard some sort of noise and singularities from the

data that can mask changes caused by damage from changes caused by operational and environmental conditions. This is

actually an advantage, as shown by the trade-off between Type I and Type II errors. As the GKPCA and KPCA eliminate some

noise from the data, they are not too complex and have better generalization performance.

In particular, the proposed algorithms are independent of the initial conditions, as opposed to the AANN, for instance,

where the performance of the neural network is strongly dependent on the choice of the initial parameters. Therefore, if the

kernel-based approaches are configured with the same parameters defined in this study, then they should provide the same

results. In general, considering different application cases, the proposed algorithms are recommended to remove the

influences of varying operational and environmental conditions on damage-sensitive features, especially when nonlinear

temperature–stiffness relationship is present. The KPCA and GKPCA algorithms build data models where the principal

components account for nearly all the operational and environmental influences, providing a better trade-off between

sensitivity and specificity. On the other hand, the one-class SVM and SVDD algorithms generate data models where the

normal structural condition used in the training phase is well discriminated by means of the support vectors, improving the

detection of abnormal cases. However, the hyperplane and hypersphere separations are unable to generalize well, when

compared with the KPCA and GKPCA algorithms, to undamaged data not provided in the training phase, i.e., the support

vectors do not account for nearly all normal variability.

A parametric study carried out to establish the relationship between the classification performance and the regular-

ization parameter, in the one-class SVM and SVDD algorithms, permitted one to verify those algorithms maximize the

classification performance when the regularization parameter is chosen properly to avoid underfitting and overfitting in the

data model generated for feature classification. Note that the cross-validation is the most used method to obtain the optimal

regularization parameter, i.e., the best model. In order to do so, it is necessary to divide the data sets into three different

subsets: training, validation and testing. In the training phase is considered only data from the undamaged condition to train

the algorithms. The validation step is a sequence of iterations with different values for the regularization parameter to

obtain the best model for generalization purposes, using both undamaged and damaged data. The test phase of the algo-

rithms is done using the best model obtained in the cross-validation. However, in this study, this procedure was not taken

into account, in order to be consistent with the previous study carried out by the authors.

Additionally, the proposed approaches can also perform damage localization when an AR model is applied, individually,

on each sensor and the damage detection process is performed at the sensor level. In this paper, the AR model is applied on

each sensor, but the AR parameters from the four sensors were concatenated into a single feature vector. Therefore, the

damage detection is performed globally.
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Finally, in the context of data normalization for damage detection, this study addressed the implementation and com-

parison of machine learning algorithms to establish the normal condition as a function of the operational and environ-

mental variability. It is important to note that none of these algorithms require a direct measure of the sources of variability

(e.g., traffic loading and temperature). Instead, the algorithms rely only on measured response time-series data acquired

under varying operational and environmental effects.
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a b s t r a c t

This paper proposes a novel unsupervised and nonparametric genetic algorithm for decision boundary

analysis (GADBA) to support the structural damage detection process, even in the presence of linear and

nonlinear effects caused by operational and environmental variability. This approach is rooted in the

search of an optimal number of clusters in the feature space, representing the main state conditions of a

structural system, also known as the main structural components. This genetic-based clustering

approach is supported by a novel concentric hypersphere algorithm to regularize the number of clusters

and mitigate the cluster redundancy. The superiority of the GADBA is compared to state-of-the-art

approaches based on the Gaussian mixture models and the Mahalanobis squared distance, on data sets

from monitoring systems installed on two bridges: the Z-24 Bridge and the Tamar Bridge. The results

demonstrate that the proposed approach is more efficient in the task of fitting the normal condition and

its structural components. This technique also revealed to have better classification performance than the

alternative ones in terms of false-positive and false-negative indications of damage, suggesting its

applicability for real-world structural health monitoring applications.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Improved and more continuous condition assessment of

bridges has been demanded by modern societies to better face the

challenges presented by aging civil infrastructure (Figueiredo et al.,

2013). In the last two decades, bridge condition assessment

approaches have been developed independently based on two

concepts: bridge management systems (BMSs) and structural

health monitoring (SHM). The BMS is a visual inspection-based

decision-support tool developed to analyze engineering and eco-

nomic factors and to assist the authorities in determining how and

when to make decisions regarding maintenance, repair and reha-

bilitation of structures (Lee et al., 2008; Wenzel, 2009). On the

other hand, the SHM traditionally refers to the process of imple-

menting monitoring systems to measure the structural responses

in real-time and to identify anomalies and/or damage at early

stages (Farrar and Worden, 2007).

Even with the inherent limitation imposed by the visual

inspections, the BMS has already been accepted by bridge owners

around the world (Miyamoto et al., 2001; Estes and Frangopol,

2003; Gattulli and Chiaramonte, 2005). At the same time, SHM is

becoming increasingly attractive due to its potential ability to detect

damage, with the consequent life-safety and economical benefits

(Worden et al., 2007). The authors believe that all approaches to

SHM can be posed in the context of a statistical pattern recognition

(SPR) paradigm. This SPR paradigm for the development of SHM

solutions is described as a four-phase process (Farrar et al., 2001):

(1) operational evaluation, (2) data acquisition, (3) feature extrac-

tion, and (4) statistical modeling for feature classification. Inherent

in the data acquisition, feature extraction, and statistical modeling

portions of this paradigm, the data normalization is the process of

separating changes in damage-sensitive features caused by damage

from those caused by varying operational and environmental con-

ditions (Sohn and Farrar, 2001). Actually, these influences on the

structural response have been cited as one of the major challenges

for the transition of SHM technology from research to practice

(Sohn, 2007; Xia et al., 2012).

The focus of this study is on the fourth phase, which is con-

cerned with the implementation of algorithms that analyze and

learn the distributions of the extracted damage-sensitive features

from the raw data, in an effort to determine the structural health

condition (Worden and Manson, 2007). Therefore, in the hier-

archical structure of damage identification, this paper addresses the

first level, i.e., the damage detection level (Figueiredo et al., 2011).
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Numerous studies have established the concept of auto-

matically discovering and characterizing the normal condition of

bridges, even when they are affected by extreme operational and

environmental conditions (Figueiredo and Cross, 2013; Figueiredo

et al., 2014). In those studies, the damage detection is carried out

on the basis of an outlier detection strategy using distance metrics

and machine learning algorithms, which permits one to track the

outlier formation in time regarding the chosen groups of state

conditions. In contrast with approaches that consist of measuring

directly parameters related to operational and environmental

variations (e.g., traffic loading and temperature) (Peeters et al.,

2001; Peeters and Roeck, 2001; Ni et al., 2005; Kullaa, 2009), these

algorithms pave the way for data-based models applicable to

structural systems of arbitrary complexity, with the advantage to

eschew the measure of operational and environmental variations

and physics-based model approaches.

Therefore, coupled with the results highlighted in the previous

authors' publication (Figueiredo and Cross, 2013), which suggests

the potential of cluster-based algorithms for damage detection

under operational and environmental variability, this paper pro-

poses an unsupervised and nonparametric approach using a

genetic algorithm (GA) to detect structural damage in bridges,

namely a genetic algorithm for decision boundary analysis

(GADBA). Combined with the robust search capability inherent in

GAs, this study presents a new method to characterize the main

clusters (components) that correspond to the normal state con-

ditions of a bridge as well as a new algorithm to regularize the

optimal number of clusters and mitigate the cluster redundancy,

namely the concentric hypersphere (CH) algorithm. Additionally,

an objective function is also proposed to evaluate the quality of

different component configurations.

The proposed GADBA-based approach is summarized in two

steps: (i) the main normal state conditions of a system are auto-

matically discovered by clustering the training observations

according to the closest centroids, which are targets of the opti-

mization performed by the GA; this optimization defines boundary

regions between the clusters and reduces the number of dis-

covered state conditions; (ii) the damage detection strategy is

based on the Euclidean distances between the test observations

and the optimized centroids. For each observation, the minimum

distance to the centroids represents the damage indicator (DI).

To test the superiority of the proposed approach, standard data

sets from the Z-24 Bridge, in Switzerland, and the Tamar Bridge, in

England, are used. The classification performance is evaluated on

the basis of Type I/Type II error trade-offs. In SHM, in the context of

damage detection, a Type I error is a false-positive indication of

damage and a Type II error is a false-negative indication of damage.

The overall organization of this paper is as follows. In Section 2, a

brief review of the most traditional cluster-based and bioinspired

methods for damage detection is presented, along with a discussion

that synthesizes the relevant genetic-based clustering approaches

available in the literature. Section 3 describes all the new con-

straints and mechanisms developed to cluster the normal state

conditions of bridges, by using the GADBA-based approach, and to

detect damage based on the identified clusters. Section 4 highlights

a structural description of both bridges as well as a summary of the

data sets from the bridges that encompass a wide spectrum of

challenges associated with practical damage detection problems.

Section 5 presents the applicability of the proposed approach on

such real-world data sets and compares its performance with other

two approaches. Finally, Section 6 summarizes and discusses the

implementation and analysis carried out in this study.

2. Related work

For most civil engineering infrastructure where SHM systems

are applied, the unsupervised learning algorithms are often

required because only data from the undamaged (or normal)

condition are available (Farrar and Worden, 2013). Some of the

traditional unsupervised machine learning algorithms and their

adaptations for damage detection in bridges can be found in the

following references Figueiredo et al. (2011); Sohn et al. (2002);

Hsu and Loh (2010); Hakim and Razak (2014); Santos et al. (2016,

2015); Xu et al. (2004); Liu et al. (2011). Herein, the most tradi-

tional cluster-based and bioinspired methods for damage detec-

tion are discussed. Moreover, the most relevant genetic-based

clustering methods are also introduced.

2.1. Traditional cluster-based damage detection methods

The approaches based on the Mahalanobis squared

distance (MSD) and the Gaussian mixture model (GMM) are

relevant, as they operate on a set of clusters representing

undamaged state conditions (Figueiredo and Cross, 2013;

Figueiredo et al., 2014).

The MSD-based approach is one of the most traditional meth-

ods for damage detection, having widespread use in real scenarios

due to its ability to identify outliers (Worden et al., 2007; Worden

and Manson, 2007; Nguyen et al., 2014), as it assumes that the

normal condition is encoded by an unique cluster from a multi-

variate Gaussian distribution. When abnormal observations

appear statistically inconsistent with the rest of the data, it is

assumed that the data have been generated by an alternative

source, which is not related to the normal condition established

with a mean vector and a covariance matrix derived from the

baseline data sets obtained under operational and environmental

conditions. However, when nonlinearities are present in the

observations, the MSD fails in modeling the normal condition of a

bridge as it assumes that the baseline data might follow a multi-

variate Gaussian distribution (Figueiredo and Cross, 2013).

A new concept based on GMMs was developed in Figueiredo

and Cross (2013), Figueiredo et al. (2014) as a two-step damage

detection strategy. In the first step, the GMM-based approach is

applied to model the main clusters that correspond to the normal

and undamaged state conditions of a bridge, even when it is

affected by unknown operational and environmental conditions.

In the former study, the parameters of the GMMs are estimated

from the training data, using the maximum likelihood estimation

based on the expectation-maximization (EM) algorithm. To

improve the parameter estimation of the GMMs, a Bayesian

approach based on a Markov-chain Monte Carlo method is applied

in the latter study. In the second step, the damage detection is

performed on the basis of a MSD outlier formation regarding the

chosen clusters of main states. Although these approaches have

revealed better damage detection performance when compared to

MSD, they also assume Gaussian distributions which may com-

promise the reliable estimation of structural components and their

training phase is quite slow as several replications of the EM

algorithm are required.

2.2. Bioinspired damage detection methods

The most traditional bioinspired methods for damage detection

in SHM correlate a complex physics-based model with measured

data from the monitored structure. A set of variables is updated to

obtain the minimum difference between the numerical and

experimental data. Then, a damage is modeled as a reduction in

M. Silva et al. / Engineering Applications of Artificial Intelligence 52 (2016) 168–180 169



structural stiffness and detected by comparing the undamaged and

damaged states.

Based on this usual approach, a real-coded GA is proposed in

Xia and Hao (2001) and applied to structural damage identification

using vibration data and modal parameters. This approach iden-

tifies damage by directly comparing changes in the measurements

before and after damage occurrence using two finite element

models (FEMs) built with data from undamaged and damaged

conditions. The GA minimizes an objective function that combines

parameters related to mode shapes and frequency changes to

update the reference FEM, and then obtain another FEM that

reproduces the measured vibration data of the damaged state.

A damage detection approach based on particle swarm opti-

mization is employed to structural elements in Gkda and Yildiz

(2001). The damage location and extent are identified by mini-

mization of an objective function based on some modal para-

meters. A FEM of a Timoshenko beam is used to attest the relia-

bility of this method. Damage is simulated by adding stiffness loss

in some elements.

A real-coded GA coupled with a local search method is devel-

oped in Meruane and Heylen (2011) to locate and quantify struc-

tural damage. The main goal of this approach is to select the ele-

mental stiffness reduction factors, defined as the ratio of the

stiffness reduction to the initial stiffness. The objective function is

composed by five fundamental functions with an additional

damage penalization term. The algorithm is compared to the

inverse eigen-sensitivity and response function methods on

measured data from a tridimensional frame structure with differ-

ent degrees of freedom. The results indicate that this GA is more

appropriate to detect damage than conventional optimization

methods. However, as demonstrated by Friswell and Penny (2002),

for high frequencies, this damage detection procedure has lim-

itations to quantify the damage severity for cracks, as well as it is

affected by mesh density.

In addition, a parallel genetic algorithm (PGA) to improve

the time cost of the aforementioned approach is considered in

Meruane and Heylen (2010). The reliability of the PGA is verified in

two test case structures: an airplane subjected to three levels of

damage and a multiple cracked reinforced concrete beam sub-

jected to a nonsymmetrical static load. Despite reduction in time

cost, the results indicate that the modeling improvement provided

by PGA depends on each specific problem.

A new method for damage detection, localization and severity

estimation on any kind of structures using a GA is proposed in

Chou and Ghaboussi (2001). A physics-based model is developed

from the information on the geometry of the structure using

section properties treated as unknowns to be determined from

undamaged condition. To determine these parameters, a GA is

applied to minimize the difference between the measured dis-

placements of the bridge under normal condition and the com-

puted displacements from the model coded in the individuals.

When compared to the FEM, the results suggest that the GA can

perform damage localization and severity estimation with more

reliability. However, this method was only tested in structures

under normal effects of traffic loading and did not consider other

common types of variability (e.g., temperature, humidity, wind

speed and boundary conditions).

A two-step hybrid damage detection strategy is proposed in He

and Hwang (2007). Based on grey relation analysis (GRA) and

adaptive real-parameter simulated annealing genetic algorithm

(ARSAGA), this method reduces the number of displacement

variables by excluding the structural elements with less damage

probability using a FEM that models a damaged structure. A

comparison analysis between ARSAGA and a real-parameter

genetic algorithm (RGA) demonstrates the superiority of the

ARSAGA over to RGA, regarding the localization of damage and its

extent. However, the ARSAGA may be difficult to employ in real

SHM scenarios, particularly in bridge monitoring, as it depends on

the availability of damaged data and the current localization of

some damaged elements.

In all aforesaid methods, the use of complex physics-based

models is pointed out as a drawback to full implementation of

SHM, due to the high complexity imposed when modeling the

operational and environmental influences, which remain not fully

understood (Reynders et al.), mainly in case of bridge monitoring.

2.3. Genetic-based clustering methods

In the last years, the searching capability of GAs has been

exploited to establish appropriated clusters. Basically, GAs are

stochastic techniques to optimize objective functions guided by

evolutionary principles, with capabilities to find solutions of

multimodal complex optimization problems by taking into

account several restrictions (Chambers, 2000; Goldberg, 1989).

The GA-based clustering is a well-known unsupervised algo-

rithm to solve clustering problems in m-dimensional Euclidean

space, Rm (Maulik and Bandyopadhyay, 2000). This approach is

very similar to the K-means algorithm (Jain, 2010), where the

observations are divided into a given number (K) of subsets

(clusters), whose centroids are determined by applying genetic

operators (selection, crossover and mutation). The main challenge

of this technique is to estimate the correct number of clusters,

which represents the number of normal state conditions of a

system.

A GA-based clustering method – COWCLUS – is proposed in

Cowgill et al. (1999). In this method, the variance ratio criteria

(VRC) is used as an objective function to define the internal cluster

homogeneity and the degree of isolation between different clus-

ters. The results demonstrate that this method outperforms K-

means by optimizing the VRC function. However, the number of

clusters presents in the data must be defined as input of the

algorithm.

A genetically guided algorithm (GGA) developed for clustering

is applied to brain tissue magnetic resonance imaging in Hall et al.

(1999), using objective functions from two other algorithms: fuzzy

c-means (FCM) (Wen and Celebi, 2011) and hard c-means (HCM)

(Runkler and Keller, 2012). This approach consists of minimizing

an adapted function from the original objective ones used in FCM

and HCM, rewriting the fuzzy partition matrix by another matrix

that represents a distance measure from each observation to all

centroids. The comparison of the GGA with FCM and HCM

demonstrate that the GGA provides equivalent results in terms of a

“good” clustering. Although this method has proved to be suc-

cessful in modeling overlapping clusters, it may be difficult to

employ in real applications, mainly when there is not prior

knowledge about data structure, as well as the number of clusters.

3. Genetic algorithm for decision boundary analysis

In general, the GADBA capabilities for searching and optimizing

are presented in this paper with the purpose of grouping data into

logical structural components given a maximum number of clus-

ters, Kmax, resulting in suitable geometric centers (centroids) for

each cluster in the Euclidean space, Rm. In particular, the task of

the proposed CH algorithm is to support the automatic identifi-

cation of the number of clusters, K, by choosing the appropriate

centers C¼ c1; c2;…; cK of each cluster, through the maximization
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of the objective function proposed for the GADBA, which con-

tributes to use the lowest number of clusters as possible. Essen-

tially, the GADBA-based approach performs the CH algorithm in

the set of solutions in each generation, aiming to estimate the

correct number of components through an agglomerative clus-

tering process.

For general purposes in SHM, the training matrix XAR
n�m is

composed of n observations under operational and environmental

variability when the structure is undamaged, where m is the

number of features per observation obtained during the feature

extraction phase. The test matrix ZARw�m is defined as a set of w

observations collected during the undamaged/damaged conditions

of the structure. Note that an observation represents a feature

vector encoding the structural condition at a given time.

3.1. Individual representation

The individual representation assumed for a candidate solution

is described herein. Each individual (also known as chromosome)

is a real vector of K �m genes composed of centroid positions, as

shown in Fig. 1.

In the individual representation, Fði; jÞ is the real value of the

i-th centroid in the j-th dimension. The number of genes varies

between m;…;Kmax �m, in such a way that its length must be a

multiple of m. The initial population Pðt ¼ 0Þ is created by ran-

domly choosing a number K in the interval 1;…;Kmax½ � for each

individual. The K centroid positions are also randomly initialized

by selecting K observations from the training matrix X. The pro-

cess is repeated for all Pj j individuals to be generated.

3.2. Genetic operators

Aiming to perform several tasks of mutation, parent selection

and survival selection, herein three well-known methods are

highlighted and adopted to support the GADBA-based approach.

The mutation process controls the exploration of the solution

space by means of performing changes in the individuals. In this

study, this process is composed of two steps:

(i) the number of centroids is changed via a stochastic variation

method. An increment rate is previously determined by

computing the inverse of the maximum number of clusters,

Tx ¼ K �1
max. A random real value Tr defined in the range 0;1½ � is

used to determine the number of centroids to be enabled in

the offspring individual by applying Knew ¼ ⌈T r

Tx
⌉. In the case of

KoKnewrKmax, then the miss positions are completed by

selecting Knew�K observations at random from X, otherwise

the last centroids are eliminated;

(ii) the mutation occurs in each centroid position in a stochastic

manner. A mutation probability pmut is associated to all posi-

tions, which are subjected to the Gaussian mutation,

F i;j ¼ F i;jþN 0;1ð Þ; ð1Þ

where Nð0;1Þ is a random number from a Gaussian distribu-

tion with zero mean and unitary standard deviation, and F i;j
the real value of the i-th centroid in the j-th dimension.

The selection operator drives the searching towards a promis-

ing region in the feature space. The parent selection method is

based on the well-known tournament with reposition. This

method creates a subset R by randomly selecting jRj individuals

from the population. Afterwards, only the best individual is

selected from R and submitted to the crossover process with

another individual selected in the same manner. Besides, the

survival selection is based on the elitism concept (Deb et al., 2002),

in which two sets of parents Ip and offspring Ic are joint, creating a

set Iu ¼ Ip⋃Ic . Then, a new fitness value is calculated based on the

Pareto Front and crowding distance. The solutions that compose

the new set Iu are sorted to select the Pj j better individuals as the

new population set Pðtþ1Þ.

The stopping criteria are: when the maximum number of

generations is reached and/or the difference of the fitness between

the two best individuals, of the last two generations, is less than a

given threshold ϵ (e.g., ϵ¼ 5).

3.3. Recombination

Recombination performs the exploration towards the known

solution space aiming to refine the prior knowledges. Although a

lot of different recombination operators are suggested in the lit-

erature (Hruschka et al., 2009; Mitchell, 1998), in this study is

developed a strategy that combines not only useful segments of

different parents, but also the centroid positions. The recombina-

tion method operates in three steps using two probability para-

meters defined as input, prec and ppos:

(i) for each pair of parents Pi and Pj, if a random number rrprec ,

then two cut points π1 and π2 are randomly generated, cor-

responding to a range within centroid positions of both par-

ents, such that 1rπ1oπ2r min K i;K j

� �

. The centroids in the

range are switched to form two offspring individuals. In the

case of prec is not satisfied, then both parents become the new

offspring individuals;

(ii) each centroid position receives a random number rA ½0;1�, in

such a way if rrppos, then for each pair of parent genes, an

arithmetic recombination is performed according to

F ið Þ
x;t ¼ F ið Þ

x;tþ F jð Þ
y;t�F ið Þ

x;t

� �

T ; ð2Þ

F jð Þ
x;t ¼ F jð Þ

x;tþ F ið Þ
y;t�F jð Þ

x;t

� �

T ; ð3Þ

where T is a random value defined in ½0;1�, and F ðiÞx;t and F ðjÞx;t are

the t-th positions of the x-th centroid from the i-th and j-th

parents, respectively;

(iii) finally, a length ratio, λ, defines the number of centroids

enabled in each offspring individual. Note that the parents

already have λi and λj length ratios associated to themselves,

λ¼
K

Kmax
: ð4Þ

Hence, λ maps the number of clusters, K, to the interval 0;1ð �.

Hereafter, another arithmetic recombination is performed on

the parents' length ratio to generate λ
0

i and λ
0

j for the offspring

individuals. Thus, the number of clusters (Ki and Kj) enabled in

the final offspring individuals are

K i ¼
maxðλi; λjÞ

λ
0

i

; ð5Þ

K j ¼
maxðλi; λjÞ

λ
0

j

: ð6Þ

3.4. Objective function

Based on the approaches that create clusters from circular

distributions (MacQueen, 1967), a nonlinear metric to characterize

F(1, 1) F(1, ...) F(1, m) F(2, 1) F(2, ...) F(2, m) F(K, 1) F(K, ...) F(K, m)...

Fig. 1. Representation scheme of a single individual.
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different clusters is proposed. This metric is used as the objective

function, which intends to evaluate different set of clustering

solutions by taking into account the observation dispersion in

relation to the centroids and the proximity between centroids. The

objective function assumes that each component (representing a

structural behavior) from the training matrix introduces a quasi-

circular cluster of observations, allowing the damage detection in

the presence of operational and environmental variability and

when damage introduces new orthogonal components. In addi-

tion, to evaluate the data dispersion around each centroid, the

density of the observations in the clusters is also considered.

Therefore, the first term of the objective function takes the

summation of each distance among the centroids (Ci and Cj),

X

K�1

i ¼ 1

X

K

j ¼ iþ1

G1ðJCi�Cj J Þ; ð7Þ

where G1 is a nonlinear penalization function defined as

G1ðd1Þ ¼
1�e�d1

e�d1
: ð8Þ

As Eq. (8) positively increases for all d140, one easily con-

cludes that when G1 increases, the distances between centroids

also increase. The second term is defined as

X

K

k ¼ 1

G2

X

8 xACk

JCk�xJ

 !

; ð9Þ

where

G2ðd2Þ ¼
1

e2d2
: ð10Þ

In this case, Eq. (10) increases as the summation of the norms

decreases for all d240. Therefore, the objective function is defined

by the combination of these two terms, regularized by the number

of components and the standard deviation of all distances

between centroids,

F x;C;K;σð Þ ¼
1

σK

X

K�1

i ¼ 1

X

K

j ¼ iþ1

G1ðJCi�Cj JÞþ
X

K

k ¼ 1

G2

X

8 xACk

JCk�xJ

 !

0

@

1

A; ð11Þ

where the maximization of F �ð Þ provides the optimal clustering

solution by maximization of distances between centroids (Eq. (7))

and minimization of data dispersion around the centroids (Eq. (9)).

3.5. Concentric hypersphere algorithm

In this study, the GAs capabilities are combined with the

objective function to evaluate different clustering configurations

for a given maximum number of clusters, Kmax. Thus, the novel CH

algorithm is proposed to regularize the number of clusters enco-

ded within the individuals. This algorithm works in an iterative

manner on a list of centroids, by evaluating the boundary regions

that limit each cluster, being divided in three steps:

Step 1: Centroid displacement: For each cluster, its centroid is

dislocated to the position with greater observation den-

sity, i.e., the mean of its observations.

Step 2: Linear inflation of concentric hyperspheres: Linear infla-

tion occurs on each centroid, of a candidate solution, by

progressively increasing an initial hypersphere radius,

R0 ¼ log 10 JCi�xmax Jþ1ð Þ; ð12Þ

where Ci is the centroid of the i-th cluster and xmax is its

farthest observation, such that JCi�xmax J is the radius

of the cluster centered in Ci. However, the radius grows

up in the form of an arithmetic progression with com-

mon difference equal to R0. The creation of new hyper-

spheres is set by a criterion based on the positive varia-

tion of the observation density between two consecutive

inflations, defined as the inverse of the variance; other-

wise the process is stopped.

Step 3: Cluster agglutination: If there is more than one centroid

inside the inflated hypersphere, these centroids are

agglutinated to create an unique representative centroid

as the mean of the initial centroids. On the other hand, if

only the pivot centroid is within the inflated hyper-

sphere, this centroid is assumed to be on the geometric

center of a real cluster and the agglutination is not

performed.

For completeness, the CH algorithm is summarized in Fig. 2,

which presents an example of the method applied to a three-

component scenario with a five-centroid candidate solution.

Initially, in Fig. 2(a), the centroids are moved to the center of their

clusters, as indicated in Step 1. In Fig. 2(b) and (c), two centroids

are agglutinated to form one cluster, once they are under the same

cluster. On the other hand, in Fig. 2(d), only one centroid is located

under a real cluster, therefore the CH algorithm is stopped after

the Step 2. In the case where the agglutination process occurs, all

centroids analyzed before are evaluated again to infer whether the

new one is not positioned under another cluster or closer to a

boundary region.

The steps of the CH algorithm are summarized in Algorithm 1.

Initially, it identifies the cluster in which each observation belongs

and moves the centroids to the mean of their observations. Then, a

hypersphere is built on a pivot centroid, by inflation until the

density between two consecutive hyperspheres decreases. Finally,

the agglutination of all centroids within the last hypersphere is

performed, by replacing these centroids by their mean. The pro-

cess is repeated until convergence, i.e., the solution is composed

by only one centroid or there is no centroid agglutination after

evaluate all centroids.

Fig. 2. CH algorithm using linear inflation.
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Algorithm 1. Summary of the CH algorithm.

1 i’1

2 createClusters ðC;X;nÞ

3 move ðC;X;nÞ

4 while ir jCj AND jCj41 do

5 radius0’calcRadiusðC½i�;X;nÞ

6 radius; density0; density1; delta0;delta1’0

7 repeat

8 radius’radiusþradius0
9 H’calcHypersphereðC; i;X;n; radiusÞ

10 density0’density1
11 density1’calcDensityðHÞ

12 delta0’delta1
13 delta1’ density0�density1

�

�

�

�

14 ðuntil delta04delta1Þ

15 j’reduceðC;HÞ

16 If j40 then

17 i’1

18 createClustersðC;X;nÞ

19 else

20 i’iþ1

21 end if

22 end while

3.6. Structural damage classification

After the definition of the optimal number of components

embedded in the training data, the damage detection process is

carried out through a global DI estimated for each test observation.

The DIs are generated through a method known as distributed DIs

(Figueiredo et al., 2014). Basically, for a given test feature vector, zi,

the Euclidean distance for all centroids is calculated, where the DI

(i) is considered the smallest distance,

DIðiÞ ¼min Jzi�c1 J ; Jzi�c2 J ;…; Jzi�cK Jð Þ; ð13Þ

where c1; c2;…; cK are the centroids of K different components. In

this study, the threshold is defined for 95% of confidence on the

DIs taking into account only the baseline data used in the training

process. Thus, if this approach has learned the baseline condition,

i.e., the identified components suitably represent the undamaged

and normal condition under all possible operational and envir-

onmental conditions, then this approach should output less than

5% of false alarms for the undamaged data used in test phase.

3.7. Summary of the GADBA-based approach

Many variants of genetic operators are available in literature.

However, the proposed approach aims to reach satisfactory results

by keeping its structure as simple as possible. A general schematic

of the GADBA-based approach is summarized in Algorithm 2.

As each individual in the population represents a candidate

solution, the final result is the one with best fitness provided by

the objective function. In the start of the process, the CH algorithm

is performed on all individuals in the population, and their asso-

ciated parameters are updated at iteration t¼0. Then, the objective

function is computed for each updated individual. Genetic opera-

tors are applied until convergence, i.e., when the value given by

the objective function does not change, significantly, for ten gen-

erations, providing the best set of centroids for the clustering

problem. Finally, the CH algorithm is used to refine the best

achieved model and the DIs are estimated by applying Eq. (13).

PðtÞ denotes a population set of size jPj at generation t. P0ðtÞ and

P00ðtÞ are the resulting populations after recombination and

mutation, respectively. Pðtþ1Þ is the resulting set of selection

operation in PðtÞ [ P″ðtÞ with size 2jPj . The initial population

Pðt ¼ 0Þ is randomly generated.

Algorithm 2. Summary of the GADBA-based approach.

1 t¼0

2 Initialize population P(t)

3 while convergence is not reached do

4 CH (P(t))

5 Evaluate (P(t))

6 P0ðtÞ ¼ Recombine (P(t))

7 P″ðtÞ ¼ Mutate ðP0ðtÞÞ

8 Evaluate ðP″ðtÞÞ

9 Pðtþ1Þ ¼ Select ðPðtÞ [ P″ðtÞÞ

10 t ¼ tþ1

11 end while

12 Pmax ¼maxðPðtÞ:fitnessÞ

13 Pbest ¼ CHðPmaxÞ

14 DI¼ damageIndicatorðPbest ;ZÞ

4. Test structures and data sets

The applicability and comparison between the proposed

approach and state-of-the-art ones are evaluated using the

damage-sensitive features extracted from the data sets of the Z-24

and Tamar Bridges. In the case of Z-24 Bridge, the standard data

sets are unique in the sense that they combine one-year mon-

itoring of the healthy condition, realistic damage scenarios artifi-

cially introduced and effects of operational and environmental

variability. In a different manner, a monitoring system was carried

out on the Tamar Bridge during almost two-years, generating data

sets related only to undamaged scenarios. Its importance derives

from the fact that in real monitoring systems, damage or varia-

bility effects occur naturally.

4.1. The Z-24 Bridge

The Z-24 Bridge was a standard post-tensioned concrete box

girder bridge composed of a main span of 30 m and two side-

spans of 14 m, as shown in Fig. 3. The bridge, before complete

demolition, was extensively instrumented and tested with the

purpose of providing a feasibility tool for vibration-based SHM in

civil engineering. A long-term monitoring test was carried out,

from 11th of November 1997 until 10th of September 1998, to

quantify the operational and environmental variability present on

the bridge and detect the existence of damage artificially intro-

duced in the last month of operation. Every hour, eight accel-

erometers captured the vibrations of the bridge and an array of

sensors measured environmental parameters, such as temperature

at several locations, for 11 min. Progressive damage tests (settle-

ment, concrete spalling, landslide at abutment, concrete hinge

failure, anchor head failure, and rupture of tendons) were carried

out in one-month time period shortly before the demolition of the

bridge (from 4th of August to 10th of September 1998), to prove

that realistic damage has a measurable influence on the bridge

dynamics (Peeters et al., 2001).

To verify the applicability of the proposed approach for long-

term monitoring, daily monitoring data measured at 5 a.m.

(because of the lower differential temperature on the bridge) from

an array of accelerometers are used to extract damage-sensitive

features, which yields a feature vector (observation) per day of

operation. An automatic modal analysis procedure based on the
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frequency domain decomposition was developed to extract the

natural frequencies (Peeters and Roeck, 1999). It was verified that

the automatic procedure was only able to estimate the first three

frequencies with high reliability, yielding a three-dimensional

feature vector per day (Figueiredo et al., 2014). During the fea-

ture extraction process, it was observed that the first and third

natural frequencies are strongly correlated (with a correlation

coefficient of 0.94), which permits one to perform dimension

reduction of the extracted feature vectors from three to two. The

first two natural frequencies, along with circles referring the

observations below 0 1 C, are depicted in Fig. 4(a).

The last 38 observations correspond to the damage progressive

testing period, which is highlighted, especially in the second fre-

quency, by a clear drop in the magnitude. Note that the damage

scenarios are carried out in a sequential manner, which cause

cumulative degradation of the bridge. Therefore, in this study, it is

assumed that the bridge operates within its undamaged condition

(baseline condition), even though under operational and envir-

onmental variability, from 11th of November 1997 to 3rd of August

1998 (1–197 observations). On the other hand, the bridge is

assumed in its damaged condition from 4th of August to 10th of

September 1998 (198–235 observations). The observed jumps in

the natural frequencies are related to the asphalt layer in cold

periods, which significantly contributes to the stiffness of the

bridge. Actually, Peeters et al. (2001) showed the existence of a

bilinear behavior in the natural frequencies for below and above

freezing temperature.

In conclusion, the statistical modeling is carried out taking into

account only the first two frequencies and using all 235 observa-

tions, resulting in 197 observations from the undamaged condition

(1–197 observations) and 38 observations from the damaged

condition (198–235 observations). The corresponding training and

test matrices are X197�2 and Z235�2, respectively. The heterogeneity

among observations in a two dimensional space is evidenced in

Fig. 4(b), which suggests the existence of components that may be

find through latent variables and clustering methods.

4.2. The Tamar Bridge

The Tamar Bridge (Fig. 5) is situated in the south-west of the

United Kingdom and connects Saltash in the county of Cornwall

with the city of Plymouth in Devon. This bridge is a major road

across the River Tamar and plays a significant role in the local

economy. Initially, in 1961, the bridge had a main span of 335 m

and side spans of 114 m. If the anchorage and approach are

included, the overall length of the structure is 643 m. The bridge

stands on two concrete towers with a height of 73 m with the

bridge deck suspended at mid-height (Cross et al., 2013).

In the late 1990s, an upgrade was performed regarding the

structure after an EU directive. Various sensor systems were

installed to extract data such as tensions on stays, accelerations,

wind speed, temperature, deflection and tilt. Eight accelerometers

were implemented in orthogonal pairs to four stay cables and

three sensors measured deck accelerations. The time series were

stored with a sampling frequency of 64 Hz at 10 min intervals. The

data were then passed to a computer-based system and via the

covariance-driven stochastic subspace identification (Peeters and

Roeck, 1999), the natural frequencies were calculated (more detail

in Cross et al., 2013). The first five natural frequencies are illu-

strated in Fig. 6, for the period from 1st of July 2007 to 24th of

February 2009 (602 observations).

Herein, there is no damaged observations known in advance,

and so it is assumed that all observations are extracted from the

undamaged condition. Therefore, only Type I errors can be iden-

tified. From a total amount of 602 observations, the first 363 ones

are used for statistical modeling in the training process (corre-

sponding to one-year monitoring from 1st of July 2007 to 30th of

Fig. 3. Longitudinal section (upper) and top view (bottom) of the Z-24 Bridge

(Peeters et al., 2001).
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June 2008) and the entire data set is used in the test process,

yielding a training matrix X363�5 (1–363 observations) and a test

matrix Z602�5 (1–602 observations).

5. Results: statistical modeling and feature classification

In this section, the performances of the GADBA-, GMM-, and

MSD-based approaches are compared in terms of the Type I and

Type II errors. The GADBA works through some previously defined

parameters. The number of iterations required to infer the con-

vergence of the fitness value, when the best solution is achieved, is

equal to 5, considering an oscillation of the best fitness in the

order of 10�4. The crossover and mutation probabilities are

0.8 and 0.01, respectively. The size of the ring in the tournament

method for individual selection is set to 4. Furthermore, the

population size and the maximum number of components are

taken to be 20 and 10, respectively. Most of the parameters were

adopted based on the performance observed in recent research

studies (Bandyopadhyay and Maulik, 2002). The GMM-based

approach was set as described in Figueiredo et al. (2014), where

the parameters are estimated from the training data using the EM

algorithm. The MSD-based approach was set as described in

Figueiredo and Cross (2013), where the covariance matrix and

mean vector were defined based on the training data.

5.1. The Z-24 Bridge

For all 235 observations, the four centroids corresponding to

the same number of clusters or structural components ðK ¼ 4Þ is

Fig. 5. The Tamar Suspension Bridge viewed from River Tamar margins (a) and cantilever (b) perspective.
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Fig. 7. Centroids along with the observations using the data sets from the Z-24

Bridge: (a) all the 235 observations; (b) 1–197 observations corresponding to the

baseline condition.

Table 1

Comparison of the parameter estimation using the CH and EM algorithms on the

entire data sets (1–235) from the Z-24 Bridge (standard errors smaller than

10e�003).

Algorithm Description Cluster 1 Cluster 2 Cluster 3 Cluster 4

CH Weight (%) 69 10 6 15

Mean (Hz) (3.97, 5.18) (4.17, 5.28) (4.31, 5.59) (3.86, 4.84)

EM Weight (%) 64 21 15 ——

Mean (Hz) (3.97, 5.19) (4.16, 5.32) (3.86, 4.82) ——
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plotted in Fig. 7(a), as suggested by the CH algorithm. As indicated

in Table 1, the first cluster is centered at (3.97, 5.18), attracting

around 69% of all assigned data. In this case, this cluster is possibly

related to the baseline condition obtained under small environ-

mental and operational influences. The second cluster is centered

at (4.17, 5.28) and is assigned with 10% of the observations. The

authors speculate that it might be related to gradual decrease of

temperature in the asphalt layer, enough to slightly change the

elastic properties of the structure. The third cluster centered at

(4.31, 5.59) attracts 6% of observations and may be related to

changes in the structural response derived from stiffness changes

in the asphalt layer caused by freezing temperatures. The fourth

cluster is positioned in the lower region of the feature space

centered at (3.86, 4.84). It embeds around 15% of the entire

observations and is related to the space region assigned to the

damaged condition. As demonstrated in Figueiredo et al. (2014),

these results suggest the possibility to correlate physical states of

the structure with a finite and well defined number of main

structural components. Figueiredo et al. (2014) show the existence

of this phenomenon, which is assigned to the natural grouping of

similar observations in certain regions of the feature space. Com-

paring the results from the CH and EM algorithms, one may verify

the similarity of the results in Table 1. However, the EM algorithm

agglutinates the second and third clusters suggested by the CH

algorithm, incorporating all gradual changes in the asphalt layer to

one cluster only.

The challenge to simulate damage in high capital expenditure

civil engineering structures is well-known, namely due to the one-

of-a-kind structural type, the cost associated with the simulation

of damage in such infrastructure, and due to the unfeasibility to

cover all damage scenarios (Figueiredo et al., 2014; Westgate and

Brownjohn, 2011). Therefore, the unsupervised approaches are

often required as long as the existence of data from the unda-

maged condition is known a priori. Thus, and for real applications,

the centroids defined by the CH algorithm are shown in Fig. 7(b),

taking into account only feature vectors from the baseline condi-

tion. In this case, three clusters are positioned in close positions as

indicated in Table 2. Comparing the results obtained from the CH

and EM algorithms, one can verify, once again, similarities in the

cluster location. However, the CH algorithm splits the observations

under gradual freezing effects into two clusters.

In relation to convergence, in average, after several runs with

different initial populations, the GADBA-based approach converges

to consistent results at 55 generations. In turn, the GMM executes

31 iterations when running to a three-component scenario. How-

ever, to automatically estimate the number of components, the

Bayesian information criterion was adopted. Thus, it was necessary

around 1000 iterations of GMM, under different initial conditions

and number of parameters, before complete convergence.

The DIs obtained from the test matrix, Z235�2, are highlighted in

Fig. 8. It shows that the GADBA-based approach outputs a mono-

tonic relationship in the amplitude of the DIs related to the

damage level accumulation; whereas the GMM fails to establish

this relationship. In the case of the MSD-based approach, patterns

in the DIs caused by the freezing effects can be pointed out, which

indicate that this approach is not able to remove, completely, the

effects of environmental variations and so demonstrates to be not

effective to model the normal condition.

Therefore, to quantify the classification performance, Table 3

summarizes the Type I and Type II errors for the test matrix. Basi-

cally, the GADBA- and GMM-based approaches have the same

classification performance, reaching 5.07% and 2.63% of Type I and

Type II errors, respectively, and a total amount of errors equal to

4.68%. These results are quite similar due to the function adopted to

evaluate the observation density within the inflated hyperspheres.

However, the GADBA filters nearly all operational and environ-

mental variability, especially in the damaged observations, instead

of the GMM that provides a poor data normalization in these

observations. As expected, the MSD-based approached obtained a

similar result in relation to the amount of Type I errors; however,

the Type II errors reached over 39%, demonstrating its inefficiency

when classifying abnormal conditions.

5.2. The Tamar Bridge

The data sets from the Z-24 Bridge are unique, as it was known

a priori the existence of damage. On the other hand, the data sets

from the Tamar Bridge represent the most common situation

observed in real-world SHM applications on bridges, as there is no

indication of damage in advance.

Following the same procedure carried out in the previous

subsection, the clusters and centroids defined by the GADBA-

based approach, during model estimation, are shown in Fig. 9, in a

two-dimensional representation. Table 4 summarizes the centroid

localizations in the original five-dimensional feature space along

with the distribution weights inferred by both the CH (K¼3) and

the EM (K¼3) algorithms. Even though the number of centroids is

equal for both approaches, one can assert that the CH appears to

perform a better modeling of the underlying components than EM

algorithm, due to the GADBA is less sensitive to the choice of the

initial parameters and also guides the solutions towards the global

optimal. The second frequency is observed to considerably con-

tribute to the best distinction of these clusters, related to struc-

tural components. In addition, the GADBA-based approach con-

verged after 86 generations and for the GMM achieve complete

convergence, it was required around 1000 iterations.

Furthermore, for the CH algorithm, one can figure out that the

three hyperspheres defined through the linear inflation step have

the expected behavior, by stopping their inflations close to the

boundary of each cluster, as shown in Fig. 9. This behavior is

verified at the boundary regions, where one can find, especially

between the first and third components, the lowest concentration

of observations. On the other hand, one can find a high con-

centration of observations around the first and second centroids.

For an overall analysis purpose, the DIs for all observations in

the test matrix, Z602�5, are plotted in Fig. 10, where the set of

observations from 1 to 363 is used on the training phase. For the

GMM-based approach, a concentration of outliers in the data not

used in the training phase is observed, suggesting an inappropriate

modeling of the normal condition. On the other hand, the GADBA-

based approach seems to output a random pattern among the

expected outlier observations, especially among the ones not used

in training process, suggesting a properly understanding of the

normal condition by the clusters defined by the CH algorithm.

Note that, in this case, there is no indications about the existence

of neither damage nor extreme operational and environmental

variability in the data sets.

For completeness, Table 5 summarizes the Type I errors for all

three approaches. The Type II errors are not summarized herein as

Table 2

Comparison of the parameter estimation using the CH and EM algorithms on the

baseline condition data (1–197) from the Z-24 Bridge (standard errors smaller than

10e�003).

Algorithm Description Cluster 1 Cluster 2 Cluster 3

CH Weight (%) 81 12 7

Mean (Hz) (3.97, 5.19) (4.17, 5.29) (4.30, 5.60)

EM Weight (%) 81 19 ——

Mean (Hz) (3.97, 5.19) (4.22, 5.39) ——
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there is no indications about structural damage. The total number

of Type I errors is 32 (5.32%), 65 (10.8%) and 30 (4.98%) for the

GADBA-, GMM- and MSD-based approaches, respectively. There-

fore, as the percentage of errors given by the GADBA is close to the

5% level of significance assumed in the training process, one

concludes that the GADBA-based approach offers the best model

to filter the environmental and operational influences and fit the

normal condition of the bridge. The importance of this result is

rooted on the fact that this scenario is close to the ones found in

real-world monitoring, where there is no indications of damage a
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based approaches.

Table 3

Number and percentage of Type I and Type II errors for each approach using the

data sets from the Z-24 Bridge.

Approach Type I Type II Total

GADBA 10 (5.07%) 1 (2.63%) 11 (4.68%)

GMM 10 (5.07%) 1 (2.63%) 11 (4.68%)

MSD 10 (5.07%) 15 (39.47%) 25 (10.63%)
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Fig. 9. The three main clusters defined by the CH algorithm, with their centroids

and corresponding final hyperspheres in the two-dimensional feature space using

only the first two frequencies from the Tamar Bridge.

Table 4

Parameter estimation using the CH and EM algorithms on the baseline condition

data (1-363) from the Tamar Bridge (approximation errors smaller than 10e�003).

Algorithm Description Feature Cluster 1 Cluster 2 Cluster 3

CH Weight (%) —— 36 52 12

F1 0.38 0.39 0.38

Mean (Hz) F2 0.46 0.48 0.44

F3 0.59 0.60 0.59

F4 0.68 0.68 0.68

F5 0.72 0.73 0.72

EM Weight (%) —— 40 26 34

F1 0.38 0.39 0.39

Mean (Hz) F2 0.46 0.46 0.48

F3 0.59 0.59 0.60

F4 0.68 0.68 0.69

F5 0.72 0.73 0.73
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priori, which permits one to reduce the number of false alarms

and increase the reliability of the SHM system.

6. Summary and conclusions

This paper presented the performance of an unsupervised and

nonparametric cluster-based approach (GADBA) applied to detect

damage in bridges, even in the presence of environmental and

operational influences. This approach is supported by a novel

method (CH) based on spacial geometry and sample density of

each cluster, aiming to eliminate redundant clusters, also known

as structural components.

The proposed approach was compared with two alternative

parametric cluster-based approaches extensively studied in the

literature (GMM and MSD), through their applications on two

conceptually different but real-world data sets, from the Z-24 and

Tamar Bridges, located in Switzerland and United Kingdom,

respectively. The structures were subjected to environmental and

operational influences, which could cause structural changes.

In terms of result analysis, as verified on both bridges, the

GADBA-based approach demonstrates to be: (i) as robust as the

GMM-based one to detect the existence of damage; and (ii)

potentially more effective to model the baseline condition and

attenuate the effects of the operational and environmental varia-

bility, as suggested by the minimization of false alarms on the data

from the Tamar Bridge.

In terms of theory formulation, the proposed approach

assumes no particular underlying distribution and its genetically

guided characteristic increases the chance to obtain a solution

close to the global optimal. On the other hand, the GMM assumes

the existence of Gaussian distributions and the EM converges

toward a local optimum. Therefore, the GADBA-based approach is

conceptually simpler to be deployed in real-world applications

and embedded in hardware (e.g., sensor nodes), in situations

where it is not possible to make any assumption about the data

distribution. Besides, the CH algorithm provides special cap-

abilities (inflation and observation density analysis) to regularize

the number of components and define better clusters, resulting in

more accurate models to accomplish data normalization. In addi-

tion, compared to GMM, the GADBA-based approach demonstrates

faster convergence in both case studies. It is also important to note

that several runs of GMM are needed to automatically estimate the

number of components using some off-line penalization criterion.

Finally, based on the data sets used in this study, both GADBA-

and GMM-based approaches fit the well-known theorem that there

is no free lunch in which machine learning algorithms are classified

in two classes: specialized methods for some category of problems
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Fig. 10. Damage indicators along with a threshold based on a cut-off value of 95% over the training data: (a) GADBA-, (b) GMM- and (c) MSD-based approaches.

Table 5

Number and percentage of Type I errors for each approach using

the data sets from the Tamar Bridge.

Approach Type I

GADBA 32 (5.32%)

GMM 65 (10.8%)

MSD 30 (4.98%)
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and methods that maintain a reasonable performance in the solu-

tion of most part of problems. Thus, the GMM fits the category of

specialized methods that do not generate good results for all type of

applications. On the other hand, the GADBA fits the category in

which results are often acceptable, i.e., it has a superiority in terms

of generalization.
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A Global Expectation–Maximization Approach

Based on Memetic Algorithm for Vibration-Based

Structural Damage Detection
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and João C. W. A. Costa, Member, IEEE

Abstract— This paper proposes a novel unsupervised damage
detection approach based on a memetic algorithm that establishes
the normal or undamaged condition of a structural system as data
clusters through a global expectation–maximization technique,
using only damage-sensitive features extracted from output-only
vibration measurements. The health state is then discriminated
by considering the Mahalanobis squared distance between the
learned clusters and a new observation. The proposed approach
is compared with state-of-the-art ones by taking into account
real-world data sets from the Z-24 Bridge (Switzerland), where
several damage scenarios were performed. The results indicated
that the proposed approach can be applied in structural health
monitoring applications where life safety, economic, and reliabil-
ity issues are the most important motivations to consider.

Index Terms— Damage detection, data normalization,
environmental conditions, memetic algorithm (MA), operational
conditions, structural health monitoring (SHM), vibration
measurements.

I. INTRODUCTION

DAMAGE assessment based on the vibration response

measurements from engineering structures has been

an essential research area in the structural health monitor-

ing (SHM) field [1], [2]. Vibration signals are often available

and can be measured from different types of monitoring

systems through a diversity of data acquisition systems and

sensors. Based on suitable data treatment, valuable information

from the structural dynamics can be extracted and used as

damage-sensitive features for detecting early and progressive

structural damage, thereby increasing safety, avoiding col-

lapses, and supporting the decision making process regarding

maintenance, repair, and rehabilitation.

Unfortunately, operational and environmental variations

(e.g., temperature, operational loading, humidity, and wind

speed) often arise as undesired effects in the damage-sensitive

features and usually mask changes caused by damage, which
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might negatively influence the proper identification of damage

if a data normalization procedure is not performed [3]. To

handle this drawback, several machine learning algorithms

with different working principles have been proposed to mit-

igate (or even remove) those effects on the extracted features

as well as to properly separate changes in damage-sensitive

features caused by damage from those caused by varying oper-

ational and environmental conditions [4]–[6]. These machine

learning approaches are often characterized as unsupervised

and output-only because they are trained only with damage-

sensitive features related to undamaged condition without any

measurement directly related to operational and environmental

parameters. One of the reasons for this choice is that the

supervised learning [7]–[11] work in the training phase with

both conditions (undamaged and damaged) and the input–

output approaches [12]–[14] should know in advance all

parameters to be measured, so both have narrow applicability

to real-world scenarios.

Mahalanobis squared distance (MSD) and principal com-

ponent analysis (PCA) are unsupervised algorithms adapted

to act as data normalization and damage detection tech-

niques [15]–[19]. However, the linear behavior imposed for

these techniques has limited their applicability in SHM. If

nonlinearities are present in the monitoring data, the MSD

and PCA might fail in modeling the normal condition of a

structure because the former assumes the baseline data follow

a multivariate Gaussian distribution (or only one data cluster)

and the principal components in the latter are independent only

if the baseline data is jointly normally distributed.

To extend the capabilities of traditional methods such as

MSD and PCA, improved approaches based on the autoasso-

ciative neural network (AANN), kernel PCA, and Gaussian

mixture models (GMMs) were proposed to deal with real-

world structures and more complex SHM applications such

that the nonlinear influences on the damage-sensitive features

could be accounted for [20]–[25].

As presented in [20], the AANN is a nonlinear version

of the PCA that seeks to accommodate the operational and

environmental effects by solving a global nonlinear optimiza-

tion, which is sensitive to initial parameters, after a complex

definition of the number of neurons in its hidden layers.

Another nonlinear version of the PCA that acts as a data

normalization procedure is the kernel PCA, for which the type

of nonlinearity is not explicitly defined and its two parameters

can be automatically defined [22], [23]: the bandwidth of the

0018-9456 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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TABLE I

QUALITATIVE COMPARISON OF UNSUPERVISED MACHINE LEARNING APPROACHES FOR SHM

kernel and the number of retained principal components in the

high-dimensional feature space. However, these approaches

present some loss of information due to the definitions of

the number of neurons and retained principal components

(dimensionality reduction), which ensure only the fitting of

a fraction of the normal condition under operational and

environmental variability.

In a different manner, a linear output-only method was

proposed to model nonlinearities in long-term monitoring of

structures based on a two-step strategy [25]: data normalization

procedure by clustering the training observations into different

and finite data clusters and damage detection by identifying

possible outliers through a distance measure between the

learned clusters and a new observation. As the first step, the

GMMs are applied to model the main clusters that correspond

to the normal and stable state conditions of a structure. The

parameters of the GMMs are estimated from the training data

using the expectation–maximization (EM) algorithm. For the

second step, the MSD algorithm tracks the outlier formation in

relation to the chosen main group of states. Alternatively, an

improved Bayesian approach based on a Markov chain Monte

Carlo (MCMC) method was proposed in [26] to compute

the parameters of the GMMs. Both approaches have revealed

better damage detection performance compared with MSD.

Despite the EM-GMM and MC-GMM approaches can fit

the normal condition of a structure without loss of information,

the optimal parameters determined by the EM and MCMC

algorithms are strongly dependent on the choice of the initial

parameters. Thereby, these algorithms do not ensure that the

global optimal solution and the training phase may be quite

slow because it is often advised to run both algorithms a

couple of times with different initial guesses of parameters to

find a satisfactory quasi-optimal solution, which is not fully

guaranteed [27]. As consequence, this degenerated behavior

of the EM and MCMC algorithms may affect the stability and

reliability of the damage detection or even the number of data

clusters estimated for each different run.

Therefore, this paper presents a memetic algorithm (MA)

based on a genetic algorithm (GA) to improve the stability and

reliability of the EM algorithm in searching for the optimal

number of data clusters and their parameters, a global EM-

GA (GEM-GA), which improves the damage classification

performance. In this case, the parameters of the GMMs are

estimated via a hybrid method composed of an EM algorithm

within an MA. Compared with the state-of-the-art approaches,

the GEM-GA not only deals with nonlinear relationships in

monitoring data but also provides stable results in terms of

damage detection and data clusters as the main stable structural

conditions (model interpretation), as summarized in Table I.

As long as the main stable state conditions of the structure

are determined, the superiority of the GEM-GA approach over

the state-of-the-art ones is attested on a damage detection

strategy implemented through the MSD, using real-world data

sets from the Z-24 Bridge (Switzerland). The classification

performance is assessed on the basis of Type I (false positive

indication of damage) and Type II (false negative indication

of damage) error tradeoffs.

The remainder of this paper is organized as follows. In

Section II, the GEM-GA approach is derived to determine

the health state of a structure based on a reliable estimation

of data clusters. Section III describes the test structure and

its long-term vibration data as well as the major environ-

mental influence. In Section IV, the experimental results on

extracted damage-sensitive features that encompass a variety

of challenges encountered in practical SHM applications are

discussed and a comparison with state-of-the-art approaches

is also emphasized. Finally, Section V synthesizes the main

strengths and challenges of the GEM-GA approach.

II. MEMETIC-BASED GLOBAL EM ALGORITHM

FOR DAMAGE DETECTION

This section presents the methodology of the GEM-GA

approach. First, the EM algorithm for fitting GMMs is briefly

discussed and an information criterion is assumed to select the

best model with a given number of components. Second, the

proposed GEM-GA applies this criterion as the fitness function

to improve the performance of the EM algorithm via an MA,

which yields a robust data model of the normal condition of

a monitored structure. The section ends with a description of

the damage detection strategy based on the MSD.

For theoretical purposes, one should consider a training data

matrix composed of normal condition data, X ∈ R
m×n , with

n-dimensional feature vectors from m different operational

and environmental conditions when the structure is assumed

undamaged and a test data matrix Z ∈ R
l×n , where l is

the number of feature vectors from the undamaged condition

and/or damaged condition (DC).

Although the machine learning algorithms have different

mathematical formulations, they are implemented in a com-

mon sequence of steps. First, each algorithm is trained and its
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parameters are adjusted using feature vectors extracted from

the normal condition. In the training phase, the algorithms

develop a functional relationship that models how changing

operational and environmental conditions influence the under-

lying distribution of the damage-sensitive features. Second,

in the test phase, when subsequent features are analyzed by

the learned models and a new set of features are shown not

to fit into an appropriate distribution, they might be more

confidently classified as outliers or, potentially, features from a

damaged structure, because the operational and environmental

influences have been incorporated into the learning procedure.

A. Fitting Data Clusters via Global EM

A finite mixture model, p(x|�), is the weighted sum of

K > 1 components p(x|θk) in R
n [28]

p(x|�) =
K

∑

k=1

αk p(x|θk) (1)

where x is an n-dimensional data vector and αk corresponds

to the weight of each component. These weights are positive

αk > 0 with
∑K

k=1 αk = 1. For a GMM, each component

p(x|θk) is represented as a Gaussian distribution

p(x|θk) =
exp

{

− 1
2
(x − µk)

T �−1
k (x − µk)

}

(2π)n/2
√

det(�k)
(2)

being each component denoted by its parameters, θk =
{µk,�k}, composed of the mean vector µk and the covariance

matrix �k . Thus, the GMM is completely specified by the set

of parameters � = {α1, α2, . . . , αK , θ1, θ2, . . . , θ K }.
The EM algorithm is the most common method used to

estimate the parameters of the GMMs [29]. This method

consists of an expectation step (E-step) and a maximization

step (M-step), which are applied until the log-likelihood

(LogL), log p(X|�) = log
∏m

i=1 p(xi |�), converges to a

local optimum. The performance of the EM algorithm deeply

depends on the choice of the initial parameters �t=0 (where

t = 0 stands for the first run). The E-step and M-step are

described in more detail in [28].

To select the best GMM by means of goodness of fit and

parsimony, the Bayesian information criterion (BIC) is used

and minimized [30] as

BIC = −2 log p(X|�)

+
{

K n

[(

n + 1

2

)

+ 1

]

+ K − 1

}

log(m) (3)

where the BIC uses the optimal LogL function value

and penalizes complex models (with additional parameters)

through a term that is a function of the training data size.

MAs are population-based metaheuristics composed of an

evolutionary framework and a set of local search algorithms

[31]. A general MA can be defined as follows [32].

1) Initialize a population of candidate solutions P1.

2) While a termination criterion is not satisfied, repeat.

a) Cooperate between candidate solutions from P1 to

generate a new population P2.

b) Improve the candidate solutions from P2 to gener-

ate a new population P3.

c) Compete within the set P1 ∪ P3 to generate a new

population P1 for the next generation.

d) If P1 converges, restart some chosen solutions.

3) Return the best solution encountered.

The initialize procedure produces the initial set of random

candidate solutions as high-quality solutions generated by

applying a local search algorithm, and the termination cri-

terion usually verifies the total number of generations and/or

a maximum number of generations without improvement. The

cooperate procedure arises on the selection and combination,

determining the solutions that will be merged to create new

promising solutions. The improve procedure applies a local

search method on new solutions derived in the cooperate pro-

cedure. The compete procedure updates the current population

using the old population and the new population, determining

the solutions that will survive in the following generations.

To overcome premature convergence to suboptimal regions of

the search space, the restart procedure acts as a corrective

measure on the population [32].

Hence, MAs comprise notions from population-based global

search and local search methods. In this paper, the MA is

a hybrid algorithm that combines EM algorithm (local) [29]

with GA (global) [33], [34]. Hereafter, the framework of the

proposed GEM-GA approach is presented, and its parameters

and operators are discussed in more detail.

1) Initialize P1(t), t = 0, r = 0, c = 0.

2) (P2(t), BIC1) ← perform R EM steps on P1(t).

3) While (t ≤ 500) and (r ≤ 2) are satisfied, repeat.

a) Cooperate such that (P3(t)) ← recombine on

P2(t) and after (P4(t)) ← mutate on P3(t).

b) Improve P4(t) such that (P5(t), BIC2) ← perform

R EM steps on P4(t).

c) Compete between the populations P2(t) and P5(t)

such that (P2(t + 1), BIC1, bGMM, BICmin) ←
select on P2(t) and P5(t) via BIC1 and BIC2.

d) Increase t = t + 1, and c = c + 1 if and only if

there is no improvement in BICmin.

e) If c = 100, then restart the worst 90% of indi-

viduals from P2(t), increase r = r + 1, and set

c = 0.

4) Improve bGMM if and only if it not converged, such that

(bGMM, BICmin) ← perform EM steps on bGMM until

convergence of the LogL is reached.

5) Return bGMM as the best solution encountered.

In the GEM-GA approach, each individual in the population

represents a candidate solution of the GMM, i.e., a set of

parameters � that specifies a GMM. Thus, an individual

is composed of two different parts. The first part indicates

whether a component is activated ([0.5, 1]) or not ([0, 0.5])
for learning the GMM and the length of this part is the

maximum number of activated components Kmax. The para-

meters, the mean vector µk and covariance matrix �k , of

Kmax components are represented in the second part. Each

component includes (n2 + 3n)/2 parameters. Note that the

covariance matrix �k must be symmetric, and thus only the
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upper (or lower) triangular part of the matrix is encoded in

the individual.

First, a random population P1, the number of generations t ,

restarts r , and generations without improvement c are ini-

tialized. Afterward, by applying R EM steps on P1, with

R = 20, initial high-quality solutions and their fitness values

are derived as P2 and BIC1, respectively. The evolutionary

process of the GEM-GA is stopped when t = 500 or r = 2,

then the convergence of the best solution bGMM found so far

is checked. If it converged in terms of LogL, the final solution

is the current best solution; otherwise, the EM algorithm

improves bGMM until convergence is reached.

The cooperate procedure includes the parent selection,

recombination, and mutation. For parent selection, the well-

known binary tournament is used on the population P2 to

select parents for recombination [35]. In turn, the recombina-

tion merges the chosen parents to generate offspring individ-

uals with the crossover probability pcro = 0.8. The two-point

crossover is applied, in which two crossover positions between

{1, . . . , Kmax − 1} are randomly selected within the first part

of the parent individual. The values of the genes to the right

of these positions are exchanged between parent individuals

for the first part and this exchange is generalized to their

associated parameters in the second part. A Gaussian mutation,

with the mutation probability pmut = 0.05 for each gene of

each individual (excluding covariance matrices), is performed

on the offspring population P3 to yield the population P4.

An improvement on the population P4 is achieved by

applying the EM algorithm that delivers the population P5

and its fitness values BIC2, which are used together with P2

and BIC1 to select the new population of survivors for the

next generation as well as the best solution bGMM and its

fitness value BICmin. This survival selection is based on the

elitist (δ + λ)-strategy [36]. If there is no improvement in

BICmin during 100 consecutive generations, the worst 90%

of individuals from P2 are restarted as high-quality solutions

(generated by applying the EM algorithm) to explore other

regions of the search space. In addition, the flowchart of the

GEM-GA approach is illustrated in Fig. 1.

The proposed approach may be faced as a new

improved and generalized version of the GA-based

EM (GA-EM) algorithm proposed in [37]. The GA-EM

demonstrated some limitations related to its codification

(binary for the first part and real for the second part), parent

selection (randomly), mutation (bit flip and uniform), and

premature convergence, as discussed in [38].

B. Damage Detection Strategy

Since the best solution (model) is selected, the structural

health is discriminated by generating a damage indicator (DI)

and classifying it through a threshold. First, for each obser-

vation z, one needs to estimate K DIs via MSD. Particularly,

for each undamaged cluster k

DIk(z) = (z − µk)�
−1
k (z − µk)

T . (4)

For each component k, if a new observation z is extracted

from the same component as the undamaged data, then the test

Fig. 1. Flowchart of the GEM-GA approach.

statistic MSD will be Chi-square distributed with n degrees of

freedom, χ2
n . Finally, for each observation, the DI is given by

the smallest DI estimated on each component

DI(z) = min[DI1(z), . . . , DIK (z)]. (5)

III. TEST STRUCTURE AND DATA SETS

In this paper, the comparison between the proposed

approach and state-of-the-art ones as well as their applicability

is evaluated in terms of damage classification performance

using damage-sensitive features (herein natural frequencies)

extracted from vibration measurements of the Z-24 Bridge.

These data sets are unique as they combine one-year moni-

toring of the healthy condition, influenced by operational and

environmental variability, with realistic damage scenarios [39].

The structure and its data sets are highlighted in this section.

A. Bridge and Damage Test Scenarios

The Z-24 Bridge was a posttensioned concrete box girder

bridge composed of a main span of 30 m and two side-

spans of 14 m, as depicted in Fig. 2. The bridge, before

complete demolition, was extensively instrumented and tested

with the purpose of providing a reliable benchmark for

vibration-based SHM in civil engineering [40]. A long-term

monitoring test was carried out, from November 11, 1997

until September 10, 1998, to quantify the operational and

environmental variability present on the bridge and to detect

damage artificially introduced, in a controlled manner, in the

last month of operation. Every hour, eight accelerometers

captured the vibrations of the bridge as sequences of 65 536

samples (sampling frequency of 100 Hz) and other sensors

measured environmental parameters, such as temperature at

several locations [12]. In particular, technical specifications

of the accelerometers (by Kinemetrics Inc.) applied in this

monitoring are synthesized in Table II.
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Fig. 2. Longitudinal section (left) and the location and orientation of accelerometers (right) on the Z-24 Bridge. Marked sensors failed during the monitoring
campaign [12].

TABLE II

TECHNICAL SPECIFICATIONS REGARDING THE ACCELEROMETERS

USED IN THE LONG-TERM MONITORING [41], [42]

TABLE III

PROGRESSIVE DAMAGE TEST SCENARIOS (THE DATES REFER

TO THE ADDITIONAL VIBRATION MEASUREMENTS)

Progressive damage tests were carried out in one-month

time period (from August 4, 1998 to September 10, 1998)

before the demolition of the bridge to prove that realistic dam-

age has a measurable influence on the bridge dynamics [39],

as summarized in Table III (the dates refer to the day that

additional vibration tests were performed to fully characterize

the structural condition of the bridge). Three examples of

damage test scenarios are illustrated in Fig. 3. Note that the

monitoring system was still running during the progressive

damage tests, which permits one to validate the SHM system

to detect cumulative damage on long-term monitoring.

B. Extraction of Damage-Sensitive Features

In this case, the natural frequencies of the Z-24 Bridge are

used as damage-sensitive features. They were estimated using

a reference-based stochastic subspace identification method

on vibration measurements from the accelerometers [43].

The first four natural frequencies estimated hourly from

Fig. 3. Damage scenarios carried out in the Z-24 Bridge. Left to right: pier
settlement, failure of anchor heads, and tendon rupture.

Fig. 4. First four natural frequencies of the Z-24 Bridge: 1–3470 baseline/
undamaged condition (BC), 3471–3932 DC.

November 11, 1997 to September 10, 1998, with a total

of 3932 observations, are highlighted in Fig. 4. The first

3470 observations correspond to the damage-sensitive feature

vectors extracted within the undamaged structural condition

under effects caused by the operational and environmental

variability. The last 462 observations correspond to the damage

progressive testing period, which is highlighted, especially in

the second frequency, by a clear decay in the magnitude of

this frequency.

The damage scenarios were performed in a sequen-

tial manner, which cause a cumulative degradation of the

bridge. Therefore, in this paper, it is assumed that the

bridge operates within its undamaged condition (baseline

or normal condition), under operational and environmental

variability, from November 11, 1997 to August 4, 1998

(1–3470 observations). On the other hand, the bridge is con-

sidered damaged from August 5, 1998 to September 10, 1998
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Fig. 5. Nonlinear influence of the temperature on the natural frequencies of
the Z-24 Bridge.

(3471–3932 observations). For the baseline condition period,

the observed jumps in the natural frequencies are associated

with the asphalt layer in cold periods, which contributes

significantly to the stiffness of the bridge, as evidenced in

Fig. 4, indicating the need for a data normalization procedure

to attenuate this variability. Besides, the existence of a high

influence of the temperature on the natural frequencies as well

as on the structure dynamics may be considered as nonlinear

with distinguished behaviors below and above 0 °C [12], [39],

as demonstrated in Fig. 5.

For generalization purposes, the feature vectors are split

into the training and test matrices. Although the damaged

observations are known in advance, the approaches are applied

in an unsupervised manner because no information related to

the presence of damage is provided during the training phase.

As shown in Fig. 4, the training matrix X3123×4 is composed

of 90% of the feature vectors from the undamaged condition.

The remaining 10% of the feature vectors are used during the

test phase to make sure that the DIs do not fire off before

the damage starts. The test matrix Z3932×4 is composed of all

the data sets, even the ones used during the training phase.

IV. RESULTS AND DISCUSSION

In this section, the analysis is divided into two parts. First,

the EM-GMM, MC-GMM, and GEM-GA approaches are

executed 20 times with distinct initial parameters to verify

the stability, reliability, and robustness of these techniques.

Afterward, as a means of setting a damage detection strategy

for the Z-24 Bridge, a model of each approach is chosen based

on the BIC. Second, the GEM-GA is compared with nonlinear

approaches based on AANN and kernel PCA. The damage

detection strategy based on MSD is used for the EM-GMM,

MC-GMM, GEM-GA, and AANN; the KPCA implicitly gen-

erated the DIs via Euclidean distance (as assumed in [23]).

All thresholds are defined for a level of significance of 5%.

All approaches were implemented in MATLAB 8.3.0.532

(R2014a) combining some functions from the packages

SHMTools version 0.3.0 [44] and bayesf version 2.0 [45], from

the Statistics and Machine Learning Toolbox of MATLAB

[46], with new functions developed by the authors.

Fig. 6. Multivariate normality statistical test based on the Chi-square
Q–Q plot of the MSD using the training observations (left) and the nonlinear
relationship between the natural frequencies (right) from the Z-24 Bridge.

A. Reliable Estimation Of Data Clusters

In this SHM scenario, the training data reveal nonlinearities

derived from changes in the structural stiffness, influenced by

temperature variations, and then the relationship among the

natural frequencies is nonlinear, which is evidenced through

the multivariate normality statistical test and the nonlinear

correlation between the first and second natural frequencies

in Fig. 6. Thus, linear approaches are generally liable to rel-

atively poor damage classification performance, which should

be overcome with approaches that handle multimodality and

heterogeneity of the data as nonlinear models or clusters.

As recommended in [25], to alleviate the drawbacks of the

EM algorithm, for each execution of the EM-GMM approach,

ten repetitions of the EM algorithm are performed (each one

with R = 1000) and each GMM with Kmax ∈ {2, . . . , 15}
components is fitted with the one that has the largest LogL.

By following [26], for each execution of the MC-GMM

approach, 5000 MCMC draws are computed after a burn-

in of 1000 draws and each GMM with Kmax ∈ {2, . . . , 15}
components is fitted with the one that has the largest marginal

likelihood. For the GEM-GA approach, the initial population

P1(t = 0) is composed of 20 individuals, where each one has a

different number of activated components within {2, . . . , 15}.
For each execution, the best model is built with K undamaged

components, as suggested by the minimization of the BIC (or

fitness) for the EM-GMM and GEM-GA and maximization of

the marginal likelihood for the MC-GMM.

Even with several repetitions of the EM and MCMC

algorithms in each execution, the EM-GMM and MC-GMM

approaches are quite unstable on the estimation of data clusters

compared with the GEM-GA, as demonstrated in Table IV.

This instability is due to the dependence on the choice of

the initial parameters, which brings uncertainty whether the

model obtained in a particular execution is acceptable or not.

On the other hand, the GEM-GA ensures the same number

of components for all executions and relatively low standard

deviation for LogL and BIC, which indicates the stability and

robustness of the MA-based approach to overcome the issues

related to initial parameters.

As expected, the degenerated behavior of the EM and

MCMC algorithms compromises the damage classification

performance of the EM-GMM and MC-GMM approaches

for several executions, as one can figure out in Fig. 7 (for

visualization purposes) and Table V. Contrarily, the damage
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Fig. 7. Damage classification performance of the EM-GMM (top-left), MC-GMM (middle-left), and GEM-GA (bottom-left) as a function of the number of
executions. Box plots for damage classification performance of the EM-GMM (top-center), MC-GMM (middle-center), and GEM-GA (bottom-center) over
several executions. Outlier detection based on the EM-GMM (top-right), MC-GMM (middle-right), and GEM-GA (bottom-right) with MSD.

TABLE IV

PERFORMANCE OF THE CLUSTER-BASED APPROACHES IN TERMS

OF LIKELIHOOD (LOG AND MARGINAL), BIC, AND NUMBER OF

COMPONENTS. THE FORMAT OF THE RESULTS IS

AVERAGE ± STANDARD DEVIATION

classification performance of the GEM-GA, which avoids

any dependence of the initial parameters, demonstrates high

reproducibility based on the low standard deviation of the

Type I and II errors. The poor performance of the EM-GMM

is attested with the relatively high standard deviation of the

Type I and II errors, as highlighted in the box plots depicted

in Fig. 7. Note that from Fig. 7 and for the EM-GMM

in some executions, when the Type I errors are small, the

Type II errors are high, and vice versa. The results from the

TABLE V

DAMAGE CLASSIFICATION PERFORMANCE FOR CLUSTER-BASED

APPROACHES. THE FORMAT OF THE RESULTS IS

AVERAGE ± STANDARD DEVIATION

MC-GMM are more stable compared with those from the

EM-GMM, with some instability derived from the change

in the number of data clusters during distinct executions.

However, a better tradeoff between Type I and II errors is

required for reliable SHM systems. The GEM-GA can yield

this tradeoff as it maximizes the damaged cases properly

identified without representative changes on the number of

undamaged cases accurately detected through a reliable esti-

mation of data clusters from damage-sensitive features of the

Z-24 Bridge.
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Fig. 8. Outlier detection based on two nonlinear approaches. Left: AANN. Right: kernel PCA.

To provide a damage detection strategy to unveil structural

damage in the Z-24 Bridge, the best models over all executions

are selected based on the BIC and marginal likelihood. In this

case, the EM-GMM, MC-GMM, and GEM-GA approaches

assume K = 7 for the number of normal components, as

specified by the adopted criteria. The DIs derived from the

EM-GMM, MC-GMM, and GEM-GA are shown in Fig. 7.

In general, all particular models are able to remove the

nonlinear patterns from the training observations as evidenced

by the low concentration of outliers, in the baseline condition,

during cold periods. In particular, unlike the EM-GMM, the

MC-GMM and GEM-GA ably learned the baseline condition

without nonlinear influences as the DIs, from the observations

not used during the training phase (3124–3470), do not fire

off vigorously. The best model from the MC-GMM is worse

than those from the EM-GMM and GEM-GA in classifying

damaged observations. Besides, all models attempt to preserve

a monotonic relationship between the level of damage and the

amplitude of the DIs, even with the presence of operational

and environmental influences. This relationship reveals the

aforesaid damage progressive testing period, which indicates

cumulative damage on long-term monitoring.

B. Comparison With Nonlinear Approaches

Usually, nonlinear approaches, for which the nonlinear pat-

terns on the damage-sensitive features are recognized in a nat-

ural manner, should provide a damage detection performance

better than linear techniques as the former may eliminate

the environmental influences by considering the long-term

nonlinear temperature–stiffness relationship in the structures.

Therefore, the AANN is configured with ten neurons in each

mapping layer and four neurons (possible operational and

environmental factors) in the bottleneck layer via Akaike infor-

mation criterion [47]. In turn, the kernel PCA used Gaussian

kernel with an estimated bandwidth of 0.384 and retained 99%

of data variability by means of selected principal components

(so-called factors) [23].

Thus, a comparison between the GEM-GA and state-of-the-

art nonlinear approaches is carried out and their performances

are highlighted in Fig. 8 (for visualization purposes) and

Table VI. Similar to the GEM-GA approach, the AANN

and kernel PCA have satisfactory performance in terms of

minimization of Type II errors, which demonstrates that these

TABLE VI

DAMAGE CLASSIFICATION PERFORMANCE FOR NONLINEAR APPROACHES

techniques could be considered if life-safety issues were the

primary motivation to deploy the SHM system in the Z-24

Bridge. However, in terms of Type I errors, the nonlinear

approaches could not generalize the normal condition as the

GEM-GA one, i.e., the GEM-GA could be also appropriated

if one wants to minimize false positive indications of damage

in the SHM system, by taking into account economic and

reliability issues.

The limitations of the AANN and KPCA approaches to

generalize and remove nearly all undesired influences are also

observed in Fig. 8 via the distribution of the DIs produced by

these techniques. A high concentration of outliers during the

baseline condition and some unfiltered peaks are consequences

of a data normalization procedure that only attenuates the

operational and environmental variability rather than remove

it. The similar working principles of these approaches may

explain the weak normalization as the principal components

(factors) are selected with some loss of information, whereas

the GEM-GA groups observations influenced by the same

effect (e.g., temperature, humidity, and wind) as well discrim-

inated data clusters, which improves the data normalization

and, consequently, the damage detection performance.

V. CONCLUSION

In this paper was presented the GEM-GA approach, for

which an MA based on GA was used to improve the stability

and reliability of the EM algorithm in searching for the optimal

number of data clusters and their parameters. After the main

state conditions of the structure are determined, assuming mul-

tivariate Gaussian distributions, the damage detection strategy

implemented through the MSD can be applied.

In contrast to the other approaches, the GEM-GA consists

of two main parts: a global one that conducts the global

search in the feature space, and a local one, which performs

more refined search around candidate solutions of the current

damage detection problem. This strategy has led the GEM-GA

to overcome the instability related to the alternative
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GMM-based approaches, providing data models with stable

and reliable number of data clusters (herein 7 components)

and approximately the same likelihood (14 456.84 ± 0.04).

The classification performance for the real-world SHM

scenario, Z-24 Bridge, attested that the GEM-GA approach

is better than the alternative ones. When the GEM-GA is

compared with the EM-GMM and MC-GMM, the improve-

ments on the stability and reliability of the EM algorithm

demonstrated to have a direct and positive impact on the

identification of reliable data clusters (data normalization) and

damage detection, reaching in its worst case approximately

3.6% of Type I errors and 0.6% of Type II errors, while

the EM-GMM has 2.7% and 13% and the MC-GMM has

3.2% and 1.7%, respectively. Note that the Type I errors

are undesirable, as they cause unnecessary downtime and

consequent loss of revenue as well as loss of confidence

in the monitoring system. More importantly, there are clear

safety issues if misclassifications of Type II errors occur. The

SHM applications are typically more interested in maximizing

the true positive rate (minimizing Type II errors) for a given

tolerable false alarm rate (Type I errors).

The AANN and kernel PCA are less affected than the

EM-GMM and MC-GMM by the choice of the initial parame-

ters; nevertheless, they are sensitive to some loss of informa-

tion and generalization due to their working principles. This

drawback influenced their competence to remove almost all

operational and environmental variations, as evidenced by the

DIs distribution, which consequently resulted in unacceptable

classification performance regarding Type I errors (above 170

errors) compared with the GMM-based approaches.

As demonstrated through the experimental results, the

hybridization performed by GEM-GA proved to be a pro-

nounced technique that can be used in SHM applications

where life-safety, economic, and reliability issues must be

considered as primary motivations. In practice, this technique

can be a module of a software system (for example, running

in a server), which also receives vibration measurements

acquired by sensors, extracts damage-sensitive features from

these measurements, and stores the postprocessing data. When

enough undamaged data have been received, processed, and

stored, the GEM-GAs are offline trained with these data and

the outlier detection method based on the learned clusters

can classify new data promptly. In real-world monitoring

solutions, when a structure is inspected in detail and accu-

rately assessed as undamaged, all monitoring data up to that

moment can be used for retraining the learned model. This

updated model can cover a larger range of variability, which

enhances the reliability of damage detection performed in the

test phase.
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Abstract

During the service life of engineering structures, structural management systems attempt to manage all the information

derived from regular inspections, evaluations and maintenance activities. However, the structural management systems
still rely deeply on qualitative and visual inspections, which may impact the structural evaluation and, consequently, the

maintenance decisions as well as the avoidance of collapses. Meanwhile, structural health monitoring arises as an effec-

tive discipline to aid the structural management, providing more reliable and quantitative information; herein, the
machine learning algorithms have been implemented to expose structural anomalies from monitoring data. In particular,

the Gaussian mixture models, supported by the expectation-maximization (EM) algorithm for parameter estimation,

have been proposed to model the main clusters that correspond to the normal and stable state conditions of a structure
when influenced by several sources of operational and environmental variations. Unfortunately, the optimal parameters

determined by the EM algorithm are heavily dependent on the choice of the initial parameters. Therefore, this paper

proposes a memetic algorithm based on particle swarm optimization (PSO) to improve the stability and reliability of the
EM algorithm, a global EM (GEM-PSO), in searching for the optimal number of components (or data clusters) and their

parameters, which enhances the damage classification performance. The superiority of the GEM-PSO approach over the

state-of-the-art ones is attested on damage detection strategies implemented through the Mahalanobis and Euclidean
distances, which permit one to track the outlier formation in relation to the main clusters, using real-world data sets

from the Z-24 Bridge (Switzerland) and Tamar Bridge (United Kingdom).

Keywords

Structural health monitoring, data normalization, damage detection, memetic algorithm, particle swarm optimization,
expectation-maximization

Introduction

Structural management systems (SMSs) plan to cover

all activities performed during the service life of engi-

neering structures, considering public safety, authori-

ties’ budgetary constraints and transport network

functionality. They possess mechanisms to ensure the

structures are regularly inspected, evaluated and main-

tained in a proper manner. Hence, an SMS, specified as

a visual inspection-based decision-support tool, is

developed to analyze engineering and economic factors

and to attend the authorities in determining how and

when to make decisions regarding maintenance, repair

and rehabilitation of structures.1

However, the SMSs still depend deeply on structural

inspections, especially on the qualitative and not

necessarily consistent visual inspections, which may

impact the structural evaluation and, consequently, the

maintenance decisions as well as the avoidance of struc-

tural collapses.2 In a cooperative sense, in the last few

years, the structural health monitoring (SHM) disci-

pline has emerged to aid the structural management
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with more reliable and quantitative information. The

SHM process involves the observation of a system over

time using periodically sampled response measurements

from an array of sensors, the extraction of damage-

sensitive features from these measurements, and the

statistical analysis of these features to discriminate the

current state of system health.3

In this study, all approaches to SHM are posed in

the context of a pattern recognition paradigm.

Therefore, this paradigm for the development of SHM

solutions is described as a four-phase process:4 opera-

tional evaluation; data acquisition; feature extraction;

and statistical modeling for feature classification.

Particularly, in the feature extraction phase, damage-

sensitive features (e.g. natural frequencies) are derived

from the raw data, being correlated with the severity of

damage present in the monitored structure. Nevertheless,

in real-world SHM applications, operational and envi-

ronmental effects may mask damage-related changes in

the features as well as alter the correlation between

the magnitude of the features and the damage level.5

Thus, statistical modeling for the feature classifica-

tion phase is concerned with the implementation of

machine learning algorithms that analyze and learn

the distributions of the extracted features and gener-

ate a data model in an attempt to determine the struc-

tural health of the system.6

The data normalization procedure is fully connected

to the data acquisition, feature extraction and statistical

modeling phases of the SHM process. This procedure

includes a wide range of steps for mitigating (or even

removing) the effects of operational (e.g. traffic load-

ing) and environmental (e.g. temperature) variations on

the extracted features as well as for separating changes

in damage-sensitive features caused by damage from

those caused by varying operational and environmental

conditions.7,8 This procedure usually contributes signif-

icantly to detecting structural damage.

To attenuate undesired effects and detect structural

anomalies, a variety of output-only machine learning

algorithms with different working principles has been

explored.9–13 A comparison study of several machine

learning algorithms was performed on standard data

sets upon experimental vibration monitoring tests using

a three-story frame structure with different structural

state configurations.14 The operational and environ-

mental effects were simulated by mass or stiffness

changes, while damage was simulated with a bumper

mechanism causing a nonlinear effect due to collisions.

The prominence of the Mahalanobis squared distance

(MSD) and auto-associative neural network algorithms

is attested when life-safety is the primary motivation

for deploying the SHM systems.

More recently, an improved output-only method

based on kernel principal component analysis (KPCA)

was proposed for eliminating nonlinear environmental

and operational influences on the extracted features.15

The method is based on Gaussian KPCA, where the

parameters of the output-only global model are auto-

matically determined. Although this improved version

of KPCA achieved satisfactory results for data normal-

ization and can be easily adapted for damage detec-

tion,16 it also revealed some loss of information as the

principal components are retained based on 99% of

variance.

In a different manner, remarkable linear output-only

methods for modeling nonlinearities in long-term moni-

toring of structures have been developed by means of a

new concept based on a two-step strategy.17–19

1. Data normalization procedure by clustering the

training observations into different components (or

data clusters).

2. Damage detection by identifying possible outliers

through a distance metric between the fitted clus-

ters and a new observation.

In that regard, the first step may consist of Gaussian

mixture models (GMMs) applied to fit the main clusters

that correspond to the normal and stable state condi-

tions of a structure, even when it is affected by different

operational and environmental conditions. The para-

meters of the GMMs are estimated from the training

data using the expectation-maximization (EM) algo-

rithm. The second step runs a MSD-based algorithm to

track the outlier formation in relation to the chosen

main clusters.17–19 This cluster-based EM-GMM

approach has outperformed the traditional output-only

damage detection methods (for instance, based on

MSD, principal component analysis and neural net-

work) when they are compared on data sets from the Z-

24 Bridge.17

In general, GMMs have been widely applied in the

SHM field to recognize different normal or undamaged

patterns in the structural response under varying opera-

tional and environmental conditions. As long as the

normal condition is characterized, deviations from this

condition, which may reveal a damaged condition, can

be identified through a distance metric or another clus-

tering phase.

In aerospace engineering applications of SHM tech-

nology, a combination of guided wave, GMMs and

Kullback–Leibler divergence as a damage propagation

monitoring method is proposed to reduce the mainte-

nance cost and meanwhile ensure the operational safety

of aircraft structures under realistic load conditions.20,21

However, this method requires a priori knowledge of

damage and time-varying conditions.

In the long-term SHM of bridges, the EM-GMM as

a data normalization approach, along with MSD as a
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distance metric, has been applied to handle the effects

of the operational and environmental variability on the

structural responses for early damage detection.17,18,22

Despite this approach taking into account the eventual

multimodality and heterogeneity of the data sets (natu-

ral frequencies) from the Z-24 and Tamar Bridges,23

when several different executions are demanded, the

monitoring results may change drastically due to the

unstable behavior of the EM algorithm.

As an alternative, the vibration signals may be fitted

as time series-based autoregressive processes, where

autoregressive coefficients are damage-sensitive fea-

tures learned or modeled through the EM-GMM sup-

ported by the EM algorithm. The MSD between a new

test GMM and the baseline (undamaged) GMM is an

indicator of damage severity.24,25 Unfortunately, in this

case, the aforementioned limitations of the EM algo-

rithm also arise on the baseline and new test data-based

models.

GMMs are also applied, along with acoustic emis-

sion methods, to classify crack modes in reinforced

concrete structures, which are subjected to deteriora-

tion due to aging, increased load and natural hazards.26

However, to minimize the maintenance costs and to

increase the operation lifetime of reinforced concrete

structures, the GMMs must know in advance all types

of crack modes, which may be not fully available in

real scenarios.

Despite the fact that the EM-GMM approach can fit

the normal condition of a structure, the optimal para-

meters determined by the EM algorithm are strongly

dependent on the choice of the initial parameters.27

Thereby, the cluster configuration provided by the EM-

GMM may change during many executions with differ-

ent initial parameters and, consequently, it may affect

the damage detection process. This drawback is also

discussed by Kullaa,22 indicating that the EM algo-

rithm does not guarantee the global optimal solution

and the training phase of the GMMs may be very

computationally expensive (because it is often advised

to run the EM algorithm several times with different

initial parameters to find a satisfactory local optimal

solution, which is not fully guaranteed). As conse-

quence, this degenerated behavior of the EM algo-

rithm may affect the stability and reliability of the

results or even the number of components estimated

for each different run.

Therefore, this paper presents a memetic algorithm

(MA) based on particle swarm optimization (PSO) to

improve the stability and reliability of the EM algo-

rithm, a global EM (GEM-PSO), in searching for the

optimal number of components and their parameters,

which ameliorates the damage classification perfor-

mance. In this case, the parameters of the GMMs are

estimated via a hybrid method composed of an EM

algorithm within an MA. As long as the main stable

state conditions of the structure are determined, the

superiority of the GEM-PSO approach, over the state-

of-the-art ones, is attested on damage detection strate-

gies implemented through the Mahalanobis and

Euclidean distances, using real-world data sets from

the Z-24 Bridge (Switzerland) and Tamar Bridge

(United Kingdom). The classification performance is

assessed on the basis of Type I/II error trade-offs,

where a Type I error is a false-positive indication of

damage and a Type II error is a false-negative one.

The remainder of this study is structured as follows.

In the section ‘‘Memetic-based global EM algorithm

for damage detection’’, the GEM-PSO approach is

derived as a novel methodology to unveil hidden clus-

ters representing the normal condition of a structure

and discriminate its health state based on the compo-

nents. Two real-world structures and their long-term

vibration data are described in the section ‘‘Test struc-

tures and data sets’’. Experimental results on real data

sets that encompass a wide spectrum of challenges

encountered in practical SHM problems are discussed

in the ‘‘Results and discussion’’ section; a comparison

with state-of-the-art approaches is also presented. In

the ‘‘Conclusions’’ section, a discussion related to the

principal strengths and challenges of the GEM-PSO

approach is emphasized.

Memetic-based global EM algorithm for

damage detection

This section deals with the methodology of the GEM-

PSO approach, which explores the search space more

thoroughly than the EM algorithm. First, the classical

EM algorithm for fitting GMMs is discussed and an

information criterion is presented to select the number

of components. Second, the proposed GEM-PSO

approach applies this criterion as a fitness function to

improve the performance of the EM algorithm via an

MA, which consequently provides a robust generaliza-

tion of the normal condition of a structure. The section

ends with a description of the damage detection strate-

gies based on the Mahalanobis and Euclidean distances.

For general purposes, one should assume a training

data matrix, X 2 Rm3n, with n-dimensional feature vec-

tors from m different operational and environmental

conditions when the structure is undamaged and a test

data matrix, Z 2 Rl3n, where l is the number of feature

vectors from the undamaged and/or damaged

conditions.

Classical EM algorithm for fitting GMMs

A finite mixture model,28p xjYð Þ, is the weighted sum of

K.1 components p xjukð Þ in Rn
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p xjYð Þ=
X

K

k = 1

akp xjukð Þ ð1Þ

where x is an n-dimensional data vector and ak corre-

sponds to the weight of each component. These weights

are positive ak.0 with
PK

k = 1 ak = 1. For a GMM, each

component p xjukð Þ is represented as a Gaussian

distribution

p xjukð Þ=

exp � 1

2
x� mkð Þ

TP�1
k x� mkð Þ

n o

2pð Þ
n=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det
P

k

� �

q ð2Þ

with each component denoted by the parameters,

uk = fmk ,
P

kg, composed of the mean vector, mk and

the covariance matrix,
P

k . Thus, a GMM is com-

pletely specified by the set of parameters Y= fa1,

a2, . . . ,aK , u1, u2, . . . , uKg.

The EM algorithm is the most widespread local

search method used to estimate the parameters of the

GMMs.28,29 This method consists of an expectation

and a maximization step, which are alternately applied

until the log-likelihood (LogL), log p XjYð Þ= log
Qm

i= 1 p

xijYð Þ, converges to a local optimum.29 The perfor-

mance of the EM algorithm depends directly on the

choice of the initial parameters Yt = 0, which may imply

many replications of this method during an execution.27

To select the best GMM by means of goodness-of-fit

and parsimony, the Bayesian information criterion

(BIC) is used and minimized30

BIC= � 2 log p XjYð Þ

+ Kn
n+ 1

2

� �

+ 1

� �

+K � 1

	 


log mð Þ
ð3Þ

Similar to the Akaike information criterion (AIC), BIC

uses the optimal LogL function value and penalizes for

more complex models, i.e. models with additional para-

meters. The penalty term of BIC is a function of the

training data size, and so it is often more severe than

AIC.

Global EM for fitting GMMs

MAs are population-based metaheuristics composed of

an evolutionary framework and a set of local search

algorithms.31,32 A general framework of MAs reads as

follows.

1. Initialize a population of candidate solutions P1.

2. While a termination criterion is not satisfied, repeat.

(i) Cooperate between candidate solutions from

P1 to generate a new population P2.

(ii) Improve the candidate solutions from P2 to

generate a new population P3.

(iii) Compete within the set of populations

P1 [ P3 to generate a new population P1 for

the next iteration.

3. Return the best solution encountered.

The Initialize procedure produces the initial set of

random candidate solutions as high-quality solutions

generated by applying a local search algorithm and the

termination criterion usually verifies the total number

of iterations and/or a maximum number of iterations

without improvement. The Cooperate procedure arises

from the selection that determines the solutions that

will be used to create new solutions, and the combina-

tion that creates new promising solutions by merging

existing solutions. The Improve procedure applies a

local search method on new solutions derived in the

Cooperate procedure, improving the quality of these

solutions as far as possible. The Compete procedure

updates the current population using the old popula-

tion P1 and the new population P3, determining the

solutions that will survive in the following iterations.32

Therefore, MAs comprise concepts from population-

based search and local search methods.31 In this study,

the MA is a hybrid algorithm that combines PSO (glo-

bal) with EM algorithm (local). In turn, PSO is a sto-

chastic optimization metaheuristic based on swarm

learning that iteratively exploits the search space

through a population (swarm) of candidate solutions

(particles).33

Each particle moves with its own velocity within the

search space and stores the best position it has encoun-

tered so far. Usually, the information exchange among

the particles is local, i.e. each particle is assigned to a

neighborhood consisting of Y particles.34 In this case,

Y neighboring particles are determined based on their

actual distance in the search space and the particle that

attained the best previous position among all the parti-

cles in the neighborhood is selected based on its fitness.

When a d-dimensional search space D and a swarm

composed of h particles are assumed, the i-th particle is

a d-dimensional vector

qi = qi, 1, qi, 2, . . . , qi, d½ � 2 D ð4Þ

the velocity of this particle is denoted by

vi = vi, 1, vi, 2, . . . , vi, d½ � ð5Þ

and the best previous position encountered by this par-

ticle in D reads

pi = pi, 1, pi, 2, . . . , pi, d½ � 2 D ð6Þ
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If gi is admitted as the index of the particle that

achieved the best previous position among all the parti-

cles in the neighborhood of qi, then the swarm is

manipulated by the following equations34

vt + 1i = j vti + c1r1 pti � qti
� �

+ c2r2 ptgi � qti

� �h i

ð7Þ

qt + 1i = qti + v
t + 1
i ð8Þ

where j is a constriction parameter; c1 and c2 are the

cognitive and social parameters, respectively; and r1
and r2 are random vectors uniformly distributed within

0, 1½ �.

The constriction coefficient controls the convergence

of the particle and is derived as

j =
2

C� 2+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C
2
� 4C

p ð9Þ

where C= c1 + c2.4 and commonly C= 4:1,35 which

implies in j = 0:729.
In the following, the framework of the proposed

GEM-PSO approach is presented, and its parameters

and operators are discussed in more detail.

1. Initialize qti, v
t
i, i= f1, . . . ,hg, t = 0.

2. qt, pFitð Þ  perform R EM steps on qt.

3. Initialize the best previous position encountered as

pti  qti, i= f1, . . . ,hg, b= 0.

4. While t\tð Þ and b\bð Þ is satisfied, repeat.

(i) Cooperate between particles from qti and pti
to update vt + 1i and qt + 1i , according to equa-

tions (7) and (8), restricting each particle

qt + 1i 2 qmin, qmax½ �, i= f1, . . . ,hg.

(ii) Improve qt + 1 such as qt + 1, qFitð Þ  perform

R EM steps on qt + 1.

(iii) Compete between the swarms qt + 1 and pt

such as if qFiti\pFiti then pt + 1i  qt + 1i and

pFiti  qFiti, otherwise pt + 1i  pti,

i= f1, . . . ,hg. Store BICmin  min pFitð Þ

and bestGMM argminpt + 1 pFitð Þ.

Increase t = t + 1, and b= b+ 1 if and only if

there is no improvement in BICmin.

5. Improve bestGMM if and only if it not converged,

such as bestGMM,BICminð Þ  perform EM steps

on bestGMM until convergence of the LogL is

reached.

6. Return the best solution, bestGMM encountered.

In the GEM-PSO approach, each particle in the

swarm represents a candidate solution of the GMM,

i.e. a set of parameters Y that models a GMM with K

in the range 2,Kmax½ �, where Kmax is the maximum num-

ber of allowed components. Thus, a particle is com-

posed of two different parts. The first part indicates

whether a component is activated ( 0:5, 1½ �) or not

( 0, 0:5½ ½) for fitting the GMM, and the length of this

part is Kmax. The mean vector mk and covariance matrix
P

k parameters of Kmax components are represented in

the second part. Each component includes (n2 + 3n)=2
parameters. Note that the covariance matrix Sk must

be symmetric, thus only the upper (or lower) triangular

part of the matrix is in the particle.

The BIC metric (see equation (3)) is applied as a fit-

ness function to select the best GMM, thereby the best

solution is the one that has the lowest BIC value. The

evaluation of the particles in the swarm is conducted in

two-steps. First, R iterations of the EM method are

performed on each particle, which results in an update

of the set of parameters at iteration t, Yt, and conse-

quently of the particle that represents these parameters.

Second, the BIC value is computed for each updated

particle to evaluate the model. Therefore, the evalua-

tion process of the i-th particle provides an update of

the parameters included within the particle (e.g. qti and

qt + 1i ) and a fitness value (e.g. pFiti and qFiti).

The evolutionary process of the GEM-PSO is

stopped when the maximum number of iterations t or

the maximum number of iterations without improve-

ment b is achieved. As long as the MA is terminated,

the convergence of the best solution bestGMM found

so far is checked. If it converged in terms of LogL, the

final solution is the current best solution, otherwise the

EM algorithm improves bestGMM until convergence

is reached.

Choice of parameters

As aforementioned, a set of parameters should be cho-

sen for the GEM-PSO approach, such as h, t, b, R, Y,

c1 and c2. Hence, few recommendations are provided to

determine these parameters.

The parameters h and b can be chosen based on a

previous multivariate normality statistical test (MNST)

using the training observations. If the test highlights

few deviations from a global normal and stable condi-

tion, these parameters can be h= 15, 30½ � and

b= 15, 30½ � to deal with a simple scenario, otherwise

h= 40, 60½ � and b= 40, 60½ � to handle a heterogeneous

scenario. Note that the parameter h is often set empiri-

cally on the basis of the dimensionality and perceived

complexity of a problem. Nevertheless, values in the

range h= 20, 50½ � are quite usual.34

In the case of the parameters t and R, the ranges

t = 100, 200½ � and R= 20, 40½ � seem to be an acceptable

alternative as fewer iterations of the local method are

required due to the global exploration performed by

the PSO that converges fast when it is hybridized with

a local search.36
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Finally, the parameters c1 and c2 are determined by

assuming that C= 4:1, j = 0:729 and c1 = c2 = 2:05, i.e.
the magnitudes of the random forces toward the cogni-

tive best pi and social best pgi are identical.35 In addi-

tion, the parameter Y should be selected by taking into

account that a small neighborhood may impact the

search for a better solution and a large neighborhood

may negatively influence the computational perfor-

mance of the GEM-PSO approach. Thus, the range

Y= 5, 10½ � can be defined as an admissible trade-off

between the aforesaid situations.34

Damage detection strategies

Since the best GMM is selected, for the damage detec-

tion strategy, in this study, two possibilities are consid-

ered to discriminate the structural health by generating

a damage indicator (DI) and classifying it through a

threshold.

First, for each observation z, one needs to estimate K

DIs via MSD. Particularly, for each main component k

DIk(z) = z� mkð Þ

X

�1

k
z� mkð Þ

T
ð10Þ

where mk and
P

k represent all the observations from

the component k, when the structure is undamaged

even though under varying operational and environ-

mental conditions. For each component k, if a new

observation z is extracted from the same component as

the undamaged data, then the test statistic MSD will be

Chi-square distributed with n degrees of freedom, x2

n.

Finally, for each observation, the DI is given by the

smallest DI estimated on each component

DI(z) =min DI1(z), . . . , DIK(z)½ � ð11Þ

Second, for each observation z, the Euclidean distance

(ED) for each mk is computed and the DI is the smallest

one

DI(z) = min z� m
1k k, . . . , z� mKk kð Þ ð12Þ

where m1, . . . ,mK can be also considered as centroids

of K different components. In this case, the threshold is

defined based on values that correspond to a certain

percentage of confidence over the training data. Hence,

multivariate outliers can be defined as DIs above a spe-

cific threshold.

Test structures and data sets

In this study, the applicability and comparison between

the proposed and state-of-the-art approaches are evalu-

ated using the damage-sensitive features extracted from

the Z-24 and Tamar Bridges. In the case of the Z-24

Bridge, the standard data sets are unique in the sense

that they combine one-year monitoring of the healthy

condition, under operational and environmental varia-

bility, with realistic damage scenarios. In a different

manner, a monitoring system was carried out on the

Tamar Bridge over almost two years, generating only

data sets related to undamaged scenarios. These test

structures and their data sets are highlighted in this

section.

Z-24 Bridge

The Z-24 Bridge was a post-tensioned concrete box gir-

der bridge composed of a main span of 30 m and two

side-spans of 14 m, as shown in Figure 1. The bridge,

before complete demolition, was extensively instrumen-

ted and tested for the purpose of providing a feasibility

tool for vibration-based SHM in civil engineering.37 A

long-term monitoring test was carried out, from 11

November 1997 until 10 September 1998, to quantify

the operational and environmental variability present

on the bridge and to detect damage artificially intro-

duced, in a controlled manner, in the last month of

operation. Every hour, for 11 minutes, eight acceler-

ometers captured the vibrations of the bridge and an

array of sensors measured environmental parameters,

such as temperature, at several locations.

Progressive damage tests were performed over a one

month time period (from 4 August to 10 September

1998) before the demolition of the bridge to prove that

realistic damage has a measurable influence on the

bridge dynamics,37 as summarized in Table 1. Note that

the continuous monitoring system was still running

during the progressive damage tests, which permits one

to validate the SHM system to detect cumulative dam-

age on long-term monitoring.

Figure 1. Longitudinal section (a) and top view (b) of the Z-24

Bridge.37
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In this case, the natural frequencies of the Z-24

Bridge are used as damage-sensitive features. They

were estimated using a reference-based stochastic sub-

space identification method on the time series from the

accelerometers.38 The first four natural frequencies esti-

mated hourly from 11 November 1997 to 10 September

1998, with a total of 3932 observations, are highlighted

in Figure 2. The first 3470 observations correspond to

the damage-sensitive feature vectors extracted within

the undamaged structural condition under operational

and environmental influences. The last 462 observa-

tions correspond to the damage progressive testing

period, which is highlighted, especially in the second

frequency, by a clear drop in the magnitude of the

frequency.

Note that the damage scenarios are carried out in a

sequential manner, which cause a cumulative degrada-

tion of the bridge. Therefore, in this study, it is assumed

that the bridge operates within its undamaged condi-

tion (baseline or normal condition), under operational

and environmental variability, from 11 November 1997

to 4 August 1998 (1-3470 observations). On the other

hand, the bridge is considered damaged from 5 August

to 10 September 1998 (3471-3932 observations). For

the baseline condition period, the observed jumps in

the natural frequencies are associated to the asphalt

layer in cold periods, which contributes significantly to

the stiffness of the bridge. This large influence of the

temperature on the natural frequencies, as well as on

the structure dynamics, may be considered as nonlinear

with different behaviors below and above 0 8C.39

For generalization purposes, the feature vectors

were split into the training and test matrices. As shown

in Figure 2, the training matrix, X312334, is composed

of 90% of the feature vectors from the undamaged con-

dition. The remaining 10% of the feature vectors are

used during the test phase to make sure that the DIs do

not fire off before the damage starts. The test matrix,

Z
393234, is composed of all the data sets, even the ones

used during the training phase.

Tamar Bridge

The Tamar Bridge (depicted in Figure 3) is situated in

the south west of the United Kingdom and connects

Saltash (Cornwall) with the city of Plymouth (Devon).

This bridge is a major road across the River Tamar and

plays a significant role in the local economy. Initially,

in 1961, the bridge had a main span of 335 m and side

spans of 114 m. If the anchorage and approach are

included, the overall length of the structure is 643 m.

The bridge stands on two concrete towers with a height

of 73 m and a deck suspended at mid-height.40

From 1961 the bridge structure was a steel truss sup-

ported vertically by a pair of suspension cables. To

meet a European Union directive, in which bridges

should be capable of carrying lorries of up to 40 tonnes,

the bridge underwent a strengthening and widening

upgrade scheme, which was completed in 2001.41 The

upgrade consisted of adding cantilevered lanes either

side of the truss to provide a total of four lanes for traf-

fic and a footpath for pedestrians. The heavy composite

deck was replaced by an orthotropic steel deck and

eight pairs of stay cables connected to the towers were

added to support the increased weight of the deck.

To track the effects of the upgrade, various sensor

systems were installed to extract monitoring data such

as tensions on stays, acceleration, wind velocity, tem-

perature, deflection and tilt. Eight accelerometers were

Table 1. Progressive damage test scenarios (the dates refer to

the additional vibration measurements).

Date Scenario description

4 Aug 1998 Undamaged condition
9 Aug 1998 Installation of the settlement system
10 Aug 1998 Pier settlement, 2 cm
12 Aug 1998 Pier settlement, 4 cm
17 Aug 1998 Pier settlement, 8 cm
18 Aug 1998 Pier settlement, 9.5 cm
19 Aug 1998 Foundation tilt
20 Aug 1998 New reference condition
25 Aug 1998 Spalling of concrete, 12 m2

26 Aug 1998 Spalling of concrete, 24 m2

27 Aug 1998 Landslide at abutment
31 Aug 1998 Concrete hinge failure
2 Sept 1998 Anchor head failure I
3 Sept 1998 Anchor head failure II
7 Sept 1998 Tendon rupture I
8 Sept 1998 Tendon rupture II
9 Sept 1998 Tendon rupture III

Figure 2. First four natural frequencies of the Z-24 Bridge:

1-3470 baseline/undamaged condition (BC), 3471-3932 damaged

condition (DC).
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implemented in orthogonal pairs for four stay cables

and three sensors measured deck accelerations. The

time series was stored with a sampling frequency of 64

Hz at 10 minute intervals.40 The data collected in

the period from 1 July 2007 to 24 February 2009 (602

observations) were then passed directly to a computer-

based system and via a reference-based stochastic sub-

space identification technique,38 the natural frequencies

were estimated. The first five natural frequencies

obtained daily during the feature extraction phase are

illustrated in Figure 4.

Herein, there are no damaged observations known

in advance,41 and so it is assumed that all observations

are extracted from the undamaged condition.

Therefore, only Type I errors can be identified. From a

total of 602 observations, the first 363 are used for sta-

tistical modeling in the training process (corresponding

to one-year monitoring from 1 July 2007 to 30 June

2008) and the entire data sets are used in the test pro-

cess, yielding a training matrix X
36335 (1-363 observa-

tions) and a test matrix Z
60235 (1-602 observations).

Results and discussion

In this section, the analysis is divided in two parts.

Firstly, the EM-GMM and GEM-PSO approaches are

executed 20 times with different initial parameters to

test their stability, reliability and robustness. Secondly,

the best model of each approach is chosen, based on the

BIC, as a means of laying out a damage detection strat-

egy for the bridges. The strategy based on MSD is used

for comparison between EM-GMM and GEM-PSO;

additionally, the one based on ED is employed for com-

parison between KPCA and GEM-PSO. Note that the

ED is applied in the second comparison because the

KPCA only generates the DIs in an implicit manner via

this distance.15

To alleviate the particular limitations posed by the

EM algorithm, for each execution of the EM-GMM

approach, 10 repetitions of the EM algorithm are per-

formed (each one with R= 1000) and each GMM with

2, . . . ,Kmax components is fitted with the one that has

the largest LogL. Afterwards, for each execution, the

best model is built with K normal components, as sug-

gested by the minimization of the BIC. This approach

is implemented following all recommendations pro-

vided by Figueiredo and Cross.17

For the GEM-PSO approach, the initial swarm qt = 0

is composed of h particles, where each one has a differ-

ent number of activated components. Thus, qt = 0 con-

sists of particles with 2, . . . ,Kmax components. The

general parameter setting is Kmax = 15, t = 100, R= 20,

Y= 5 and c1 = c2 = 2:05. This setting provides a satisfac-

tory trade-off between performance and execution time

of the GEM-PSO on the data sets from the two bridges.

Furthermore, the adaptation of the Gaussian KPCA

for damage detection is strictly based on the data nor-

malization technique proposed by Reynders et al.15

Damage detection on data sets from the Z-24 Bridge

In this scenario, the data sets present nonlinearities

derived from changes in the structural stiffness, influ-

enced by temperature variations, which can be

Figure 3. The Tamar Suspension Bridge viewed from River

Tamar margins (a) and cantilever perspective (b).

Figure 4. First five natural frequencies of the Tamar Bridge:

1-602 baseline/undamaged condition (BC).
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evidenced through the MNST in Figure 5. Therefore,

classical linear approaches based on Gaussian assump-

tions are susceptible to relatively poor damage classifi-

cation performance. On the other hand, approaches to

hand multimodality and heterogeneity in the data as

components often improve the damage detection. A

particular parameter setting for the GEM-PSO

approach to deal with this scenario is h=b= 40.

The damage classification performance of the GEM-

PSO and EM-GMM approaches for a level of signifi-

cance of 5% is summarized in Table 2; for visualization

purposes, the performance of these approaches over all

executions is shown in Figure 6. Although there were

several repetitions of the EM algorithm, in each execu-

tion, the EM-GMM is very unstable when compared to

the performance of the GEM-PSO. Clearly, the unpre-

dictability of the EM-GMM derives from its depen-

dency on the choice of the initial parameters. On the

other hand, the damage classification performance of

the GEM-PSO, which avoids dependency of the initial

parameters, demonstrates high stability and reliability,

in terms of reproducibility, based on the low standard

deviation of the Type I and II errors. The degenerate

behavior of the EM-GMM is confirmed with the high

standard deviation of the Type I and II errors, which is

highlighted in the box plots depicted in Figure 7. In

addition, one should note that in some executions of

the EM-GMM when the number of Type I errors

decreases, the number of Type II errors increases dras-

tically, and vice versa. However, a more reliable trade-

off between these errors is desired for safety SHM

applications, such as the one yielded by the GEM-PSO.

Besides, the instability depicted in Figure 6(b) for

the EM-GMM approach is also related to the inter-

changeable number of components (K = 6:6560:59)
present in each execution. Contrarily, the GEM-PSO

maintains the same number of components (K = 7) in

all executions, which increases the robustness of the

MA to overcome the sensitivity issue caused by the ini-

tial parameters. Recall that the number of components

is selected via BIC, which depends on the LogL. The

LogL and BIC for both approaches are summarized in

Table 3.

To provide specific results with respect to a

damage detection strategy to unveil structural damage

in a real scenario, the best models over all executions

(a)

(b)

Figure 6. Z-24 Bridge: damage classification performance of

the GEM-PSO (a) and EM-GMM (b) approaches with MSD as a

function of the number of executions.

Figure 5. MNST based on the Chi-square Q-Q plot of the

MSD using the training observations from the Z-24 Bridge.

Table 2. Z-24 Bridge: damage classification performance

(average 6 standard deviation) of the GEM-PSO and EM-GMM

approaches with MSD for 20 executions.

Approach Number of errors

Type I Type II

GEM-PSO 123.65 6 5.05 3.05 6 0.22
EM-GMM 69.15 6 25.68 29.90 6 29.89
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are selected based on the BIC. In this case, the GEM-

PSO and EM-GMM approaches assume K = 7 for

main normal components, as suggested by the minimi-

zation of the fitness function and the minimization of

the BIC, respectively. The DIs derived from the GEM-

PSO and EM-GMM approaches are shown in Figure

8, along with a threshold defined for a level of signifi-

cance of 5%. From a general perspective, both models

are able to remove the nonlinear patterns from the

undamaged observations caused by a period of

extremely cold temperatures (changes in the structural

stiffness) as evidenced by the low concentration of out-

liers in the baseline condition during this period.

In particular, from Figure 8(a), unlike the EM-GMM

approach, GEM-PSO satisfactorily fitted the baseline

condition without extreme cold temperatures as the DIs,

from the observations not used during the training pro-

cess (3124-3470), do not fire off vigorously before the

damage starts. Moreover, both models attempt to main-

tain a monotonic relationship between the level of dam-

age and the amplitude of the DIs, even when operational

and environmental variability is present. This monotonic

relationship reveals the damage progressive testing

period, which indicates cumulative damage on long-term

monitoring. However, the GEM-PSO seems to empha-

size the monotonic relationship with more accuracy.

By using the ED as a metric technique in the

damage detection strategy, the damage classification

performance that the GEM-PSO and KPCA

(a)

(b)

Figure 7. Z-24 Bridge: box plots for damage classification

performance of the GEM-PSO (a) and EM-GMM (b) approaches

with MSD. The horizontal red mark is the median, the edges of

the box are the 25th and 75th percentiles, the whiskers extend

to the most extreme data points not considered outliers, and

outliers are plotted individually.

(a)

(b)

Figure 8. Z-24 Bridge: outlier detection based on the GEM-

PSO (a) and EM-GMM (b) approaches with MSD.

Table 3. Z-24 Bridge: the performance of the GEM-PSO and

EM-GMM approaches in terms of log-likelihood and BIC (average

6 standard deviation) for 20 executions.

Approach Metric

LogL BIC

GEM-PSO 1,4456.68 6 0.43 22,8076.52 6 0.85
EM-GMM 1,4424.39 6 39.34 22,8054.19 6 11.91
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approaches for a level of significance of 5% over the

training data is summarized in Table 4. The optimal

kernel parameter required for the KPCA approach can

be computed by the maximization of the information

entropy,15 as demonstrated in Figure 9. Although the

KPCA approach seems to be more attractive for mini-

mizing the Type II errors, the GEM-PSO one can fit

the normal and stable state conditions of the Z-24

Bridge in a more balanced manner, which can be

proved by the maximization of specificity (the portion

of undamaged cases correctly identified) without signif-

icant minimization of the sensitivity (the portion of

damaged cases correctly identified).

The DIs derived from the GEM-PSO and KPCA

approaches are highlighted in Figure 10, along with a

threshold defined for a level of significance of 5% over

the training data. Both approaches present quite simi-

lar behavior during the training undamaged conditions

(1-3123) and damage progressive testing period (3471-

3932). In this case, the bilinear behavior in the natural

frequencies for below and above 0 8C is more obvious

in the form of peaks during the baseline condition

(training).39 Nevertheless, the GEM-PSO approach

generalizes almost all the normal structural states more

efficiently than the KPCA one, which impacts in fewer

Type I errors for undamaged observations not used

during the training process (3124-3470).

Damage detection on data sets from the Tamar

Bridge

In contrast to the Z-24 Bridge, the data sets from the

Tamar Bridge do not have any reported damaged con-

dition, and are characterized by few deviations from a

global normal and stable condition, as demonstrated

from the MNST in Figure 11. However, these data sets

from an extensive monitoring campaign present the

dynamic response of the structure to the most common

operational and environmental variations observed in

real applications of SHM, e.g. temperature, traffic load-

ing and wind velocity.40 Clustering such normal condi-

tions as components is a crucial data normalization

step that impacts positively on the damage detection

(a)

(b)

Figure 10. Z-24 Bridge: outlier detection based on the GEM-

PSO (a) and KPCA (b) approaches with ED.

Figure 9. Z-24 Bridge: maximization of the information

entropy as a function of the kernel parameter (the optimal

is 0.384).

Table 4. Z-24 Bridge: damage classification performance

(average 6 standard deviation) of the GEM-PSO and KPCA

approaches with ED for 20 executions.

Approach Number of errors

Type I Type II

GEM-PSO 166.05 6 0.22 6.00 6 0.00
KPCA 172 4
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process. A particular parameter setting for the GEM-

PSO approach to deal with this scenario is h=b= 20.

Assuming a level of significance of 5%, the damage

classification performance (only Type I errors) of the

GEM-PSO and EM-GMM approaches is presented in

Table 5. Both approaches have achieved nearly the

same performance with negligible advantage to the

GEM-PSO, for which the components derived to

accommodate the operational and environmental

effects are fitted with more reliable LogL and BIC in

terms of standard deviation, as attested in Table 6.

When the best models of the GEM-PSO and EM-

GMM approaches over all executions are chosen based

on the BIC, the number of components for both

approaches is K = 3 and the DIs derived from these

approaches are highlighted in Figure 12, along with a

threshold defined for a level of significance of 5%.

Basically, the approaches can deal very well with the

data from the undamaged condition present in the

training phase (1-363), by clustering the undesired

effects into different normal and stable components.

Unfortunately, this conclusion cannot be extended to

observations not used in training (364-602), where a

major concentration of outliers took place; it may be

attributed to the fact that some source of variability is

not characterized in the training data. Additionally, the

best model of the GEM-PSO has slightly fewer Type I

errors than the best one of the EM-GMM, as expected

due to the slightly lower standard deviations in the

models summarized in Table 6.

A more acceptable damage classification perfor-

mance for this scenario can be reached when the ED is

applied as a damage detection strategy. In this case, the

damage classification performance of the GEM-PSO

(a)

(b)

Figure 12. Tamar Bridge: outlier detection based on GEM-PSO

(a) and EM-GMM (b) approaches with MSD.

Figure 11. MNST based on the Chi-square Q-Q plot of the

MSD using the training observations from the Tamar Bridge.

Table 6. Tamar Bridge: the performance of the GEM-PSO and

EM-GMM approaches in terms of log-likelihood and BIC (average

6 standard deviation) for 20 executions.

Approach Metric

LogL BIC

GEM-PSO 7,705.72 6 0.0018 21,5045.98 6 0.0036
EM-GMM 7,705.72 6 0.0028 21,5045.98 6 0.0056

Table 5. Tamar Bridge: damage classification performance

(average 6 standard deviation) of the GEM-PSO and EM-GMM

approaches with MSD for 20 executions.

Approach Number of Type I errors

GEM-PSO 42.40 6 0.91
EM-GMM 43.75 6 0.92
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and KPCA approaches, for a level of significance of

5% over the training data, is synthesized in Table 7.

The KPCA, with optimal kernel parameter, as shown

in Figure 13, has a limited performance assigned to

some loss of information, as the retained principal

components in the high-dimensional feature space are

chosen based on a certain fraction of the normal varia-

bility; in this case, 99% of variance. In contrast, the

GEM-PSO reveals suitable performance to generalize

the undamaged conditions not handled in the training

phase, since the level of significance admitted implies a

tolerance of Type I errors equal to 18 within 1-363

observations, then only 2.33% of all test cases are mis-

classified (as false-positive indications of damage)

within 364-602 observations.

The comparison of the GEM-PSO approach against

KPCA can also be visualized through the DIs produced

by both approaches as established in Figure 14, along

with a threshold defined for a level of significance of

5% over the training data. Undoubtedly, a high con-

centration of outliers is noticed in the classification per-

formed by the KPCA, suggesting that if the dynamic

response of the Tamar Bridge is available for structural

condition assessment, all variations due to operational

and environmental factors are not taken into account.

On the other hand, if such changes can be accounted

for and filtered out to normalize monitoring data, then

any changes in dynamic characteristics are correlated

to some structural change. In this case, the GEM-PSO

seems to attenuate, or even remove, the predominant

environmental and operational variations that affect

the natural frequencies: temperature and traffic

loading.

Influence of parameters on the damage monitoring

results of the GEM-PSO approach

The influence of different parameters on the damage

monitoring results of the GEM-PSO approach, along

with MSD, for both SHM scenarios is demonstrated in

Tables 8 and 9. The parameters h, R, Y, c1 and c2 are

not considered in this study as they are easily defined

based on the recommendations provided in ‘‘Choice of

parameters’’, presenting minor influences in the results

when they are modified within their predefined ranges.

(a)

(b)

Figure 14. Tamar Bridge: outlier detection based on the GEM-

PSO (a) and KPCA (b) approaches with ED.

Figure 13. Tamar Bridge: maximization of the information

entropy as a function of the kernel parameter (the optimal

is 0.0142).

Table 7. Tamar Bridge: damage classification performance

(average 6 standard deviation) of the GEM-PSO and KPCA

approaches with ED for 20 executions.

Approach Number of Type I errors

GEM-PSO 32.00 6 0.00
KPCA 67
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Thus, only t and b are modified to some values within

their predefined ranges.

When the parameters t and b are set to different val-

ues, in both scenarios, the damage monitoring results

provided by the GEM-PSO remain very stable and reli-

able, indicating, once again, that the proposed

approach is not dependent on the choice of the initial

parameters from GMM or PSO.

Execution time on data sets from the Z-24 and

Tamar Bridges

The average execution time for each approach on data

sets from the SHM scenarios used in this study is pre-

sented in Table 10. All the experiments ran on an Intel

Core i7-4500U processor 1.8 GHz (2.4 GHz) system

with 4 GB of main memory. In an overall analysis, the

EM-GMM approach has the best time performance for

both data sets, followed by the GEM-PSO one. The

KPCA has a very fast time performance, 74.79 and 0.13

seconds, when the time to determine the kernel para-

meter, 1155.37 and 19.42 seconds, is not taken into

account. However, the determination of this parameter

was assumed to be a step of the KPCA approach,15

thereby in this paper the time for this initial step should

be considered for the total execution time of the KPCA.

Despite several repetitions of the EM algorithm per-

formed by the EM-GMM and some iterations of the

GEM-PSO, these approaches have acceptable execu-

tion times for the data sets extracted hourly, in the case

of the Z-24 Bridge, and daily for the Tamar Bridge.

The training phase of the approaches comprises almost

all the execution time and the test phase, where the DIs

are computed based on distance metrics, runs very fast.

In the case of the KPCA, the chosen range of kernel

parameter directly influences the execution time of the

training phase and the test phase has a negligible execu-

tion time.

Conclusions

This paper introduced the GEM-PSO approach, for

which an MA based on PSO was used to improve the

stability and reliability of the EM algorithm in search-

ing for the optimal number of components and their

parameters. As long as the main stable state conditions

of the structure are determined, assuming multivariate

Gaussian distributions, the damage detection strategy

implemented through the Mahalanobis and Euclidean

distances can be applied. The damage classification

performance of the GEM-PSO on challenging

vibration-based data sets was evaluated and compared

to state-of-the-art methods.

The classification performance for both real-world

SHM scenarios attested that the GEM-PSO approach

is better than the alternative ones. When the GEM-

PSO is compared to the EM-GMM, the improvement

of the stability and reliability of the EM algorithm was

demonstrated to have a direct and positive impact on

the identification of global components (data normali-

zation) and damage detection. This explains the rela-

tively poor performance of the EM-GMM on data sets

from the Z-24 Bridge. The KPCA is less affected than

the EM-GMM by the choice of the initial parameters,

nevertheless it is sensitive to some loss of information

in the high-dimensional feature space as only a certain

Table 9. Tamar Bridge: influence of parameters on damage

classification performance (average 6 standard deviation) of the

GEM-PSO approach with MSD for 20 executions.

t b Type I errors

100 15 42.40 6 0.90
150 15 42.39 6 0.89
200 15 42.41 6 0.93
100 20 42.40 6 0.91
150 20 42.41 6 0.92
200 20 42.40 6 0.90
100 30 42.40 6 0.92
150 30 42.40 6 0.93
200 30 42.39 6 0.90

Table 8. Z-24 Bridge: influence of parameters on damage

classification performance (average 6 standard deviation) of the

GEM-PSO approach with MSD for 20 executions.

t b Type I errors Type II errors

100 40 123.65 6 5.05 3.05 6 0.22
150 40 123.61 6 5.03 3.04 6 0.23
200 40 123.64 6 4.99 3.04 6 0.24
100 50 123.60 6 4.95 3.05 6 0.22
150 50 123.64 6 4.93 3.05 6 0.21
200 50 123.63 6 5.01 3.05 6 0.21
100 60 123.60 6 4.95 3.05 6 0.22
150 60 123.61 6 4.96 3.05 6 0.20
200 60 123.62 6 5.02 3.05 6 0.22

Table 10. Z-24 and Tamar Bridges: execution time for each

approach considering training and test phases (20 executions).

Approach Average time (seconds)

Z-24 Bridge Tamar Bridge

GEM-PSO 117.92 12.32
EM-GMM 100.63 11.50
KPCA 1155.37 + 74.79 19.42 + 0.13
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fraction of the normal variability is retained. This

drawback influenced its competence to attenuate unde-

sired operational and environmental variations, and

consequently resulted in unacceptable classification

performance on data sets from the Tamar Bridge.

The average execution time of each approach was

presented. The EM-GMM approach revealed the best

execution time for both data sets, followed by GEM-

PSO. The estimation of the kernel parameter took

longer for KPCA, which negatively impacted its total

execution time.

Unlike the other approaches, the GEM-PSO consists

of two main parts: a global one that conducts the global

search in the feature space; and a local one, which per-

forms a more refined search around candidate solutions

of the current problem. As demonstrated through the

experimental results, this hybridization proved to be a

pronounced technique that can be used to add quantita-

tive information from the SHM systems into the SMSs,

in a controlled manner, as the main state conditions of

a structure are mapped into a DI.

In general, the choice of parameters, as well as the

tuning of them, for population-based metaheuristics

becomes very challenging when different scenarios are

considered. To deal with this issue, few recommenda-

tions were suggested for the GEM-PSO approach, tak-

ing into account the heterogeneity of monitoring data

and parameter settings widely tested and established in

the specialized literature.
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Abstract

Damage assessment based on vibration response measurements from engineering structures has been

an essential research area in the structural health monitoring field. Vibration signals are often available

and can be measured from different types of monitoring systems through a diversity of data acquisi-

tion systems and sensors. Based on suitable data treatment, valuable information from the structural

dynamics can be extracted and used as damage-sensitive features for detecting early and progressive

structural damage, thereby increasing safety and avoiding collapses. However, the operational and en-

vironmental variations often arise as undesired effects in the damage-sensitive features, which might

negatively influence the proper identification of damage. To deal with this drawback, this paper presents

an output-only technique based on mean shift clustering (MSC) to automatically discover an unknown

number of clusters that correspond to the normal and stable state conditions of a structure. Unlike most

methods in the literature, MSC is a nonparametric technique that does not require prior knowledge of

the number of clusters and can identify clusters of distinct shapes, sizes and density. The superiority of

the MSC technique, over the state-of-the-art ones, is tested by applying a damage detection strategy im-

plemented through the Euclidean distance, which permits one to locate the outlier formation in relation

to the chosen data clusters, using data sets from the Z-24 Bridge in Switzerland.

1. INTRODUCTION

Damage detection based on vibration response measurements from engineering structures has been a

crucial research area in the structural health monitoring (SHM) field [1, 2]. Vibration signals are of-

ten available and can be measured from different types of monitoring systems through a diversity of

data acquisition systems and sensors. Based on suitable data treatment, valuable information from the

structural dynamics can be extracted and used as damage-sensitive features for detecting early and pro-

gressive structural damage, thereby increasing safety, avoiding collapses and supporting the decision

making process regarding maintenance, repair, and rehabilitation.

Unfortunately, operational and environmental variations (e.g., temperature, operational loading,

humidity and wind speed) often arise as unwanted effects in the damage-sensitive features and usually

mask changes caused by damage, which might negatively influence the proper identification of dam-

age [3]. To deal with this drawback, several machine learning algorithms with different working princi-

ples have been proposed to mitigate (or even remove) these effects on the extracted features as well as

to separate changes in damage-sensitive features caused by damage from those caused by varying oper-

ational and environmental conditions [4–9]. These approaches are often characterized as unsupervised
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and output-only because they are trained only with damage-sensitive features related to undamaged

condition without any measurement directly related to operational and environmental parameters.

In [7] and [10], an approach based on the Gaussian mixture model (GMM) is applied to model

the main clusters that correspond to the normal state conditions of a bridge. The damage detection is

performed on the basis of an outlier formation regarding the chosen clusters of main states. Although

this approach has revealed better damage detection performance when compared to other traditional

methods, it assumes Gaussian distributions which may compromise the reliable estimation of clusters.

As an alternative, the Fuzzy c-means (FCM) approach is used in [11] and [12] to distinguish between

undamaged and damaged state conditions. However, this approach can not assess the damage severity

in a clear manner and often produces a significant number of false-negative indication of damage, as

demonstrated in [11]. K-means clustering is also a possible approach to identify the normal condition

of a structure in terms of a finite number of clusters and then classify new unknown state conditions.

Despite this approach was used in [9] and [13, 14] with relative success, its applicability is limited due

to the stochastic behavior and invariant shapes of clusters.

Therefore, this paper presents an output-only technique based on mean shift clustering (MSC) [15]

to automatically discover an unknown number of data clusters that correspond to the normal and stable

state conditions of a structure. Unlike most methods in the literature, MSC is a nonparametric technique

that does not require prior knowledge of the number of clusters and can identify clusters of distinct

shapes, sizes and density [16]. As long as the main stable state conditions of the structure are determined,

the superiority of the MSC approach, over the state-of-the-art ones based on K-means, FCM and GMM,

is tested by applying a damage detection strategy implemented through the Euclidean distance (ED),

which permits one to locate the outlier formation in relation to the chosen data clusters, using data sets

from the Z-24 Bridge in Switzerland. The classification performance is assessed on the basis of Type I

(false-positive indication of damage) and Type II (false-negative indication of damage) error trade offs.

The remainder of this study is organized as follows. In Section 2, the MSC approach is derived

to determine the health state of a structure based on a reliable estimation of data clusters. Section 3

describes the Z-24 structure, the long-term vibration data, and the major environmental influence. In

Section 4, the experimental results on extracted damage-sensitive features from the test structure are

discussed and a comparison with state-of-the-art approaches is also emphasized. Finally, Section 5

synthesizes the main strengths and limitations of the MSC approach.

2. DAMAGE DETECTION BASED ON MEAN SHIFT CLUSTERING

This section presents the methodology of the MSC approach, which is divided into two steps. First, the

estimation of data clusters through MSC is presented. Second, the damage detection strategy based on

the ED is described taking into account the main data clusters estimated in the first step.

For general purposes, one may assume a training data matrix, X∈R
m×n, with n-dimensional feature

vectors from m different operational and environmental conditions when the structure is undamaged and

a test data matrix, Z ∈ R
l×n, where l is the number of feature vectors from the undamaged and/or

damaged conditions.

2.1 Estimation of data clusters

MSC seeks to discover modes or clusters in a smooth density of observations [15, 16]. This algorithm

is a centroid-based method, which works by updating candidates for centroids to be the mean of the

observations within a given region. Afterwards, these candidates are filtered in a post-processing phase

to eliminate redundancies to form the final set of centroid.

Given a candidate centroid xi for iteration t, the centroid is updated according to

xt+1
i = xt

i +λ
(

xt
i

)

, (1)



where λ (xt
i) is the mean shift vector that is computed for each centroid located in a region of the

maximum increase in the density of observations.

Assuming m observations xi on a n-dimensional space R
n and the associated diagonal bandwidth

matrices hiIm×m, i = 1, . . . ,m, the observation density estimator obtained with the kernel profile k (x) is

denoted by

f (x) =
1
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Herein, the multivariate normal profile is considered such as

k(x) = e−
1
2

x x ≥ 0. (3)

By computing the gradient of Equation (2), the stationary observations of the density function

satisfy
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where g(x) = −k′ (x). The solution of Equation (4) is a local maximum of the density function which

can be iteratively reached applying mean shift procedure, i.e., effectively updating a centroid to be the

mean of the observations within its neighborhood
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where x is the current mean, λ (x) is the mean shift vector and g(.) is the kernel function that uses

a bandwidth parameter h for multivariate kernel density estimation. The Gaussian and Epanechnikov

kernels are the options most commonly used in a large range of applications [17, 18]. In this study, the

Gaussian kernel is considered, thereby only the bandwidth parameter h should be defined.

The MSC algorithm automatically determines the number of data clusters relying on the bandwidth,

which dictates the size of the region to search through. These clusters are automatically correlated to

the number of discovered modes. The nonparametric characteristic of MSC makes it a powerful tool

to discover arbitrarily shaped clusters present in the monitoring data from SHM applications, aiming to

establish the baseline or normal condition of the monitored structure.

2.2 Damage detection using discovered clusters

After the definition of the optimal number of data clusters embedded in the training data, the damage

detection process is performed through a global damage indicator (DI) estimated for each test observa-

tion. Basically, for a given test feature vector, zi (i = 1, . . . , l), the ED for all centroids is calculated,

where the DI(i) is considered the smallest distance,

DI(i) = min(‖ zi − c1 ‖,‖ zi − c2 ‖, . . . ,‖ zi − cQ ‖) , (6)

where c1,c2, . . . ,cQ are the centroids of Q different data clusters. In this study, the threshold for damage

classification is defined for 95% of confidence on the DIs taking into account only the baseline data used

in the training process. Thus, if the MSC approach has learned the baseline condition, i.e., the identified

data clusters suitably represent the undamaged and normal condition under all possible operational and

environmental conditions, then this approach should output approximately 5% of false alarms for the

undamaged data used in test phase.



3. TEST STRUCTURE AND DATA SETS

The Z-24 Bridge was a post-tensioned concrete box girder bridge composed of a main span of 30 m and

two side-spans of 14 m, as depicted in Figure 1. The bridge, before complete demolition, was extensively

instrumented and tested with the purpose of providing a feasibility benchmark for vibration-based SHM

in civil engineering [19]. A long-term monitoring test was carried out, from 11 November 1997 until

10 September 1998, to quantify the operational and environmental variability present on the bridge and

detect damage artificially introduced, in a controlled manner, in the last month of operation. Every hour,

eight accelerometers captured the vibrations of the bridge as sequences of 65536 samples (sampling

frequency of 100 Hz) and other sensors measured environmental parameters, such as temperature at

several locations [20].
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Figure 1 : Longitudinal section (left), and the location and orientation of accelerometers (right) on the Z-24

Bridge. Marked sensors failed during the monitoring campaign.

In this case, the natural frequencies of the Z-24 Bridge are used as damage-sensitive features.

They were estimated using a reference-based stochastic subspace identification method on vibration

measurements from the accelerometers [21]. The first two natural frequencies estimated daily from

11 November 1997 to 10 September 1998, with a total of 235 observations, are highlighted in Figure

2. The first 198 observations correspond to the damage-sensitive feature vectors extracted within the

undamaged structural condition under effects caused by the operational and environmental variability.

The last 37 observations correspond to the damage progressive testing period, which is highlighted,

especially in the second frequency, by a clear decay in the magnitude of such frequency. The damage

scenarios were carried out in a sequential manner, which cause cumulative degradation of the bridge.

Moreover, the observed jumps in the natural frequencies are related to the asphalt layer in cold periods,

which significantly contributes to the stiffness of the bridge.
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Figure 2 : The first two natural frequencies extracted daily from 11 November 1997 to 10 September 1998 (left);

feature distribution of the two natural frequencies (right).

Progressive damage tests were performed in one-month time period (from 4 August to 10 Septem-

ber 1998) before the demolition of the bridge to prove that realistic damage has a measurable influence

on the bridge dynamics, as summarized in Table 1. The continuous monitoring system was still running



during the progressive damage tests, which permits one to validate the SHM system to detect accumu-

lative damage on long-term monitoring.

Table 1 : Progressive damage test scenarios. Consider pier settlement system as PSS.

Date Scenario description Date Scenario description

04-08-98 Undamaged condition 25-08-98 Spalling of concrete at soffit (12 m2)

09-08-98 Installation of the PSS 26-08-98 Spalling of concrete at soffit (24 m2)

10-08-98 Lowering of pier, 2 cm 27-08-98 Landslide of 1 m at abutment

12-08-98 Lowering of pier, 4 cm 31-08-98 Failure of concrete hinge

17-08-98 Lowering of pier, 8 cm 02-09-98 Failure of 2 anchor heads

18-08-98 Lowering of pier, 9.5 cm 03-09-98 Failure of 4 anchor heads

19-08-98 Lifting of pier, tilt of foundation 07-09-98 Rupture of 2 out of 16 tendons

20-08-98 New reference condition (after 08-09-98 Rupture of 4 out of 16 tendons

removal of the PSS) 09-09-98 Rupture of 6 out of 16 tendons

In conclusion, the damage detection process will be carried out by taking into account the first two

natural frequencies and using all 235 observations, resulting in 198 observations from the undamaged

condition (1–198 observations) and 37 observations from the damaged condition (199–235 observa-

tions). The corresponding training and test matrices are X198×2 and Z235×2, respectively. The multi-

modality and heterogeneity among observations in a two dimensional space suggests the existence of

data groups that may be find through cluster-based methods.

4. RESULTS AND DISCUSSION

In this section the performances of the K-means-, FCM-, GMM-, and MSC-based approaches are com-

pared in terms of a reliable estimation of data clusters for the undamaged condition and all conditions

(undamaged and damaged conditions), and Type I/Type II errors to evaluate the damage classification

performance. For K-means and FCM, the Calinski-Harabasz criterion [22] was used to off-line infer the

number of clusters. The bandwidth parameter h for the MSC was selected based on the best compromise

between the bias and variance [17]. The GMM was set as described in [7], where the model parameters

are estimated from the data using the expectation-maximization (EM) algorithm.

4.1 Estimation of data clusters for the undamaged condition

The clustering performance of all approaches for baseline condition is shown in Figure 3. K-means,

FCM, and GMM have approximately the same cluster configuration, with two data clusters, where the

black one is possibly related to the baseline condition obtained under relatively small environmental

and operational influences; and the blue one may be assigned to the baseline condition under severe

temperature variations, which corresponds to changes in the structural stiffness [20]. On the other hand,

the MSC with h = 0.147 presents three data clusters, where the black one is, again, possibly related to

the undamaged condition obtained under minor environmental and operational factors; the blue and cyan

ones are related to gradual decrease of temperature in the asphalt layer (enough to slightly change the

elastic properties of the structure) and changes in the structural response derived from stiffness variations

in the asphalt layer caused by freezing temperatures, respectively.

Comparing the results from the MSC and state-of-the-art algorithms, one may verify the similarity

of the clustering results for the first data cluster. However, the state-of-the-art algorithms agglutinate

the second and third clusters suggested by the MSC algorithm, incorporating all gradual changes in

the asphalt layer to one cluster only. Therefore, the proposed approach can discriminate the normal

and stable state conditions of the Z-24 Bridge in a better manner, separating changes caused by regular

temperatures from changes caused by extreme cold temperatures.



3.8 3.9 4 4.1 4.2 4.3 4.4
4.9

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

F
1
 (Hz)

F
2
 (

H
z
)

 

 

Undamaged cluster 1

Undamaged cluster 2

3.8 3.9 4 4.1 4.2 4.3 4.4
4.9

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

F
1
 (Hz)

F
2
 (

H
z
)

 

 

Undamaged cluster 1

Undamaged cluster 2

3.8 3.9 4 4.1 4.2 4.3 4.4
4.9

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

F
1
 (Hz)

F
2
 (

H
z
)

 

 

Undamaged cluster 1

Undamaged cluster 2

3.8 3.9 4 4.1 4.2 4.3 4.4
4.9

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

F
1
 (Hz)

F
2
 (

H
z
)

 

 

Undamaged cluster 1

Undamaged cluster 2

Undamaged cluster 3

Figure 3 : Clustering performance of the approaches on the training data: K-means (upper left), FCM (upper

right), GMM (lower left), and MSC (lower right).

4.2 Estimation of data clusters for all conditions

The clustering performance of all approaches for undamaged and damaged conditions is highlighted

in Figure 4. In this case, K-means and FCM have approximately the same cluster configuration, with

three data clusters, where the red one is related to the damage progressive test period, integrating all

damaged scenarios into one cluster only and presenting 1 or 2 mislabels for all conditions. As the worst

case, GMM seems to define data clusters without a logic distinction between undamaged and damaged

conditions, outputting several mislabels for all conditions. On the other hand, the MSC with h = 0.126

presents five data clusters, where the damage progressive test period is better specified in a logic manner.

The second damaged cluster (in magenta) is related to the first few damaged scenarios that consist of

installing a settlement system in one pier and then simulating pier settlements of increasing magnitude,

followed by a simulated foundation tilt. After these scenarios, on the 20 August 1998, the pier was

brought back to its initial position, causing cracks in the bridge deck. The first damaged cluster (in

red) is related to the additional damage introduced incrementally, from 25 August 1998, resulting in a

pronounced increase in the accumulated damage level in long-term monitoring.

When the results from the MSC and state-of-the-art algorithms are compared, one may infer the ad-

vantage of the cluster configuration provided by MSC as it can capture and distinguish different damage

levels, ignored by other approaches, which illustrates that the output-only monitoring strategy proposed

in this study is a powerful method for SHM.
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Figure 4 : Clustering performance of the approaches on the test data: K-means (upper left), FCM (upper right),

GMM (lower left), and MSC (lower right).

4.3 Damage detection performance

The DIs obtained from the test matrix, Z235×2, along with a threshold defined based on the 95% cut-off

value over the training data, are depicted in Figure 5. It shows that the K-means-, FCM- and MSC-based

approaches outputs a monotonic relationship between the level of damage and the amplitude of the DIs,

which may be attributed to the reliable estimation of data clusters provided by these methods during

the training phase; whereas the GMM fails to establish this relationship, which may be assigned to an

inappropriate definition of data clusters during training phase due to the stochastic behavior of the EM

algorithm that compromises the estimation of posterior probability that the observation came from the

corresponding cluster. Besides, when one look at the range of baseline condition, the patterns in the DIs

caused by the freezing effects can not be pointed out for the MSC, which indicates that this approach

is able to remove almost all effects of environmental variations and so demonstrates to be effective to

model the normal condition.

Therefore, to quantify the damage classification performance for the test matrix, Table 2 synthe-

sizes the Type I and Type II errors for all approaches. Basically, the GMM- and MSC-based approaches

have the same classification performance, reaching 5.05% of Type I errors (as expected) and no mis-

classification of Type II errors, respectively, and a total amount of errors equal to 4.26%. These results

are quite similar due to the damage detection based on ED adopted to identify outliers. However, the

MSC filters nearly all operational and environmental variability, especially in the damaged observa-

tions, instead of the GMM that provides a poor data normalization in these observations. As expected,

the K-means an FCM-based approaches obtained similar results in relation to the amount of Type I er-

rors; however, the Type II errors reached over 2.7%, demonstrating some inefficiency when classifying

abnormal conditions.
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Figure 5 : Outlier detection for each approach: K-means (upper left), FCM (upper right), GMM (lower left), and

MSC (lower right).

Table 2 : Damage detection performance for each approach.

Approach Type I errors Type II errors Total errors

K-means 10 (5,05%) 1 (2.70%) 11 (4.68%)

FCM 10 (5,05%) 1 (2.70%) 11 (4.68%)

GMM 10 (5,05%) 0 (0.00%) 10 (4.26%)

MSC 10 (5,05%) 0 (0.00%) 10 (4.26%)

5. CONCLUSIONS

In this paper was presented the MSC approach that automatically discovers data clusters in a smooth

density of observations by updating candidate centroids to be the mean of the observations (highest

density region) within a given region defined by the bandwidth of a Gaussian kernel. After the main state

conditions of the structure are determined, assuming no underlying distributions, the damage detection

strategy based on ED is applied. The damage classification performance of the MSC on challenging

vibration-based data sets was evaluated and compared to state-of-the-art methods.

The classification performance for the real-world SHM scenario, Z-24 Bridge, attested that the

MSC approach is better than the alternative ones presented in this study. When the MSC is compared

to the GMM, the instability and unreliability of the EM algorithm demonstrated to have a direct and

negative impact on the identification of reliable data clusters (data normalization), which affected the



relationship between the level of damage and the amplitude of the DIs in the damage detection phase;

whereas the MSC discovers well-defined clusters, improving the data normalization and damage detec-

tion processes. The K-means and FCM appear to be less affected than the GMM by the choice of the

initial parameters, nevertheless they are dependent on the choice of the number of clusters in advance.

Such drawback may influenced their competence to remove almost all undesired operational and envi-

ronmental variations and, consequently, resulted in worst classification performance regarding Type II

errors.

In contrast to the other approaches, the MSC is a nonparametric technique that does not require prior

knowledge of the number of data clusters and can identify clusters of distinct shapes, sizes and density.

Unfortunately, the MSC is not highly scalable, as it requires multiple nearest neighbor searches during

the execution of the algorithm. This disadvantage is circumvented through parallel implementation of

the MSC. As demonstrated through the experimental results, this cluster-based approach proved to be a

pronounced technique that can be used in SHM applications where life-safety, economic and reliability

issues must be considered as primary motivations.
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a b s t r a c t

The present paper proposes a novel cluster-based method, named as agglomerative con-

centric hypersphere (ACH), to detect structural damage in engineering structures.

Continuous structural monitoring systems often require unsupervised approaches to auto-

matically infer the health condition of a structure. However, when a structure is under

linear and nonlinear effects caused by environmental and operational variability, data nor-

malization procedures are also required to overcome these effects. The proposed approach

aims, through a straightforward clustering procedure, to discover automatically the

optimal number of clusters, representing the main state conditions of a structural system.

Three initialization procedures are introduced to evaluate the impact of deterministic and

stochastic initializations on the performance of this approach. The ACH is compared to

state-of-the-art approaches, based on Gaussian mixture models and Mahalanobis squared

distance, on standard data sets from a post-tensioned bridge located in Switzerland: the

Z-24 Bridge. The proposed approach demonstrates more efficiency in modeling the normal

condition of the structure and its corresponding main clusters. Furthermore, it reveals a

better classification performance than the alternative ones in terms of false-positive and

false-negative indications of damage, demonstrating a promising applicability in real-

world structural health monitoring scenarios.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In the last few decades, the continuous structural condition assessment has demanded strong research efforts to support

the management of structures during their lifetime. In particular, for the civil engineering infrastructure [1], the bridge man-

agement systems (BMSs) and structural health monitoring (SHM) have been used to cover the most relevant activities con-

cerning the bridge management process. The BMS is a visual inspection-based decision-support tool developed to analyze

engineering and economic factors and to assist the authorities in determining how and when to make decisions regarding

maintenance, repair and rehabilitation of structures [2,3]. On the other hand, the SHM traditionally refers to the process

of implementing monitoring systems to measure structural responses in real-time and to identify anomalies and/or damage

at early stages [4].
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Even with the inherent limitation imposed by the visual inspections, the BMS has already been accepted by structural

managers around the world [5–7]. At the same time, SHM is becoming increasingly attractive due to its potential ability

to detect damage, contributing positively to life-safety and economical issues [8]. It can be also integrated into the BMS

in a systematic way [9]. Posed in the context of a statistical pattern recognition (SPR) paradigm, the SHM is described as

a four-phase process [10]: (1) operational evaluation, (2) data acquisition, (3) feature extraction, and (4) statistical modeling

for feature classification.

The feature extraction phase estimates damage-sensitive features, from the raw data, which are potentially correlated to

the level of damage present in the monitored structure. Nevertheless, when one deals with real-world monitoring scenarios,

the influence of operational and environmental effects may cause changes in the magnitude of features as well as alter their

correlation with the level of damage. Generally, the more sensitive a feature is to damage, the more sensitive it is to changes

in the operational and environmental conditions (e.g. temperature, wind speed and traffic loading) [11]. Therefore, robust

feature extraction methods and data normalization procedures are required to overcome this problem. The data normaliza-

tion is the process of separating changes in damage-sensitive features caused by damage from those caused by varying

operational and environmental conditions [12,13]. These influences on the structural response have been cited as one of

the major challenges for the transition of SHM technology from research to practice [14–17]. Although the data normaliza-

tion occurs in almost all phases (except the first one) of the SPR paradigm, the focus of this study is on the fourth phase,

which is concerned with implementation of algorithms to analyze and learn the distributions of the extracted features,

aiming to distinguish between the undamaged and damaged structural state conditions [18].

Some studies in literature have established the concept of automatically discovering and characterizing the normal con-

dition of structures as clusters [9,19]. In those studies, the damage detection strategy is carried out as an outlier detection

approach based on machine learning algorithms and distance metrics, allowing one to track the outlier formation in relation

to time. One important note is related to the output-only nature of those approaches, implying the accomplishment of data

normalization without any information about the operational or environmental parameters.

Highlighting the fact that in most engineering infrastructure only data from undamaged (or normal) condition is available

on the training phase, the unsupervised learning algorithms are often required for data normalization purposes [20], i.e.

training is carried out using only data from the normal structural condition. In this context, cluster-based algorithms are

attractive due to their ability to discover groups of similar observations related to the same structural state at a given period

of time. This unsupervised implementation permits one to detect damage formation regarding the chosen main groups of

states [21–23]. Although numerous traditional unsupervised machine learning algorithms have been reported [24–27],

herein the approaches based on Mahalanobis Squared Distance (MSD) and Gaussian Mixture Model (GMM) are relevant,

due to their cluster-based performance, operating in a set of stable and undamaged state conditions [9,19].

In this paper, a straightforward and nonparametric method based on agglomerative clustering and inflated hyperspheres

is proposed to learn the normal condition of structures. The proposed method does not require any input parameter, except

the training data matrix. Two deterministic initialization procedures rooted on eigenvectors/eigenvalues decomposition and

uniform data sampling are presented. Furthermore, a random initialization is also introduced. These mechanisms pave the

way for a novel Agglomerative Concentric Hypersphere (ACH) algorithm that discovers an appropriate number of clusters

using a density-based approach.

The classification performance is investigated on the basis of Type I/Type II errors (false-positive and false-negative indi-

cations of damage, respectively) trade-off through application on two data sets from the Z-24 Bridge, located in Switzerland.

The remainder of this paper is organized as follows. In Section 2, a review of the most traditional machine learning and

cluster-based approaches for structural damage detection is introduced. The clustering constraints and initialization

procedures related to the ACH algorithm are presented in Section 3. Section 4 is devoted to describe the data sets used as

damage-sensitive features from the Z-24 Bridge. Section 5 describes the experimental results and carries out comparisons

and discussions. This study concludes in Section 6 with a summary and the main conclusions.

2. Related work

Traditionally, in most civil applications, the damage detection process is carried out using physics-based methods and

parametric approaches. However, in complex engineering structures, those methods may not be practical due to the level

of expertise and time required to their development [28,29]. On the other hand, nonparametric approaches rooted in the

machine learning field, especially cluster-based ones, have become an alternative, as they are very useful to find hidden

patterns from monitoring data and are computationally efficient [30,31]. Herein, machine learning-based approaches

addressing damage assessment are discussed; moreover, the most relevant cluster-based methods and their adaptation to

damage detection in SHM are also considered.

2.1. Machine learning approaches for damage detection

Principal component analysis (PCA) is a common method to perform data normalization and feature classification with-

out measurements of the sources of variability. Yan et al. [32] presented a PCA-based approach to model linear environmen-

tal and operational influences using only undamaged features. The number of principal components from extracted features
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is implicitly assumed to correspond to the number of independent factors related to the normal variations. A further exten-

sion of this method was presented in [33]. In this case, a local extension of PCA is used to learn nonlinear relationships by

applying a local piecewise PCA in some regions of the feature space. Although both approaches demonstrated adequate

damage detection performance, the use of PCA imposes several limitations in practical SHM solutions, such as: only linear

transformations can be performed through the orthogonal components; the larger the variance of a principal component, the

greater its importance (in some cases this assumption is incorrect); and scale variant [34].

To overcome the limitations of PCA and detect damage in structures under changing environmental and operational con-

ditions, an output-only vibration-based damage detection approach was proposed by Deraemaeker et al. [35]. Two types of

feature extraction methods based on an automated stochastic subspace identification and the Fourier transform were used

as damage sensitive-features. In this case, the data normalization and damage detection were carried out by factor analysis

(FA) and statistical process control, respectively. The results demonstrated that when the FA is applied to deal with normal

variations, both type of features provided reliable damage classification performances. However, this approach has been

tested only using numerical models, which does not ensure its performance in real monitoring scenarios. Besides, the FA

is only capable to learn linear influences as linear PCA.

Auto-associative neural network (AANN) is a nonlinear version of PCA intended to perform feature extraction, dimension-

ality reduction, and damage detection from multivariate data. As demonstrated by Kramer [36], the AANN is capable to per-

form, intrinsically, a nonlinear PCA (NLPCA), as it characterizes the underlying dependency of the identified features on the

unobserved operational and environmental factors. Worden [28] developed a novelty detection technique by applying an

AANN to learn the normal condition of structures. Once the model is trained, the residual error tends to increase when

damaged cases are presented. A later study [27] applied the AANN to model nonlinearities in a laboratory structure under

simulated effects of variability. In this study, the AANN was not able to model, properly, the normal condition, which was

verified in terms of Type I/II errors. Zhou et al. [37] proposed a new damage index to avoid the occurrence of several errors.

However, the results of this approach strongly depend on the type of damage-sensitive features.

The aforementioned drawbacks lead the research efforts to kernel-based machine learning algorithms, which have been

widely used in the SHM field. Approaches based on support vector machines (SVM) have demonstrated high reliability and

sensitivity to damage. A supervised SVM method to detect damage in structures with a limited number of sensors was pro-

posed in [38]. Khoa et al. [39] proposed an unsupervised adaptation to dimensionality reduction and damage detection in

bridges. Santos et al. [40] carried out a comparison study on kernel-based methods. The results demonstrated that those

SVM-based approaches have been outperformed by kernel PCA (KPCA), in terms of removing environmental and operational

effects and damage classification performance.

KPCA is an alternative approach to perform NLPCA. The kernel-trick allows the mapping of feature vectors to high dimen-

sional spaces, which provides nonlinear strengths to linear PCA. Cheng et al. [41] applied the KPCA to detect damage on con-

crete dams subjected to normal variations. Similarly, novelty detection methods were proposed in [42,43] by applying the

KPCA as a data normalization procedure. In these approaches, the problems related to the choice of suitable damage index

and estimation of some parameters were addressed. However, the issues related to the choice of an optimal kernel band-

width and the number of retained components were not fully addressed. Reynders et al. [44] developed an alternative

approach to eliminate the environmental and operational influences in terms of retained components, and presented a

complete scheme to solve the previous issues. However, this approach is not able to completely remove the normal effects,

as it deals only with a fraction of the environmental and operational effects.

2.2. Cluster-based approaches for damage detection

Over the years, the approaches based on MSD have been widely used in real-world monitoring campaigns due to its abil-

ity to identify outliers [18,45,46]. The MSD-based approach assumes that the normal condition can be modeled by a unique

cluster from a multivariate Gaussian distribution. In this context, an abnormal condition is considered as a statistical devi-

ation from the normal pattern learned during the training phase as a mean vector and a covariance matrix, allowing one to

infer whether the data were generated by a source not related to the normal condition. However, as noticed in [9], when

nonlinearities are present in the monitoring data, the MSD fails in modeling the normal condition of a structure because

it assumes the baseline data as a unique multivariate Gaussian distribution.

A two-step damage detection strategy based on GMMswas developed in [9,19,47] and applied to long-termmonitoring of

bridges. In the first step, the GMM-based approach models the main clusters that correspond to the normal and stable set of

undamaged state conditions, even when normal variations affect the structural response. To learn the parameters of the

GMMs, the classical maximum likelihood estimation based on the expectation-maximization (EM) algorithm is adopted

in [9]. This approach applies an expectation step and a maximization step until the log-likelihood converges to a local opti-

mum. However, the convergence to the global optimum is not guaranteed [48].

To overcome the limitations imposed by EM, in [19] the parameter estimation was carried out using a Bayesian approach

based on Markov-chain Monte Carlo method. In [47], a genetic-based approach was employed to drive the EM searching

towards the global optimum. In these approaches, as long as the parameters have been learned, a second step was performed

to detect damage on the basis of a MSD outlier formation considering the chosen main clusters.

Silva et al. [22] proposed a fuzzy clustering approach to detect damage in an unsupervised manner. PCA and auto-

regressive moving average methods were used for data reduction and feature extraction purposes. The normal condition
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was modeled by two different fuzzy clustering algorithms: fuzzy c-means clustering and Gustafson-Kessel (GK) algorithms.

The results demonstrated that the GK algorithm outperformed the alternative one with a better generalization performance.

However, the damage quantification was not properly assessed and both approaches produced a significant number of false-

negative indications of damage.

3. Agglomerative clustering

Agglomerative clustering is part of a hierarchical clustering strategy which treats each object as a single cluster, and iter-

atively merges (or agglomerates) subsets of disjoint groups, until some stop criterion is reached (e.g. number of clusters

equal to one) [49–51]. These bottom-up algorithms create suboptimal clustering solutions, which are typically visualized

in the form of a dendrogram representing the level of similarity between two adjacent clusters, allowing to rebuild step-

by-step the resulting merging process. Any desired number of clusters can be obtained by cutting the dendrogram properly.

The common flow chart of an agglomerative clustering procedure is summarized in Fig. 1. Initially, each observation is

defined as a centroid. Then, a similarity matrix composed of the distances between each cluster is computed to determine

which clusters can be merged. Usually, this agglomerative process is repeated until only one cluster remains. As described in

[52], when the cluster diameter is small, the corresponding data group is defined more precisely as this group is composed

by few members strongly correlated. The fundamental assumption is that small clusters are more coherent than large ones

[52,53].

The ACH algorithm is an agglomerative cluster-based algorithm, working in the feature space, composed of two main

steps: (1) off-line initialization and (2) bottom-up clustering procedure. Depending on the type of initialization mechanism,

the algorithm becomes completely deterministic or random. The initialization has a direct influence on the algorithm

performance. Hereafter, all clusters are merged through an agglomerative clustering procedure. These two steps allow, auto-

matically, the discover of the number of clusters, without the estimation of any parameter.

In SHM, for general purposes, the training matrix X 2 Rn�m is composed of n observations from the undamaged structure

under operational and environmental variability, where m is the number of features per observation obtained during

the feature extraction phase. The test matrix Z 2 Rt�m is defined as a set of t observations collected during the

undamaged/damaged conditions of the structure. Note that an observation represents a feature vector encoding the struc-

tural condition at a given time, and a data cluster represents a set of feature vectors corresponding to a normal and stable

state condition of the structural system. In the following, all constraints related to initialization and clustering procedures

are described.

Update distance

matrix

End
Number of

clusters = 1?

Start

Input measured

features

Compute distance

matrix

Merge closest

clusters

Yes

No

Set each point as 

a cluster

Fig. 1. Flow chart of agglomerative hierarchical clustering.
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3.1. Agglomerative concentric hypersphere clustering

In this section, an unsupervised cluster-based algorithm which does not assume any underlying distribution and has no

input parameter is fully described. This algorithm works in an iterative manner on a set of centroids, by evaluating the

boundary regions that limit each cluster through inflation of a concentric hypersphere. This process is divided into three

main phases:

(i) Centroid displacement. For each cluster, its centroid is dislocated to the position with higher observation density, i.e.,

the mean of its observations.

(ii) Linear inflation of concentric hyperspheres. Linear inflation occurs on each centroid by progressively increasing an initial

hypersphere radius,

R0 ¼ log10 Ci � xmaxk k
2
þ 1

� �

; ð1Þ

where Ci is the centroid of the i-th cluster, used as a pivot, and xmax is its farthest observation, such that Ci � xmaxk k
2 is

the radius of the cluster centered in Ci. The radius of the cluster grows up in the form of an arithmetic progression (AP)

with common difference equal to R0. The increasing of the hypersphere is set by a criterion based on positive variation

of the observation density between two consecutive inflations, defined as the inverse of variance; otherwise the pro-

cess is stopped.

(iii) Cluster merging. If there is more than one centroid inside the inflated hypersphere, they are merged to create a unique

representative centroid positioned at the mean of the chosen centroids. On the other hand, if only the pivot centroid is

within the inflated hypersphere, this centroid is assumed to be on the geometric center of a cluster, thus the merging

is not performed.

For completeness, Fig. 2 presents an example of the ACH algorithm applied to a three-cluster scenario with a five-centroid

initial solution. First, in Fig. 2a, the centroids are moved to the center of their clusters, as indicated in the first phase. In Fig. 2b

and c, two centroids are merged to form one cluster, as they are within the same inflated hypersphere. On the other hand, in

Fig. 2d only the pivot centroid is located in the center of a cluster, therefore the ACH algorithm does not perform the merging

process. In the case where the merging occurs, all centroids analyzed before are evaluated again to infer if the new one is not

poorly positioned in another cluster or closer to a boundary region.

X
2

X1

X
2

X1

X
2

X1

X
2

X1

Fig. 2. ACH algorithm using linear inflation running in a three-cluster scenario.

200 M. Silva et al. /Mechanical Systems and Signal Processing 92 (2017) 196–212



The Algorithm 1 summarizes the proposed algorithm. Initially, it identifies the observations belonging to each cluster and

moves the centroids to the mean of their observations. Then, a hypersphere is built on the pivot centroid and it is inflated

until the observation density decreases. Finally, the centroids within a hypersphere are merged, by replacing these centroids

by only one centroid positioned at the mean of them. The process is repeated until one convergence criterion be satisfied, i.e.

there is no centroid merging after the evaluation of all centroids or the final solution is composed by only one centroid.

Note that, the main goal of the clustering step is to maximize the observation density related to each cluster. In other

words, locating the positions with maximum observation concentration, also known as mass center, in such manner that

when a hypersphere starts to inflate its radius, it reaches the decision boundaries of the cluster. This process is described

by maximizing the cost function

max
X

K

k¼1

X

xi2Ck

xi � Ckk k
2

Nk

 !�1

;

s:t: n ¼
X

K

k¼1

Nk;

1 6 Nk 6 n;

ð2Þ

where Ck is the k-th centroid, xi is the i-th observation assigned to the k-th cluster, and Nk is the number of observations in

the cluster k. The clustering procedure naturally carries out the optimization of the cost function by means of density eval-

uation, thus its direct computation is not necessary. The convergence is guaranteed by gradual decreasing of the observation

density as the hypersphere keeps inflating. More theoretical details and complexity analysis are provided in Appendixes A

and B, respectively.

Algorithm 1. Summary of the ACH algorithm.

1 calcIndexes(C;X)

2 while not cover all elements of C do

3 move(C;X)

4 cpivo ¼ nextCenter(C)

5 radiusinit ¼ calcRadius(cpivo;X)

6 radius; density0; density1; delta0; delta1 ¼ 0

7 repeat

8 radius ¼ radiusþ radiusinit
9 H ¼ calcHypersphere(C; cpivo;X; radius)

10 density0 ¼ density1
11 density1 ¼ calcDensity(H)

12 delta0 ¼ delta1
13 delta1 ¼ density0 � density1j j

14 until delta0 > delta1ð Þ;

15 reduce(C;H)

16 if merging occurred then

17 calcIndexes(C;X)

18 end if

19 end while

3.2. Initialization procedures

Three procedures can be employed to choose the initial centroids, depending on the application. The random initialization

is performed by choosing p < n distinct observations from the training matrix as initial centroids. This is quite similar to the

initialization procedure often used in the K-means algorithm [54].

To accomplish a deterministic clustering, two nonstochastic initializations are presented as well. The first one performs

an eigenvector decomposition to create as many centroids as the number of observations in the training set, through a divi-

sive procedure, quite similar to the one described in [55]. Primarily, the mean value of all data points is divided in other two

points generated by

ynew ¼ y� Ui

ffiffiffiffiffiffiffiffiffiffi

2
T i;i

p

r

; ð3Þ

M. Silva et al. /Mechanical Systems and Signal Processing 92 (2017) 196–212 201



where Ui and T i;i are the most significant eigenvector and eigenvalue, respectively, and y is the point being divided. Each new

point is divided in other two points in opposite directions placed around dense regions of the feature space. The process is

repeated until the number of points is equal to p; then they are used as initial centroids. At the end of this divisive procedure,

each point has moved towards the regions of higher concentration of observations, benefiting posterior clustering

approaches. The second nonstochastic initialization divides the training matrix uniformly and chooses equally spaced obser-

vations as the initial centroids. The gap between each chosen observation is a factor of the number of training observations,

usually equal to n=pd e. The selected observations are used as initial centroids. The parameter p, in all cases, can be equal to

n=2d e.

3.3. Structural damage classification

After the definition of the optimal number of clusters embedded in the training data, the damage detection process is car-

ried out through a global damage indicator (DI) estimated for each test observation. The DIs are generated through a method

known as distributed DIs [19]. Basically, for a given test feature vector, zi, the Euclidean distance for all centroids is calcu-

lated, where the DI(i) is considered the smallest distance,

DIðiÞ ¼min zi � C1k k; zi � C2k k; . . . ; zi � CKk kð Þ; ð4Þ

where C1;C2; . . . ;CK are the centroids of K different clusters. Then, a linear threshold corresponding to a certain percentage of

confidence over the training data must be determined. In this study, the threshold is defined for 95% confidence on the DIs

taking into account only the baseline data used in the training process. Thus, if the ACH has learned the baseline condition,

i.e., the identified clusters suitably represent the undamaged condition under all possible operational and environmental

influences, then it is statistically guaranteed, approximately, 5% of misclassifications in the DIs derived from undamaged

observations not used for training.

4. Test structure description

The Z-24 Bridge was a standard post-tensioned concrete box girder bridge composed of a main span of 30 m and two

side-spans of 14 m, as shown in Fig. 3a. The bridge, before complete demolition, was extensively instrumented and tested

with the aim of providing a feasibility tool for vibration-based SHM in civil engineering. A long-term monitoring test was

carried out, from 11th of November 1997 to 10th of September 1998, resulting in four natural frequencies and 3932 obser-

vations, where the first 3470 observations are correlated to undamaged condition and the last 462 correspond to damaged

condition progressively introduced in this structural system. One should note that the bridge was intensively influenced by

thermal variations caused by freezing temperatures [56].

To verify the applicability of the proposed approach for long-term monitoring, hourly monitoring data from an array of

accelerometers are used to extract damage-sensitive features, which yields a feature vector (observation) per hour. A

reference-based stochastic subspace identification method was developed to extract the natural frequencies [57].

The use of observations related to the baseline condition in the statistical modeling phase (training), implies the appli-

cation of the proposed approach in an unsupervised mode. The training matrix permits the algorithm to learn the underlying

distribution of the observations affected by environmental and operational variability. As shown in Fig. 3b, the training

matrix X (1–3123 observations) is defined with almost 90% of the feature vectors from the undamaged condition, corre-

sponding to approximately one-year monitoring period. On the other hand, the remaining 10% of the undamaged feature

vectors are used, along with the damaged ones and the training data, to build a test matrix Z (1–3932 observations) for

the test phase to make sure that the DIs do not fire off before damage starts to appear.

In addition, to evaluate the performance of the ACH algorithm in handling a limited amount of training data, and for

visual purposes, a daily data set from the same structure is used. This data set corresponds to daily monitoring data mea-

sured at 5 a.m. (because of the lower differential temperature on the bridge), yielding a unique feature vector per day of

operation. Then, the same modal analysis procedure used in hourly data set was applied to extract the natural frequencies.

The automatic procedure was only able to estimate the first three frequencies with high reliability, which outputs a three-

dimensional feature vector per day [19]. During the feature extraction process, it was observed that the first and the third

natural frequencies are strongly correlated (with a correlation coefficient of 0.94), which permits one to perform dimension

reduction of the extracted feature vectors from three to two. The first two natural frequencies and their corresponding fea-

ture distribution in two-dimensional space are depicted in Fig. 4. The marked observations were extracted under ambient

temperature below 0 �C.

Note that the last 37 observations correspond to the damage progressive testing period, which is highlighted, especially in

the second frequency, by a clear drop in the magnitude. Observations 1–198 are related to baseline condition, even though

under operational and environmental variability. The observed jumps in the natural frequencies are related to the asphalt

layer in cold periods, which contributes significantly to the stiffness of the bridge. The heterogeneity among observations

in a two-dimensional space is evidenced in Fig. 4b, which suggests the existence of groups that can be found through

cluster-based methods. In conclusion, the corresponding training matrix X (1–198 observations) is defined with approxi-

mately 83% of all observations, while the test matrix Z (1–235 observations) is assigned with the entire data set.
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5. Results and discussion

In this section, the performances of the ACH-, MSD-, and GMM-based approaches are compared on the basis of Type I and

Type II errors as well as on their capabilities to filter nonlinear changes, when dealing with operational and environmental

effects. Additionally, to determine which initialization procedure is more suitable to be employed with the ACH algorithm, a

comparative study is carried out. Although the ACH- and MSD-based approaches do not require any input parameter, the

GMM works through some predefined configurations and input values. The MSD- and GMM-based approaches were set

as described in [19].

5.1. Comparative study of the initialization procedures

In order to perform a comparative study, the ACH was independently executed for the aforementioned three initialization

procedures. Table 1 summarizes the Type I and Type II errors for all types of initializations. The random initialization makes

the ACH more sensitive to detect abnormal conditions as expressed by the low number of Type II errors (4); however, it is

penalized with a high number of Type I errors (220), demonstrating a loss of generalization capability. An alternative behav-

ior is reached when deterministic initialization procedures are applied (uniform and divisive). Basically, the uniform initial-

ization demonstrates a high degree of generalization and robustness to fit the normal condition at the cost of losing
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sensitivity to detect anomalies, as given by a relatively high number of Type II errors (19). On the other hand, the divisive

initialization establishes a trade-off between generalization and sensitivity, reaching a low number of Type II errors (6)

and maintaining an acceptable number of Type I errors (188), which indicates effectiveness to model the normal condition

and to overcome the nonlinear effects. Furthermore, one can figure out that, for levels of significance around 5%, both ran-

dom and divisive initializations are indicated, especially when the minimization of Type II errors is a critical issue.

The DIs for the entire test data are highlighted in Fig. 5, regarding each initialization procedure, along with a threshold

defined over the training data. Excepting when the ACH is initialized with the uniform procedure, it outputs a monotonic

relationship between the amplitude of DIs and the level of degradation accumulated on the bridge over the time. In

Fig. 5b the freezing effects are highlighted by clear peaks in the DIs related to the data used in the training phase, indicating

that the uniform initialization does not allow an appropriate filtering of nonlinear effects. Note that a nonlinear effect is not

necessarily related to a damaged condition; it may arise from a normal variation of physical parameters on the structure not

taken into account during the training phase. On the other hand, when damage is presented in the form of an orthogonal

Table 1

Number of clusters (K) as well as number and percentage of Type I and Type II errors for each ACH initialization procedure using the hourly data set from the Z-

24 Bridge.

Initialization K Type I Type II Total

Random 5 220 (6.34%) 4 (0.86%) 224 (5.69%)

Uniform 6 159 (4.58%) 19 (4.11%) 178 (4.52%)

Divisive 3 188 (5.41%) 6 (1.29%) 194 (4.93%)
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Fig. 5. DIs estimated via the ACH for different initialization procedures along with a threshold defined over the training data: (a) random-, (b) uniform-, and

(c) divisive-based initialization procedures.
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component that diverges from the normal condition under common operational and environmental factors, it is detected as

a non-observed effect, i.e. an anomaly condition.

In relation to the number of data clusters, the ACH was able to find six, five, and three clusters when coupled with

uniform, random and divisive initializations, respectively, as summarized in Table 1. Furthermore, the random and divisive

initializations demonstrate to be more appropriate due to their potential to benefit the clustering step, providing a proper

learning of the normal condition, even when operational and environmental variability is present. However, considering

the best model as the one that establishes a trade-off between minimization of the number of errors using less clusters

as possible, the divisive initialization is the most suitable procedure, as it accomplishes reliable results using a small number

of clusters, being more indicated when one wants to reach a balance of sensitivity and specificity rates.

5.2. Damage detection with hourly data set from the Z-24 Bridge

For comparison purposes with algorithms from the literature, the ACH coupled with divisive initialization is chosen to

accomplish a study along with MSD- and GMM-based approaches. Therefore, to quantify the classification performance,

the Type I and Type II errors for the test matrix are presented in Table 2. Basically, for a level of significance around 5%,

the ACH presents the best results in terms of total number of misclassifications, with less than 5% of the entire test data.

On the other hand, the MSD provides the worst result, misclassifying, roughly, 9% of the entire test data. In turn, the

GMM shows an intermediate performance, attaining 5:59% of misclassified observations. Nevertheless, the MSD has the

smaller number of Type I errors when compared to the alternative ones. However, it demonstrates an inappropriate level

of sensitivity to damage, which for high capital expenditure engineering structures is unacceptable due to the catastrophic

consequences it may cause (e.g. undetected failures may cause human losses). Concerning the ACH and GMM, one can verify

that both provide a high sensitivity to damage, although the ACH presents the smaller amount of misclassifications. In terms

of generalization, the ACH attains the best results when compared to the GMM, as one can infer by the minimization of Type I

errors.

To evaluate the performance of the ACH to model the normal condition, and to establish comparisons, the DIs are shown

in Fig. 6. As mentioned before, the ACH outputs a monotonic relationship between the amplitude of DIs and the damage level

accumulation, whereas the GMM fails to establish this relationship. In the case of the MSD-based approach, patterns in the

DIs caused by the freezing effects can be pointed out, which indicates this approach is not able to properly attenuate the

effects of environmental variations; thus, it demonstrates to be not effective to model the normal condition.

Furthermore, in relation to the ACH- and GMM-based approaches, only the first one maintains the aforesaid monotonic

relationship, even when operational and environmental variability is present, as highlighted in Fig. 7. Nonetheless, the GMM

misclassified undamaged observations throughout the track of observations not used in the training phase, indicating an

inadequate learning of the normal condition. On the other hand, all misclassified undamaged observations accomplished

by the ACH are grouped in a well known fuzzy region that may exist in the boundary frontiers of the quasi-circular clusters.

This is explained by the nature of the ACH-based approach. Although the ACH aims to find out radially symmetric clusters,

some clusters describe quasi-circular groups of similar observations that present, in their decision boundaries, sparse regions

which represent a gradual change of some structural state.

In terms of the number of clusters, the GMM finds seven clusters (K ¼ 7). However, the ACH accomplishes the best results

with only three clusters (K ¼ 3), indicating that the GMM has generalization problems, which can be explained by a ten-

dency of overfitting caused by a high number of clusters. When evaluating cluster-based approaches, a trade-off between

good fitting and low number of clusters is required, as the high number of clusters may lead to an overfitting; conversely,

low number of clusters may conduct to an underfitting.

5.3. Damage detection with daily data set from the Z-24 Bridge

To establish further comparisons between the ACH and GMM, an additional study taking into account a limited amount of

training data is carried out in the two-dimensional feature space. For all 235 observations from the daily data set, three cen-

troids corresponding to the same number of clusters (K = 3) are plotted in Fig. 8a, as suggested by the ACH algorithm using

the divisive initialization procedure. As indicated in Table 3, the first cluster is centered at (3.96, 5.18), attracting around 73%

of all assigned data. This cluster is possibly related to the baseline condition obtained under small environmental and

operational influences. The second cluster is centered at (4.21, 5.39) and it is assigned with 12% of the observations and

may be related to changes in the structural response derived from stiffness changes in the asphalt layer caused by freezing

Table 2

Number of clusters (K) as well as number and percentage of Type I and Type II errors for each approach using the hourly data set from the Z-24 Bridge.

Approach K Type I Type II Total

ACH 3 188 (5.41%) 6 (1.29%) 194 (4.93%)

MSD 1 162 (4.66%) 191 (41.34%) 353 (8.97%)

GMM 7 210 (6.05%) 10 (2.16%) 220 (5.59%)
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Fig. 6. DIs along with a threshold defined over the training data: (a) ACH-, (b) MSD-, and (c) GMM-based approaches.
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temperature. Below 0 �C, the Young’s modulus of asphalt rapidly increases and slightly changes the elastic properties of the

structure [44]. The third cluster is positioned in the lower region of the feature space centered at (3.85, 4.73). It embeds

around 15% of the entire observations and it is related to the space region assigned to the damaged condition. As demon-

strated in [19], these results suggest the possibility to correlate physical states of the structure with a finite and well defined

number of main data clusters. Figueiredo et al. [19] showed the existence of this phenomenon which is explained by the

natural grouping of similar observations in certain regions of the feature space.

Comparing the results from the ACH- and the GMM-based approaches, one may verify the similarity of the results in

Table 3, with exception for a little difference of the third cluster related to damaged condition. In all cases, the hyperspheres

stop their inflation close to the regions of less observation concentration from each cluster, highlighting that the boundary

regions are located close to the border of each hypersphere.

The challenges to simulate damage in real-world infrastructures are well-known, namely due to: the one-of-a-kind struc-

tural type, the cost associated with the simulation of damage in those infrastructures, and the infeasibility to cover all dam-

age scenarios [19,58]. Therefore, the application of unsupervised approaches is often required as long as the existence of data

from the undamaged condition is known a priori. Thus, and for real-world practical applications, the centroids defined by the

ACH-based approach are shown in Fig. 8b, taking into account only feature vectors from the baseline condition (1–198 obser-

vations). In this case, Table 4 indicates two clusters positioned close to each other. The hyperspheres inflate until the low

observation density is reached, suggesting two main data clusters. Comparing the results obtained from the ACH- and

GMM-based approaches [19], one can verify differences between clusters location by a relative shift in their positions.

Table 4

Comparison of the parameter estimation using the ACH and EM algorithms on the baseline condition

of daily data (1–198) from the Z-24 Bridge (standard errors smaller than 10e� 003).

Approach Description Cluster 1 Cluster 2

ACH Weight (%) 95 5

Mean (Hz) (4.17, 5.23) (4.30, 5.55)

EM Weight (%) 82 18

Mean (Hz) (3.97, 5.18) (4.22, 5.39)
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Fig. 8. Centroids estimated via the AHC along with daily observations from the Z-24 Bridge: (a) all 235 observations; (b) 1–198 observations corresponding

to the baseline condition.

Table 3

Comparison of the parameter estimation using the ACH and EM algorithms on the entire daily data set (1–235) from the Z-24 Bridge (standard errors smaller

than 10e� 003).

Approach Description Cluster 1 Cluster 2 Cluster 3

ACH Weight (%) 73 12 15

Mean (Hz) (3.96, 5.18) (4.21, 5.39) (3.85, 4.73)

EM Weight (%) 69 16 15

Mean (Hz) (3.97, 5.19) (4.20, 5.37) (3.86, 4.83)
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The DIs obtained from test matrix Z (1–235 observations) are highlighted in Fig. 9. It shows, once again, that the

ACH-based approach outputs a monotonic relationship between the amplitude of DIs and the damage level accumulation.

On the other hand, the GMM has a poor performance when attempting to establish the aforementioned relationship. To

quantify the classification performance, Table 5 summarizes the Type I and Type II errors for the test matrix. Basically, for

a level of significance around 5%, the ACH- and GMM-based approaches have the same classification performance, reaching

a total amount of errors equal to 4:25%. These results are quite similar due to the adopted function to evaluate the

observation density within the inflated hypersphere.

6. Conclusions

This paper proposed a novel unsupervised and nonparametric cluster-based algorithm (ACH) for structural damage detec-

tion in engineering structures under varying and unknown conditions. In particular, the ACH was compared to two alterna-

tive parametric cluster-based approaches extensively studied in the literature (MSD and GMM), through their application on

standard data sets from the Z-24 Bridge. This structure was under known environmental and operational influences, which

caused changes in its structural dynamics.

In terms of general analysis, the ACH-based approach demonstrated to be as effective and robust as the GMM-based one

to detect the existence of damage, and potentially more effective to model the baseline condition and to attenuate the effects

of the operational and environmental variability, as suggested by the monotonic relationship between the amplitude of DIs

and the gradual increasing of damage level.

In terms of theory formulation, the proposed approach is output-only, which implies that it is not required any informa-

tion about variability sources, only the damage-sensitive features need to be extracted from the measured response data.

Moreover, the ACH assumes no particular underlying distribution and it is conceptually simpler to be deployed in real-

world applications, when it is not possible to make any assumption about the distribution of monitoring data. On the other

hand, the GMM assumes the existence of Gaussian distributions and the EM converges toward a local optimum; while the

MSD imposes the data to follow a unique multivariate normal distribution. Additionally, the ACH does not require any input

parameter, it automatically finds the number of clusters and can be implemented as a totally deterministic approach,

depending on the initialization procedure employed (divisive and uniformly). However, as each iteration of the ACH accom-

plishes a local optimization, the initialization may affect the clustering results.

This approach stands up as a relevant contribution to cluster-based models, even when dealing with a limited amount of

training data, because of the completely automatic and nonparametric nature, allowing its application in scenarios where

there is no prior knowledge about the structural condition.
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Fig. 9. DIs for daily observations from the Z-24 Bridge along with a threshold defined over the training data: (a) ACH- and (b) GMM-based approaches.

Table 5

Number and percentage of Type I and Type II errors for ACH- and GMM-based approaches using the daily data set from the Z-24

Bridge.

Approach Type I Type II Total

ACH 10 (5.07%) 0 (0.0%) 10 (4.25%)

GMM 10 (5.07%) 0 (0.0%) 10 (4.25%)
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Appendix A. Theoretical properties

To demonstrate a reliable proof of convergence for the ACH algorithm, it is necessary to provide some intuition about data

distribution in the worst case and the corresponding behavior of the ACH. Since X 2 Rn�m is composed of the training exam-

ples and C is composed of K centroids disposed in the feature space, it is possible to infer two propositions inherent to the

model with higher computational cost. The first proposition concerns to the maximum number of necessary iterations to the

most external loop (lines 2 to 19 in Algorithm 1) before convergence.

Proposition 1. Assuming that C is composed of non empty clusters C1;C2; . . . ;CK 2 R
m, admitting the same operations such as

Ci#C and X has only one real data cluster to be defined, then among the K! possible permutations of centroids there is at least one

which makes necessarily K2
þK�2
2 iterations before the algorithm converges.

Proof. Since C admits anyone of the K! combinations of its elements, there is unless one to keep the centroids distributed on

the feature space in a such manner that the algorithm needs K þ ðK � 1Þ þ ðK � 2Þ þ � � � þ 2 ¼ K2
þK�2
2

loops to determine only

one cluster describing the actual data shape. This occurs due to the algorithm merges only two clusters per iteration, in the

worst case, forcing the algorithm to check all the clusters previously verified. h

The second proposition derives from the first and establishes a limit of iterations to the most internal loop (lines 7 to 14 in

Algorithm 1), defining the number of hyperspheres in the same cluster.

Proposition 2. Being the increment value of the hypersphere radius defined by Eq. (1) (Section 3.1) and Ci close to the geometric

center of the cluster, then the maximum number of hyperspheres Hy, before the algorithm converges, is given by

Hy 6
maxð Ci � xk kÞ

R0

� �

; 8x 2 X: ðA:1Þ

Proof. When a centroid is positioned on the center of a real cluster (or in its neighborhood), the hypersphere radius

increases as an AP with a common difference equal to R0. Thus, one can naturally conclude that the hypersphere radius is

never greater than the cluster radius. When the hypersphere reaches the border of the cluster, more sparser are the

observations, which reduces the observation density compared to the last iteration performed by the ACH, leading to the

convergence of the algorithm. h

Appendix B. Complexity proof

Based on previous propositions, this section provides the asymptotic complexity proof of Algorithm 1. However, before

starting the analysis, some required cost information is introduced. To estimate a superior limit it is necessary to associate a

maximum cost value to the execution of each instruction line. For each simple line (e.g. arithmetic operations and logic com-

parisons) it is assumed a constant value equal to one. On the other hand, for lines with function calls, the cost is calculated

based on some analytical considerations.

Initially, one should analyze the lines with constant cost. The line 1 classifies each observation as belonging to a cluster,

giving a cost equal to K � n. In similar manner, to dislocate K centroids it is imperative to evaluate n observations in an

m-dimensional space. Thus, the line 3 assumes a cost equal to the product between the feature space dimension m and

the number of training data points n added to the number of centroids K. The line 4 is responsible for selecting the current

pivot centroid. If none merges occurred in the last iteration, the next centroid in the set C is selected, otherwise the first

centroid is chosen. For this line a constant cost is also assumed.

To compute a cluster radius, in the worst case, it is necessary evaluate n� 1 observations. In this case, the line 5 has a

complexity of n� 1. The line 9 indicates which points are inside the hypersphere, being necessary analyze all n points in

the training matrix X, yielding a cost equal to n. In a similar manner, to compute the observation density of a hypersphere,

the line 11 needs a maximum of n�m iterations before convergence.

The function in the line 15 analyzes all centroids in each iteration to define which ones can be merged. This process

results in a cost equal to jCj. In the line 17, a new function call to calcIndexes is made. As the number of centroids may be

reduced over the iterations, this line cost depends on the cardinality of the set C. However, asymptotically, one can apply

the same cost assumed to the line 1.
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To understand the maximum complexity estimated in the line 9, the Proposition 2 discussed previously is required. It is

assumed that, when there is only one cluster defined on the data and K > 1, the maximum number of built hyperspheres

depends on the cluster radius. Therefore, the number of iterations in the line 9, in the worst case, is equal to maxð Ci�xk kÞ

R0

l m

.

In a solution with K centroids it is possible to infer successive mergings performed two by two until one centroid remains.

In this case, after each merge, all clusters are revalidated. Thereby, the cost is equivalent to an AP with common difference

and initial term equal to two and one, respectively.

Adding the cost of all terms and multiplying those inside loops by the maximum number of iterations in Proposition 1,

one can compute

FðK;n;mÞ ¼
K2
þ K � 2

2

 !

ðn� 1Þ þ 7þ Hyðmnþ nþ 4Þ þ
ðnþ 1ÞðK2

þ K � 2Þ

2

 !

þ nK þ nmþ K;

ordering and excluding terms of less asymptotic order,

FðK;n;mÞ ¼
nK2
� K2

þ 7K2
þ nmK2Hy þ 4K2Hy þ 2nK þ 2nmþ 2K

2

 !

þ
nK4
þ K4

þ 2nK3
þ 2K3

þ K2
þ 4

4

 !

�
3nK2

þ 4nK þ 4K þ 4n

4

 !

;

< nmK2Hy þ nK4
þ 2nK3

þ nK2
þ K4

þ 4K2Hy þ 2K3

þ 6K2
þ 2nmþ 2nK þ K2

þ 2K þ 4� 3nK2
� 4nK � 4n� 4K;

< nmK2Hy þ nK4
þ 2nK3

þ nK2
þ K4

þ 4K2Hy þ 2K3
þ 2nm

þ 2nK þ 6K2
þ K2

þ 2K:

Initially, one may suppose the term nK4 as the one with highest complexity order. However, the asymptotic curve of the

term nmK2Hy is higher due to K � m. Substituting Hy and R0

FðK;n;mÞ ¼ nmK2Hy;

¼ nmK2 maxð Ci � xk kÞ

R0

� �

;

¼ nmK2 maxð Ci � xk kÞ

log10 Ci � xmaxk k þ 1ð Þ

� �

;

’ nmK2 maxð Ci � xk kÞ

log10 Ci � xmaxk k þ 1ð Þ
:

In the worst case, due to only one distribution fits the entire data (i.e. K ¼ 1) it is assumed

D ¼ max Ci � xk kð Þ ¼ Ci � xmaxk k, then

FðK;n;mÞ ¼ nmK2 D

log10 Dþ 1ð Þ
;

¼ nmK2log10 Dþ 1ð Þ
�D:

Finally, one can conclude the algorithm computational complexity as

O nmK2
� �

:

When K � n, the asymptotic complexity becomes a third order function. This is a little worse than most of the traditional

cluster-based algorithms in literature, such as k-means and fuzzy c-means [59]. However, the agglomerative characteristic of

the ACH allows to model, at the same time, the data shapes and discover the optimal number of clusters. This can be pointed

out as an advance over other clustering approaches that require offline mechanisms to infer the number of clusters.

References

[1] E. Figueiredo, I. Moldovan, M.B. Marques, Condition Assessment of Bridges: Past, Present, and Future – A Complementary Approach, Universidade
Católica Editora, Portugal, 2013.

[2] J. Lee, K. Sanmugarasa, M. Blumenstein, Y.-C. Loo, Improving the reliability of a bridge management system (BMS) using an ANN-based backward
prediction model (BPM), Autom. Construct. 17 (6) (2008) 758–772, http://dx.doi.org/10.1016/j.autcon.2008.02.008.

[3] H. Wenzel, Health Monitoring of Bridges, John Wiley & Sons, Inc., United States, 2009.

210 M. Silva et al. /Mechanical Systems and Signal Processing 92 (2017) 196–212



[4] C.R. Farrar, K. Worden, An introduction to structural health monitoring, Philos. Trans. Roy. Soc.: Math. Phys. Eng. Sci. 365 (1851) (2007) 303–315,
http://dx.doi.org/10.1098/rsta.2006.1928.

[5] A. Miyamoto, K. Kawamura, H. Nakamura, Development of a bridge management system for existing bridges, Adv. Eng. Softw. 32 (10–11) (2001) 821–
833, http://dx.doi.org/10.1016/S0965-9978(01)00034-5.

[6] A. Estes, D. Frangopol, Updating bridge reliability based on bridge management systems visual inspection results, J. Bridge Eng. 8 (6) (2003) 374–382,
http://dx.doi.org/10.1061/(ASCE)1084-0702(2003)8:6(374).

[7] V. Gattulli, L. Chiaramonte, Condition assessment by visual inspection for a bridge management system, Comput.-Aid. Civil Infrastruct. Eng. 20 (2)
(2005) 95–107, http://dx.doi.org/10.1111/j.1467-8667.2005.00379.x.

[8] K. Worden, C.R. Farrar, G. Manson, G. Park, The fundamental axioms of structural health monitoring, Philos. Trans. Roy. Soc.: Math. Phys. Eng. Sci. 463
(2082) (2007) 1639–1664, http://dx.doi.org/10.1098/rspa.2007.1834.

[9] E. Figueiredo, E. Cross, Linear approaches to modeling nonlinearities in long-term monitoring of bridges, J. Civil Struct. Health Monit. 3 (3) (2013) 187–
194, http://dx.doi.org/10.1007/s13349-013-0038-3.

[10] C.R. Farrar, S.W. Doebling, D.A. Nix, Vibration-based structural damage identification, Philos. Trans. Roy. Soc.: Math. Phys. Eng. Sci. 359 (1778) (2001)
131–149, http://dx.doi.org/10.1098/rsta.2000.0717.

[11] F.N. Catbas, M. Gul, J.L. Burkett, Conceptual damage-sensitive features for structural health monitoring: laboratory and field demonstrations, Mech.
Syst. Signal Process. 22 (7) (2008) 1650–1669, http://dx.doi.org/10.1016/j.ymssp.2008.03.005.

[12] A. Cury, C. Cremona, J. Dumoulin, Long-term monitoring of a psc box girder bridge: operational modal analysis, data normalization and structural
modification assessment, Mech. Syst. Signal Process. 33 (2012) 13–37, http://dx.doi.org/10.1016/j.ymssp.2012.07.005.

[13] J. Kullaa, Distinguishing between sensor fault, structural damage, and environmental or operational effects in structural health monitoring, Mech. Syst.
Signal Process. 25 (8) (2011) 2976–2989, http://dx.doi.org/10.1016/j.ymssp.2011.05.017.

[14] H. Sohn, Effects of environmental and operational variability on structural health monitoring, Philos. Trans. Roy. Soc.: Math. Phys. Eng. Sci. 365 (1851)
(2007) 539–560, http://dx.doi.org/10.1098/rsta.2006.1935.

[15] Y. Xia, B. Chen, S. Weng, Y.-Q. Ni, Y.-L. Xu, Temperature effect on vibration properties of civil structures: a literature review and case studies, J. Civil
Struct. Health Monit. 2 (1) (2012) 29–46, http://dx.doi.org/10.1007/s13349-011-0015-7.

[16] N. Dervilis, K. Worden, E. Cross, On robust regression analysis as a means of exploring environmental and operational conditions for shm data, J. Sound
Vib. 347 (2015) 279–296, http://dx.doi.org/10.1016/j.jsv.2015.02.039.

[17] M. Spiridonakos, E. Chatzi, B. Sudret, Polynomial chaos expansion models for the monitoring of structures under operational variability, ASCE-ASME J.
Risk Uncert. Eng. Syst. Part A: Civil Eng. 2 (3). doi:http://dx.doi.org/10.1061/AJRUA6.0000872.

[18] K. Worden, G. Manson, The application of machine learning to structural health monitoring, Philos. Trans. Roy. Soc.: Math. Phys. Eng. Sci. 365 (1851)
(2007) 515–537, http://dx.doi.org/10.1098/rsta.2006.1938.

[19] E. Figueiredo, L. Radu, K. Worden, C.R. Farrar, A Bayesian approach based on a Markov-chain Monte Carlo method for damage detection under
unknown sources of variability, Eng. Struct. 80 (0) (2014) 1–10, http://dx.doi.org/10.1016/j.engstruct.2014.08.042.

[20] C.R. Farrar, K. Worden, Structural Health Monitoring: A Machine Learning Perspective, John Wiley & Sons, Inc, Hoboken NJ, United States, 2013.
[21] A. Diez, N.L.D. Khoa, M. Makki Alamdari, Y. Wang, F. Chen, P. Runcie, A clustering approach for structural health monitoring on bridges, J. Civil Struct.

Health Monit. (2016) 1–17, http://dx.doi.org/10.1007/s13349-016-0160-0.
[22] S. da Silva, M.D. Júnior, V.L. Junior, M.J. Brennan, Structural damage detection by fuzzy clustering, Mech. Syst. Signal Process. 22 (7) (2008) 1636–1649,

http://dx.doi.org/10.1016/j.ymssp.2008.01.004.
[23] A. Santos, E. Figueiredo, J. Costa, Clustering studies for damage detection in bridges: a comparison study, in: Proceeding of 10th International

Workshop on Structural Health Monitoring, 2015, pp. 1165–1172, http://dx.doi.org/10.1109/ISDEA.2012.21.
[24] H. Sohn, K. Worden, C.R. Farrar, Statistical damage classification under changing environmental and operational conditions, J. Intell. Mater. Syst. Struct.

13 (9) (2002) 561–574, http://dx.doi.org/10.1106/104538902030904.
[25] T.-Y. Hsu, C.-H. Loh, Damage detection accommodating nonlinear environmental effects by nonlinear principal component analysis, Struct. Control

Health Monit. 17 (3) (2010) 338–354, http://dx.doi.org/10.1002/stc.320.
[26] S. Hakim, H.A. Razak, Modal parameters based structural damage detection using artificial neural networks – a review, Smart Struct. Syst. 14 (2) (2014)

159–189, http://dx.doi.org/10.12989/sss.2014.14.2.159.
[27] E. Figueiredo, G. Park, C.R. Farrar, K. Worden, J. Figueiras, Machine learning algorithms for damage detection under operational and environmental

variability, Struct. Health Monit. 10 (6) (2011) 559–572, http://dx.doi.org/10.1177/1475921710388971.
[28] K. Worden, Structural fault detection using a novelty measure, J. Sound Vib. 201 (1) (1997) 85–101, http://dx.doi.org/10.1006/jsvi.1996.0747.
[29] I. Laory, T.N. Trinh, I.F. Smith, Evaluating two model-free data interpretation methods for measurements that are influenced by temperature, Adv. Eng.

Inform. 25 (3) (2011) 495–506, http://dx.doi.org/10.1016/j.aei.2011.01.001, Special Section: Engineering informatics in port operations and logistics.
[30] K. Worden, J.M. Dulieu-Barton, An overview of intelligent fault detection in systems and structures, Struct. Health Monit. 3 (1) (2004) 85–98, http://dx.

doi.org/10.1177/147592170404186.
[31] F.N. Catbas, H.B. Gokce, M. Gul, Nonparametric analysis of structural health monitoring data for identification and localization of changes: concept, lab,

and real-life studies, Struct. Health Monit. 11 (5) (2012) 613–626, http://dx.doi.org/10.1177/1475921712451955.
[32] A.-M. Yan, G. Kerschen, P.D. Boe, J.-C. Golinval, Structural damage diagnosis under varying environmental conditions – part i: A linear analysis, Mech.

Syst. Signal Process. 19 (4) (2005) 847–864, http://dx.doi.org/10.1016/j.ymssp.2004.12.002.
[33] A.-M. Yan, G. Kerschen, P.D. Boe, J.-C. Golinval, Structural damage diagnosis under varying environmental conditions – part ii: Local pca for non-linear

cases, Mech. Syst. Signal Process. 19 (4) (2005) 865–880, http://dx.doi.org/10.1016/j.ymssp.2004.12.003.
[34] J. Shlens, A tutorial on principal component analysis, Tech. rep., Cornell University, USA, 2002.
[35] A. Deraemaeker, E. Reynders, G.D. Roeck, J. Kullaa, Vibration-based structural health monitoring using output-only measurements under changing

environment, Mech. Syst. Signal Process. 22 (1) (2008) 34–56, http://dx.doi.org/10.1016/j.ymssp.2007.07.004.
[36] M.A. Kramer, Nonlinear principal component analysis using autoassociative neural networks, AIChE J. 37 (2) (1991) 233–243, http://dx.doi.org/

10.1002/aic.690370209.
[37] H. Zhou, Y. Ni, J. Ko, Structural damage alarming using auto-associative neural network technique: exploration of environment-tolerant capacity and

setup of alarming threshold, Mech. Syst. Signal Process. 25 (5) (2011) 1508–1526, http://dx.doi.org/10.1016/j.ymssp.2011.01.005.
[38] A. Mita, H. Hagiwara, Quantitative damage diagnosis of shear structures using support vector machine, KSCE J. Civil Eng. 7 (6) (2003) 683–689, http://

dx.doi.org/10.1007/BF02829138.
[39] N.L. Khoa, B. Zhang, Y. Wang, F. Chen, S. Mustapha, Robust dimensionality reduction and damage detection approaches in structural health monitoring,

Struct. Health Monit. doi:http://dx.doi.org/10.1177/1475921714532989.
[40] A. Santos, E. Figueiredo, M. Silva, C. Sales, J. Costa, Machine learning algorithms for damage detection: kernel-based approaches, J. Sound Vib. 363

(2016) 584–599, http://dx.doi.org/10.1016/j.jsv.2015.11.008.
[41] L. Cheng, J. Yang, D. Zheng, B. Li, J. Ren, The health monitoring method of concrete dams based on ambient vibration testing and kernel principle

analysis, J. Shock Vib. (2015), http://dx.doi.org/10.1155/2015/342358.
[42] C.K. Oh, H. Sohn, I.-H. Bae, Statistical novelty detection within the yeongjong suspension bridge under environmental and operational variations, Smart

Mater. Struct. 18 (12) (2009) 125022.
[43] Z. Yuqing, S. Bingtao, L. Fengping, S. Wenlei, Nc machine tools fault diagnosis based on kernel pca and -nearest neighbor using vibration signals, J.

Shock Vib. (2015), http://dx.doi.org/10.1155/2015/139217.
[44] E. Reynders, G. Wursten, G. De Roeck, Output-only structural health monitoring in changing environmental conditions by means of nonlinear system

identification, Struct. Health Monit. doi:http://dx.doi.org/10.1177/1475921713502836.

M. Silva et al. /Mechanical Systems and Signal Processing 92 (2017) 196–212 211



[45] T. Nguyen, T.H. Chan, D.P. Thambiratnam, Controlled Monte Carlo data generation for statistical damage identification employing Mahalanobis
squared distance, Struct. Health Monit. 13 (4) (2014) 461–472, http://dx.doi.org/10.1177/1475921714521270.

[46] Y.-L. Zhou, E. Figueiredo, N. Maia, R. Sampaio, R. Perera, Damage detection in structures using a transmissibility-based mahalanobis distance, Struct.
Control Health Monit. 22 (10) (2015) 1209–1222, http://dx.doi.org/10.1002/stc.1743.

[47] A. Santos, E. Figueiredo, M. Silva, R. Santos, C. Sales, J.C.W.A. Costa, Genetic-based em algorithm to improve the robustness of gaussian mixture models
for damage detection in bridges, Struct. Control Health Monit. (2016), http://dx.doi.org/10.1002/stc.1886, 00–00.

[48] A. Santos, M. Silva, R. Santos, E. Figueiredo, C. Sales, J. ao C.W.A. Costa, A global expectation-maximization based on memetic swarm optimization for
structural damage detection, Struct. Health Monit. 15 (5) (2016) 610–625, http://dx.doi.org/10.1177/1475921716654433.

[49] S.C. Johnson, Hierarchical clustering schemes, Psychometrika 32 (3) 241–254. doi:http://dx.doi.org/10.1007/BF02289588.
[50] O. Maimon, L. Rokach, Data Mining and Knowledge Discovery Handbook, second ed., Texts and Monographs in Physics, Springer, US, 2010, http://dx.

doi.org/10.1007/978-0-387-09823-4.
[51] P.J.R. Leonard Kaufman, Finding Groups in Data: An Introduction to Cluster Analysis, ninth ed., Wiley-Interscience, 1990, http://dx.doi.org/10.1002/

9780470316801.
[52] M.J. Berry, G. Linoff, Data Mining Techniques: For Marketing, Sales, and Customer Support, John Wiley & Sons, Inc., New York, NY, USA, 1997.
[53] C.D. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval, Cambridge University Press, New York, NY, USA, 2008, http://dx.doi.org/

10.1017/CBO9780511809071.
[54] J.B. MacQueen, Some methods for classification and analysis of multivariate observations, in: L.M.L. Cam, J. Neyman (Eds.), Proc. of the fifth Berkeley

Symposium on Mathematical Statistics and Probability, vol. 1, University of California Press, 1967, pp. 281–297.
[55] G. Hamerly, C. Elkan, Learning the k in k-means, in: Neural Information Processing Systems, MIT Press, 2003, p. 2003.
[56] B. Peeters, G. De Roeck, One-year monitoring of the z24-bridge: environmental effects versus damage events, Earthq. Eng. Struct. Dynam. 30 (2) (2001)

149–171, http://dx.doi.org/10.1002/1096-9845(200102)30:2<149::AID-EQE1>3.0.CO;2-Z.
[57] B. Peeters, G.D. Roeck, Reference-based stochastic subspace identification for output-only modal analysis, Mech. Syst. Signal Process. 13 (6) (1999)

855–878, http://dx.doi.org/10.1006/mssp.1999.1249.
[58] K.Y.K.R.J. Westgate, J.M.W. Brownjohn, Environmental Effects on a Suspension Bridge’s Dynamic Response, Leuven, Belgium, 2011.
[59] S.K.D. Soumi Ghosh, Comparative analysis of k-means and fuzzy c-means algorithms, Int. J. Adv. Comput. Sci. Appl. 4 (4) (2013).

212 M. Silva et al. /Mechanical Systems and Signal Processing 92 (2017) 196–212


	Title page
	Approval sheet
	Acknowledgements
	Contents
	List of Figures
	List of Figures
	List of Tables
	List of Tables
	List of Abbreviations and Acronyms
	List of Abbreviations and Acronyms
	Abstract
	Abstract
	Resumo
	Resumo
	Introduction
	Research context
	Motivation
	Problem
	Related work
	Classical methods
	Kernel-based methods
	Cluster-based methods

	Justification
	Objectives
	Original contributions
	Organization of the thesis

	Statistical pattern recognition paradigm for structural health monitoring
	Main objective of the paradigm
	Operational evaluation
	Data acquisition
	Feature extraction
	Modal parameters
	Autoregressive model

	Statistical modeling for feature classification
	Machine learning algorithms for data normalization
	Mahalanobis squared-distance
	Principal component analysis
	Auto-associative neural network
	Kernel principal component analysis
	Gaussian mixture models

	Outlier detection based on residual errors
	Outlier detection based on central Chi-square hypothesis
	Performance evaluation of feature classification for damage detection

	Challenges for statistical modeling for feature classification

	Summary of original work and discussion
	Methodology for damage detection and quantification
	Papers which compose the thesis and enhancements
	Paper A: Machine learning algorithms for damage detection: Kernel-based approaches
	Paper B: A novel unsupervised approach based on a genetic algorithm for structural damage detection in bridges
	Paper C: A Global Expectation-Maximization Approach Based on Memetic Algorithm for Vibration-Based Structural Damage Detection
	Paper D: A global expectation-maximization based on memetic swarm optimization for structural damage detection
	Paper E: Output-only structural health monitoring based on mean shift clustering for vibration-based damage detection
	Paper F: Agglomerative concentric hypersphere clustering applied to structural damage detection
	Enhancements of the damage detection process

	Comparison between the proposed methods and discussion
	List of publications in the context of the thesis

	Conclusions and future research
	Conclusions
	Future research

	References
	Appendices
	Paper A: Machine learning algorithms for damage detection: Kernel-based approaches
	Paper B: A novel unsupervised approach based on a genetic algorithm for structural damage detection in bridges
	Paper C: A Global Expectation-Maximization Approach Based on Memetic Algorithm for Vibration-Based Structural Damage Detection
	Paper D: A global expectation-maximization based on memetic swarm optimization for structural damage detection
	Paper E: Output-only structural health monitoring based on mean shift clustering for vibration-based damage detection
	Paper F: Agglomerative concentric hypersphere clustering applied to structural damage detection


