Please use this identifier to cite or link to this item: http://repositorio.ufpa.br:8080/jspui/handle/2011/6768
metadata.dc.type: Tese
Issue Date: 28-Nov-2014
metadata.dc.creator: RESTON FILHO, José Carlos
metadata.dc.contributor.advisor1: AFFONSO, Carolina de Mattos
metadata.dc.contributor.advisor-co1: OLIVEIRA, Roberto Célio Limão de
Title: Previsão multi-passos a frente do preço de energia elétrica de curto prazo no mercado brasileiro
metadata.dc.description.sponsorship: FAPEAM - Fundação de Amparo à Pesquisa do Estado do Amazonas
Citation: RESTON FILHO, José Carlos. Previsão multi-passos a frente do preço de energia elétrica de curto prazo no mercado brasileiro. 2014. 85 f. Tese (Doutorado) - Universidade Federal do Pará, Instituto de Tecnologia, Belém, 2014. Programa de Pós-Graduação em Engenharia Elétrica.
metadata.dc.description.resumo: A predição do preço da energia elétrica é uma questão importante para todos os participantes do mercado, para que decidam as estratégias mais adequadas e estabeleçam os contratos bilaterais que maximizem seus lucros e minimizem os seus riscos. O preço da energia tipicamente exibe sazonalidade, alta volatilidade e picos. Além disso, o preço da energia é influenciado por muitos fatores, tais como: demanda de energia, clima e preço de combustíveis. Este trabalho propõe uma nova abordagem híbrida para a predição de preços de energia no mercado de curto prazo. Tal abordagem combina os filtros autorregressivos integrados de médias móveis (ARIMA) e modelos de Redes Neurais (RNA) numa estrutura em cascata e utiliza variáveis explanatórias. Um processo em dois passos é aplicado. Na primeira etapa, as variáveis explanatórias são preditas. Na segunda etapa, os preços de energia são preditos usando os valores futuros das variáveis exploratórias. O modelo proposto considera uma predição de 12 passos (semanas) a frente e é aplicada ao mercado brasileiro, que possui características únicas de comportamento e adota o despacho centralizado baseado em custo. Os resultados mostram uma boa capacidade de predição de picos de preço e uma exatidão satisfatória de acordo com as medidas de erro e testes de perda de cauda quando comparado com técnicas tradicionais. Em caráter complementar, é proposto um modelo classificador composto de árvores de decisão e RNA, com objetivo de explicitar as regras de formação de preços e, em conjunto com o modelo preditor, atuar como uma ferramenta atrativa para mitigar os riscos da comercialização de energia.
Abstract: Electricity price forecasting is an important issue to all Market participants in order to decide bidding strategies and to establish bilateral contracts, maximizing their profits and minimizing their risks. Energy price typically exhibits seasonality, high volatility and spikes. Also, energy price is influenced by many factors such as power demand, weather, and fuel price. This work proposes a new hybrid approach for short-term energy price prediction. This approach combines auto-regressive integrated moving average (ARIMA) and neural network (ANN) models in a cascaded structure and uses explanatory variables. A two step procedure is applied. In the first step, the selected explanatory variables are predicted. In the second one, the energy prices are forecasted by using the explanatory variables prediction. The proposed model considers a multi-step ahead price prediction (12 weeks-ahead) and is applied to Brazilian market, which adopts a cost-based centralized dispatch with unique characteristics of price behavior. The results show good ability to predict spikes and satisfactory accuracy according to error measures and tail loss test when compared with traditional techniques. Additionally, is proposed a classifier model consisting of ANN and decision trees in order to explain the rules of price formation and, together with the predictor model, acting as an attractive tool to mitigate the risks of energy trading.
Keywords: Redes neural artificial
Predição do preço de energia
Mercado de curto prazo
Comercialização
Energia elétrica
Brasil - País
metadata.dc.subject.cnpq: CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::SISTEMAS ELETRICOS DE POTENCIA::TRANSMISSAO DA ENERGIA ELETRICA, DISTRIBUICAO DA ENERGIA ELETRICA
metadata.dc.publisher.country: Brasil
Publisher: Universidade Federal do Pará
metadata.dc.publisher.initials: UFPA
metadata.dc.publisher.department: Instituto de Tecnologia
metadata.dc.publisher.program: Programa de Pós-Graduação em Engenharia Elétrica
metadata.dc.rights: Acesso Aberto
Appears in Collections:Teses em Engenharia Elétrica (Doutorado) - PPGEE/ITEC

Files in This Item:
File Description SizeFormat 
Tese_PrevisaoMultipassosFrente.pdf3,7 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons