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RESUMO

Esta tese apresenta duas metodologias de regularização estrutural para os métodos de
análise de velocidade com migração e inversão conjunta com migração: regularização
gradiente cruzado e filtragem com operadores morfológicos. Na análise de velocidade com
migração, a regularização de gradiente cruzado tem como objetivo vincular os contrates
de velocidade com o mapa de refletividade, através da paralelização dos vetores gradiente
de velocidade com os vetores gradiente da imagem. Propõe-se uma versão com gradiente
cruzado das funções objeto de minimização: Differential Semblance, Stack Power e Partial
Stack Power. Combina-se a função Partial Stack Power com sua versão de gradiente
cruzados, com o objetivo de aumentar gradativamente a resolução do modelo de velocidade,
sem comprometer o ajuste das componentes de longo comprimento de onda do modelo
de velocidade. Na inversão conjunta com migração propõe-se aplicar os operadores
morfológicos de erosão e dilatação, no pré-condicionamento do modelo de velocidade em
cada iteração. Os operadores usam o mapa de refletividade para delimitar as regiões com
mesmo valor de propriedade física. Eles homogenizam a camada geológica e acentuam
o contraste de velocidade nas bordas. Os vínculos estruturais não apenas irão reduzir a
ambiguidade na estimativa do modelo de velocidade, mas tornará os métodos de inversão
com migração mais estáveis, reduzindo artefatos, delineando soluções geologicamente
plausíveis e acelerando a convergência da função objeto de minimização.

Palavras-chave: Imagem migrada. Vínculo estrutural. Análise de velocidade com equação
de onda. Inversão conjunta com migração. Morfologia. Modelagem da equação de onda.



ABSTRACT

This thesis presents two methodologies of structural regularization for Wave-Equation
Migration Velocity Analysis and Joint Migration Inversion: cross-gradient regularization
and filtering with morphological operators. In Wave-Equation Migration Velocity Analysis,
the cross-gradient regularization aims to constrain the velocity contrasts with the reflectivity
map by parallelization of the velocity gradient vector and the image gradient vector. We
propose a version with cross-gradient of the objective functions: Differential Semblance,
Stack Power and Partial Stack Power. We combine the Partial Stack Power with its
version of cross-gradient, in order to gradually increase the resolution of the velocity
model without compromising the adjustment of the long wavelengths of the velocity model.
In Joint Migration Inversion, we propose to apply morphological operators of erosion
and dilation in the preconditioning of the velocity model in each iteration. Operators
use the reflectivity map to mark the regions with the same value of physical property.
They homogenize the geological layer and accentuate the velocity contrast at the edges.
Structural constraints do not only reduce the ambiguity in estimating a velocity model,
but also make the migration/inversion methods more stable, reducing artifacts, delineating
geologically plausible solutions, and accelerating the convergence of the objective function.

Keywords: Migrated image. Structural constraint. Wave-Equation Migration Velocity
Analysis. Joint Migration Inversion. Morphology. Wave-equation modeling.
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1 INTRODUCTION

1.1 Motivation

Tomographic methods based on ray tracing are well established in the oil industry
as the main tool for velocity model building. The velocity model is estimated in order
to optimize focusing of selected reflection events. As a consequence tomographic velocity
models produce good images of the subsurface, but require intense human interaction for
event selection and editing. Another well known limitation of tomographic methods results
from the high-frequency approximation to describe wave propagation, which limits these
methods to regions of mild geological complexity. Currently there are several efforts to
develop velocity model building methods that do not have the limitations of ray methods
and can take advantage of more accurate descriptions of the wavefield.

Wave-equation based inversion can be divided into three branches: inversion meth-
ods with objective function specified in the data domain as Full Waveform Inversion [FWI,
(VIRIEUX; OPERTO, 2009)], inversion methods with objective function defined in the
image domain as Wave-Equation Migration Velocity Analysis [WEMVA, (SAVA; BIONDI,
2004)] and hybrid inversion methods like Joint Migration Inversion [JMI, (BERKHOUT,
2014a; BERKHOUT, 2014b; BERKHOUT, 2014c)]. In the latter approach, the model
parameterization is extended to include a background velocity and a reflectivity model.
The velocity model is estimated from fitting the wavefield spectrum and reflectivity from
least-squares migration. The objective function in FWI minimizes the difference between
the modeled and recorded traces. WEMVA uses migration methods to generate Common
Image Gathers (CIG), where an objective function will measure the focusing. JMI, like
FWI, minimizes the differences between modeled data and recorded data, but differently
from FWI, JMI separates the wavefield-phase fitting, to estimate the velocity model, and
the wavefield-amplitude fitting to estimate the reflectivity of subsurface.

FWI has gained much attention recently because the method estimates velocity
models with high resolution while possibly reducing the human effort in the velocity model
building workflow. However, FWI has some challenges: the estimation of the source
signature from the dataset, a strong dependence on an initial model and the requirement of
large offsets to update the long wavelengths components of velocity model. WEMVA and
JMI can produce better models than those obtained using ray tomography, although with
low resolution when compared to successful applications of FWI. Additionally, WEMVA
and JMI are more robust with respect to data quality and dependence on the initial model,
and they can use more conventional data acquisition geometries to update the velocity
field.
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WEMVA and JMI, like many other non-linear inverse-problem methods, need
preconditioning or regularization to ensure stability and reduce the ambiguity in inversion.
Traditionally smoothness constraints, such as Tikhonov regularization (TIKHONOV;
ARSENIN, 1977; KAIPIO et al., 1999; WEIBULL; ARNTSEN, 2013), are used to stabilize
inversion in wave-equation velocity-model building. WEMVA and JMI have in common
the estimation of a migrated image or reflectivity model during the inversion. These
images can be used as prior information to increase the resolution of the velocity model.

This thesis aims at developing techniques to increase the velocity model resolution
of inversion methods in the image domain. The techniques of preconditioning and reg-
ularization do not only reduce the ambiguity of optimized solutions, but, as suggested
by Williamson et al. (2011), the use of structural regularization also adds geologically
meaningful information to the model. Moreover, preconditioning also speeds up the
convergence of the method. Another aspect I explore is the variation of the regularization
parameter during the iterations. At initial iterations smoothness constraints are enforced
to help the recovering of long wavelength components of the velocity model. Structural
information is gradually enforced at later iterations to avoid the inversion to be trapped
prematurely in local minima far from the optimal solution. The following sections present
the regularization techniques based in structural constraints and the organization of this
thesis.

1.2 WEMVA with cross-gradient regularization

Chapter 2 describes the WEMVA method using reverse time migration (RTM). It
revises the Claerbout’s image condition (CLAERBOUT, 1971) and its extension to velocity
analysis with the construction of common image gathers (CIG), in angle or subsurface
offset domain (BIONDI; SYMES, 2004; RICKETT; SAVA, 2002; SAVA; FOMEL, 2006;
YANG; SAVA, 2010). We show that the objective function traditionally used, Differential
Semblance, has few local minima, but does not increase coherence for near offsets. To
overcome this lack of information many authors use the concept of Stack Power or
Semblance (CHAVENT; JACEWITZ, 1995; WEIBULL; ARNTSEN, 2013). However, this
type of function suffers from cycle skipping and present many local minima. In order
to avoid this, Zhang and Shan (2013) proposed combining the convergence properties
of Differential Semblance with coherence sensitivity of Stack Power in a single objective
function called Partial Stack Power. This avoids the formulation of Stack Power as a
regularizing functional of the Differential Semblance. I also explore the cross-gradient
(FREGOSO; GALLARDO, 2009; TRYGGVASON; LINDE, 2006) of the velocity field and
the image field as regularization. The cross-gradient is a type of generalized Tikhonov
regularization (KAIPIO et al., 1999). In this work, the cross-gradient enforces velocity
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contrast normal to reflectors, by aligning the velocity gradient vector with the migrated
image-gradient vector in a least-square sense. The product of Partial Stack Power with
cross-gradient regularization is proposed to enforce structural information. Using this
multiplicative objective function, the structural regularization can be introduced gradually
without compromising convergence. This new formulation of WEMVA is validated on
Marmousoft data set.

1.3 JMI method

Chapter 3 presents the JMI method for isotropic media with no dependence on
angle for the reflectivity model (STAAL; VERSCHUUR, 2014). JMI uses the one-way
wave equations to separately modeling downgoing and upgoing wavefields. This feature
enables a greater control over multiples, allowing JMI to generate, through least-squares
migration, high-resolution reflectivity maps without preprocessing to attenuate multiples
in the data. Another positive feature of one-way modeling is the separation of phase and
amplitude of the wavefield. The velocity estimation is correlated with the perturbation of
the wavefield extrapolation phase-shift operator, while the reflectivity model is estimated
from wavefield amplitudes. This approach makes the problem much better conditioned.
The chapter finalizes presenting the derivation of velocity and reflectivity gradients used
in the optimization and the description of the JMI inversion algorithm.

1.4 High resolution velocity estimation with morphological operators

Chapter 4 presents a new strategy to constraint the velocity model with structural
information derived from migrated images: preconditioning by morphological operators
(MARAGOS, 2009). The operators of erosion and dilation, based on the theory of
Mathematical Morphology (DOUGHERTY; LOTUFO, 2003), are initially presented for
binary images and then extended to gray-scale images. This work introduces a modification
of erosion and dilation operators by division and product of the current model with a mask
function derived from the migrated image. The modified operators can build homogeneous
layers with strong contrast at its borders. Initially, I illustrate the effects of the new
morphological operator in simple in 1D and 2D models. Then, I present the numerical
experiments applying the modified morphological operators to JMI for two synthetic data
sets with different degrees of complexity. The proposed algorithm recovered high resolution
velocity models and the reflectivity models in both cases.
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1.5 General conclusions and appendices

The last chapter presents the general conclusions about the methods and tech-
niques developed in this thesis. I also added five appendices which present mathematical
derivations and definitions. In Appendix A the gradient of the objective function is derived
using the adjoint state method. Appendix B describes the quasi-Newton optimization
method and its update formula. Appendix C shows the B-splines interpolation function
and, finally, Appendix D, details the pseudo code for the erosion and dilation operators
applied in Chapter 4.
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2 WEMVA WITH STRUCTURAL PRIOR INFORMA-
TION

Wave-Equation Migration Velocity Analysis (WEMVA), like many other geophysical
inversion methods, needs extra information to reduce the ambiguity in its solutions.
However, unlike other methods, WEMVA has the advantage of having at its disposal
the migrated image, from where we can extract structural information, allowing to get a
well fitted model with subsurface geology. Using the concept of cross-gradient, this work
proposed to couple the WEMVA objective function called Partial Stack Power, which
combines the Differential Semblance and Stack Power, with its analogous version with
cross-gradient, to precondition WEMVA convergence and increase the velocity model
information.

2.1 Introduction

Methods using wave-equation modeling represent the best tools to image regions
with complex geology, because they do not suffer from limitations in wave simulation,
including information like refraction, diffraction, primaries and multiples. The evaluation
of all these information is well computed in inversion methods in the data domain like
Full Waveform Inversion [FWI, (VIRIEUX; OPERTO, 2009)]. FWI is gaining importance
by producing better and detailed velocity models. Unfortunately FWI hardly converges if
the low frequency, inside of the data and inside of the model, are not well fitted. However
Wave-Equation Migration Velocity Analysis [WEMVA, (SAVA; BIONDI, 2004)], an image
based inversion method, has less sensitivity to the initial model, also has the advantage of
working with the frequency band conventionally acquired in seismic experiments, and it
does not require large offsets to estimate the model in deeper regions as does FWI.

Improve the WEMVA method is a valid objective to enrich the toolbox of inversion
methods in geophysics. For this purpose, it is necessary to highlight one the main negative
features of the WEMVA method: the presence of strong artifacts in the objective function
gradient (FEI; WILLIAMSON, 2010). These artifacts usually dominate the useful gradient
and increase the optimization time.

Fei and Williamson (2010) saw that Differential Semblance (DS) (SHEN; SYMES,
2008) produces a 90∘ phase shift in its gradient, resulting in near-vertical stripe artifacts.
To remove the artifacts, Fei and Williamson (2010) proposed to use a derivative of the
residual image (LAMELOISE; CHAURIS; NOBLE, 2015; SHEN; SYMES, 2015). Besides
that, as indicated by Shen and Symes (2008), Differential Semblance is limited and doesn’t
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have cover all offsets, in this case the zero-offset amplitude maximization is not evaluated.
The Stack Power (SP) function can be included in Differential Semblance optimization to
supply the zero-offset amplitude correction (CHAVENT; JACEWITZ, 1995; WEIBULL;
ARNTSEN, 2013).

Zhang and Shan (2013) noted that the difference between Differential Semblance
and Stack Power, is the kind of weight function that is convolved with the Common Image
Gather (CIG). In the angle domain Differential Semblance is equivalent to the convolution
of finite-difference operator with the CIG, while Stack Power represents the convolution
of the CIG with the constant 1. A Radon transform (Fourier transform for plane waves)
changes these convolutions to a multiplication with the offset-vector norm, |h|, and the
Dirac delta 𝛿(h), respectively. This analysis suggests the possibility to evaluate Stack
Power locally like Differential Semblance (MACIEL; COSTA; SCHLEICHER, 2012). The
idea is to stack the image traces in a small Gaussian window, bringing to Stack Power
better convergence proprieties as Differential Semblance, with advantage to compute the
zero-offset amplitude residual. They named this new objective function as Partial Stack
Power (PSP).

There is additional zero offset information which can help to conditioning WEMVA.
It is the application of structure-oriented filters (FEHMERS; HÖCKER, 2003). Using an
approximation of the anisotropic diffusion equation, as shown by Hale (2009), Williamson
et al. (2011) smoothed the objective function gradient. They showed that in this way the
velocities models recovered the main features of true velocity. Moreover this procedure
accelerated the method’s convergence. However it implied in resolving one more linear
system per iteration.

It is also possible to obtain a structural-oriented velocity model, with less compu-
tational cost, by the concept of cross-gradient regularization (FREGOSO; GALLARDO,
2009; TRYGGVASON; LINDE, 2006). A cross gradient aims at aligning the gradient vec-
tors of two parameters giving them the same structural map. Here, I propose an alternative
strategy to couple the cross-gradient in WEMVA optimization, avoiding the regularization
parameter adjustment and the solution of another linear system. It combines the Partial
Stack Power function with its analogous version with cross-gradient, allowing to adjust the
weight functions, to turn on the extra information when the velocity background is fitted
well. I start at reviewing the WEMVA inversion method, then I show the cross-gradient
regularization for WEMVA and finally I validate the algorithm by application to synthetic
Marmousoft model (BILLETTE et al., 2003).
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2.2 WEMVA theory

In this work, I assume that wave propagation is described by the acoustic equation
with constant density,

2𝑃 (x, 𝑡) ≡
[︃

1
𝑐2(x)

𝜕2

𝜕𝑡2
−∇2

]︃
𝑃 (x, 𝑡) = 𝐹 (x, 𝑡), (2.1)

where 2 is the wave equation operator, 𝑐(x) is the wave velocity, 𝑃 (x, 𝑡) the pressure field,
𝐹 (x, 𝑡) the seismic source, x = (𝑥1, 𝑥2, 𝑥3) a subsurface position (Figure 2.1) and 𝑡 the
time instant.

Figure 2.1 – Coordinate system.

Source: By the author

According to Claerbout (1971), a migrated image, 𝐼(x), is made by the cross-
correlation between the downward wave field 𝐷(x, 𝑡, 𝑠) (source field) with the upward
wave field 𝑈(x, 𝑡, 𝑟) (receiver field), modeled with recorded traces injected from the last
sample to the first,

𝐼(x) =
𝑁𝑠∑︁
𝑠=1

𝑁𝑟(𝑠)∑︁
𝑟=1

∫︁ 𝑇

0
𝑑𝑡𝐷(x, 𝑡, 𝑠)𝑈(x, 𝑡, 𝑟), (2.2)

where 𝑁𝑠 is the number of shots, 𝑁𝑟(𝑠) is the number of receivers per shot and 𝑇 is the
total recording time, see Figure 2.2.

If the velocity model is wrong, the Claerbout image condition, equation 2.2, will
focus the energy in a wrong position. That energy can be related to a displacement of
source and receiver in space (RICKETT; SAVA, 2002), in time (SAVA; FOMEL, 2006) or
in space-time (YANG; SAVA, 2010). The collection of all these information is called the
Offset Domain Common Image Gather (ODCIG),

𝐼(x,h, 𝜏) =
𝑁𝑠∑︁
𝑠=1

𝑁𝑟(𝑠)∑︁
𝑟=1

∫︁ 𝑇

0
𝑑𝑡𝐷(x− h, 𝑡− 𝜏, 𝑠)𝑈(x + h, 𝑡+ 𝜏, 𝑟), (2.3)

where h = (ℎ1, ℎ2, ℎ3) is the sub-surface offset and 𝜏 is the time shift. However, using
the complete extension of the image condition represents a significant increasing of the
computational cost (SAVA; VASCONCELOS, 2011). Usually only a horizontal space shift
[h = (0, ℎ2, 0); 𝜏 = 0] is enough to estimate good 2D background velocities, see Figure 2.3.
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Figure 2.2 – Reverse Time Migration (RTM) process: cross-correlation of forward wavefield (a)
with backward wavefield (b), producing the image (c).

(a) 𝐷(x, 𝑡) (b) 𝑈(x, 𝑡)

(c) 𝐼(x)

Source: By the author

Figure 2.3 – ODCIG migrated with velocity values: (a) 20% greater, (b) exact and (c) 20%
smaller.
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The energy will be focused at zero offset, when the velocity is correct. A Radon
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transform applied to this gather produces a flat horizontal event in another domain called
Angle Domain Commom Image Gather (ADCIG) (BIONDI; SYMES, 2004), see Figure
2.4.

Figure 2.4 – ADCIG migrated with velocity values: (a) 20% greater, (b) exact and (c) 20%
smaller.
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In ADCIG domain, Differential Semblance optimization (DS) (SYMES; CARAZ-
ZONE, 1991) aims to measure the flatness events by minimization of a local derivative.
Stack Power optimization (SP) aims to maximize the amplitude stacking. In ODCIG,
Differential Semblance minimize all energy measured in non zero-offset image by linear
offset penalty factor, and Stack Power aims to maximize the zero-offset image amplitude.
The Table 2.1 show schematically the Stack Power and Differential Semblance objective
functions in angle domain (blue) and in offset domain (red).

Table 2.1 – WEMVA objective functions: Stack Power and Differential Semblance for angle
domain (blue) and offset domain (red).

Stack Power (SP)
(Maximization)

Differential Semblance (DS)
(Minimization)

ADCIG Φ(𝐼) =
∑︁
x,𝜃

[𝐼(x, 𝜃)]2 Φ(𝐼) =
∑︁
x,𝜃

[︃
𝑑𝐼

𝑑𝜃
(x, 𝜃)

]︃2

ODCIG Φ(𝐼) =
∑︁

x
[𝐼(x,0)]2 Φ(𝐼) =

∑︁
x,h

[h𝐼(x,h)]2

Like the objective function of FWI, also the Stack Power function suffers from a lot
of local minima (VIRIEUX; OPERTO, 2009), which makes the function subject to cycle
skipping. In contrast Differential Semblance, by its local analysis, has better convergence
properties, and less local minima. In FWI, the wave-phase adjustment is related with
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background velocity optimization and the amplitude fit with the high resolution of the
velocity. Analogously in WEMVA we can say that Differential Semblance leads to a kind
of phase driven optimization, whereas Stack Power leads to a kind of amplitude driven
optimization.

Many authors (CHAVENT; JACEWITZ, 1995; WEIBULL; ARNTSEN, 2013)
combine these two measures into a single objective function,

Φ(𝐼) = 1
2
∑︁
x,h

[h𝐼(x,h)]2 − 𝛾

2
∑︁

x
[𝐼(x,0)]2 , (2.4)

where the 𝛾 parameter needs to be adjusted like a regularization. The many local
minima of Stack Power suggest to choose a 𝛾 parameter, that emphasizes the Stack Power
function, when Differential Semblance amplitude has lost its sensibility. This is a hard
task without previously knowing the minimum Differential Semblance value. Even with
this information, the convergence is not guaranteed because Stack Power is not totally an
amplitude optimization.

Zhang and Shan (2013) noted that the difference between Stack Power and Dif-
ferential Semblance is the filter applied in each one. In Stack Power maximization the
filter constant 1 is convolved with ADCIG map along angle coordinate. By a Radon
transform, this process is equivalent an application of Dirac’s delta 𝛿(h) in ODCIG domain.
Differential Semblance is a convolution of derivative operator in ADCIG domain. The
equivalent in ODCIG domain is a offset linear penalty factor |h|. Both operations can be
generalized as:

Φ(𝐼) = 1
2
∑︁
x,𝜃

[𝑔(𝜃) * 𝐼(x, 𝜃)]2 (2.5)

in an ADCIG and
Φ(𝐼) = 1

2
∑︁
x,h

[𝐺(h)𝐼(x,h)]2 (2.6)

in an ODCIG, see Figure 2.5.

To combine the Differential Semblance and Stack Power optimization, Zhang and
Shan (2013) proposed the maximization of Partial Stack Power, equations 2.5 and 2.6,
where the weights 𝑔(𝜃) and 𝐺(h) are represented by variable Gaussian windows. The
Zhang and Shan (2013) idea is gradually transform the velocity model sensibility from
Differential Semblance to Stack Power analysis, by squeezing the Gaussian window as the
energy becomes more focused as proceed the inversion.
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Figure 2.5 – Stack Power (SP), Differential Semblance (DS) and Partial Stack Power (PSP)
penalty operators, in ADCIG (blue) and ODCIG (red) domains.
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2.3 Constraining the velocity model with the reflector map

Is very common to conditioning a ill-posed problem with the Tikhonov regularization
(TIKHONOV; ARSENIN, 1977). The Tikhonov regularization minimizes the problem
according to

arg min Φ𝑟𝑒𝑔 = Φ + 𝜆||Γ(𝑐− 𝑐0)||2, (2.7)

where Γ is the Tikhonov differential operator, 𝑐0 is a prior velocity model and 𝜆 the
regularization parameter. It is possible to impose different conditions to the solutions, as the
minimum norm, Γ ≡ 1, the isotropic smoothness, Γ ≡ ∇, or the gradient condition, Γ ≡ ∇2.
Anisotropic smoothness conditions can be applied by general Tikhonov regularization,

𝑅 = 𝜆 [∇ (𝑐− 𝑐0)]𝑇 L∇ (𝑐− 𝑐0) , (2.8)

where L is a symmetric weight matrix. For structural regularization according to Kaipio
et al. (1999), L must produce an anisotropic smoothness giving smaller penalties across
discontinuities than along the faults and at places with no discontinuity the weight act
isotropically, see Figure 2.6. Kaipio et al. (1999) chosen as

L = I− (1 + |∇𝐼|2)−1S, (2.9)
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Figure 2.6 – The arrows show the eigenvalues of 2.9. Higher weights along structures than across
then, and equal weights inside the layers.

Source: By the author

where I the identity matrix and S = ∇𝐼(∇𝐼)𝑇 is the structure tensor.

Analyzing equation 2.9, removing the normalization and the isotropic term, I get

L = |∇𝐼|2I− S = M𝑇 M, (2.10)

with

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 𝜕𝐼
𝜕𝑥3

− 𝜕𝐼
𝜕𝑥2

− 𝜕𝐼
𝜕𝑥3

0 𝜕𝐼
𝜕𝑥1

𝜕𝐼
𝜕𝑥2

− 𝜕𝐼
𝜕𝑥1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.11)

Identity 2.10 is the cross-gradient factor in Kaipio et al. (1999) regularization,

(∇𝑐)𝑇 L∇𝑐 = (M∇𝑐)𝑇 (M∇𝑐) ≡ |∇𝐼 ×∇𝑐|2 . (2.12)

The last term of 2.10 is the cross-gradient version of the inner product,

(∇𝑐)𝑇 S∇𝑐 = (∇𝑐)𝑇 ∇𝐼 (∇𝐼)𝑇 ∇𝑐 ≡ (∇𝐼 · ∇𝑐)2 . (2.13)

An interpretation of cross-gradient optimization is show in Figure 2.7. The figure
shows two black curves indicating the image/reflectivity map embedded in a linear vertical
gradient velocity. When the velocity model is almost adjusted, the WEMVA’s image
update has few changes. From now, the objective function decrease manly by changing
the ∇𝑐(x) direction towards the ∇𝐼(x) direction. Parallelizing the gradient vectors can
be done by minimization (maximization) of their outer (inner) product in a least-square
sense.

We can redefine Stack Power and Differential Semblance in terms of cross-gradient
constraint. The Table 2.2 shows the cross-gradient versions from Table 2.1.
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Figure 2.7 – A cross-gradient regularization parallelize the gradient vectors ∇𝑐 and ∇𝐼, minimi-
zing (maximize) their outer (inner) product in a least-square sense.
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Table 2.2 – WEMVA objective functions constrained by cross-gradient regularization: Cross-
Gradient Stack Power (CGSP) and Cross-Gradient Differential Semblance (CGDS),
for angle domain (blue) and offset domain (red).

CG Stack Power (CGSP)
(Maximization)

CG Differential Semblance (CGDS)
(Minimization)

ADCIG Φ(𝐼, 𝑐) =
∑︁
x,𝜃

[∇𝐼(x, 𝜃) · ∇𝑐(x)]2 Φ(𝐼, 𝑐) =
∑︁
x,𝜃

⃒⃒⃒⃒
⃒ 𝑑𝑑𝜃∇𝐼(x, 𝜃)×∇𝑐(x)

⃒⃒⃒⃒
⃒
2

ODCIG Φ(𝐼, 𝑐) =
∑︁

x
[∇𝐼(x,0) · ∇𝑐(x)]2 Φ(𝐼, 𝑐) =

∑︁
x,h
|h|2 |∇𝐼(x,h)×∇𝑐(x)|2

The same construction can be done for the Partial Stack Power. Following the
normalization proposed by Zhang and Shan (2013), the Cross Gradient Partial Stack
Power in an ODCIG is defined as:

𝜓(𝐼, 𝑐) = 1
2
∑︁
𝑥2

∑︀
𝑥1,ℎ2

[︁
𝐺̃(h)∇𝐼(x,h) · ∇𝑐(x)

]︁2
∑︀

𝑥1,ℎ2 [∇𝐼(x,h) · ∇𝑐(x)]2
. (2.14)

A cross-gradient objective function optimization brings high-frequency information
to the velocity. It is not appropriated to apply it if the background velocity model is not
solved yet. To include the cross-gradient from the beginning, it is necessary to couple
it with a standard optimization function. Here, I combine the Zhang and Shan (2013)
function

𝜙(𝐼) = 1
2
∑︁
𝑥2

∑︀
𝑥1,ℎ2 [𝐺(h)𝐼(x,h)]2∑︀

𝑥1,ℎ2 [𝐼(x,h)]2
(2.15)

with the Cross-Gradient Partial Stack Power, equation 2.14. From now on, this work will
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use for the Cross-Gradient Partial Stack Power function the definition

Φ(𝐼, 𝑐) = 𝜙(𝐼)𝜓(𝐼, 𝑐). (2.16)

The gradient of equation 2.16 is calculated in Appendix A.

The Gaussian weights are defined as:

𝐺(h) = exp(−𝛼ℎ2
2/𝐻

2), (2.17a)

𝐺̃(h) = exp(−𝛽ℎ2
2/𝐻

2), (2.17b)

where 𝐻 is the maximum sub-surface offset, and 𝛼 and 𝛽 are parameters for squeezing
the Gaussian. Mathematically 𝐺̃ is independent of 𝐺, and in principal, choosing 𝛼 and 𝛽

is as undetermined as 𝜆 in Tikhonov regularization. However some conditions need to be
taken into account: 𝛼 starts with a small value [wide 𝐺(h)] to include the most unfocused
energy. As the inversion proceeds, and the gathers become more focused, 𝛼 is gradually
increased [small 𝐺(h)] to approach the Stack Power analysis (ZHANG; SHAN, 2013). For
the first iterations, the 𝛽 value needs to give priority to 𝜙 in order to estimate estimate the
background velocity. As the inversion proceeds, the weights for 𝜙 and 𝜓 must approach
each other asymptotically (see Figure 2.8). One suggestion is to take 𝛽 = 𝛼(1.0− 𝛼0/𝛼),
where 𝛼0 (𝛼 ≥ 𝛼0) is the first 𝛼 selected.

Figure 2.8 – Gaussian window changing the phase analysis (large) to amplitude analysis
(squeezed). Note the delay between the Partial Stack Power (continuous lines)
and Cross-Gradient Partial Stack Power (dashed lines), which is reduced when the
background is adjusted.
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2.4 Numerical experiments

To validate the Cross-Gradient Partial Stack Power I used synthetic data from a
smoothed version of the Marmousi data (VERSTEEG; GRAU, 1991) called Marmousoft
(BILLETTE et al., 2003). It is a simulated marine acquisition with 261 shots and a
streamer with 96 receivers. The data was modeled using the Born approximation, which
means that it contains no multiples or refracted waves. The pulse is a Ricker wavelet with
peak frequency of 12 Hz.

The model possesses 243 samples in the 𝑥1 and 767 in the 𝑥2 direction, both spaced
at 12 m. The velocities vary between 1500 m/s and 4750 m/s. Figure 2.9a shows the true
velocity model.

The objective function gradient was calculated by adjoint state method (PLESSIX,
2006), see Appendix A. For optimization process I used the quasi-Newton algorithm
L-BFGS-B (BYRD et al., 1995), see Appendix B. The numbers of parameters was reduced
by B-splines interpolation, see Appendix C. The interpolated model has 37 samples in the
𝑥1 and 97 samples in the 𝑥2 direction, spaced at 81 m and 95.875 m respectively. The
initial model is a linear vertical gradient with velocity varying between 1500 m/s and 4500
m/s (see Figure 2.9b). The maximum subsurface offset is equal to 624 m. The optimization
took 4 steps with 15 iterations each. At each step, 𝛼 was increased empirically, taking the
values 1.0, 3.0, 7.0 and 20.0 (Figure 2.8).

Figure 2.9c show the model resulting from Partial Stack Power optimization. It
is a model with little change with respect of the initial model, but enough to produce a
well focused image (Figure 2.10c). Figure 2.9d show the velocity model build with Cross-
Gradient Partial Stack Power optimization. We can note the cross-gradient regularization
gives a structural information similar founded in true velocity model (Figure 2.9a), and
less artifacts when we compare the region above 𝑥1 = 800 m between 𝑥2 = 6600 m and
𝑥2 = 8400 m, in Figures 2.9c and 2.9d. The correspondent PSP and CGPSP migrated
images are show in Figures 2.10c 2.10d respectively. In both cases we can see good
convergence, when we compare the migrated image using the true velocity model (Figure
2.10a), and initial model (Figure 2.10b), but for CGPSP we note a better definition of the
layers on the region above 𝑥1 = 800 m between 𝑥2 = 6600 m and 𝑥2 = 8400 m.

Figures 2.11 to 2.14 show selected CIGSs (3000, 3600, 4200, 4800, 5400, 6000, 6600,
7200, 7800 and 8400 m) as obtained with the four velocity models. By the energy focused at
zero-offset we evaluate how the velocity background is fitted well. In both cases, PSP and
CGPSP (Figures 2.13 and 2.14 respectively), we observe no correlation for far subsurface
offsets. Note the convergence comparing the true migration at Figure 2.11, and the CIG
migrated with initial model at Figure 2.12.
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The short wavelength components of the velocity model are related with amplitude
maximization in zero-offset image. The Figures 2.15 and 2.16 show the zero-offset image
trace took at the CIG position mentioned above. Particularly at the positions around the
target, 𝑥2 = 6000 m, 𝑥2 = 6600 m and 𝑥2 = 7200 m (the target depth is 𝑥1 = 2400 m).
We can see the Cross-Gradient Partial Stack Power has better results in sense of avoiding
cycle skipping and amplitude fitting than regular Partial Stack Power (intervals 1000 to
2000 in CIG 6000, first 800 m in CIG 6600). Unfortunately the interweave of parameters
spread in 2D model, has nonlinearity to makes a local cycle skipping, see the interval 1000
to 2000 in CIG 7200, even with a correct time shift on the rest of the trace.
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Figure 2.9 – Velocity model.

(a) True (b) Initial

(c) Partial Stack Power (d) Cross-Gradient Partial Stack Power

Source: By the author
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Figure 2.10 – Migrated image with:

(a) true velocity (b) initial velocity

(c) Partial Stack Power velocity (d) Cross-Gradient Partial Stack Power velocity.

Source: By the author
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Figure 2.11 – ODCIG migrated with true velocity.

Source: By the author
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Figure 2.12 – ODCIG migrated with initial velocity.

Source: By the author
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Figure 2.13 – ODCIG migrated with optimized Partial Stack Power velocity.

Source: By the author
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Figure 2.14 – ODCIG migrated with optimized Cross-Gradient Partial Stack Power velocity.

Source: By the author
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Figure 2.15 – ODCIG zero offset image traces 𝑥1 = (3000, 3600, 4200, 4800, 5400) m: true migra-
tion (blue), Partial Stack Power migration (red) and Cross-Gradient Partial Stack
Power (black).
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Figure 2.16 – ODCIG zero offset image traces 𝑥1 = (6000, 6600, 7200, 7800, 8400) m: true migra-
tion (blue), Partial Stack Power migration (red) and Cross-Gradient Partial Stack
Power (black).
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2.5 Conclusions

In this Chapter I discussed preconditioning WEMVA adding structural information
extracted from stacked migrated images. In order to enforce the structural information we
require that the gradient of the velocity field and the gradient of the image intensity are
collinear. This regularization was applied as a multiplicative factor on the partial stack
power objective function. The structural regularization is gradually enforced during the
quasi-Newton iterations in order to avoid premature convergence to local minima. This
modification resulted in velocity models correlated with the seismic image and improved
the migration focusing.

The new objective function is very sensitive to high frequency noise. Preprocessing
is required to attenuate multiples and coherent noises. Additionally, dynamic precondition-
ing is required to decrease the nonlinearity and improve image focusing. In our numerical
experiments we used a Gaussian filter to improve the robustness when numerically com-
puting of the gradients of image and velocity. A Gaussian filter is used also to remove
high frequency artifacts in the objective function gradient. B-splines parameterization of
the velocity model reduces the number of model parameters and also enforces smoothness
preconditioning in the gradient of the objective function.

Our numerical experiments on the Marmousoft data set indicate that the proposed
method preconditioning the convergence of the method, resulting in focused common
image gathers and a velocity model correlated with the image. The RTM image computed
with the estimated velocity model is very close to the image using the exact velocity model
except in regions compromised by lack of illumination.
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3 JOINT MIGRATION INVERSION

Joint Migration Inversion (JMI) (BERKHOUT, 2014a; BERKHOUT, 2014b;
BERKHOUT, 2014c) is a data and image based inversion method that uses the Full
Wavefield Migration (FWM) to simultaneously estimate the reflectivity and velocity mod-
els. It is a data driven method in sense that it minimizes the squared error, between the
observed and modeled data, and it is an image driven method in sense that the migration
operators are iteratively estimated and back projected to a velocity update. JMI is a new
strategy for seismic inversion, because it has the advantage of decoupling the reflectivity
and velocity, reducing the nonlinearity, which usually appears, in the first iterations in
traditional methods like FWI or WEMVA. This chapter, based on Staal and Verschuur
(2014), will describe schematically the JMI method, introducing the concepts of Full
Wavefield Modeling (FWMod) and how it is includes in reflectivity estimation (by FWM)
and extended to velocity estimation (JMI). This chapter will give a JMI background for a
better understanding of the next chapter, where we will combine the JMI method with
morphological operators.

3.1 Full Wavefield Modeling

Full Wavefield Modeling uses integral operators to evaluate separately the phase
changes, for the estimation of kinematically accurate velocity models, and the amplitude
changes, for the estimation of reflectivity maps. The wavefield modeling use the Rayleigh
II integral,

𝑃 (𝑥𝑚
1 , 𝑥

𝑚
2 ) = 2

∫︁ +∞

−∞

𝜕𝐺

𝜕𝑥1
(𝑥𝑚

1 , 𝑥
𝑚
2 ;𝑥𝑛

1 , 𝑥2)𝑄(𝑥𝑛
1 , 𝑥2)𝑑𝑥2, (3.1)

where 𝑃 (𝑥𝑚
1 , 𝑥

𝑚
2 ) is the monochromatic extrapolated wavefield to the position (𝑥𝑚

1 , 𝑥
𝑚
2 ),

𝑄(𝑥𝑛
1 , 𝑥2) is the previous known wavefield, measured at position (𝑥𝑛

1 , 𝑥2). 𝜕𝐺
𝜕𝑥1

is vertical
derivative of Green’s function. In discrete form, equation 3.1 is a matrix-vector equation:

𝑃 (𝑥𝑚
1 ) = W(𝑥𝑚

1 , 𝑥
𝑛
1 )𝑄⃗(𝑥𝑛

1 ), (3.2)

where 𝑃 (𝑥𝑚
1 ) is the extrapolated wavefield measured at depth level 𝑥𝑚

1 , 𝑄⃗(𝑥𝑛
1 ) is the

wavefield that we want to extrapolate, measured at depth level 𝑥𝑛
1 , and matrix W is

W𝑖,𝑗(𝑥𝑚
1 , 𝑥

𝑛
1 ) = 2 𝜕𝐺

𝜕𝑥1
(𝑥𝑚

1 , 𝑥
𝑗
2;𝑥𝑛

1 , 𝑥
𝑖
2). (3.3)

The JMI approach assumes that the velocity is locally homogeneous, in other words the
columns of matrix W use the local velocity 𝑐(𝑥𝑛

1 , 𝑥
𝑗
2) and by the Toeplitz structure, we

can relate each column to a phase shift operator in 𝑘𝑥2 domain. Then each column 𝑗 of
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W is written as
𝑊⃗𝑗(𝑥𝑚

1 , 𝑥
𝑛
1 ) = ℱ−1

𝑥

[︁
𝑒−𝑖𝑘𝑥1 Δ𝑥1𝑒−𝑖𝑘𝑥2 𝑥𝑗

2
]︁

(3.4)

where ℱ−1
𝑥2 is the inverse Fourier transform in 𝑥2, 𝑘𝑥1 =

√︁
𝑘2 − 𝑘2

𝑥2 with 𝑘 = 𝜔/𝑐, 𝑥𝑗
2 is

the source position of Green’s function and Δ𝑥1 = |𝑥𝑛
1 − 𝑥𝑚

1 |. If we consider the upgoing
extrapolation operator W−

𝑗 equal to the equation 3.4, to maintain the reciprocity between
source and receiver, as in the homogeneous case, the downgoing extrapolation operator
must satisfy:

W+(𝑥𝑛+1
1 , 𝑥𝑛

1 ) =
[︁
W−(𝑥𝑛

1 , 𝑥
𝑛+1
1 )

]︁𝑇
. (3.5)

When the wavefield encounters a sharp velocity contrast, a part of the energy will
scatter and a part will be transmitted. The incident wavefield at depth level 𝑥𝑛

1 can be
written as:

𝑄⃗−(𝑥𝑛
1 ) = R∪(𝑥𝑛

1 )𝑃+(𝑥𝑛
1 ) + T∩(𝑥𝑛

1 )𝑃−(𝑥𝑛
1 ), (3.6a)

𝑄⃗+(𝑥𝑛
1 ) = T∪(𝑥𝑛

1 )𝑃+(𝑥𝑛
1 ) + R∩(𝑥𝑛

1 )𝑃−(𝑥𝑛
1 ), (3.6b)

where 𝑃−(𝑥𝑛
1 ) and 𝑃+(𝑥𝑛

1 ) are the upgoing and downgoing wavefields arriving at level
𝑥𝑛

1 . 𝑄−(𝑥𝑛
1 ) and 𝑄+(𝑥𝑛

1 ) are the upgoing and downgoing wavefields leaving level 𝑥𝑛
1 . The

operators R∪ and R∩ are the reflectivity coefficients acting on incident waves from above
and from below respectively (see Figure 3.1). The operators T∪ and T∩ are the analogous
transmission operators. In acoustic approximation, the transmission coefficients are related
by

R∪ = −R∩ = R (3.7a)

T∪ = I + R (3.7b)

T∩ = I−R. (3.7c)

Figure 3.1 – Schematic representation of incoming and outgoing wavefields acting for each grid-
point of depth level 𝑥𝑚

1 .

Source: By the author
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Then using equations 3.7 in 3.6, we find

𝑄⃗−(𝑥𝑛
1 ) = 𝑃−(𝑥𝑛

1 ) + 𝛿𝑃 (𝑥𝑛
1 ) (3.8a)

𝑄⃗+(𝑥𝑛
1 ) = 𝑃+(𝑥𝑛

1 ) + 𝛿𝑃 (𝑥𝑛
1 ), (3.8b)

where 𝛿𝑃 = R
(︁
𝑃+ − 𝑃−

)︁
is the scattered wavefield.

Full Wavefield Modeling consists of recursive downgoing and upgoing extrapolation.
The source wavefield 𝑆⃗(𝑥0

1) is previously known, and the fields outside the grid is assumed
to be zero. Schematically the recursive process is:

1. Modeling the downgoing wavefield (𝑚 = 0, 1, 2, ...,𝑀 − 1)

∙ At the surface, 𝑥0
1, add the source and the scattered wavefields:

𝑄⃗+(𝑥0
1) = 𝑃+(𝑥0

1) + 𝛿𝑃 (𝑥0
1) + 𝑆⃗(𝑥0

1), (3.9)

for 𝑚 ̸= 0 add only the scattering:

𝑄⃗+(𝑥𝑚
1 ) = 𝑃+(𝑥𝑚

1 ) + 𝛿𝑃 (𝑥𝑚
1 ). (3.10)

∙ Then extrapolate the wavefield with downgoing extrapolation operator W+:

𝑃+(𝑥𝑚+1
1 ) = W+(𝑥𝑚+1

1 , 𝑥𝑚
1 )𝑄⃗+(𝑥𝑚

1 ). (3.11)

2. Modeling the upgoing wavefield (𝑚 = 𝑀,𝑀 − 1,𝑀 − 2, ..., 1)

∙ Add the scattered field:

𝑄⃗−(𝑥𝑚
1 ) = 𝑃−(𝑥𝑚

1 ) + 𝛿𝑃 (𝑥𝑚
1 ). (3.12)

∙ Extrapolate the wavefield with the upgoing extrapolation operator W−:

𝑃−(𝑥𝑚−1
1 ) = W−(𝑥𝑚−1

1 , 𝑥𝑚
1 )𝑄⃗−(𝑥𝑚

1 ). (3.13)

When each round trip (downgoing extrapolation followed by upgoing extrapolation) is
complete, it adds one order of two-way scattering. It is equivalent to the evaluation of
the Neumann series. In the first round trip, 𝑃+(𝑥𝑚

1 ) and 𝑃−(𝑥𝑚
1 ) are assumed as zero

wavefields for every depth level 𝑥𝑚
1 . Then we can summarize this process, according to

equations 3.11 and 3.13, as:

𝑃+(𝑥𝑚
1 ) = W+(𝑥𝑚

1 , 𝑥
0
1)𝑆⃗(𝑥0

1) +
𝑚−1∑︁
𝑛=0

W+(𝑥𝑚
1 , 𝑥

𝑛
1 )𝛿𝑃 (𝑥𝑛

1 ), (3.14a)
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𝑃−(𝑥𝑚
1 ) =

𝑀∑︁
𝑛=𝑚+1

W−(𝑥𝑚
1 , 𝑥

𝑛
1 )𝛿𝑃 (𝑥𝑛

1 ), (3.14b)

where 𝑀 is the total samples in depth and

W+(𝑥𝑚
1 , 𝑥

𝑛
1 ) =

𝑚∏︁
𝑘=𝑛+1

W+(𝑥𝑘
1, 𝑥

𝑘−1
1 ), (3.15a)

W−(𝑥𝑚
1 , 𝑥

𝑛
1 ) =

𝑚∏︁
𝑘=𝑛−1

W−(𝑥𝑘
1, 𝑥

𝑘+1
1 ). (3.15b)

The user selects how many round trips will be evaluated.

3.2 Velocity perturbations

In JMI the phase of the wavefield only depends on the velocity model, which
is related to the extrapolation operator W. JMI applies perturbation theory to the
extrapolation operator to extract information on the velocity perturbation, which will be
used in a gradient descent scheme to minimize the difference between the modeled and
recorded data in the least-squares sense. The algorithm is written in terms of the contrast
parameter 𝜁(𝑥1, 𝑥2), defined as:

𝜁(𝑥1, 𝑥2) = 1− 𝑐2
0(𝑥1, 𝑥2)
𝑐2(𝑥1, 𝑥2)

, (3.16)

where 𝑐0(𝑥1, 𝑥2) is the background velocity and 𝑐(𝑥1, 𝑥2) the current velocity model. A
perturbation in the upgoing extrapolation operator is

ΔW−(𝑥𝑚
1 , 𝑥

𝑛
1 ) = W−(𝑥𝑚

1 , 𝑥
𝑛
1 )−W−

0 (𝑥𝑚
1 , 𝑥

𝑛
1 ), (3.17)

where W−
0 is the background upgoing extrapolation operator. According equation 3.4 the

columns of Δ𝑊− can be expressed as:

Δ𝑊⃗−
𝑗 (𝑥𝑚

1 , 𝑥
𝑛
1 ) = ℱ−1

𝑥2

[︁
(𝑒−𝑖𝑘𝑥1 Δ𝑥1 − 𝑒−𝑖𝑘0Δ𝑥1)𝑒−𝑖𝑘𝑥2 𝑥𝑗

2
]︁
, (3.18)

where 𝑘𝑥1 =
√︁
𝑘2

0(1− 𝜁)− 𝑘2
𝑥2 with 𝑘0 = 𝜔

𝑐0
. Equation 3.18 is the approximation of the

derivative in 𝜁, so that

Δ𝑊⃗−
𝑗 (𝑥𝑚

1 , 𝑥
𝑛
1 ) ≈ 𝜕𝑊⃗−

𝜕𝜁

⃒⃒⃒⃒
⃒⃒
𝜁=𝜁0

Δ𝜁(𝑥𝑛
1 , 𝑥

𝑗
2) ≈ 𝐺⃗−

0𝑗(𝑥𝑚
1 , 𝑥

𝑛
1 )Δ𝜁(𝑥𝑛

1 , 𝑥
𝑗
2), (3.19)

with
𝐺⃗−

0𝑗(𝑥𝑚
1 , 𝑥

𝑛
1 ) = ℱ−1

𝑥2

[︃
𝑖
Δ𝑧
2

𝑘2
0

𝑘𝑥1

𝑒−𝑖𝑘𝑥1 Δ𝑥1𝑒−𝑖𝑘𝑥2 𝑥𝑗
2

]︃
𝜁=𝜁0

, (3.20)
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𝜁0 = 0 and Δ𝜁 = 𝜁. For 𝑘𝑥1 = 0 (i.e at 90∘ propagation angle), expression 3.20 becomes
unstable. To stabilize the division, a stabilization parameter 𝜀 can be used in 3.20:

𝐺⃗−
0𝑗(𝑥𝑚

1 , 𝑥
𝑛
1 ) = ℱ−1

𝑥2

[︃
𝑖
Δ𝑧
2 𝑘2

0
𝑘*

𝑥1

𝑘*
𝑥1𝑘𝑥1 + 𝜀

𝑒−𝑖𝑘𝑥1 Δ𝑧𝑒−𝑖𝑘𝑥2 𝑥𝑗
2

]︃
𝜁=𝜁0

, (3.21)

where * denotes the complex conjugation. The complete matrix ΔW−
0 (𝑥𝑚

1 , 𝑥
𝑛
1 ) is written

as:
ΔW−

0 (𝑥𝑚
1 , 𝑥

𝑛
1 ) = G−

0 (𝑥𝑚
1 , 𝑥

𝑛
1 )𝜁(𝑥𝑛

1 ), (3.22)

where 𝜁(𝑥𝑛
1 ) is a diagonal matrix with 𝑑𝑖𝑎𝑔[𝜁(𝑥𝑛

1 )] = 𝜁(𝑥𝑛
1 ) being the velocity perturbations

at depth level 𝑥𝑛
1 . Individually, all velocity perturbations are carried to the surface by

G−
0 (𝑥0

1, 𝑥
𝑛
1 ) = W−

0 (𝑥0
1, 𝑥

𝑛−1
1 )G−

0 (𝑥𝑛−1
1 , 𝑥𝑛

1 ), (3.23)

and these effects are measured as a scattered wavefield

Δ𝑃−
𝜁 (𝑥0

1) =
𝑁∑︁

𝑛=1
G−

0 (𝑥0
1, 𝑥

𝑛
1 )𝜁(𝑥𝑛

1 )𝑄⃗−(𝑥𝑛
1 ). (3.24)

3.3 Reflectivity perturbations

This work didn’t take account the angle-dependency of reflectivity. The reflectivity
operators are diagonal matrix, where 𝑑𝑖𝑎𝑔[R∪

0 (𝑥𝑛
1 )] = 𝑟⃗(𝑥𝑛

1 ) are the reflectivities at depth
level 𝑥𝑛

1 . The effect of perturbation is derived directly from equation 3.6a, where only
the reflected amplitude, R∪𝑃+(𝑥𝑛

1 ), matters for the receivers detection at the surface, so
that the scattered wavefield at the reflectivity perturbation can be written, in analogy to
equation 3.24, as

ΔP−
Δ𝑟(𝑥0

1) =
𝑁∑︁

𝑛=1
W−(𝑥0

1, 𝑥
𝑛
1 )ΔR(𝑥𝑛

1 )𝑃+(𝑥𝑛
1 ). (3.25)

3.4 Inversion

JMI estimates the velocity and reflectivity models by minimizing the difference
between the observed and modeled data as indicated by the objective function

𝐽 =
𝜔2∑︁
𝜔1

||P−
𝑜𝑏𝑠(𝑥0

1)−P−
𝑚𝑜𝑑(𝑥0

1)||2 =
𝜔2∑︁
𝜔1

||ΔP−(𝑥0
1)||2, (3.26)

where [𝜔1, 𝜔2] is the frequency bandwidth of modeling and the matrix P(𝑥0
1) is the collection

of all shot measurements 𝑃 (𝑥0
1). According to equations 3.24 and 3.25, the gradients for

velocity and reflectivity, calculated at depth level 𝑥𝑛
1 , are:

∇𝜁(𝑥𝑛
1 ) = 𝑑𝑖𝑎𝑔

(︃
𝜔2∑︁
𝜔1

[︁
G−(𝑥𝑛

1 , 𝑥
0
1)
]︁𝐻

ΔP(𝑥0
1)
[︁
Q−(𝑥𝑛

1 )
]︁𝐻)︃

(3.27a)
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∇𝑟⃗(𝑥𝑛
1 ) = 𝑑𝑖𝑎𝑔

(︃
𝜔2∑︁
𝜔1

[︁
W−(𝑥𝑛

1 , 𝑥
0
1)
]︁𝐻

ΔP(𝑥0
1)
[︁
P+(𝑥𝑛

1 )
]︁𝐻)︃

, (3.27b)

where the operators W and G are evaluated for the current velocity and reflectivity models.
The wavefield perturbation predicted by these gradients are:

Δ𝑃−
∇𝑟(𝑥0

1) =
𝑁∑︁

𝑛=1
W−(𝑥0

1, 𝑥
𝑛
1 )∇R(𝑥𝑛

1 )𝑃+(𝑥𝑛
1 ) (3.28a)

Δ𝑃−
∇𝜁(𝑥0

1) =
𝑁∑︁

𝑛=1
G−

0 (𝑥0
1, 𝑥

𝑛
1 )∇𝜁(𝑥𝑛

1 )𝑄⃗−(𝑥𝑛
1 ), (3.28b)

where 𝑑𝑖𝑎𝑔[∇R(𝑥𝑛
1 )] = ∇𝑟⃗(𝑥𝑛

1 ) and 𝑑𝑖𝑎𝑔[∇𝜁(𝑥𝑛
1 )] = 𝜁(𝑥𝑛

1 ). Finally the update formulas
for reflectivity and velocity are:

𝑟𝑛𝑒𝑤(𝑥1, 𝑥2) = 𝑟𝑜𝑙𝑑(𝑥1, 𝑥2) + 𝛼𝑟∇𝑟(𝑥1, 𝑥2) (3.29a)

𝑐𝑛𝑒𝑤(𝑥1, 𝑥2) = 𝑐𝑜𝑙𝑑(𝑥1, 𝑥2)√︁
1− 𝛼𝜁∇𝜁(𝑥1, 𝑥2)

, (3.29b)

with

𝛼𝜁 = arg min
𝛼𝜁

(︃
𝜔2∑︁
𝜔1

||ΔP−(𝑥0
1)− 𝛼𝜁ΔP−

∇𝜁(𝑥0
1)||2

)︃
(3.30a)

𝛼𝑟 = arg min
𝛼𝑟

(︃
𝜔2∑︁
𝜔1

||ΔP−(𝑥0
1)− 𝛼𝑟ΔP−

∇𝑟(𝑥0
1)||2

)︃
. (3.30b)

Schematically a single iteration of JMI is summarized as follows:

1. Update the reflectivity for each depth level:

∙ Update the wavefields P+(𝑥𝑚
1 ) and P−(𝑥𝑚

1 ) according the equations 3.14a and
3.14b for the most recent velocity and reflectivity estimates.

∙ Calculate the reflectivity gradient ∇𝑟⃗(𝑥1, 𝑥2), equation 3.27b.

∙ Calculate the wavefield perturbation ΔP−
∇𝑟(𝑥0

1), equation 3.28b, and 𝛼𝑟, equa-
tion 3.30b

∙ Update the reflectivity, equation 3.29a

2. Update the velocity for each depth level:

∙ Update the wavefields P+(𝑥𝑚
1 ) and P−(𝑥𝑚

1 ) according the equations 3.14a and
3.14b for the most recent velocity and reflectivity estimated (one round trip).

∙ Calculate the velocity gradient ∇𝜁(𝑥1, 𝑥2), equation 3.27a.

∙ Calculate the wavefield perturbation ΔP−
∇𝜁(𝑥0

1), equation 3.28a, and 𝛼𝜁 , equa-
tion 3.30a

∙ Update the velocity, equation 3.29b
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3. Repeat 1 and 2 steps until the objective function 𝐽 gets minimum or if the maximum
iterations has been achieved.

JMI needs to specify the frequency range [𝜔1, 𝜔2]. Normally the strategy is to
choose a low frequency for 𝜔1 and to increase the bandwidth as optimization proceeds.
This strategy guarantees the stability of the algorithm and decreases the computational
efforts in the optimization.
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4 ENHANCING RESOLUTION IN IMAGE-BASED VE-
LOCITY ESTIMATION USING MORPHOLOGICAL
OPERATORS

Seismic inversion methods like Wave-Equation Migration Velocity Analysis (WEMVA)
or Joint Migration Inversion (JMI), are powerful tools to estimate velocity models in
complex areas. They have the advantage of estimating reflectivity information that can be
used in velocity/gradient preconditioning or with structure-oriented regularizations. Struc-
tural information can speed up the convergence of the inversion process while the velocity
model gets more geological meaning. In this work we use nonlinear filters from the field
of morphological image processing to enhance the contrast of JMI velocity solution and,
thereby, also improve the final image. First, we briefly describe morphological operators
of erosion and dilation in gray-scale, and second, we propose a modified version of them,
which incorporates the structural information. Finally, we show the method’s effectiveness
with some synthetic examples for the 2D case.

Introduction

Edge preserving filtering is a branch of digital image processing theory used to
remove random noises without blurring the main features of gray-scale images. Some of
these techniques have been applied in seismic image processing to improve the interpretation
of the layers, such as applications of the anisotropic diffusion equation by Fehmers and
HÖcker (2003) and Hale (2009), or bilateral filtering by Hale (2011).

Williamson et al. (2011) also proposed to use the reflectivity image as constraint
in Wave-Equation Migration Velocity Analysis [WEMVA, (SAVA; BIONDI, 2004)]. They
used the migrated image as prior information to constrain the gradient of the objective
function, obeying the geometry of the layers. They show that with this methodology it was
possible to speed up the convergence of the minimization process and it also constrained
the velocity estimate towards a better geological meaning. On the other hand, the strategy
of Williamson et al. (2011) has a drawback. They need to resolve a partial differential
equation by a conjugate gradient method, which implies smoothness for the input and
output. In other words, the presence of the differential operator still imposes a residual
blurring on the velocity enhancement.

Another class of nonlinear filters, derived from mathematical morphology, can
improve the methodology proposed by Williamson et al. (2011). Mathematical morphology,
as the name suggest, studies the shapes in digital images, using concepts from set theory,
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like union and intersection for binary images, and their counterparts in lattice theory called
supremum and infimum for gray-scale images. Developed by George Matheron (1975) and
Jean Serra (1983), mathematical morphology uses a probe with different sizes or shapes to
scan the geometrical structure of a digital image, looking for patterns that match with
the morphological operator’s prior criterion. The results can enhance or eliminate these
patterns and at the same time preserve important features of the original image.

Mathematical morphology is based on two operators called erosion and dilation.
These operators have been used in a toggle operator to sharpen the edges in gray-scale
images (KRAMER; BRUCKNER, 1975; MEYER; SERRA, 1989). To construct a structure-
oriented contrast sharpening operator for seismic models, we followed a different way
without a toggle operator. We propose to modify the original model, dividing/multiplying
it with a mask function (which has the information of the reflectivity geometry), to make
some gaps, which will be used to constrain the erosion (dilation) operation to produce a
lower (upper) bound staircase function of the original signal. An average between these two
signals produces our desired approximation of the original signal by a staircase function,
according to prior information on the step distribution.

Joint Migration Inversion [JMI, Berkhout (2014a), Berkhout (2014b), Berkhout
(2014c)], like WEMVA, has the structural information available that can be used as prior
information. However, differently from WEMVA, JMI can handle all reflection data
including primaries, surface multiples and internal multiples. This makes the method
more suitable to imaging a salt basin and consequently produce better reflectivity maps.
Because of these advantages, we apply the structure-oriented morphological operators
in the JMI scheme, not via preconditioning the gradient of the objective function like
Williamson et al. (2011) did, but applying it directly to the estimated velocity.

First, we present the theory of the binary morphological operators, to provide
insight into gray-scale morphology theory. We modify the gray-scale operators combining
them with a migrated image which carries all structural information to constrain the
tomographic models to have more geological meaning. Next, we successfully show the
application in JMI to a 2D synthetic dataset.

4.1 Erosion and dilation for binary images

According to Maragos (2009), the basic idea of the morphological operators consist
of probing an image 𝐴 using another pixel set called structural element 𝐵, to quantify how
the structural element fits or does not fit on to image 𝐴. If the matching criteria consist
of an intersection of 𝐵 translations, 𝐵𝑥 = {𝑏+ 𝑥 : 𝑏 ∈ 𝐵}, with image 𝐴, written as

𝐴⊖𝐵 = {𝑥 : 𝐵𝑥 ⊂ 𝐴} =
⋂︁

𝑏∈𝐵

𝐴−𝑏, (4.1)
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we have the erosion binary operation, also called Minkowski subtraction (DOUGHERTY;
LOTUFO, 2003). The effect of the operator is shrinking the areas of the foreground pixels
and enlarge the holes inside these areas, see Figure 4.1.

Figure 4.1 – Original image (a) and the results of binary erosion with (b) a square and (c) a circle
structural element. The origin position of the structural element is represented as
a dot, and the colors blue and red represent the match and unmatched criteria of
equation (4.1), respectively. The binary eroded image (black) is created by setting
the foreground pixels in all translations for which 𝐵 is totally inside of 𝐴 (i.e the
gray area).

(a) (b) (c)

Source: By the author

If the match consist of the union of all 𝐵 translations with image A, we have the
erosion dual operation, called dilation,

𝐴⊕𝐵 = {𝑥 : (𝐵𝑠)𝑥 ∩ 𝐴 ̸= ∅} =
⋃︁

𝑎∈𝐴

𝐵𝑎 =
⋃︁

𝑏∈𝐵

𝐴𝑏, (4.2)

where 𝐵𝑠 = {𝑏 : −𝑏 ∈ 𝐵} is symmetric to 𝐵. As equation 4.2 shows, the dilation is a
commutative operation equivalent to the Minkowski addition (MARAGOS, 2009). The
binary dilation effect is to enlarge the areas of the foreground pixels and shrink the holes
inside these areas, see Figure 4.2.

Figure 4.2 – Original image (a) and the result of binary dilation with (b) a square and (c) a circle
structural element. The origin position of the structural element is represented as
a dot, and the colors blue and red represent the match and unmatched criteria of
equation (4.2), respectively. The binary dilation image (gray) is created by setting
the foreground pixels in all translations for which 𝐵 touches 𝐴 (black).

(a) (b) (c)

Source: By the author
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4.2 Erosion and dilation for gray-scale images

To extend the erosion and dilation to gray-scale, we need to identify the binary
counterparts in gray-scale. In binary the sets image 𝐴 and probe 𝐵 become real functions
𝑓(x) and 𝑔(x) respectively, where x is the vector position in an 𝑛-dimensional domain
E𝑛. The intersection ⋂︀ and union ⋃︀ operations become the infimum ⋀︀ and supremum⋁︀ operation respectively. Then, when a subtraction (addition) between 𝑓(x) and 𝑔(x) is
done in 𝑔(x)’s domain E, the smallest (largest) value is selected producing the erosion
(dilation) operation. In a complete lattice theory the erosion and dilation operation are
given by:

(𝑓 ⊖ 𝑔)(x) =
⋀︁

y∈E𝑛

𝑓(x + y)− 𝑔(y), (4.3a)

(𝑓 ⊕ 𝑔)(x) =
⋁︁

y∈E𝑛

𝑓(x− y) + 𝑔(y). (4.3b)

In fact, for practical purposes we need to consider that domain E is finite, so that
infimum and supremum become the minimum and maximum operators respectively. In
this work we also consider flat null structural functions (i.e 𝑔(𝑥) = 0 for all 𝑥 ∈ E and
𝑔(𝑥) = −∞ for 𝑥 /∈ E), and sequential applications of erosion and dilation to amplify their
effects (DOUGHERTY; LOTUFO, 2003). Thus, equations 4.3a and 4.3b become

(𝑓 ⊖ 𝑔)𝑘(x) = min
y∈E𝑛

𝑓(x + y), (4.4a)

(𝑓 ⊕ 𝑔)𝑘(x) = max
y∈E𝑛

𝑓(x− y), (4.4b)

where (𝑓 ⊖𝑔)𝑘(x) = (((𝑓 ⊖ 𝑔)⊖ 𝑔)⊖ 𝑔...⊖ 𝑔)⏟  ⏞  
𝑘 𝑡𝑖𝑚𝑒𝑠

and (𝑓 ⊕𝑔)𝑘(x) = (((𝑓 ⊕ 𝑔)⊕ 𝑔)⊕ 𝑔...⊕ 𝑔)⏟  ⏞  
𝑘 𝑡𝑖𝑚𝑒𝑠

are the kth sequential application.

Figure 4.3 shows the effect of erosion and dilation for a flat null structural function,
where the erosion (dilation) operation flattens the valleys (peaks) and expands the minima
(maxima) (MARAGOS, 2009).

Figure 4.4 shows the standard erosion and dilation operations for a 2D gray-scale
image, using a flat null structural function with size 5 × 5 and 𝑘 = 7. Note that the
morphological operation preserves the geometrical shapes of the image.
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Figure 4.3 – Erosion and dilation in a 1D gray-scale function. (a) Gray-scale function 𝑓(x)
and flat null structural function 𝑔(x). The dot represent the origin of the 𝑔(x)’s
coordinate system. (b) Erosion (blue) and (c) dilation (red).

(a)

(b) (c)

Source: By the author

Figure 4.4 – 2D morphological operators applied to a gray-scale image.

(a) Original image

(b) Erosion (c) Dilation

Source: By the author
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4.3 Enhancing the sharpness with modified erosion and dilation op-
erators

We propose to modify equations 4.4a and 4.4b for our application to construct a
staircase function. We divide/multiply the original signal 𝑓(x) by another function, called
mask 𝑀(x), with 0 < 𝑀(x) 6 1. 𝑀(x) contains information on the layers’s edge that
will be used to identify the step locations for a staircase function. The modified erosion
and dilation are defined as:

(𝑓 ⊖ 𝑔)𝑘(x) = min
y∈E𝑛

[𝑓(x + y)/𝐻(x + y)] , (4.5a)

(𝑓 ⊕ 𝑔)𝑘(x) = max
y∈E𝑛

[𝑓(x− y)𝐻(x− y)] , (4.5b)

with

𝐻(x) =

⎧⎨⎩ 𝑀(x), 𝑖𝑓 𝑓(x) ≥ 0
𝑀−1(x), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (4.6)

The definition of the mask is not unique, but all of them must consider 𝑀(x) = 1
on regions where we desire the velocity/ gradient models to be constant and 0 < 𝑀(x) < 1
on an impedance change, based on our image. One choice is

𝑀(x) = exp

⎧⎨⎩−
[︃

𝑅(x)
max |𝑅(x)|

]︃2
⎫⎬⎭ , (4.7)

where 𝑅(x) is the prior information, the migrated image.

Dividing/ Multiplying the model by the mask will produce gaps in 𝑓(x). When the
erosion and dilation is applied to these modified models, the structural function follows
the deformation highlighting the velocity contrast between the values before and after the
gap, producing the steps of the staircase function as shown in Figure 4.5.

Figure 4.5 – Step formation: 𝑓(𝑥) masked (black), (a) Erosion (blue) and (b) dilation (red).

(a) (b)

Source: By the author
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After several applications the steps of the staircase function become sharper and
their values move away from the original model. To return to values close to the original
model, the solution is to take the average between the lower bound and upper bound
staircase function. In other words, the solution we are looking for is

𝐴𝑘(x) = 1
2
[︁
(𝑓 ⊖ 𝑔)𝑘(x) + (𝑓 ⊕ 𝑔)𝑘(x)

]︁
. (4.8)

Let’s exemplify this procedure by the 1D morphological operation in function
𝑓(𝑥) = sen(𝑥) on the interval [−𝜋, 𝜋] using discrete function 𝑓𝑖 with 500 samples. First
let’s see the normal erosion and dilation applied with probe size equal to 9. The Figure
4.6a shows the behavior for different values of sequential applications. As we can see the
erosion (dilation) expand the smallest (highest) values until the minimum (maximum)
bound −1.0 (+1.0) prior settled.

Taking a prior information 𝑅𝑖 =
11∑︁
𝑗

𝑟𝑖+𝑗−6 exp[−0.1(𝑖− 5)2] where [𝑟60, 𝑟120,

𝑟200, 𝑟290, 𝑟370, 𝑟430] = [−0.2, 0.5,−0.4, 0.4, 0.2,−0.32], putting it into a mask function, and
applying 𝑓(𝑥)/𝐻(𝑥) and 𝑓(𝑥)𝑀(𝑥) will produce the gaps shown in Figure 4.6b. Repeating
the previous experiment with these modified models we got the sen(𝑥) approximation by
staircase function, as we can see in Figure 4.6c.

An example for a 2D seismic model is shown in Figure 4.7. Here we used the true
reflectivity, Figure 4.7b, taken from the true velocity, 4.7a. We convolved the reflectivity
map with a Gaussian filter to create a reflectivity signal gap of the same size of the probe,
3× 3. Then putting it into the mask function expression, normalized by the trace image,
gives us the mask map shown in Figure 4.7c. We then applied the structure-oriented
morphological operators, starting from a vertical gradient, Figure 4.7d. After 60 sequential
applications we got the erosion map, Figure 4.7e, dilation map, Figure 4.7f and the final
solution 𝐴(𝑥) shown in Figure 4.7g.
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Figure 4.6 – 1D morphological operators applied to function 𝑓(𝑥) = 𝑠𝑖𝑛(𝑥) (black curve): (a)
Standard erosion (blue) and dilation (red) and the average function (magenta),
for 𝑘 = 10 (dotted line), 𝑘 = 30 (dashed line) and 𝑘 = 100 (continuous line). (b)
Constrained curves 𝑓(𝑥)/𝐻(𝑥) (blue) and 𝑓(𝑥)𝐻(𝑥) (red). (c) Structure-oriented
erosion and dilation with the same values of 𝑘 as in (a).
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Figure 4.7 – Structure-oriented morphological operator example in 2D. (a) True model, (b)
true reflectivity, (c) mask function 𝑀(x), (d) initial model 𝑓(x), (e) eroded model
(𝑓 ⊖ 𝑔)60(x), (f) dilated model (𝑓 ⊕ 𝑔)60(x) and (g) the final solution 𝐴(x). Color
bars are in m/s except the reflectivity model which is dimensionless.

(a) True model

lateral location [m]

d
e

p
th

 [
m

]

 

 

0 500 1000 1500 2000 2500 3000 3500

0

200

400

600

800

1000

1200

1400

1600

1800 1500

2000

2500

3000

3500

4000

4500

5000

5500

(b) True reflectivity
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(f) (𝑓 ⊕ 𝑔)60(x)
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4.4 Application of morphological operators in the JMI method

Joint Migration Inversion (JMI) simultaneously estimates a seismic velocity model
and an image, using all reflection data including primaries, surface multiples and internal
multiples. It employs Full Wavefield Modeling (BERKHOUT, 2012; BERKHOUT, 2014a)
and a gradient descent scheme to minimize the residual data between modeled data and
recorded data, in a least-squares sense.

The morphological operations are introduced in the JMI algorithm as velocity
preconditioner, before the new reflectivity model is estimated. The algorithm is simple
and doesn’t represent a significant additional computational cost to JMI. Appendix D
shows pseudo codes representing the implemented version.

The next two subsections show the potential of velocity preconditioning with
examples using two synthetic data sets. In both cases the test data was generated with
Full Wave Modeling.

4.4.1 2D simple model with strong internal multiples

We applied JMI on a simple 2D model with strong internal multiples. It consists
of a lens embedded in a homogeneous background and three horizontal layers as target,
see Figure 4.8a. The true reflectivity is calculated as

𝑅(𝑧, 𝑥) = 𝜇
𝑓(𝑥1, 𝑥2)− 𝑓(𝑥1 −Δ𝑥1, 𝑥2)
𝑓(𝑥1, 𝑥2) + 𝑓(𝑥1 + Δ𝑥1, 𝑥2)

, (4.9)

where 𝑓(𝑥1, 𝑥2) is the velocity model, shown in Figure 4.8b, and 𝜇 is a gain to improve
the image amplitude contrast (𝜇 = 4.0). The JMI process starts with a vertical velocity
gradient (Figure 4.8c) and a homogeneous zero reflectivity model Figure (4.8d), and stops
after 45 iterations. It uses a Ricker wavelet with bandwidth between 5 Hz and 40 Hz.

Figure 4.9 shows results using standard JMI. We can see that the method is effective
to estimate the reflectivity, shown in Figures 4.9a and 4.9c (right). Unfortunately, like
other image inversion methods, there is ambiguity in the velocity estimation. In this case
the velocity looks like a smoothed version of the true velocity, see Figures 4.9b and 4.9c
(left). The convergence can be confirmed by means of a minimum data residual (Figure
4.9d).

The smoothness of the velocity model reflects the linear treatment given to the
velocity perturbation in JMI. Including nonlinear filters like morphological operators in
the JMI scheme. We obtained a very similar reflectivity, see Figure 4.10a and 4.10c (right),
but with a better resemblance between optimized and true velocities, as visible in Figure
4.10b and 4.10c (left). The residual and objective function are shown in Figures 4.10d and
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4.10e, respectively. To get these results, we used 𝑔(x) of size 3× 3, 𝑘 = 100, the minimum
bound 𝑓𝑚𝑖𝑛 = 1700 m/s and maximum bound 𝑓𝑚𝑎𝑥 = 2800 m/s.

Figure 4.8 – Subsurface model for JMI test. (a) True velocity model, (b) true reflectivity, (c)
initial velocity model and (d) initial reflectivity. Color bars are in m/s except the
reflectivity model which is dimensionless.

(a)

(b)

(c)

(d)

Source: By the author
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Figure 4.9 – Standard JMI results. (a) Reflectivity; (b) velocity; (c) profiles at 𝑥 = 1000 m:
velocity (left), true velocity (blue), initial velocity (green) and final velocity (red);
reflectivity (right), true reflectivity (blue) and final reflectivity (red); (d) measured
data (left) and the residual data (right). Color bars are in m/s except the reflectivity
model which is dimensionless.

(a)

(b)

(c) (d)

Source: By the author
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Figure 4.10 – JMI results with morphological constraints. (a) Reflectivity; (b) velocity; (c) profiles
at 𝑥 = 1000 m: velocity (left), true velocity (blue), initial velocity (green) and
final velocity (red); reflectivity (right), true reflectivity (blue) and final reflectivity
(red); (d) measured data (left), residual data (right). Color bars are in m/s except
the reflectivity model which is dimensionless.

(a)

(b)

(c) (d)

Source: By the author
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4.4.2 2D complex model with strong internal multiples

Next, we repeat the last experiment, but changing the velocity model for another
one that is more realistic. The new velocity again has a high velocity region in the middle,
with a complex heterogeneous background and low velocity target on the bottom, as
displayed in Figure 4.11a. The true reflectivity, from equation 4.9, is shown in Figure
4.11b (using 𝜇 = 1.5). The data was modeled with a Ricker wavelet containing frequencies
between 5 Hz and 60 Hz. Like the previous experiment we started from a simple gradient
velocity model, Figure 4.11c, a homogeneous zero reflectivity (Figure 4.11d) and the
algorithm closes after 400 iterations, maximum iterations prior established by user.

The JMI results without constraints are shown in Figure 4.12. Like in the previous
experiment, JMI was effective to estimate the reflectivity, see Figures 4.12a and 4.12c
(right), but the final velocity model still represents a smoothed version of the true one, see
Figures 4.12b and 4.12c (left). The ambiguity is understood when we see that a smoothed
solution is good enough to reduce the residual data, Figure 4.12d.

Besides enhancing the sharpness of the velocity contrasts, morphological operators
also improve the JMI convergence power, making the method more robust with complex
velocity models. This can be observed from a better reflectivity fit in Figures 4.13a and
4.13c (right), and a largely improved velocity fit in Figures 4.13b and 4.13c (left). The
residual data decreased more than standard JMI, Figure 4.13d. These results were obtained
with a structural function of size 3 × 3, with 𝑘 = 8, the minimum bound 𝑓𝑚𝑖𝑛 = 1500
m/s and maximum bound 𝑓𝑚𝑎𝑥 = 2000 m/s.
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Figure 4.11 – Subsurface model for JMI test. (a) True velocity model, (b) True reflectivity, (c)
initial velocity model and (d) initial reflectivity. Color bars are in m/s except the
reflectivity model which is dimensionless.

(a) (b)

(c) (d)

Source: By the author
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Figure 4.12 – Standard JMI results. (a) Reflectivity; (b) velocity; (c) profiles at 𝑥 = 900 m:
velocity (left), true velocity (blue), initial velocity (green) and final velocity (red);
reflectivity (right), true reflectivity (blue) and final reflectivity (red); (d) measured
data (left), residual data (right). Color bars are in m/s except the reflectivity
model which is dimensionless.

(a) (b)

(c) (d)

Source: By the author
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Figure 4.13 – JMI results with morphological constraints. (a) Reflectivity; (b) velocity; (c) profiles
at 𝑥 = 900 m: velocity (left), true velocity (blue), initial velocity (green) and final
velocity (red); reflectivity (right), true reflectivity (blue) and final reflectivity (red);
(d) measured data (left), residual data (right). Color bars are in m/s except the
reflectivity model which is dimensionless.

(a) (b)

(c) (d)

Source: By the author
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4.5 Conclusion

To improve the geological meaning of JMI velocity solutions, we propose to precon-
dition the inversion with nonlinear filters as used in morphological image processing theory.
We combined the gray-scale erosion and dilation operators with the JMI reflectivity model,
to produce a staircase function wherein each step matches with the reflectivity position.
The method improves the layer definition in the velocity model, the JMI convergence with
complex models and provides an improved image and smaller data residuals.

The results of our numerical experiments suggest the method can be applied to
any problem that involves filling and homogenization of well-defined regions in a digital
image. The success of homogenization and the definition of the contrast between the
region boundaries clearly depends on the quality of edge detection. If the structures are
not well defined in the migrated images the morphological operators might failed to enforce
homogeneity and produce blurred velocity regions, although the migrated images are not
always compromised. For future developments of this method a more detailed study is
necessary about how to define the mask function given a migrated image. Another topic
for further investigation is the selection of structure adapted probes which can improve
the model resolution.
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5 GENERAL CONCLUSIONS

This thesis discussed structural regularization techniques and its applications to
velocity model building. Two new preconditioning techniques for wave-equation inversion
were proposed and validated in WEMVA and JMI. In order to better condition WEMVA,
the cross-gradient between the velocity wavefield and the image intensity was applied
to enforce correlation between the estimated velocity models and the migrated image.
To improve resolution in JMI a new type of regularization, based on morphological
operators, was proposed to enforce homogenization and sharp contrasts across major
velocity discontinuities.

We redefine the traditional objective functions of Stack Power and Differential in a
compact function, which combines SP and DS functions with cross-gradient regularization,
without adjustment of a regularization parameter. That strategy adds to WEMVA a new
information of zero-offset, which enforces the velocity model contrasts obey the reflectivity
distribution from migrated image. This new information increase the short wavenumber
components of the velocity model, and is indicated to be applied when the long wavenumber
components is already fitted well. To include the cross-gradient regularization from the
initial of optimization process, we proposed to use the maximization of Partial Stack
Power, an objective function that combines the Stack Power and Differential Semblance
optimization, multiplying it with its cross-gradient version. As the inversion proceeds
and the energy becomes more focused the cross-gradient factor is enforced, in order to
avoid premature convergence to local minima. This analysis uses naturally the structural
information in objective function gradient calculus, which avoids an extra filtering by
anisotropic diffusion equation at objective function gradient model. The experiments
on Marmousoft dataset indicate that the proposed method improved the convergence of
the objective function, resulting in focused common image gathers and a velocity model
correlated with the image. The RTM image computed with the estimated velocity model
is very close to the image using the exact velocity model except in regions compromised
by lack of illumination.

Joint migration inversion separates the short and long wavenumber components of
subsurface model in terms of reflectivity and velocity models. Differently from WEMVA,
JMI can handle with all kind of scattering information, which possibility no limitation
with velocity contrasts as WEMVA do. To increase the velocity sharping, we proposed
to use the erosion and dilation operators modified. The proposal is divide/multiply the
input model with a mask function, which is a Gaussian function of the reflectivity map.
The application produces gaps or channels in the velocity model. The erosion and dilation
detect this features preserving their geometry and at the same time homogenize the regions
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inside of the layers. A upper and lower bound staircase functions are produced. An average
between these two limits is taken in sense to re-approximate the values to the original
model. The result is an approximation of original model by staircase function where the
steps coincide with reflector position. The experiments in two synthetic data shown the
increase of velocity resolution, defining well thin layers and the model targets. The erosion
and dilation do not need any modeling of differential equation. They just use a simple
algorithm of convolution.

The application of cross-gradient regularization and the morphological operators of
erosion and dilation are not mutually excluding. But the user need to take care about
the limitations of inversion method and the prior conditions that this regularizations
impose. WEMVA image condition, for example, does not account the multiple scattering.
Impose sharp contrast of velocity can bring it inaccurate velocity update. As well as
the application of cross-gradient regularization proposed for WEMVA in JMI will not
work. because JMI has a data driven objective function. In both cases of regularization is
assumed that the layer need to be constant, then the problems that involve shallow gas,
which there is not a reflector, the regularization will fail.
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APPENDIX A – OBJECTIVE FUNCTION GRADIENT

This appendix shown the calculation of objective function gradient by adjoint state
method (PLESSIX, 2006), but first let’s summarize the notation used here. We use a
discrete notation for easy understanding of the algorithm implementation. A 2D wave
field 𝑃 (x, 𝑡) is identified as 𝑃 𝑘

𝑖,𝑗, where 𝑖 is the 𝑖𝑡ℎ sample in 𝑥1 direction, 𝑗 is the 𝑗𝑡ℎ
sample in 𝑥2 direction and 𝑘 is the 𝑘𝑡ℎ time modeling sample. For example, equation 2.1
can be approximated by the following finite difference scheme

𝑃 𝑘+1
𝑖,𝑗 − 2𝑃 𝑘

𝑖,𝑗 + 𝑃 𝑘−1
𝑖,𝑗 − Δ𝑡2𝑐2

𝑖,𝑗

⎡⎣ 1
Δ𝑥2

1

𝑁−1∑︁
𝑞=0

𝑎(2)
𝑞

(︁
𝑃 𝑘

𝑖+𝑞,𝑗 + 𝑃 𝑘
𝑖−𝑞,𝑗

)︁

+ 1
Δ𝑥2

2

𝑁−1∑︁
𝑞=0

𝑎(2)
𝑞

(︁
𝑃 𝑘

𝑖,𝑗+𝑞 + 𝑃 𝑘
𝑖,𝑗−𝑞

)︁⎤⎦ = 𝐹 𝑘
𝑖,𝑗, (A.1)

where 𝑎(2) are the finite difference coefficients for the second-order derivative, 𝑁 is the
order of the finite difference operator, Δ𝑥1, Δ𝑥2 are the space sample intervals and Δ𝑡 is
the time sample interval.

The adjoint state method applied in this thesis tries to minimize the objective func-
tion Φ by the minimization of the associated Lagrangian ℒ = ℒ(𝐷𝑘,𝑠

𝑖,𝑗 , 𝑈
𝑘,𝑟
𝑖,𝑗 ,Λ

𝑘,𝑠
𝑖,𝑗 ,Λ

𝑘,𝑟
𝑖,𝑗 , 𝑐𝑖,𝑗),

with the 𝐷 and 𝑈 fields subject to obey the acoustic wave equation with constant density

𝑀𝑖𝑛 ℒ = Φ +
𝑁𝑠∑︁
𝑠=1

𝑁𝑥2∑︁
𝑗=1

𝑁𝑥1∑︁
𝑖=1

𝑁𝑡∑︁
𝑘=1

Λ𝑘,𝑠
𝑖,𝑗

[︁
𝐷𝑘+1,𝑠

𝑖,𝑗 − 2𝐷𝑘,𝑠
𝑖,𝑗 +𝐷𝑘−1,𝑠

𝑖,𝑗 − 𝑐2
𝑖,𝑗Δ𝑡2∇2𝐷𝑘,𝑠

𝑖,𝑗 − 𝐹
𝑘,𝑠
𝑖,𝑗

]︁

+
𝑁𝑠∑︁
𝑠=1

𝑁𝑟(𝑠)∑︁
𝑟=1

𝑁𝑥2∑︁
𝑗=1

𝑁𝑥1∑︁
𝑖=1

𝑁𝑡∑︁
𝑘=1

Λ𝑘,𝑟
𝑖,𝑗

[︁
𝑈𝑘+1,𝑟

𝑖,𝑗 − 2𝑈𝑘,𝑟
𝑖,𝑗 + 𝑈𝑘−1,𝑟

𝑖,𝑗 − 𝑐2
𝑖,𝑗Δ𝑡2∇2𝑈𝑘,𝑟

𝑖,𝑗 − 𝐹
𝑘,𝑟
𝑖,𝑗

]︁
,

(A.2)

where the index 𝑠 and 𝑟 refers to 𝑠𝑡ℎ shot and 𝑟𝑡ℎ receiver, the fields Λ𝑘,𝑠
𝑖,𝑗 and Λ𝑘,𝑟

𝑖,𝑗 are the
adjoint states of 𝐷𝑘,𝑠

𝑖,𝑗 and 𝑈𝑘,𝑟
𝑖,𝑗 , respectively.

Before finding out the expression of 𝛿ℒ, let’s find out the generic expression of 𝛿Φ.
An ODCIG for a 2D model can be represent as a data cube, which saves 3 components,
𝑖, 𝑗, ℎ, where ℎ is the subsurface offset index. In this case we can write the objective
function as

Φ(𝐼, 𝑐) =
𝑁𝑥1∑︁
𝑖=1

𝑁𝑥2∑︁
𝑗=1

𝑁ℎ2∑︁
ℎ=−𝑁ℎ2

𝒦𝑖,𝑗,ℎ(𝐼𝑖,𝑗,ℎ; 𝑐𝑖,𝑗), (A.3)

where 𝒦 is the kernel of the function. A perturbation in Φ is described by

𝛿Φ(𝐼, 𝑐) =
𝑁𝑥1∑︁
𝑖=1

𝑁𝑥2∑︁
𝑗=1

𝑁ℎ2∑︁
ℎ=−𝑁ℎ2

𝜕𝒦𝑖,𝑗,ℎ

𝜕𝐼
𝛿𝐼𝑖,𝑗,ℎ + 𝜕𝒦𝑖,𝑗,ℎ

𝜕𝑐
𝛿𝑐𝑖,𝑗. (A.4)
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Remembering the extended Claerbout image condition, equation 2.3 in [h = (0, ℎ2, 0); 𝜏 =
0] case, the image perturbation is

𝛿𝐼𝑖,𝑗,ℎ =
𝑁𝑠∑︁
𝑠=1

𝑁𝑟(𝑠)∑︁
𝑟=1

𝑁𝑡∑︁
𝑘=1

[︁
𝛿𝐷𝑘,𝑠

𝑖,𝑗−ℎ𝑈
𝑘,𝑟
𝑖,𝑗+ℎ +𝐷𝑘,𝑠

𝑖,𝑗−ℎ𝛿𝑈
𝑘,𝑟
𝑖,𝑗+ℎ

]︁
. (A.5)

Substituting the equation A.5 in A.4 we get

𝛿Φ =
∑︁

𝑠𝑟𝑘𝑖𝑗ℎ

𝜕𝒦𝑖,𝑗+ℎ,ℎ

𝜕𝐼
𝑈𝑘,𝑟

𝑖,𝑗+2ℎ𝛿𝐷
𝑘,𝑠
𝑖,𝑗 +

∑︁
𝑠𝑟𝑘𝑖𝑗ℎ

𝜕𝒦𝑖,𝑗−ℎ,ℎ

𝜕𝐼
𝐷𝑘,𝑠

𝑖,𝑗−2ℎ𝛿𝑈
𝑘,𝑟
𝑖,𝑗 +

∑︁
𝑖𝑗ℎ

𝜕𝒦𝑖,𝑗,ℎ

𝜕𝑐
𝛿𝑐𝑖,𝑗. (A.6)

Now let’s return to the 𝛿ℒ calculus. From equation A.2 we have:

𝛿ℒ = 𝛿Φ +
∑︁
𝑠𝑖𝑗

[︃
𝑁𝑡∑︁

𝑘=1
Λ𝑘,𝑠

𝑖,𝑗 𝛿𝐷
𝑘+1,𝑠
𝑖,𝑗 − 2

𝑁𝑡∑︁
𝑘=1

Λ𝑘,𝑠
𝑖,𝑗 𝛿𝐷

𝑘,𝑠
𝑖,𝑗 +

𝑁𝑡∑︁
𝑘=1

Λ𝑘,𝑠
𝑖,𝑗 𝛿𝐷

𝑘−1,𝑠
𝑖,𝑗

]︃

+
∑︁
𝑠𝑟𝑖𝑗
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𝑁𝑡∑︁

𝑘=1
Λ𝑘,𝑟

𝑖,𝑗 𝛿𝑈
𝑘+1,𝑟
𝑖,𝑗 − 2

𝑁𝑡∑︁
𝑘=1

Λ𝑘,𝑟
𝑖,𝑗 𝛿𝑈

𝑘,𝑟
𝑖,𝑗 +

𝑁𝑡∑︁
𝑘=1

Λ𝑘,𝑟
𝑖,𝑗 𝛿𝑈

𝑘−1,𝑟
𝑖,𝑗
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− Δ𝑡2
∑︁
𝑠𝑖𝑗𝑘

𝑐2
𝑖,𝑗Λ

𝑘,𝑠
𝑖,𝑗∇2𝛿𝐷𝑘,𝑠

𝑖,𝑗 −Δ𝑡2
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𝑠𝑟𝑖𝑗𝑘

𝑐2
𝑖,𝑗Λ

𝑘,𝑟
𝑖,𝑗∇2𝛿𝑈𝑘,𝑟

𝑖,𝑗

− 2Δ𝑡2
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𝑖𝑗

𝑐𝑖,𝑗

[︃∑︁
𝑠𝑘
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𝑖,𝑗∇2𝐷𝑘,𝑠

𝑖,𝑗

]︃
𝛿𝑐𝑖,𝑗 − 2Δ𝑡2

∑︁
𝑖𝑗

𝑐𝑖,𝑗

[︃∑︁
𝑠𝑟𝑘

Λ𝑘,𝑟
𝑖,𝑗∇2𝑈𝑘,𝑟

𝑖,𝑗

]︃
𝛿𝑐𝑖,𝑗. (A.7)

Remembering that the boundary conditions are equal to zero, it is not necessary to write
the expressions for 𝛿Λ𝑘,𝑠

𝑖,𝑗 and 𝛿Λ𝑘,𝑟
𝑖,𝑗 . Next we need to isolate the terms of 𝛿𝐷𝑘,𝑠

𝑖,𝑗 e 𝛿𝑈𝑘,𝑟
𝑖,𝑗 ,

but there is a Laplacian operator acting on them. We solved this remembering that the
Laplacian is self-adjoint operator. Exemplify for the case of 𝛿𝐷𝑘,𝑠

𝑖,𝑗 by finite difference
approximation

∑︁
𝑠𝑖𝑗𝑘

𝑐2
𝑖,𝑗Λ

𝑘,𝑠
𝑖,𝑗∇2𝛿𝐷𝑘,𝑠

𝑖,𝑗 =
∑︁
𝑠𝑖𝑗𝑘

𝑐2
𝑖,𝑗Λ

𝑘,𝑠
𝑖,𝑗

[︃
𝑁−1∑︁
𝑙=0

𝑎
(2)
𝑙

(︁
𝛿𝐷𝑘,𝑠

𝑖+𝑙,𝑗 + 𝛿𝐷𝑘,𝑠
𝑖−𝑙,𝑗

)︁
+

𝑁−1∑︁
𝑙=0

𝑏
(2)
𝑙

(︁
𝛿𝐷𝑘,𝑠

𝑖,𝑗+𝑙 + 𝛿𝐷𝑘,𝑠
𝑖,𝑗−𝑙

)︁]︃

=
∑︁
𝑠𝑗𝑘

⎡⎣𝑁−1∑︁
𝑙=0

𝑎
(2)
𝑙

⎛⎝𝑁𝑥1∑︁
𝑝=1

𝑐2
𝑝,𝑗Λ

𝑘,𝑠
𝑝,𝑗𝛿𝐷

𝑘,𝑠
𝑝+𝑙,𝑗 +

𝑁𝑥1∑︁
𝑝=1

𝑐2
𝑝,𝑗Λ

𝑘,𝑠
𝑝,𝑗𝛿𝐷

𝑘,𝑠
𝑝−𝑙,𝑗

⎞⎠⎤⎦
+
∑︁
𝑠𝑖𝑘

⎡⎣𝑁−1∑︁
𝑙=0

𝑏
(2)
𝑙

⎛⎝𝑁𝑥2∑︁
𝑞=1

𝑐2
𝑖,𝑞Λ

𝑘,𝑠
𝑖,𝑞 𝛿𝐷

𝑘,𝑠
𝑖,𝑞+𝑙 +

𝑁𝑥2∑︁
𝑞=1

𝑐2
𝑖,𝑞Λ

𝑘,𝑠
𝑖,𝑞 𝛿𝐷

𝑘,𝑠
𝑖,𝑞−𝑙

⎞⎠⎤⎦ . (A.8)

In the following expression, we reorganize the summations, changing the the index 𝑖 to 𝑝
and 𝑗 to 𝑞, then setting separately 𝑖 = 𝑝± 𝑙 e 𝑗 = 𝑞 ± 𝑙, so that

∑︁
𝑠𝑖𝑗𝑘

𝑐2
𝑖,𝑗Λ

𝑘,𝑠
𝑖,𝑗∇2𝛿𝐷𝑘,𝑠

𝑖,𝑗 =
∑︁
𝑠𝑗𝑘

⎡⎣𝑁−1∑︁
𝑙=0

𝑎
(2)
𝑙

⎛⎝𝑁𝑥1 +𝑙∑︁
𝑖=1+𝑙

𝑐2
𝑖−𝑙,𝑗Λ

𝑘,𝑠
𝑖−𝑙,𝑗 +

𝑁𝑥1 −𝑙∑︁
𝑖=1−𝑙

𝑐2
𝑖+𝑙,𝑗Λ

𝑘,𝑠
𝑖+𝑙,𝑗

⎞⎠⎤⎦ 𝛿𝐷𝑘,𝑠
𝑖,𝑗

+
∑︁
𝑠𝑖𝑘

⎡⎣𝑁−1∑︁
𝑙=0

𝑏
(2)
𝑙

⎛⎝𝑁𝑥2 +𝑙∑︁
𝑗=1+𝑙

𝑐2
𝑖,𝑗−𝑙Λ

𝑘,𝑠
𝑖,𝑗−𝑙 +

𝑁𝑥2 −𝑙∑︁
𝑗=1−𝑙

𝑐2
𝑖,𝑗+𝑙Λ

𝑘,𝑠
𝑖,𝑗+𝑙

⎞⎠⎤⎦ 𝛿𝐷𝑘,𝑠
𝑖,𝑗 .

(A.9)
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Out side of the model domain, the adjoint field should be zero. Regroup again the
summations for 𝑖 and 𝑗,

∑︁
𝑠𝑖𝑗𝑘

𝑐2
𝑖,𝑗Λ

𝑘,𝑠
𝑖,𝑗∇2𝛿𝐷𝑘,𝑠

𝑖,𝑗 =
∑︁
𝑠𝑖𝑗𝑘

[︃
𝑁−1∑︁
𝑙=0

𝑎𝑙

(︁
𝑐2

𝑖−𝑙,𝑗Λ
𝑘,𝑠
𝑖−𝑙,𝑗 + 𝑐2

𝑖+𝑙,𝑗Λ
𝑘,𝑠
𝑖+𝑙,𝑗

)︁]︃
𝛿𝐷𝑘,𝑠

𝑖,𝑗

+
∑︁
𝑠𝑖𝑗𝑘

[︃
𝑁−1∑︁
𝑙=0

𝑏𝑙

(︁
𝑐2

𝑖,𝑗−𝑙Λ
𝑘,𝑠
𝑖,𝑗−𝑙 + 𝑐2

𝑖,𝑗+𝑙Λ
𝑘,𝑠
𝑖,𝑗+𝑙

)︁]︃
𝛿𝐷𝑘,𝑠

𝑖,𝑗

=
∑︁
𝑠𝑖𝑗𝑘

∇2
[︁
𝑐2

𝑖,𝑗Λ
𝑘,𝑠
𝑖,𝑗

]︁
𝛿𝐷𝑘,𝑠

𝑖,𝑗 . (A.10)

The identity A.10 is analogous for the case 𝛿𝑈𝑘,𝑟
𝑖,𝑗 , and doing similarly for index 𝑘,

we have the expression

𝛿ℒ = 𝛿Φ +
∑︁
𝑠𝑖𝑗𝑘

[︁
Λ𝑘−1,𝑠

𝑖,𝑗 − 2Λ𝑘,𝑠
𝑖,𝑗 + Λ𝑘+1,𝑠

𝑖,𝑗 −Δ𝑡2∇2
(︁
𝑐2

𝑖,𝑗Λ
𝑘,𝑠
𝑖,𝑗

)︁]︁
𝛿𝐷𝑘,𝑠

𝑖,𝑗

+
∑︁

𝑠𝑟𝑖𝑗𝑘

[︁
Λ𝑘−1,𝑟

𝑖,𝑗 − 2Λ𝑘,𝑟
𝑖,𝑗 + Λ𝑘+1,𝑟

𝑖,𝑗 −Δ𝑡2∇2
(︁
𝑐2

𝑖,𝑗Λ
𝑘,𝑟
𝑖,𝑗

)︁]︁
𝛿𝑈𝑘,𝑟

𝑖,𝑗

− 2Δ𝑡2
∑︁
𝑖𝑗

𝑐𝑖,𝑗

[︃∑︁
𝑠𝑘

Λ𝑘,𝑠
𝑖,𝑗∇2𝐷𝑘,𝑠

𝑖,𝑗

]︃
𝛿𝑐𝑖,𝑗 − 2Δ𝑡2

∑︁
𝑖𝑗

𝑐𝑖,𝑗

[︃∑︁
𝑠𝑟𝑘

Λ𝑘,𝑟
𝑖,𝑗∇2𝑈𝑘,𝑟

𝑖,𝑗

]︃
𝛿𝑐𝑖,𝑗. (A.11)

The final expression for 𝛿ℒ is obtained from the substitution of equation A.6 in A.11,
resulting in

𝛿ℒ =
∑︁

𝑠𝑟𝑖𝑗𝑘

⎡⎣Λ𝑘−1,𝑠
𝑖,𝑗 − 2Λ𝑘,𝑠

𝑖,𝑗 + Λ𝑘+1,𝑠
𝑖,𝑗 −Δ𝑡2∇2

(︁
𝑐2

𝑖,𝑗Λ
𝑘,𝑠
𝑖,𝑗

)︁
+

𝑁ℎ2∑︁
ℎ=−𝑁ℎ2

𝜕𝒦𝑖,𝑗+ℎ,ℎ

𝜕𝐼
𝑈𝑘,𝑟

𝑖,𝑗+2ℎ

⎤⎦ 𝛿𝐷𝑘,𝑠
𝑖,𝑗

+
∑︁

𝑠𝑟𝑖𝑗𝑘

⎡⎣Λ𝑘−1,𝑟
𝑖,𝑗 − 2Λ𝑘,𝑟

𝑖,𝑗 + Λ𝑘+1,𝑟
𝑖,𝑗 −Δ𝑡2∇2

(︁
𝑐2

𝑖,𝑗Λ
𝑘,𝑟
𝑖,𝑗

)︁
+

𝑁ℎ2∑︁
ℎ=−𝑁ℎ2

𝜕𝒦𝑖,𝑗−ℎ,ℎ

𝜕𝐼
𝐷𝑘,𝑠

𝑖,𝑗−2ℎ

⎤⎦ 𝛿𝑈𝑘,𝑟
𝑖,𝑗

− 2Δ𝑡2
∑︁
𝑖𝑗

𝑐𝑖,𝑗

[︃∑︁
𝑠𝑘

Λ𝑘,𝑠
𝑖,𝑗∇2𝐷𝑘,𝑠

𝑖,𝑗

]︃
𝛿𝑐𝑖,𝑗 − 2Δ𝑡2

∑︁
𝑖𝑗

𝑐𝑖,𝑗

[︃∑︁
𝑠𝑟𝑘

Λ𝑘,𝑟
𝑖,𝑗∇2𝑈𝑘,𝑟

𝑖,𝑗

]︃
𝛿𝑐𝑖,𝑗

+
∑︁
𝑖𝑗ℎ

𝜕𝒦𝑖,𝑗,ℎ

𝜕𝑐
𝛿𝑐𝑖,𝑗. (A.12)

We are interested in the variance 𝛿𝑐, so the expressions inside the brackets must be
equal zero. With that we recognize the adjoint wave equations for the source field

Λ𝑘+1,𝑠
𝑖,𝑗 = 2Λ𝑘,𝑠

𝑖,𝑗 − Λ𝑘−1,𝑠
𝑖,𝑗 + Δ𝑡2∇2

(︁
𝑐2

𝑖,𝑗Λ
𝑘,𝑠
𝑖,𝑗

)︁
−

𝑁ℎ2∑︁
ℎ=−𝑁ℎ2

𝜕𝒦𝑖,𝑗+ℎ,ℎ

𝜕𝐼
𝑈𝑘,𝑟

𝑖,𝑗+2ℎ (A.13)

and the adjoint wave equation for the receiver field

Λ𝑘+1,𝑟
𝑖,𝑗 = 2Λ𝑘,𝑟

𝑖,𝑗 − Λ𝑘−1,𝑟
𝑖,𝑗 + Δ𝑡2∇2

(︁
𝑐2

𝑖,𝑗Λ
𝑘,𝑟
𝑖,𝑗

)︁
−

𝑁ℎ2∑︁
ℎ=−𝑁ℎ2

𝜕𝒦𝑖,𝑗−ℎ,ℎ

𝜕𝐼
𝐷𝑘,𝑠

𝑖,𝑗−2ℎ. (A.14)

The gradient, for any objective function Φ(𝐼, 𝑐), is written as:

𝜕ℒ
𝜕𝑐𝑖,𝑗

= −2Δ𝑡2𝑐𝑖,𝑗

[︃
𝑁𝑠∑︁
𝑠=1

𝑁𝑡∑︁
𝑘=1

Λ𝑘,𝑠
𝑖,𝑗∇2𝐷𝑘,𝑠

𝑖,𝑗

]︃
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− 2Δ𝑡2𝑐𝑖,𝑗

⎡⎣𝑁𝑠∑︁
𝑠=1

𝑁𝑟(𝑠)∑︁
𝑟=1

𝑁𝑡∑︁
𝑘=1

Λ𝑘,𝑟
𝑖,𝑗∇2𝑈𝑘,𝑟

𝑖,𝑗

⎤⎦+
𝑁ℎ2∑︁

ℎ=−𝑁ℎ2

𝜕𝒦𝑖,𝑗,ℎ

𝜕𝑐
, (A.15)

where Λ𝑘,𝑠
𝑖,𝑗 and Λ𝑘,𝑟

𝑖,𝑗 are given by equations A.13 and A.14 respectively. Specifying the
gradient for our proposed objective function, equation 2.16, is necessary to identify the
terms 𝜕𝒦𝑖,𝑗,ℎ

𝜕𝐼
and 𝜕𝒦𝑖,𝑗,ℎ

𝜕𝑐
. Starting from

Φ = 𝜙𝜓, (A.16)

where we can summarize it as

𝜙 = 1
2

𝑁𝑥2∑︁
𝑗=1

𝜙𝐺𝑗

𝜙𝑗

, (A.17)

with

𝜙𝐺𝑗 =
𝑁ℎ2∑︁

ℎ=−𝑁ℎ2

𝑁𝑥1∑︁
𝑖=1

𝐺2
ℎ𝐼

2
𝑖,𝑗,ℎ, (A.18a)

𝜙𝑗 =
𝑁ℎ2∑︁

ℎ=−𝑁ℎ2

𝑁𝑥1∑︁
𝑖=1

𝐼2
𝑖,𝑗,ℎ. (A.18b)

In the same way, the second factor is given by

𝜓 = 1
2

𝑁𝑥2∑︁
𝑗=1

𝜓𝐺̃𝑗

𝜓𝑗

(A.19)

where

𝜓𝐺̃𝑗 =
𝑁ℎ2∑︁

ℎ=−𝑁ℎ2

𝑁𝑥1∑︁
𝑖=1

𝐺̃2
ℎ [∇𝐼𝑖,𝑗,ℎ · ∇𝑐𝑖,𝑗]2 , (A.20a)

𝜓𝑗 =
𝑁ℎ2∑︁

ℎ=−𝑁ℎ2

𝑁𝑥1∑︁
𝑖=1

[∇𝐼𝑖,𝑗,ℎ · ∇𝑐𝑖,𝑗]2 . (A.20b)

The perturbation of equation A.16 is

𝛿Φ = 𝜓

2

𝑁𝑥2∑︁
𝑗=1

{︃
𝜙𝑗𝛿𝜙𝐺𝑗 − 𝜙𝐺𝑗𝛿𝜙𝑗

𝜙2
𝑗

}︃

+ 𝜙

2

𝑁𝑥2∑︁
𝑗=1

⎧⎨⎩𝜓𝑗𝛿𝜓𝐺̃𝑗 − 𝜓𝐺̃𝑗𝛿𝜓𝑗

𝜓
2
𝑗

⎫⎬⎭ , (A.21)

from which we find using equations A.18a, A.18b, A.20a and A.20b,

𝛿Φ = 𝜓
∑︁
𝑖𝑗ℎ

{︃
𝜙𝑗𝐺

2
ℎ − 𝜙𝐺𝑗

𝜙2
𝑗

}︃
𝐼𝑖,𝑗,ℎ𝛿𝐼𝑖,𝑗,ℎ

+ 𝜙
∑︁
𝑖𝑗ℎ

⎧⎨⎩𝜓𝑗𝐺̃
2
ℎ − 𝜓𝐺̃𝑗

𝜓
2
𝑗

⎫⎬⎭ [∇𝐼𝑖,𝑗,ℎ · ∇𝑐𝑖,𝑗] [∇𝛿𝐼𝑖,𝑗,ℎ · ∇𝑐𝑖,𝑗]
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+ 𝜙
∑︁
𝑖𝑗ℎ

⎧⎨⎩𝜓𝑗𝐺̃
2
ℎ − 𝜓𝐺̃𝑗

𝜓
2
𝑗

⎫⎬⎭ [∇𝐼𝑖,𝑗,ℎ · ∇𝑐𝑖,𝑗] [∇𝐼𝑖,𝑗,ℎ · ∇𝛿𝑐𝑖,𝑗] . (A.22)

Using the Leibniz rule to take out from derivate 𝛿𝐼 and 𝛿𝑐 and assuming on the edges of
the model 𝛿𝐼 = 0 and 𝛿𝑐 = 0 we get

𝛿Φ = 𝜓
∑︁
𝑖𝑗ℎ

{︃
𝜙𝑗𝐺

2
ℎ − 𝜙𝐺𝑗

𝜙2
𝑗

}︃
𝐼𝑖,𝑗,ℎ𝛿𝐼𝑖,𝑗,ℎ

− 𝜙
∑︁
𝑖𝑗ℎ

∇ ·

⎧⎨⎩
⎡⎣𝜓𝑗𝐺̃

2
ℎ − 𝜓𝐺̃𝑗

𝜓
2
𝑗

⎤⎦ [∇𝐼𝑖,𝑗,ℎ · ∇𝑐𝑖,𝑗]∇𝑐𝑖,𝑗

⎫⎬⎭ 𝛿𝐼𝑖,𝑗

− 𝜙
∑︁
𝑖𝑗ℎ

∇ ·

⎧⎨⎩
⎡⎣𝜓𝑗𝐺̃

2
ℎ − 𝜓𝐺̃𝑗

𝜓
2
𝑗

⎤⎦ [∇𝐼𝑖,𝑗,ℎ · ∇𝑐𝑖,𝑗]∇𝐼𝑖,𝑗,ℎ

⎫⎬⎭ 𝛿𝑐𝑖,𝑗. (A.23)

Finally, identifying the gradient of the kernels, according the equation A.4, we have:

𝜕𝒦𝑖,𝑗,ℎ

𝜕𝐼
= 𝜓

{︃
𝜙𝑗𝐺

2
ℎ − 𝜙𝐺𝑗

𝜙2
𝑗

}︃
𝐼𝑖,𝑗,ℎ − 𝜙∇ ·

⎧⎨⎩
⎡⎣𝜓𝑗𝐺̃

2
ℎ − 𝜓𝐺̃𝑗

𝜓
2
𝑗

⎤⎦ [∇𝐼𝑖,𝑗,ℎ · ∇𝑐𝑖,𝑗]∇𝑐𝑖,𝑗

⎫⎬⎭ ,
𝜕𝒦𝑖,𝑗,ℎ

𝜕𝑐
= −𝜙∇ ·

⎧⎨⎩
⎡⎣𝜓𝑗𝐺̃

2
ℎ − 𝜓𝐺̃𝑗

𝜓
2
𝑗

⎤⎦ [∇𝐼𝑖,𝑗,ℎ · ∇𝑐𝑖,𝑗]∇𝐼𝑖,𝑗,ℎ

⎫⎬⎭ . (A.24a)
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APPENDIX B – QUASI-NEWTON METHOD

The quasi-Newton optimization methods are algorithms based an Newton’s method
for searching stationary points. Both, Newton’s method and quasi-Newton methods,
presupposes that the nonlinear functions can be approximated locally by quadratic curves.
This approximation can be represented by a Taylor series, around position 𝑥𝑚

𝑓(𝑥) = 𝑓(𝑥𝑚) + 𝑓 ′(𝑥𝑚)(𝑥− 𝑥𝑚) + 1
2(𝑥− 𝑥𝑚)𝑓 ′′(𝑥𝑚)(𝑥− 𝑥𝑚). (B.1)

A stationary point is the solution of

𝑓 ′(𝑥) = 𝑓 ′(𝑥𝑚) + 𝑓 ′′(𝑥𝑚)(𝑥− 𝑥𝑚) = 0 (B.2)

so that 𝑥 = 𝑥𝑚 − [𝑓 ′′(𝑥𝑚)]−1𝑓 ′(𝑥𝑚). If 𝑓(𝑥) is not a quadratic function, then the solution
needs to be found iteratively, updating the solution according to

𝑥𝑚+1 = 𝑥𝑚 − 𝛿𝑚 (B.3)

with 𝑚 representing the current iteration and

𝛿𝑚 = [𝑓 ′′(𝑥𝑚)]−1𝑓 ′(𝑥𝑚). (B.4)

Most of the problems have more than one variable, in this case 𝑥𝑚 represents the vector
x𝑚 = (𝑥1

𝑚, 𝑥
2
𝑚, . . . , 𝑥

𝑛
𝑚) with 𝑛 variables, 𝑓 ′(𝑥𝑚) the gradient vector

g𝑚 =
(︃
𝜕𝑓(x𝑚)
𝜕𝑥1

𝑚

,
𝜕𝑓(x𝑚)
𝜕𝑥2

𝑚

, . . . ,
𝜕𝑓(x𝑚)
𝜕𝑥𝑛

𝑚

)︃
(B.5)

and 𝑓 ′′(𝑥𝑚) the Hessian matrix

H𝑚 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕2𝑓(x𝑚)
𝜕2𝑥1

𝑚

𝜕2𝑓(x𝑚)
𝜕𝑥2

𝑚𝜕𝑥
1
𝑚

· · · 𝜕2𝑓(x𝑚)
𝜕𝑥𝑛

𝑚𝜕𝑥
1
𝑚

𝜕2𝑓(x𝑚)
𝜕𝑥1

𝑚𝜕𝑥
2
𝑚

𝜕2𝑓(x𝑚)
𝜕2𝑥2

𝑚

· · · 𝜕2𝑓(x𝑚)
𝜕𝑥𝑛

𝑚𝜕𝑥
2
𝑚

... ... . . . ...

𝜕2𝑓(x𝑚)
𝜕𝑥1

𝑚𝜕𝑥
𝑛
𝑚

𝜕2𝑓(x𝑚)
𝜕𝑥2

𝑚𝜕𝑥
𝑛
𝑚

· · · 𝜕2𝑓(x𝑚)
𝜕2𝑥𝑛

𝑚

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (B.6)

which is symmetric positive definite.

Often the objective function doesn’t have good behavior close to x𝑚. In the sense
that the surface in that is poorly approximate by a quadratic function. An additional step
is included to correct that, with redefinition of B.3:

x𝑚+1 = x𝑚 − 𝛼𝑚𝛿𝑚

= x𝑚 − 𝛼𝑚H−1
𝑚 g𝑚. (B.7)
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The Hessian calculus is computationally expensive. However, efforts have been
reduce these problems. The main idea which makes the Newton method different of
quasi-Newton methods was introduced by Broyden (1969). The Hessian can be evaluated
indirectly by the analysis of successive gradient vectors, in other words, the idea is to
use the information of current and previews iterations to calculate an approximation of
Hessian. Defining the quantities

s𝑚 = x𝑚+1 − x𝑚 (B.8)

and
𝜂𝑚 = g𝑚+1 − g𝑚, (B.9)

the H𝑚+1 is a solution of the linear system

H𝑚+1s𝑚 = 𝜂𝑚. (B.10)

The equation B.10 is known as quasi-Newton condition (or secant condition).
There are a lot of solutions for this set of equations. The most convenient to guarantee a
symmetric positive definite Hessian is the update formula of category two

H𝑚+1 = H𝑚 + 𝑎uu𝑡 + 𝑏vv𝑡, 𝑎, 𝑏 ∈ R,u,v ∈ R𝑛. (B.11)

Replacing the equation B.11 in B.10 we find

H𝑚s𝑚 + 𝑎uu𝑡s𝑚 + 𝑏vv𝑡s𝑚 = 𝜂𝑚

u(𝑎u𝑡s𝑚) + v(𝑏v𝑡s𝑚) = 𝜂𝑚 −H𝑚s𝑚. (B.12)

The vectors u and v are not determined in a unique way, but equation B.12 suggest that
a good choose is

u = 𝜂𝑚 𝑎𝑛𝑑 v = H𝑚s𝑚, (B.13)

in this case the terms inside the brackets must be (𝑎u𝑡s𝑚) = 1 and (𝑏v𝑡s𝑚) = −1, which
implies the coefficients

𝑎 = 1
𝜂𝑡

𝑚s𝑚

𝑎𝑛𝑑 𝑏 = −1
s𝑡

𝑚H𝑚s𝑚

. (B.14)

Substitution of B.13 and B.14 in B.11 produces the update rule

H𝑚+1 = H𝑚 + 𝜂𝑚𝜂𝑡
𝑚

𝜂𝑡
𝑚s𝑚

− H𝑚s𝑚(H𝑚s𝑚)𝑡

s𝑡
𝑚H𝑚s𝑚

(B.15)

known as update BFGS formula (BROYDEN, 1969; FLETCHER, 1970; GOLDFARB,
1970; SHANNO, 1970).

It is worth mentioning that there are other update formulas, for example the DFP
formula (DAVIDON, 1991; FLETCHER; POWELL, 1963), which is considered the dual
representation of BFGS formula.



APPENDIX B. QUASI-NEWTON METHOD 79

The BFGS update formula is generally evaluated as the most efficient updating
equation. However the BFGS algorithm has the disadvantage of storing in memory all
values of the Hessian. An algorithm that circumvents this problem is known as limited
memory BFGS or L-BFGS. This algorithm stores only a small amount of recent values of
the equations B.8 and B.9, and evaluates recursively 𝛿𝑚 = 𝛼𝑚H−1

𝑚 g𝑚 using

H−1
𝑚 =

(︃
I− s𝑚𝜂𝑡

𝑚

𝜂𝑡
𝑚s𝑚

)︃
H−1

𝑚−1

(︃
I− 𝜂𝑚s𝑡

𝑚

𝜂𝑡
𝑚s𝑚

)︃
+ s𝑚s𝑡

𝑚

𝜂𝑡
𝑚s𝑚

. (B.16)

A recent modification for L-BFGS algorithm, is known as L-BFGS-B (NOCEDAL;
WRIGHT, 2006; BYRD et al., 1995; ZHU et al., 1994), which extend the technique to
bounded constraint optimization. This algorithm will be used in this work.
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APPENDIX C – B-SPLINES INTERPOLATION

Interpolation reduces the number of parameters, accelerating the optimization
process, as well as intrinsically producing smooth models, eliminating small wavelength
artifacts. Good results initially obtained with sparse grids, can be refined with the gradual
increase of the grid density. Interpolation in B-Splines is widely used in computing, due to
its ease of construction, smoothness, evaluation accuracy and best fit into complex shapes.
The 2D transformation between two grids can be made as

𝑀(𝑥𝑖
1, 𝑥

𝑗
2) =

𝑁𝑥1∑︁
𝑝=0

𝑁𝑥2∑︁
𝑞=0

𝑚𝑝𝑞𝐵
𝑛
𝑝 (𝑥𝑖

1)𝐵𝑛
𝑞 (𝑥𝑗

2), (C.1)

where 𝑚 is the input model, 𝑁𝑥1 e 𝑁𝑥2 are their number of samples, 𝐵𝑛
𝑝 (𝑥𝑖

1) is the B-Spline
function of order 𝑛 in position 𝑥𝑖

1, and 𝑖 correspond to 𝑖𝑡ℎ node of new grid. The B-Spline
function is defined as

𝐵𝑛
𝑖 (𝑥) =

(︃
𝑥− 𝑥𝑖

𝑥𝑖+𝑛 − 𝑥𝑖

)︃
𝐵𝑛−1

𝑖 (𝑥) +
(︃

𝑥𝑖+𝑛+1 − 𝑥
𝑥𝑖+𝑛+1 − 𝑥𝑖+1

)︃
𝐵𝑛−1

𝑖+1 (𝑥), (C.2)

which 𝐵𝑛
𝑖 (𝑥) is obtained recursively, starting from the box function

𝐵0
𝑖 (𝑥) =

⎧⎨⎩ 1, 𝑠𝑒 𝑥𝑖 < 𝑥 < 𝑥𝑖+1,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(C.3)

This work used cubic B-Splines (𝑛 = 3), so that the grid transformation for the
velocity model is

𝑐(𝑥𝑖
1, 𝑥

𝑗
2) =

𝑁𝑥1∑︁
𝑝=0

𝑁𝑥2∑︁
𝑞=0

𝑐𝑝𝑞𝐵
3
𝑝(𝑥𝑖

1)𝐵3
𝑞 (𝑥𝑗

2), (C.4)

and for the objective function gradient model

𝜕ℒ
𝜕𝑐𝑖,𝑗

(𝑥𝑖
1, 𝑥

𝑗
2) =

𝑁𝑥1∑︁
𝑝=0

𝑁𝑥2∑︁
𝑞=0

𝜕ℒ
𝜕𝑐𝑝,𝑞

𝐵3
𝑝(𝑥𝑖

1)𝐵3
𝑞 (𝑥𝑗

2). (C.5)
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APPENDIX D – EROSION AND DILATION PSEUDO
CODE

In this appendix we show the 2D pseudo codes for erosion and dilation operators
applied for structural constraints velocity models. The algorithm’s main parameters are
show in Table D.1 and the codes on Algorithms D.1 (erosion) and D.2 (dilation).

Table D.1 – The algorithm’s main parameters.

Parameter Description
𝑘 kth sequential application
𝑛 Related to structural function size, (2𝑛+ 1)× (2𝑛+ 1)

𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥 Minimum and maximum bounds of the velocity model
𝑛1, 𝑛2 Vertical and horizontal sample numbers

𝑀(𝑛1, 𝑛2) Mask function
𝑓(𝑛1, 𝑛2) Velocity model

Figure D.1 – 2D Erosion algorithm.

input : 𝑘, 𝑛, 𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥, 𝑛1, 𝑛2,𝑀(𝑛1, 𝑛2), 𝑓(𝑛1, 𝑛2)
output :𝐸(𝑛1, 𝑛2)
𝑓0(:, :)← 𝑓(:, :);
for 𝑖𝑘 ← 1 to 𝑘 do

for 𝑖2 ← 1 + 𝑛 to 𝑛2 − 𝑛 do
for 𝑖1 ← 1 + 𝑛 to 𝑛1 − 𝑛 do

𝑣𝑎𝑙← 𝑓𝑚𝑎𝑥;
for 𝑗 ← −𝑛 to 𝑛 do

for 𝑖← −𝑛 to 𝑛 do
𝑣𝑎𝑙← max (min (𝑓(𝑖1 + 𝑖, 𝑖2 + 𝑗)/𝑀(𝑖1 + 𝑖, 𝑖2 + 𝑗), 𝑣𝑎𝑙) , 𝑓𝑚𝑖𝑛)

end
end
𝑓0(𝑖1, 𝑖2)← 𝑣𝑎𝑙;

end
end
𝑓(:, :)← 𝑓0(:, :);

end
𝐸(:, :)← 𝑓(:, :)
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Figure D.2 – 2D Dilation algorithm.

input : 𝑘, 𝑛, 𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥, 𝑛1, 𝑛2,𝑀(𝑛1, 𝑛2), 𝑓(𝑛1, 𝑛2)
output :𝐷(𝑛1, 𝑛2)
𝑓0(:, :)← 𝑓(:, :);
for 𝑖𝑘 ← 1 to 𝑘 do

for 𝑖2 ← 1 + 𝑛 to 𝑛2 − 𝑛 do
for 𝑖1 ← 1 + 𝑛 to 𝑛1 − 𝑛 do

𝑣𝑎𝑙← 𝑓𝑚𝑖𝑛;
for 𝑗 ← −𝑛 to 𝑛 do

for 𝑖← −𝑛 to 𝑛 do
𝑣𝑎𝑙← min (max (𝑓(𝑖1 + 𝑖, 𝑖2 + 𝑗)𝑀(𝑖1 + 𝑖, 𝑖2 + 𝑗), 𝑣𝑎𝑙) , 𝑓𝑚𝑎𝑥)

end
end
𝑓0(𝑖1, 𝑖2)← 𝑣𝑎𝑙;

end
end
𝑓(:, :)← 𝑓0(:, :);

end
𝐷(:, :)← 𝑓(:, :)
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