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Abstract

The firsts trials of the Fifth generation of wireless networks (5G) are taking place world-

wide. A variety of use cases are envisaged, requiring flexible and scalable technologies to meet

their key performance indicators. Massive MIMO is a 5G-enabling technology that improves

spectral efficiency. To exploit the advantages of MIMO, the transmitter needs to have informa-

tion about the channel condition (CSI) of each User equipment (UE). 5G is being standard-

ized in Frequency division duplexing (FDD) and Time division duplexing (TDD) operational

modes; hence, MIMO has to be feasible in both duplexing modes. As TDD operates down-

link and uplink on the same frequency, it can rely on channel reciprocity to acquire the CSI

needed to further design precoding and user scheduling, for instance. However, FDD cannot

exploit channel reciprocity; therefore, massive MIMO in FDD mode is more challenging be-

cause the increasing number of antennas may turn the feedback of CSI impractical. Hence,

compressing CSI in MIMO FDD systems is of interest. Furthermore, the use of vast spectrum

ranges, sub-6 GHz and mmWaves bands, leads to different channel characteristics. Moreover,

the close packaging of antenna elements increases the spatial correlation among a MIMO array.

Consequently, this correlation can be exploited to leverage compression of CSI. This disserta-

tion presents an overview of CSI compression methods, proposes an heuristic transform coding

method with low computational cost, and do a systematic evaluation of the transform coding

methods based on realistic MIMO channel simulations. Besides, the impact of different 5G

use cases and design of transmitter and receiver antennas are also included on the evaluation to

chose the transform coding method for compressing CSI in MIMO FDD systems.

Index Terms— MIMO, FDD, CSI compression, transform coding.



Resumo

Os primeiros testes de redes de quinta geração (5G) de telefonia celular estão sendo feitos

em diversas partes do mundo. Vários cenários de uso estão sendo planejados, o que torna

necessário a adoção de tecnologias flexı́veis e escaláveis para atender seus indicadores de per-

formance. MIMO massivo é uma tecnologia chave para o 5G, pois aumenta a eficiência espec-

tral do sistema. Para explorar as vantagens do MIMO o transmissor precisa ter informações

sobre a condição do canal (CSI) de cada equipamento de usuário (UE). O 5G está sendo

padronizado para operar em duplexação por divisão de tempo (TDD) e duplexação por di-

visão de frequência (FDD). Desta forma, os custos de operar MIMO em TDD e FDD devem

ser factivéis. Como TDD opera uplink e downlink na mesma frequência, a caracteristica de re-

ciprocidade do canal pode ser usada para extrair o CSI necessário para projetar precodificador

ou alocação de usuário, por exemplo. No entanto, FDD não pode explorar reciprociedade do

canal. Assim, operar MIMO em FDD é desafiador, pois com o aumento no número de antenas

a quantidade de informação a ser repassada ao transmissor se torna impraticável. Desta forma,

comprimir CSI de sistemas MIMO FDD é de interesse. Além disso, o uso de vastas faixas de

espectro, bandas abaixo de 6 GHz e ondas milimétricas, leva a diferentes caracerı́sticas de canal.

Também, a proximidade de encapsulamento dos elementos de antena aumentam a correlação

espacial do arranjo MIMO. Consequentemente, essa correlação pode ser explorada para prover

compressão do CSI. Essa dissertação apresenta uma visão geral sobre compressão de CSI e

propõe uma meta heurı́stica que usa codificação por transformada de baixo custo computa-

cional, e faz uma avaliação sistemática dos metódos de compressão baseado em simulações

realistas de canais MIMO. Além, disso, o impacto de diferentes aplicações do 5G e o projeto

das antenas dos transmissores e receptores também são incluı́dos na avaliação para escolha do

método de codificação por transformada para comprimir CSI em sistemas MIMO FDD.

Palavras-chave — MIMO, FDD, compressão de CSI, codificação por transformada.



Chapter 1

Introduction

The Fifth generation of wireless networks (5G) is already a reality. The Third generation

partnership project (3GPP) has released its first standard [1] and many trials are claimed by

operators and telecommunication industry worldwide [2]. 5G is revolutionary because it is a

convergent network which allows a variety of diverse use cases [3, 4]. Table 1.1 shows some of

the expected use cases and their network requirements. It can be noticed that diverse industry

verticals are leveraged by 5G, such as autonomous driving, remote surgery, Internet of things

(IoT), media on demand and gaming. Therefore, 5G should be flexible and scalable to provide

massive system capacity, very high data rates, ultrahigh reliability and availability, very low

latency, low device cost and energy consumption, as well as be an energy efficient network [3,5].

In order to group use cases with similar requirements, International Telecommunications

Union Radiocommunication sector (ITU-R) has defined three generic 5G services: Massive

machine-type communication (mMTC), Enhanced mobile broadband (eMBB), and Ultra-reliable

and low latency communication (URLLC). Figure 1.1 presents radar chart with the importance

of each key performance indicator to each of the three generic 5G services [6]. Among the use

cases expected for 5G are Fixed wireless (FW) access and Vehicle to everything (V2E) which

are eMBB and URLLC services, respectively [4]. FW access is the provision of 5G broadband

services to homes or small business, Figure 1.2. This is specially interesting for places where

the deployment of fiber is difficult; for instance, historical heritage sites and places which re-

quire high deployment investments [7]. V2E is the use case for vehicles that connect to other

vehicles, road side units, road infrastructure and others. V2E can enhance driving experience,

reducing accidents and road congestion; besides, it is a premises for autonomous driving [8].

In this context, massive MIMO is an enabling technology for 5G because it can improve

PGITEC-P01
Riscado
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Figure 1.1: The importance of key capabilities for generic 5G services.

Source: [6].

Figure 1.2: Massive MIMO in FW use case exploiting beamforming.

Source: Author.
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Table 1.1: Use cases and Requirements for 5G.

Use cases Requirements Desired value

Autonomous vehicle control

latency 5 ms

availability 99.999%

reliability 99.999%

Emergency communication
availability 99.9% victim discovery rate

energy efficiency 1 week battery life

Factory cell automation
latency down to below 1 ms

reliability down to packet loss of less than 10−9

High-speed train

traffic volume density 100 Gbps/km2 in DL, and 50 Gbps/km2 in UL

experienced user throughput 50 Mbps in DL, and 25 Mbps in UL

mobility 500 km/h

latency 10 ms

Large outdoor event

experienced user throughput 30 Mbps

traffic volume density 900 Gbps/km2

connection density 4 subscribers per m2

reliability outage probability < 1%

Massive amount of geographically spread devices

connection density 1, 000, 000 devices per km2

availability 99.9% coverage

energy efficiency 10 years battery life

Media on demand

experienced user throughput 15 Mbps

latency 5 s (start application), 200 ms (after possible link interruptions)

connection density 4000 devices per km2

traffic volume density 60 Gbps/km2

availability 95% coverage

Remote surgery and examination
latency down to below 1 ms

reliability 99.999%

Shopping mall

experienced user throughput 300 Mbps in DL, and 60 Mbps in UL

availability at least 95% for all applications, and 99% for safety-related applications

reliability at least 95% for all applications, and 99% for safety-related applications

Smart city

experienced user throughput 300 Mbps in DL, and 60 Mbps in UL

traffic volume density 700 Gbps/km2

connection density 200 000 users/km2

Stadium
experienced user throughput 0.320 Mbps

traffic volume density 0.110 Mbps/m2

Teleprotection in smart grid network
latency 8 ms

reliability 99.999%

Traffic jam entertainment

traffic volume density 480 Gbps/km2

experienced user throughput 100 Mbps in DL, and 20 Mbps in UL

availability 95%

Virtual and augmented reality
experienced user throughput 428 Gbps

latency 10 ms RTT

Source: [9].
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spectrum efficiency which leverages high mobile data traffic [10, 11]. MIMO relies on the

use of a set of antennas at both transmitter and receiver to increase system reliability due to

spatial diversity, and system capacity by allowing parallel transmissions to an UE [12]. In order

to achieve optimal MIMO capacity, the Base station (BS) needs to know the Channel state

information (CSI) of each UE at uplink and downlink channels. Downlink is the physical link

from a BS to an UE, uplink is the link from an UE to a BS, and CSI can refer to the channel

coefficients, the modulus of the channel, the statistics of the channel or the noise variance at

the receiver [13]. In this dissertation, CSI corresponds to the “rich” information representing

a complex channel impulse response (eventually time varying) or its corresponding frequency

response.

Pilot signaling is the main method for CSI acquisition, which consists in sending a prede-

fined orthogonal pilot signal from each transmitter antenna that all receive antennas can “listen”

to estimate their channel [11]. In TDD mode the CSI can be obtained at BS by estimation from

the received uplink pilot signals. Relying on channel reciprocity, the BS can directly use the

uplink estimations as legitimate downlink channel information. Hence, in TDD the number of

pilots depends on the amount of antennas at each UE and the number of UEs served by the

same BS [10,11,14]. In FDD mode the UE may learn the downlink channel from pilots sent by

the BS and send the estimated CSI back to the BS over a control channel. The FDD feedback

is increasingly costly because the amount of feedback needed is proportional to the number of

antennas at both sides, BS and UE [10, 15]. Nevertheless, there are vast amount of spectrum

reserved for FDD operation; besides, FDD MIMO is key for 5G backward compatibility [11].

Therefore, compression of CSI on the feedback link is of interest to allow efficient massive

MIMO operation on FDD mode.

As presented in this chapter, operating massive MIMO in FDD mode is challenging be-

cause CSI overhead is detrimental. However, there is market and spectrum for this technology.

Therefore, compression of the CSI to be sent from an UE to a BS over the feedback control

channel is considered in this dissertation. A primary goal is to investigate transform coding

solutions which can efficiently compress the CSI. Besides, the compression solution should be

flexible and require low computational cost. In this context, an heuristic method is proposed for

compression of CSI. In addition, an analysis based on simulations is provided and the results

validates the efficiency of the SNR sort transform coding method, the proposed method. The

following section presents the structure of this dissertation.
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1.1 Dissertation outline

• Chapter 2 presents fundamental concepts on MIMO, and its channel modeling. MIMO

channel characteristics are presented and further explored to allow compression of CSI in

FDD mode.

• Chapter 3 introduces the concept of transform coding and gives an overview of the state

of the art in compressing CSI in MIMO FDD systems. In addition, the chapter presents

the proposed heuristic compression method which is based on transform coding.

• Chapter 4 describes the simulations developed to evaluate the studied compression meth-

ods. Based on the results, the chapter discusses the performance that can be achieved in

more practical scenarios.

• Chapter 5 presents the conclusions and describes possible future extensions of the work.



Chapter 2

Fundamentals of MIMO processing

Availability of spectrum, electromagnetic propagation laws, and information theory prin-

ciples are among the factors which limit the performance of the physical layer in wireless

communications [10]. In order to improve efficiency of wireless communications, there are

basically three options: increase the density of access points, increase the spectrum usage, im-

prove spectral efficiency which is the amount of bits that can be conveyed per second per unit

of bandwidth [10, 11].

Multiple input multiple output (MIMO) technology refers to wireless communications

systems that leverage multipath scattering between transmitter and receiver to substantially

increase the spectral efficiency [10, 16]. The use of MIMO can increase data rates through

multiplexing or diversity. For diversity, communication reliability is improved by transmitting

replicas of the same signal through the fading channel [16, 17]. Multiplexing can be used to

send independent data through independent signaling paths, which are obtained by exploiting

the structure of the MIMO channel matrix [17]. Because of that, MIMO is considered a funda-

mental technology to achieve the huge growth of data demand in 5G systems.

To leverage MIMO potential to increase spectral efficiency, the BS has to have knowledge

of the CSI which is composed, in this dissertation, by the channel matrix coefficients. Therefore,

this chapter presents MIMO channel models and discuss their propagation characteristics. The

chapter ends presenting the MIMO channel sparsity characteristic which leverages compression

of CSI in massive MIMO FDD systems.
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2.1 MIMO and CSI

Knowledge of CSI is fundamental for mobile communication functioning. The informa-

tion regarding the channel gain matrix H that is available at transmitter and receiver is called,

respectively, Channel state information at transmitter (CSIT) and Channel state information

at receiver (CSIR). Different assumptions can be made about their knowledge. For instance,

CSIR for static channels can be fairly estimated from pilot sequences sent by the transmitter.

If a feedback path is available, CSIR can be sent to the transmitter to provide CSIT. Neverthe-

less, CSIT can be acquired without feedback path if reciprocal propagation properties can be

exploited [17]. CSIT enable to increase the transmission rate, enhance coverage, and reduce

receiver complexity in MIMO wireless systems [18].

A communication system that aims to achieve the Shannon capacity of MIMO chan-

nels depends on what is known about the channel gain matrix H. Exact knowledge of CSIT

and CSIR allows the transmitter to adapt both power and rate to the channel gain at a given

time. This adaptation leads to high bit rate because the signals transmitted or received over

the multiple antennas can be coherently combined to maximize the channel Signal to noise ra-

tio (SNR) [17]. Precoding is a technique which exploits CSIT for enhancing MIMO system

performance [18]. Basically, precoding consists in choosing different phase and/or amplitude

for each data signal sent from all antennas aiming to direct the signal spatially. Angular beams

(or digital beamforming) are a special case of precoding that is useful in line of sight propa-

gation. For non-line of sight channels the transmitted signal might not have a distinct angular

directivity, but it can still be precoded such that the multipath components are received coher-

ently at the UE [11].

Practical channel acquisition based on reciprocity is referred to as the open-loop method

and may be applicable in TDD if the time lag between the forward and reverse transmissions is

smaller than the channel coherence time. In FDD mode, however, the frequency offset between

downlink and uplink is larger than the channel coherence bandwidth; hence, reciprocity cannot

be exploited [18]. Channel acquisition using feedback is referred to as the closed-loop method.

Feedback can be used in both TDD and FDD modes, but it is more common in FDD mode [18].

Channel sounding is the technique used for open-loop channel acquisition, the UE is

scheduled to send a sounding transmission to the BS. The sounding signals are orthogonal

among simultaneously scheduled users. Hence, the overhead of open-loop channel acquisition

is the product of the number of training pilots on the uplink, which is proportional to the number
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of antennas at each UE, and the number of users participating on the uplink channel sounding

CSITDD ∼ NUENrx [18]. Therefore, TDD operation mode is independent of the number of

antennas at the BS [10].

In closed-loop MIMO, downlink training overhead is independent of the number of users,

but is proportional to the number of transmitter antennas Ntx [10]. The overhead for up-

link is proportional to the number of scheduled users multiplied by the size of the channel

matrix, which is a product of the number of transmit antennas at the BS Ntx and the num-

ber of receive antennas at each UE Nrx [18]. Therefore, FDD feedback is proportional to

CSIFDD ∼ Ntx + NUENrxNtx which requires precious transmission resources, leading to the

interest in compressing the feedback data.

2.2 MIMO propagation characteristics

There are three main factors that influence signal propagation in MIMO wireless commu-

nication systems: multipath propagation, Doppler effect, and spatial characteristics. Obstacles

within the propagation environment cause the received signal to be a superposition of signals

that propagate over different paths between transmitter and receivers, as depicted in Figure 2.1.

Because of multipath, signals arrive at a receiver with different delays, attenuation, and phase

shifts. Considering mobility, the Doppler effect can be considerable, resulting in frequency

shift of the received signal [19]. For MIMO transceivers, the angles of multipath components

characterize the spatial features. These factors influence drastically the channel impulse re-

sponse (CIR). Channel characteristics are quantified by channel statistical properties such as

delay spread, angle spread, Doppler spread, power angle spread (PAS), power delay profile

(PDP), and spatial-temporal correlation function (STCF) [19].

The angular spread measures the power dispersed over incident angles. For instance, the

angular spread ∆ at azimuth direction is

∆φ =

√∑L−1
l=0 (φl − µφ)2α2

l∑L−1
l=0 α

2
l

, with

µφ =

∑L−1
l=0 φlα

2
l∑L−1

l=0 α
2
l

,

(2.1)

where ∆φ is the angular spread for azimuth angle of arrival φ, α2
l is the absolute gain of the

lth multipath component, and µφ is the mean azimuth angle of arrival. The angular spread of
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Figure 2.1: Multipath propagation of a signal.

Source: Author.

azimuth angle of departure as well as elevation angular spread of arrival and departure angles

can be calculated using the same Equation 2.1, but changing the correspondent parameters.

Small angular spread means that the multipath components arrive/departs with angles close the

mean angle of arrival/departure. Hence, better spatial multiplexing is achieved due to small

intersector interference [20].

MIMO was originally conceived for conventional sub-6 GHz frequencies. With the elec-

tronic industry advancement, MIMO can reach massive number of antennas within frequency

bands in the range 30-300 GHz, known as mmWaves. Propagation in those bands, sub-6 GHz

and mmWaves, can suffer different physical effects, such as diffraction, shadowing, attenua-

tion, blockage, etc [21]. On frequencies below 6 GHz, propagation depends more on path loss,

shadowing, and multipath. Measurement campaigns of sub-6 GHz massive MIMO have shown

that increasing the number of antenna elements leads to UE channels close to orthogonal. On

mmWaves the wavelengths are very small, which increases attenuation and susceptibility to

blockage given the Fresnel zone reduces allowing obstruction by small objects, such as human

body and foliage [21,22]. However, mmWaves have larger spectral channels and distance based

path-loss can be mitigated by directional transmissions [22].
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2.3 MIMO channel modeling

Considering a MIMO channel with Ntx and Nrx antenna elements at transmitter and re-

ceiver respectively, the MIMO channel matrix H(τ, t) of the time-varying channel impulse

response hi,j(τ, t) between the antenna elements is

H(τ, t) =


h1,1(τ, t) h1,2(τ, t) . . . h1,Ntx(τ, t)

h2,1(τ, t) h2,2(τ, t) . . . h2,Ntx(τ, t)
...

... . . . ...

hNrx,1(τ, t) hNrx,2(τ, t) . . . hNrx,Ntx(τ, t)

 , (2.2)

where i = {1, 2, . . . , Nrx} indicates an antenna element of the receiver and j = {1, 2, . . . , Ntx}

an antenna element at the transmitter. Each column of H(τ, t) is referred as the spatial-temporal

signature of the jth transmitter element across the receiver antenna array [23]. Given a signal

xj transmitted from the transmitter array, the signal received at the ith antenna is

yi(t) =
Ntx∑
j=1

hi,j(τ, t) ∗ xj(t) + ni(t), i = 1, 2, . . . , Nrx, (2.3)

where ni(t) is the receiver additive noise.

2.3.1 Narrowband multipath channel model

For convenience, it is assumed that the bandwidth BW of the waveform is much smaller

than the reciprocal of the transit time Tw of the wavefront across the antenna array, BW �

1/Tw [23]. Therefore, the signal received at the antenna element i+1 is a phase shifted version

of the signal received at antenna element i. The corresponding phase shift depends on the array

geometry and the angle of arrival of the wavefront. In this work, Uniform linear array (ULA)

and Uniform planar array (UPA) are considered, Figure 2.2 depicts an ULA with four antenna

elements and rays arriving with angle φ from the array plane. The array steering vector at the

azimuth direction φ` is

a(φ`) = [1, e−i2π sin(φ`)dλ , . . . e−i2π sin(φ`)dλ(Ntx−1)], (2.4)

where dλ = d/λ is the distance among the antenna elements normalized by the wavelength [24].

The array steering vector in the elevation direction a(θ`) is computed similarly, and the array

steering vector at elevation and azimuth direction can be calculated as a(φ`, θ`) = a(φ`)⊗a(θ`)

[22, 24].
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Figure 2.2: Array steering modeling for ULA assuming planar waves.

Source: Author.

Knowing the array steering vector, the multipath narrowband model for the array channel

matrix is

H =
√
NtxNrx

L∑
`=1

α`arx(φA` , θ
A
` )aHtx(φD` , θ

D
` ), (2.5)

where L is the total number of multi-path components, α` is the complex channel gain of the

`th path, arx(φA` , θ
A
` ) is the steering vector for the angle of arrival of the `th path at the receiver,

and aHtx(φD` , θ
D
` ) is for the angle of departure of the `th path at transmitter.

2.3.2 Narrowband Kronecker channel model

The Kronecker channel model is appropriate in FW where the BS is usually elevated and

unobstructed by local scatterers, and the UE is often surrounded by local scatterers [25]. The

Kronecker channel model is among the analytical models of a random MIMO channel matrix

that explicitly incorporates correlation between pairs of antennas [16]. Mathematically, it is

defined as

H =
1√

tr(Rrx)
R

1
2
rxHiidR

1
2
tx, (2.6)

where Rtx and Rrx are the covariance matrices for the transmitter and receiver, respectively, Hiid

is a complex Gaussian matrix which undergoes Rayleigh fading, and tr is the trace operation

which is the sum of the elements on the matrix main diagonal [16, 26].

The elements of Rtx are the correlations between all pairs of transmit antennas at a given
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receiver, and the elements of Rrx are the correlations between all pairs of receive antennas when

the signal is emitted by a transmitter. From the structure of the covariance matrix it follows that

the top and bottom halves of Rrx and Rtx matrices are simply the complex conjugates of each

other [16]. When the scattered energy at the receiver is assumed to arrive over a uniformly

distributed range of angles, the covariance matrix of an ULA can be computed as

[Rrx]p,q =
1

2∆φ

∆φ−φk∫
−∆φ+φk

e−j2π(p−q) d
λ

sin(α)dα, (2.7)

where p and q are the covariance matrix indexes, ∆φ is the angular spread, d is the antenna

elements separation, φk is the angle of arrival for the kth receiver [25,26]. The covariance matrix

of an UPA can be expressed by RUPA = RV⊗RH which is the Kronecker product combination

of an ULA modeled at horizontal direction RH and other ULA modeled on vertical direction

RV [26]. Assuming the distance from transmitter to receiver is larger than the antenna spacing,

the angle of arrival and angular spread for an ULA can be computed as [25, 26]

∆H = arctan
(r
s

)
, (2.8)

φH ∈ (−π, π],

where r is the radius of the scattering ring for the receiver, and s is the distance between trans-

mitter and receiver as depicted in Figure 2.3 [25, 26].

Figure 2.3: one-ring scatter model used to compute covariance matrix.

Source: Author.

Generally, an increase in antenna elements spacing causes Rrx and Rtx to become more

diagonal, therefore the antenna elements are less correlated [16, 25]. When antenna elements
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spacing increases, the electromagnetic coupling among the antenna elements reduces leading

to less correlation between antenna elements [16]. A decrease in angular spread increases the

correlation within Rrx as it becomes increasingly difficult for the receiver to distinguish among

the transmissions of each transmit antenna element [25]. Besides, when the angle over which

radio waves arrive at the receiver increases, multipath causes the signal to appear increasingly

dissimilar at different antennas [16]. A counter example is when the plane wave signal arrives at

the receive array moving perpendicular to the array. In this scenario, the signal at each receive

antenna is the same and the antenna elements are perfectly correlated as long as electromagnetic

coupling is negligible.

2.4 MIMO channel sparsity

Multipath signal propagation is a key concept for the functioning of wireless communi-

cations. Over the years, statistical modeling of wireless channels have assumed rich scattering

environment. However, scientific research has shown that real wireless channels exhibits sparse

multipath structure which is more noticeable when the signal spatial dimensions increase; for

instance, when there is an increase in bandwidth or in number of antennas [27].

In order to explain the concept of channel sparsity, the channel is analyzed in a virtual

channel representation which leverages inference of the effects of scattering and array charac-

teristics on channel capacity and diversity [24]. Besides, virtual channel representation, also

called angular domain, keeps the essence of physical modeling without its complexity and pro-

vides a tractable linear channel characterization as it employs fixed spatial basis functions de-

fined by the spatial resolution of the antenna array [24]. Mathematically, the virtual channel Hv

is related to the physical channel H as Hv = AH
rxHAtx, where Arx and Atx are unitary DFT

matrices; hence, Hv is a 2D discrete Fourier transform of H [24].

The number of dominant non-vanishing coefficients of the virtual channel represents the

statistically independent Degrees of freedom (DoF) in the channel which governs channel ca-

pacity and diversity [27]. The maximal number of DoF in a channel is Df,MAX = NrxNtx and

achieving it requires a rich scattering environment [24]. A sparse multipath channel has very

few DoF Df � Df,MAX which represents a sparse distribution of resolvable paths in the angular

domain, causing Hv to have many entries close to zero [27].
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MIMO CSI Compression

As discussed, accurate knowledge of CSI at the BS is essential to achieve the high data

rates enabled by MIMO and massive MIMO. However, the amount of CSI increases pro-

hibitively in FDD mode as the number of antennas increases. Hence, compression of the CSI is

needed to reduce the feedback overhead [26].

Transform codes are used for data compression because it is easy to apply at any rate

and even with very large sequence length [28]. Modularization is the key aspect of transform

coding. First, a linear transform is applied to the input sequence x , then the transform coef-

ficients are quantized and, optionally, entropy code can be applied on the quantized indexes.

Those operations are reversed at the decoder where an approximation x̂ of the input sequence

is reconstructed [28].

This chapter presents an overview of the basic elements of transform coding, and discusss

the state of art in CSI compression for FDD massive MIMO. The chapter finishes presenting

the transform coding methods proposed in this dissertation.

3.1 Transform coding

Representing a waveform as a sequence of bits is refereed as signal coding and is useful

for reducing cost of storage or transmission through a digital channel. The design of digital

coding aims to minimize the number of bits used to represent the signal while maintaining a

fidelity criterion [29]. Sampling and quantization, representing analog signals in digital for-

mat, are basic operations in signal coding. In quantization, the key design goal is to balance

the amount of distortion imposed by the limited number of discrete levels in the quantizer and
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the amount of bits required to code these output levels. The original aim of transform coding

is to extract the redundancy existing between elements of random vectors, as in multichannel

environment with cross coupling among channels or in random vectors formed by blocks of

consecutive samples of a scalar signal, by applying a transform and then quantize the trans-

formed vector [29]. Quantizing the transformed coefficients allows employing less bits. Due

to the energy compaction provided by the chosen transform, fewer coefficients can be encoded

and transmitted along with their location in the new sequence. This results in an efficient data

compression method in many applications [30].

Figure 3.1 presents a general block diagram for transform coding. At the encoder, the

direct linear transform of the sampled input signal x of size M is X = AHx, where X is x in

the transform domain. A is assumed orthonormal and invertible, AHA = AAH = I where I is

the identity matrix. Hence, AH is the direct transform matrix Ψx and A is the inverse transform

matrix Ψx
H in order for the columns of A to contain the basis vectors of the transform [29].

X is then quantized to X̃ = Q(X), and X̃ is transmitted over the physical channel. Assuming

the channel is noiseless, X̃ is decoded as X̂ = Q−1(X̃). Applying the inverse transform matrix

A, the reconstructed input signal x̂ is x̂ = (AH)−1X̂ = AX [29]. This example used data

and transforms of one dimension (1D). For two dimensional (2D) datasets like images, the 2D

transformation of the matrix x can be obtained from applying a 1D transform at all columns of

x as Y = AHx and then transforming all rows of x as X = (AHYH)H. Substituting equations,

the separable 2D transform is calculated as

X = (AH(AHx)H)H = AHxA = ΨxxΨx
H. (3.1)

Some of the most employed transforms for transform coding are presented in Section 3.2.

Orthonormal transforms are usually applied because of its energy conservation property ||X|| =

||x|| =
∑M

i=1 |xi|2, and needfulness in computing inverse matrix to get the direct or inverse

transform. Nevertheless, the efficiency of a transform depends on how much energy com-

paction it provides. The transform coding gain GTC measures the energy compaction of a given

transform and is computed as

GTC =
1
M

∑M−1
i=0 σ2

i

(
∏M−1

i=0 σ2
i )

1
M

, (3.2)

where σ2
i is the variance of the ith transform coefficient [29, 30].
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Figure 3.1: General transform coding block diagram.

Source: Author.

3.2 Signal processing for sparse signals

Leverage channel sparsity for compression of MIMO channel matrices is essential to al-

low feasibility of massive MIMO in FDD mode. However, not all channel matrices are sparse

at the physical domain; therefore, sparsifing basis are applied to find the few dominant coeffi-

cients which represent the channel. This section presents some orthogonal basis, or transforms,

used for sparsifing the channel matrices and also introduces the concept of Compressive sens-

ing (CS).

Primarily, transforms are used to reduce the complexity of mathematical problems. For

data compression, the desirable transform should present the following characteristics: data

decorrelation, data-independent basis functions, and fast implementation [31]. Data decorrela-

tion is when the transform compacts most of the signal energy in a few number of coefficients,

allowing to further discard coefficients. The optimum transform is usually data-dependent due

to the large statistical variations among data [31]. Then, finding those data-dependent basis

functions may be computationally difficult and the functions need to be informed to the decoder

in the case of signal compression. Besides, the basis functions should be updated more fre-

quently when the data blocks are highly non-stationary. Hence, it is desirable to trade optimum

performance for a transform whose basis functions are data-independent [31]. Nonetheless, fast

transform implementations are desired to reduce computational complexity.
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3.2.1 Karhunen-Loéve transform

Karhunen-Loéve transform (KLT) is the transform which exactly diagonalizes the corre-

lation matrix of any signal Rxx = E[xxH] [32]. In essence, the KLT can be obtained from the

eigen-decomposition of a given random signal autocorrelation matrix Rxx = UDUH where

U is the matrix of column eigenvectors which are the orthogonal basis function of the KLT

ΨKLT = U, and D is a diagonal matrix with the corresponding eigenvalues of Rxx.

The KLT is said an optimal transform because it completely decorrelates the signal in

the transform domain [28, 32]. Besides, it contains the most variance in the fewest number of

transform coefficients, which allows to minimize the Mean square error (MSE) in data com-

pression. Even though KLT has the ideal property of data decorrelation, its signal dependence,

lack of a fast transform algorithm, and the need to transmit its basis make it difficult to adopt

it in compression. However, KLT serves as benchmark against which other discrete transforms

may be evaluated [32].

3.2.2 Discrete cosine transform

DCT is a sinusoidal unitary transform which is invertible and its kernel describes a set of

complete orthogonal discrete cosine basis functions [31]. The 2-D DCT for an N × N input

data matrix xm,n with m,n = [0, 1, . . . , N − 1] is defined by the following relation

ΨDCT(k,l) =
4εkεl
N2

N−1∑
m=0

N−1∑
n=0

xm,n cos

(
π(2m+ 1)k

2N

)
cos

(
π(2n+ 1)l

2N

)
, (3.3)

k, l = 0, 1, . . . , N − 1,

εp =


1√
2

p = 0

1 otherwise.

For first-order stationary Markov (Markov-1) processes, the current stage of the process

just depends on the last stage P (st|st−1, st−2, st−3, . . . , s0) = P (st|st−1∀t), where st is the

current stage and P (·) is the probability, and the dynamics of the process does not change over

time P (s′t|s′t−1) = P (st|st−1)∀t. According to [31, 32], the DCT approaches asymptotically

the KLT performance for (Markov-1) processes with high correlation, independent of the size

N of the signal sequence. This is true because DCT provides good eigenvectors approximation

for Toeplitz matrices [33]. Besides, [34] has compared the asymptotic equivalence of DCT

and DFT with KLT, and proved that DCT performs closer to optimal than DFT for Markov-1
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signals. Due to its powerful performance in the bit-rate reduction, DCT have been employed in

international image and video coding standards, such as JPEG, MPEG, H.261, H.263 [31].

3.2.3 Discrete Fourier transform

The 2D-DFT for an M × N data matrix xm,n with m = [0, 1, . . . ,M − 1] and n =

[0, 1, . . . , N − 1] is defined as

ΨDFT(k,l) =
1

MN

M−1∑
m=0

N−1∑
n=0

xm,ne−j2π(
k
M
m+ l

N
n), (3.4)

k = 0, 1, . . . ,M − 1 and l = 0, 1, . . . , N − 1,

For a stationary Markov-1 signal, the correlation matrix is a symmetric Toeplitz matrix

which may be treated as asymptotically equivalent to a circulant matrix. As the eigenvectors of

the circulant matrix are the basis vectors of the discrete Fourier transform, KLT and DFT are

asymptotically equivalent [32]. In addition, DFT can be used to compute DCT [33].

For One dimensional (1D) transforms, an M point DCT can be computed from 2M point

DFT as

ΨDCT(0) =

√
2

M

M−1∑
m=0

xm

ΨDCT(k) =
2

M
<{e

−ikπ
2M

2M−1∑
m=0

xme
−i2πkm

2M } (3.5)

k = 1, 2, . . . ,M − 1 and xm = 0,m = M, (M + 1), . . . , (2M − 1).

As it is a separable transform, the Two dimensional (2D) transform can be obtained from the

1D transform version. Even though DCT can be computed from DFT, DCT performs better in

terms of compression for Markov sources with high correlation coefficient. To compute DFT

of length M , it is assumed that the sequence is periodic with period M . This repetition of the

sequence at eachM points causes sharp discontinuities at the edges of the sequence which leads

to high frequency components. The representation of high frequency components affects other

sequence points besides its endpoints. Therefore, discarding high frequency coefficients in DFT

leads to additional distortion [30].
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3.2.4 Compressive sensing

Compressive sensing (CS) exploits the compressibility of a signal to reduce the amount

of measurements required to completely describe a signal [35]. This technique can be applied

to sparse signals where only K components of the N × 1 signal vector are non-zero, K � N .

The sparse representation s of the time signal x is x = Ψxs. Following, the CS operation is

defined as

y = Φx = ΦΨxs = Θs, (3.6)

where Φ is the M × N random measurements matrix with M < N , Ψx is a sparsifying basis

(DCT, DFT, KLT, etc), s = Ψx
Hx, and Θ = ΦΨx.

The aim of CS is to take M measurements from which the N -length x can be stably

reconstructed, or equivalently s in the Ψx domain. In general, this linear problem has less

equations than unknowns as M < N . However, the K-sparsity of s can be exploited where

y simplifies to a combination of the K-columns of Θ. As K ≤ M , the M × K system

is well conditioned if Θ preserves the length of the particular K-sparse vectors [35]. From

that, the elements of the measurement matrix Φ can be generated from random variables with

Gaussian or Bernoulli distributions, and Θ = ΦΨx has to present restricted isometry property

(RIP) [35, 36]. The compressive capability is bounded by M ≥ cK log(N/K) for c of small

value [26, 35]. For reconstruction of x from y, the decoder should solve

ŝ = arg min ||s||l1 such that Θs = y. (3.7)

Equation (3.7) is a convex optimization problem that can be solved by linear programing

(LP), basic pursuit (BP), and Orthogonal matching pursuit (OMP) [36]. OMP is an iterative

greedy algorithm that is presented at Algorithm 1. At each step, OMP algorithm selects a

column which is most correlated with the current residuals rs, as in line 6 of Algorithm 1.

This column is added to the set of selected columns W , as in line 7 of Algorithm 1. The

algorithm updates the residuals, line 8 of Algorithm 1, by projecting the observations into the

linear subspace spanned by the columns which have been selected, as in line 7 of Algorithm 1,

and the algorithm iterates. OMP has simple and fast implementation if compared with other

alternative methods [26, 37].
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Algorithm 1: OMP
Input: Measurements y

Measurement matrix Φ

Sparsifying basis Ψx

Sparsity K

Output: ĥ = Ψxŝ

begin

1 k ← 0

2 r0s ← y

3 W 0 ← ∅

4 while k < K do

5 k = k + 1

6 wk = arg maxj |〈rk−1s ,Φj〉|

7 W k = W k−1 ∪ wk

8 ŝWk = arg mins ||y −ΦWks||2
9 rks = y −ΦWk ŝWk

Reconstruction: ŝ = arg maxs:supp(s)=Wk ||Φs||2

3.3 Side information

In coding literature, such as in image processing, sparsifying basis are commonly applied

and coefficients are discarded. The encoder uses some bits to inform which coefficients are

relevant and, therefore, not discarded. Eventually, assuming scalar quantization, the encoder

needs to specify the amount of bits allocated to each coefficient, unless this amount is fixed

over time. All the bits used to encode information other than the coefficient values themselves

is called side information.

One key aspect of conventional transform coding is to encode the relevancy of the coef-

ficients. For example, the JPEG image encoder assumes a fixed relevancy order of coefficients

called zigzag scan (top-bottom, left-right), which eliminates the need for some side informa-

tion on the relevant coefficients. In [26], the zigzag scan was adopted to encode the MIMO

CSI. It should be noted that compressive sensing consists of a technique that does not require

side information to encode the coefficients significance. The relevancy of each coefficient in

compressive sensing is found via optimization algorithms.
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In general, the selection of relevant coefficients may not follow a fixed scheme as in

the zigzag scan. In these cases, the encoder has to send side information for the decoder to

be able to restore the compressed data correctly. For instance, a binary map can be used to

indicate the set of significant transformed coefficients. The binary map representation of the

chosen transform coefficients is refereed as significance map and it has been used in signal

compression strategies based on transforms such as wavelets, and in video coding standards

[38–40]. Significance maps of channel matrices use one bit per coefficient, to indicate that

coefficient was discarded or not [40]. Therefore, a significance map always require the same

number of bits, which coincides with the total number of coefficients.

Other option for encoding position of significant coefficients is the run length encoding

(RLE) which is adopted in the PCX image format. When a RLE encoder detects long sequence

of the same value, it indicates this specific value and its number of occurrences. This can be

very efficient for images, especially for encoding the background pixels. However, for CSI

compression, with complex-values entries in the H matrix, RLE could not be applied to the H

values. One could still execute RLE on the binary matrix that is used in the bitmap representa-

tion. However, RLE applied to binary matrices has some complications. Encoding a run of bits

0 or 1 would require bits to represent a given range of integer numbers. For example, a run of

150 bits zero, would require 8 bits to represent the number of occurrences. Unless some entropy

coding such as Huffmans code is adopted, the number of bits required to represent the maxi-

mum run would be needed each time a bit is flipped from 0 to 1 or vice-versa. RLE and entropy

coding would make the encoding more complex which is not desired in this dissertation.

3.4 Quantization

Quantization is one of the simplest and most general ideas of lossy compression where

large amounts of information should be represented in a small number of pre-defined symbols

(codewords) [30]. For lossy compression schemes, the design of a quantizer has significant

impact on the amount of compression obtained and loss incurred. The input and output values

of a quantizer can be scalar or vectors which leads to scalar quantizers and vector quantizers,

respectively [30]. The following sub-sections present the basics of each of those quantizers.
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3.4.1 Scalar quantization

Encoder and decoder mapping are the basic parts of a quantization. At the encoder, the

range of source values generated are divided into a number of intervals where each interval

is represented by a unique codeword. Following, the encoder represents all the source values

that fall on a particular interval by its respective codeword. As knowing the codeword just tells

the interval the source value belongs, quantization is said irreversible. However, the decoder

happens to reconstruct the source values with some error. The decoder outputs a value that best

represents all the values in the interval represented by a codeword [30].

A scalar quantizer encodes each of its input to a real scalar output, generating codewords

for each fixed-length quantization interval. More precisely, anM -point scalar (one dimensional)

quantizer Q : R → C where R is the real line, C = {y1, y2, . . . , yM} is the codebook with size

|C| = M , and yi ∈ R are the output levels, or codewords [41]. In practical applications, M is

finite to allow output values to be specified by a finite number of binary digits M = 2b. For in-

stance, consider a digital thermometer which displays temperatures in the range [0, 1, 2, . . . , 99]

with 1o resolution. R is the set of all possible temperatures to which the thermometer can be

exposed, C is the range of temperatures it can display. The mapping Q is determined by the

sensor resolution which is 1o Celsius. Therefore, for any actual temperature in the range of 0 to

99 degrees, the output reading gives the true value rounded to the nearest integer [41].

Associated with every M -point quantizer is a partition of the real line R into M cells or

atoms Ri for i = 1, 2, . . . ,M . The ith cell is given by Ri = {x ∈ R : Q(x) = yi} ≡ Q−1(yi),

the inverse image of yi under Q. From this definition, there is no overlap between partitions

cells. A quantizer Q is completely described by its output levels {yi : i = 1, 2, . . . ,M} and the

corresponding partition cells {Ri : i = 1, 2, . . . ,M} [41]. The endpoints of the intervals are

known as decision boundaries yi ∈ (xi−1, xi). Each bounded cell is called a granular cell, an

unbounded cell is refereed as overload cell. Usually, x0 = −∞ and xM = ∞ and the cells R0

and RM are overload cells. The total length of the granular cells is called range B where for an

unbounded regular quantizer is B = xM−1 − x1. Figure 3.2 presents the structure of a uniform

scalar quantizer and highlights its granular and overload regions.

Code rate rsq of a scalar quantizer is defined as rsq = log2(M) and measures the number

of bits needed to uniquely specify a quantized value. The code rate impacts on the accuracy

with which the source values are described. For an integer value of code rate, each yi could

be assigned to a unique r-tuple. This is, a fixed rate code is being used to represent the quan-
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Figure 3.2: Staircase structure of a scalar quantizer.

Source: Author.

tized value [41]. The quantization performance is directly dependent on the partition boundary

values, the output points and the input source statistics. Nevertheless, the load factor measures

the size of the highest decision level xM−1 relative to the root mean square (RMS) value σ of

the input signal. Hence, the loading factor mediates a trade-off between granular and overload

distortion. Mathematically, the loading factor γf is given by

γf =
V

σ
, (3.8)

where V is the peak signal magnitude that can be quantized without incurring overload error.

The value of V , is usually defined as xM−1 or yi. For the case of symmetric quantizer V = B/2

where B = xM−1 − x1 is the total length of the granular cells.

The uniform quantizer is the simplest type of quantizer where all intervals are of the same

size, except possibly for the two outer intervals which may form the overload region. For the

uniform quantizer, the decision boundaries are spaced evenly as well as the reconstruction val-

ues which have the same spacing as the decision boundaries [30]. This constant spacing is

usually referred to as the step size ∆. For instance, considering a source with uniformly dis-

tributed entries on the bounded interval [−XMAX, XMAX], we aim to design a M -level uniform

quantizer for this source. Therefore, the interval [−XMAX, XMAX] should be divided into M
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equally sized intervals where the step size is given by

∆u =
XMAX − (−XMAX)

M
=

2XMAX

M
. (3.9)

The distortion measures the overall quality degradation incurred by quantization. For a

uniform quantizer with levels distributed equally for positive and negative levels, and source

probability distribution function (pdf ) fx(x), the quantization distortion σ2
q is

σ2
q = E[(x−x̂)2] = 2

M/2∑
i=1

i∆∫
(i−1)∆

(
x− 2i− 1

2
∆

)2

fx(x)dx

︸ ︷︷ ︸
granular distortion

+ 2

∞∫
(M/2)∆

(
x− M − 1

2
∆

)2

fx(x)dx

︸ ︷︷ ︸
overload distortion

.

(3.10)

Assuming all quantizer intervals are bounded, the number of levels provide high resolution, and

the distortion is uniformly distributed over the granular region, the quantization error can be

simplified as

σ2
q,u = 2

M/2∑
i=1

i∆∫
(i−1)∆

(
x− 2i− 1

2
∆

)2
1

2XMAX

dx =
∆2

12
[30]. (3.11)

3.4.2 Vector quantization

Vector quantization (VQ) is a generalization of scalar quantization to quantize vectors. A

block of N consecutive source samples are grouped into blocks, and those blocks are the input

to a vector quantizer. The N dimensional codebook is known at encoder and decoder. The vec-

tors in this codebook are refereed as code-vectors, they are selected to be representative of the

vectors generated from the source. Each code-vector is assigned to a binary index. The encoder

compares the input vector to each code-vector and decides on the code-vector which leads to

the smallest distortion; therefore, the code-vector is the quantized value of the source block.

The binary index of the selected code-vector is informed to the decoder to allow recovery [30].

Figure 3.3 presents an example of VQ. The source block is composed of 5 samples, and the

transmitter just sends the index of the code-vector to the receiver that recovers the original

source block.

There are several techniques to reduce its computational cost, but VQ may require con-

siderable amount of computation at the encoder in order to find the closest reproduction vector

to the block of source outputs. However, the decoder is a simple look up table. Hence, vector

quantization is rather attractive for applications where the resources available for decoding are
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Figure 3.3: Example of VQ for M = 4, N = 5, and b = 2 bits.

Source: Author.

scarce if compared to available resources for encoding [30]. Comparing with scalar quanti-

zation, VQ gives flexibility to represent the source outputs; besides, if the source outputs are

correlated, this structure can be explored to generate efficient representations. Thus, codebook

design is one of the most import aspects of VQ design.

Rigorously, a N dimensional vector quantizer Q with size M is a mapping from a vec-

tor in N -dimensional Euclidean space RN , into a finite set C containing M output or repro-

duction points, Q : RN → C where C = {y1, y2, . . . , yM} and yi ∈ RN for each J ≡

{1, 2, . . . ,M} [41]. The set C is called codebook and has size M , with each entry being a vec-

tor inRN . The code rate of a vector quantizer is rvq = (log2M)/N , it measures the number of

bits per vector component which is used to encode the input vector [41].

Associated with every M point vector quantizer is a partition of RN into M regions or

cells, Ri for i ∈ J . The ith cell is defined as

Ri = {x ∈ RN : Q(x) = yi}, (3.12)

denoted more concisely as Ri = Q−1(yi). From this definition it follows that
⋃
iRi = RN , and

Ri

⋂
Rj = ∅ for i 6= j, hence the cells forms a non-overlapping partition ofRN [41].

Linde-Buzo-Gray (LBG) algorithm is a popular approach to design the quantizer code-

book. LBG is very similar to the k-means algorithm from pattern recognition applications,

differing on its initialization [30]. If the goal is to have M codewords, k-means starts with

k = M number of means or random codewords while LBG designs codebooks with k =

1, 2, 4, 8, . . . ,M means/centroids recursively. Both algorithms depends on a training set which



27

is a large set of output vectors from the source. Each of the training elements is assigned to

the closest codeword. After all elements are assigned, the codewords are updated by comput-

ing the centroids of the training set vectors assigned to them. When the assignment process is

complete, there will be M new groups of vectors clustered around each of the output points,

the code-vectors [30]. Both LBG and k-means algorithms guarantee that the distortion from

one iteration to the next will not increase. However, there is no guarantee that the procedure

will converge to the optimal solution. The initial conditions influence the convergence of the

algorithms.

3.5 Compression metrics

The performance goal of lossy compression schemes is to achieve low distortion using

fewer bits to represent the information-bearing sequence. Fidelity of the reconstructed source

sequence to the original is accounted by some measurement (for example, a function of the

difference between the two sequences) of the distortion introduced by the compression pro-

cess [30]. The square error measure d(xn, x̂n) = (xn−x̂n)2 and the absolute difference measure

d(xn, x̂n) = |xn − x̂n| are popular measures of distortion where xn is the source sample and

x̂n is the reconstructed sample. Average measures are used instead of term-by-term distortion;

hence, the average of the squared error measures, also called MSE, is most used. Modeling a

sequence of length N as realizations of random variables Xn and their reconstructions X̂n, the

MSE is

DMSE = E

{
1

N

N∑
n=1

(Xn − X̂n)2

}
=

1

N

N∑
n=1

E[(Xn − X̂n)2], (3.13)

where the expectation is with relation to the joint distribution of Xn and X̂n. In practice, the

information and reconstruction are assumed ergodic processes and Equation (3.13) can be sim-

plified to

σ2
d =

1

N

N∑
n=1

(xn − x̂n)2, (3.14)

where the variance σ2
d of the distortion sequence d(xn, x̂n) is the MSE [30] in case the difference

has zero-mean.

Other measure related to distortion is the Signal to noise ratio (SNR), which is the power

of the incurred error relative to the input signal power. It is computed as

SNR =
σ2
x

σ2
d

, (3.15)
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where σ2
x is the average squared value of the source signal (zero-mean signals are assumed here-

after, unless otherwise noted). SNR can be computed in decibels as SNR(dB) = 10 log10(SNR).

There are several definitions related to compression ratios to measure the efficiency of

data compression techniques. This dissertation adopts two metrics, the first one is refereed

as compression ratio η that concerns only the number of discarded coefficients Ndiscarded, not

taking in account quantization, and is given by

η =
Ndiscarded

Ntotal

, (3.16)

where Ntotal is the total number of channel coefficients. The second metric is the compression

factor defined by

CF =
bin

bout

, (3.17)

where bin is the number of input bits required to represent a given channel matrix H, and bout is

the number of bits required to represent H after quantization. CF and η can be used for a single

realization of a channel matrix, or in the average sense. One can also divide the numerator

and denominator of CF and interpret CF as the ratio of the average number of bits per channel

matrix coefficient. These metrics will be useful for comparing different compression methods

in this dissertation.

3.6 CSI compression for limited rate feedback

Feedback in communications systems can enable the transmitter to exploit channel condi-

tions and avoid interference. For instance, feedback can be used to specify a precoding matrix

at the MIMO transmitter, which leverages the strongest channel modes [42]. Designing limited

feedback MIMO systems is a nontrivial problem with the potential for substantial performance

gains. The two main approaches for feedback design is quantizing the channel or quantizing

the properties of the transmitted signal. Allowing the receiver to send a quantized version of the

forward channel to the transmitter gives more flexibility for the transmitter to choose the most

suitable space-time signaling technique [42]. For a fixed transmission technique, performance

gains can be achieved by improving the quantization of the needed information to adapt the

transmitted signal to current channel conditions.

The article [43] provides an overview of many methods for limited feedback designed to

quantize the signal properties, such as covariance matrix and beamforming designed at receiver,
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either in single user or multiuser wireless MIMO systems. However, those techniques rely on

some assumption that may actually limit system performance. The work in [44] employed

DCT to sparsify channel vectors, and data compression based on VQ. The method relies on a

power factor which defines a zero-one filtering matrix that will further be applied to discard co-

efficients of the DCT transformed channel vector; the filtering matrix is sent as side information

to the transmitter. In addition, VQ encoding is performed at UE side employing Grassman-

nian codebook. The authors provide a mathematical analysis of the distortion induced by this

method and conclude that there is a trade off between the power factor and amount of quantiza-

tion bits. However, the method proposed in [44] is computationally difficult because it operates

VQ encoding at UE side which has relatively high computational cost. Besides, the results were

evaluated for high amount of bits and the distortion was just presented in graphical format.

An adaptive CS approach and a rank-1 beamforming KLT method are proposed in [36]

for compressing CSI of spatially correlated antenna arrays. The adaptive CS scheme is designed

to have different levels of compression depending on the channel gain available and its toler-

ance to error. As example, it defines a two level adaptation where M1 coefficients are random

measured if channel gain is greater than a threshold γ, or M2 coefficients are random measured

if channel gain is below γ, and M1 < M2 � NtxNrx. This adaptive method employs DCT as

sparsifying basis and the method overhead is to inform the transmitter the values of M . The

rank-1 beamforming KLT method relies on slow varying channels to exploit the first singular

value of the channel matrix. The side information consists of informing the KLT basis used;

however, it is updated according to a MSE threshold. If the KLT basis become obsolete, the

system is reset and CS is applied to update the channel estimate that is further used to the rank-

1 beamforming approach [36]. Despite the reduction in feedback, the method assumes the UE

emulates the recovering process in order to cope with KLT basis update, which increases com-

plexity at receiver side. Besides, the method is limited to slow varying circumstances which

may not happen in many 5G scenarios.

The article [45] proposed a low-complexity adaptive feedback to exploit spatial and tem-

poral correlation of slow varying MIMO channels. It is assumed that the transmitter and receiver

know the channel statistics, and the system has memory of past feedback. It proposes the use

of KLT for compressing the first channel of K block channels to M dominant eigenvectors,

and the following blocks are feedback according to its difference from a previews block. The

block differences are also projected to a M dimensional vector. The projection basis are de-
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rived from the spatial correlation matrix R considering temporal correlation. The performance

of this method at average SNR gain reaches the one corresponding to having perfect CSI within

10 channel blocks at 95 % compression ratio. However, the method proposed in [45] does not

consider quantization error.

CS and transform coding with DCT and KLT are compared in [26]. CS is proposed for

a scenario where the UE does not know which basis is employed, while DCT or KLT with

dimensionality reduction is proposed for a scenario where the UE knows the adopted basis.

While using DCT, the channel coefficients are read in zigzag order and K low frequency dom-

inant components are kept for quantization. For KLT, the eigenvalues and eigenvectors are

rearranged in descending order and K dominant elements are selected for quantization. The

innovation on the use of CS is the introduction of modified OMP which reduces the reconstruc-

tion complexity. VQ with codebook generated by Linde-Buzo-Gray (LBG) algorithm is used

for quantization. The results in [26] shows that better compression performance is achieved

when antennas are closely packed, which corresponds to highly correlated channels. Besides,

dimensionality reduction methods outperform CS method [26].

Inspired by those works, the next section presents the combination of techniques that

compose the methods proposed in this dissertation. Focus is given to transform coding methods

which applies DCT or DFT with dimensionality reduction and scalar quantization to reduce

complexity.

3.7 Proposed low-complexity CSI transform coding

In this dissertation, the adopted transform coding method for compression of CSI is com-

posed by three phases: sparsifying basis, dimensionality reduction, and scalar quantization. The

dimensionality reduction phase is divided in matrix vectorization and application of the dimen-

sionality reduction metric. Figure 3.4 presents the general block diagram of the compression

methods and Table 3.1 presents the combinations of techniques which are explored therein.

The following sections will explain the nomenclature in Table 3.1. For example, the

compression ratio is equivalent to arbitrarily choosing the number K of relevant coefficients,

while “SNR target” adopts a value K derived from the target SNR.
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Figure 3.4: Generic block diagram of the transform coding methods evaluated and proposed in this

dissertation.

Source: Author.

Table 3.1: Techniques for transform coding of CSI employed in this work.

Sparsifying basis Matrix vectorization Dimension reduction metric Reference name

DCT
zigzag compression ratio DCT zigzag

sort SNR target DCT SNR target

DFT
zigzag compression ratio DFT zigzag

sort SNR target DFT SNR target

Source: Author.

3.7.1 Sparsifying transform

As presented in Section 2.4, MIMO channel matrices may be sparse. However, sparsity

is usually not clear on the channel physical domain; hence, sparsifying basis are needed to

reveal the dominant channel coefficients. The orthogonal transform basis is ΨX and the 2D

transformed channel matrix is defined as

HX = ΨXHΨH
X, (3.18)

where (·)X refers to the chosen transform, and H is the channel matrix in the physical domain,

coming from multipath channel model or Kronecker channel model, for instance. Here, DCT

and DFT are evaluated as candidates for the proposed low complexity transform coding method.
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3.7.2 Determining the relevant coefficients based on target distortion

Following the change of basis, the coefficients matrix HX should be vectorized and further

undergoes dimensionality reduction. This section presents the two main methods explored in

this dissertation for vectorization and dimensionality reduction: zigzag method and SNR target

method.

3.7.2.1 Zigzag method

After channel matrix transform and inspired by JPEG, the vectorization is made by read-

ing HX in zigzag manner hz = zigzag(HX), as proposed in [26]. For dimensionality reduction,

[26] uses the compression ratio η as the design metric. Knowing the size of the antenna arrays

at transmitter Ntx and receiver Nrx, the total number of channel coefficients is Ntotal = NtxNrx

which allows to compute the number of coefficients that should be discarded Ndiscarded from a

specified value for η. The number of coefficients that should be coded isK = Ntotal−Ndiscarded.

Therefore, the first K coefficients of hz are quantized and the value of K is sent as side in-

formation to the decoder. Figure 3.5 provides the flowchart for DCT zigzag and DFT zigzag

compression methods.

3.7.2.2 SNR target method

Following the change of basis, our proposed option [46] is to vectorize hv = vec(HX) and

sort in ascending order its coefficients according to their absolute values hs = sort(|HX(:)|),

where (:) is a column-wise matrix vectorization (one could also adopt a row-wise vectoriza-

tion). The next phase is dimensionality reduction where a number of hs coefficients are zeroed

according to the SNR target (SNRt) design metric as explained in the sequel.

The desired SNRt is set and the corresponding total distortion σ2
t is computed as

σ2
t = σ2

q + σ2
d (3.19)

where σ2
q is the quantization distortion and σ2

d is the dimensionality reduction distortion.

The cumulative sum of the sorted coefficients are computed as

Csum(i) =
NtxNrx∑
i=1

|hs,i|2 (3.20)

where Csum is a vector with the same dimension as hs, and each index i stores the energy

of the coefficients which are located from the first index of hs up to the current index i =
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Figure 3.5: Algorithm for implementing DCT or DFT zigzag.

Source: Author.

[1, 2, . . . , NtxNrx]. Equation (3.19) and Equation (3.20) are combined to set a point for dimen-

sionality reduction which comply with the SNRt design metric that follows Equation (3.15). To

ease computation, quantization is assumed perfect and the total distortion reduces to σ2
t = σ2

d,

and SNRt =
σ2
hs

σ2
d

. The quantization distortion is included later during the analysis of the quan-

tizer. The discard of coefficients can be made as hs(1 : is − 1) = 0 where is is the first index

that satisfies Csum(is) ≥ σ2
d. From that, the number of complex coefficients which is sent for

quantization is K = NrxNtx − (is − 1), and an index set containing the index location of the

K selected coefficients in hv is sent as side information. Figure 3.6 provides a flowchart for

implementing DCT SNR target and DFT SNR target methods.

For instance, Hx is a 2× 2 complex channel matrix on a transform domain as

Hx =

 0 0.1 + 0.2j

4 + 5j 0.5− 1j

 (3.21)

which should be compressed with SNR target of 4 dB, assuming perfect quantization. The
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Figure 3.6: Algorithm for implementing DCT or DFT SNR target.

Source: Author.
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matrix Hx is vectorized column-wise and normalized by l2 norm which gives hx = [0, 0.6150+

0.7688j, 0.0154+0.0308j, 0.0769−0.1538j]. The coefficients sorted according to their absolute

square value in ascending order as hs = [0, 0.0012, 0.0296, 0.9693]. The cumulative sum of

each sorted element is computed leading to Csum = [0, 0.0012, 0.0307, 1.0000]. From the SNR

formula, the power of the channel matrix is 0.2500 mW, and the allowed distortion is 0.0995

mW. Therefore, is = 4 and the firsts 3 coefficients can be discarded hs(1 : 3) = 0 and just

hs(4) = [0.6150 + 0.7688j] coefficients are to be quantized, K = 1. The norm is quantized and

sent to the decoder for either SNR target or zigzag methods. As the norm overhead is the same

for the evaluated methods, its consideration is skipped in this dissertation.

3.7.3 Encoding few relevant coefficients

As discussed, the relevant coefficients can be encoded via a relevancy map that will re-

quire a fixed number of bits. For example, a significance map can identify which hs coefficients

were not discarded [38]. However, when there are very few relevant coefficients, instead of

considering the whole map as in image processing applications, we propose in this disserta-

tion to transmit only the positions and values of these few coefficients as side information for

the BS [38]. The proposed method simply indicates the selected coefficients by informing the

index set to the decoder. In this index format, the position of the K selected coefficient com-

ponents within hs is specified using a set of integers I of cardinality K. Each index requires

log2(NrxNtx) bits. As entropy coding is not considered, sending the index set requires a total

amount of K log2(NrxNtx) bits of side information. Adopting index set allows the decoder to

know the original positions of the coefficients. From the previous example, the indexes of hs

are I = {1, 3, 4, 2}, and the side information to recover the position of the quantized coefficient

is Is = {4, 2}.

3.7.4 Quantization

A scalar quantizer is designed for each real and imaginary parts of a transform channel

matrix to avoid operation on overloading region. The number b of bits used to represent the

quantized values is varied in order to account for σ2
q and find an operational point close to the

projected value of total distortion σ2
t . The number of quantization levels is M = 2b and the

quantization step is ∆ = |Hmax − Hmin|/M . The quantizer of the real part of the transform
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matrix and the quantizer of the imaginary part are designed with the same amount of bits. Those

computed quantizer parameters are stored in a look-up table for further compressions.

The total number of bits used to encode DFT and DCT zigzag methods is

bz,t = 2bK + log2(NrxNtx) (3.22)

where K is the side information to allow the decoder to know how many channel coefficients

were encoded. The total number of bits used to encode DFT and DCT SNR target methods is

bs,t = 2bK +K log2(NrxNtx) (3.23)

where K log2(NrxNtx) is the side information due to the index set I.

While [26] proposed DCT zigzag to compress MIMO CSI using the LBG quantizer,

here the DCT zigzag method is evaluated using scalar quantizer to reduce its computational

complexity. VQ with code-vector search has a computational cost ofO(NrxNtxK), while scalar

quantization only requires O(1). The SNR target method is proposed in [46] and is evaluated

with detail in this dissertation.
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Simulations and results

This chapter presents the results obtained by simulating the methods described in Chap-

ter 3. The MIMO channel modeling was performed in Wireless Insite ray tracing software

according to Raymobtime approach [47]. The simulations also used the Kronecker channel

model. Further processing and simulations were done in MATLAB to analyze the channel

compression methods in MIMO FDD systems.

4.1 Acquisition and simulation of channel matrices

In order to analyze the compression methods, two channel models are used to evaluate

the compression techniques: the Kronecker channel model and the multipath channel model

with Raymobtime dataset. Both channel models are used to simulate an ULA 8× 1 at receiver

and transmitter. However, the antenna elements spacing is changed as well as the use cases

and operational frequencies to analyze the impact of those factors on the compression methods.

This section explains how each model was applied and provides some characteristics of the

simulated channels.

4.1.1 Simulation of Kronecker channel model

The Kronecker channel model was implemented as described in Section 2.3.2, assuming

the parameter values specified in [26]. The distance between transmitter and receiver was set to

100 m, the scattering ring was set at 30 m from the receiver, and the transmitter was at a height

of 60 m, as shown in Figure 4.1. The covariance matrices of transmitter Rtx and receiver Rrx

are computed as in Equation (2.7).
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Figure 4.1: Parameters used to model the covariance matrices at transmitter and receiver of Kronecker

channel model.

Source: Author.

One thousand realizations of the channel matrix H are generated from Equation (2.6), and

the average covariance matrix of the final channel is computed. In this context, final channel

covariance matrices show the tendency in linear relation between antenna elements of trans-

mitter and receiver. For the analyzed cases, an ULA of 8 elements was used at transmitter and

receiver side; hence, the channel matrix H has size 8 × 8. The channel covariance matrix is

computed from the column-wise vectorization of H which gives a covariance matrix of size

64× 64. Rtx, Rrx, and the average final channel covariance matrix are presented in Figure 4.2

for 0.1λ antenna spacing, and in Figure 4.3 for 0.5λ antenna spacing. It can be visually noticed

that increasing the antenna spacing reduces the amount of pixels with high correlation. This

reduction of correlated pixels on final covariance matrix will further influence performance of

the compression methods presented in Chapter 3.

4.1.2 Ray tracing (RT) simulation and multipath channel model

The multipath channel model was adopted as described in Section 2.3.1, employing data

from the Raymobtime dataset [47]. The Raymobtime dataset is built by combining ray tracing

simulations from REMCOM Wireless Insite software and traffic simulations of vehicles and

pedestrians from Simulator for Urban Mobility (SUMO). This combination allows Raymobtime

dataset to consider mobility of receivers and/or mobility of the propagation scenario, which are

relevant for more realistic simulations of V2E and FW use cases. Figure 4.4 presents the urban

canyon environment simulated.
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Figure 4.2: Covariance matrices for the Kronecker channel model with antenna element spacing of

d = 0.1λ, distance in between transmitter and receiver of 100 m, scattering ring at receiver of 30 m, and

60 m transmitter height.
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Figure 4.3: Covariance matrices for the Kronecker channel model with antenna element spacing of

d = 0.5λ, distance in between transmitter and receiver of 100 m, scattering ring at receiver of 30 m, and

60 m transmitter height.
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Figure 4.4: Rosslyn urban canyon scenario at RT software for V2E use case, with receiver antennas on

top of vehicles and transmitter antenna placed in a roadside unit.

Source: [48].

The Raymobtime dataset was developed as described in [47]. It is spatially consistent

and keeps a history of the time evolution by defining scenes and episodes in the simulation. A

scene is a simulation snapshot in time, each scene is sampled periodically at time t = nTsam

where Tsam is the sampling period. Besides, each scene can contain various transmitters and

receivers, and depending on the scenario simulated, their location may also change. An episode

constitutes a set of Nsce scenes in an observation window Tepi, where Nsce = Tepi/Tsam. After

each Tepi, there is a random waiting time before a new episode is recorded to improve scene

diversity.

Following Raymobtime nomenclature [48], datasets s003, s004, and s006 are used for

analyzing the compression methods in FW and V2E. The s004 dataset is a mobile configuration

with receivers on top of vehicles and 60 GHz operational frequency. The s003 and s006 are FW

configurations with receivers on buildings. In these FW scenarios, the vehicles move around the

urban canyon scenario operating on frequencies of 2.8, and 60 GHz respectively, and influence

the ray scattering. Table 4.1 specifies the characteristics of the dataset used in this dissertation.

Figure 4.5 presents the delay spread for 4 episodes of the 2.8 GHz FW use case. It can

be noticed that the box plot is mostly concentrated around the mean delay value for most of the

receivers on the analyzed episodes. This indicates that the channel impulse response changes

very little over the scenes within an episode. Figure 4.6 presents a box plot for delay spread of
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Table 4.1: Description of the Raymobtime dataset used for compression.

Dataset name 3D scenario Frequency Number of receivers and type Tsam Nepi Nsce per episode

s004 Urban canyon 60 GHz 10 Mobile 1 sec 3608 1

s003 Urban canyon 2.8 GHz 10 Fixed 1 ms 200 10

s006 Urban canyon 60 GHz 10 Fixed 1 ms 200 10

Source: [48]

4 episodes of the 60 GHz FW use case. The variability of delay spread from the mean value is

also small. Hence, the channel can be said constant over a simulated episode Tepi = 10 ms for

FW use cases.

Figure 4.5: Delay spread over scenes of RT simulations at 2.8 GHz FW use case for 10 receivers.
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As the dataset for V2E is recorded with only one scene per episode, the delay spread

analysis is conducted differently. Figure 4.7 presents the delay spread for some of the receives

where the delay spread was computed over all valid episodes. Valid episodes, or channels, are

the ones in which the receiver is within transmitter coverage. The increase in delay spread was

expected because of receiver mobility as well as a longer episode duration of Tepi = 1 second.



42

Figure 4.6: Delay spread over scenes of RT simulations at 60 GHz FW use case for 10 receivers.
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Figure 4.7: Delay spread for a receiver over different episodes for V2E use case simulated on RT.
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Indoor scenarios were not simulated. However, sparsity can still be leveraged mainly if

operating in mmWaves bands [22]. Note that the covariance matrices R from the Kronecker

channel model are not computed here because RT is a deterministic simulation approach.

4.2 Analysis of channel model and orthogonal transform

This section provides insights about the energy compaction of each orthogonal transform

presented in Section 3.7 of this dissertation. Besides, the effectiveness of the matrix vectoriza-

tion methods employed, zigzag and sort, is also analyzed.

4.2.1 Transform analysis of Kronecker channel model

Figure 4.8 presents a sample of a channel matrix H generated from the Kronecker channel

model with 0.1λ antenna spacing as well as the covariance matrix, and its transformed matrices

HDCT and HDFT. It can be noticed that the pixels in H are more correlated on the top part of

the channel matrix. This intuition is proved at the covariance matrix plot. Both DCT and DFT

happen to compress H. However, the coefficients with most energy are located differently in

each transform matrix.

Figure 4.9 shows a sample H matrix from the Kronecker channel dataset with 0.5λ an-

tenna spacing, its covariance matrix, and its transformed matrices HDCT and HDFT are also

plotted. H seems more random, less correlated. This lack of correlation is confirmed by its

covariance matrix, which shows very few points in red (more correlated). DCT and DFT pro-

vide energy compaction. However, visually, more pixels are relevant if compared to the 0.1λ

antenna spacing sample of Figure 4.8. Therefore, less compression is expected in this case.

To better observe the statistical behavior of channel matrices H and their DCT and DFT

transforms, their average values and standard deviation are plotted using column-wise vector-

ization, except for the zigzag case. Figures 4.10 and 4.11 show the energy compaction of

applying DCT and DFT to the Kronecker dataset with 0.1λ and 0.5λ antenna spacing, respec-

tively. It can be noticed that DCT with zigzag provides good compaction of data when antenna

spacing is 0.1λ; however, this energy compaction does not hold when the antenna spacing in-

creases. As expected, sorting the transform coefficients leads to a well-behaved dynamic range

and, consequently, a better compaction trend for both antenna spacing scenarios and transforms

applied.
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Figure 4.8: Plot of a sample channel matrix, its covariance, and its transforms for Kronecker channel

model with antenna element spacing of d = 0.1λ.

||H||

 

 

2 4 6 8

1

2

3

4

5

6

7

8
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Cov(H)

 

 

10 20 30 40 50 60

10

20

30

40

50

60

0.5

1

1.5

2

2.5

x 10
−3

||H
dct

||

 

 

2 4 6 8

1

2

3

4

5

6

7

8
0.1

0.2

0.3

0.4

0.5

0.6

||H
dft

||

 

 

2 4 6 8

1

2

3

4

5

6

7

8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Source: Author.

Figure 4.9: Plot of a sample channel matrix, its covariance, and its transforms for Kronecker channel

model with antenna element spacing of d = 0.5λ.
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Figure 4.10: Channel coefficients evaluation for DCT and DFT with zigzag and sort for Kronecker

channel model with antenna element spacing of d = 0.1λ.
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Figure 4.11: Channel coefficients evaluation for DCT and DFT with zigzag and sort for Kronecker

channel model with antenna element spacing of d = 0.5λ.
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4.2.2 Transform analysis of RT dataset at sub-6 GHz

Figure 4.12 presents a sample of a channel matrix H generated from the RT 2.8 GHz

FW dataset with 0.1λ antenna spacing as well as the covariance matrix, and its transformed

matrices HDCT and HDFT. It can be noticed that there is few energy on the first two columns

of H which means that the two first antenna elements of the ULA 8× 1 transmitter contributes

very little to the received signal at any antenna element. The covariance matrix is computed

from the column-wise vectorization of the channel matrix H. Visually, one can notice that the

first 16 entries of rows and columns of this sample covariance matrix have very few correlation

values which is consistent with the observation of H. Both DCT and DFT happen to compress

H. However, the coefficients with most energy are located differently in each transform matrix.

In this sample example, the DCT transform matrix groups the significant coefficients on top-

left portion of its matrix and the DFT transform matrix groups the relevant coefficients on its

bottom-left corner.

Figure 4.12: Plot of a sample channel matrix, its covariance, and its transforms for 2.8 GHz FW Ray-

mobtime dataset with antenna element spacing of d = 0.1λ.
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Figure 4.13 resents a sample of a channel matrix H generated from the RT 2.8 GHz FW

dataset with 0.5λ antenna spacing as well as the covariance matrix, and its transformed matrices

HDCT and HDFT. It can be noticed that there is more energy on the right part of H. The last

2 columns of H have the most energy (tend to red color), and there are 3 columns with almost
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Figure 4.13: Plot of a sample channel matrix, its covariance, and its transforms for 2.8 GHz FW Ray-

mobtime dataset with antenna element spacing of d = 0.5λ.
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no energy (tend to blue color). The covariance matrix is consistent with the observation of H,

the first 16 entries have low correlation and the correlation is more accentuated on the bottom-

right of the covariance matrix. DCT and DFT compresses H and concentrates the coefficients

with most energy on different locations of the respective transform matrix. Figure 4.12 and

Figure 4.13 are for the same sample channel matrix changing only the antenna spacing. It can

be noticed that the location of the relevant transform coefficients varies considerably when the

correlation of antenna elements decreases, due to the increase on distance between antenna

elements.

Following, the statistical behavior of channel matrices H, and their DCT and DFT trans-

forms are observed by plotting their average values and standard deviation using column-wise

vectorization, except for the zigzag case. Figures 4.14 and 4.15 present the energy compaction

for applying DCT and DFT to the 2.8 GHz FW Raymobtime dataset with 0.1λ and 0.5λ antenna

spacing, respectively, obtained by post-processing according to the multipath channel model in

Equation (2.5). Despite the different channel model, DCT with zigzag in 0.1λ antenna spacing

scenario still presents a good energy compaction characteristic. Nevertheless, for 0.5λ antenna

spacing, sorting the channel transform coefficients is the best way among the adopted alterna-

tives to exploit energy compaction effectively for both DCT and DFT.
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Figure 4.14: Channel coefficients evaluation for DCT and DFT with zigzag and sort for Raymobtime

2.8 GHz fixed environment with antenna element spacing of d = 0.1λ.
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Figure 4.15: Channel coefficients evaluation for DCT and DFT with zigzag and sort for Raymobtime

2.8 GHz fixed environment with antenna element spacing of d = 0.5λ.
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4.2.3 Transform analysis of RT dataset at mmWaves

Figure 4.16 presents a sample of a channel matrix H generated from the RT 60 GHz FW

dataset with 0.1λ antenna spacing as well as its covariance matrix, and its transformed matrices

HDCT and HDFT. From observation of the channel matrix, the last column of H is the one with

most energy. This can be confirmed at the covariance matrix which shows more correlation on

its bottom-right corner. Application of DCT transform leads to concentration of most energy

relevant coefficients on the top-left portion of HDCT. Applying DFT transform leads to spread

of most relevant coefficients on the corners of HDFT.

Figure 4.17 shows a sample of a channel matrix H generated from the RT 60 GHz FW

dataset with 0.5λ antenna spacing as well as its covariance matrix, and its transformed matrices

HDCT and HDFT. From the H matrix, it can be noticed that the transmitter antenna elements

5 and 7 are the ones which send most energy to all antenna elements of the receiver. The

covariance matrix confirms the high correlation among those antenna elements by plotting large

pixels in red. DCT and DFT compresses H and concentrates the coefficients with most energy

on different locations of their respective transform matrix. Figure 4.16 and Figure 4.17 plot the

same sample channel matrix changing only the antenna spacing used in post-processing. It can

be noticed that the location of the relevant transform coefficients varies considerably when the

correlation of antenna elements decreases. Despite the difference in frequency, the location of

relevant coefficients for antenna spacing of 0.1λ and 0.5λ have a localization trend.

To better observe the statistical behavior of H, HDCT and HDFT, their average values

and standard deviation are plotted using column-wise vectorization, except for the zigzag case.

Figures 4.18 and 4.19 present the energy compaction for applying DCT and DFT to the 60 GHz

FW Raymobtime dataset with post processing of multipath channel model with 0.1λ and 0.5λ

antenna spacing respectively. The standard deviation has very different behavior if compared

to Kronecker channel model; however, DCT with zigzag for 0.1λ antenna spacing still presents

a good energy compaction characteristic. Nevertheless, for 0.5λ antenna spacing, just sort

achieves good energy compaction for both DCT and DFT.

Figure 4.20 presents a sample of a channel matrix H generated from the RT 60 GHz V2E

dataset with 0.1λ antenna spacing as well as its covariance matrix, and its transformed matrices

HDCT and HDFT. The H components with most energy are on the top-right to bottom-left

diagonal. At the covariance matrix, this diagonal generates high correlation points at every 8

elements spacing, being them more pronounced at top-left part of the covariance matrix because
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Figure 4.16: Plot of a sample channel matrix, its covariance, and its transforms for 60 GHz FW Ray-

mobtime dataset with antenna element spacing of d = 0.1λ.
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Figure 4.17: Plot of a sample channel matrix, its covariance, and its transforms for 60 GHz FW Ray-

mobtime dataset with antenna element spacing of d = 0.5λ.
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Figure 4.18: Channel coefficients evaluation for DCT and DFT with zigzag and sort for Raymobtime

60 GHz fixed environment with antenna element spacing of d = 0.1λ.
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Figure 4.19: Channel coefficients evaluation for DCT and DFT with zigzag and sort for Raymobtime

60 GHz fixed environment with antenna element spacing of d = 0.5λ.
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H has more energy at its bottom-left part. DCT and DFT compresses H and concentrates the

more energy relevant coefficients on different locations of their respective transform matrix.

Figure 4.21 presents a sample of a channel matrix H generated from the RT 60 GHz

V2E dataset with 0.5λ antenna spacing as well as its covariance matrix, and its transformed

matrices HDCT and HDFT. For this case, H has no defined region of high energy; however,

all receiver antenna elements receive signals from at least one transmitter element with high

energy except for the receiver antenna element 5. The covariance matrix has very few rows

and columns with low correlation (blue color), some points with high correlation (red color),

and many middle correlation areas (green color). These observations of the covariance matrix

are compatible with the observation of H. DCT and DFT compress the H matrix to very few

relevant coefficients which are located differently within each transform matrix. This example

is the one with most channel matrix energy variability. This phenomenon can be physically

explained by mobility of the receiver and the larger distance among antenna elements.

To better observe the statistical behavior of H, HDCT and HDFT, their average values

and standard deviation are plotted using column-wise vectorization, except for the zigzag case.

Figures 4.22 and 4.23 present the energy compaction for applying DCT and DFT to the 60 GHz

V2E Raymobtime dataset with post processing of multipath channel model with 0.1λ and 0.5λ

antenna spacing respectively. Despite the receiver mobility DCT with zigzag for 0.1λ antenna

spacing arrives to put together the coefficients with most standard deviation. However, the

energy compaction of DCT with zigzag is not perceived when antenna spacing is set to 0.5λ.

For 0.5λ antenna spacing, just sort of coefficients matrix in decreasing order achieves good

energy compaction for both DCT and DFT.
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Figure 4.20: Plot of a sample channel matrix, its covariance, and its transforms for 60 GHz V2E Ray-

mobtime dataset with antenna element spacing of d = 0.1λ.
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Figure 4.21: Plot of a sample channel matrix, its covariance, and its transforms for 60 GHz V2E Ray-

mobtime dataset with antenna element spacing of d = 0.5λ.
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Figure 4.22: Channel coefficients evaluation for DCT and DFT with zigzag and sort for Raymobtime

60 GHz mobile environment with antenna element spacing of d = 0.1λ.
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Figure 4.23: Channel coefficients evaluation for DCT and DFT with zigzag and sort for Raymobtime

60 GHz mobile environment with antenna element spacing of d = 0.5λ.
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4.3 Evaluation of compression metrics

This section presents the simulation results for the various channel models described pre-

viously, Section 4.1. The results are analyzed in regard to SNR, and compression ratio where

the design metric is set to 6 dB of SNR with the least amount of bits per complex channel

coefficient, considering side information. In order to compare the performance of zigzag meth-

ods with SNR target methods, the simulation starts by computing SNR target method to define

the number of coefficients K which must be quantized to achieve the desired SNR. After, the

computed K is used as input to the zigzag methods as the number of coefficients which should

be coded. Therefore, the methods employing zigzag and SNR target are compressing the same

number of transform coefficients; however, these coefficients do not contain the same amount

of energy as it is seen henceforth.

4.3.1 Compression ratio

Table 4.2 lists the mean compression ratio η, which does not take quantization in account,

achieved with the different channel datasets, varying transform and antenna spacing applied.

For the Kronecker channel model, the compression ratio varies considerably when the antenna

spacing increases from 0.1λ to 0.5λ; such effect can be explained by the reduction on channel

correlation shown in Figures 4.2 and 4.3. Besides, DCT becomes the best choice for both

antenna spacing, in this case, because of the covariance structure of Kronecker channel model.

For the Raymobtime dataset, DCT also allows better compression when the antenna spacing is

0.1λ; however, when the channel spacing increases to 0.5λ, DFT has better compression ratio

for either FW or V2E use cases. Moreover, the compression ratio achieved by DFT is quite sta-

ble to changes on antenna spacing, while DCT suffers around 6% reduction on its compression

performance when antenna spacing increases from 0.1λ to 0.5λ. DCT reduces performance at

0.5λ because more coefficients are needed to meet the SNR desired. The stability on DFT com-

pression performance can also be an effect of the steering vectors used to model linear arrays in

multipath channel model because the steering structure is similar to a DFT matrix.

4.3.2 Signal to noise ratio and compression factor performance

In the following paragraphs, the SNR is analyzed in regard to the amount of bits employed

to code each complex channel coefficient and its side information. Besides, the compression
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Table 4.2: Achieved compression ratio.

Channel model Antenna spacing Transform Compression ratio

Kronecker

0.1
DCT 92.56%

DFT 89.41%

0.5
DCT 72.35%

DFT 66.50%

2.8 GHz FW

0.1
DCT 94.34%

DFT 93.56%

0.5
DCT 86.02%

DFT 93.67%

60 GHz FW

0.1
DCT 94.73%

DFT 94.18%

0.5
DCT 89.38%

DFT 95.20%

60 GHz Mobile

0.1
DCT 94.40%

DFT 94.02%

0.5
DCT 88.71%

DFT 94.35%

Source: Author.

factor CF is analyzed in this section for each amount of bits at quantizers. The SNR analysis

considers quantization error, being it computed after all blocks of Figure 3.4.

Figure 4.24 presents the achieved SNR when considering the Kronecker channel model

which curves are consistent with the values in Table 4.2. Although the desirable SNR is

achieved for DCT zigzag when dataset has 0.1λ antenna spacing, an increase in antenna spacing

heavily reduces the efficiency of the compression method. Figure 4.25 shows the compression

factor for each tested amount of bits at the quantizers when using Kronecker channel model.

As CF just takes in account the number of bits, zigzag compression methods were expected

to perform better. It is noticed that DCT zigzag provides the higher compression factor when

dλ = 0.1; however, its performance decreases by more than half when dλ = 0.5. This decrease

in compression factor when increasing antenna spacing is noticed in all compression metrics of

Figure 4.25. Despite DCT zigzag seems the best method in terms of compression factor, Fig-
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Figure 4.24: SNR results for Kronecker channel model with target SNR of 6 dB.
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ure 4.24 shows this method does not have good reconstruction performance. Considering the

design metric of achieving 6 dB of SNR with the least amount of bits, the SNR target method

employing DCT would be chosen because its performance requires the least amount of bits and

does not go bellow the SNR target if the antenna spacing increases.

Figures 4.26, 4.28, and 4.30 present the SNR results for the Raymobtime dataset. Fig-

ure 4.26 shows the results for the FW use case operating at 2.8 GHz. It can be noticed that the

antenna spacing has less influence on this dataset. Figure 4.27 shows again that the 3 meth-

ods with higher CF do not achieve the SNR desired. Hence, the chosen transform coding for

this case is the SNR target employing DFT because it uses the least amount of bits and pro-

vides good performance in both antenna spacing scenarios. Even though SNR target with DCT

achieves higher performance in 0.1λ antenna spacing, it requires more bits to have the same

performance as SNR target employing DFT at 0.5λ antenna spacing. From Figure 4.27, it can

be noticed that DFT SNR target method has higher compression factor when dλ = 0.5 than for

dλ = 0.1, this shift does not happen in Kronecker channel model dataset.

SNR results for FW use case operating at 60 GHz are shown in Figure 4.28, and CF
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Figure 4.25: Compression factor for Kronecker channel model with target SNR of 6 dB.
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Figure 4.26: SNR results for Raymobtime 2.8 GHz FW dataset with target SNR of 6 dB.
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Figure 4.27: Compression factor considering quantization for Raymobtime 2.8 GHz FW dataset with

target SNR of 6 dB.
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results are presented in Figure 4.29. Jointly analyzing both graphics, SNR target with DFT also

provides a good trade off between amount of bits needed and achieved SNR for both antenna

spacing scenarios. SNR target with DCT is not chosen because its SNR performance at 0.5λ

degrades and requires more bits. Figure 4.30 presents the SNR results and Figure 4.31 presents

the CF results for V2E use case operating at 60 GHz. From Figure 4.30, SNR target employing

DFT at 0.5λ antenna spacing has superior SNR performance. Figure 4.31 shows there is little

loss in CF performance when the antenna spacing increases from 0.1λ to 0.5λ. In this scenario,

SNR target with DFT is also the chosen method for transform coding given its higher SNR

performance and reasonable amount of bits needed in both antenna spacing scenario.

The saturation seen in Figures 4.24, 4.26, 4.28, and 4.30 is an effect of the dimensionality

reduction. Due to the limitation on the amount of transform coefficients quantized, there is a

point where an increase in the number of bits at the quantizer does not improve the compres-

sion performance. Besides, the shift to the right in all curves are due to the amount of side

information that each method incurs on the number of bits needed.
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Figure 4.28: SNR results for Raymobtime 60 GHz FW dataset with target SNR of 6 dB.
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Figure 4.29: Compression factor for Raymobtime 60 GHz FW dataset with target SNR of 6 dB.
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Figure 4.30: SNR results for Raymobtime 60 GHz V2E dataset with target SNR of 6 dB.
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Figure 4.31: Compression factor for Raymobtime 60 GHz V2E dataset with target SNR of 6 dB.
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Chapter 5

Conclusion

Massive MIMO is mostly related with operation in TDD mode due to the needless use

of CSI feedback when relying on channel reciprocity. Nonetheless, massive MIMO should

also operate on FDD mode due to available spectrum and backward compatibility of 5G with

previous mobile generations. FDD, however, cannot rely on channel reciprocity and the in-

creasing number of antennas at BS and/or UE makes the feedback of CSI impractical as most

radio resources would be used for signaling. Due to its practical interest, this dissertation has

investigated compressing CSI in MIMO FDD systems.

The first contribution of this dissertation is an heuristic transform coding method that

leads to good results and has a relatively low computational cost. This dissertation provides a

comparison of some transform coding methods for MIMO FDD channel matrix compression on

feedback channel. The DFT SNR target method has shown superior performance in almost all

scenarios analyzed in terms of achieved SNR, number of bits, and amount of side information.

Therefore, the DFT SNR target method is flexible, operating well for use cases as diverse as

FW and V2E.

Another contribution of this dissertation is its evaluation methodology, which allows a

more comprehensive comparison of state-of-art methods. It uses compression ratio or desirable

SNR as lossy compression design metric. In the literature, one can find papers such as [26] that

used relatively simple evaluations and datasets which may lead to biased conclusions. Here,

realistic RT simulation datasets were used to evaluate and compare compression performance.

For example, this work highlighted that the antenna spacing significantly impacts the compres-

sion results. Besides, changing the use case in which compression is employed also impacts

results.
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5.1 Future works

Future extension of the work developed in this dissertation shall include taking time cor-

relation into account. From the delay spread box plot graphics, the FW use case has very small

time variability over a scene, which can be further explored to reduce the frequency within CSI

is sent over the feedback channel. Another option is to get inspiration on video coding and

perform intraframe and interframe compression, where intraframe compress an entire channel

matrix, as seen in this dissertation, and an interframe compression just informs the relevant

changes in the channel matrix within a coherence interval which is related to “tracking” the

channel.

The inclusion of entropy coding to further compress the side information of the transform

code method can be investigated. Besides, CS can also be compared to the SNR target transform

coding method proposed in this dissertation. In addition, the transform coding method presented

in this dissertation could be compared with deep-learning techniques such as the autoencoder

in [49]. One can evaluate the computational costs of choosing deep-learning techniques together

with the compression ratio it can provide.

5.2 Published Articles
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2. N. Fonseca, B. V. Boas, N. González-Prelcic, and A. Klautau. “Channel Matrix Trans-
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18th Brazilian Symposium of Microwaves and Optoelectronic (SBMO) e 13th Brazilian
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