Please use this identifier to cite or link to this item: http://repositorio.ufpa.br:8080/jspui/handle/2011/4379
Title: Técnica de controle preditivo baseado em modelo aplicada ao controle de tensão de um gerador síncrono - resultados experimentais
Other Titles: Model based predictive control technique applied to voltage control of a synchronous generator - experimental results
metadata.dc.creator: MOUTINHO, Marcelo Nascimento
BARRA JUNIOR, Walter
COSTA JÚNIOR, Carlos Tavares da
BARREIROS, José Augusto Lima
Keywords: Controle de sistema de potência
Controle adaptativo
Controle preditivo
Estimação recursiva
Issue Date: Oct-2012
Citation: MOUTINHO, Marcelo Nascimento, et al. Técnica de controle preditivo baseado em modelo aplicada ao controle de tensão de um gerador síncrono - resultados experimentais. Sba: Controle & Automação, Campinas, v. 23, n. 5, p. 570-582, set./out. 2012. Disponível em: <http://www.scielo.br/pdf/ca/v23n5/05.pdf>. Acesso em: 08 out. 2013. <http://dx.doi.org/10.1590/S0103-17592012000500005>.
Abstract: This paper presents the results of the experimental evaluation of a digital self-tuning predictive control methodology applied to the voltage control of a small-scale energy generation system. A recursive estimator based on the well known least-squares method is used in the identification stage of the proposed controller. The stage for calculation of the signal control method is performed with the Generalized Predictive Controller (GPC) algorithm. The experimental evaluation was performed using step perturbations applied in different operating conditions of the studied power system. For comparison purposes, the results of the evaluation of a self-tuning controller using the pole-placement method for the control signal formulation and three digital controllers with fixed parameters also will be presented.
URI: http://repositorio.ufpa.br/jspui/handle/2011/4379
ISSN: 0103-1759
Appears in Collections:Artigos Científicos - FEC/ITEC

Files in This Item:
File Description SizeFormat 
Artigo_TecnicaControlePreditivo.pdf663,78 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons