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RESUMO 

 

A modelagem física em escala reduzida de meios fissurados/fraturados em laboratório 

tem servido como uma ótima alternativa para compreender o comportamento de 

meios anisotrópicos. Neste trabalho foram realizadas medidas ultrassônicas em 

amostras com baixas densidades e diferentes razões de aspecto de fissura. O 

objetivo principal se deu em investigar o comportamento dos parâmetros elásticos 

(velocidade das ondas, parâmetros de Thomsen ε e γ) e dos coeficientes do tensor de 

rigidez elástica para meios transversalmente isotrópicos. Comparar os resultados 

obtidos com as previsões feitas pelos modelos de Hudson (1981) e Eshelby-Cheng 

(1993) também foi investigado neste trabalho. Foram confeccionadas doze amostras 

com dois tipos de densidade de fissuras, 5 e 8%. As fissuras que possuem três 

razões de aspecto diferentes (0,133, 0,1778 e 0,2667) eram formadas por inclusões 

de borrachas em uma matriz isotrópica homogênea de resina. Além disso, uma matriz 

puramente isotrópica foi construída apenas por resina epóxi. Dentre todas as 

amostras, seis (três para cada densidade) possuem apenas um tipo de razão de 

aspecto (puras), enquanto outras seis (três para cada densidade) possuem três tipos 

de razões de aspectos diferentes (mistas). Entre as previsões dos modelos, o de 

Eshelby-Cheng (1993) mostra um melhor ajuste em relação aos resultados 

experimentais para as amostras puras (para as duas densidades de inclusões). No 

entanto, nenhum dos modelos prevê com mínima precisão a tendência para as 

amostras mistas.  

 Palavras-chave: Petrofísica. Meios anisotrópicos. Meios fissurados. Modelo de 

Hudson. Modelo de Eshelby-Cheng. 

  

  



ABSTRACT 

 

Physical modeling of cracked / fractured media in downscaled laboratory experiments 

has served as a great alternative for understanding the anisotropic media behavior. In 

this work, it was performed ultrasonic measurements on samples with low crack 

densities and different aspect ratios. The main goal was to investigate the 

experimental behavior of elastic parameters, such as: waves velocities and Thomsen 

parameters ε and 𝛾 and elastic stiffness coefficients for transverse isotropic media. 

Comparison of the results with the predictions made by the effective models of Hudson 

(1981) and Eshelby-Cheng (1993), it was also investigated in this work. Twelve 

samples were prepared with two types of cracks density, 5 and 8%. The cracks that 

have three different aspect ratios (0.133, 0.1778 and 0.2667) were formed by rubber 

inclusions in a homogeneous isotropic matrix resin. Moreover, an isotropic matrix 

sample was constructed by only epoxy resin. Among all samples, six (three for each 

density) have only one aspect ratio type (samples with single crack), while another six 

(three for each density) have three types of different aspect ratio (mixed samples). 

Among the predictions of the models, the Eshelby-Cheng (1993) shows a better fit in 

relation to the experimental results for samples with single crack (for the two densities 

of inclusions). However, none of the models predicts accurately with minimal tendency 

for the mixed samples. 

Key words: Petrophysics. Anisotropic media. Cracked media. Hudson’s model. 

Eshelby-Cheng’s model. 
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CHAPTER 1 

In the subsurface of the earth, in addition to bedding of rock layers with thicknesses 

less than the length of the seismic wave, the anisotropic behavior of a medium may 

also be induced by cracks or fractures preferentially oriented. This type of analysis of 

the presence of cracks and fractures in the subsurface has aroused great interest in 

both the oil industry and academy. In the case of fractured reservoirs, to understand of 

the crack density and aspect ratio is essential to optimize the exploitation and oil 

production (NELSON, 2001). Regions that have fractured preferred orientation induce 

variations in wave velocities (P and S) dependent on the direction of propagation. 

Thus, elastic seismic waves can be used as a tool to determine these orientations or 

crack densities (SAYERS,2007). Due of the need to better understand fractured 

reservoirs, investigations related to anisotropic media have received increasing 

attention from the oil industry (WILD, 2011). 

Because numerical dispersion problems that can be found in the modeling of cracks 

and fractures (COATES;SCHOENBERG, 1995; ZHANG, 2005), usually is done the 

replacement of the cracks and fractures by an effective medium in which the individual 

effect of fractures or cracks can not be performed (SAENGER; SHAPIRO, 2002). 

Using physical modeling the problem of numerical ambiguous answer is not found in 

order that cracks and fractures can be physically simulated by materials having a very 

low shear modulus (e.g. rubber) with different physical characteristics (ASSAD et al., 

1992, 1996). 

Unlike to the numerical modeling, physical modeling of the seismic or ultrasonic data is 

a more accurate simulation method to a seismic investigation. First, a physical model 

is performed in order to simulate a geology desired through a downscale procedure, 

but need careful physical mounting structure and geological bodies using synthetic 

materials whose elastic properties are previously known. Then simulate the seismic 

experiment with the issue of acoustic high-frequency signals (upscale of source 

frequency), such as ultrasound or ultrasonic lasers aimed simulate the wave field 

scattered. 

Anisotropic modeling through experimentally scaled physical modeling is alternatives 

for understand how is the behavior of cracked medium. This alternative is valid 
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because in laboratory measurements are possible to modeling conditions present in 

the field (FIGUEIREDO et al., 2013). Rathore et al., (1995) measured P- and S- in 

manufactures dry samples made of sand-epoxy matrix and compare with Hudson’s 

and Thomsen’s models. Assad (1992, 1996) constructed samples with rubber penny-

shaped inclusions with different crack densities in an epoxy resin matrix. In this work, 

comparisons between the relations of crack density versus Thomsen (1986) 

parameter was performed related to the predictions by Hudson (1981)’s model. The 

series of papers of Figueiredo et al., (2012, 2013) and Santos et al. (2015) show 

physical-modeling experiment with an artificially anisotropic cracked model made with 

a matrix of epoxy resin with inclusions of rubber. Figueiredo et al., (2012) and Santos 

et al. (2015) models that had different fractures orientations, P- and S- waves were 

measured and Thomsen’s parameters were correlated with the fracture orientation. In 

the second the synthetic samples have just one alignment of cracks, but different 

crack density and aspect ratio in order to investigate the effect of source frequency on 

the elastic parameters and shear wave attenuation of the medium.  

In general, effective theoretical models for cracked anisotropic medium to long-wave-

length theories where the response of medium to be homogeneous (Hudson and Liu, 

1999). Eshelby (1957) proposed a model for determination elastic field and the 

problems that involved for isotropic matrix with ellipsoidal inclusion. After this paper, 

Hudson (1981) proposed an effective modulus in an elastic solid with thin, penny-

shaped ellipsoidal cracks or inclusions for low crack density. Lastly, Cheng (1993), 

based on the Eshelby (1957) work, proposed too an effective modulus in an elastic 

solid with ellipsoidal inclusion, that resembles with Hudson (1981), but with different 

considerations. This is a generalization of Hudson (1981) theory in view of the 

Eshelby-Cheng model (1993) there is no limitation about crack aspect ratio.  

In this work were constructed one uncracked sample, as reference, and twelve 

cracked samples. The crack or inclusions were simulated physically by of penny-

shaped rubber inclusions.  Three different aspect ratio crack were used in the cracked 

samples. The samples are divided in two groups of crack density: 5 and 8%. The two 

groups were divided e two sub groups that have same density but different aspect 

ratio cracks. These samples were called by single (single aspect ratio cracks) and mix 

(sample with different aspect-ratio crack). The P- and S- wave records were measured 

as function of the angle of incidence, and then were calculated the velocities, stiffness 
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coefficients of these two Thomsen’s parameters ( and ). After this, comparisons of 

our results with the predictions made by the effective models of Hudson (1981) and 

Eshelby-Cheng (1993), it was performed. 

Is important to highlight that this work has format of paper, for this reason the work has 

a smaller the usual structure of master thesis. However, this dissertation is divided in 

five chapters. The first descripts the crack models (anisotropic media) and effective 

crack models of Hudson (1981) and Eshelby-Cheng (1993). The second explains the 

process of samples preparation and ultrasonic experimental setup. The experimental 

results are shown in third chapter. And the last two chapters show the discussions and 

conclusions about experimental results in comparison with theoretical curves of 

Hudson (1981) and Eshelby-Cheng’s (1993) models. 

 

1.1 Theoretical Background 

This chapter aim to show elastic stiffness coefficients as well as the anisotropic 

parameters associated to the P- and S-waves propagation. Besides, presents the 

theoretical background necessary to understand the theoretical models for cracked 

samples of Hudson (1981) and Eshelby-Cheng (1993), which will be used to compare 

with our experimental results.  

1.2 Crack models description 

Any anisotropic medium can be represented mathematically by the elastic stiffness 

tensor (
eff

ijC ) that is a linearly proportional between the stress applied ( ) on the 

medium and their strain (∈). In simplified notation, the Hooke’s equation is given by:  

 
eff

i ij jC  
.
   (1) 

Theoretical models have their mathematical description of the medium trough the 

effective moduli given by the matrix
eff

ijC . In a transversely isotropic (TI) medium, the 

matrix has five independent constants. In matrix form, the 
eff

ijC  can be representing by: 



16 
 

 

11 12 13

13 33 33 44

13 33 44 33

44

66

66

0 0 0

2 0 0 0

2 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

eff

ij

C C C

C C C C

C C C C
C

C

C

C

 
 

 
 

  
 
 
  
 

  (2) 

In anisotropic media is possible to observer three different modes of wave 

propagation: quasi-longitudinal, quasi-shear, and pure shear. The first type is related 

to the P-wave, in other words, related to P velocity (Vp). It is important to know that Vp 

can change with the angle of incidence of the wave, because, in anisotropic medium, 

when the compressional wave propagates perpendicular to the cracks distribution, the 

Vp is slower than when cracks are parallel. The last two modes of wave propagation 

are related to S-wave. In this case, the particle motions are perpendicular to the 

direction of propagation. The S-wave modes are related to the quasi- and pure- shear 

wave. Both have perpendicular wave-vibration between them. These two modes are 

denominated by: Vs1 and Vs2. Which Vs1 is parallel to crack plane and Vs2 is 

perpendicular to the crack plane. Consequently Vs1 is faster than Vs2. 

The dependence between velocities and the constants of elastic stiffness tensor, is 

given by:  

 11 V² (90º )pC 
 

(3) 

 33 V² (0º )pC 
 

(4) 

 
66 V² (90º )shC   

(5) 

 
44 V² (90º )svC   

(6) 

where is the medium density, VSH=VS1 and VSV=VS2. 

It is well established that Thomsen parameters  and , describes the influence of the 

medium anisotropy on P- and S-wave propagations (Thomsen, 1986). The parameter 

 is related to the velocities of P-wave propagation parallel (VP(90o)) and 

perpendicular (VP(0o)) to the fracture plane. While parameter , is related to the 




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velocities of the orthogonal shear-waves polarizations, S1 and S2. In this work, we are 

using the same notation for   and  as described in Thomsen (1986), 

 
11 33

332

C C

C





 

(7) 

 
66 44

442

C C

C





 

(8) 

1.3 Effective crack models description 

 

Two theoretical effective models to represent cracked media were suggested by 

Hudson (1981) and Eshelby-Cheng (1993). The first relies on cracked model 

represented by a host isotropic matrix filled by aligned penny-shaped ellipsoidal cracks 

with normal axes along of Z direction. The second one relies on theoretical crack 

model suggested by Cheng (1993), which was modified from Eshelby (1957) static 

solutions. 

The Hudson (1981) model is based on scattering-theory analysis of the mean 

wavefield in a solid matrix filled by crack with small aspect ratio. The format of crack 

should assume a penny-shaped ellipsoidal inclusion. The effective moduli eff

ijC  for 

Hudson (1981) cracked model are given as 

 0 1 2eff

ij ij ij ijC C C C    (9) 

where 0

ijC  is the isotropic elastic coefficients (host material), and 1

ijC , 2

ijC  , are the first 

and second correction of elastic moduli, respectively (see Appendix A to see the all 

Hudson’s (1981) model description parameters). Hudson’s model has second-order 

expansion that, besides is not uniformly converting series, predicts increasing moduli 

with crack density beyond the formal limit (Cheng, 1993). Despite this, in this work, 

were used the first and second-order correction. 

The other effective theory investigated in this work was the Eshelby-Cheng (1993) 

model. The effective moduli 𝐶𝑒𝑓𝑓 for a rock containing fluid-filled ellipsoidal cracks are 

given as 
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 0 1eff

ij ij ijC C C   (10) 

where   is the porosity and 1

ijC  the first corrections due crack inclusions (see Appendix 

A to see the all Eshelby-Cheng (1993) model description parameters). 

For all these models assumes an isotropic, homogeneous, elastic background matrix 

and an idealized ellipsoidal crack shape and without connectivity between cracks, this 

is meaning no flow. Both models only support crack density lower that 10 %. All 

samples constructed in this work, attends this supposition. The principal difference 

between Hudson’s and Cheng’s moduli is the first is extremely connected with a very 

small aspect radio while Cheng’s developed for arbitrary aspect ratio.  
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CHAPTER 2 

 

2.1 Experimental procedure  

This chapter presents the experimental procedure for construction as well as the 

ultrasonic measurements in the cracked and uncracked synthetic samples. The main 

goal of these sample constructions is to reproduce in controlled conditions, anisotropic 

media to understand and verify the viability the use of effective anisotropic media 

theories such as Hudson (1981) and Eshelby-Cheng (1993). 

The construction of the cracked samples as well as the ultrasonic measurements was 

carried out at the Laboratory of Petrophysics and Rock Physics–Dr. Om Prakash 

Verma (LPRP) at the Federal University of Pará, Brazil. Under controlled conditions, it 

was constructed twelve cracked samples, divided in two groups of six samples. The 

first group, the crack density was of the 5% while the second, the crack density was of 

the 8 %. In both of groups, cracks in the sample had different aspect ratio. An isotropic 

uncracked sample (SFC4) was constructed for reference. Pictures of all samples are 

shown in Figure 2.1. 

2.2 Sample preparation 

 

The uncracked sample (SFC4) consists of a single cast of epoxy resin. Samples CF3 

to CF14 contain cracks aligned along the Y and X directions, respectively. In the 

samples of CF3 to CF8 has 5% of crack density and in the samples of CF9 to CF14 

have 8% of crack density. All cracked samples were constituted one layer at a time, 

alternating with the introduction of rubber cracks. To reduce possible boundary effects 

to a minimum, the time interval between the creations of separate layers was kept as 

short as possible. The constant layer thickness (0.7 cm), it was ensured by using the 

same volume of epoxy resin poured for each layer. Each cracked sample has 7 layers. 

The solid rubber material used to simulate the cracks in all samples was silicone 

rubber. The compressional wave-velocity ratio was around 1.89 between solid epoxy 

and silicone rubber. Note that these values are only rough estimates, because the S-

wave velocity in rubber was difficult to determine due to the low shear modulus of this 

material. The physical parameters of the included rubber cracks in each sample are 
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displayed in Table 2.1. All the cracks used in these samples have same thickness 

(crack aperture) of 0.08 mm. 

Figure 2.1- (a) Photograph of the cracked samples with (b) 5% crack density and (b) 
8% crack density and the reference sample SFC4 (uncracked). 

 

Source: From author. 

As mentioned in the previous chapter, the additional contributions of this work, beyond 

comparing theoretical predictions by a different approach (Hudson, 1981; Eshelby-

Cheng, 1993) with experimental results, is verifying how the single and mixed crack’s 

aspect-ratio distribution effects in the P and S-wave response. For this proposal, the 

samples CF4 to CF8 and CF9 to CF11 had cracks with mixed aspect-ratio.  

It is worthy to mention, that all crack samples, contain oriented cracks with 

randomically distribution in the layers. Consequently, this preferential orientation leads 

to simulation of transversely isotropic medium. The HTI media is viewed from above of 

XZ plane and VTI when viewed from above of XY plane (see Figure 2.1).  
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Table 2.1- Types of cracks and aspect ratios. 

Crack type 
Crack diameter (dc) 

(mm) 
Thickness (ht) 

(mm) 
Aspect ratio (α) 

1 0.6 0.08 0.1333 

2 0.45 0.08 0.1778 

3 0.3 0.08 0.2667 

Source: From author. 

It was estimated the sample crack density (ec) for single and mix crack diameter in 

each cracked sample according to the modified Hudson (1981) formula. For cracked 

sample with single diameter, the crack density parameter is given by,  

 
2

t
c

N r h
e

V


  (11) 

 where N is total number of inclusions, r is their radius, ht is the inclusion’s thickness 

(crack aperture) and, finally, V is the volume of the cracked region for each sample. 

In the case of crack density (ec) estimation for cracked samples with mix aspect ratio, 

it was developed for this work an adaption of equation (11) for more than one aspect 

ratio given by  
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(12) 

where the crack volume is given by, 

 
2

c tVc r h  
(13) 

and the volume of crack regions is, 

 
2Vm r h  (14) 

where N, C% and  are the number of inclusions, the percentage of each crack 

aspect-ratio and the volume of each cracks with different radius (
𝑑𝑐

2
= 𝑟𝑐) with the 

same thickness (ht), respectively. 

Aspect ratio may be defined as a geometric feature of the fissure or crack like can see 

in Figure 2.2 and equation 15. 

Vc
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Figure 2.2- Define of aspect ratio. 

 

Source: From author. 

The aspect ratio (
sin gle ) of the samples with just one type of crack (single aspect radio 

samples) was calculated by, 

 

t
sin gle

c

h

d
 

 

(15) 

For samples with three types of cracks (mix diameter) the aspect ratio ( ) was 

calculated by 

 

3

1

mix i %i

i

C 



 

(16) 

where C%i is the concetration of type of crack diameter. 

The physical and geometrical parameters of the included rubber cracks in each 

sample are displayed in Table 2.2 and Table 2.3.
 

 

 

 

 

mix
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Table 2.2- Physical parameters of uncracked and cracked samples. Precision of 
length measurements is about 0.1 cm. 

Sample Length (Y) Diameter (Z) Density 

Names (cm) (cm) (kg/m³) 

SFC4 7.551± 0.02 3.598± 0.02 
1239.5 

CF3 6.81± 0.02 3.707± 0.02 
1233.7 

CF4 6.399± 0.02 3.705± 0.02 
1208.5 

CF5 6.556± 0.02 3.616± 0.02 
1307.3 

CF6 6.538± 0.02 3.646± 0.02 
1216.7 

CF7 7.518± 0.02 3.627± 0.02 
1236.8 

CF8 6.579± 0.02 3.742± 0.02 
1182.6 

CF9 7.008± 0.02 3.656± 0.02 
1254.1 

CF10 6.906± 0.02 3.7± 0.02 
1208.9 

CF11 7.742± 0.02 3.649± 0.02 
1256.6 

CF12 7.282± 0.02 3.643± 0.02 
1233.3 

CF13 7.25± 0.02 3.699± 0.02 
1214.4 

CF14 7.561± 0.02 3.699± 0.02 
1219.2 

Source:From author 
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Table 2.3- Description of cracks the samples. 

Sample Crack Aspect

Names density (ec) 1 2 3  ratio Crack 1 Crack 2 Crack 3

SFC4 0% 0 0 0 - 0 0 0

CF3 5% 100% 0% 0% 0.1333 14 0 0

CF4 5% 0% 100% 0% 0.1778 0 19 0

CF5 5% 0% 0% 100% 0.2667 0 0 24

CF6 5% 50% 30% 20% 0.1733 10 6 4

CF7 5% 40% 40% 20% 0.1778 8 8 4

CF8 5% 30% 50% 20% 0.1822 7 11 5

CF9 8% 50% 30% 20% 0.1733 16 10 6

CF10 8% 40% 40% 20% 0.1778 14 14 7

CF11 8% 30% 50% 20% 0.1822 11 18 7

CF12 8% 0% 100% 0% 0.1778 0 30 0

CF13 8% 100% 0% 0% 0.1333 23 0 0

CF14 8% 0% 0% 100% 0.2667 0 0 46

Type of crack Number of cracks for layer

 Source: From author 

 

2.3 Ultrasonic measurements 

 

The ultrasonic measurements were performed using the Ultrasonic Research 

System at LPRF with the pulse transmission technique. The sampling rate per 

channel for all measures of P and S-wave records was 0.1 μs. Figure 2.3 shows a 

picture of ultrasonic system used in this work. The system is formed by: a pulse-

receiver 5072PR and pre-amplifier 5660B from Olympus, a USB oscilloscope of 50 

MHz from Handscope and P and S-wave transducers of 1 MHz also from 

Olympus. 

Figure 2.4 shows the device developed for recording P-wave and S-wave 

seismograms, with rotating polarization for both. The source and receiver 

transducers were arranged on opposing sides of the samples, separated by the 

length of the sample measured (Table 2.2). To ensure the propagation of wave 

was in the desired region of the samples, the transducers were placed at the 

center of either side. This was made for both wave modes of propagation. 

In case of P-wave recording, the initial compressional wave polarization was 

perpendicular to the cracks plane, in the other words, in the XY plane (see Figure 
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2.4 a) and b), from there were made measurements every 10° at a time until the 

sample is 90° (polarization was perpendicular to the cracks plane). In total, ten 

traces of P-wave were recorded in each sample. 

For shear wave, the initial polarization was parallel to the cracks, in XY plane (see 

Figure 2.4 c and d), were made measures every 15° at a time until polarization 

was again parallel, so 180°. Thirteen traces of S wave were recorded in each 

sample. The polarization of 0° and 180° correspond to the fast S-wave (S1) and 

90° corresponds to the slow S-wave (S2). 

To estimate the P-wave velocities were used the relation given as 

 𝑉𝑝 =
𝐿𝑝

𝑡𝑝−∆𝑡
𝑑𝑒𝑙𝑎𝑦
𝑝  (17) 

where Lp is the distance of P-wave propagation, 𝑡𝑝 is the transmission travel time 

of P-wave and ∆𝑡𝑑𝑒𝑙𝑎𝑦
𝑝

 is the delay time of P-wave transducer. To S-wave 

velocities, the equation is similar to P-wave. They are given by 

 𝑉𝑠1 =
𝐿𝑠

𝑡𝑠1−∆𝑡𝑑𝑒𝑙𝑎𝑦
𝑠  (18) 

 𝑉𝑠2 =
𝐿𝑠

𝑡𝑠2−∆𝑡𝑑𝑒𝑙𝑎𝑦
𝑠  (19) 

where Ls is the distance of S-wave propagation, 𝑡𝑠1 𝑎𝑛𝑑 𝑡𝑠2 is the transmission 

travel time of S-wave propagation (fast and slower modes) and ∆𝑡𝑑𝑒𝑙𝑎𝑦
𝑠  is the delay 

time of S-wave transducer. 
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Figure 2.3- Picture of ultrasonic system used in this work. 

 

Source: From author. 

Figure 2.4- Device developed for (a) P-wave and (b) S-wave polarization rotation 
and velocity measurements.  Sketch of experiment used for (c) P-wave and (d) S-
wave seismogram records. 

Source: From author. 
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In order to ensure of the reproducibility of the ultrasonic recordings for all samples, 

it was preserved the same physical condition of the complete electronic apparatus. 

Furthermore, a holder with spring attached guaranteed the same coupling 

between transducer and samples (see Figure 2.4) and a very slim layer of natural 

honey was placed at the surface of the samples to establish good contact between 

transducer and samples too. 

The domination frequency of the transducers P and S, as can be seen in Figure 

2.5 a), is around 1 MHz and source wavelet pulse is the signature observed in 

Figure 2.5 b). More information about these transducers can be found at the 

website of the manufacturer1.   

                                            
1 Through: www.olympus-ims.com/en/ultrasonic-transducers 
 

http://Through:%20www.olympus-ims.com/en/ultrasonic-transducers
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Figure 2.5- (a) Waveforms for P-wave and S-wave transducers and (b) their 
corresponding frequency spectrum. 

 

Source: From author.  
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CHAPTER 3 

 

In this chapter, it is presented the experimental results for P-wave and S-wave 

velocities in twelve cracked samples and one uncracked sample. It also includes 

the comparison of the measured stiffness coefficients and anisotropic parameters 

with theoretical prediction by effective elastic coefficients for transversally isotropic 

media (TI), based on the theories of Hudson (1981) and Eshelby-Cheng (1993).  

3.1 Experimental results 

 

The results of ultrasonic measures are the time travel of waves. With this time 

travel, the first arrive was select and of this time was subtracted the time delay of 

P and S wave, that is 1.03 𝜇𝑠 and 0.14 𝜇𝑠, respectively. With the information of 

lengths presents in Table 2.1 the velocities were calculated using equation (17), 

(18) and (19). For calculate the constants of elastic stiffness tensor have just use 

the information of Table 2.1 and the velocities in equations (3) to (6). Similar, 

Thomsen’s parameter can be determined by the equations (7) and (8) after the 

determinations of constants of elastic stiffness tensor. It was calculated: P and S 

wave velocities, elastic stiffness tensor constants (C11, C33, C44 and C66) and the 

Thomsen’s parameters (ε and 𝛾) for all cracked samples considering the possible 

errors due to measurements of length (error margin of 0.02 cm) and time travel 

(error margin of 0.02 𝜇𝑠) 

3.2 Compressional wave (P) velocities 

 

The analysis of this work it is started with the transmission seismograms for the 

reference sample (SFC4). The error margin of values of P-wave velocity is ranging 

from ± 22.53 m/s to ± 27.72 m/s and for S-wave is from ± 7.07 m/s to ± 13.68 m/s. 

The compressional wave can travel in any medium (including fluids like air, or, in 

the case of this work, rubber) unlike of shear wave. For this reason the anisotropy 

can be noticed easily with S-wave, because the contrast between the velocities in 

the background and inside the fissure is large. 

Figure 3.1 shows ten compressional waveforms, each recorded with a (source-
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receiver) pair of P-wave transducers on opposite sides of the model with initial 

polarization along of X axis (0o) and final polarization along of Z axis (90o). In other 

words, they represent the acquisition at 10 measurement points in the isotropic 

medium (SFC4). As expected, the seismograms recorded in the reference model 

show uniform first arrivals for all rotations of the polarization angle  

Figure 3.2 and Figure 3.3 shows the P-wave records in the six cracked samples of 

5% and 8% of crack density, respectively, without filter. They represent the 

acquisition at the ten measurement points in the cracked sample, for propagation 

along the Z Figure 2.4 (c) and X Figure 2.4 (d) axes.  

To better identify two separate peaks, we applied in most samples a band-pass 

filter of 200–400–600–800 kHz. The result obtained as the difference between the 

original and filtered seismograms, is shown in Figure 3.4. 

Using the picked of first-arrival times of the bigger waveforms of depicted in Figure 

3.4 and Figure 3.5 together with the propagation lengths in the Z and X directions 

in the cracked model (see Table 2.2), were determined the P-wave velocities 

(Vpx(0°) and Vpz(90°)) for propagation along these directions. Table 3.1 shows 

these velocities for the isotropic and cracked samples. Observe that the velocities 

Vpz e Vpx are almost the same for samples CF5 e CF14 (samples with high 

cracked aspect-ratio). On the other hand, Vpz are significantly distinct of Vpx for 

sample CF3 and CF13 (sample with low cracked aspect-ratio). 

As an auxiliary parameter to describe the crack distribution using the P-wave 

velocity, was used the Thomsen (1986) parameter ɛ (see equation (7)) derived 

directly from the orthogonal elements of the stiffness matrix (Cij) associated with 

the P-wave velocities (Vpx and Vpz). Table 3.1 shows the values of this parameter 

for the uncracked and cracked samples. It can be observed, that ɛ has low values 

5% crack density sample and low aspect-ratio inclusion,  the values increases for 

increase of density (for 8% crack density sample) and in the case of low aspect-

ratio inclusions. This provides evidence that the fracture density and aspect-ratio 

directly affects the parameter ɛ. This evidences it also observed in previously work 

of Assad et al (1992, 1996). 
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Figure 3.1- P-wave seismograms as a function of change in p-wave polarization 
from 0° (x direction) to 90° (z direction) for sample SFC4 (isotropic). 

 

Source: From author. 

Figure 3.2- Unfiltered P-waveforms as a function of change in P-wave polarization 
for 0° (x direction) to 90° (z direction) for all samples with crack density of 5%. 

 

Source: From author. 
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Figure 3.3- Unfiltered P-waveforms as a function of change in P-wave polarization 
for 0° (x direction) to 90° (z direction) for all samples with crack density of 8%. 

Source: From author. 

Figure 3.4- Filtered P-waveforms as a function of change in P-wave polarization 
for 0° (x direction) to 90° (z direction) for all samples with crack density of 5%. 

 

Source: From author. 
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Figure 3.5- Filtered P-waveforms as a function of change in P-wave polarization 
for 0° (x direction) to 90° (z direction) for all samples with crack density of 8%. 

 

Source: From author. 

Table 3.1- Compressional wave velocities (for X and Z directions) and anisotropic 
parameter ɛ calculated according to equation (7). 

Sample Names Vpz (m/s) Vpx (m/s) ε (%)

SFC4 2630.2 2630.2 0

CF3 2247.12 2478.6 10.83

CF4 2378.79 2511.9 5.75

CF5 2248 2296.9 2.19

CF6 2163.6 2308.2 6.9

CF7 2207.5 2350.67 6.69

CF8 2288 2400 5.01

CF9 2144.9 2442.1 14.81

CF10 2104.05 2314.52 10.5

CF11 2226.97 2445.6 10.3

CF12 2211.5 2660.3 22.35

CF13 2089,98 2566.1 25.37

CF14 2231.6 2351.1 5.49  

Source: From author. 
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3.3 Shear wave (S) velocities 

 

In the next step in this work, the S-wave velocities from transmission through the 

samples were analyzed. As for the P waves, transmitted S-waveforms were 

measured in the cracked samples as well as in the isotropic reference model. For 

all recorded seismograms, the initial polarization was parallel to the X direction, 

denoted as 00. For all S-wave seismograms the wave propagation was along to 

the Y direction. Figure 3.6 shows the recorded S-wave transmission seismograms 

for propagation in the Y direction as a function of the angle of S-wave polarization 

of isotropic sample. As expected, the seismograms recorded in the reference 

model show uniform first arrivals for all rotations of the polarization angle.  

Figure 3.6- S-wave seismograms as a function of change in polarization from 0° to 
180° for propagation in the Y direction in the reference sample (SFC4). 

Source: From author. 

Figure 3.7 and Figure 3.8 shows the seismograms of high frequency recorded at 

six cracked samples with 5 % crack density and six cracked samples with 8% 

crack density. All the seismograms are function of polarization angle (in the plane 

XY) for S-wave propagation in the Y direction as recorded in the reference sample.  

Due the high frequency noise from environment as well as show a visible shear. 
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Figure 3.7- S-wave seismograms as a function of change in polarization from 0° to 
180° for propagation in the Y direction in the samples with 5% crack density before 
filtering. 

Source: From author. 

Figure 3.8- S-wave seismograms as a function of change in polarization from 0° to 
180° for propagation in the Y direction in the samples with 8% crack density before 
filtering. 

Source: From author. 

 

For a better understanding of the two separate peaks, we applied in most samples 

a band-pass filter of 40–70–130–160 kHz (perfect pass between 50 and 170 kHz, 

when the center of filter are in 100 kHz, with linear cut-off ramps in the ranges 20–
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40 kHz and 130–200 kHz) The Cut-off frequency of 160 kHz approximately 

coincides with the end of the first peak in Figure 3.7 and Figure 3.8.The result 

obtained as the difference between the original and filtered seismograms, is 

shown in Figure 3.9 and Figure 3.10. 

Samples with cracks show the separation of the two different S waves (S1 and S2) 

as can see in Figure 3.9 and Figure 3.10. For compute the Vs1 and Vs2 was 

necessary select the first arrival in 0° (S1) and first arrival in 90° (S2) and the 

dimensions of each sample (exposed in Table 2.2). The Thomsen’s parameter  

was calculated and can be seen in Table 3.2. The errors are ranging from ± 7.07 

m/s to ± 13.68 m/s. 

Figure 3.9- S-wave seismograms as a function of change in polarization from 0° to 
180° for propagation in the Y direction in the samples with 5% crack density after 
filtering and with the indicate of S1 and S2. 

 

Source: From author.  

γ
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Figure 3.10- S-wave seismograms as a function of change in polarization from 0° 
to 180° for propagation in the Y direction in the samples with 8% crack density 
after filtering and with the indicate of S1 and S2. 

 

Source: From author. 

Table 3.2- Shear wave velocities (for Y direction) and anisotropic parameter 𝛾 
calculated according to equation (8). 

Sample Names Vs1 (m/s) Vs2 (m/s) (%)

SFC4 1306.6 1306.6 0

CF3 1337.13 1202.75 11.80

CF4 1322.65 1222.12 8.56

CF5 1264.17 1217.23 3.93

CF6 1196.12 1109.45 8.12

CF7 1174.5 1088.93 8.17

CF8 1244.13 1157.05 7.81

CF9 1241.23 1097.92 13.91

CF10 1258.61 1116.03 13.59

CF11 1245.09 1118.3 11.98

CF12 1291.52 1108.59 17.86

CF13 1279.56 1084.35 19.62

CF14 1252.65 1165.74 7.73  

Source: From author. 

3.4 Elastic stiffness tensor components 

 

The description of the anisotropic medium, mathematically, is given by the 

constants elastics of stiffness tensor that is calculated here. For compute C11 and 
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C33 was necessary select the sample density (see Table 2.2) and the Vp in 90° 

and 0° (see Table 3.1) for use in the equations (3) and (4), respectively. The same 

way, for compute C44 and C66, it was necessary select the sample density and the 

velocities Vs2 and Vs1 (see Table 3.2) for use in equations (5) and (6), respectively. 

The Figure 3.11 and Figure 3.12 shows the stiffness coefficients (C11, C33, C44 and 

C66) for both crack densities as well as the theoretical predictions performed by 

Hudson (1981) and Eshelby-Cheng (1993) models. It is possible in both figures 

that best fit between the theoretical and experimental results occurs for Eshelby-

Cheng (1993).  An exception is the C11 parameter that exhibits almost the same 

behavior for both predictions. 

 

Figure 3.11- Constants of elastic stiffness tensor for 5% crack density. The green 
line show trends of Hudson’s model with first correction, the red line trends of 
Hudson’s model with second correction, the blue line trends of Eshelby-Cheng’s 
model, the blue triangles are samples with single crack and red squares are mix 
cracks. 

 

Source: From author. 
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Figure 3.12- Constants of elastic stiffness tensor for 8% crack density. The green 
line show trends of Hudson’s model with first correction, the red line trends of 
Hudson’s model with second correction, the blue line trends of Eshelby-Cheng’s 
model, the blue triangles are samples with single crack and red squares are mix 
cracks. 

 

Source: From author. 

3.5 Thomsen’s parameters 

 

Thomsen (1986) parameter ε is directly related to the ratio between tP0 and tP90 (for 

P-wave) which are the highest and lowest P-wave travel times observed in a 

fractured medium. While   parameter is directly related to the ratio between tS2 

and tS1 (for S-wave) which are the highest and lowest S-wave travel times in this 

fractured medium. For compute these parameters is necessary have the constants 

of elastic stiffness tensor presented earlier or they can be also calculated from the 

velocities. The values of ε and 𝛾 can be seen in Table 3.1 and Table 3.2, 

respectively. The Figure 3.13 and Figure 3.14 show the Thomsen’s parameters 

calculated for each crack sample and the trends models for both densities. The 

predictions by the theoretical Hudson (1981) and Eshelby-Cheng (1993) models 

shows the opposite behaviors between them.  While Hudson (1981) increases with 

aspect ratio, Eshelby-Cheng (1993) decreases a show a best fit with the 

experimental results mainly for S-wave measurements.  
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The error to estimation 𝜀 parameter is ranging from ± 2.27%to ± 3.43% and to 𝛾 is 

from 2.36% to 3.2%. 

Figure 3.13- Thomsen’s parameter of 5% crack density with samples and trends of 
Hudson (first correction in green line and second correction in red line) and 
Eshelby-Cheng models (in blue line). 

Source: From author. 

Figure 3.14- Thomsen’s parameter of 8% crack density with samples and trends of 
Hudson (first correction in green line and second correction in red line) and 
Eshelby-Cheng models (in blue line). 

Source: From author.  
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CHAPTER 4 

 

In this chapter the discussion will be about the results shown in previous chapter. 

We will comment about the considerations of comparisons among the curves of 

Thomsen's parameters (ε and γ) and the constants of the elastic stiffness tensor 

based on theoretical models proposed by Hudson and Eshelby-Cheng and the 

conclusions after analysis.  

4.1. Discussions  

 

Two assumptions were investigated to ensure that the laboratory measurements 

are consistent with the condition of effective medium for all cracked models. The 

first was the wavelength (λ) of source is much greater than the distance between 

cracks (xc) and the diameter of cracks (dc). Figure 4.1, shows the relationship 

between λ/xc (wavelength/distance between cracks) for both P- and S-wave and 

densities as well. Figure 4.2 shows ratio between λ/dc (wavelength/diameter of 

cracks) also for both waves propagation modes. Through the ratios shown in 

Figure 4.1 and Figure 4.2, the ratios of wavelength by distance of cracks as well 

as the wavelength by diameter of cracks are at least equal 2. These results can 

ensure the applicability of effective model assumption in this case.  

It is possible to observe in Figure 3.11 and Figure 3.12 the curves of Hudson and 

Eshelby-Cheng’s models for constants of elastic stiffness tensor have tends 

similar to both density, but with the difference between lies are sharpest for the 8% 

crack density. For Thomsen’s parameters in Figure 3.13 and Figure 3.14 is 

possible to see for Hudson’s model, independently of crack density, the ε and γ 

tend to increase with aspect ratio differently of Eshelby-Cheng’s model which is 

tend to decrease with aspect ratio. This differences are crucial to choose the best 

model to use for predicts trends.  

To analyze all cracked samples and better understating them, will be divide the 

discussions of results in two groups of crack density: 5% (1° group) and 8% (2° 
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group) and these two groups have a subdivision in other two groups of crack type: 

single (A) and mix (B) as shown in Table 4.1. 

Figure 4.1- Ratio between λ/xc (wavelength/distance between cracks) for all 

twelve samples. 

 

Source: From author. 

Figure 4.2- Ratio between λ/dc (wavelength/diameter of cracks) for all twelve 

samples. 

 

Source: From author. 
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Table 4.1- Groups in which the samples are divided. 

Samples ec=5% (Group 1) ec=8% (Group 2) 

Single (A) CF3, CF4, CF5 CF12, CF13, CF14 

Mix (B) CF6, CF7, CF8 CF9, CF10, CF11 

 

Source: From author.   

4.1.1. Compressional (P) and shear (S) velocities  

 

In this work were performed measurements of velocities with the angle between of 

the cracks plane and wave polarization. The velocity of compressional wave is 

smaller when the angle is 0° (Vpx(0°)) and bigger when the angle is 90° (Vpz(90°)). 

Already for shear wave velocities, as was cited in crack models description, Vs1 

and Vs2 are separated in 90° and Vs1 is bigger than Vs2. 

As can see in Table 3.1 and Table 3.2 the velocities of the sample reference SFC4 

(uncracked) is bigger than all other samples. This happing because when there 

are some obstacles in the way of wave, it tends to overcome of the obstacles. In 

case of samples in this work, the obstruction is the rubber cracks that have 

velocity smaller than the matrix of epoxy. So, the uncracked sample that no has 

any crack tends to have higher velocities.  

In 1A Groups were noted three different behaviors. The compressional velocities 

(Vpx(0°) and Vpz(90°)) and shear velocities (Vs1 and Vs2) are higher for CF3 

sample, after for CF4 and smaller for CF5, in this case almost the same. The 

same behavior happens in 2A Group. The differences are higher for CF13 sample, 

after CF12 and smaller for CF14. These behaviors are easily explained due to 

aspect ratio. How small the aspect ratio samples, higher will be the difference 

between velocities. In 1B Group, as well as the 2B Group, is noted a homogenous 

behaviors, because the mix of cracks with different aspect ratio causes few 

changes in velocities that are related to proportion of each crack.  
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4.1.2. Coefficients of elastic stiffness tensor 

 

As it mentioned before, the trends of elastic coefficients are equal for both cracks 

densities. So the observations are the same for the Group 1 and 2.The analyses 

begging with samples with single cracks, because it has just one type of crack, so 

give limits for the curves of parameters and coefficients with variation of aspect 

ratio. Is clearly that the Group A control the behavior of the coefficients and is 

similar, in general, with the Eshelby-Cheng’s model, mostly in C44 coefficient.  The 

values of Group 1B are underestimated in the both model curve and samples with 

single crack values. But, they are in a region that the values are near of the 

predicted values by Eshelby-Cheng’s (1993) model. 

The values Group 2B are, in general, underestimated for coefficients related with 

P-wave (e. g., C11 and C33). However for related S-wave (e. g., C44 and C66) they 

are close of the single sample with the aspect ratio similar of them (CF13 – see 

Figure 3.12) and the Eshelby-Cheng’s prediction is nearly too.  

 

4.1.3. Thomsen’s parameters  

 

The analysis of Thomsen’s parameters relies on the information about velocities 

(see Table 3.1 and Table 3.2). Therefore theses parameters will be follow the 

behavior of velocities. In other words, the samples with higher difference between 

the two P- or S-wave velocities will have higher values of ε and γ. When see the ε 

for both crack density (see Figure 3.13 and Figure 3.14) the samples with single 

crack given the trends similar Eshelby-Cheng’s model, although the values are 

overestimated when compared with the model curve. As well as γ the values of 

samples are very similar to the curve predicted by Eshelby-Cheng’s. 

It is valid to highlight two specific samples that are single and have smaller aspect 

ratio: CF5 and CF14. CF5 has smaller aspect ratio of Group 1 and CF14 of group 

2. Because of the small aspect ratio (
cd ≈

tb ) the wave see cracks as spheres so 
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the medium looks like an isotropic homogeneous medium. Although both have 

similar behavior the parameters of CF14 are bigger than CF5 due to crack density.  

The analyses about samples with mix cracks are different, because the variations 

of cracks, considering that any of models showed have a good approach for this 

specific case. Although, most of values of these samples are concentrated in the 

middle of values of samples with single crack, other method to see if the results of 

samples with mix cracks follow other trend, is calculate the parameters for Voigt 

and Reuss bounds. Voigt and Reuss can describe any isotropic effective elastic 

moduli based on two assumptions: 1) the volume fraction of each phase, 2) the 

elastic moduli of the each phase (Mavko & Mukerji, 2009). Here we use 

mathematical formulation of Voitg and Reuss bound to investigate the anisotropic 

parameters for mixed aspect –ratio cracks. 

The similar Voigt bound (upper bound) for the Thomsen’s parameters is given as  
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and the similar Reuss bound (lower bound) is given as 
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where the C%i is the concentration of each crack aspect ratio, the εi and γi are the 

anisotropic parameters of the single sample formed by this same crack, 

respectively. The samples with mix cracks and the Voigt-Reuss average for crack 

density 5% and 8% can see in Figure 4.3 and Figure 4.4, respectively. As it can be 

seen in these figures, the experimental anisotropic parameter lies on inside the 

Reuss and Voigt bounds from 5 % crack density. However when the crack density 
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is increased for 8% the experimental values lies outside of the Reuss and Voigt 

bounds. This may occurred because the Reuss and Voigt bounds are used to 

isotropic medium. So, as longer as the crack density increase the isotropic 

behavior is get longer. 

Figure 4.3- Thomsen’s parameters for samples with mix cracks of 5% crack 
density with Voigt-Reuss average. The mix anisotropic values fits well between the 
lower (Reuss) upper (Voigt) bounds. 

Source: From author. 

Figure 4.4- Thomsen’s parameters for samples with mix cracks of 8% crack 
density with Voigt-Reuss average. The mix anisotropic values did not between the 
lower (Reuss) upper (Voigt) bounds. 

Source: From author. 
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Figure 4.4 shows the values predicted by Eshelby-Cheng’s (1993) model lines 

inside of the Reuss and Voigt bounds for both crack densities samples. It is 

possible to see that  parameter is near to the Reuss bound (lower bound) while 

the  parameter is near to the Voigt bound (upper bound). This behavior may be 

justified by itself formulation of these bound theories. The Reuss is harmonic mean 

(isostress condition) while Voigt is an arithmetic mean (isostrain condition). In this 

case we can infer that when P –wave propagates in the cracked medium the strain 

suffered by crack and solid matrix is the same and S-wave propagates the stress 

applied is the same. 

Figure 4.5- Thomsen’s parameters (predicted by Eshelby-Cheng’s (1993) model) 

for samples with mix cracks of 5% crack density with Voigt-Reuss average. The 

mix anisotropic values fits well between the lower (Reuss) upper (Voigt) bounds 

 

Source: From author. 
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Figure 4.6- Thomsen’s parameters (predicted by Eshelby-Cheng’s (1993) model) 
for samples with mix cracks of 8% crack density with Voigt-Reuss average. The 
mix anisotropic values fits well between the lower (Reuss) upper (Voigt) bounds 

 

Source: From author. 
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CHAPTER 5 

5.1 Conclusions 

 

In this work, we performed ultrasonic measurements through an anisotropic model 

built from rubber discs (penny-shaped) inclusions in an isotropic. Two group of 

anisotropic models were investigated to compare the Hudson (1981) and Eshelby-

Cheng’s (1993) responses to the effective crack models on elastic wave 

propagation in anisotropic media containing aligned penny-shaped cracks. On the 

basis of our results, the following observations can be made: 

 The elastic moduli of the shear wave (C44 and C66) were well predicted by 

Eshelby-Cheng’s (1993) model for both crack densities and both type of 

aspect ratio types (single and mixed). 

 The elastic moduli of the compressional wave (C11 and C33) predicted by 

Eshelby-Cheng’s (1993) model for both crack densities shown a 

underestimation related to the experimental values obtained for both crack 

densities and both type of aspect ratio types (single and mixed). 

 The decrease in anisotropic parameter   was observed both for 

experimental and Eshelby-Cheng’s (1993) model prediction (for both crack 

densities) as the aspect model ratio increased. This behavior was contrary 

to that one exhibited by the Hudson’s (1981) model. The best fit between 

the experimental a theoretical prediction occurred by the Eshelby-Cheng’s 

(1993) model. 

 The decrease in anisotropic parameter ε was observed both for 

experimental and Eshelby-Cheng’s (1993) model prediction (for both crack 

densities) as the aspect model ratio increased. This behavior was contrary 

also, to that one exhibited by the Hudson’s (1981) model. For both models 

did not occur a good fit between the models and experimental results. 

 For samples with mixed crack aspect ratio the theoretical prediction was 

better performed by the Eshelby-Cheng’s (1993) model for shear wave 

case only and sample of Group 1B (crack density of 5%). This prediction 

was also lies in the Voigt-Reuss bounds. The Voigt-Reuss bounds is 
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generally used for isotropic medium, so when the medium tend to be a low 

crack density medium (Group 1B) values are in general, between the 

bounds. When the crack density increases, the values of parameters are 

out of bounds.  
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APPENDIX A 

APPENDIX A.1- EFFECTIVE MODULI BY HUDSON 

The effective moduli 𝐶𝑒𝑓𝑓
ij for Hudson (1981) cracked model are given as 

𝐶𝑒𝑓𝑓
ij = 𝐶0

 ij +  𝐶1
ij + 𝐶2

ij  , 

𝐶11 = 
0   𝐶33

0  = λ+2µ, 

𝐶13
0  = λ, 

𝐶44
0  = 𝐶66

0  = µ. 

where   and   are the Lamé parameters and 1

ijC  and 2

ijC  are the first and second 

correction due of inclusions. 

The first corrections (𝐶1
ij) are:  

𝐶11
1  =  −

𝜆2

𝜇
𝜖𝑈3, 

𝐶13
1  =  −

(𝜆+2µ)2

𝜇
𝜖𝑈3, 

𝐶33
1  =  −

(𝜆+2µ)2

𝜇
𝜖𝑈3, 

𝐶44
1  = µ𝜖𝑈1, 

𝐶66
1  = 0. 

While the second (𝐶2
ij) corrections are represent by: 

𝐶11
2  = 

𝑞

15

𝜆2

𝜆+2µ
(𝜖𝑈3)2, 

𝐶13
2  = 

𝑞

15
𝜆(𝜖𝑈3)2, 

𝐶33
2  = 

𝑞

15
(𝜆 + 2µ)(𝜖𝑈3)2, 

𝐶44
2  = 

2

15

µ(3𝜆+8µ)

𝜆+2µ
(𝜖𝑈1)2  , 

𝐶66
2  = 0, 

where q = 15
𝜆2

𝜇2
 + 15

𝜆

𝜇
 + 28, and ϵ  is the crack density (ϵ = 

3𝜙

4𝜋𝛼
) and α is the aspect 

ratio. 
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The parameters U1 and U3 depend on the type of inclusion: 

 For inclusions with fluid:  

U3 = 0 

U1= 
16(𝜆+2µ)

3(𝜆+2µ)
 

 For dry inclusions: 

U3 = 
4(𝜆+2µ)

3(𝜆+2µ)
 

U1
  = 

16(𝜆+2µ)

3(3𝜆+4µ)
 

 For “weak” inclusions: 

U3  = 
4(𝜆+2µ)

3(𝜆+2µ)
 

1

(1+𝐾)
 

U1 = 
16(𝜆+2µ)

3(3𝜆+4µ)
 

with: 

K =  
𝜅𝑓(𝜆+2µ)

𝜋𝛼𝜇(𝜆+2µ)
 

In this work were used the U3 and U1 for weak inclusion. 
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APPENDIX A.2 - EFFECTIVE MODULI BY CHENG 

The effective moduli 𝐶𝑒𝑓𝑓 for a rock containing fluid-filled ellipsoidal cracks are 

given as 

𝐶𝑒𝑓𝑓
ij = 𝐶0

 ij - Φ 𝐶1
ij 

where Φ is the porosity. The first corrections 𝐶1
ij are 

C11=λ(S31 - S33 + 1) + 
2𝜇(S33S11−S31S13−(S33+S11−2C−1)+C(S31+S13−S11−S33))

𝐷(𝑆12−𝑆11+1
 

C33= 
(𝜆+2𝜇)(−S12−S11+1)+2𝜆𝑆13+4𝜇𝐶

𝐷
 

C13= 
(𝜆+2𝜇)(𝑆13+𝑆31)−4𝜇𝐶+𝜆(𝑆13−𝑆12−𝑆11−𝑆33+2)

2𝐷
 

C44=
𝜇

1−2𝑆1313
 

C66=
𝜇

1−2𝑆1212
 

with, 

D=S33 S11+ S33 S12-2 S31 S13-(S11 +S12 +S33-1-3C)-C(S11 +S12 +2(S33 -S13 -S31)) 

S11 = QIaa+RIa 

S33 = Q 
4𝜋

3
  - Q2Iac𝛼2

 + Cr 

S12 = QIab - RIa 

S13 = QIac𝛼2-RIa 

S31 = QIac - RIc 

S1313 = 
𝑄(1+ 𝛼2Iac)

2
 + 

𝑅(Ia+Ic)

2
 

Ia = 
2𝜋𝛼(cos 𝛼−1−𝛼𝑆𝑎 )

𝑆𝛼
3   

Ic = 4π-2Ia 

Iac = 
𝐼𝑐− 𝐼𝑎

3𝑆𝑎
2  

Iaa = π - 
3 𝐼𝑎𝑎

4
 

Iaa = 
𝐼𝑎𝑎

3
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𝜎 =  
3𝜅 − 2𝜇

6𝜅 + 2𝜇
 

Sa = √1 −  𝛼2 

R=
1−2𝜎

8𝜋(1−𝜎)
 

where α = aspect ratio = h/d, 𝜅 = bulk modulus of sample, 𝜅𝑓 = bulk modulus of 

fluid  and  

λ + 2µ = ρ𝑉𝑝
2 ,   

µ = ρ𝑉𝑠
2, 

λ = ρ( 𝑉𝑝
2 - 2𝑉𝑠

2 ), 

are Lamè parameters. 

 

 

 

 

 

 

 

 


