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RESUMO 

A Amazônia detém uma incrível biodiversidade, moldada ao longo de milhões de 

anos. Nos últimos milênios o clima na região se tornou mais úmido, aumentando a 

disponibilidade de habitat adequado para espécies florestais e influenciando suas 

distribuições e a expansão da floresta neste período. Todavia, as influências humanas 

sobre o clima e o uso da terra têm promovido a redução do habitat de muitas espécies na 

região, e projeções apresentam uma intensificação no futuro, com impactos 

potencialmente negativos para a riqueza e distribuição da biodiversidade amazônica. 

Além disso, existem diversas lacunas de conhecimento sobre como o clima e o uso da 

terra tem moldado e moldarão a floresta Amazônica, e a ampla variedade de métodos 

disponíveis para tal análise abrem espaços para questionamentos sobre as melhores 

práticas metodológicas para estudar uma área tão grande e diversa como a Amazônia. 

Entender a origem, manutenção e perda da biodiversidade tem uma profunda importância 

para vida humana futura. Esta tese aborda algumas das lacunas de conhecimento sobre 

estes tópicos, comparando métodos de estimativa de riqueza e distribuição de espécies na 

floresta Amazônica em diferentes escalas temporais. Este estudo é uma pesquisa 

interdisciplinar que relaciona aspectos de diferentes áreas científicas para o entendimento 

das consequências das duas principais ameaças à biodiversidade amazônica, atribuídas às 

mudanças climáticas e ao desflorestamento. O estudo contou com uma cooperação entre 

o Naturalis Biodiversity Center – Holanda e o Museu Paraense Emílio Goeldi – MPEG, 

por meio de uma bolsa de Doutorado Sanduíche no Exterior – SWE (Processo CNPq 

203102/2015-0). Além disso, o estudo se insere no projeto INCT Biodiversidade e Uso 

da Terra na Amazônia (Processo CNPq 574008/2008-0), coordenado pelo MPEG, 

dedicado ao estudo da biodiversidade e da paisagem amazônica, visando o entendimento 

das consequências ambientais e sociais de diferentes usos da terra, fornecendo bases 

científicas para práticas econômicas sustentáveis e apoio a políticas públicas para a 

Amazônia. 

Palavras-chave: Biodiversidade. Desflorestamento. Mudanças climáticas. Amazônia.  



 
 

ABSTRACT 

Amazonia has an incredible biodiversity, shaped over millions of years. In recent 

millennia the climate in the region has become more humid, increasing the availability of 

suitable habitat for forest species and influencing its distributions and the expansion of 

the forest in this period. However, human influences on climate and land use have led to 

a reduction in the habitat of many species in the region, and projections show an 

intensification in the future with impacts potentially negative on the richness and 

distribution of Amazonian biodiversity. In addition, there are several knowledge gaps on 

how climate and land use has shaped and will shape the Amazonian rainforest, and the 

wide variety of methods available for such analysis also raises questions on the best 

methodological practices for studying an area as large and diverse as Amazonia. 

Understanding the origin, maintenance and loss of biodiversity has a profound importance 

for future human life. This thesis addresses some of the knowledge gaps on these topics, 

comparing methods of estimating richness and distribution of species of the Amazonian 

rainforest at different time scales. This study is an interdisciplinary research that relates 

aspects of different scientific areas to understanding the consequences of the two main 

threats to Amazonian biodiversity attributed to climate change and deforestation. The 

study was supported by a cooperation between the Naturalis Biodiversity Center – The 

Netherlands and Museu Paraense Emílio Goeldi – MPEG on a Sandwich Doctorate 

Scholarship – SWE (CNPq Prossess 203102/2015-0). Furthermore, the study is part of 

the INCT project Biodiversidade e Uso da Terra na Amazônia (Biodiversity and Land 

Use in Amazonia) (CNPq Prossess 574008/2008-0), coordinated by MPEG, which is 

dedicated to the study of biodiversity and Amazonian landscape, aiming to understand 

environmental and social consequences of different land uses, providing scientific bases 

for sustainable economic practices and support for public policies for Amazonia. 

Keywords: Biodiversity. Climate change. Deforestation. Amazonia.  
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CAPÍTULO 1 INTRODUÇÃO GERAL 

1.1 Referencial teórico 

1.1.1 Diversidade de espécies arbóreas amazônicas 

A Amazônia é a maior e mais biodiversa floresta tropical no planeta, e abriga a 

maior riqueza de espécies arbóreas (CARDOSO et al., 2017; HANSEN et al., 2013; TER 

STEEGE et al., 2016). Ela é compartilhada por nove países do neotrópico (MORRONE, 

2014), e estima-se que a região tenha aproximadamente 390 bilhões de árvores, para um 

total de aproximadamente 16.000 espécies, das quais, 227 são consideradas 

hiperdominantes, ocorrendo com grande abundância, sendo tão comuns que elas 

representam metade de todas as árvores acima de 10 cm de diâmetro à altura do peito 

(DAP) de todas as tipologia de florestas Amazônicas (TER STEEGE et al., 2013). Em 

contraste, as 5.800 espécies mais raras (36% das espécies) têm uma população estimadas 

em menos de 1.000 indivíduos (0.0003%). Este baixo número de indivíduos é suficiente 

para classificá-las como globalmente ameaçadas segundo os critérios da União 

Internacional para Conservação da Natureza (Union for Conservation of Nature – IUCN) 

(TER STEEGE et al., 2013, 2015). 

Recentemente, um número substancial de registros de ocorrência de espécies 

tornou-se disponível por meio de plataformas on-line, em uma acentuada acumulação de 

dados, contendo muitos conjuntos de dados, coleções e informações de herbários (CRIA, 

2018; GBIF, 2018). Esta acumulação foi possível graças ao rápido desenvolvimento de 

plataformas computacionais e ferramentas de bioinformática (NEWBOLD, 2010). Um 

estudo de ter Steege et al. (2016) encontrou 503.025 coletas arbóreas na Amazônia, 

datando de 1707 a 2015, em um total de 11,676 espécies, total este, que suporta o número 

estimado de 16.000 espécies possíveis para a região como um todo. Estas espécies estão 

distribuídas em 1.225 gêneros e 140 famílias. Todavia, a diversidade Amazônica é ainda 

um tema de grande debate.  
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Uma lista taxonômica recente proposta por Cardoso et al. (2017), baseada no 

estudo de Steege et al. (2016), sugeriu um número bem menor de 6.727 espécies. Uma 

nova lista proposta por Steege et al. (submetido) motivada pela grande redução do número 

de espécies proposta pela lista de Cardoso (2017), reavaliou o grande número de taxa 

excluídos, e com base em considerações ecológicas, sugeriu um novo total de 10.067 

espécies arbóreas já coletadas na Amazônia. 

Apesar do grande número de espécies registradas, a floresta amazônica ainda é 

amplamente inexplorada. Floretas tropicais ao redor do mundo apresentam um “grande 

vazio de dados” (gapping data void), com mais de 90% de espécies tão mal amostradas 

que chegam a ser invisíveis para as ferramentas modernas de modelagem e conservação 

(FEELEY; SILMAN, 2010). Na floresta Amazônica, ao longo de mais de 300 anos de 

coletas botânicas, a densidade de coletas atingiu apenas um total aproximado de 10 

coletas/100km2 (TER STEEGE et al., 2016). Além do “grande vazio de dados”, os 

registros de ocorrência de espécies destas coletas botânicas carregam um elevado número 

de inconsistências, por conta da rápida acumulação destes registros nas plataformas on-

line, e dentre estas inconsistências podem ser citados os erros taxonômicos e incertezas 

geográficas dos registro de ocorrência das espécies (MALDONADO et al., 2015). 

1.1.2 Estimando a riqueza e a distribuição de espécies 

A riqueza de espécies representa, de forma simples, o número total de espécies 

em um espaço definido (MAGURRAN, 2004). Em geral, a riqueza de espécies é 

incrementada com o aumento da área (GOTELLI; COLWELL, 2001). Para uma área tão 

grande e tão subamostrada quanto a Amazônia, a riqueza pode apenas ser estimada. A 

estimativa de riqueza é uma análise amplamente utilizada na Ecologia, e é um meio 

comum utilizado para examinar padrões de diversidade baseados em amostras da riqueza 

observada de uma área ou comunidade (COLWELL, 1988; GASTON; SPICER, 2004).  
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Estimar a riqueza pode não ser tão direto quanto o seu conceito, pois ela não se 

encontra igualmente distribuída, admitindo ser também examinada pela uniformidade 

entre as populações das espécies, se referindo ao quão comum ou raras as espécies são, 

utilizando-se dados de abundância (HUBBELL, 2001). Na Amazônia, a estimativa do 

número de espécies varia amplamente de acordo com a técnica utilizada, variando entre 

6.000-7.000 até  16.000 (TER STEEGE et al., 2013). Na Amazônia Ocidental, a riqueza 

e a diversidade de espécies são mais altas, e também são fortemente correlacionadas com 

a precipitação anual (GENTRY, 1988ª, 1988b; TER STEEGE et al., 2003). 

A riqueza de espécies é intimamente relacionada com a forma na qual as espécies 

estão espacialmente distribuída (ELITH; LEATHWICK, 2009). A distribuição espacial 

de espécies representa a presença de indivíduos ou populações em um espaço geográfico 

(PETERSON et al., 2011). A tipo particular de modelagem estatística permite estimar a 

distribuição de um espécie utilizando sua abundância e um índice para a agregação de 

seus indivíduos no espaço (HE; GASTON, 2000; VANDERWAL et al., 2009). A 

distribuição das espécies pode também ser estimada combinando os locais de ocorrências 

conhecidos das espécies e a dimensões ambientais nestes locais, definindo assim a 

distribuição potencial das espécies (ANDERSON; MARTÍNEZ-MEYER, 2004; 

ARAÚJO; PETERSON, 2012; PHILLIPS; ANDERSON; SCHAPIRE, 2006; PHILLIPS; 

DUDÍK; SCHAPIRE, 2004). 

A associação das ocorrências conhecidas com os fatores ambientais está 

diretamente relacionada com a definição de nicho ecológico de Hutchinson, ou o espaço 

multidimensional onde as coordenadas representam as condições para a existência das 

espécies (HUTCHINSON, 1957). O conceito de nicho ecológico tem sido utilizado para 

estimar a distribuição potencial das espécies baseado nos registros de ocorrência 

observados, por meio da utilização da “modelagem de distribuição de espécies”, afim de 

predizer áreas potenciais de distribuição além da ocorrência conhecida das espécies 

(ASPINALL; LEES, 1994; GUISAN; ZIMMERMANN, 2000; HIRZEL et al., 2002). 

Modelar a distribuição das espécies utilizando dados de abundância é uma prática mais 

conservadora quando comparada a técnicas que utilizam fatores ambientais, pois a 

modelagem baseada na abundância utiliza apenas a latitude e a longitude como variáveis 

preditivas, modelando a distribuição das espécies próxima de suas presenças confirmadas, 

não permitindo a predição de espécies longe dos locais onde sua ocorrência é conhecida 

(TER STEEGE et al., 2013).  
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 A modelagem de distribuição de espécies tem sido uma área de conhecimento em 

crescimento, com a finalidade de endereçar perguntas relacionadas à Ecologia e 

Biogeografia, na qual os modelos preditivos das espécies permitem o desenvolvimento 

de análises de padrões de diversidade, incluindo a estimativa da riqueza de espécies 

(ELITH et al., 2011; IKNAYAN et al., 2014; MATEO et al., 2012; ORTEGA-HUERTA; 

PETERSON, 2008; PINEDA; LOBO, 2009). Predizer mudanças induzidas pelo clima e 

pelo uso da terra sobre a distribuição de espécies tem também sido um objeto da 

modelagem de distribuição (ARAÚJO; NEW, 2007). Medir os impactos das mudanças 

climáticas e de uso da terra sobre a riqueza e distribuição de espécies é fundamental para 

o estabelecimento de estratégias efetivas para conservação (GRENYER et al., 2006; 

MITTERMEIER et al., 2003; PERES et al., 2010; TUCKER et al., 2016). A maioria das 

espécies na natureza é rara, e podem sofrer grandes ameaças de extinção em resposta às 

referidas mudanças (TER STEEGE et al., 2013, 2015). Além disso, estas mudanças 

podem afetar diretamente o habitat das espécies e mudar seus padrões de distribuição 

(DUAN et al., 2016; PEARSON, 2010; PECL et al., 2017; SKOV; SVENNING, 2004; 

SLIK et al., 2009). As espécies podem perder adaptação à novos conjuntos de condições 

ambientais em seus habitats, devido a mudanças climáticas e de uso da terra, acabando 

fora de seus nichos ecológicos (BELLARD et al., 2012). 

1.1.3 As mudanças globais e a floresta Amazônica 

As mudanças globais podem ser vistas erroneamente como sinônimos de 

mudanças apenas no clima, mas elas também estão relacionadas a qualquer impacto de 

larga escala na natureza, incluindo mudanças de uso da terra, poluição ou superexploração 

de recursos naturais (HUBBELL et al., 2008; TER STEEGE, 2010). A floresta 

Amazônica foi moldada e influenciada por mudanças climáticas ao longo de milhões de 

anos durante sua história geológica (HOORN et al., 2010; JARAMILLO et al., 2010). 

Nos últimos milênios, durante o médio Holoceno, entre 8.000 e 4.000 anos atrás, as 

condições climáticas na Amazônia eram significativamente mais secas, o que contribuiu 

para uma maior presença de florestas secas e savanas (MAYLE et al., 2004). 
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Registros paleoecológicos presos em sedimentos de lagos ao sul da região 

Amazônica sugerem que estes limites da floresta expandiram em direção ao sul nos 

últimos 3.000 anos, em área de ecótono entre a floresta Amazônica e as savanas do 

Cerrado, representando a maior expansão ao sul já registrada nos últimos 50.000 

(BURBRIDGE; MAYLE; KILLEEN, 2004; MAYLE; BURBRIDGE; KILLEEN, 2000). 

Esta expansão é atribuída ao aumento da precipitação e mudanças em sua sazonalidade, 

que podem ter facilitado o estabelecimento de novas populações de espécies amazônicas 

nesta região de ecótono. Estas mudanças nos padrões de precipitação também causaram 

a redução na frequência de incêndios, contribuindo para a expansão da floresta (MAYLE; 

POWER, 2008). 

No presente, a floresta Amazônica tem sido influenciada por mudanças induzidas 

pela humanidade, as quais promovem a degradação de grandes áreas de florestas 

tropicais. A Amazônia já perdeu aproximadamente 12% de sua cobertura original 

(HANSEN et al., 2013). Muitos estudos têm apresentado preocupações com as pressões 

humanas na região, as quais levam ao desflorestamento, para a abertura de estradas, 

construção de hidroelétricas, mineração, criação de gado e expansão das fronteiras 

agrícolas (DAVIDSON et al., 2012; FEARNSIDE, 2003; HUBBELL et al., 2008; 

LAURANCE et al., 2001; SOARES-FILHO; ASSUNÇÃO; PANTUZZO, 2001). 

O desflorestamento é uma ameaça direta à biodiversidade, com impactos 

ecológicos negativos, tal como, a criação de barreiras, restringindo a dispersão e o 

movimento de espécies (FEELEY; REHM, 2012). Praticamente todos os serviços 

ecossistêmicos podem ser afetados pelo desflorestamento, sendo os mais impactados são 

aqueles relacionados à ciclagem da água e armazenamento do carbono (FEARNSIDE, 

2006; STRAND et al., 2018). Ele pode também aumentar as diferenças entre o climas 

atual e futuro, tendo influências em escalas local, regional e global, alterando as correntes 

convectivas de umidade e, consequentemente, também o microclima (FEELEY; 

SILMAN, 2009; SHUKLA; NOBRE; SELLERS, 1990).  
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Análises baseadas em cenários futuros sugerem que as mudanças climáticas 

podem ultrapassar os impactos provocados pelo desflorestamento na Amazônia, com base 

nas mudanças induzidas pelo clima em todo o planeta durante o século 20 (BELLARD et 

al., 2012; NEPSTAD et al., 2008; PEREIRA; NAVARRO; MARTINS, 2012). Um 

aumento médio de 3° C na temperatura ao longo do século 21, combinado com redução 

da humidade e a fragmentação de florestas, pode ser o suficiente para causar um maior 

aumento no estresse hídrico e vulnerabilidade florestal (MALHI; WRIGHT, 2004; 

MAYLE; POWER, 2008). O estresse hídrico provocado pelos períodos secos podem 

aumentar ao longo do século 21, criando um clima típico de florestas sazonais, associado 

com altas temperaturas, vulnerabilidade à incêndios e desflorestamento, os quais podem 

levar à diminuição da biomassa florestal suscetível ao fogo (MALHI et al., 2009). 

Projeções baseadas em cenários de emissão de gases de efeito estufa estimam que 

aproximadamente 40% de todas as ecoregiões amazônicas serão impactadas pelas 

mudanças climáticas até 2050 (FEELEY; REHM, 2012). 

As mudanças induzidas pelo clima, combinadas com o desflorestamento, podem 

criar ameaças ainda mais sérias para o meio ambiente, e a perda de habitat está entre as 

maiores ameaças (FEARNSIDE, 2006; TRAVIS, 2003). A perda de habitat é uma das 

principais causas de extinção de espécies, reduzindo suas áreas de ocupação (BROOKS 

et al., 2002; FEELEY; SILMAN, 2009; IUCN, 2012; TILMAN et al., 1994). Por meio da 

mensuração da redução da área de ocupação das espécies é possível avaliar impactos 

sobre a biodiversidade e risco de extinção (GASTON; SPICER, 2004; IUCN, 2012). A 

perda de habitat  pode colocar entre 5-9% de todas as espécies de plantas na Amazônia 

em categorias de risco de extinção, e para espécies arbóreas este percentual pode ser ainda 

maior, variando entre 40-64% (FEELEY; REHM, 2012; STEEGE et al., 2015).  
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A extinção de espécies é um dos mais debatidos impactos sobre a biodiversidade. 

Ela pode ser classificada por categorias, variando de acordo com a intensidade do risco 

de extinção de espécies, e elencadas em Listas Vermelhas (IUCN, 2012). As listas 

vermelhas constituem uma metodologia adotada no mundo todo para avaliar a 

probabilidade de extinção de espécies. Elas são um primeiro passo em direção à 

conservação de espécies, e representam a base de muitas iniciativas para proteção de 

espécies ameaçadas, seja em escala local, regional ou global (e.g. TABARELLI et al., 

2005). Apesar de as Listas Vermelhas terem muitas limitações, elas têm se tornado uma 

ferramenta importante para o planejamento, gestão e monitoramento da conservação da 

biodiversidade (RODRIGUES et al., 2006). 

Uma outra ferramenta importante para a conservação da biodiversidade são as 

áreas protegidas. Estas áreas são originalmente delimitadas para conservar paisagens 

peculiares e a vida selvagem, mas o aumento das preocupações sobre a degradação 

ambiental nas últimas décadas do século 20 influenciou a emergência de sistemas de áreas 

protegidas, que apresentam um grande número de objetivos (WATSON et al., 2014). A 

efetividade destas áreas em conservar a biodiversidade tem sido questionada, por conta 

da alta governabilidade demandada, todavia, estudos mostram que elas têm contribuído 

para a manutenção e conservação da biodiversidade (BARNES et al., 2018; FERREIRA; 

VENTICINQUE; ALMEIDA, 2005; GRAY et al., 2016; NAUGHTON-TREVES; 

HOLLAND; BRANDON, 2005; THOMAS et al., 2012; WALKER et al., 2009). 

Projeções mostram que elas podem também contribuir para a conservação em cenários 

futuros, apesar de que as mudanças globais podem também ameaçar os objetivos destas 

áreas (FEELEY; SILMAN, 2016; KILLEEN; SOLÓRZANO, 2008; SOARES-FILHO et 

al., 2010; TER STEEGE et al., 2015).  
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1.2 A questão da pesquisa 

A riqueza e a distribuição das espécies arbóreas na Amazônica têm sido 

influenciadas por mudanças climáticas. Nos últimos milênios, em um processo natural, 

tais mudanças se desenvolveram de maneira gradual. Já nas últimas décadas, as alterações 

climáticas promovidas pela humanidade, associadas a perda de habitat produzida pelo 

desflorestamento, impactaram significativamente as espécies arbóreas Amazônicas, e 

podem ser ainda mais intensas até o ano de 2050, alterando a floresta Amazônica de 

maneira irreversível. No entanto, estas alterações podem ser mitigadas, considerando 

cenários de melhoria de governança, que projetam a redução das mudanças climáticas, e 

um maior controle sobre o desflorestamento. 

1.3 Objetivos 

Avaliar os impactos das mudanças climáticas e do desflorestamento sobre a 

biodiversidade Amazônia no passado, presente e futuro, por meio da avaliação da riqueza 

e da distribuição das espécies arbóreas da flora arbórea amazônica. 

Os objetivos específicos são: 

1. Testar e comparar as premissas e resultados de estimadores de riqueza baseados 

em métodos paramétricos e não-paramétricos para uma floresta tropical 

simulada e cinco diferentes bases de dados florestais obtidas em levantamento 

de campo na Amazônia. 

2. Estimar a distribuição atual das espécies arbóreas hiperdominantes da 

Amazônia, e comparar modelos de distribuição baseados na abundância e 

aptidão ambiental das espécies. 

3. Estimar a distribuição de espécies arbóreas amazônicas durante os períodos 

Holoceno médio e Holoceno tardio, e avaliar a correlação entre a abundância das 

espécies arbóreas e seus registros paleoecológicos de pólen na Amazônia. 

4. Estimar a riqueza e distribuição atual de todas as espécies arbóreas amazônicas 

conhecidas, e em dois cenários de emissões para o ano de 2050, e avaliar os 

impactos do desflorestamento histórico e futuro para o ano de 2050. 
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1.4 Estrutura da tese 

Esta tese investiga os impactos das globais na riqueza e distribuição de espécies 

da flora arbórea da Amazônia, utilizando estimativa de riqueza e distribuição de espécies 

para condições do presente, e também projetando cenários para o passado e o futuro. 

Além disso, a tese foca nas duas principais fontes modernas de mudanças globais que 

ameaçam as florestas tropicais, as mudanças climáticas e o desflorestamento. As 

mudanças globais impactam o habitat natural, que está consistentemente relacionado com 

a forma pela qual as espécies se distribuem espacialmente, e desta forma, está também 

relacionado com a riqueza de espécies. Mensurar as respostas da riqueza e da distribuição 

de espécies em função das mudanças globais é vital para o estabelecimento de estratégias 

de conservação eficazes. 

O capítulo 2 investiga as proposições e resultados de estimadores de riqueza de 

espécies baseados em métodos paramétricos e não-paramétricos, comparando a 

capacidade de extrapolação de cada um destes estimadores para grandes áreas de floresta 

tropical. Foram realizadas estimativas de riqueza de espécies para uma floresta tropical 

simulada e para cinco base de dados de levantamentos de campo diferentes. 

O capítulo 3 foca na modelagem de distribuição para as espécies de árvores 

amazônicas hiperdominantes. Este grupo conta com 227 espécies, que representam 

metade do número total de indivíduos arbóreos na floresta Amazônica. É conduzida uma 

comparação entre os modelos de distribuição de espécies e modelos baseados em um 

conjunto independente de dados de abundância, para avaliar as semelhanças e diferenças 

entre predições baseadas na aptidão ambiental das espécies, que utilizam dados de 

coleções e variáveis climáticas, e predições baseadas em dados de abundância, que 

utilizam dados de parcelas de inventários florestais.  
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O capítulo 4 investiga as respostas da floresta Amazônica às mudanças climáticas 

de longa duração ao longo do Holoceno médio e do Holoceno tardio (últimos 6.000 anos). 

A floresta expandiu ao sul através dos limites da floresta e da savana nos últimos três mil 

anos, e este processo é evidenciado por registros fósseis de pólen obtidos em núcleos de 

sedimentos de lagos amazônicos. Estes limites ao sul representam uma região de ecótono, 

muito sensível a mudanças climáticas. Esta expansão é atribuída a variações nos padrões 

de precipitação, especialmente em relação à sua sazonalidade, o que afetou a distribuição 

de espécies de árvores entre o Holoceno médio, mais seco, e o Holoceno tardio, mais 

úmido. São utilizados dados paleoecológicos (concentrações de pólen depositados nos 

sedimentos de lagos amazônicos), modelos de distribuição de espécies e modelos de 

abundância. Além disso, é testado se os dados paleoecológicos podem ser usados como 

representações da abundância relativa das espécies. 

O capítulo 5 investiga os impactos das mudanças climáticas e do desflorestamento 

sobre todas as espécies de árvores amazônicas, baseado na lista de espécies arbóreas mais 

recente para a região. Esta investigação inclui uma análise dos impactos do clima, por 

meio da modelagem de distribuição de espécies no presente, e sob dois diferentes cenários 

futuros para o ano de 2050, um otimista (RCP 2.6) e um pessimista (RCP 8.5), 

combinados com uma análise dos impactos do desflorestamento histórico (até 2013) e 

dois cenário futuros de projeções de desflorestamento para o ano de 2050, também 

considerando um cenário otimista (“governança”) e um pessimista (“condições usuais). 

São avaliados também os níveis de ameaças de extinção de espécies, baseados nas 

categorias de ameaça de extinção de espécies definidas pela IUCN, e a efetividade das 

áreas protegidas na Amazônia em mitigar os impactos sobre as espécies. 

A síntese apresentada no capítulo 6 integra os resultados da tese, relatando os 

achados nos diferentes capítulos em relação aos impactos das mudanças globais sobre a 

biodiversidade Amazônica. Além disso, é discutida a distribuição de espécies no passado 

e presente, e como ela é moldada ao longo do tempo, e como pode determinar a resposta 

das espécies às mudanças climáticas no futuro. A conclusão apresenta as implicações para 

a conservação da biodiversidade e prospectos futuros para a investigação da conservação 

de espécies arbóreas amazônicas.  
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CAPÍTULO 2 ESTIMATING SPECIES RICHNESS IN HYPER-DIVERSE 

LARGE TREE COMMUNITIES1 

Abstract 

Species richness estimation is one of the most widely used analyses carried out by 

ecologists, and nonparametric estimators are probably the most used techniques to carry 

out such estimations. We tested the assumptions and results of nonparametric estimators 

and those of a logseries approach to species richness estimation for simulated tropical 

forests and five datasets from the field. We conclude that nonparametric estimators are 

not suitable to estimate species richness in tropical forests, where sampling intensity is 

usually low and richness is high, because the assumptions of the methods do not meet the 

sampling strategy used in most studies. The logseries, while also requiring substantial 

sampling, is much more effective in estimating species richness than commonly used 

nonparametric estimators, and its assumptions better match the way field data is being 

collected. 

Keywords: Logseries, Nonparametric estimators, Species estimation, Tropical forests. 

2.1 Introduction 

Species-richness estimation is one of the most widely used analyses carried out 

by ecologists, either to compare samples obtained with different efforts, or by 

extrapolation, to predict the number of species present in an area larger than the one 

sampled. Extrapolation methods are frequently used for geographically large areas, where 

coverage of the complete range is out of reach, too labor intensive, or too expensive. 

From a parametric point of view, species richness estimation is based on 

parameter inference for either one of the two main relationships describing assemblages: 

the number of individuals (N) in a community or the area (A) this community occupies. 

In these cases, the number of species (S) only depends on the relative or rank abundance 

distribution of the species (RAD) (IZSÁK; PAVOINE, 2012) or the species-area 

relationship (SAR) (ROSENZWEIG, 1995).  

                                                             
1Publicado na revista Ecology (2017) 98: 1444–1454, Qualis A1 na Área de Avaliação de Ciências 
Ambientais. 
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As a general rule of thumb, in any number of random samples of an area, the 

number of species that remain undetected will increase with increased S and A 

(GOTELLI; COLWELL, 2001), precluding any attempt to directly quantify the RAD or 

the SAR from samples. This clearly poses a problem in tropical forests that are generally 

both large and rich. 

There has been a long argument as to whether the logseries (FISHER; CORBET; 

WILLIAMS, 1943), the log-normal (PRESTON, 1948), or alternative distributions 

(MCGILL et al., 2007) give the best fit for Rank Abundance Distributions (RADs), how 

much the fit is dependent on scale or sampling completeness, and to which extent the best 

fitting model reflects the biological processes underlying the distribution. The use of 

nonparametric estimators of species richness such as Chao, ICE (Incidence-based 

Coverage Estimator of species richness), and Jackknifing, has been proposed as a way of 

dealing with this uncertainty, because they do not assume any underlying distribution. It 

would be wrong, however, to suppose that they are less sensitive to other assumptions 

than parametric methods or that they do not suffer from other drawbacks.  

Brose et al. (2003) noted that sampling-theoretical methods of estimation require 

high sampling intensity to avoid what Wang and Linday (2005) call the “severe under-

estimation observed from popular nonparametric estimators due to the interplay of 

inadequate sampling effort, large heterogeneity and skewness.” Xu et al. (2012) also 

reported that nonparametric methods severely underestimate richness and emphasized 

that these methods should not be used across heterogeneous landscapes. This is largely 

because nonparametric estimators based on a sampling estimate of the rare-tail of the 

SAR are very sensitive to the shape of the abundance-distribution. As underlined by Harte 

and Kitzes (2015), “The rare tail is emphasized because the shape of the species-area 

relationship is especially influenced by the numbers of rare species”. Although the 

performance of estimators has been frequently compared (BROSE; MARTINEZ; 

WILLIAMS, 2003; CHIARUCCI et al., 2003; HORTAL; BORGES; GASPAR, 2006; 

WALTHER; MOORE, 2005; XU et al., 2012), much less of the ecological literature 

critically evaluates their assumptions and caveats.  
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Perhaps the most commonly used estimator for species richness is the Chao1 

nonparametric estimator (CHAO, 1989; CHAO et al., 2009), which estimates the number 

of species as: 

Sestimated = Sobserved + 
!"#
$!#

 

where f1 is the number of species with 1 individual in the sample (singletons) and f2 is the 

number of species with 2 individuals in the sample (doubletons). The Chao1 estimator 

and other nonparametric estimators make no assumptions about the underlying species-

abundance distribution, but do assume that sampling is random with replacement across 

the whole area. When f1 = 0, it is assumed that all species have been collected and Sestimated 

= Sobserved (CHAO et al., 2009). 

Chao Bunge (CHAO; BUNGE, 2002), Chao Lee ACE and Chao Lee ACEI 

(CHAO; LEE, 1992), and Jackknife (BURNHAM; GRAHAM, 1999) are variations on 

the original Chao 1 estimator are also dependent on the fractions of the rare or infrequent 

species, and require “a sufficiently high overlap fraction [...] to produce a reliable estimate 

of the species” (CHAO; BUNGE, 2002), and, finally, are all based on the capture-

recapture principle that requires sampling with replacement. 

The logseries in contrast is not based on a capture-recapture principle and was 

among the first attempts to mathematically describe the relationship between the number 

of species and number of individuals in a biological context by Fisher (FISHER; 

CORBET; WILLIAMS, 1943) and is given by: 

Φ& = 
'()
*  

where: Φn is the number of species with n individuals; α is Fisher’s α; x = N/(N + α) (N 

being the number of individuals in the total sample; x being asymptotically equal to 1 

with large sample sizes).  
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Hence, we expect α from samples to quickly approach α of the total landscape, 

after which it will be practically independent of sample size. Fisher’s alpha can be 

calculated from the number of individuals (N) and species (S) in a sample by iteratively 

solving: 

α = 
+

,&	(/012)
 

The logseries is essentially a geometric summation, which builds up from the first 

term (Φ1), the singletons. The number of singletons is thus predictable in a logseries (Φ1 

= αx) and always the largest class. As x is very close to 1 for reasonably large samples, 

Φ1 ≈ α in such samples. Similarly, the number of doubletons is: Φ2 = α x2/2 ≈ α/2. When 

we assume that RAD’s of communities follow the logseries, this has implications for the 

nonparametric Chao1 estimator. For large samples, the Chao1 estimator (note that 

f12/[2f2] = Φ12/[2 Φ2]) will simply become: Sestimated = Sobserved + α2/[2(α/2)] = Sobserved + α. 

Consequently, we predict that for reasonably large samples, for which α is constant, 

Chao1 always estimates the number of unseen species as α, regardless of the size of the 

samples. 

Hubbell’s neutral theory was the first ecological theory, deriving the logseries 

from the basic biological processes of birth rate (b) and death rate (d) (Hubbell 2001, 

Hubbell 2015).  It can be shown that in this model x (N/[N + α]) = b/d. NT derives a 

distribution, the Zero Sum Multinomial (ZSM), which for large communities with little 

drift approaches a logseries. For small local communities (limited immigration and drift), 

the ZSM approaches a lognormal (HUBBELL, 2001). 

Here we compare commonly used nonparametric estimators of species richness to 

one parametric estimator based on the logseries for the purpose of estimating species 

richness in large areas of tropical forest. We specifically chose the logseries as we are 

trying to estimate richness in very large areas where the ZSM approaches this distribution. 

We show by simulations and comparisons with empirical data that the assumptions of the 

parametric estimator are less sensitive to deviations than those of the nonparametric 

estimators. 
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2.2 Methods 

2.2.1 Simulations 

We modeled forest communities of 100 x 100 1-ha plots (a 100 km2 square area), 

each plot with 500 individuals. We initially filled each of the 10,000 hectares with a 

random sample of 500 individuals from a metacommunity (MC). The MC was 

constructed using a logseries of 15 million individuals and a Fisher’s α of 300, which is 

roughly equivalent to a rich central Amazonian rainforest (see data below). We used a 

logseries as this conforms to the structure expected (HUBBELL, 2001) and found in 

tropical forests (HUBBELL, 2001, 2015; TER STEEGE et al., 2013). After filling the 

plots randomly from the MC, the mean Fisher’s α of all plots and that of the virtual forest 

initially is, as expected, equivalent to that of the MC. 

During the simulations, trees were randomly selected to be removed (1 per plot 

per time step) and new recruitment could come from dispersal (m) from 4 sources:  

1. Recruitment from dispersal inside the plot (mplot), equivalent to local 

recruitment. Local recruitment is random within the plot, i.e. we assume no spatial 

structure inside the plots.  

2. Recruitment from dispersal from the surrounding eight plots. Dispersal 

probability based on dispersal distance was based on the model of Chisholm and 

Lichstein (CHISHOLM; LICHSTEIN, 2009), modified by Pos et al. (POS et al., 

2017). The dispersal probability from the adjacent plots (madjacent) is computed 

from dispersal distance as (POS et al., 2017): 

madjacent = 0.3 × 89(/9$×:)#
8  

where: A is the area of the plot (10,000m2), l = length of the plot (100m), and d = 

the average dispersal distance. Assuming an average dispersal range of 10-40 

meters madjacent is in the range of 0.108-0.288. 

3. Recruitment from dispersal from the surrounding forest (10,000 ha), 

comparable to long-distance dispersal. Individuals for replacement were drawn 

randomly from the 10,000 ha. This assumes that long-distance dispersal is not 

spatially driven. We used a probability of mforest = 0.1*madjacent. 
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4. Recruitment from dispersal from the MC, this is comparable to infrequent very 

long-distance dispersal, also termed vagrancy. The individuals were drawn 

randomly from the MC, assuming that very long-distance dispersal too is not 

spatially driven. We used a probability of mMC = 0.01*madjacent. 

And: 

4. speciation (v) as defined in the Unified Neutral Theory of Biodiversity and 

Biogeography (HUBBELL, 2001):  

v = 
;
$×< = 

$=>
$×/>,>>>×=>> = 2.5e-5 

Where θ is the biodiversity number, asymptotically equivalent to Fisher’s alpha 

and J is the size of the community. 

Parameters 2-4 were calculated first. Local recruitment (1) was then calculated as: 

mplot = 1 – madjacent – mforest – mMC – v. 

We ran 30,000-time steps for each model with mean dispersal distances of 10, 15, 

20, 25, 30, and 40 meters. At each time step, 1 individual per plot was randomly selected 

to be replaced by another individual based on the 5 probabilities above. Thus, 10,000 

individuals were replaced at each time step. 

After each simulation, we plotted the RAD with a fit of the logseries and 

lognormal, the Species Area Curve with Chao1 estimator, the Fisher’s α to area curve, 

and the predicted richness based on Fisher’s α and the Chao1 estimator. All curves were 

based on the average of 50 draws from 1 to all 10,000 plots. We also plotted the results 

for the average of 50 random draws of 100 plots from our virtual forest. 

We also ran the simulation model for a sample of 49 ha of forest (7x7 ha), using 

the field data of BCI (Table 2.1). We simulated a forest area of 49 plots, using a MC of 

15km2 (the size of BCI), an alpha of 50 and density of 429 ind ha-1, a dispersal distance 

of 40m (CHISHOLM; LICHSTEIN, 2009) for madj = 0.288, and ν = 0.00119.Simulations 

and calculations were carried out with custom-made scripts in R (R CORE TEAM, 2011). 
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2.2.2 Field data 

We used field data from 4 sites. 1) Barro Colorado Island (BCI), a 50-ha plot in 

old growth forest (CONDIT et al., 2002). This well-known dataset was also used in Chao 

et al. (2009); 2) Reserva Ducke (RD, Fig. S1), a forest reserve of 100 km2 in central 

Amazonia, just north of Manaus (CASTILHO, 2004); 3) Piste de St Elie (PSE, Fig. S2), 

mixed forest in northern French Guiana (SABATIER et al., 1997); 4) the Monte Branco 

Plateau (MBP, Fig. S3), a large bauxite plateau of 3750 ha in Para, Brazil (SALOMÃO, 

2015). 

BCI tree data was extracted from vegan (OKSANEN, 2008), tree data for RD and 

PSE are integrated in the ATDN database (TER STEEGE et al., 2013) and extracted from 

that source, MBP tree data (R. P. Salomão, unpublished data) was taxonomically 

harmonized with the ATDN database. 

We extrapolated the species richness for an area in which the plots were located; 

for RD for 7.2 million individuals (the area of the full 100 km2 reserve); for PSE an 

imaginary 1500 ha forest area encompassing the plots; for MBP the 3750 ha that 

comprises the complete plateau (Table 2.1). The plots are well spread across these areas. 

For BCI we estimated richness for the 50-ha plot. 

Table 2.1. Botanical inventories used for the analysis, with locality (Barro Colorado 
Island (BCI), Reserva Ducke (RD), Piste de St Elie (PSE), Monte Branco Plateau 
(MBP), number of plots sampled, plot area (ha), number of individuals sampled (N), 
number of species recorded (S), the target area for which estimates were made, number 
of individuals in the target area based on average density, and reference to the data 
source: 1) BCI; 2) RD; 3) PSE; 4) MBP. 

Locality # plots  area N S target area individuals Reference 

BCI 50 1 21,457 225 50 há 21,457 1 

RD 72 0.5 25,066 1233 100 km2 7,200,000 2 

PSE 20 1 12,450 574 1500 ha 933,750 3 

MBP 301 0.25 36,546 703 3750 ha 1,821,229 4 
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For each of the plot datasets we carried out the following analyses:  

1. plotted the RAD of the dataset with the exact logseries and lognormal for the 

number of individuals (N) and species (S) in the field sample, 

2. constructed a curve of the mean species richness by area, based on 50 

randomizations of the field data, 

3. constructed a curve of the mean of Fisher’s α by area, based on the same 50 

randomizations of the field data, 

4. estimated species richness in the target area for all sub-samples of the 50 

randomizations based on Fisher’s α of the sub-samples as follows: S = α * ln(1 

+ N/α) (FISHER; CORBET; WILLIAMS, 1943); where α = Fisher’s α, and N 

is the number of trees in the subsample and the variance of S as (FISHER; 

CORBET; WILLIAMS, 1943): varS = α ln([2N + α]/[N + α]) – α2N/(N + α)2, 

5. estimated species richness in the target area for all sub-samples of the 50 

randomizations, based on Chao1: Sest = Sobs + f12/(2f2), 

6. estimated the species richness for the field dataset for a number of 

nonparametric estimators (Chao 1984, Chao Bunge, Chao Lee ACE, Chao Lee 

ACEI, Jackknife), as provided in the R-package SPECIES (WANG, 2011). 

The 50 randomizations of the plot data were produced without replacement from 

one plot to the number of plots in the field dataset. 

2.3 Results 

2.3.1 Simulations 

The simulations of our virtual forest with mean dispersal distance of 20 m 

produced a RAD that is close to a logseries (but not fully identical) (Fig. 2.1 A). Species 

richness calculated with the Chao1 estimator as predicted becomes Sobserved plus ~Fisher’s 

α for larger samples (Fig. 2.1 B). While Fisher’s α and species richness calculated with 

Fisher’s α tend to asymptotically approach the community value, species richness 

calculated with the Chao1 estimator follows the shape of the species area curve and finally 

overestimates the richness of the total sample by approximately Fisher’s α.  
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Figure 2.1. Simulation of a 10,000-ha virtual forest with mean dispersal distance of 20 
m. Parameters used are mplot = 0.78688; madjacent = 0.192; mforest = 0.0192; mMC 
= 0.00192; v = 10-4. (A) Rank abundance distribution (RAD) of the total virtual (black) 
with logseries fit (red) and lognormal fit (blue). (B) Species area (SPAR) curve for the 
total virtual forest and estimated richness (Sestimated) based on Chao1 (blue). (C) 
Fisher’s α area curve for the virtual forest. (D) Species richness estimated with Fisher’s 
α (black), Chao1 (blue), each with 95% CI (red), and actual species richness of the 
simulated community (horizontal line). mplot = local recruitment; madjacent = 
recruitment from adjacent plots; mforest = recruitment from total forest; mMC = 
recruitment from metacommunity; v = speciation. 
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All simulations (d = 1– - 40 m) show similar results (Figs.  S4-17, Appendix S1). 

With increasing mean dispersal distance and, hence, stronger input from the adjacent 

plots, Fisher’s α tends to be overestimated slightly before it reaches the value of the total 

virtual forest and the number of species in the full virtual forest increases from 2,071 to 

2,098. The calculations for 50 samples of 100 plots suggest that although Fisher’s α 

predicts a richness closer to the known richness for the virtual forest, it is still an 

underestimate of 3-17% (Fig. 2.2, Figs.  S5,7,9,11,13,15, Appendix S2). For a similar 

sample size, the Chao1 estimator provides an underestimate of 43-51%, depending on the 

dispersal distance chosen (Table S1). 

2.3.2 Simulations of 49 ha of BCI 

Simulations of a 49 ha virtual plot based on the BCI data produced a RAD (Fig. 

2.3) very similar to that of the forest in the real 50 ha BCI plot (Fig. 2.4). Fisher’s α was 

very close to the final value for the simulated forest after 10 plots. Consequently, species 

richness was also close to its simulated richness after sampling 10 plots. Species richness 

calculated with Chao1 is, as predicted, the species area curve plus Fisher’s α of the 

sample. Thus, even when all individuals have been sampled, Chao1 still predicts 

unobserved species with a magnitude of Fisher’s α. This is because, as in real forests, the 

virtual forest of 49 ha still contains singletons. 

2.3.3 Field data 

In all cases: BCI (Fig. 2.2), RD (Fig. 2.3), PSE (Fig. 2.4), and MBP (Fig. 2.5), the 

RAD showed a hollow curve with few common and many rare species and, except for 

BCI, the logseries provided a reasonable fit. In all cases, Fisher’s α was very close to that 

of the full sample with less than 20 plots sampled. For small samples, Chao1 provided a 

severe underestimate for the richness in the sample, and even for the final sample, Sestimated 

was almost equivalent to Sobserved + Fisher’s α.  
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Figure 2.2. Barro Colorado Island field data (BCI). A. Rank abundance distribution 
(RAD) of BCI with logseries fit (red) and lognormal fit (blue). B. Species area curve for 
BCI and estimated richness (Sestimated) based on Chao1 (blue). C. Fisher’s α area curve 
for BCI. D. Species richness estimated for a 50 ha area on BCI with Fisher’s α (black) 
and Chao1 (blue), each with 95% CI (red). 
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Figure 2.3. Reserva Ducke field data (RD). A. Rank abundance distribution (RAD) of 
RD with logseries fit (red) and lognormal fit (blue). B. Species area curve for RD and 
estimated richness (Sestimated) based on Chao1 (blue). C. Fisher’s α area curve for RD. 
D. Species richness estimated for the total 100km2 RD area with Fisher’s α (black) and 
Chao1 (blue), each with 95% CI (red). 
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Figure 2.4. Piste de Saint Elie field data (PSE). A. Rank abundance distribution (RAD) 
of RD with logseries fit (red) and lognormal fit (blue). B. Species area curve for RD and 
estimated richness (Sestimated) based on Chao1 (blue). C. Fisher’s α area curve for RD. 
D. Species richness estimated for the total 15km2 area surrounding the plots with Fisher’s 
α (black) and Chao1 (blue), each with 95% CI (red). 
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Figure 2.5. Monte Branco Plateau field data (MBP). A. Rank abundance distribution 
(RAD) of MBP with logseries fit (red) and lognormal fit (blue). B. Species area curve 
for MBP and estimated richness (Sestimated) based on Chao1 (blue). C. Fisher’s α area 
curve for MBP. D. Species richness estimated for the total 37.5 km2 MBP area with 
Fisher’s α (black) and Chao1 (blue), each with 95% CI (red). 
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Species estimates for the target area made with Fisher’s α were much larger than 

those made with the asymptotic Chao1 estimator, which were close to Sobserved + Fisher’s 

α of the measured data (Figs.  2.4-2.8). All other nonparametric estimators, too, predict 

much lower values for richness, comparable to the Chao1 estimator (Table 2.2). Only for 

BCI, where the area for which richness was to be estimated was similar to the actual 

sample, did the nonparametric estimators approach the estimate based on Fisher’s α. 

 

Table 2.2. Species estimates based on plot samples in BCI, RD, PSE, and PMB. 

 BCI se RD se PSE se PMB se 

Number of plots 50  72  20  301  

number of individuals 21,457  25,066  12,450  36,546  

number of species 

target area 

225 

50 ha 

 1233 

100 km2 

 574 

1500 ha 

 703 

3750 ha 

 

target individuals 21,457  6,960,000  933,750  1,821,229  

Sestimated with         

     Fisher’s α 225  2759  1110  1185  

     Chao 1984 239 8.3 1,408 32 724 36 821 31 

     Chao Bunge 243 9.6 1,423 32 715 34 823 31 

     Chao Lee ACE 238 6.1 1,375 20 669 18 738 16 

     Chao Lee ACEI 241 8 1,405 26 694 25 805 23 

     Jackknife 244 6.1 1,591 59 1066 124 920 40 
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For the BCI and MBP data, and simulations with higher mean dispersal distances, 

Fisher’s α peaked before it leveled off to its final value similar to the simulations, i.e. it 

showed a hump (see Figs. 2.4 and 2.7). Fisher’s α, however, rose regularly for PSE, RD 

and for simulations with lower mean dispersal distances (Figs. 2.1, 2.2, 2.5 and 2.6). 

2.4 Discussion 

Based on our simulations with a spatially semi-explicit model, Fisher’s α provides 

a more accurate prediction of species richness in the virtual forest communities than does 

the nonparametric Chao1 and other nonparametric methods, especially if sample intensity 

is low. We believe that the failure of nonparametric methods to estimate diversity is 

mainly due to the resampling approach with its need of high sampling effort and its 

expected loss of singletons, and the lack of definition of the target area. We elaborate on 

this below. 

Based on resampling the BCI plot data, Chao et al. (2009) found that, to detect 

90% of the species, a median sample size of 80% of the area is necessary. Also Chiarucci 

et al. (2003), using modeled vegetation, found that nonparametric estimators need at least 

15-30% of the area to be sampled for reasonable estimates of the species richness of the 

whole area. Using these methods with low sampling effort leads to serious 

underestimation as Brose et al. (2003) and our models clearly show. In real life, even 

though trees are not removed by our sampling (and resampling is thus statistically 

possible), the chances of resampling the same plot are negligible. In the Amazon with a 

sample of 1170 1-ha plots in an area of over 5 million km2 (TER STEEGE et al., 2013), 

that chance would be just 2·10-9. At the intensities at which tropical forests are sampled 

(0.0002% for the Amazon) nonparametric methods simply cannot accurately estimate the 

number of species in the whole area. On top of that when plot locations are known 

researchers are unlikely to resample a known area.  
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With capture and recapture techniques and the nonparametric estimators tested, 

sampling is considered complete when no singletons exist anymore in the data (CHAO et 

al., 2009). In tree plots the disappearance of singletons would be the result of sampling 

the data many times over with replacement (CHAO et al., 2009). This resampling results 

in the estimated richness asymptotically approaching true richness when the number of 

singletons is zero, as the total number of species cannot be larger than those observed in 

the total dataset (CHAO et al., 2009). 

We argued above that in the case of research in tropical forests, plots are probably 

never sampled with replacement. Thus, the number of species is expected to increase with 

sample size as predicted by the ‘First Law of Biodiversity’ (ROSENZWEIG, 1995) 

(‘larger samples yield more species’) and many other theories of Biodiversity (HARTE, 

2011; HARTE et al., 2008; HUBBELL, 2001; KIMURA, 1983; MACARTHUR; 

WILSON, 1967). 

In addition, singletons will remain (often close in number to Fisher’s alpha). In 

the above theories, singletons are the representatives of the biological processes of 

immigration, extinction or speciation. Singletons might be species on their proverbial way 

out driven by extinction or new species coming in by speciation or migration. The latter 

are hence necessary to maintain richness. Without these processes, fixation will occur due 

to ecological drift, analogous to genetic drift from population genetics. Thus, when 

sampling without replacement: the lack of singletons in these systems would suggest 

incomplete rather than complete sampling. This inconsistency can be extracted from the 

description of the method itself, where authors (CHAO et al., 2009) mention that “given 

adequate sampling, lack of singletons indicates adequate sampling”. 

Finally, as most tropical tree field data conforms to the logseries (see references 

in the introduction), the Chao1 index becomes scale invariant, always estimating the same 

number of missing species, in the case of Chao1, to exactly the amount of Fisher’s α. This 

was shown mathematically in the introduction for Chao1 and is supported our 

simulations. While we did not show this mathematically for the other nonparametric 

estimators, they are derived from the same theoretical framework of capture-recapture 

and estimate similar richness (Fig. S18, Table 2.2) and thus also provide severe 

underestimates with low sampling intensities. 
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For the full Amazon area (~5.5 million km2), ter Steege et al. (2013) estimated 

~16,000 tree species based on a sample of 1170 plots of 1-ha. They applied at least 18 

different extrapolation methods from software packages SPECIES (WANG, 2011), and 

CatchAll (BUNGE et al., 2012) to their plot (TER STEEGE et al., 2013). Almost all were 

rejected, as they predicted the total number of Amazonian tree species to fall in the range 

4015-6412, a demonstrably severe underestimation of the true species richness(FINE, 

2001). 

A new estimator, implemented in CatchAll (WLRM_UnTransf) (BUNGE et al., 

2012; ROCCHETTI; BUNGE; BÖHNING, 2011) gave an estimated total richness above 

11,000, closer to that calculated with their logseries extrapolation, but was not selected 

by the program as the best estimator. The ACE1_Max Tau estimator gave a result greatly 

exceeding the estimate with the log-series but its Tau was much higher (9048) than the 

recommended value (Tau < 10). 

The failure of these models to fit the Amazonian data was not surprising. These 

estimators performed poorly because at least one of their assumptions, high sampling 

intensity, was not me– - a condition unlikely to be met in any large forested area. Based 

on an extensive search in several data providers and herbaria, ter Steege et al. (2016) 

found that nearly 12,000 tree species have actually been collected in Amazonia, with a 

collecting density as low as 10 collections per 100km2. They conclude that the estimate 

of 16,000 is entirely plausible. Importantly, the number of species found is almost twice 

that estimated with most nonparametric methods. 

Using different methods to estimate or extrapolate the SAR, like a Maximum 

Entropy inference (HARTE, 2011; HARTE; KITZES, 2015) or a power law based fitting 

from multi-scales sampling (KRISHNAMANI; KUMAR; HARTE, 2004; PLOTKIN et 

al., 2000), also showed that regional scale diversity of trees was estimated acceptably 

from small plots samples. Interestingly, the abundance distribution model arising from 

the MaxEnt approach is most often a logseries (HARTE; KITZES, 2015).  
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Using the logseries is not without assumptions either, however. Our virtual forest 

is neutral with regard to the environment, i.e. demographic probabilities for each 

individual, regardless of species identity, are equal. Hence, in addition, the only cause of 

aggregation is limited dispersal of individuals but given enough time, even ranges of very 

dispersal limited species can become large. In real life, species will segregate the 

environment based on ecological preferences as well. Hence, beta-diversity in real forests 

is higher than in our virtual-forest stand and a peak of Fisher’s α is expected when a large 

heterogeneous area is sampled over a range of sampling intensities. 

BCI is known to have clear segregation of species based on soil moisture 

(HUBBELL; FOSTER, 1983) and the relationship Fisher’s α to area peaks at relatively 

low number of plots. We also expect the species on MBP to be similarly clumped because 

of the clear peak in Fisher’s α at low sample sizes. At MBP plot size may also influence 

the peaking of Fisher’s α. As the plots are smaller (0.25 ha), the recruitment to the plots 

will be more affected by the adjacent plots as madjacent is very much dependent on the ratio 

between the plot boundary and mean dispersal distance (CHISHOLM; LICHSTEIN, 

2009). The peak modeled and observed can be explained by a relationship between beta-

diversity and alpha-diversity. At low migration rates, recruits mostly come from within 

plots, hence beta-diversity is maximized but alpha-diversity is not because each plot is 

practically isolated and losing species due to ecological drift. This means that, for just 

sampling one plot, Fisher’s α will be much lower than the average of the whole forest.  

Continuous sampling, however, will gradually result in the average Fisher’s α. 

There will be no peak because the probability for each plot bringing new species to the 

whole is the same and thus the increase will be gradual until Fisher’s α is equal to that of 

the virtual forest. When migration increases, however, plots close by exchange more 

species and beta and local alpha diversities increase simultaneously. In this case, sampling 

a few plots randomly will likely initially overestimate Fisher’s α, because each sample 

includes new species for the total sample due to the combined higher beta and alpha-

diversity, creating a fast rise in Fisher’s α.   
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However, continuing the sampling at some point does add more individuals to the 

total sample, though species will be resampled, lowering Fisher’s α again. When dispersal 

is so high as to be similar across the complete virtual forest, composition would 

essentially be very similar for all plots with very high local alpha- and low beta- 

diversities and Fisher’s α would not peak but increase fast to its virtual-forest value (as in 

the virtual 49 ha BCI, Fig. 2.3). 

2.4.1 Is estimating species richness still a long way off? 

Chiarucci (2012) suggested that ‘estimating species richness is still a long way 

off!’ Nonparametric estimators underestimate richness (see above and XU et al., [2012]), 

while area-based estimators tended to overestimate richness (XU et al., 2012). Xu et al. 

(2012) concluded that Maxent greatly overestimated richness. However, their perceived 

overestimate is based on the richness they expected, which was based on a list of species 

found in their area. We believe that many of us do not fully comprehend the consequences 

of the logseries model. One of us was also surprised when we estimated the expected 

species for RD, which was much more than was expected based on extensive fieldwork 

for the Flora of the area (RIBEIRO et al., 1999) and ecological fieldwork. However, with 

an Fisher’s α of 271 for the plots of RD, assuming that this is close to the correct Fisher’s 

α for the area, we expect 271 species with only 1 individual, 135 with two individuals, 62 

with 3 individuals, 31 with 4 individuals, etc. RD covers 100 km2, with an average tree 

density of 696 trees ha-1(TER STEEGE et al., 2013). That indicates a total of 6.96 million 

individuals. The chance of finding a singleton species there with feasible sampling 

intensity is thus very, very small. This is the consequence of using this theoretical 

framework (see also HUBBELL, [2015]). 

Because many researchers using nonparametric estimators assume that sampling 

is complete when the samples contain no singletons, an assumption that does not agree 

with ecological theory or with most ecological sampling, they are likely to severely 

underestimate richness when sampling level is low. Therefore, we suggest that the use of 

nonparametric estimators should be discouraged in studies with low sampling intensity 

in large remote areas. If the data can reasonably be assumed to follow a logseries, species 

estimation by means of Fisher’s α is likely a better option.  
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Other methods that produce abundance distributions with many singletons, 

matching most observational data, such as various parametric methods (BUNGE; 

BARGER, 2008) or phenomenological theories, such as Maximum Entropy (HARTE, 

2011) are probably also good alternatives. 

2.4.2 Fisher’s paradox 

The term Fisher’s paradox was coined by Hubbell (2015):  

“The logseries is an infinite series that mathematically goes on 

forever. But the world’s forests are finite in size. So, what 

happens to estimates of species abundance when the entire world 

is your sample? […] The paradox would seem to run even deeper, 

because Fisher’s logseries predicts that many more of the world’s 

tropical tree species are hyper-rare. […] The truth is, we still have 

inadequate data to definitively answer the “how many tropical 

tree species?” question. Ecologists at present are forced to make 

huge extrapolations from existing inventory plot data to the entire 

world.” 

Hubbell (2015) believes hyper-rare species do exists, as do we and in the case of 

areas smaller than the world, so do singletons. What are then those singletons. For an area 

like the Amazon, a huge and open system, singletons are the result of species (locally) 

going extinct or new immigrants. Ter Steege et al. (2016) (Fig. S7) showed that several 

singleton species are in fact species found only once in the Amazon but common in the 

Cerrado, Andes and even Atlantic forest, ‘vagrants’ in the viewpoint of Magurran and 

Henderson (MAGURRAN; HENDERSON, 2003). However, this may suggest that 

singletons or other hyper rare species are found mainly on the edges of an area. In the 

Amazon they were not and include such iconic species as Asteranthos braziliensis 

(endemic to the middle and upper Rio Negro) and Duckeodendron cestroides (endemic 

to an area around Manaus, central Amazon).  
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We believe that even if all individuals of the Amazon forest could be measured 

and identified, the biological processes of extinction and immigration would lead to the 

presence of at least ~750 singleton species, based on the Fisher’s α found for the area 

(TER STEEGE et al., 2013) and a huge amount of hyper-rare species, some of which may 

have small contracted ranges, some of which may even be spread over large areas (ZIZKA 

et al., 2018). 

One of the most important merits of NT is to emphasize the role of migration in 

building and maintaining community structures. However, the underlying mathematical 

model is based on a discretization down to the individual level, where a random process 

is supposed to play and can be expressed as per capita probabilities. In a complex system 

such as tropical forests, clearly not only chance acts upon birth, death, dispersal and 

migration. This could result from acquiring a new competitive advantage, losing a 

competitor because a pest, losing a pest because a super-pest develops. A manifold of 

combinations is possible. The processes involved at local scale are not exclusively 

random but from local to global their combined effects on species abundances may 

sometimes appear to be. 

2.5 Conclusion 

To evaluate diversity of a rich, complex, large, open system, a parametric 

approach based on a probabilistic model, such as Fisher’s logseries, seems to be more 

applicable than a non-parametric one, because such a system is driven by the random 

walk resulting from an infinity of processes that vary among scales, and where chance 

affects many biological processes, and not just the random sampling context considered 

by non-parametric methods.  
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CAPÍTULO 3 SPECIES DISTRIBUTION MODELLING: CONTRASTING 

PRESENCE-ONLY MODELS WITH PLOT ABUNDANCE DATA2 

Abstract 

Species distribution modeling (SDM) is widely used in ecology and conservation. 

Presence-only models such as MaxEnt frequently use natural history collections (NHCs) 

as occurrence data, given their huge numbers and accessibility. NHCs data are, however, 

often spatially biased, and may generate inaccuracies in SDMs. Moreover, NHCs data 

distribution may differ from the actual distribution, due to differences in the collection 

effort between common and rare species. Here, we test how the distribution of NHCs 

relates to species relative abundance. We compared NHC data and MaxEnt predictions to 

a spatial abundance model, based on a large plot dataset for 227 Amazonian 

hyperdominant species, using inverse distance weighting (IDW). We also propose a new 

pipeline to deal with inconsistencies in NHC data. We found no positive relationship 

between the distribution of NHCs and species relative abundance for 33% of the species. 

Furthermore, the relationship between SDMs and relative abundance maps was positively 

weak for 84% of the species. Presence-only SDM applications should consider this 

limitation, especially for large biodiversity assessments projects, when they are 

automatically generated without subsequent checking. Nevertheless, sensitivity for both 

analyses was high, where IDW predicted 91% of the NHCs records, and MaxEnt 87% of 

plots presence data. 

Keywords: Amazonia, environmental suitability, IDW, MaxEnt, relative abundance, 

species distribution modelling, tree species.  

                                                             
2Publicado na revista Sicientific Reports Ecology (2018) 8:1003, Qualis A1 na Área de Avaliação de 
Ciências Ambientais. 
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3.1 Introduction 

Species distribution models (SDMs) are widely used in the fields of 

macroecology, biogeography and biodiversity research for modelling species geographic 

distributions based on correlations between known occurrence records and the 

environmental conditions at occurrence localities (ELITH; LEATHWICK, 2009; 

PHILLIPS; ANDERSON; SCHAPIRE, 2006). SDMs generate geographical maps of a 

species’ environmental suitability, its likelihood of being collected, and its local 

abundance (MILLER, 2010). Their application includes selecting conservation areas, 

predicting the effects of climate change on species ranges and determining the risk of 

species invasions (ARAÚJO; PETERSON, 2012; PEARSON, 2010). The wide use of 

SDMs in ecological and conservation research can partly be explained by the growing 

availability of georeferenced species records (e.g. GBIF, SpeciesLink) and environmental 

data (e.g. WorldClim, CliMond) (HIJMANS et al., 2005; KRITICOS et al., 2012) on the 

web, together with the user-friendly character of some of the modelling methods. 

One of the most commonly used SDMs is MaxEnt, which has become 

increasingly popular since its introduction (RENNER; WARTON, 2013). This machine-

learning algorithm estimates a species’ probability distribution that has maximum entropy 

(closest to uniform), subject to a set of constraints based upon our knowledge of the 

environmental conditions at known occurrence sites (PHILLIPS; ANDERSON; 

SCHAPIRE, 2006). MaxEnt is a presence-only model, enabling scientists to utilize the 

abundant data sources of natural history collections (NHCs), avoiding the high costs of 

sampling the species throughout their extent of occurrence. Presence data are abundant, 

but absence data are hard to obtain and often unreliable due to insufficient survey effort. 

To counter the lack of absences, MaxEnt uses a background sample to contrast the 

distribution of presences along environmental gradients against the distribution 

background points, randomly drawing from the study area. 

NHCs, however, may not be independently drawn from the investigated 

populations due to the non-random nature of collecting (HARIPERSAUD, 2009; 

TOBLER et al., 2007). Because collectors aim to collect as many species as possible, rare 

species are often overrepresented in herbaria, whereas common species are 

underrepresented, producing collectors’ bias (TER STEEGE et al., 2011).  
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Therefore, the relative number of specimens per species in herbaria is not a good 

representation of the species’ relative abundance in the field. Additionally, NHCs have 

spatial bias due to geographical differences in survey effort, data storage and mobilization 

(BECK et al., 2014; HARIPERSAUD, 2009; TOBLER et al., 2007). This may have 

negative impacts on the performance of presence-only SDMs if this results in 

environmentally biased sampling (BECK et al., 2014; FOURCADE et al., 2014; 

PHILLIPS et al., 2009; SYFERT et al., 2013). Negative impact of spatial bias is not 

always present, however (KADMON; FARBER; DANIN, 2004; LOISELLE et al., 

2008). 

MaxEnt has shown to outperform other SDMs in several studies (AGUIRRE-

GUTIÉRREZ et al., 2013; ELITH et al., 2006; GIOVANELLI et al., 2010; MERCKX et 

al., 2011; WISZ et al., 2008). Nevertheless, some drawbacks have been identified. For 

example, MaxEnt may underestimate the probability of occurrence within areas of 

observed presence, while overestimating it in areas beyond the species’ known extent of 

occurrence (FITZPATRICK; GOTELLI; ELLISON, 2013). Like other SDMs, one 

essential assumption of MaxEnt is that the presence-data are an independent sample from 

the species’ unknown probability distribution of occurrence over the study area 

(PHILLIPS; ANDERSON; SCHAPIRE, 2006). Given the shortcomings of NHCs due to 

collectors’ bias mentioned above, this assumption may not be met. 

With a large set of plots with quantitative data species abundances may be 

estimated by a spatial interpolation of local species’ abundances (TER STEEGE et al., 

2013). Based on plot data, where all species are collected (regardless of commonness or 

rarity), the interpolation method arguably suffers less from the collectors’ bias and is 

exclusively based on location. The abundance maps may serve as the species’ estimated 

probability distribution and a higher local abundance implies a higher probability of 

collecting. That is, the chance of encountering a species is higher in a region where the 

relative abundance of that species is high, than where the relative abundance is low. With 

spatially interpolated abundances we may thus test whether NHCs can actually be 

considered a random sample of the unknown probability distribution.  
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Here we test how the geographic distribution of NHCs relates to the species 

relative abundance. To achieve this, we address the following questions: 1) Do NHCs 

represent an independently drawn sample from the unknown probability distribution of a 

species? And 2) how does MaxEnt’s predicted environmental suitability compare to plot 

abundance data and spatial interpolation of species abundances? To answer these 

questions, we used NHCs and abundance plot data of 227 hyperdominant Amazonian tree 

species, which are the most common tree species that together make up half of all trees 

with a diameter (dbh) over 10 cm in Amazonia (TER STEEGE et al., 2013, 2016), the 

most biodiverse rainforest on Earth. We used NHCs and MaxEnt to construct presence-

only SDMs for all 227 species and constructed the abundance maps by spatial 

interpolation of the plot abundance data for all species as well. To answer the first 

question, we compared the collection records to the interpolated abundance maps for each 

species. Secondly, we compared MaxEnt’s predicted environmental suitability maps to 

the same interpolated abundance maps for each of the 227 species. 

3.2 Methods 

3.2.1 Species 

We focused our analysis on 227 hyperdominant Amazonian tree species. The 

hyperdominant species are the most common tree species in Amazon, and together make 

up half of all trees with a dbh over 10 cm (TER STEEGE et al., 2013). We chose only 

hyperdominant species to reduce the emergence of too many ‘false absences’ when plot 

data are interpolated into abundance maps. They present the largest probability of 

occurrence in the plots where they are present in the surrounding area. 

3.2.2 Collections 

Species collections were downloaded from GBIF (August 2017, www.gbif.org). 

We used data from the species’ complete extent of occurrence to prevent deficiencies that 

are associated with SDMs based on a species’ partial geographic range, such as under-

prediction (RAES, 2012). All individuals were assigned to species level; intraspecific 

levels were ignored.  
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Taxonomic names were checked with the Taxonomic Name Resolution Service 

(TNRS, http://tnrs.iplantcollaborative.org/). Although misidentification may represent a 

major problem in tree plots, we assume it is less severe in common species such as the 

hyperdominants; which are better represented in herbaria and more likely to be collected 

fertile (TER STEEGE et al., 2016). We assume that misidentification is within acceptable 

limits. 

3.2.3 Collections cleaning pipeline 

The cleaning pipeline consisted of a two-step process to remove inconsistencies 

from GBIF downloaded data (GBIF records). The first step consisted of removing all 

records with missing latitude, longitude or locality information (imprecise georeferences) 

(MALDONADO et al., 2015) and all duplicates at 0.5-degree spatial resolution (BOYLE 

et al., 2013). With the GeoClean function from speciesgeocodeR R Package (ZIZKA; 

ANTONELLI, 2015) we also removed coordinates assigned to capital cities, coordinates 

with latitude equal to longitude, coordinates equal to exactly zero; coordinates based on 

centroids of provinces, and corrected country references (cleaned GBIF records). 

In the second step we used a kernel-density estimate function to remove spatial 

outliers from the cleaned GBIF data, assuming that these are misidentifications or 

incorrect coordinates not filtered by the step described above. This function calculates a 

fixed-bandwidth kernel-density estimate of the point process density function that 

produced the point patterns (DIGGLE, 1985), using the density.ppp function from spatstat 

R Package (BADDELEY; RUBAK; TURNER, 2015) to generate a kernel-density 

estimate. Outliers were identified and removed based on the kernel-density values for 

each species coordinate, using a threshold based on a quantile function from stats R 

Package (R CORE TEAM, 2016) (kernel-density estimate GBIF records). 

The quantile threshold was set according to the number of Amazonian regions in 

which a species occurred, six in total as defined by ter Steege et al. (2013). The quantile 

threshold was larger for species with narrow distribution (occurring in one to three 

Amazonian regions) and smaller for species with wide distribution (occurring in more 

than three Amazonian regions).  
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As some hyperdominants are very widely distributed in Amazonia a larger 

quantile threshold cuts off too many occurrences, removing not only outliers, but also 

potential correct occurrence or entire occurrence clusters. Both steps reduced the number 

of species collection records (Appendix S4), and the predicted area of occupancy 

(Appendix S5). 

3.2.4 Plot abundance data 

Abundance maps were constructed using 1675 1-ha tree inventory plots well 

distributed across Amazonia (defined as the tropical rain forest of the Amazon basin and 

the Guyana Shield) from the Amazon Tree Diversity Network (ATDN) 

(http://atdn.myspecies.info/). All individuals with ≥ 10 cm diameter at breast height (dbh) 

were recorded within the plots (TER STEEGE et al., 2013). Because a relatively small 

number of collections from these plots have been deposited in herbaria, they constitute a 

dataset nearly independent from the NHCs. 

3.2.5 Constructing abundance maps 

Inverse distance weighting (IDW) interpolation was used to create abundance 

maps from the plot abundance data. First, Amazonia was divided into 2193 0.5-degree 

grid cells. We then constructed the inverse distance weighting (IDW) models based on 

relative abundance following ter Steege et al. (2015). Then, the relative abundance (RA) 

for each cell was defined as RAi = ni/N, where: ni = the number of individuals of specieI 

i, and N = the total number of trees. IDW models were based on the nearest 150 plots 

within a limit of 300 km distance. Each plot weight was calculated by taking the square 

root of the distance in degrees. The 150 plots that were taken into account ensured that 

within an area consisting of absence plots only, the species is predicted to be absent. In 

addition, the 3-degree distance limit causes the model to predict the absence of a species 

when no occurrence plots are present within a radius of 3 degrees. This setting is based 

on the notion that within a non-environmental model a species’ extent of occurrence is 

restricted by dispersal limitation only (GASTON, 2009). The maximum dispersal 

distance has been optimized to a 3-degree distance by determining the best match between 

the IDW maps and the Fisher’s Alpha diversity map of all species (TER STEEGE et al., 

2003). 
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3.2.6 Constructing presence-only SDMs using MaxEnt 

We used MaxEnt version 3.3.3k (PHILLIPS; ANDERSON; SCHAPIRE, 2006; 

PHILLIPS; DUDÍK; SCHAPIRE, 2004), to construct presence-only SDMs for all the 227 

species. Data of 19 environmental variables were downloaded from WorldClim 

(HIJMANS et al., 2005). These included variables related to temperature and 

precipitation. Since collinearity, the non-independence of predictor variables, potentially 

leads to the wrong identification of relevant predictors for the model, we used the 

common Spearman’s rank correlation coefficient threshold of |rho|> 0.7 to identify 

correlated variables (DORMANN et al., 2013). 

Subsequently, we selected least correlated variables (|rho|<0.7) based on 

biological relevance and their loadings in a principal component analysis (PCA). The 

PCA consisted of all environmental variables for all collection localities of the 227 

species. For temperature, we selected isothermality, temperature seasonality, and 

maximum temperature of warmest month. For precipitation we chose annual 

precipitation, wettest month precipitation and driest month precipitation. All the 

environmental variables were cropped to the extent of the Neotropics (RAES, 2012), and 

aggregated to a 0.5-degree spatial resolution, using the function ‘mean’ from R package 

‘raster’ (HIJMANS; VAN ETTEN, 2016). We used precipitation and temperature 

variables to assess MaxEnt’s predicted environmental suitability based on climate only. 

In the MaxEnt feature settings we excluded the product, threshold and hinge features 

given their lack of biological justification with the variables used (BOUCHER-

LALONDE; MORIN; CURRIE, 2012; MEROW; SMITH; SILANDER, 2013). 

Correcting for geographical sampling bias has been found to improve the 

predictive performance of MaxEnt (SYFERT et al., 2013). Also, environmental bias can 

be assessed by environmental filtering, which improves MaxEnt discriminatory ability 

(VARELA et al., 2014). We produced a bias file to employ the target-group background 

method recommended by Phillips and Dudík (PHILLIPS; DUDÍK, 2008), an option 

which is implemented in MaxEnt.   
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The bias file consisted of a binary raster grid based on all Amazon tree species 

collections (TER STEEGE et al., 2016), at each grid cell downloaded from GBIF, which 

reflects local survey effort. This is an essential step in the analysis, given MaxEnt’s 

assumption that the occurrences are independently drawn from the unknown probability 

distribution of the species.Without a bias file, sampling bias could severely reduce 

model’s accuracy. We used the bias file to produce a background file according the efforts 

of collection. Finally we used a convex hull around cleaned occurrences (kernel-density 

estimate GBIF records) of each species to estimate their extent of occurrence (IUCN, 

2012), plus a buffer of 300 km, equal to the buffer set for the IDW analysis, to crop the 

area of predicted environmental suitability . The latter is our predicted area of occupancy. 

3.2.7 Data analysis 

We compared collection presences and absences to IDW relative abundance to 

answer our first question whether NHCs are independent drawn from the unknown 

probability distribution. A binomial generalized linear model (logit regression) was used 

to determine if a significant positive relationship existed between the probability of being 

collected and predicted local relative abundance. 

To answer the second question, how MaxEnt’s predicted environmental suitability 

compares to IDW relative abundance, we first tested which species’ MaxEnt maps were 

significantly different from random expectation with a bias corrected null-model (RAES; 

TER STEEGE, 2007a). For each species, 99 null-models were generated by randomly 

drawing n collection localities without replacement from the same spatial grid as the 

environmental layers, with n being the number of geographically unique collections for 

that species. Using an upper one-sided 95% confidence interval, we determined the 

probability value of the observed AUC as calculated by MaxEnt against those generated 

by the null distribution. If the species’ observed AUC value ranks 95 or above, the chance 

that a random set of n points could generate an equally good model is less than 5%, hence 

considered significantly different from random expectation. All species for which the 

SDM prediction did not deviate significantly from random expectation were excluded 

from further analysis. Second, a Spearman Rank Correlation test was used to test the 

relationship between MaxEnt logistic output and IDW relative abundance at plot 

localities.  
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Additionally, following VanderWal et al. (2009), we determined the linear 90th 

percentile quantile regression between the IDW relative abundance and MaxEnt logistic 

outputs at plot localities. The confidence intervals of the linear quantile regressions were 

calculated with the Markov chain marginal bootstrap method as suggested by 

Kocherginsky et al. (2005). We computed the correlations and regressions for all plots 

separately, even if multiple plots were present in one grid square. 

Third, we tested the predictive performance of MaxEnt and IDW. For MaxEnt, its 

logistic output was transformed into binary maps with a 10% training presence threshold. 

Although the maximum sum of sensitivity and specificity is considered to be the best 

threshold method for presence-only SDMs by Liu et al. (2013), we followed the advice 

of Merow et al. (2013) to avoid measures with specificity because they are based on 

absences that are unknown in this analysis. Then we tested its sensitivity by calculating 

true positive rate of the binary maps against plot presence. That is, the fraction of the grid 

cells with a plot for which MaxEnt predicted the species correctly to be present. Finally, 

we calculated the median predicted area of occupancy. 

For IDW, its output was transformed into binary maps by converting the grids 

cells with RA>0 into 1. Last, naturally non-forested areas were excluded from the maps 

based on Soares-Filho et al. (2013). We then calculated its output true positive rate against 

collections presences and absences. That is, the fraction of the grid cells with a collection 

for which the IDW relative abundance predicted the species correctly to be present. 

Finally, we also calculated the median predicted area of occupancy for IDW. 

All calculations and analyses were performed with R version 3.0.33, including the 

R packages raster (HIJMANS; VAN ETTEN, 2016), rgdal (BIVAND; KEITT; 

ROWLINGSON, 2014), gstat (PEBESMA; GRAELER, 2014), dismo (HIJMANS et al., 

2017b), vegan (OKSANEN et al., 2015), quantreg (KOENKER, 2013), sp (PEBESMA; 

BIVAND, 2014), rJava (URBANEK, 2013) and SDMTools (VANDERWAL et al., 

2014). 
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3.3 Results 

3.3.1 NHCs data distribution and relative abundance analysis 

The analysis testing our first question, whether NHCs are an independent draw 

from the unknown probability distribution, resulted in a significant (P<0.05), but very 

weak positive relationship for 149 (66%) species of the 227. For these species the chance 

of being collected indeed increased slightly with higher interpolated relative abundance. 

For the other 78 species (34%), this relationship was non-significant or negative 

(Appendix S1). 

3.3.2 Predicted environmental suitability compared to species relative abundances 

Further analyses were carried out using only 170 species. Species, that had 

MaxEnt’s predicted environmental suitability not significantly different from a random 

expectation tested with bias corrected null models, were excluded (57 species). For 161 

of the 170 species (95%), MaxEnt’s predicted environmental suitability was also 

significantly correlated with interpolated abundance (P<0.05). The correlations and, thus 

the biological significance, were low however, with a mean rho (Spearman rank 

correlation) of 0.26 (Fig. 3.1 A).  

A linear 90th quantile regression revealed that for 135 (79%) of the 175 species, 

the logistic output of MaxEnt could significantly (P<0.05) predict the highest 10% of the 

local relative abundance values. The slope of the regression and thus the biological 

significance was very low, with a mean slope of only 0.01 (Fig. 3.1 B).  
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Figure 3.1. Frequency distributions for 189 significant hyperdominant Amazonian tree 
species of (A) the Spearman’s correlation index rho between MaxEnt’s predicted 
environmental suitability and relative local abundance of the plots; (B) The slopes of 
the linear 90th percentile quantile regression between MaxEnt’s predicted 
environmental suitability and the relative local abundance of the plots; (C) The true 
presence (sensitivity) of the distribution predicted by the IDW maps compared to the 
collection localities; and (D) The true presence (sensitivity) of the distribution predicted 
by the MaxEnt maps compared to the plot presence. 
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We also investigated the performance of the IDW output against NHCs data and 

the MaxEnt output against plot presence (sensitivity), to check whether the models were 

accurate references to the occurrence data of each other (Appendix S2). Approximately 

87% of the grid cells with species’ NHCs were correctly predicted as present by the IDW 

maps with a median true positive rate of 0.87 (Fig. 3.1 C). The same analyses for MaxEnt 

showed that 88% of the grid cells with plot presence were correctly predicted by MaxEnt 

maps, with a median true positive rate of 0.88 (Fig. 3.1 D). Sensitivity for both analyses 

was high. 

We provide maps (combined MaxEnt and IDW maps [as in Fig. 3.2]) for all 

species in the supplementary material S3. The predicted environmentally suitable region 

and the abundance distribution were similar for very abundant species with a large extent 

of occurrence, such as Brosimum rubescens Taub. (Fig. S3_14A), Conceveiba guianensis 

Aubl. (Fig. S3_32A) and Eschweilera coriacea (DC.) S.A.Mori (Fig. S3_49A). The same 

was true in the case of the species Clathrotropis glaucophylla Cowan (Fig. S3_30A) and 

Cenostigma tocantinum Ducke (Fig. S3_26A), despite the fact that neither species has a 

wide extent of occurrence. 

Figure 3.2. The predicted area of occupancy by MaxEnt (green) and the IDW map 
(grey) of (A) Triplaris weigeltiana (Rchb.) Kuntze; and (B) Macrolobium acaciifolium 
(Benth.) Benth. The localities of the collections, presence and absence plots are also 
indicated. Maps created with custom R script. Base map source (country.shp, 
rivers.shp): ESRI. 

 

Fonte: ESRI (2016); R Core Team (2018).  
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Moreover, MaxEnt also correctly predicted the environmental unsuitability of 

non-forested savanna areas, which are located in the north (Brazil, Guianas and 

Venezuela) and south of the map (northern Bolivia). These close matches apply to very 

abundant species with a large extent of occurrence, such as Licania micrantha Miq. (Fig. 

S3_87A), and Ocotea aciphylla (Nees & Mart.) Mez (Fig. S3_111A). 

For Triplaris weigeltiana (Rchb.) Kuntze, a species with a northern Amazonian 

distribution, MaxEnt also correctly predicted its absence in these northern non-forested 

areas (Fig. 3.2 A, S3_160 A, B). In this case MaxEnt was able to establish a relationship 

between species distribution and vegetation type, based on climate variables (temperature 

and precipitation) and species occurrence. For Macrolobium acaciifolium (Benth.) 

Benth., a riverine species, the IDW presented limitations. This species is rarely recorded 

in plots, because the plots are mostly far from river edges. Thus, the species was found 

only in plots near to major rivers such as the Amazon. In this case NHCs provided better 

information about species occurrence, as collectors can reach areas closer to other smaller 

rivers aiming to collect more species. In such a case, MaxEnt maps presented a wider 

distribution for the species (Figs. 3.2 B, S3_92 A-C). 

IDW maps predicted widespread distributions for palms, for which the MaxEnt 

estimates were in sharp disagreement. Palms species are more difficult to collect, which 

can result in a lack of specimens in NHCs (TER STEEGE et al., 2013). IDW maps appear 

to be more accurate for these species, because all species are recorded inside plots. In 

eastern Amazonia this was particularly severe because NHCs showed a large lack of 

occurrence in comparison with plot data but also proper locations were rejected by the 

KDE because of the huge amount of palm occurrence data from the Aarhus University 

Palm Transect Database in western Amazonia. Some of the species affected were Attalea 

butyracea (Mutis ex L.f.) Wess.Boer (Fig. S_8A), Euterpe precatóriaria Mart. (Fig. 

S3_60A), Iriartea deltoidea Ruiz & Pav (Fig. S3_72A), Oenocarpus bacaba Mart. (Fig. 

S3_13A), Oenocarpus bataua Mart. (Fig. S3_114A) and Socratea exorrhiza (Mart.) 

H.Wendl. (Fig. S3_150A).  
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3.3.3 NHCs data cleaning treatment and MaxEnt map building 

All 227 hyperdominant species had records excluded by the data cleaning 

treatment, the consequence of records that either lack geographic information, are 

duplicates at the used grid cell resolution of 0.5 degree or were outliers based on a kernel-

density estimate (Appendix S4). An average of 50% of the records was excluded. The 

first twelve species with the most excluded records were palms, with a mean of 96% of 

excluded records. The total average of excluded records decreased to 43% when palms 

were taken out of the analyses (Appendix S4). This high percentage is due to the huge 

amount of palm occurrence data of the Aarhus University Palm Transect Database 

(CÁMARA-LERET et al., 2016). At this moment this database contains 543,000 records, 

all available in GBIF. Most of these records represent observations in many plots inside 

the same grid cell, thus these records were removed and considered as a single 

observation. 

After the kernel density estimate treatment the average of excluded records was 

57%, presenting an increment of 6.7% in the total amount of records excluded. Eperua 

purpurea Benth. and Eperua leucantha Benth. collections were in good agreement with 

plot data distribution, after outliers were excluded by the kernel density estimate 

(Appendix S5). In the case of Eperua falcata Aubl., some occurrences in Colombia and 

Venezuela were in fact misidentifications of Eperua leucantha Benth., since this species 

occurs only in the Guianas (H. ter Steege, pers. obs.). The kernel density estimate function 

correctly removed these occurrences outside the E. falcata cluster observed in the Guianas 

(Fig. 3.3 A). Some occurrences of Licania alba (Bernoulli) Cuatrec. in southeast 

Amazonia, an area with no plot data, were also removed by the kernel-density estimate 

function (Fig. 3.3 B).  
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Figure 3.3. MaxEnt environmental suitability maps for (A) Eperua falcata Aublet.; (B) 
Licania alba (Bernoulli) Cuatrec.. MaxEnt maps constructed using GBIF records, 
cleaned GBIF records, kernel-density estimate GBIF records, and kernel- density 
estimate GBIF records plus the buffer clip. Black dots: GBIF records. Red dots: GBIF 
records after the use of the cleaning pipeline. Dashed blue line: buffer based on a convex 
hull around species cleaned collections. Light blue: predicted environmental suitability 
using GBIF records. Light green: predicted environmental suitability using cleaned 
GBIF records. Medium green: predicted environmental suitability using kernel density 
estimate GBIF records. Dark green: predicted environmental suitability using kernel 
density estimate GBIF records and the buffer clip, resulting in the final predicted area 
of occupancy. Maps created with custom R script. Base map source (country.shp, 
rivers.shp): ESRI. 

 

Fonte: ESRI (2016); R Core Team (2018). 

 

Because of the use of the buffer treatment to limit MaxEnt predictions around the 

species’ extent of occurrence, MaxEnt maps predicted an area of occupancy close to that 

of the IDW maps., The median value for MaxEnt’s area of occupancy was 1354 0.5-

degree grid cells, and the median for IDW was 1217. For 98 (58%) of the 170 species, 

MaxEnt predicted an area of occupancy bigger than the that predicted by IDW, and for 

115 (42%) of the species IDW had a predicted area of occupancy bigger than MaxEnt. In 

15% of the cases (26 species) the size difference in area of occupancy was smaller than 

5% (Appendix S2).  
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3.4 Discussion 

3.4.1 Using NHCs for presence-only SDMs 

Collection density was weakly related to relative abundance in most tree species, 

and for 34% there was no positive relationship between the chance of being collected and 

local abundance, violating the assumption of MaxEnt that collection localities are an 

independently drawn sample from a species’ unknown probability distribution 

(PHILLIPS; ANDERSON; SCHAPIRE, 2006). The differences between the distribution 

of NHCs and local abundance could limit the ability of presence-only SDMs to predict 

species probability of distribution as predicted by spatial interpolation of local species’ 

abundance. 

MaxEnt’s premise that species occurrences are drawn randomly from the 

unknown probability distribution (PHILLIPS; ANDERSON; SCHAPIRE, 2006) may not 

be met for two reasons: 1) collections are spatially biased with regard to environmental 

conditions (PHILLIPS et al., 2009); 2) and collections are spatially biased with regard to 

areas of high abundance, with underrepresentation of in areas of high abundance and 

overrepresentation in areas of low abundance. Much attention has been given to the 

possible impacts of spatial bias on the performance of presence-only SDMs, with some 

showing a negative impact on these models (FOURCADE et al., 2014; PHILLIPS et al., 

2009; SYFERT et al., 2013), and others arguing for the robustness of MaxEnt against 

spatial bias (GRAHAM et al., 2008; LOISELLE et al., 2008). However, little attention 

has been given to the second issue. With our plot dataset, we addressed the relationship 

between collection localities and the predicted spatial abundance distribution. 

In 66% of the cases we found that a higher local relative abundance indeed 

increased the chance of being collected, although the correlations were very weak (Fig. 

3.1 A), and the majority of collections originated from areas with a low relative 

abundance due to the large areas where a given species’ abundance is low. Even 

hyperdominant species are usually only dominant in one or two of the six regions of 

Amazonia, most hyperdominant have a large geographic extent of occurrence but are 

habitat specialists (TER STEEGE et al., 2013). Steege et al. (2016) also found that 

abundance is a poor predictor for the number of collections of a species compared to the 

size of its extent of occurrence. Additionally, herbaria are characterized by the earlier 
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discussed collectors’ bias (TER STEEGE et al., 2011). Although we addressed the spatial 

bias of survey effort by including a bias-based background file in our MaxEnt modelling, 

the lack of a significant positive relationship between relative abundance estimated by 

IDW and collection density for many species suggests that this assumption of MaxEnt is 

not met because of the way species are collected. 

3.4.2 MaxEnt maps vs. IDW maps 

We also asked if MaxEnt maps would be a close match to the IDW maps. In 

general, environmental suitability does not reflect a species abundance. Presence-only 

SDMs, such as MaxEnt, are based on correlations between species presence and 

environmental conditions, predicting the environmental suitability for a species, and not 

their realized distribution (ARAÚJO; PETERSON, 2012). Relative abundance in the 

other hand is based solely on abundance, estimating the number of trees belonging to each 

species in the grid cells (STEEGE et al., 2015). The Spearman’s rank correlation and the 

linear 90th percentile quantile regression showed a very weak positive relationship 

between MaxEnt’s predicted environmental suitability and IDW relative abundance 

prediction at plot localities, contrary to the results of VanderWal et al. (2009), who found 

a strong relationship between the two. Their research differs in that they modelled a 

biogeographical region with tropical and subtropical rainforests, and also drier and 

warmer environments. The relationship between environmental suitability and local 

abundance is likely to be stronger when more (extreme) divergent conditions are included, 

such as areas from different biomes. Perhaps Amazonia’s less divergent conditions, 

representing perhaps a one single biome, in a much larger area, are potentially responsible 

for this weak relationship. 

To test their further predictive performances, we also converted both outputs to 

binary maps. Some studies have addressed questions about the transformation of SDM 

predictions into discrete representations such as binary maps, aiming to estimate area of 

occupancy, species richness and others applications (CALABRESE et al., 2014; 

GUILLERA-ARROITA et al., 2015; LAHOZ-MONFORT; GUILLERA-ARROITA; 

WINTLE, 2014; LAWSON et al., 2014).   
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Binary maps can add more uncertainties to model predictions, especially because 

it is necessary to set a threshold to distinguish between species presence and absence, 

which can be selected arbitrarily or without taking into account the context of the study. 

However, we avoided thresholds based on specificity (prediction of absences) because of 

the lack of absence data (MEROW; SMITH; SILANDER, 2013). In many cases our 

MaxEnt binary maps presented an area of occupancy close to those made with IDW, 

presenting a high median sensitivity (88%). Moreover, our MaxEnt binary maps also 

correctly predicted absence in naturally non-forested areas in northern Amazonia for 

many species (Appendix S3). 

MaxEnt’s environmental suitability mostly predicted much larger area of 

occupancy than those predicted with the IDW relative abundance. We reduced this effect 

estimating species extent of occurrence using a convex hull around each species records, 

plus a buffer of 300 km. This approach minimized MaxEnt’s overestimation of the area 

of occupancy beyond the species’ known geographical range (extent of occurrence), over 

climatically suitable areas, by restricting the species’ predicted suitable habitat, providing 

a more conservative estimate for the species’ area of occupancy (Appendix S5) 

(BOUCHER-LALONDE; MORIN; CURRIE, 2012; IUCN, 2012). 

The IDW relative abundance models showed an opposite behavior, 

underpredicting areas where collections are present but where no plots have recorded the 

species. The high sensitivity of the MaxEnt compared to those of the IDW is in agreement 

with a previous study (MAHER et al., 2014), where models fit to presence-only data 

yielded higher sensitivity but a lower specificity than presence-absence models. 

Nevertheless, in our case, the IDW relative abundance yielded sensitivity rates based on 

collection localities that were as high as the sensitivity rates of MaxEnt’s predicted 

environmental suitability based on plot presence localities (87%). Thus, both models 

function similarly in predicting species presences.  
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3.4.3 Collections versus abundance plot data 

In some cases, collections were located outside the species’ extent of occurrence 

predicted by the IDW maps. This divergence follows from the methodical differences 

between collections and plot assessments. The distributions as predicted by the IDW do 

not always cover the whole species’ extent of occurrence. Because there are only 550 

individuals (on average) in one plot, and 16,000 tree species in Amazonia (TER STEEGE 

et al., 2013), one plot obviously cannot contain all species that are present in the 

surrounding area. 

Furthermore, many plots, lacking a given species, are within the extent of 

occurrence predicted by IDW, and many plots with absences are located in near proximity 

of plots with presence data. This results in low specificity values. NHCs comprise a 

species’ range including areas of low abundance; while plot data have information on 

abundance, but may miss areas of low abundance, and, thus, may miss rare species more 

easily. 

3.4.4 Environmental suitability versus dispersal limitation 

The second large difference between the two models is the theoretical principles 

they are based upon. MaxEnt is based on environmental suitability, which is appropriate 

since correlations between species’ distributions and climate are evident (ARAÚJO; 

PETERSON, 2012; BOUCHER-LALONDE; MORIN; CURRIE, 2012). Nevertheless, 

predicting actual (realized) distributions also requires information on biotic interactions, 

dispersal limitation, and other environmental variables, which are beyond presence-only 

SDM (ARAÚJO; PETERSON, 2012). IDW, on the other hand, is based on location only. 

Thus, both models cover only one of the three explanatory variables for species 

distributions. Again, it will depend on the aim of the research which type of model is most 

suitable. In either case predicted species distributions need to be interpreted with caution.  
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3.4.5 Collection data and cleaning pipeline 

We propose a cleaning pipeline to remove possible inconsistencies in collection 

data. Unlike species-specific approaches, many studies use large numbers of species, 

lacking correction because of the great number of references and specialists to be 

consulted (ZIZKA; ANTONELLI, 2015). Collection data available in global datacenters, 

such as GBIF, cannot carry out thorough data-correction procedures, and the quality of 

the records has been debated and tested in some cases (MALDONADO et al., 2015). 

Some records have no locality information, or coordinates are based on cities close to the 

observed distribution, and may contain duplicated data or zeros as information (BOYLE 

et al., 2013; MALDONADO et al., 2015; ZIZKA; ANTONELLI, 2015). 

We used a pipeline that cleans collection data by removing records with a lack of 

geographic information (ZIZKA; ANTONELLI, 2015), and we strongly recommend the 

use of analytical tools to correct inconsistencies present in global databases. The cleaning 

process also removed coordinates considered spatial outliers by a kernel-density estimate, 

omitting locations too far from the central part of the distribution, which we assume to be 

misidentifications. Our results suggest that half of the species records are likely 

inconsistent, missing geographical information, such as latitude, longitude or locality. 

Palms were the most impacted species, because the huge amount of records available with 

high levels of redundancy. 

We used a kernel density estimate (KDE) to remove geographical outliers of the 

NHCs. This function removed e.g. occurrences outside the Eperua falcata Aubl. cluster 

observed in the Guianas (Fig 3.3 A), and Licania alba (Bernoulli) Cuatrec. in southeast 

Amazonia (Fig. 3.3 B). Although the KDE excluded only a small number of records 

compared to the previous cleaning step, it was able to identify some isolated occurrences, 

which we considered likely misidentifications. The KDE, however, showed limitations 

with palm species, removing some eastern Amazonia records, simply caused by the great 

number of collections in the Aarhus University Palm Transect Database in western 

Amazonia.  
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3.5 Conclusion 

We have shown that the NHCs violate the assumption of MaxEnt that collection 

localities are an independently drawn sample from a species’ unknown probability 

distribution. Although we found a relationship between NHCs and relative abundance for 

some species, it was very weak. Additionally, we found that the majority of MaxEnt’s 

predicted environmental suitability values differ from those of the IDW relative 

abundance values, and its results cannot be interpreted as an abundance estimate. 

Nevertheless, MaxEnt predicts probability of occurrence well, and both models largely 

overlap and predict similar areas of occupancy, showing high sensitivities. Furthermore, 

NHCs data should undergo cleaning processes before being used to represent occurrences 

in species distribution models. 

We showed that, half of the species records are likely inconsistent, missing 

geographical information, such as latitude, longitude or locality, and it also may represent 

misidentifications of the species. We therefore conclude that distribution maps as 

generated by MaxEnt should be used with caution. Their application should not be based 

solely on unsupervised models, especially because their easily constructed distribution 

maps are tempting to utilize without indication of probable errors. This outcome is 

particularly important for biodiversity assessments, for which SDMs of a large number 

of species are automatically generated without subsequent checking. Our pipeline 

provides a conservative means to do so. As our pipeline removes inconsistencies from 

NHCs data and estimates area of occupancy in an area slightly larger than the extent of 

occurrence of a species, compatible with IUCN red list assessments (IUCN, 2012; 

SYFERT et al., 2014).  
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CAPÍTULO 4 MODELING THE DISTRIBUTION OF TREE SPECIES OF THE 

AMAZONIAN RAINFOREST TO LONG-TERM CLIMATE CHANGE DURING 

THE MID-LATE HOLOCENE3 

Abstract 

Fossil pollen records from ecotonal southern Amazonia show that humid evergreen 

rainforest expanded southwards, at the expense of dry forest and savanna, in response to 

an increase in late Holocene rainfall. Using species distribution modelling, we model 

environmental suitability for species of two Amazonian tree families, Moraceae and 

Urticaceae, in the mid and late-Holocene, to test the responses of rainforest species to 

long-term climate change. We also test whether modern pollen assemblages of 

Moraceae/Urticaceae from Amazonian paleoecological sites are a good proxy for the 

current abundance of these families, using spatial abundance models based on a large plot 

dataset for Amazonian trees. Mean environmental suitability for species of Moraceae and 

Urticaceae showed a slight increase (2.5%) during the mid-late Holocene (since 6,000 yr 

BP) in Amazonia, in response to rising precipitation. This increase was highest in the 

ecotonal southern part of Amazonia. The accompanied modelled mean species richness 

increased by as much as 132% throughout Amazonia. The total abundance of Moraceae 

and Urticaceae correlated significantly with the modern pollen assemblages for these 

families (R2 = 0.54). Increased precipitation during the late Holocene increased the 

environmental suitability for species of Moraceae and Urticaceae, thus leading to an 

expansion of their ranges in ecotonal southern Amazonia, consistent with previously 

published fossil pollen data. This study establishes links of how the distribution of 

Amazonian tree species changed between past (drier) and current (wetter) climatic 

conditions, favoring ecotonal shift in southern Amazonia. It also inspires questions about 

the future of those species in global change scenarios, especially facing drier conditions. 

Keywords: Climate change, Holocene, Pollen records, Species distribution. 

                                                             
3Em processo de submissão à revista Journal of Biogeography, Qualis A1 na Área de Avaliação de Ciências 
Ambientais. Material suplementar (Appendices S4.1 - S4.4) disponível em: 
https://drive.google.com/file/d/172MpnO6g-i2cD_zS9ANWIojNtZw6p44I/view?usp=sharing. 
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4.1 Introduction 

Tropical South America was influenced by long-term climate change during the 

late Holocene (REIS et al., 2017; RODRÍGUEZ-ZORRO et al., 2018; ROUCOUX et al., 

2013). Significant changes occurred southern Amazonia, as well as several other 

Amazonian regions, driving the rainforest into wetter climatic conditions (BURNHAM; 

GRAHAM, 1999; COHEN et al., 2012; GRAHAM; MORITZ; WILLIAMS, 2006; 

MARTIN et al., 1997; SMITH; MAYLE, 2017), changing seasonality and precipitation 

patterns (BUSH; SILMAN, 2004). The responses of the vegetation to higher late 

Holocene precipitation, associated with a less prolonged and pronounced dry season, 

resulted in a long-term trend of climate driven rainforest expansion in ecotonal areas, 

between Amazonian rainforest, semi-deciduous dry forest, and Cerrado savannas 

(BEERLING; MAYLE, 2006; LATRUBESSE; RAMONELL, 1994; MAYLE et al., 

2004).  

This southward, late Holocene, rainforest expansion is inferred from fossil pollen 

data obtained from lake sediment cores, whereby higher pollen percentages of herbaceous 

taxa (e.g. Poaceae) and indicator tree taxa (i.e. Curatella mericana L.) are representative 

of savannas, and high pollen percentages of evergreen rainforest taxa (in particular > 40% 

Moraceae/Urticaceae type) signify humid evergreen rainforests (BURN; MAYLE; 

KILLEEN, 2010; COLINVAUX; DE OLIVEIRA, 2001; LIU; COLINVAUX, 1988). 

The clearest evidence for late Holocene, climate-driven, rainforest expansion 

comes from fossil pollen data from two lakes – Lagunas Bella Vista and Chaplin – in 

Noel Kempff Mercado National Park in ecotonal Northeastern Bolivia. Surface-sediment 

pollen assemblages reflect the closed-canopy humid evergreen rainforest surrounding 

both lakes today; i.e. 40-50% Moraceae/Urticaceae pollen, and < 10% grass pollen. This 

contrasts with < 20% Moraceae/Urticaceae and ca. 40% Poaceae pollen during drier 

conditions of the middle Holocene, consistent with a mosaic of semi-deciduous dry forest 

and savanna, which dominates the Brazilian Cerrado biome south of Amazonia today 

(MAYLE; BURBRIDGE; KILLEEN, 2000).   
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At Laguna Bella Vista the abundance of Moraceae/Urticaceae pollen increased 

steeply between 2790 cal yr and 1530 cal yr (before present). At Laguna Chaplin, a lake 

100 km further to the south, this rainforest expansion occurred later, between 2240 cal yr 

and 660 cal yr (BURBRIDGE; MAYLE; KILLEEN, 2004; BURN; MAYLE; KILLEEN, 

2010). 

Moraceae and Urticaceae are commonly found in Amazonian rainforests (TER 

STEEGE et al., 2006, 2015), and Moraceae is among the 10 most abundant families in 

Amazonia (TER STEEGE et al., 2013). In the Bolivian wet forests Moraceae are the most 

dominant family in the forest. Modern pollen assemblages of southern Amazonian 

rainforest also show high percentages of Moraceae/Urticaceae pollen (BEHLING; DA 

COSTA, 2000; BEHLING; HOOGHIEMSTRA, 1999). The pollen of these two families 

is well-represented in Amazonian fossil records, but it is difficult to reliably distinguish 

between the genera within the families or even between these two families (BURN; 

MAYLE, 2008). The majority of the grains of pollen identified as Moraceae/Urticaceae 

in southern part of Amazonia have been attributed to Moraceae rather than Urticaceae, 

because Moraceae is much more common than Urticaceae in inventories of vegetation 

plots (BURBRIDGE; MAYLE; KILLEEN, 2004; MAYLE; BURBRIDGE; KILLEEN, 

2000). 

4.2 Aims and approach 

Long-term climate change may have increased the environmental suitability for 

individual species of Moraceae and Urticaceae during the mid-late Holocene. Here, we 

model the distribution of the tree families Moraceae and Urticaceae throughout 

Amazonia, to increasing precipitation during the mid-late Holocene, using species 

distribution modelling, and thereby quantify the spatial scale of climate-driven range 

distribution. To achieve this, we model the environmental suitability based on species 

potential distribution using a conservative pipeline (GOMES et al., 2018) to define the 

area of occupancy (AOO) (IUCN, 2012) of species. We do this for current climate 

conditions and mid-Holocene projections of seven global circulation models (GCMs) 

(HIJMANS et al., 2005). Furthermore, we test if the modern pollen assemblage of 

Moraceae and Urticaceae obtained from the pollen diagrams of the paleoecological sites, 

are a good proxy for the current (relative) abundance of these families. 
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4.3 Methods 

4.3.1 Amazonian base map 

We based Amazonian lowland forest on ter Steege et al (2015). The base map 

consists of 2191 0.5-degree cells (Fig. S4.7). We also followed ter Steege et al (2013) and 

divided the Amazonia area into six regions, Guiana Shield (GS), northwestern Amazonia 

(WAN), southwestern Amazonia (WAS), southern Amazonia (SA), eastern Amazonia 

(EA) and central Amazonia (CA). 

4.3.2 Tree families 

We used the abundance data of Moraceae and Urticaceae provided by the Amazon 

Tree Diversity Network (ATDN, http://atdn.myspecies.info/) to model the relative 

abundance of the two families spatially. To model species distribution based on 

environmental suitability we downloaded collections of Moraceae/Urticaceae from 

Global Biodiversity Information Facility (GBIF, http://www.gbif.org/), based on the most 

recent Amazonian tree species list (TER STEEGE et al., submitted). Taxonomic names 

were checked with the Taxonomic Name Resolution Service (TNRS, 

http://tnrs.iplantcollaborative.org/) and also with the list of ter Steege et al. (submitted), 

to correct for synonyms and non-Amazonian species. All collections were also checked 

for inconsistencies using a cleaning pipeline (GOMES et al., 2018). 

4.3.3 Collections 

We downloaded species collections from GBIF (January 2018) using ‘gbif’ 

function from R package ‘dismo’ (HIJMANS et al., 2017b). We used data from all 

‘Neotropic’, using the complete extent of occurrence of the species to prevent SMDs 

deficiencies that are associated with models based on a species’ partial geographic range 

(RAES, 2012). We assigned all individuals to species level and intraspecific levels were 

ignored. We used a cleaning pipeline to deal with data inconsistencies, possible outliers 

and imprecise georeferences (BOYLE et al., 2013; GOMES et al., 2018; MALDONADO 

et al., 2015; ZIZKA; ANTONELLI, 2015). 
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4.3.4 Environmental suitability 

We estimate mean environmental suitability based on species potential 

distribution as predicted by species distribution modelling, constrained by species 

extension of occurrence (EOO) plus a buffer of 300 km, resulting in the  used species 

distribution models to estimate mean environmental suitability, based on the area of 

occupancies (AOO) of the species (GOMES et al., 2018; IUCN, 2012). For that, we used 

MaxEnt version 3.3.3k (PHILLIPS; ANDERSON; SCHAPIRE, 2006; PHILLIPS; 

DUDÍK; SCHAPIRE, 2004). We downloaded 19 environmental variable data from 

WorldClim (HIJMANS et al., 2005), based on average monthly interpolated climate data. 

Species’ original AOO was based on current conditions (average for 1950-2000). 

Species’ past AOO for mid-Holocene (ca. 6,000 yr BP) was based on seven IPPC5 global 

climate model (GCM) projections, BCC-CSM (XIAO-GE; TONG-WEN; JIE, 2013), 

CCSM4 (YEAGER et al., 2012), HadGEM2-ES (JONES et al., 2011), IPSL-CM5A-LR 

(SWINGEDOUW et al., 2013), MIROC-ESM (WATANABE et al., 2011), MPI-ESM-

LR (GIORGETTA et al., 2013) and MRI-CGCM3 (TATEBE et al., 2012). 

We based the selection of the variables on their biological relevance and on their 

scores using a Spearman’s rank correlation coefficient threshold of |rho|> 0.7 

(DORMANN et al., 2013). We focused on variables related to precipitation and 

seasonality, since seasonal climate produced by latitudinal shifts of the South American 

Summer Monsoon is the overriding control over the geographical limit of the Amazonian 

rain forest (LATRUBESSE; RAMONELL, 1994; MARTIN et al., 1997). Furthermore 

taxa range limits are defined by their ability to endure dry conditions, where the threshold 

for the studied families presence is ~2,000 mm mean annual precipitation and ~-200 mm 

cumulative water deficit (ESQUIVEL-MUELBERT et al., 2016). We selected 

isothermality, temperature seasonality, max temperature of warmest month, precipitation 

seasonality, precipitation of driest quarter and climatologic water deficit (CWD). We 

followed Chave et al. (2014) to estimate CWD, which is a measure to calculate how much 

evapotranspiration exceeds rainfall.  
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We cropped all environmental variables to Neotropics extent (RAES, 2012). We 

also used the function ‘mean’ from R package ‘raster’ (HIJMANS; VAN ETTEN, 2016) 

to aggregate all variables to 0.5-degree spatial resolution. We corrected the SDMs for 

geographical sampling bias (GOMES et al., 2018) and used only product, threshold and 

hinge MaxEnt features (BOUCHER-LALONDE; MORIN; CURRIE, 2012; MEROW; 

SMITH; SILANDER, 2013). Species with a small number of collections (<6) were not 

used to model environmental suitability since they may develop inaccurate predictions 

(VAN PROOSDIJ et al., 2015). 

4.3.5 Species relative abundance 

Abundance maps were constructed using 1912 1-ha tree inventory plots 

distributed across Amazonian rainforest (Amazon basin and the Guyana Shield) from the 

Amazon Tree Diversity Network. We recorded all individuals with ≥ 10 cm diameter at 

breast height (dbh) within the plots (TER STEEGE et al., 2013). 

4.3.6 Constructing abundance maps 

We used inverse distance weighting (IDW) interpolation to produce abundance 

maps from the plot abundance data. We produced the inverse distance weighting (IDW) 

models based on relative abundance (STEEGE et al., 2015). We defined the relative 

abundance (RA) for each cell as RAi = ni/N, where: ni = the number of individuals of 

speciIs i, and N = the total number of trees. IDW models were based on the nearest 150 

plots within a 300 km distance limit (GOMES et al., 2018). The plot weights were 

calculated by taking the square root of the distance in degrees.  
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4.3.7 Pollen data 

We analyzed pollen diagrams from 45 Amazonian paleoecological sites 

(BEHLING, 1996, 1998, 2001; BEHLING et al., 2001a; BEHLING; DA COSTA, 2000; 

BEHLING; HOOGHIEMSTRA, 2000; BERRÍO et al., 2002; BURBRIDGE; MAYLE; 

KILLEEN, 2004; BUSH et al., 2000; BUSH; COLINVAUX, 1988; COLINVAUX et al., 

1997; DA SILVA MENESES; DA COSTA; BEHLING, 2013; IRION et al., 2006; 

LEDRU, 2001; LEDRU et al., 1997; LIU; COLINVAUX, 1988; MAYLE; 

BURBRIDGE; KILLEEN, 2000; ROUCOUX et al., 2013; TAYLOR et al., 2010; 

URREGO et al., 2013; WENG; BUSH; ATHENS, 2002; WENG; BUSH; SILMAN, 

2004) to access the percentage of modern pollen assemblages in the sediment cores of the 

paleoecological sites for both, Moraceae and Urticaceae families (Appendix S4.1; Fig. 

S4.8). The paleoecological sites are distributed within Amazonian lowland rainforest 

(Amazonian base map). 

4.3.8 Data analysis 

To test the responses of Amazonian rainforest species to long-term climate 

change, we modelled current and past tree species distribution to assess increments in its 

environmental suitability between the drier middle Holocene and wetter present day 

(6,000 yr BP). We statistically validated species’ models, testing which of them were 

significantly different from a random expectation using bias corrected null-models 

(RAES; TER STEEGE, 2007a). We then excluded all species which models were not 

significantly different from the null-models. We produced two SDMs for each species: 

‘current’ and ‘mid-Holocene’. For mid-Holocene we considered only grid cells predicted 

by all IPPC5 GCMs. To estimate the environmental suitability for Moraceae and 

Urticaceae we averaged the models of the top 20 most dominant species of each family 

(STEEGE et al., 2015), since they represent most of the individuals of the families (more 

than 50% for both families).  
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We also estimated species richness and its increment between mid-Holocene and 

current climate. To assess species richness we transformed MaxEnt logistic output of each 

species into binary maps with a 10% training presence threshold, using a convex hull plus 

a buffer of 300 km around species records to estimate their area of occupancy (AOO) 

(GOMES et al., 2018; IUCN, 2012; SYFERT et al., 2014). Then, we stacked the 

thresholded maps of all species (GOMES et al., submitted). Finally, fitted a linear model 

to test how pollen records of Moraceae/Urticaceae related to the relative abundance of 

both families on the paleoecological sites used. 

4.4 Results 

The 20 most abundant Moraceae and Urticaceae species included 13 species of 

Moraceae and 7 species of Urticaceae (Appendix S4.1). Moraceae are generally more 

abundant and the 20 most abundant Moraceae species are roughly 60% more abundant 

than the 20 most abundant Urticaceae species in Amazonia (Appendix S4.1). 

Mean species richness for current and past climate was estimated using 176 

Moraceae and Urticaceae species (113 Moraceae and 63 Urticaceae), which had available 

records in the GBIF database (>5), and models significantly differed from a random 

expectation, tested using null models (Appendix S4.2). Current mean environmental 

suitability and mean species richness were higher in northwestern and central Amazonia 

(Appendix S4.3; Fig. 4.1 A, B). Current environmental suitability was also high in a 

narrow band in the Guiana Shield. Both families showed roughly the same pattern 

(Appendix S4.3; Fig. S4.1; S4.2).  
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Figure 4.1. Current mean environmental suitability and current mean species richness 
for Moraceae and Urticaceae. a, Map for current mean environmental suitability. b, Map 
for current mean species richness. circles in blue, Numbers of species collections by 
0.5-degree cell (a); Number of single species collected by 0.5-degree cell (b). gray line, 
Amazonian rainforest. Maps created with custom R script. Base map source 
(country.shp, rivers.shp): ESRI. 

 

Fonte: ESRI (2016); R Core Team (2018). 

 

Moraceae and Urticaceae are currently common in Amazonian forests in general, 

accounting for 7% of all individuals in the forest on average (Appendix S4.1), but are 

distinctly more dominant in southwestern Amazonia (16%, Appendix S4.1) (Fig. 4.2). 

Southwestern Amazonia showed the highest current mean relative abundance (16%) 

followed by southern Amazonia (8.6%) and northwestern Amazonia (7%). The lowest 

current relative abundance was found in the Guyana shield (3.5%). This contrasts strongly 

with the current environment suitability and species richness patterns (Fig. 4.1 A, B; 2). 

Moraceae, the most common family between the two, dominates this pattern, and showed 

highest current abundance in southern, southwestern, ranging between 0-10.9% (mean of 

4.9%) (Fig. S4.3 A). Urticaceae is more evenly spread with peaks, including parts of 

eastern, southwestern and northwestern Amazonia. Its current relative abundance ranged 

between 0.1-6.3% (mean of 2.0%), with higher mean values in southwest and eastern 

Amazonia (3.5% and 2.5%, respectively) (Fig. S4.3 B).  
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Figure 4.2. Relative abundance for Moraceae and Urticaceae families. circles in blue, 
number of plots with presence of the families. circles in red, percentage of modern pollen 
assemblages in the core’s sediment of the paleoecological sites corresponding to the 
values in Appendix S4.4. gray line, Amazonian rainforest. Maps created with custom R 
script. Base map source (country.shp, rivers.shp): ESRI. 

 

Fonte: ESRI (2016); R Core Team (2018). 

Modern pollen assemblages of Moraceae/Urticaceae in the surface sediments of 

lake cores were a good proxy for the modelled relative abundance of these families (R2 = 

54%, P < 0.05; Fig 4; Appendix S4.4). The Moraceae/Urticaceae pollen assemblages 

showed a high correlation when compared with the relative abundance of Moraceae (R2 

= 59%, P < 0.05). The same analysis using the relative abundance of Urticaceae showed 

only a very weak (R2 = 12%, P < 0.05) (Appendix S4.4; Fig S4.6 A, B).  
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Figure 4.3. Relationship between the tree relative abundance of Moraceae and Urticaceae 
species in modern vegetation versus their modern pollen assemblages. Graph created with 
custom R script.  

 

Fonte: R Core Team (2018). 

 

The mean relative abundance of Moraceae/Urticaceae was higher in the 

paleoecological sites locations in southwestern Amazonia, followed by northwestern, 

central, southern Amazonia, Guiana Shield and eastern Amazonia (Appendix S4.4; Fig. 

4.1). The modern pollen assemblage in the paleoecological sites was higher in 

southwestern Amazonia, followed by northwestern, southern Amazonia, Guiana Shield, 

central and eastern Amazonia. 

During the mid-late Holocene environmental suitability for Moraceae/Urticaceae 

increased over all Amazonia (2.5%). The increment was positive in the Guiana Shield 

(7.4%), eastern Amazonia (4.7%) and in the rainforest–savanna boundaries in 

southwestern (4.0%) and southern Amazonia (0.8%), but negative in central (-0.3%) and 

northwestern Amazonia (-1.6%) (Appendix S4.3; Fig. 4.3). Although the mean increment 

was weak, it ranged widely between -44.2 and 51.2%.  
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The mean increment for Moraceae was positive for all of Amazonia on average 

(4.0%), for the Guiana Shield (11.7%), eastern (6.9%), southwestern (4.1%) and southern 

Amazonia (1.5%), but negative for central (-0.02%) and northwestern Amazonia (-0.8%) 

(Appendix S4.3; Fig. S4.4 A). The mean increment for Urticaceae was positive for 

Amazonia (5.7%), and was higher in eastern Amazonia (19.5%) and the Guiana Shield 

(12.5%). It was negative in southwestern Amazonia (-0.3%), and lower but positive in 

central (3.7%), northwestern (3.4%) and southern Amazonia (1.4%) (Appendix S4.3; Fig. 

S4.4 B). 

Figure 4.4. Increment in mean environmental suitability and increment in mean species 
richness during the mid-late Holocene (%, between current and middle Holocene, last 
6,000 yr Bp. a, Increment in mean environmental suitability during late Holocene. b, 
Increment in mean species richness. Gray line, Amazonian rainforest and Amazonian 
sub-regions (TER STEEGE et al., 2013). Maps created with custom R script. Base map 
source (country.shp, rivers.shp): ESRI. 

 

Fonte: ESRI (2016); R Core Team (2018).  
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The mean predicted species richness for 0.5-degree grid cells strongly increased 

throughout Amazonia during the late Holocene (110%). Mean predicted species richness 

was lower in eastern Amazonia (Fig. 4.1 B), but this region showed the highest increment 

in mean predicted species richness during the late Holocene (345%) (Appendix S4.3; 4.3 

B). Northwestern Amazonia showed the highest predicted species richness, but a lower 

increment during the late Holocene (17%). The mean predicted species richness showed 

the lowest values in southern, southwestern and eastern Amazonia. For Moraceae, the 

mean increment in predicted species richness was higher in a large area in the Guiana 

Shield, central and eastern Amazonia (Appendix S4.3; Fig S4.5 A). 

Urticaceae followed a similar predicted species richness pattern in comparison 

with Moraceae but also showed some peaks in northwestern and southwestern Amazonia 

(Appendix S4.3; Fig S4.5 B). Furthermore, we found that the mean increment in pollen 

assemblage in the paleoecological sites diagrams was higher in southern Amazonia, 

followed by southwestern, northwestern Amazonia, Guiana Shield and central Amazonia, 

but it was negative in eastern Amazonia though (Appendix S4.4). 

4.5 Discussion 

The mid to late Holocene was a time of strong climate change in Amazonia. This 

change of climate clearly affected the habitat suitability of many rainforest species, as 

exemplified by Moraceae and Urticaceae here. Moraceae not only has widely distributed 

species in southern Amazonia, but also species which extend beyond Amazonia into the 

Brazilian Cerrado and Atlantic forest biomes (CARDOSO et al., 2017; TER STEEGE et 

al., 2016). Moraceae species grow, not only within terra firme rainforest, but also 

seasonally-inundated rainforest, semi-deciduous dry forests and savannas (KILLEN, 

1998). Brosimum gaudichaudii Trécul is a Moraceae species that does not even grow in 

rainforest, but is an indicator species for open woodland and Cerrado savanna 

communities (EITEN, 1972; MARCHANT et al., 2002).  
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One of the aims of our study was to determine whether the abundance of 

Moraceae/Urticaceae in modern pollen records serves as a good proxy for their relative 

abundance of these families in the parent vegetation. At an Amazon basin-wide scale we 

found that surface-sediment pollen assemblages of Moraceae/Urticaceae were well 

correlated with the relative abundance of both families lumped together. The pollen 

assemblages from Laguna Bella Vista and Laguna Chaplin were a good signature of the 

rainforest surrounding these lakes in eastern Bolivia (GOSLING et al., 2009; MAYLE; 

BURBRIDGE; KILLEEN, 2000). 

We also found Moraceae/Urticaceae pollen registered in modern assemblages of 

all Amazonian regions being more abundant in southwestern, northwestern and southern 

Amazonia (ABSY et al., 1991; BEHLING et al., 2001b; BEHLING; DA COSTA, 2000; 

BEHLING; HOOGHIEMSTRA, 2000; BERRÍO et al., 2002; BUSH et al., 2000, 2004, 

2007; BUSH; COLINVAUX, 1988; BUSH  SILMAN, M. R., 2007; COLINVAUX et al., 

1988, 1996, 1997; DA SILVA MENESES; DA COSTA; BEHLING, 2013; FROST, 

1988; HERMANOWSKI et al., 2012; IRION et al., 2006; LEDRU, 2001; LIU; 

COLINVAUX, 1988; MAYLE; BURBRIDGE; KILLEEN, 2000; ROUCOUX et al., 

2013; URREGO et al., 2013; WENG; BUSH; SILMAN, 2004). 

Burn et al. (2010) showed that pollen rain from artificial pollen traps are a good 

representation of the surface sediment pollen assemblage of lakes from both moist forests 

of the Madeira-Tapajós ecoregion and the savanna of the Beni ecoregion, where these 

ecosystems could be differentiated not only floristically, but also palynologically. Gosling 

et al. (2009) compared modern pollen rain obtained from artificial pollen traps within 

plots with floristic inventories in northeast Bolivia and their results showed that no taxon 

could be used as an indicator of tropical rainforest or Cerrado savannas. Their results did 

confirm that high abundances of Moraceae (over 40%) could serve as an indicator for 

terra firme rainforest. We conclude that the increases and decreases of pollen in the cores 

can be interpreted as increases and decreases of the abundances of trees of these families 

in the forest.  
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In our analyses, pollen of Moraceae/Urticaceae was present in assemblages of 

sediment cores corresponding to mid Holocene in all Amazonia regions. The pollen 

concentration of Moraceae/Urticaceae increased in the sediment cores between mid and 

late Holocene, especially for the cores in the ecotonal southern and northern parts of 

Amazonia: Loma Linda in eastern Colombia (BEHLING; HOOGHIEMSTRA, 2000), 

middle Caquetá river basin (Colombia) (BEHLING; CARLOS BERRIO; 

HOOGHIEMSTRA, 1999), Fazenda Cigana and Terra indígena Aningal (Roraima, 

northern Brazil) (DA SILVA MENESES; DA COSTA; BEHLING, 2013), and lakes 

Marcio and Tapera in Amapá (northern Brazil) (DE TOLEDO; BUSH, 2007), and further 

increase in forest close to Pantanal (WHITNEY et al., 2011) and increase of 

Moraceae/Urticaceae pollen in Lago do Saci (FONTES et al., 2017). 

Nevertheless, mid Holocene assemblages of Moraceae/Urticaceae pollen were 

registered in sediment cores in all Amazonian regions, consistent with the fact that 

Moraceae species were modelled to be present in those areas, throughout the period. Sites 

where continuous forest cover was suggested by pollen of forest trees included eastern 

Amazonia (BARBERI; SALGADO-LABOURIAU; SUGUIO, 2000), forests near the 

mouth of the Amazon river (BEHLING, 1996), French Guiana, Equador (LIU; 

COLINVAUX, 1988), central around Morro de 6 Lagos (BUSH et al., 2004). 

Moraceae/Urticaceae pollen was present in all these cores with high abundances in 

western Amazonia and much lower, but constant, abundances in the Guyana Shield sites, 

consistent with the low current abundances of these families in the forest at present 

(LEDRU, 2001). Eastern Amazonian sites showed increase of savannas (DE TOLEDO; 

BUSH, 2007), consistent with mean pollen decrease during mid-late Holocene in the 

regions (BEHLING; DA COSTA, 2000; BUSH et al., 2000, 2007). 

For the present analysis, the mean environmental suitability for Moraceae and 

Urticaceae and species richness of the two families was higher in northwestern and central 

Amazonia, and lower in southern regions. A similar pattern was observed by Gomes et 

al.’s (submitted) analysis of the distributions of all Amazonian tree species. Ter Steege et 

al (2003) mapped Amazonian average tree α-diversity and also found a similar pattern, 

and hypothesized that the low diversity in Bolivian and Brazilian ecotonal rainforests 

reflected their recent expansion within the last 2-3 millennia, as shown by Mayle et al 

(2000) (within the last 2-3 millennia).  
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This could imply that these young rainforests are still undergoing succession and 

are still accumulating species (TER STEEGE et al., 2000), and that the high abundance 

of Moraceae and Urticaceae species in these ecotonal rainforests likely reflects their rapid 

dispersal and fast growth rates. In contrast, the higher biodiversity observed in western 

Amazonia may be result of the relatively stable climatic conditions in the region since the 

last glacial period Cheng et al. (2013). Both, predicted species richness and mean 

environmental suitability of Moraceae and Urticaceae contrasted strongly with their 

relative abundance in the forest. The relative abundance was highest in south-western 

Amazonia and lower in northwest and central Amazonia. For Moraceae this pattern was 

more pronounced. 

Species distribution in the tropics is strongly associated with precipitation, and 

taxa with wide ranges, such as Moraceae and Urticaceae, are widespread across the 

precipitation gradient of the region, showing higher tolerance to water-stress 

(ESQUIVEL-MUELBERT et al., 2016). Environmental suitability was also higher in a 

narrow band in Guiana Shield, but neither species richness or abundance were high in 

that area. This may reflect the influence of other factors on species distribution, such as 

biotic interactions which may dissociate a species’ observed distribution from its potential 

distribution as predicted by environmental suitability (ANDERSON; MARTÍNEZ-

MEYER, 2004; ELITH et al., 2011). Ter Steege et al. (2003) suggested that the low 

diversity in the Guiana Shield may be linked to the small size of this area in comparison 

with the much larger tract of forest dominating the Amazon watershed. The Guianas also 

hold very poor soils, and low forest dynamics, which together may restrict possibilities 

for fast growing species, such as Moraceae and Urticaceae (GRAU et al., 2017; TER 

STEEGE; HAMMOND, 2001; VAN DER SANDE et al., 2018). 

Modelling past climatic conditions of Amazonia may be problematic since Global 

Climate Models (GCMs) may diverge in modelling some part of the Amazonian basin 

(SMITH; SINGARAYER; MAYLE, 2018). We minimized such divergences by 

averaging several GCMs from CMIP5. The mean environmental suitability for Moraceae 

and Urticaceae increased in southwestern and southern Amazonia during the mid-late 

Holocene, especially in the ecotonal area near the margins of the rainforest. This increase 

in environmental suitability suggests that Amazonian species may have tracked climate 

change southward in the last two to three millennia as argued by Mayle et al. (2000).  
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4.6 Conclusion 

We have shown that mean environmental suitability for Moraceae and Urticaceae 

increased during the mid-late Holocene in Amazonia, especially in the ecotonal boundary 

between the rainforest in the southern part of Amazonia and Cerrado savannas and in the 

northern part bordering the Llanos in Colombia (and probably Venezuela), supporting the 

assumption that long-term climate change favored the southern forest expansion, 

affecting species dynamics, and thus their distribution. Furthermore, the relative 

abundance of these two families was significantly correlated to their modern pollen 

assemblage in lake/bog surface sediment throughout Amazonia. We therefore conclude 

that the transition for a wetter climate during the late Holocene increased the mean 

environmental suitability for Amazonian tree families, which affected their distribution 

in its southern rainforest–savanna boundaries. 
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CAPÍTULO 5 AMAZONIAN TREE SPECIES THREATENED BY 

DEFORESTATION AND CLIMATE CHANGE4 

Abstract 

Deforestation is currently a major source of threat to Amazonian tree species. 

However, climate change may surpass deforestation in a few decades. Here, we quantify 

the impacts of deforestation and climate change of all known Amazonian tree species by 

overlaying species distribution models for current and future climate change scenarios 

with historical and projected deforestation. We show that deforestation alone may cause 

a 19-36% decline in species richness and climate change 31-37% by 2050. Their 

combination is expected to cause a decline up to 58%. Species may lose on average 66% 

of their original environmentally suitable area, and a total 53% may be threatened 

according to IUCN Red List criteria. Amazonian protected area networks may mitigate 

climate change and deforestation impacts, where the mean loss of estimated AOO inside 

these areas may vary between 8-28%, against 40-60% on the outside. We found mean 

species richness to be also higher inside these areas. Our analyses suggest that the 

Amazonian lowland rainforest may be cut in two blocks according to the worst-case 

scenario for 2050, one continuous block with 53% of the original area, and another 

severely fragmented block. This scenario assumes no significant changes in governance 

on deforestation and climate change rates. The vast potential degradation of Amazonia 

urges a reduction to zero deforestation, which would also reduce CO2 emissions, mitigate 

climate change and foster biodiversity conservation. 

Keywords: Amazonia, Climate change, Deforestation, Global change, Tree species.  

                                                             

4Artigo em revisão na revista Nature Climate Change, Qualis A1 na Área de Avaliação em Ciências 
Ambientais. Material suplementar (Appendices S5.1 - S5.5) disponível em 
https://drive.google.com/file/d/1FZJoqP0Kx1tHpQ1DkZcdcupkfnneriNP/view?usp=sharing. 
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5.1 Introduction 

The Amazonian lowland rainforest is the single largest rainforest block on earth. 

With ~5.7 million km2 it currently holds close to 13% of all trees (dbh > 10 cm) of the 

world and 49% of those in tropical moist forests (CROWTHER et al., 2015). Amazonia 

is arguably also the richest rainforest but the actual tree species richness is still under 

debate, ranging from ~7,000 (CARDOSO et al., 2017) to 16,000 (TER STEEGE et al., 

2013). Amazonian diversity is not immune to deforestation and human driven climate 

change and their impacts are usually estimated separately because of the differences of 

time scales and patterns of biodiversity loss (HUNTINGFORD et al., 2008). A realistic 

scenario that will guide public policies, however, should take both processes into account. 

The future of Amazonia facing global change has been debated (BETTS; MALHI; 

ROBERTS, 2008; TER STEEGE, 2010). Amazonia has lost ~11% of its area by 2013 

(HANSEN et al., 2013; SOARES-FILHO et al., 2013). This is enough to qualify 27% of 

all Amazonian tree species as being globally threatened by IUCN categories and criteria 

at present, and projections show that deforestation may increase Amazonian forest loss to 

9-28% by 2050, and the number of threatened species to 40-64% (TER STEEGE et al., 

2015). Although habitat loss caused by deforestation is currently a major source of threat 

to Amazonian tree species diversity (HUBBELL et al., 2008; LOVEJOY; NOBRE, 

2018), evidence suggests that human induced climate change may surpass the impact of 

deforestation in a few decades (BELLARD et al., 2012). Amazonian forest may already 

crossed a climate resiliency threshold (COWLING et al., 2004) due to climate change. 

The median spatial distance between current climate and their closest future climate 

analogues may increase by more than 300 km in 2050 considering only temperature, 

increasing by over 475 km when including precipitation, rising species vulnerability, 

especially when considering that deforestation creates migration barriers for slowly 

migrating species (FEELEY; REHM, 2012). As environmental tolerance is a driver of the 

geographic distribution of species, species must either tolerate new climates or track 

optimal environmental conditions (PECL et al., 2017).   
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During the late Holocene Amazonian tree communities have expanded their 

distribution southward beyond the forest boundaries driven by climate change, in a three 

millennia process, reaching a distance no further than 100 kilometers (MAYLE; 

BURBRIDGE; KILLEEN, 2000). Therefore, most tree species are likely unable to track 

future climate, facing extinction in areas where climatic conditions are no longer suitable 

(FEELEY; SILMAN, 2016). 

Here, we quantify the combined impacts of deforestation and climate change of 

10,070 Amazonian tree species. We model the original environmental suitability for 

species, which we call estimated area of occupancy (AOO), based on a species 

distribution model but constrained by the known extent of occurrence (EOO) (Fig. S5.1). 

Then, we quantify losses produced by historical deforestation, two deforestation scenarios 

for 2050, two climate change scenarios for 2050, and their interaction. We also ask to 

what extent the Amazonian protected area network may prevent habitat loss and the 

decline in species richness. Finally, we assess the species’ threat status for each of the 

scenarios, based on the criteria of the IUCN Red List of Threatened Species. 

5.2 Methods 

5.2.1 Species and collections 

We focused our analysis on the most recent checklist of lowland Amazonian trees 

that can reach 10 cm stem diameter at breast height (DBH) (TER STEEGE et al., [s.d.]). 

We downloaded species collections from Global Biodiversity Information Facility 

(GBIF, www.gbif.org) using the ‘gbif’ function from R package ‘dismo’ (August 2017). 

For each species we downloaded not only the Amazonian occurrences, but all occurrences 

in the Neotropics to avoid problems in species distribution models (SDMs) related to 

modelling with partial geographic ranges (RAES, 2012). We assigned all single 

collections at species level, ignoring intraspecific levels. We followed Gomes et al. 

(GOMES et al., 2018), using a new conservative pipeline to remove inconsistencies and 

outliers from collection data. Imprecise georeferences were also removed (BOYLE et al., 

2013; MALDONADO et al., 2015; ZIZKA; ANTONELLI, 2015).   
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Since sample size is a relevant aspect of model accuracy, species with less than 6 

records (here defined as locations, or single occurrence per 0.1 degree cell) were not used 

to produce SDMs (VAN PROOSDIJ et al., 2015). All the species with small number of 

collections (<6) were tested with a large plot dataset from Steege et al (TER STEEGE et 

al., 2015), to identify poor collected species. Species with a small number of collections 

and not present in the large plot dataset were listed as threatened according IUCN D2 

criterion (IUCN, 2017). 

5.2.2 Deforestation, protected areas and indigenous territories 

Deforestation was based on historical deforestation up to 2013 (HANSEN et al., 

2013; SOARES-FILHO et al., 2006, 2013), and projected deforestation for 2050 

(historical deforestation plus the predicted deforestation) (SOARES-FILHO et al., 2006, 

2013) at 10 by 10 km resolution, using an improved governance scenario (IGS) and a 

business-as-usual scenario (BAU) (Fig. S5.2 A, B, C). We gathered the spatial data of 

Amazonian protected areas and indigenous territories from the World Database of 

Protected Areas (Fig. S5.3) (April 2018, https://www.protectedplanet.net) (UNEP-

WCMC; IUCN; PLANET, 2018), and updated with data from Red Amazónica de 

Información Socioambiental Georreferenciada - RAISG (January 2019, 

http://raisg.socioambiental.org/) (RAISG, 2017). 

5.2.3 Amazonian base map 

To produce an Amazonian lowland forest base map we followed ter Steege et al. 

(2015), eliminating cells with more than 50% water, areas originally without forest and 

areas above 500 m of elevation at 10 by 10 km resolution. The base map consists of 

47,038 0.1-degree cells, or 5.7 million km2 (Fig. S5.4). We followed ter Steege et al. 

(2013) and divided the area into six regions, Guiana Shield (GS), north-western 

Amazonia (WAN), southwestern Amazonia (WAS), southern Amazonia (SA), eastern 

Amazonia (EA) and central Amazonia (CA).  
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5.2.4 Species area of occupancy 

We estimated area of occupancy based on environmental suitability (GOMES et 

al., 2018; IUCN, 2012). For that, we assessed environmental suitability by constructing 

species distribution models using MaxEnt version 3.3.3k (PHILLIPS; ANDERSON; 

SCHAPIRE, 2006; PHILLIPS; DUDÍK; SCHAPIRE, 2004). We downloaded 19 

environmental variables data from WorldClim (HIJMANS et al., 2005) at 0.16 degree 

resolution, produced by means of average monthly interpolated climate data. We 

resampled all variables to 0.1 degree (approximately 10 km2) spatial resolution, using the 

function ‘resample’ from R package ‘raster’ (HIJMANS; VAN ETTEN, 2016). The 

original environmental suitability for species was based on average climate data for 1950-

2000 (HIJMANS et al., 2005). 

Species future environmental suitability for 2050 (averages for 2041-2060) was 

based on two representative concentration pathways (RPCs), RCP 2.6 and RCP 8.5 

(RIAHI; GRÜBLER; NAKICENOVIC, 2007; VAN VUUREN et al., 2006, 2007), using 

seven global climate model (GCM) projections (HIJMANS et al., 2005), from the 

Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5), 

BCC-CSM (XIAO-GE; TONG-WEN; JIE, 2013), CCSM4 (YEAGER et al., 2012), 

HadGEM2-ES (JONES et al., 2011), IPSL-CM5A-LR (SWINGEDOUW et al., 2013), 

MIROC-ESM (WATANABE et al., 2011), MPI-ESM-LR (GIORGETTA et al., 2013) 

and MRI-CGCM3 (TATEBE et al., 2012). These RCPs represent increasing projections 

of global warming from 0.4 to 2.6°C by 2050, with mean range of 1°C (RCP 2.6) and 2°C 

(RCP 8.5), and radiative forcing of 2.6 and 8.5 W/m2, corresponding to atmosphere CO2 

concentration of 450 to 750 ppm/CO2eq (CLARKE et al., 2014; EDENHOFER et al., 

2014; VAN VUUREN et al., 2011). They reflect trends of CO2 emissions based on 

improvements of governance (RCP 2.6) and absence of climate change polices (RCP 8.5).  
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We based the selection of the variables on their biological relevance and on their 

scores using a Spearman’s rank correlation coefficient threshold of |rho|> 0.7 

(DORMANN et al., 2013). Precipitation variables based on temperature, and temperature 

variables based on precipitation were also removed. We selected isothermality, 

temperature seasonality, and maximum temperature of warmest month for temperature; 

and annual precipitation, wettest month precipitation and driest month precipitation for 

precipitation. Finally we cropped the environmental variables to the extent of the 

Neotropics (RAES, 2012). 

We corrected the SDMs for geographical sampling bias by employing a target-

group background method, producing a background file, based on a bias file according 

the efforts of collection of Amazonian tree species (GOMES et al., 2018; PHILLIPS; 

DUDÍK, 2008; TER STEEGE et al., [s.d.]). We used only product, threshold and hinge 

features of MaxEnt (BOUCHER-LALONDE; MORIN; CURRIE, 2012; MEROW; 

SMITH; SILANDER, 2013). MaxEnt’s logistic output was transformed into binary maps 

with a 10% training presence threshold, and a convex hull was used around the species 

records to estimate their EOO. 

We then estimated the AOO of the species by restricting the environmental 

suitability as modelled by MaxEnt to the EOO plus a buffer of 300 km (GOMES et al., 

2018; IUCN, 2012; SYFERT et al., 2014). We produced SDM maps for all species, 

considering all three climate scenarios: “original forest”, “2050 RCP 2.6” and “2050 RCP 

8.5”. For the 2050 scenarios (RCP 2.6 and RCP 8.5) we considered only grid cells 

predicted by all seven IPCC AR5 GCMs. We then produced three S-SDMs maps by 

stacking all SDMs maps for each one of the three climate scenario, in order to assess 

species richness by summing the predicted species in each one of the grid cell (ALGAR 

et al., 2009; DISTLER et al., 2015).  
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5.2.5 Data analysis 

To estimate the impacts of deforestation and climate change on Amazonian tree 

species we produced ten different scenarios. First, we modelled the species’ original 

environmental suitability. We tested which models were significantly different from 

random expectation using bias corrected null-models (GOMES et al., 2018; RAES; TER 

STEEGE, 2007b). Models not significantly different were excluded from further analysis. 

We then estimated species original AOO for forested grid cells  F and the losses of all 

deforestation and climate change scenarios over species original estimated AOO, 

producing ten maps for each of these species (Fig 5.1), starting with the historical 

deforestation for 2013 (Fig 5.1 B) and two projected deforestation scenarios for 2050 

(IGS and BAU) (Fig 5.1 C, D). Then, we estimated the impacts of climate change by 2050 

(RCP 2.6 and RCP 8.5) (Fig. 5.1 E, H). Furthermore, we calculated the impacts of four 

combined scenarios of deforestation and climate change on species original area of 

occupancy for 2050, one best-case scenario (RCP 2.6 and IGS), two intermediates 

scenarios (RCP 2.6 and BAU, RCP 8.5 and IGS) and a worst-case scenario (RCP 8.5 and 

BAU) (Fig. 5.1 F, G, I, J). We also tested if the estimated loss of AOO by deforestation 

was correlated with population loss as estimated by ter Steege et al. (2015). We then 

assigned categories of threat for all species according to IUCN A2, A4, B1 and D2 

criteria, and three categories: Critically Endangered (CR), Endangered (EN) and 

Vulnerable (VU), based on geographic range losses, in the form of the estimated AOO, 

and restricted number of locations. Finally, we analysed the extent of estimated loss of 

AOO and the decrease in species richness inside and outside of the Amazonian protected 

area network using the S-SDM maps. All calculations and analyses were performed with 

R version 3.4.3 (R CORE TEAM, 2018), including the R packages ‘raster’ version 2.6-7 

(HIJMANS, 2017a), ‘dismo’ version 1.1-4 (HIJMANS et al., 2017b), ‘gstat’ version 1.1-

6 (PEBESMA; HEUVELINK, 2016), ‘maptools’ version 0.9-2 (BIVAND; LEWIN-

KOH, 2017), ‘rgdal’ version 1.2-16 (BIVAND; KEITT; ROWLINGSON, 2017), ‘rgeos’ 

version 0.3-26 (BIVAND; RUNDEL, 2017), ‘rJava’ version 0.9-9 (URBANEK, 2017) 

and ‘speciesgeocodeR’ version 1.0-4 (ZIZKA, 2015). 
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5.2.6 Data availability 

All data used can be freely downloaded from GBIF (http://www.gbif.org) and 

WorldClim (http://www.worldclim.org) and are also available from the corresponding 

author upon request. A full list of species used can be found in Appendix S5.1.  

5.3 Results 

5.3.1 Original area of occupancy 

Our analysis was conducted for 6,394 Amazonian tree species (62% of the 10,070 

species) with available records, after we removed inconsistencies from collection data. 

Furthermore, species with available records below the minimum (<6), an environmental 

suitability model non-significantly different from a bias corrected null model, and no 

estimated AOO within Amazonia were removed (Appendix S5.1). A total of 406 species 

with restricted EOO (325) and AOO (81) were qualified as threatened according IUCN 

B1 and D2 criteria (Table 5.1; Appendix S5.1). Further analyses were conducted for 4,935 

species (49% of the 10,070, Appendix S5.2), as in the example of Eschweilera coriacea 

(D.C.) S.A. Mori, the most common tree species of Amazonia (TER STEEGE et al., 2013) 

(Fig. 5.1).  
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Figure 5.1. Loss by global change for Eschweiler coriacea (D.C.) S.A. Mori, the most 
common species in Amazonia15. Beige, Loss in AOO (area of occupancy). a, Original 
AOO. b, Original AOO and deforestation by 2013. c, Original AOO and 2050 IGS 
(improved governance deforestation scenario). d, Original AOO and 2050 BAU (business 
as usual deforestation scenario) (SOARES-FILHO et al., 2006, 2013). e, 2050 RCP 2.6 
AOO. f, 2050 RCP 2.6 AOO and 2050 IGS (improved governance deforestation 
scenario). (G) 2050 RCP 2.6 AOO and 2050 BAU deforestation. h, 2050 RCP 8.5 AOO. 
i, 2050 RCP 8.5 AOO and 2050 IGS deforestation. j, 2050 RCP 8.5 AOO and 2050 BAU 
deforestation. Maps created with custom R script. Base map source (country.shp, 
rivers.shp): ESRI. 

 

Fonte: ESRI (2016); R Core Team (2018).  
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5.3.2 Impact of historical forest loss 

The historical forest loss of 11% (Fig. S5.2 A) impacted mainly species in 

southern and eastern Amazonia (Appendix S5.3, S5.4). The forest loss by 2013 was 

responsible for a mean decline of 7% in the estimated AOO of Amazonian tree species 

(median = 3%) (Appendix S5.2). A total of 423 (4.2%) species lost a sufficiently large 

proportion of their original AOO, to be qualified as threatened according to IUCN A2 

criterion (Appendix S5.2). Adding the 406 species already listed in the IUCN B1 and D2 

criteria a total of 829 (8.2%) can be considered threatened (Table 5.1). Only 133 (1.3%) 

species had no losses of their original AOO in 2013. Most of the species with no losses 

were predicted on the Guiana Shield (58%) or in north-western Amazonia (25%), and 

only 3% of these species were predicted in eastern and southern Amazonia, where species 

were already greatly impacted by historical deforestation (Appendix S5.2; S5.4). The 

correlation between the estimated loss of AOO by deforestation with population loss as 

estimated by ter Steege et al. (2015), throughout Amazonia, was moderate for historical 

deforestation by 2013 (rho = 0.48) (Fig. S5.5 A; Appendix S5.5). 

5.3.3 Impact of projected forest loss 

The projected deforestation scenarios for 2050, with forest loss of 22% (IGS) and 

42% (BAU), resulted in an average loss of AOO of 19% for the IGS scenario and 33% 

for the BAU scenario (Fig. 5.2 B, C; Appendix S5.2). As the projected deforestation is 

concentrated in southern and eastern Amazonia, the species were predicted to suffer 

higher impacts in these regions, with an average loss of estimated AOO of 58% (IGS) 

and 87% (BAU) (Appendix S5.3). Tetragastris altissima (Aubl.) Swart is an example of 

southern/eastern hyperdominant species which may be greatly impacted by deforestation, 

with losses reaching up to 50% of its estimated AOO by 2050 (BAU) (Fig. S5.6; 

Appendix S5.2). By 2050 between 1,802 (18%) to 3,512 (35%) species would lose 

enough AOO to be threatened according to the IUCN A4 criterion, considering IGS and 

BAU scenarios, respectively (Table 5.1; Appendix S5.2). A total 22-39% may be 

considered threatened when adding the IUCN B1 and D2 criteria (Appendix S5.1). The 

correlation between the estimated loss of AOO by deforestation and the population loss 

as estimated by ter Steege et al. (2015) was moderate for both the IGS projected 

deforestation scenario (rho = 0.46) and the BAU projected deforestation (rho = 0.54) (Fig. 

S5.5 B, C; Appendix S5.5). 
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Figure 5.2. Amazonian species richness (number of species per grid cell) impacted by 
global change and deforestation. a, Original AOO only. b, Original AOO and 2050 IGS 
(improved governance deforestation scenario). c, Original AOO and 2050 BAU (business 
as usual deforestation scenario). d, 2050 RCP 2.6 AOO only. e, 2050 RCP 2.6 AOO 
combined with 2050 IGS deforestation. f, 2050 RCP 2.6 AOO combined with 2050 BAU 
deforestation, g, 2050 RCP 8.5 AOO only. h, 2050 RCP 8.5 AOO combined with 2050 
IGS deforestation. i, 2050 RCP 8.5 AOO combined with 2050 BAU deforestation. Maps 
created with custom R script(R CORE TEAM, 2018). Base map source (country.shp, 
rivers.shp): ESRI. 

 

Fonte: ESRI (2016); R Core Team (2018).  
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5.3.4 Impacts of climate change 

The predicted losses caused by climate change were even higher. Climate change 

will impact Amazonian lowland forest as a whole, increasing the rate of environmental 

suitability loss and, thus, decreasing species richness throughout all of its extent (Fig. 

S5.7 D, G; Appendix S5.2, S5.3). For the RCP 2.6 scenario the average loss of AOO by 

2050 was 47% and for RCP 8.5 scenario this number was 53% (Appendix S5.2). 

Northern/central Amazonian species, such as the hyperdominant Eperua falcata Aubl. 

(Fig. S5.6), although far from the “Arc of Deforestation”, may be greatly impacted by 

climate change in RCP 2.6 and RCP 8.5 scenarios (56-63%). The number of threatened 

species according to the IUCN A4 criterion was 4,320 (43%) for RCP 2.6 scenario and 

4,588 (46%) for RCP 8.5 scenario (Appendix S5.2). Adding the IUCN B1 and D2 criteria 

(Appendix S5.1), the total species threatened may rise to 4,726 (47%) and 4,994 (50%). 

5.3.5 Impacts of combined projected deforestation and climate change 

The best-case scenario for 2050 (RCP 2.6 and IGS) resulted in an average loss of 

estimated AOO of 53%, followed by the intermediate scenarios RCP 8.5 and IGS (59%) 

and RCP 2.6 and BAU (60%), and the worst-case scenario (RCP 8.5 and BAU) with 65% 

(Table 5.1; Appendix S5.2). Species with a western distribution, such as Iriartea 

deltoidea Ruiz & Pav. (16-22% of AOO loss by 2050), may be less impacted by this 

interaction (Fig. S5.6; Appendix S5.2; S5.4). The total number of threatened species 

according to IUCN A4, B1 and D2 criteria (Appendix S5.1) in the best-case scenario was 

5,188 (51.5%), followed by RCP 8.5 and IGS with 5,325 (52.2%), RCP 2.6 and BAU 

with 5,308 (52.4%), and the worst-case scenario with 5,362 (52.8%) (Table 5.1; Appendix 

S5.2). 

Furthermore, some species may lose their entire estimated AOO, facing a high 

probability of extinction in Amazonia by 2050 (Appendix S5.2). The number of species 

with 100% loss of AOO was higher in the combined scenarios which included the BAU 

deforestation scenario, with 140 (1.4%) species in RCP 2.6 and BAU, and 156 (1.5%) 

species in RCP 8.5 and BAU. The two other scenarios, including the IGS scenario, 

resulted in a total number of 113 (1.12%) species for RCP 2.6 and IGS and 130 (1.3%) 

species for RCP 8.5 and IGS. By 2050 the AOO of all species will be impacted by 

deforestation and climate change (Appendix S5.2). 
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5.3.6 Impacts on species richness 

The mean original species richness (defined as the number of species per grid cell, 

based on their original estimated AOO) was 1,458, with a median of 1,394 (Fig. 5.2 A; 

Table 5.1; Appendix S5.3;). The highest species richness values were found in North-

western Amazonia (with a total of 3,784 species, and average of 1,896 per grid cell), the 

Guiana Shield (3,865 total, 1,406 average), and central Amazonia (3,840 total, 1,813 

average) (Appendix S5.3, S5.4). Mean original species richness across Amazonia (by grid 

cell) is expected to decrease between 19% in the IGS scenario to 36% in the BAU 

scenario, and 30% in RCP 2.6 to 37% in RCP 8.5 (Fig. 5.2 D, G; Appendix S5.3). It also 

dropped 43%-58% (from best to worst-case scenarios) in the combined scenarios (Table 

5.1; Appendix S5.3; Fig. 5.2 E, F, H, I). 

The worst-case scenario for 2050 (RCP 8.5 and BAU) showed that Amazonia may 

be severally impacted, which may divide the original forest into two blocks, one smaller 

continuous block, with 53% of the original area, and another severely fragmented one 

(Fig. 5.3). A major part of the continuous block is located in north-western and central 

Amazonia, and in the Guiana Shield. A smaller part of the continuous block is located in 

southwestern Amazonia. The other, fragmented block, is located in eastern, southern and 

a major part of southwestern Amazonia.  
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Figure 5.3. Only half of the Amazonian forest may remain in 2050 (2050 RCP 8.5 AOO 
combined with 2050 BAU deforestation). Green, a relatively intact Amazonian forest 
block, composed of north-western and central Amazonia, the Guiana Shield and smaller 
part of southwestern Amazonia (max number of species per grid cell of 1393, with mean 
578). Red, a largely degraded Amazonian forest block composed of eastern, southern and 
a major part of southwestern Amazonia (max number of species per grid cell of 898, with 
mean 142). Light grey, forest loss. Map created with custom R script. Base map source 
(country.shp, rivers.shp): ESRI. 

 

Fonte: ESRI (2016); R Core Team (2018).  
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5.3.7 Protected areas and indigenous territories 

The Amazonian network of protected areas and indigenous territories (PAs) had 

close to 0.9% loss of area of occupancy due to historical forest loss by 2013, covering 

54.8% of the remaining forest. In the forest outside the network the loss was 23% (Fig. 

S5.8 A; Fig. S5.9 A). Mean species richness (by 0.1 grid cells) by 2013 was 1,535 inside, 

and 1,133 outside the PAs (Table 5.1; Appendix S5.6, S5.7). By 2050 the loss of estimated 

AOO may vary between 8-28% inside, and 40-60% outside the PAs. Mean species 

richness (by grid cell) may vary between 639-995 species inside and 438-756 outside the 

PAs (Fig. S5.8 B, C) in 2050. The forest may have 1.0-1.6 million km2 of its remaining 

area outside the network (Fig. S5.9 B, C), including areas with species richness reaching 

up to 1,986-2,188 species. 
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Table 5.1. Results for all ten scenarios, estimating the losses of AOO, mean species richness, number of species listed in IUCN A2, A4, B1 and 
D2 criteria, total number of threatened species and percentage of threatened species. 

Scenarios 
Average 
loss of 

AOO (%) 

Mean 
species 

richness 

No. of species 
listed in IUCN 
A2/A4 criteria 

No. of species 
listed in IUCN 
B1/D2 criteria 

Total no. of 
threatened 

species 

% of 
threatened 

species 

Mean species 
richness 

within PA’s 

Mean species 
richness 

outside PA’s 

Original 0,0 1.458 0 

406 

406 4,0 1.544 1.353 

Original and 2013 7,3 1,353 406 829 8,2 1.535 1.113 

Original and IGS 18,7 1.183 1.802 2.208 21.9 1.417 898 

Original and BAU 33,2 929 3.512 3.918 38.9 1,158 650 

RCP 2.6 46,5 1.013 4.320 4.726 46.9 1.082 929 

RCP 8.5 53,4 919 4.588 4.994 49.5 980 844 

RCP 2.6 and IGS 52,7 834 4.782 5.188 51.5 995 639 

RCP 2.6 and BAU 60,3 672 4.871 5.277 52.4 831 478 

RCP 8.5 and IGS 58,8 757 4.854 5.260 52.2 901 583 

RCP 8.5 and BAU 65,4 612 4.908 5.314 52.8 756 438 
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5.4 Discussion 

The combined losses by deforestation and climate change, suggest that 

Amazonian tree species may lose 53-65% of their estimated AOO by 2050. This would 

be enough to qualify 48-49% of all known Amazonian tree species as threatened 

according IUCN A4 criterion, including almost all (96%) of the hyperdominant species 

(TER STEEGE et al., 2013). Adding the 425 species with small number of already 

qualified as threatened under IUCN Criteria B1 and D2, the total proportion increases 

to 51-53% (Appendix S5.2). There is still a data void in the tropics (FEELEY; 

SILMAN, 2010) and the number of new species of flowering plants is still expected 

to increase by 10-50% in Brazilian Amazonia alone (PIMM et al., 2010). Considering 

the limitation of our analyses for rare and as yet unknown species the estimates of the 

number of species qualified as threatened are likely higher than we report here. 

Our analyses were based on 49% of all known Amazonian tree species. 

However, this should not affect species richness patterns. We omitted only those 

species that were either too rare or did not have enough available records to produce 

significant models. Major ecological patterns are likely to be maintained, since the 

most common species generally define large-scale patterns, and rare species are often 

too restricted to affect it (POS et al., 2014). Furthermore, rare species and species with 

low prevalence are likely to be over-predicted, compromising model accuracy and the 

reliability of the stacked SDMs (S-SDMs) (VAN PROOSDIJ et al., 2015). 

We used S-SDMs to estimate species richness, which tends to over-predicted 

by such models, since they model environmental suitability, rather than the species’ 

real range (CALABRESE et al., 2014). We believe that over-prediction effects were 

reduced by our SDMs, based on a conservative estimate of an environmental suitability 

model (area slightly larger than species EOO, compatible with e.g. the IUCN red list 

assessments, Fig. S5.1). S-SDMs may also reduce species richness accuracy affected 

by elevation (POUTEAU et al., 2015). As we only modelled Amazonian lowland 

forest, and areas above 500 m of elevation were removed, this will not have greatly 

affected our results.   
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These high elevation areas could represent an alternative for species tracking 

colder temperatures in a global warming future (COLWELL; LEES, 2000), but they 

probably could not establish viable population in time, since it takes a few thousand 

years for species to move hundreds of kilometres (MAYLE; BURBRIDGE; 

KILLEEN, 2000), and on top of that deforestation has created migration barriers and 

will create others (FEELEY; REHM, 2012). 

Deforestation is also expected to reduce populations of Amazonian tree species 

in the future (TER STEEGE et al., 2015). We found deforestation to be responsible for 

a decline of 7% of the estimated AOO of the Amazonian tree species, considering the 

historical deforestation until 2013, and this may potentially reach 19-33% by 2050, 

considering our projected deforestation analyses. We compared our results of the 

estimated loss of AOO against estimated population loss as estimated by ter Steege et 

al. (2015). The correlations for historical deforestation by 2013 and IGS projected 

deforestation scenario by 2050 were moderate. For 2050 projections of the BAU 

scenario, the correlation was slightly higher. Although the correlations are mostly 

moderate, both estimates may be realistic. Area changes will occur first in the edges 

of the range, where the population densities are likely lowest, decoupling the two 

measures to some extent. 

Despite that, the losses produced by climate change are expected to be even 

higher. According to our climate change mitigation scenario (RCP 2.6) mean species 

richness may be reduced by almost one-third (30%) and estimated AOO may drop 

almost by half (47%) by 2050. This scenario limits global warming bellow 2o C 

(STOCKER, 2014). Our business-as-usual climate change scenario (RCP 8.5) scenario 

shows higher emissions trends, close to those observed since 2000 (PETERS et al., 

2012), and will drive the forest in more extreme climate conditions (DIFFENBAUGH; 

FIELD, 2013), which is expected to raise tree mortalities by drought and severe heat 

(ESQUIVEL-MUELBERT et al., 2016; NEPSTAD et al., 2007). According this 

scenario estimated AOO loss may increase to 53% and mean species richness losses 

may reach 37%.  



105 
 

The interaction between deforestation and climate change may be the greatest 

threat to Amazonian biodiversity (NEPSTAD et al., 2008), especially for trees 

(BRODIE; POST; LAURANCE, 2012). Southwestern, southern, and eastern 

Amazonia are the regions likely to be most affected by the synergetic impacts of 

deforestation and climate change. Eastern Amazonia alone may suffer up to 95% of 

forest loss by 2050, followed by southwestern (81%). and southern Amazonia (78%) 

(Appendix S5.4). 

Adding the influence of fire to the synergy of deforestation and climate change, 

a 20-25% deforestation is already expected to be the tipping point for these regions to 

no longer support rain forest ecosystems (LOVEJOY; NOBRE, 2018), especially in 

eastern and southern Amazonia. By 2007 and 2010 southern/eastern Amazonia lost 

already 12% and 5% of its forests by regional fire during severe drought events 

(BRANDO et al., 2014). Furthermore, deforestation has also influenced regional 

climate in Amazonia (SILVÉRIO et al., 2015) by affecting the balance and water cycle 

in southern/eastern Amazonia due to land uses that follows deforestation, such as, 

agricultural expansion. 

The interaction between deforestation and climate change, for the best-case 

combined scenario for 2050 (RCP 2.6 and IGS) shows only a small reduction in the 

total number of threatened species. It makes a difference in the level of threat, however, 

as the number of species listed as “critically endangered” (CR) drops from 22% in our 

worst-case combined scenario (RCP 8.5 and BAU) to 11% in the best-case combined 

scenario. The worst-case combined scenario for 2050 (RCP 8.5 and BAU) shows what 

may called “a half Amazonia” by 2050. (Fig. 5.3). The severe fragmentation outside 

this block will add to species loss (TAUBERT et al., 2018), and will provoke 

alterations in tree-community composition (LAURANCE et al., 2006). Big tree 

species, for instance, are largely impacted by fragmentation due to influences of wind 

turbulence, desiccation and infestation by lianas, common effects observed near forest 

edges (LAURANCE et al., 2000). Those species strongly influence forest structure, 

composition, hydrology, contributing also importantly to carbon storage (CLARK; 

CLARK, 1996; FELDPAUSCH et al., 2005; LINDENMAYER; LAURANCE; 

FRANKLIN, 2012). 
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 Our analyses show that big hyperdominant tree species, such as Bertholletia 

excelsa Bonpl. and Mezilaurus itauba (Meisn.) Taub. ex Mez will be threatened in 

2050 according to the worst-case scenario. Small forest fragments will also lose 

species and biomass quickly due to overhunting, decreasing populations of large 

bodied animals (BICKNELL; PERES, 2010), further reducing species richness for 

trees depending on these species for their dispersal (BELLO et al., 2015). High 

intensity events, such as droughts, will impact Amazonia in the future, with fires 

reaching deeper into the drier forests (DAVIDSON et al., 2012; LONGO et al., 2018). 

Although the impacts in some Amazonian countries such as Guyana 

(MACDICKEN et al., 2016), may be lower and deforestation rates have declined 

compared to projected deforestation scenarios (STEEGE et al., 2015), the worst case 

scenario cannot be discarded given the recent rising deforestation trends in Brazil 

(FEARNSIDE, 2017). Brazil joined the Paris agreement in 2015, and pledges to cut 

its greenhouse gas emissions by 37%, reach zero deforestation, and reforest 12 million 

ha by 2030 (TOLLEFSON, 2015b). However, the country still suffers with high 

deforestation rates (MOUTINHO; GUERRA; AZEVEDO-RAMOS, 2016), and a 

future reduction of this trend remains uncertain (TOLLEFSON, 2015a). Deforestation 

has increased during the past five years at a rate of ~7,000 km2 per year (INPE, 2018). 

Furthermore, international negotiations on limiting global warming have failed 

(CHRISTOPHER, 2017) and recent Brazilian law changes may severely limit 

scientific research, including the monitoring  of forest and biodiversity loss 

(BOCKMANN et al., 2018). 

Other Amazonian countries, such as Colombia, showed a recent increase of 

fires in protected areas after demobilization of the guerrilla (ARMENTERAS; 

SCHNEIDER; DÁVALOS, 2018). Studies have pointed out positive correlations 

between and coca cultivation(DÁVALOS, 2018) and guerrilla activities within 

protected areas (HANAUER; CANAVIRE BACARREZA, 2018) and reductions in 

deforestation in Colombia and Peru. Protected areas have protected tree populations 

from deforestation all over Amazonia till now (TER STEEGE et al., 2015).   
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The protected areas network shows an important inhibitory effect on the 

deforestation of Amazonian forest in Brazil (SOARES-FILHO et al., 2010). Protected 

areas are also effective in preventing deforestation fires - fewer of these fires occur 

within protected areas compared to areas on the outside (ADENEY; CHRISTENSEN; 

PIMM, 2009). Those areas are not immune to the impacts of climate change, however, 

and the absence of protected corridors may isolate species from suitable areas under 

different future climate conditions (FEELEY; SILMAN, 2016). 

We found that inside the PA network mean species richness may drop to 639 

species per grid cell and total habitat loss may reach 28%. Even though, protected areas 

may provide benefits for biodiversity (GRAY et al., 2016), especially when they focus 

on governance quality and planning methods (WATSON et al., 2014). We found even 

worse results for the areas outside the network, with mean species richness dropping 

down to 438 species per grid cell and total habitat loss reaching up to 60%. Amazonia 

may have around 50% of its forest outside the network, mostly in central and north-

western Amazonia. This unprotected half of the remaining forest has grid cells with a 

high predicted number of species, with great relevance for biodiversity conservation 

and establishment of new PAs. 

5.5 Conclusion 

Tropical forests have a major environmental roles by stabilizing atmospheric 

CO2 (HOUGHTON; BYERS; NASSIKAS, 2015), regulating climate (BONAN, 2008) 

and maintenance of biodiversity (GIBSON et al., 2011). Tropical forests also provide 

benefits to the society (ecosystems services), and their losses generally are not 

compensated by the development of other sectors, such as, manufacturing and services, 

leading to unsustainable development pathways (CARRASCO et al., 2017). The true 

losses behind their degradation may be immeasurable. Biologists have warned for 

more than one century about the possible demise of the Atlantic forest (DEAN, 1997), 

and yet, only 12% of its original cover remains (RIBEIRO et al., 2009). We must try 

to avoid that Amazonia will suffer the same fate.  
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CAPÍTULO 6 SÍNTESE 

Esta tese aborda um dos maiores desafios ambientais atuais: os impactos das 

globais sobre a biodiversidade amazônica. Entender como estas mudanças afetam as 

florestas tropicais significa investigar como a diversidade tropical foi influenciada a 

partir de sua interação com tais mudanças ao longo do tempo. Esta tese objetivou 

investigar os impactos das mudanças climáticas e do desflorestamento sobre as 

espécies arbóreas amazônicas em condições passadas, presentes e futuros. Em 

condições passadas, foram investigadas mudanças ocorridas entre condições 

climáticas passadas (mais secas) e presentes (mais úmidas) durante o Holoceno médio 

e o Holoceno tardio (último 6.000 anos), quando, uma evidenciada expansão ocorreu 

ao sul da floresta amazônica. Foram também investigados os impactos do 

desflorestamento histórico sobre a floresta amazônica (até o ano de 2013). Em 

condições presentes, foram testados métodos de estimação de riqueza e distribuição de 

espécies arbóreas amazônicas, para definição de boas práticas em uma área tão grande 

e biodiversa quanto a Amazônia. Além disso foram investigados os padrões de riqueza 

e distribuição das espécies arbóreas amazônicas hiperdominantes no presente, onde foi 

também investigada a relação entre as coleções de história natural das espécies com 

suas abundâncias relativas. Em condições futuras, utilizando projeções para o ano de 

2050, foram investigados os impactos das mudanças climáticas e do desflorestamento 

sobre todas as espécies arbóreas conhecidas da Amazônia. Este capítulo apresenta as 

principais conclusões da investigação, e uma discussão geral sobre a pesquisa proposta 

por esta tese. O capítulo conclui destacando a perspectiva para futuros esforços sobre 

a investigação da conservação da biodiversidade amazônica.  
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6.1 Principais conclusões 

• Estimadores de riqueza de espécies não-paramétricos não são adequados para florestas 

tropicais. Estes métodos de estimativa subestimam a riqueza de espécies em tais áreas. 

Florestas tropicais, incluindo a floresta amazônica, são paisagens heterogêneas, onde 

a intensidade amostral é usualmente baixa e a riqueza de espécies é alta. As premissas 

destes métodos (amostragem com reposição e esforço amostral relativamente alto) não 

são encontradas nos esforços de coleta utilizados pela maioria dos estudos. A série 

logarítmica, apesar de também necessitar de um esforço amostral significativo, é muito 

mais eficiente na estimativa da riqueza de espécies em florestas tropicais que os 

estimadores não-paramétricos mais comumente utilizados, suas premissas têm melhor 

adequação à forma como os dados de campo são coletados.  

 

• Os registros de ocorrências de espécies em coleções de história natural (natural history 

collections – NHCs) utilizadas pelos modelos de distribuição de espécies (species 

distribution models – SDMs) que usam dados de presença, tal como o MaxEnt, foram 

apenas pouco correlacionadas com a abundância relativa da maioria das espécies 

arbóreas hiperdominantes amazônicas, tal como estimada pela ponderação da distância 

inversa (inverse distance weighting – IDW). Para um terço das espécies a correlação 

foi negativa ou inexistente, e para dois terços a correlação foi positiva, mas muito fraca, 

o que viola a principal premissa do MaxEnt, na qual os locais de coleta são 

independentemente compostos pela probabilidade de distribuição das espécies, que 

deve ser desconhecida. Isto implica que uma maior abundância local aumenta de 

maneira muito baixa a chance das espécies hiperdominantes em serem coletadas, e 

para alguma destas a abundância não apresenta relação com a chance das espécies 

serem coletadas. Apesar disso, MaxEnt e IDW foram igualmente efetivos em predizer 

a presença de espécies tal como definida um pelo outro, e consequentemente, a 

sensitividade de ambos os métodos foi alta (aproximadamente 90% para ambos). Além 

disso, um processo de limpeza proposto demonstrou que metade de todas os registros 

de ocorrência das NHCs obtidas por meio de bases de dados on-line são provavelmente 

inconsistências, com informações geográficas ausentes, tais como latitude, longitude 

e localidade.  



110 
 

• Mudanças climáticas de longa duração influenciaram a Amazônia durante os 

Holocenos médio e tardio (6000 anos atrás), por meio do aumento da precipitação. 

Esta influência é apoiada por registros fósseis de pólen obtidos em núcleos de 

sedimentos retirados de lagos amazônicos. A aptidão ambiental aumentou para 

espécies arbóreas das famílias Moraceae e Urticaceae durante este período, e a riqueza 

de espécies modelada destas famílias apresentou um incremento médio, em uma escala 

espacial de 0,5 grau, de 132%. O incremento na aptidão ambiental foi mais alto na 

porção sul da Amazônia, corroborando com a sugerida expansão da floresta durante o 

período. A abundância total das famílias Moraceae e Urticaceae se correlacionou de 

forma significativa com os registros de pólen (R2 = 0,54), sugerindo que estes registros 

são relativamente bons representantes para a abundância das árvores, e que a 

abundância destas famílias também foi incrementada durante os Holocenos médio e 

tardio em algumas áreas. Mudanças no clima mais seco do médio Holoceno 

contribuíram para o aumento da aptidão ambiental de provavelmente várias famílias 

de árvores na Amazônia, e consequentemente, para mudanças em suas distribuições, 

o que pode ter contribuído também para a expansão da floresta durante os Holocenos 

médio e tardio. 

 

• A Amazônia já perdeu cerca de 12% de sua cobertura florestal pelo impacto do 

desflorestamento. O desflorestamento tem sido e continuará sendo uma grande fonte 

de impacto sobre o tamanho das populações de espécies arbóreas na Amazônia, mas 

as mudanças climáticas podem superá-lo no futuro. O desflorestamento pode causar 

entre 19% e 36% de declínio na riqueza de espécies até o ano de 2050, enquanto que 

as mudanças climáticas podem causar um declínio entre 31% e 37%. Seus impactos 

combinados podem causar um declínio de até 58%. As espécies podem perder uma 

média de 66% das áreas para as quais estão adaptadas, e um total de 53% das espécies 

podem estar ameaçadas de extinção segundo os critérios da lista vermelha da União 

Internacional para Conservação da Natureza (do inglês, International Union for 

Conservation of Nature – IUCN). A rede de áreas protegidas da Amazônia pode 

mitigar os impactos das mudanças globais, apesar de aproximadamente 50% da 

floresta se encontrar fora da rede. No pior cenário projetado, a floresta amazônica pode 

ser dividida pela metade até 2050, em um bloco contínuo formado pelas porções 

central e oeste do bioma, e um outro bloco severamente fragmentado formado pelas 

porções ao leste e ao sul. 
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6.2 Discussão geral 

6.2.1 Estimativa da distribuição e da riqueza de espécies arbóreas na Amazônia 

A estimativa da riqueza de espécies é uma das análises mais utilizadas para 

investigar a diversidade de espécies. Nesta tese, a estimativa de riqueza de espécies foi 

investigada por meio da comparação de métodos baseados em dados de abundância, 

utilizando estimadores não-paramétricos e paramétricos. Um dos achados mais 

importantes desta investigação foi que, apesar do fato de estimadores não-paramétricos 

serem os métodos mais comumente utilizados para predizer a riqueza de espécies 

(CHAO et al., 2009; CHIARUCCI et al., 2003), eles subestimam a riqueza 

severamente na Amazônia, pois estes métodos requerem alta intensidade amostral 

(WANG; LINDSAY, 2005), um requisito que não pode ser encontrado em uma área 

tão grande, heterogênea, rica em espécies, e que também é subamostrada. Estimadores 

paramétricos foram muito eficientes em estimar a riqueza de espécies. A estrutura dos 

dados de campo de árvores tropicais conformam-se à série logarítmica (FISHER; 

CORBET; WILLIAMS, 1943), um estimador paramétrico, que se ajusta à distribuição 

de abundância (IZSÁK; PAVOINE, 2012; XU et al., 2012), como apresentado por 

vários estudos (BALDRIDGE et al., 2016; BRANCO; FIGUEIRAS; CERMEÑO, 

2018; HUBBELL, 2001). 

Os dados de abundância podem também ser utilizados para modelar a 

distribuição de espécies (TER STEEGE et al., 2013), e nesta tese foi comparada a 

distribuição de espécies baseada em abundância, por meio do inverso da potencia das 

distâncias (inverse distance weighting – IDW) com a distribuição de espécies baseada 

em aptidão ambiental (MaxEnt). Foi observado que as coleções de história natural 

(natural history collections – NHCs) utilizadas pelo MaxEnt não apresentaram fortes 

relações com a abundância local das espécies arbóreas amazônicas hiperdominantes, 

que representam metade dos indivíduos de árvores nas florestas tropicais da Amazônia, 

mas compreendem apenas 1,4% de sua diversidade de árvores. Isto pode limitar a 

validade dos modelos que utilizam apenas dados de presença em predizer a 

probabilidade de ocorrência das espécies.   
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NHCs superestimam as espécies raras enquanto subestimam as espécies 

comuns, pois os coletores de espécies são eficientes em coletar o maior número 

possível de espécies (TER STEEGE et al., 2010). Os coletores tendem em focar em 

espécies raras, e negligenciam espécies comuns, e assim, NHCs falham em representar 

bem a abundância local. Além disso, as coleções de espécies podem ser enviesadas 

contra ou a favor de grupos taxonômicos específicos. Este foi o caso para a excessiva 

representação de espécies de palmeiras nas NHCs obtidas do grande número de 

registros da base de dados de transecções de palmeiras da Universidade Aarhus no 

oeste da Amazônia, o que enviesou a distribuição de palmeiras modeladas pelo 

MaxEnt à Amazônia Ocidental.  

Em contraste à forma que as NHCs são coletadas, os dados de parcelas 

utilizados pela interpolação da IDW, são uma representação da amostragem total das 

espécies dentro das parcelas, onde os esforços de coleta cobrem todos os indivíduos, 

independentemente de sua raridade. Assim, os dados de parcelas podem ser vistos e 

utilizados como uma representação da densidade de distribuição de espécies. No 

entanto, os dados de parcela também têm limitações, e esse foi, por exemplo, o caso 

de espécies de matas ciliares, tais como, Macrolobium acaciifolium (Benth.) Benth. 

Esta espécie hiperdominante está subrepresentada dentro das parcelas, porque as 

parcelas são, em sua maioria, implantadas longe das margens dos rios, e a distribuição 

das espécies, tal como predita pelo modelo da IDW, falhou em prover uma boa 

representação da distribuição desta espécie. 

Um outro importante achado relacionado às NHCs veio do processo de limpeza 

conduzido em nossos dados. Existem muitas inconsistências na considerável 

quantidade de informações de espécies disponíveis em plataformas on-line por conta 

da falta de processo de limpeza (MALDONADO et al., 2015), que podem criar 

divergências na aptidão ambiental, tal como estimada pelo MaxEnt. O procedimento 

de limpeza desenvolvido surpreendentemente removeu metade de todos os registros 

NHCs, considerando-os como inconsistências. Estas inconsistências são, em sua 

maioria, geográficas, incluindo informações ausentes das coordenadas, tais como, 

latitude, longitude, localidade ou valores duplicados, além de coordenadas baseadas 

em centroides de cidade, estados ou países (ZIZKA; ANTONELLI, 2015).  
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Além disso, foram também removidos outliers espaciais, por meio de uma 

estimativa de densidade de kernel, omitindo coordenadas muito afastadas da porção 

central da distribuição das espécies, assumindo que estas coordenadas são prováveis 

erros de identificação. Além disso, o procedimento restringiu a distribuição das 

espécies modelada pelo MaxEnt à área de ocupação das espécies (area of occupancy 

– AOO), que é definida como a distribuição potencial da espécie, restringida à sua 

extensão de ocorrência (extent of occupancy – EOO), mais uma faixa de área de 300 

km. Esta abordagem também lidou com uma desvantagem bem conhecida do MaxEnt, 

na qual a distribuição das espécies é superestimada para além da EOO conhecida 

(FITZPATRICK; GOTELLI; ELLISON, 2013). 

A AOO estimada pelo procedimento de limpeza apresentou uma alta 

“sensibilidade” (proporção de presenças conhecidas corretamente preditas pela 

distribuição modelada) aos dados das parcelas, saindo-se muito bem em predizer a 

distribuição das espécies em áreas com presença dados de presença em parcelas de 

inventários florestais (PEARSON, 2010). A distribuição das espécies tal como predito 

pela IDW também apresentou alta “sensibilidade” em predizer as NHCs. Portanto, 

apesar da violação da principal premissa do MaxEnt, na qual as coleções constituídas 

aleatoriamente da distribuição da densidade hipotética de uma espécie, o procedimento 

de limpeza conservador, utilizando o MaxEnt, apresentou boa performance na 

modelagem de distribuições das espécies. 

6.2.2 A influência do clima sobre a riqueza e a distribuição de espécies durante o 

Holoceno 

A floresta Amazônica abriga potencialmente 16.000 espécies de árvores (TER 

STEEGE et al., 2013), e toda essa diversidade foi moldada por processos geológicos e 

climáticos ao longo de sua história (HOORN et al., 2010). Nos últimos três milênios, 

a floresta expandiu-se para o sul pelo aumento da precipitação entre um Holoceno 

médio mais seco e um Holoceno tardio mais úmido, evento evidenciado por registros 

fósseis de pólen de árvores amazônicas  (BURBRIDGE; MAYLE; KILLEEN, 2004; 

MAYLE; BURBRIDGE; KILLEEN, 2000).   
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No Capítulo 4, foi modelada a aptidão ambiental de espécies arbóreas de 

Moraceae e Urticaceae durante o Holoceno (cerca de 6 mil anos atrás) em toda a 

Amazônia para testar a influência das mudanças climáticas de longo prazo sobre a 

aptidão ambiental das espécies da floresta tropical. Observou-se que durante o 

Holoceno médio e tardio, a aptidão ambiental média para Moraceae e Urticaceae 

aumentou na Amazônia. Esse aumento foi especialmente alto no limite de ecótono 

entre a floresta ao sul da Amazônia e as savanas do Cerrado. Um achado importante 

foi que os registros de pólen de Moraceae e Urticaceae são uma boa representação para 

sua abundância relativa destas famílias em toda a Amazônia. A riqueza de espécies 

locais também aumentou durante o período. Foi encontrado um aumento médio de 

132% na riqueza de espécies predita em toda a Amazônia. A riqueza atual de espécies 

para estas duas famílias é maior na Amazônia ocidental e central, regiões conhecidas 

pela alta diversidade de espécies de árvores (STEEGE et al., 2003). 

Na análise da riqueza de espécies, incluindo todas as espécies de árvores 

amazônicas desenvolvida no capítulo 5, também foi observada maior diversidade na 

Amazônia ocidental e central. Os padrões de diversidade mais elevados observados 

nessa área têm sido atribuídos às condições climáticas relativamente estáveis desde o 

último máximo glacial (CHENG et al., 2013). Esta área apresentou baixa variação na 

riqueza de espécies e aptidão ambiental durante o Holoceno médio e tardio, o que 

contrastou com as variações observadas na parte sul da Amazônia. As variações 

observadas na parte sul da Amazônia foram maiores, e possivelmente causadas pelo 

aumento da aptidão ambiental (LATRUBESSE; RAMONELL, 1994; MARTIN et al., 

1997). 

A baixa diversidade de Moraceae e Urticaceae encontrada na parte sul da 

Amazônia, especialmente nas florestas tropicais nos ecótonos na Bolívia e no Brasil, 

pode indicar que essas áreas ainda estão em processo de sucessão, acumulando 

espécies de rápida dispersão e altas taxas de crescimento, como Moraceae e 

Urticaceae, também corroborando com a expansão florestal sugerida nos últimos 

milênios.   
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O estabelecimento de conexões sobre como as condições climáticas 

influenciaram a expansão florestal nos últimos milênios, afetando a diversidade e 

distribuição de espécies de árvores, inspirou o questionamento das possíveis 

influências das mudanças globais atuais e futuras sobre a floresta amazônica, 

particularmente considerando possíveis condições mais secas no futuro. 

6.2.3 Os impactos das mudanças globais sobre a floresta Amazônica 

Atualmente, a Amazônia está enfrentando ameaças de mudanças globais. O 

maior bloco de floresta tropical do planeta sofre com o aumento das mudanças 

climáticas e do desflorestamento, chegando perto de um ponto de onde pode não haver 

retorno (LOVEJOY; NOBRE, 2018). As mudanças globais podem afetar diretamente 

a biodiversidade, uma vez que afeta o habitat natural das espécies, que é 

consistentemente relacionado com a distribuição de espécies (ELITH; LEATHWICK, 

2009). Mudanças no habitat das espécies podem promover mudanças nos padrões de 

distribuição das espécies se elas forem capazes de se dispersar. 

Avaliar os impactos das mudanças globais é um desafio, porque a Amazônia 

ainda é pouco conhecida. Embora a modelagem seja possível para muitas espécies, 

ainda se tem poucos dados para a maioria das espécies amazônicas, mesmo para as 

mais comuns. O “grande vazio de dados” referido por Feeley e Silman (2010) está 

longe de ser resolvido. Mesmo na Amazônia, não existem mais que 10 coletas/100Km2 

(TER STEEGE et al., 2016). Além disso, espécies coletadas e depositadas em NHCs 

em todo o mundo sofrem com erros de identificação, que dificultam a compilação de 

novas listas de espécies (GOODWIN et al., 2015). As listas mais recentes de espécies 

arbóreas da Amazônia discordam em relação ao número total de espécies amazônicas 

já descritas, variando entre 6.727 e 11.676 (CARDOSO et al., 2017; TER STEEGE et 

al., 2016). 

Com base na lista de espécies mais recente (TER STEEGE et al., submetido) 

foram avaliados os impactos das mudanças globais sobre a floresta amazônica, 

quantificando os impactos das mudanças climáticas e do desflorestamento, separados 

e combinados, sobre todas as espécies de árvores amazônicas compiladas. Esta análise 

sugeriu que a perda histórica de áreas florestadas reduziu em média 7% da AOO 

estimada das espécies arbóreas da Amazônia até 2013.   
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Foi encontrado que 425 espécies perderam uma proporção tão grande de sua 

AOO original, que podem ser qualificadas como ameaçadas de extinção de acordo 

com os critérios A2 e B2 da IUCN (Capítulo 5). O desflorestamento é considerado 

uma das principais fontes de ameaça para as espécies arbóreas da Amazônia no 

presente. No entanto, as mudanças climáticas podem ser potencialmente mais 

ameaçadoras. Com dois cenários diferentes (“governança”, otimista; e “condições 

usuais”, pessimista), as espécies arbóreas da Amazônia podem ter uma perda média de 

AOO entre 19-33% até 2050, enquanto a análise das mudanças climáticas, baseada em 

duas “vias representativas” (representative pathways – RCP) de mudanças climáticas 

(RCP 2.6 - otimista; e RCP 8.5 - pessimista) mostrou uma perda média de AOO entre 

47-54%. Segundo os critérios da IUCN, isto representa uma ameaça para 22-39% das 

espécies de árvores, quando considerados os impactos do desflorestamento, e entre 47-

50%, quando considerados os impactos das mudanças climáticas. Quando ambas as 

fontes de ameaça são combinadas, a perda total de AOO é projetada para atingir 

valores entre 53-65%, enquanto a riqueza de espécies pode diminuir em média entre 

43-58%. 

Estes cenários combinados mostraram que um total entre 56-58% das espécies 

de árvores amazônicas podem enfrentar ameaças de extinção até 2050, com base nos 

critérios da IUCN. Este resultado é bastante alarmante, mostrando que com base nos 

cenários combinados, mais da metade da flora arbórea da Amazônia pode enfrentar 

ameaças de extinção em aproximadamente trinta anos. Mesmo considerando o cenário 

“melhor caso” (best-case), a Amazônia ainda pode estar sofrendo perdas severas de 

riqueza e distribuição. No cenário “pior caso” (“worst-case”), a floresta Amazônica 

pode ser reduzida a cerca de 50% de sua área original, ou “metade da Amazônia”. Este 

cenário segue a linha de base “condições usuais” para o desflorestamento e a ausência 

de mitigação  das mudanças climáticas, assumindo que não haverá melhoria na 

governança até 2050 (MARKANDYA; HALSNAES, 2000; SOARES-FILHO et al., 

2006).  
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Apesar do fato de que, na verdade, as pressões das mudanças globais podem 

ter sido reduzidas, mesmo em comparação ao cenário de melhoria de governança (TER 

STEEGE et al., 2015), um cenário “pior caso” não pode ser descartado, dado o recente 

aumento das tendências de desflorestamento no Brasil (que detém o maior pedaço da 

floresta amazônica), que seguiu os fracassos das agendas internacionais em relação à 

limitação do aquecimento global, o enfraquecimento da capacidade de governança nos 

trópicos (BARLOW et al., 2018; CHRISTOPHER, 2017; FEARNSIDE, 2017). Este 

eventos adicionam incertezas à conquista de um cenário de melhoria da governança 

no futuro (TOLLEFSON, 2018). Além disso, a possibilidade de redução das áreas de 

reservas legal para proteção da natureza na Amazônia brasileira, está na mesa para o 

debate, o que pode potencialmente aumentar o desflorestamento legal na região 

(FREITAS et al., 2018).  

Essas expectativas sobre a governança futura na Amazônia não são muito 

encorajadoras para a conservação de sua biodiversidade. O potencial de degradação da 

Amazônia é enorme, e a redução do desflorestamento é urgente, o que pode contribuir 

positivamente para a redução de emissões de CO2 e para a mitigação das mudanças 

climáticas. Esta tese mostrou que as mudanças globais moldaram a floresta Amazônica 

em processos de longa duração no passado, e também mostrou que o as mudanças 

projetadas para o futuro da floresta Amazônica podem moldá-la de maneira bastante 

diferente, afetando a riqueza e a distribuição de mais da metade de todas as espécies 

de árvores.  
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6.3 Perspectiva futura 

Nesta seção será destacada a perspectiva para futuros esforços sobre a 

investigação da conservação da biodiversidade amazônica. Ao abordar os impactos 

das mudanças globais nas espécies arbóreas da Amazônia em diferentes escalas 

temporais, esta tese contribuiu para uma melhor compreensão dos padrões que vêm 

moldando a floresta tropical amazônica ao longo do tempo. No entanto, o futuro da 

floresta depende da governança implementada a forma como a agenda política será 

construída no futuro é bastante imprevisível. Ainda assim, as projeções climáticas 

futuras utilizadas nesta tese avaliam mudanças globais para o ano de 2050 (meados do 

século 21). Estratégias de conservação baseadas em uma perspectiva política tão longa 

(cerca de trinta anos) podem ser impactadas pelas renovações políticas promovidas 

pela eleição de novas lideranças em todo o mundo, especialmente nos países 

Amazônicos, onde as agendas de conservação ambiental e apoio à ciência podem 

sofrer impactos diretos (BARBUY, 2018; ESCOBAR, 2018; FEARNSIDE, 2016; 

KEMP, 2017; REARDON, 2018). Aprofundar o entendimento sobre os impactos das 

mudanças globais na Amazônia com base em termos mais curtos pode fornecer metas 

mais tangíveis, e ser mais adequado aos modelos de governança atual.   



119 
 

REFERÊNCIAS 

ABSY, M. L. et al. Mise en évidence de quatre phases d’ouverture de la forêt dense dans 
le Sud-Est de l’Amazonie au cours des 60 000 dernières années: première comparaison 
avec d’autres régions tropicales. Comptes rendus de l’académie des sciences. Série 2: 
Mécanique, v. 312, n. 6, p. 673–678, 1991.  

ADENEY, J. M.; CHRISTENSEN, N. L.; PIMM, S. L. Reserves protect against 
deforestation fires in the Amazon. PLoS ONE, v. 4, n. 4, p. e5014, 2009.  

AGUIRRE-GUTIÉRREZ, J. et al. Fit-for-purpose: species distribution model 
performance depends on evaluation criteria – Dutch hoverflies as a case study. PLoS 
ONE, v. 8, n. 5, p. e63708, 14 maio 2013.  

ALGAR, A. C. et al. Predicting the future of species diversity: macroecological theory, 
climate change, and direct tests of alternative forecasting methods. Ecography, v. 32, n. 
1, p. 22–33, 2009.  

ANDERSON, R. P.; MARTÍNEZ-MEYER, E. Modeling species’ geographic 
distributions for preliminary conservation assessments: an implementation with the spiny 
pocket mice (Heteromys) of Ecuador. Biological Conservation, v. 116, n. 2, p. 167–179, 
2004.  

ARAÚJO, M. B.; NEW, M. Ensemble forecasting of species distributions. Trends in 
Ecology and Evolution, v. 22, n. 1, p. 42–47, 2007.  

ARAÚJO, M. B.; PETERSON, A. T. Uses and misuses of bioclimatic envelope 
modeling. Ecology, v. 93, n. 7, p. 1527–1539, jul. 2012.  

ARMENTERAS, D.; SCHNEIDER, L.; DÁVALOS, L. M. Fires in protected areas reveal 
unforeseen costs of Colombian peace. Nature ecology & evolution, p. 1, 2018.  

ASPINALL, R. J.; LEES, B. G. Sampling and analysis of spatial environmental data. 
Advances in GIS Research. Taylor and Francis, Southampton, p. 1086–1098, 1994.  

BADDELEY, A.; RUBAK, E.; TURNER, R. Spatial point patterns: methodology and 
applications with R. [s.l.] CRC Press, 2015.  

BALDRIDGE, E. et al. An extensive comparison of species-abundance distribution 
models. PeerJ, v. 4, p. e2823–e2823, 22 dez. 2016.  

BARBERI, M.; SALGADO-LABOURIAU, M. L.; SUGUIO, K. Paleovegetation and 
paleoclimate of “vereda de águas emendadas”, central Brazil. Journal of South 
American Earth Sciences, v. 13, n. 3, p. 241–254, 2000.  

BARLOW, J. et al. The future of hyperdiverse tropical ecosystems. Nature, v. 559, n. 
7715, p. 517, 2018.  

BARNES, M. D. et al. Prevent perverse outcomes from global protected area policy. 
Nature Ecology & Evolution, v. 2, n. 5, p. 759, 2018.   



120 
 

BECK, J. et al. Spatial bias in the GBIF database and its effect on modeling species’ 
geographic distributions. Ecological Informatics, v. 19, p. 10–15, jan. 2014.  

BEERLING, D. J.; MAYLE, F. E. Contrasting effects of climate and CO2 on Amazonian 
ecosystems since the last glacial maximum. Global Change Biology, v. 12, n. 10, p. 
1977–1984, 2006.  

BEHLING, H. First report on new evidence for the occurrence of Podocarpus and 
possible human presence at the mouth of the Amazon during the Late-glacial. Vegetation 
History and Archaeobotany, v. 5, n. 3, p. 241–246, 1996.  

BEHLING, H. Late Quaternary vegetational and climatic changes in Brazil. Review of 
Palaeobotany and Palynology, v. 99, n. 2, p. 143–156, 1998.  

BEHLING, H. Late Quaternary enviornmental changes in the Lagoa da Curuca region 
(eastern Amazonia, Brazil) and evidence of Podocarpus in the Amazon lowland. 
Vegetation History and Archaeobotany, v. 10, p. 175–183, 2001.  

BEHLING, H. et al. Holocene environmental changes in the Central Amazon Basin 
inferred from Lago Calado (Brazil). Palaeogeography, Palaeoclimatology, 
Palaeoecology, v. 173, n. 1–2, p. 87–101, 2001a.  

BEHLING, H. et al. Holocene environmental changes in the Central Amazon Basin 
inferred from Lago Calado (Brazil). Palaeogeography, Palaeoclimatology, 
Palaeoecology, v. 173, p. 87–101, 2001b.  

BEHLING, H.; CARLOS BERRIO, J.; HOOGHIEMSTRA, H. Late Quaternary pollen 
records from the middle Caquetá river basin in central Colombian Amazon. 
Palaeogeography, Palaeoclimatology, Palaeoecology, v. 145, n. 1, p. 193–213, 1999.  

BEHLING, H.; DA COSTA, M. L. da. Holocene Environmental Changes from the Rio 
Curuá Record in the Caxiuanã Region, Eastern Amazon Basin. Quaternary Research, 
v. 53, n. 3, p. 369–377, 2000.  

BEHLING, H.; HOOGHIEMSTRA, H. Environmental history of the Colombian 
savannas of the Llanos Orientales since the last glacial maximum from lake records El 
Pinal and Carimagua. Journal of Paleolimnology, v. 21, n. 4, p. 461–476, 1999.  

BEHLING, H.; HOOGHIEMSTRA, H. Holocene Amazon rainforest-savanna dynamics 
and climatic implications: high-resolution pollen record from Laguna Loma Linda in 
eastern Colombia. Journal of Quaternary Science, v. 15, n. 7, p. 687–695, 2000.  

BELLARD, C. et al. Impacts of climate change on the future of biodiversity. Ecology 
Letters, v. 15, n. 4, p. 365–377, 2012.  

BELLO, C. et al. Defaunation affects carbon storage in tropical forests. Science 
Advances, v. 1, n. 11, p. e1501105–e1501105, 2015.  

BERRÍO, J. C. et al. Late-glacial and Holocene history of the dry forest area in the south. 
Journal of Quaternary Science, v. 17, n. 7, p. 667–682, 2002.   



121 
 

BETTS, R. A; MALHI, Y.; ROBERTS, J. T. The future of the Amazon: new perspectives 
from climate, ecosystem and social sciences. Philosophical transactions of the Royal 
Society of London. Series B, Biological sciences, v. 363, n. 1498, p. 1729–35, 2008.  

BICKNELL, J.; PERES, C. A. Vertebrate population responses to reduced-impact 
logging in a neotropical forest. Forest Ecology and Management, v. 259, n. 12, p. 2267–
2275, 2010.  

BIVAND, R.; KEITT, T.; ROWLINGSON, B. Rgdal: bindings for the “geospatial” Data 
Abstraction Library, 2017. Disponível em: <https://cran.r-project.org/package=rgdal>. 
Acesso em: 03.09.2017. 

BIVAND, R.; LEWIN-KOH, N. Maptools: tools for reading and handling spatial objects, 
2017. Disponível em: <https://cran.r-project.org/package=maptools>. Acesso em: 
15.09.2017. 

BIVAND, R.; RUNDEL, C. Rgeos: interface to geometry engine - open source 
(“GEOS”), 2017. Disponível em: <https://cran.r-project.org/package=rgeos>. Acesso 
em: 20.09.2017. 

BOCKMANN, F. A. et al. Brazil’s government attacks biodiversity. Science, v. 360, n. 
6391, p. 865.1-865, 2018.  

BONAN, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits 
of forests. Science, v. 320, n. 5882, p. 1444–1449, 2008.  

BOUCHER-LALONDE, V.; MORIN, A.; CURRIE, D. J. How are tree species 
distributed in climatic space? A simple and general pattern. Global Ecology and 
Biogeography, v. 21, n. 12, p. 1157–1166, 2012.  

BOYLE, B. et al. The taxonomic name resolution service: an online tool for automated 
standardization of plant names. BMC Bioinformatics, v. 13, n. 1, p. 14–16, 2013.  

BRANCO, M.; FIGUEIRAS, F. G.; CERMEÑO, P. Assessing the efficiency of non-
parametric estimators of species richness for marine microplankton. Journal of Plankton 
Research, v. 40, n. 3, p. 230–243, 1 maio 2018.  

BRANDO, P. M. et al. Abrupt increases in Amazonian tree mortality due to drought-fire 
interactions. Proceedings of the National Academy of Sciences of the United States of 
America, v. 111, n. 17, p. 6347–52, 2014.  

BRODIE, J.; POST, E.; LAURANCE, W. F. Climate change and tropical biodiversity: a 
new focus. Trends in Ecology and Evolution, v. 27, n. 3, p. 145–150, 2012.  

BROOKS, T. M. et al. Habitat loss and extinction in the hotspots of biodiversity. 
Conservation Biology, v. 16, n. 4, p. 909–923, 2 ago. 2002.  

BROSE, U.; MARTINEZ, N. D.; WILLIAMS, R. J. Estimating species richness: 
sensitivity to sample coverage and insensitivity to spatial patterns. Ecology, v. 84, n. 9, 
p. 2364–2377, 2003.   



122 
 

BUNGE, J. et al. Estimating population diversity with CatchAll. Bioinformatics, v. 28, 
n. 7, p. 1045–1047, 2012.  

BUNGE, J.; BARGER, K. Parametric models for estimating the number of classes. 
Biometrical Journal: Journal of Mathematical Methods in Biosciences, v. 50, n. 6, p. 
971–982, 2008.  

BURBRIDGE, R. E.; MAYLE, F. E.; KILLEEN, T. J. Fifty-thousand-year vegetation 
and climate history of Noel Kempff Mercado National Park, Bolivian Amazon. 
Quaternary Research, v. 61, n. 2, p. 215–230, 2004.  

BURN, M. J.; MAYLE, F. E. Palynological differentiation between genera of the 
Moraceae family and implications for Amazonian palaeoecology. Review of 
Palaeobotany and Palynology, v. 149, n. 3–4, p. 187–201, 2008.  

BURN, M. J.; MAYLE, F. E.; KILLEEN, T. J. Pollen-based differentiation of Amazonian 
rainforest communities and implications for lowland palaeoecology in tropical South 
America. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 295, n. 1–2, p. 1–18, 
2010.  

BURNHAM, R.; GRAHAM, A. The history of neotropical vegetation: new developments 
and status. Annals of the Missouri Botanical Garden, v. 86, N, n. 2, p. 546–589, 1999.  

BUSH, M. B. et al. Two histories of environmental change and human disturbance in 
eastern lowland Amazonia. The Holocene, v. 10, n. 5, p. 543–553, 2000.  

BUSH, M. B. et al. Amazonian paleoecological histories: One Hill, three watersheds. 
Palaeogeography, Palaeoclimatology, Palaeoecology, v. 214, n. 4, p. 359–393, 2004.  

BUSH, M. B. et al. Holocene fire and occupation in Amazonia: records from two lake 
districts. Philosophical transactions of the Royal Society of London. Series B, 
Biological sciences, v. 362, n. 1478, p. 209–18, 2007.  

BUSH, M. B.; COLINVAUX, P. A. A 7000-year pollen record from the Amazon 
lowlands, Ecuador. Vegetatio, v. 76, n. 3, p. 141–154, 1988.  

BUSH, M. B.; SILMAN, M. R. Observations on late Pleistocene cooling and precipitation 
in the lowland Neotropics. Journal of Quaternary Science, v. 19, n. 7, p. 677–684, 2004.  

BUSH  SILMAN, M. R., M. B. Amazonian exploitataion revisited: ecological asmmetry 
and the policy pendulum. Cushman, S. A., Mckelvey K. S., Flather, K., v. 5, n. 9, p. 
457–465, 2007.  

CALABRESE, J. M. et al. Stacking species distribution models and adjusting bias by 
linking them to macroecological models. Global Ecology and Biogeography, v. 23, n. 
1, p. 99–112, 2014.  

CÁMARA-LERET, R. et al. Modelling responses of western Amazonian palms to soil 
nutrients. Journal of Ecology, p. 1–15, 2016.  

CARDOSO, D. et al. Amazon plant diversity revealed by a taxonomically verified species 
list. Proceedings of the National Academy of Sciences, p. 201706756, 2017. 



123 
 

CARRASCO, L. R. et al. Unsustainable development pathways caused by tropical 
deforestation. Science Advances, v. 3, n. 7, p. 1–10, 2017.  

CASTILHO, C. V. DE. Variação espacial e temporal da biomassa arbórea viva em 
64 km2 de floresta de terrafirme na Amazônia central. Instituto Nacional de Pesquisas 
da Amazônia, Universidade Federal do Amazonas, Manaus, 2004.  

CHAO, A. Estimating population size for sparse data in capture-recapture experiments. 
Biometrics, p. 427–438, 1989.  

CHAO, A. et al. Sufficient sampling for asymptotic minimum species richness 
estimators. Ecology, v. 90, n. 4, p. 1125–1133, 2009.  

CHAO, A.; BUNGE, J. Estimating the number of species in a stochastic abundance 
model. Biometrics, v. 58, n. 3, p. 531–539, 2002.  

CHAO, A.; LEE, S.-M. Estimating the number of classes via sample coverage. Journal 
of the American statistical Association, v. 87, n. 417, p. 210–217, 1992.  

CHAVE, J. et al. Improved allometric models to estimate the aboveground biomass of 
tropical trees. Global Change Biology, v. 20, n. 10, p. 3177–3190, 2014.  

CHENG, H. et al. Climate change patterns in Amazonia and biodiversity. Nature 
communications, v. 4, p. 1411, 2013.  

CHIARUCCI, A. et al. Performance of nonparametric species richness estimators in a 
high diversity plant community. Diversity and distributions, v. 9, n. 4, p. 283–295, 
2003.  

CHIARUCCI, A. Estimating species richness: still a long way off! Journal of Vegetation 
Science, v. 23, n. 6, p. 1003–1005, 2012.  

CHISHOLM, R. A.; LICHSTEIN, J. W. Linking dispersal, immigration and scale in the 
neutral theory of biodiversity. Ecology Letters, v. 12, n. 12, p. 1385–1393, 2009.  

CHRISTOPHER, J. US withdrawal from the COP21 Paris climate change agreement, and 
its possible implications. Science Progress, v. 100, n. 4, p. 411, 2017.  

CLARK, D. B.; CLARK, D. A. Abundance, growth and mortality of very large trees in 
neotropical lowland rain forest. Forest Ecology and Management, v. 80, n. 1–3, p. 235–
244, 1996.  

CLARKE, L. E. et al. Assessing transformation pathways. Climate change 2014: 
mitigation of climate change. Contribution of working group III to the fifth assessment 
report of the intergovernmental panel on climate change, 2014. p. 413–510,  

COHEN, M. C. L. et al. Holocene palaeoenvironmental history of the Amazonian 
mangrove belt. Quaternary Science Reviews, v. 55, n. NOVEMBER, p. 50–58, 2012.  

COLINVAUX, P. A. et al. Three pollen diagrams of forest disturbance in the western 
amazon basin. Review of Palaeobotany and Palynology, v. 55, n. 1, p. 73–81, 1988.  



124 
 

COLINVAUX, P. A. et al. A Long pollen record from lowland Amazonia: forest and 
cooling in glacial times. Science, v. 274, p. 85–88, Nov. 1996.  

COLINVAUX, P. A. et al. Glacial and postglacial pollen records from the ecuadorian 
Andes and Amazon. Quaternary Research, v. 48, n. 48, p. 69–78, 1997.  

COLINVAUX, P. A.; OLIVEIRA, P. E. de. Amazon plant diversity and climate through 
the Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 166, n. 1–2, p. 
51–63, 2001.  

COLWELL, Robert K. Biodiversity: concepts, patterns, and measurement. The 
Princeton guide to ecology, p. 257-263, 2009. 

COLWELL, R. K.; LEES, D. C. The mid-domain effect: geometric constraints on the 
geography of species richness. Trends in Ecology and Evolution, v. 15, n. 2, p. 70–76, 
2000.  

CONDIT, R. et al. Beta-diversity in tropical forest trees. Science, v. 295, n. 5555, p. 666–
669, 2002.  

COWLING, S. A et al. Contrasting simulated past and future responses of the Amazonian 
forest to atmospheric change. Philosophical transactions of the Royal Society of 
London. Series B, Biological sciences, v. 359, n. 1443, p. 539–47, 2004.  

CRIA. Specieslink - simple search. available from. Centro de Referência e Informação 
Ambiental, 2011. Disponível em: http://www.splink.org.br/index . Acesso em: 22 
October 2018.  

CROWTHER, T. W. et al. Mapping tree density at a global scale. Nature, v. 525, n. 
7568, p. 201–205, 2015.  

DA SILVA MENESES, M. E. N.; DA COSTA, M. L.; BEHLING, H. Late Holocene 
vegetation and fire dynamics from a savanna-forest ecotone in Roraima state, northern 
Brazilian Amazon. Journal of South American Earth Sciences, v. 42, p. 17–26, 2013.  

DÁVALOS, Liliana M. The ghosts of development past: deforestation and coca in 
western Amazonia. In: The Origins of Cocaine. Routledge, 2018. p. 31-64.  

DAVIDSON, E. A. et al. The Amazon basin in transition. Nature, v. 481, n. 7381, p. 
321–328, 2012.  

DEAN, W. With broadax and firebrand: the destruction of the Brazilian Atlantic forest. 
[California]: Univ of California Press, 1997.  

DIFFENBAUGH, N. S.; FIELD, C. B. Changes in ecologically critical terrestrial climate 
conditions. Science, v. 341, n. 6145, p. 486–492, 2013. 

DIGGLE, P. J. A Kernel Method for Smoothing Point Process Data. Journal of the 
Royal Statistical Society. Series C (Applied Statistics), v. 34, n. 2, p. 138–147, 1985.   



125 
 

DISTLER, T. et al. Stacked species distribution models and macroecological models 
provide congruent projections of avian species richness under climate change. Journal 
of Biogeography, v. 42, n. 5, p. 976–988, 2015.  

DORMANN, C. F. et al. Collinearity: a review of methods to deal with it and a simulation 
study evaluating their performance. Ecography, v. 36, n. 1, p. 27–46, 2013.  

DUAN, R.-Y. et al. The potential effects of climate change on amphibian distribution, 
range fragmentation and turnover in China. PeerJ, v. 4, p. e2185, 2016.  

EDENHOFER, O. et al. Climate change 2014: mitigation of climate change. In:  
AFRICAN CLIMATE POLICY CENTRE (ACPC). Contribution of working group III 
to the fifth assessment report of the intergovernmental panel on climate change, v. 
5, 2014. Disponível em: https://repository.uneca.org/pdfpreview/bitstream/handle/108 
55/22514/b10825526.pdf?sequence=1. Acesso em: 03.05.2017. 

EITEN, G. The cerrado vegetation of Brazil. The Botanical Review, v. 38, n. 2, p. 201–
341, 1972.  

ELITH, J. et al. Novel methods improve prediction of species’ distributions from 
occurrence data. Ecography, v. 29, n. 2, p. 129–151, 2006.  

ELITH, J. et al. A statistical explanation of MaxEnt for ecologists. Diversity and 
Distributions, v. 17, n. 1, p. 43–57, 2011.  

ELITH, J.; LEATHWICK, J. R. Species distribution models: ecological explanation and 
prediction across space and time. Annual Review of Ecology, Evolution, and 
Systematics, v. 40, p. 677–697, 2009.  

ESRI. DeLorme Publishing Company. Countries and rivers WGS84. Disponível em: 
http://www.esri.com/data/basemaps, © Esri, DeLorme Publishing Company. Acesso em: 
17.06.2016. 
ESQUIVEL-MUELBERT, A. et al. Seasonal drought limits tree species across the 
Neotropics. Ecography, v. 40, n. 5, p. 618-629, 2017. 

FEARNSIDE, P. M. A floresta amazônica nas mudanças globais. Manaus: INPA, 
2003.  

FEARNSIDE, P. M. Desmatamento na Amazônia: dinâmica, impactos e controle. Acta 
Amazônica, v. 36, n. 3, p. 395 - 400, 2006.  

FEARNSIDE, P. M. Business as usual: a resurgence of deforestation in the Brazilian 
Amazon. Yale Environ 360, v. 16, April, 2017. Disponível em: 
https://e360.yale.edu/features/business-as-usual-a-resurgence-of-deforestation-in-the-
brazilian-amazon. Acesso em: 07.06.2018. 

FEELEY, K. J.; REHM, E. M. Amazon’s vulnerability to climate change heightened by 
deforestation and man-made dispersal barriers. Global Change Biology, v. 18, n. 12, p. 
3606–3614, 2012.   



126 
 

FEELEY, K. J.; SILMAN, M. R. Extinction risks of Amazonian plant species. 
Proceedings of the National Academy of Sciences, v. 106, n. 30, p. 12382–12387, 2009.  

FEELEY, K. J.; SILMAN, M. R. The data void in modeling current and future 
distributions of tropical species. Global Change Biology, v. 17, n. 1, p. 626–630, Dez. 
2010.  

FEELEY, K. J.; SILMAN, M. R. Disappearing climates will limit the efficacy of 
Amazonian protected areas. Diversity and Distributions, v. 22, n. 11, p. 1081–1084, 
2016.  

FELDPAUSCH, T. R. et al. When big trees fall: damage and carbon export by reduced 
impact logging in southern Amazonia. Forest ecology and management, v. 219, n. 2–3, 
p. 199–215, 2005.  

FERREIRA, L. V.; VENTICINQUE, E.; ALMEIDA, S. O desmatamento na Amazônia 
e a importância das áreas protegidas. Estudos avançados, v. 19, n. 53, p. 157–166, 2005.  

FINE, P. V. A. An evaluation of the geographic area hypothesis using the latitudinal 
gradient in North American tree diversity. Evolutionary Ecology Research, v. 3, n. 4, p. 
413–428, 2001.  

FISHER, R. A.; CORBET, A. S.; WILLIAMS, C. B. The relation between the number of 
species and the number of individuals in a random sample of an animal population. The 
Journal of Animal Ecology, p. 42–58, 1943.  

FITZPATRICK, M. C.; GOTELLI, N. J.; ELLISON, A. M. MaxEnt versus MaxLike: 
empirical comparisons with ant species distributions. Ecosphere, v. 4, n. 5, p. art55, 2013.  

FONTES, D. et al. Paleoenvironmental dynamics in South Amazonia, Brazil, during the 
last 35,000 years inferred from pollen and geochemical records of Lago do Saci. 
Quaternary Science Reviews, v. 173, p. 161–180, 2017.  

FOURCADE, Y. et al. Mapping species distributions with MaxEnt using a 
geographically biased sample of presence data: a performance assessment of methods for 
correcting sampling bias. PLoS ONE, v. 9, n. 5, p. e97122, 12 maio 2014.  

FREITAS, F. L. M. et al. Potential increase of legal deforestation in Brazilian Amazon 
after Forest Act revision. Nature Sustainability, v. 1, n. 11, p. 665–670, 2018.  

FROST, I. A Holocene sedimentary record from Anaguncocha in the Ecuadorian 
Amazon. Ecology, v. 69, n. 1, p. 66–73, 1988.  

GASTON, K. J. Geographic range limits: achieving synthesis. Proceedings of the Royal 
Society B, v. 276, n. 1661, p. 1395–1406, 2009.  

GASTON, Kevin J.; SPICER, John I. Biodiversity: an introduction. John Wiley & 
Sons, 2013.  

GBIF. The global biodiversity information facility (year) what is GBIF? Available 
from https://www.gbif.org/what-is-gbif [22 October 2018], 2018.  



127 
 

GENTRY, A. H. Tree species richness of upper Amazonian forests. Ecology, v. 85, n. 
January, p. 156–159, 1988a.  

GENTRY, A. H. Changes in plant community diversity and floristic composition on 
environmental and geographical gradients. Annals of the Missouri Botanical Garden, 
p. 1–34, 1988b.  

GIBSON, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. 
Nature, v. 478, n. 7369, p. 378–381, 2011.  

GIORGETTA, M. A. et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-
ESM simulations for the Coupled Model Intercomparison Project phase 5. Journal of 
Advances in Modeling Earth Systems, v. 5, n. 3, p. 572–597, 2013.  

GIOVANELLI, J. G. R. R. et al. Modeling a spatially restricted distribution in the 
Neotropics: How the size of calibration area affects the performance of five presence-
only methods. Ecological Modelling, v. 221, n. 2, p. 215–224, jan. 2010.  

GOMES, V. H. F. et al. Amazonian tree species threatened by deforestation and climate 
change. Nature Climate Change, submetido.  

GOMES, V. H. F. et al. Species distribution modelling: contrasting presence-only models 
with plot abundance data. Scientific Reports, v. 8, n. 1, p. 1003, 2018.  

GOODWIN, Z. A. et al. Widespread mistaken identity in tropical plant collections. 
Current Biology, v. 25, n. 22, p. R1066–R1067, 2015.  

GOSLING, W. D. et al. Differentiation between Neotropical rainforest, dry forest, and 
savannah ecosystems by their modern pollen spectra and implications for the fossil pollen 
record. Review of Palaeobotany and Palynology, v. 153, n. 1–2, p. 70–85, 2009.  

GOTELLI, N. J.; COLWELL, R. K. Quantifying biodiversity: procedures and pitfalls in 
the measurement and comparison of species richness. Ecology Letters, v. 4, n. 4, p. 379–
391, 2001.  

GRAHAM, C. . H. et al. The influence of spatial errors in species occurrence data used 
in distribution models. Journal of Applied Ecology, v. 45, n. 1, p. 239–247, 2008.  

GRAHAM, C. H.; MORITZ, C.; WILLIAMS, S. E. Habitat history improves prediction 
of biodiversity in rainforest fauna. Proceedings of the National Academy of Sciences 
of the United States of America, v. 103, n. 3, p. 632–636, 2006.  

GRAU, O. et al. Nutrient-cycling mechanisms other than the direct absorption from soil 
may control forest structure and dynamics in poor Amazonian soils. Scientific Reports, 
v. 7, n. March, p. 1–11, 2017.  

GRAY, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected 
areas worldwide. Nature Communications, v. 7, p. 12306, 28 jul. 2016.  

GRENYER, R. et al. Global distribution and conservation of rare and threatened 
vertebrates. Nature, v. 458, n. 7235, p. 238–238, 2006.  



128 
 

GUILLERA-ARROITA, G. et al. Is my species distribution model fit for purpose? 
Matching data and models to applications. Global Ecology and Biogeography, v. 24, n. 
3, p. 276–292, 2015.  

GUISAN, A.; ZIMMERMANN, N. E. Predictive habitat distribution models in ecology. 
Ecological Modelling, n. 135, p. 147–186, 2000.  

HANAUER, Merlin; CANAVIRE BACARREZA, Gustavo. Civil Conflict Reduced the 
Impact of Colombia's Protected Areas. Inter-American Development Bank, 2018.  

HANSEN, M. C. C. et al. High-resolution global maps of 21st-century forest cover 
change. Science, v. 342, n. November, p. 850–854, 2013.  

HARIPERSAUD, Padmattie Persaud. Collecting biodiversity. 2009. Tese de Doutorado. 
Utrecht University.  

HARTE, J. et al. Maximum entropy and the state-variable approach to macroecology. 
Ecology, v. 89, n. 10, p. 2700–2711, 2008.  

HARTE, J. Maximum entropy and ecology: a theory of abundance, distribution, and 
energetics. Oikos, p. 257, 2011.  

HARTE, J.; KITZES, J. Inferring regional-scale species diversity from small-plot 
censuses. PloS one, v. 10, n. 2, p. e0117527, 2015.  

HE, F.; GASTON, K. J. Occupancy-abundance relationships and sampling scales. 
Ecography, v. 23, n. 4, p. 503–511, 2000.  

HERMANOWSKI, B. et al. Palaeoenvironmental dynamics and underlying climatic 
changes in southeast Amazonia (Serra Sul dos Carajás, Brazil) during the late Pleistocene 
and Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 365–366, p. 
227–246, 2012.  

HIJMANS, R. J. et al. Very high resolution interpolated climate surfaces for global land 
areas. International Journal of Climatology, v. 25, n. 15, p. 1965–1978, 2005.  

HIJMANS, R. J. Raster: geographic data analysis and modeling, 2017a. Disponível em: 
<https://cran.r-project.org/package=raster>. Acesso em: 15.06.2017. 

HIJMANS, R. J. et al. Dismo: species distribution modeling, 2017b. Disponível em: 
<https://cran.r-project.org/package=dismo>. Acesso em: 21.06.2017. 

HIJMANS, R. J.; VAN ETTEN, J. Raster: geographic data analysis and modelingR 
package version 2.5-8, 2016.  

HIRZEL, A. H. et al. Ecological-niche factor analysis: How to compute habitat-suitability 
maps without absence data? Ecology, v. 83, n. 7, p. 2027–2036, 2002.  

HOORN, C. et al. Amazonia through time: andean. Science, v. 330, n. November, p. 927–
931, 2010.   



129 
 

HORTAL, J.; BORGES, P. A. V; GASPAR, C. Evaluating the performance of species 
richness estimators: sensitivity to sample grain size. Journal of Animal Ecology, v. 75, 
n. 1, p. 274–287, 2006. HOUGHTON, R. A.; BYERS, B.; NASSIKAS, A. A. A role for 
tropical forests in stabilizing atmospheric CO2. Nature Climate Change, v. 5, n. 12, p. 
1022–1023, 2015.  

HUBBELL, S. P. The unified neutral theory of biodiversity and biogeography. 
Princeton, New Jersey, USA: Princeton Monographs in Population Biology. Princeton 
University Press, 2001.  

HUBBELL, S. P. et al. How many tree species are there in the Amazon and how many 
of them will go extinct? Proceedings of the National Academy of Sciences, v. 105, n. 
Supplement 1, p. 11498–11504, 2008.  

HUBBELL, S. P.; FOSTER, R. B. Diversity of canopy trees in a neotropical forest and 
implications for conservation. Tropical rain forest: ecology and Management, p. 25–
41, 1983.  

HUNTINGFORD, C. et al. Towards quantifying uncertainty in predictions of Amazon 
“dieback”. Philosophical Transactions of the Royal Society B: Biological Sciences, v. 
363, n. 1498, p. 1857–1864, 2008.  

HUTCHINSON, G. E. Cold spring harbor symposium on quantitative biology. 
Concluding remarks, v. 22, p. 415–427, 1957.  

IKNAYAN, K. J. et al. Detecting diversity: emerging methods to estimate species 
diversity. Trends in Ecology and Evolution, v. 29, n. 2, p. 97–106, 2014.  

INPE, I. N. DE P. E. Mapeamento do desmatamento da Amazônia com imagens de 
satélite. São José dos Campos. Instituto Nacional de Pesquisas Espaciais, 2018. 
Disponível em: http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes. 
Acesso em: 08.10.2018. 

IRION, G. et al. A multiproxy palaeoecological record of Holocene lake sediments from 
the Rio Tapajós, eastern Amazonia. Palaeogeography, Palaeoclimatology, 
Palaeoecology, v. 240, n. 3–4, p. 523–535, 2006. 

IUCN. IUCN Red List Categories and criteria: version 3.1. Gland, Switzerland: and 
Cambridge, UK: IUCN, p. iv + 32pp, 2012. 

IUCN, S. AND P. S. Guidelines for using the IUCN red list categories and criteria. 
Version 13. Prepared by the Standards and Petitions Subcommittee., 2017.  

IZSÁK, J.; PAVOINE, S. Links between the species abundance distribution and the shape 
of the corresponding rank abundance curve. Ecological indicators, v. 14, n. 1, p. 1–6, 
2012.  

JARAMILLO, C. et al. The origin of the modern Amazon rainforest: implications of the 
palynological and paleobotanical record. Amazonia, Landscape and Species 
Evolution: A Look into the Past, p. 317–334, 2010.   



130 
 

JONES, C. D. et al. The HadGEM2-ES implementation of CMIP5 centennial simulations. 
Geoscientific Model Development, v. 4, n. 3, p. 543–570, 2011.  

KADMON, R.; FARBER, O.; DANIN, A. Effect of roadside bias on the accuracy of 
predictive maps produced by bioclimatic models. Ecological Applications, v. 14, n. 2, p. 
401–413, abr. 2004.  

KILLEEN, T. J.; SOLÓRZANO, L. A. Conservation strategies to mitigate impacts from 
climate change in Amazonia. Philosophical transactions of the Royal Society of 
London. Series B, Biological sciences, v. 363, n. 1498, p. 1881–1888, 2008.  

KILLEN, T. J. Vegetation and flora of Parque Nacional Noel Kempff Mercado. In: 
KILLEEN, T. J., SCHULENBERG, T. S. (eds.). A biological assessment of Parque 
Nacional Noel Kempff Mercado, Bolivia. Washington, DC (EUA): Conservation 
International, Dept. of Conservation Biology, 1998.  

KIMURA, M. The neutral theory of molecular evolution. Cambridge University Press, 
1983.  

KOCHERGINSKY, M.; HE, X. M.; MU, Y. M. Practical confidence intervals for 
regression quantiles. Journal of Computational and Graphical Statistics, v. 14, n. 1, 
p. 41–55, 2005.  

KOENKER, R. Quantreg: quantile regressionR package version 5.05, 2013.  

KRISHNAMANI, R.; KUMAR, A.; HARTE, J. Estimating species richness at large 
spatial scales using data from small discrete plots. Ecography, v. 27, n. 5, p. 637–642, 
2004.  

KRITICOS, D. J. et al. CliMond: global high-resolution historical and future scenario 
climate surfaces for bioclimatic modelling. Methods in Ecology and Evolution, v. 3, n. 
1, p. 53–64, 2012.  

LAHOZ-MONFORT, J. J.; GUILLERA-ARROITA, G.; WINTLE, B. A. Imperfect 
detection impacts the performance of species distribution models. Global Ecology and 
Biogeography, v. 23, n. 4, p. 504–515, 2014. 

LATRUBESSE, E. M.; RAMONELL, C. G. A climatic model for southwestern 
Amazonia in Last Glacial times. Quaternary International, v. 21, p. 163–169, 1994.  

LAURANCE, W. F. et al. Rainforest fragmentation kills big trees. Nature, v. 404, n. 
6780, p. 836, 2000.  

LAURANCE, W. F. et al. Environment. The future of the Brazilian Amazon. Science 
(New York, N.Y.), v. 291, n. 5503, p. 438–439, 2001.  

LAURANCE, W. F. et al. Rapid decay of tree-community composition in Amazonian 
forest fragments. Proceedings Of The National Academy Of Sciences Of The United 
States Of America, v. 103, n. 50, p. 19010–19014, 2006.  

LAWSON, C. R. et al. Prevalence, thresholds and the performance of presence–absence 
models. Methods in Ecology and Evolution, v. 5, n. 1, p. 54–64, 2014.  



131 
 

LEDRU, M. P. et al. Palynological reconstruction of the rain forest in French Guiana 
during the past 3000 years. Comptes Rendus de l’Academie des Sciences Serie 2, 
Sciences de la Terre et des Planetes, n. 6-t324, p. 469–476, 1997. 

LEDRU, M. P. Late holocene rainforest disturbance in French Guiana. Review of 
Palaeobotany and Palynology, v. 115, n. 3–4, p. 161–176, 2001.  

LINDENMAYER, D. B.; LAURANCE, W. F.; FRANKLIN, J. F. Global decline in large 
old trees. Science, v. 338, n. 6112, p. 1305–1306, 2012.  

LIU, C.; WHITE, M.; NEWELL, G. Selecting thresholds for the prediction of species 
occurrence with presence-only data. Journal of Biogeography, v. 40, n. 4, p. 778–789, 
2013.  

LIU, K.-B.; COLINVAUX, P. A. A 5200-Year History of Amazon Rain Forest. Journal 
of Biogeography, v. 15, n. 2, p. 231–248, 1988.  

LOISELLE, B. A. et al. Predicting species distributions from herbarium collections: does 
climate bias in collection sampling influence model outcomes? Journal of 
Biogeography, v. 35, n. 1, p. 105–116, 6 set. 2008.  

LONGO, M. et al. Ecosystem heterogeneity and diversity mitigate Amazon forest 
resilience to frequent extreme droughts. 2018.  

LOVEJOY, T. E.; NOBRE, C. Amazon tipping point. Science Advances, v. 4, n. 2, p. 
2340, 2018.  

MACARTHUR, R. H.; WILSON, E. O. The theory of island biogeography. Princeton, 
NJ, 1967.  

MACDICKEN, K. et al. Global forest resources assessment 2015: how are the world’s 
forests changing? 2016.  

MAGURRAN, Anne E. Measuring biological diversity. John Wiley & Sons, 2013.  

MAGURRAN, A. E.; HENDERSON, P. A. Explaining the excess of rare species in 
natural species abundance distributions. Nature, v. 422, n. 6933, p. 714–716, 2003. 

MAHER, S. P. et al. Pattern-recognition ecological niche models fit to presence-only and 
presence-absence data. Methods in Ecology and Evolution, v. 5, n. 8, p. 761–770, 2014.  

MALDONADO, C. et al. Estimating species diversity and distribution in the era of Big 
Data: To what extent can we trust public databases? Global Ecology and Biogeography, 
v. 24, n. 8, p. 973–984, 2015.  

MALHI, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced 
dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences, 
v. 106, n. 49, p. 20610–20615, 2009.  

MALHI, Y.; WRIGHT, J. Spatial patterns and recent trends in the climate of tropical 
rainforest regions. Philosophical Transactions of the Royal Society of London B: 
Biological Sciences, v. 359, n. 1443, p. 311–329, 2004.  



132 
 

MARCHANT, R. et al. Distribution and ecology of parent taxa of pollen lodged within 
the Latin American Pollen Database. Review of Palaeobotany and Palynology, v. 121, 
n. 1, p. 1–75, 2002.  

MARKANDYA, A.; HALSNAES, K. Costing methodologies. Guidance papers on the 
cross cutting issues of the third assessment report of the IPCC, 2000. p. 15–31.  

MARTIN, L. et al. Astronomical forcing of contrasting rainfall changes in tropical South 
America between 12,400 and 8800 cal yr BP. Quaternary Research, v. 47, n. 1, p. 117–
122, 1997.  

MATEO, R. G. et al. Do stacked species distribution models reflect altitudinal diversity 
patterns? PLoS ONE, v. 7, n. 3, 2012.  

MAYLE, F. E. et al. Responses of Amazonian ecosystems to climatic and atmospheric 
carbon dioxide changes since the last glacial maximum. Philosophical transactions of 
the Royal Society of London. Series B, Biological sciences, v. 359, n. 1443, p. 499–
514, 2004.  

MAYLE, F. E.; BURBRIDGE, R.; KILLEEN, T. J. Millennial-scale dynamics of 
southern Amazonian rain forests. Science, v. 290, n. 5500, p. 2291–2294, 2000.  

MAYLE, F. E.; POWER, M. J. Impact of a drier early–mid-Holocene climate upon 
Amazonian forests. Philosophical Transactions of the Royal Society B: Biological 
Sciences, v. 363, n. 1498, p. 1829–1838, 2008.  

MCGILL, B. J. et al. Species abundance distributions: moving beyond single prediction 
theories to integration within an ecological framework. Ecology Letters, v. 10, n. 10, p. 
995–1015, 2007.  

MERCKX, B. et al. Null models reveal preferential sampling, spatial autocorrelation and 
overfitting in habitat suitability modelling. Ecological Modelling, v. 222, n. 3, p. 588–
597, fev. 2011.  

MEROW, C.; SMITH, M. J.; SILANDER, J. A. A practical guide to MaxEnt for 
modeling species’ distributions: What it does, and why inputs and settings matter. 
Ecography, v. 36, n. 10, p. 1058–1069, 2013.  

MILLER, J. Species distribution modeling. Geography Compass, v. 4, n. 6, p. 490–509, 
4 jun. 2010.  

MITTERMEIER, R. A et al. Wilderness and biodiversity conservation. Proceedings of 
the National Academy of Sciences of the United States of America, v. 100, n. 18, p. 
10309–13, 2003.  

MORRONE, J. J. Biogeographical regionalisation of the Neotropical region. Zootaxa, v. 
3782, n. 1, p. 1–110, 2014.  

MOUTINHO, P.; GUERRA, R.; AZEVEDO-RAMOS, C. Achieving zero deforestation 
in the Brazilian Amazon: what is missing? Elementa: Science of the Anthropocene, v. 
4, p. 125, 2016.  



133 
 

NAUGHTON-TREVES, L.; HOLLAND, M. B.; BRANDON, K. The role of protected a 
reas in conserving biodiversity and sustaining local livelihoods. Annual Review of 
Environment and Resources, v. 30, n. 1, p. 219–252, 2005. 

NEPSTAD, D. C. et al. Mortality of large trees and lianas following experimental drought 
in an Amazon forest. Ecology, v. 88, n. 9, p. 2259–2269, 2007.  

NEPSTAD, D. C. D. C. et al. Interactions among Amazon land use, forests and climate: 
prospects for a near-term forest tipping point. Philosophical transactions of the Royal 
Society of London. Series B, Biological sciences, v. 363, n. 1498, p. 1737–46, 2008.  

NEWBOLD, T. Applications and limitations of museum data for conservation and 
ecology, with particular attention to species distribution models. Progress in physical 
geography, v. 34, n. 1, p. 3–22, 2010.  

OKSANEN, A. J. et al. Community ecology package: vegan version 2.3-0, 2015. 

OKSANEN, J. Vegan: an introduction to ordination. Management, v. 1, p. 1–10, 2008.  

ORTEGA-HUERTA, M. A.; PETERSON, A. T. Modeling ecological niches and 
predicting geographic distributions: a test of six presence-only methods. Revista 
mexicana de Biodiversidad, v. 79, n. 1, p. 205–216, 2008.  

PEARSON, R. G. Species’ distribution modeling for conservation educators and 
practitioners. Lessons in Conservation, v. 3, n. 3, p. 54–89, 2010.  

PEBESMA, E.; GRAELER, B. Gstat: spatial and spatio-temporal geostatistical 
modelling, prediction and simulationR package version 1.0-19, 2014.  

PEBESMA, E.; HEUVELINK, G. Spatio-temporal interpolation using gstat. RFID 
Journal, v. 8, n. 1, p. 204–218, 2016.  

PEBESMA, E. J.; BIVAND, R. Sp: classes and methods for spatial data in RR package 
version 1.0-15, 2014.  

PECL, G. T. et al. Biodiversity redistribution under climate change: Impacts on 
ecosystems and human well-being. Science, v. 355, n. 6332, 2017.  

PEREIRA, H. M.; NAVARRO, L. M.; MARTINS, I. S. Global biodiversity change: the 
bad, the good, and the unknown. Annual Review of Environment and Resources, v. 
37, 2012.  

PERES, C. A. et al. Biodiversity conservation in human-modified Amazonian forest 
landscapes. Biological Conservation, v. 143, n. 10, p. 2314–2327, 2010.  

PETERS, G. P. et al. The challenge to keep global warming below 2°C. Nature Climate 
Change, v. 3, p. 4, 2 dez. 2012.  

PETERSON, A. T. et al. Ecological niches and geographic distributions. Princeton 
University Press, 2011.  



134 
 

PHILLIPS, S. J. et al. Sample selection bias and presence-only distribution models: 
implications for background and pseudo-absence data. Ecological Applications, v. 19, 
n. 1, p. 181–197, jan. 2009.  

PHILLIPS, S. J.; ANDERSON, R. P.; SCHAPIRE, R. E. Maximum entropy modeling of 
species geographic distributions. Ecological Modelling, v. 190, n. 3–4, p. 231–259, jan. 
2006.  

PHILLIPS, S. J.; DUDÍK, M. Modeling of species distributions with MaxEnt: New 
extensions and a comprehensive evaluation. Ecography, v. 31, n. 2, p. 161–175, 2008.  

PHILLIPS, S. J.; DUDÍK, M.; SCHAPIRE, R. E. A maximum entropy approach to 
species distribution modeling. Proceedings of the Twenty-First International 
Conference on Machine Learning, v. 83, 2004.  

PIMM, S. L. et al. How many endangered species remain to be discovered in Brazil? 
Natureza a Conservacao, v. 8, n. 1, p. 71–77, 2010.  

PINEDA, E.; LOBO, J. Assessing the accuracy of species distribution models to predict 
amphibian species richness patterns. Journal of Animal Ecology, v. 78, n. i, p. 182–190, 
2009.  

PLOTKIN, J. B. et al. Predicting species diversity in tropical forests. Proceedings of the 
National Academy of Sciences, v. 97, n. 20, p. 10850–10854, 2000.  

POS, E. et al. Estimating and interpreting migration of Amazonian forests using spatially 
implicit and semi-explicit neutral models. Ecology and Evolution, v. 7, n. 12, p. 4254–
4265, 2017.  

POS, E. T. et al. Are all species necessary to reveal ecologically important patterns? 
Ecology and Evolution, v. 4, n. 24, p. 4626–4636, 2014.  

POUTEAU, R. et al. Accounting for the indirect area effect in stacked species distribution 
models to map species richness in a montane biodiversity hotspot. Diversity and 
Distributions, v. 21, n. 11, p. 1329–1338, 2015.  

PRESTON, F. W. The commonness, and rarity, of species. Ecology, v. 29, n. 3, p. 254–
283, 1948.  

R CORE TEAM. R: a language and environ- ment for statistical computing. Vienna, 
Austria: R Foundation for Statistical Computing, 2011. 2011.  

R CORE TEAM. R: a language and environment for statistical computing. Vienna, 
Austria: R Foundation for Statistical Computing, 2016.  

R CORE TEAM. R: a language and environment for statistical computing. Vienna, 
Austria: R Foundation for Statistical Computing, 2018.  

RAES, N. Partial versus full species distribution models. Natureza a Conservacao, v. 
10, n. 2, p. 127–138, 2012.   



135 
 

RAES, N.; TER STEEGE, H. A null-model for significance testing of presence-only 
species distribution models. Ecography, v. 30, n. 5, p. 727–736, 2007a.  

RAES, N.; TER STEEGE, H. A null-model for significance testing of presence-only 
species distribution models. Ecography, v. 30, n. 5, p. 727–736, 2007b.  

RAISG, R. A. DE I. S. G. Amazonia 2017 – protected areas and indigenous territories. 
Red mazónica de Información Socioambiental Georreferenciada, 2017. Disponível em: 
https://www.amazoniasocioambiental.org/es/mapas/#!/descargas. Acesso em: 
07.01.2019. 

REIS, L. S. et al. Environmental and vegetation changes in southeastern Amazonia during 
the late Pleistocene and Holocene. Quaternary International, v. 449, p. 83–105, 2017.  

RENNER, I. W.; WARTON, D. I. Equivalence of MaxEnt and poisson point process 
models for species distribution modeling in ecology. Biometrics, v. 69, n. 1, p. 274–281, 
mar. 2013.  

RIAHI, K.; GRÜBLER, A.; NAKICENOVIC, N. Scenarios of long-term socio-economic 
and environmental development under climate stabilization. Technological Forecasting 
and Social Change, v. 74, n. 7, p. 887–935, 2007.  

RIBEIRO, J. E. L. DA S. et al. Flora da Reserva Ducke: guia de identificação das plantas 
vasculares de uma floresta de terra-firme na Amazonia Central. Manaus: INPA/DFID, 
1999.  

RIBEIRO, M. C. et al. The Brazilian Atlantic forest: how much is left, and how is the 
remaining forest distributed? Implications for conservation. Biological Conservation, v. 
142, n. 6, p. 1141–1153, 2009.  

ROCCHETTI, I.; BUNGE, J.; BÖHNING, D. Population size estimation based upon 
ratios of recapture probabilities. The Annals of Applied Statistics, v. 5, n. 2B, p. 1512–
1533, 2011.  

RODRIGUES, A. S. L. et al. The value of the IUCN red list for conservation. Trends in 
ecology & evolution, v. 21, n. 2, p. 71–76, 2006.  

RODRÍGUEZ-ZORRO, P. A. et al. Forest stability during the early and late Holocene in 
the igapó floodplains of the Rio Negro, northwestern Brazil. Quaternary Research 
(United States), v. 89, n. 1, p. 75–89, 2018.  

ROSENZWEIG, M. L. Species diversity in space and time. Cambridge University 
Press, 1995.  

ROUCOUX, K. H. et al. Vegetation development in an Amazonian peatland. 
Palaeogeography, Palaeoclimatology, Palaeoecology, v. 374, p. 242–255, 2013.  

SABATIER, D. et al. The influence of soil cover organization on the floristic and 
structural heterogeneity of a Guianan rain forest. Plant ecology, v. 131, n. 1, p. 81–108, 
1997.   



136 
 

SALOMÃO, R. DE P. Restauração florestal de precisão: dinâmica e espécies 
estruturantes. KG, Saarbrücken, Germany: OmniScriptum GmbH & Co., 2015.  

SHUKLA, J.; NOBRE, C.; SELLERS, P. Amazon deforestation and climate change. 
Science, Washington, v. 247, n. 4948, p. 1322–1325, 1990.  

SILVÉRIO, D. V et al. Agricultural expansion dominates climate changes in southeastern 
Amazonia: the overlooked non-GHG forcing. Environmental Research Letters, v. 10, 
n. 10, p. 104015, 2015.  

SKOV, F.; SVENNING, J. Potential impact of climatic change on the distribution of 
forest herbs in Europe. Ecography, v. 27, n. 3, p. 366–380, 2004.  

SLIK, J. W. F. et al. Environmental correlates for tropical tree diversity and distribution 
patterns in Borneo. Diversity and Distributions, v. 15, n. 3, p. 523–532, 2009.  

SMITH, R. J.; MAYLE, F. E. Impact of mid- to late Holocene precipitation changes on 
vegetation across lowland tropical South America: a paleo-data synthesis. Quaternary 
Research, p. 1–22, 2017.  

SMITH, R.; SINGARAYER, J.; MAYLE, F. How well do vegetation models simulate 
mid-Holocene Amazonia? EGU General Assembly Conference Abstracts. Anais...2018 

SOARES-FILHO, B. et al. Role of Brazilian Amazon protected areas in climate change 
mitigation. Proceedings of the National Academy of Sciences of the United States of 
America, v. 107, n. 24, p. 10821–6, 15 jun. 2010.  

SOARES-FILHO, B. S. et al. Modelling conservation in the Amazon basin. Nature, v. 
440, n. 7083, p. 520–3, 2006.  

SOARES-FILHO, B. S. et al. LBA-ECO LC-14 modeled deforestation scenarios, 
Amazon basin: 2002-2050 Oak Ridge, TN, Oak Ridge National Laboratory Distributed 
Active Archive Center, 2013.  

SOARES-FILHO, B. S.; ASSUNÇÃO, R. M.; PANTUZZO, A. E. Modeling the spatial 
transition probabilities of landscape dynamics in an Amazonian colonization frontier: 
Transition probability maps indicate where changes may occur in the landscape, thus 
enabling better evaluation of the ecological consequences of lan. AIBS Bulletin, v. 51, 
n. 12, p. 1059–1067, 2001.  

STOCKER, T. F. et al. Climate change 2013: The physical science basis. 
Intergovernmental Panel on Climate Change, Working Group I Contribution to the 
IPCC Fifth Assessment Report (AR5) (Cambridge Univ Press, New York), v. 25, 
2013.  

STRAND, J. et al. Spatially explicit valuation of the Brazilian Amazon forest’s ecosystem 
services. Nature Sustainability, v. 1, n. 11, p. 657, 2018.  

SWINGEDOUW, D. et al. Initialisation and predictability of the AMOC over the last 50 
years in a climate model. Climate Dynamics, v. 40, p. 2381–2399, 2013.   



137 
 

SYFERT, M. M. et al. The effects of sampling bias and model complexity on the 
predictive performance of MaxEnt species distribution models. PLoS ONE, v. 8, n. 2, p. 
e55158, 14 fev. 2013.  

SYFERT, M. M. et al. Using species distribution models to inform IUCN red list 
assessments. Biological Conservation, v. 177, p. 174–184, 2014.  

TABARELLI, M. et al. Challenges and opportunities for biodiversity conservation in the 
Brazilian Atlantic Forest. Conservation Biology, v. 19, n. 3, p. 695–700, 2005.  

TATEBE, H. et al. The initialization of the MIROC climate models with hydrographic 
data assimilation for decadal prediction. Journal of the Meteorological Society of 
Japan, v. 90A, n. 0, p. 275–294, 2012.  

TAUBERT, F. et al. Global patterns of tropical forest fragmentation. Nature, v. 554, p. 
519, 14 fev. 2018.  

TAYLOR, Z. P. et al. A multi-proxy palaeoecological record of late-Holocene forest 
expansion in lowland Bolivia. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 
293, n. 1–2, p. 98–107, 2010.  

TER STEEGE, H. et al. Towards a dynamic list of Amazonian tree species. Scientific 
Reports. submetido. 

TER STEEGE, H. et al. An analysis of the floristic composition and diversity of 
Amazonian forests including those of the Guiana Shield. Journal of Tropical Ecology, 
v. 16, n. 6, p. 801–828, 2000.  

TER STEEGE, H.; HAMMOND, D. S. Character convergence, diversity, and disturbance 
in tropical rain forest in Guyana. Ecology, v. 82, n. 11, p. 3197–3212, 2001. 

TER STEEGE, H. et al. A spatial model of tree α-diversity and tree density for the 
Amazon. Biodiversity and Conservation, v. 12, n. 11, p. 2255–2277, 2003.  

TER STEEGE, H. et al. Continental-scale patterns of canopy tree composition and 
function across Amazonia. Nature, v. 443, n. 7110, p. 0–2, 2006.  

TER STEEGE, H. Will tropical biodiversity survive our approach to global change? 
Biotropica, v. 42, n. 5, p. 561–562, 2010.  

TER STEEGE, H. et al. A model of botanical collectors’ behavior in the field: never the 
same species twice. American Journal of Botany, v. 98, n. 1, p. 31–37, 2011.  

TER STEEGE, H. et al. Hyperdominance in the Amazonian tree flora. Science, v. 342, 
n. 6156, p. 1243092, 17 out. 2013.  

TER STEEGE, H. et al. Estimating the global conservation status of over 15,000 
Amazonian tree species. Science Advances, 2015.  

TER STEEGE, H. et al. The discovery of the Amazonian tree flora with an updated 
checklist of all known tree taxa. Scientific Reports, v. 6, p. 1–15, 2016.  



138 
 

TER STEEGE, H. TER et al. http://atdn.myspecies.info/.  

THOMAS, C. D. et al. Protected areas facilitate species’ range expansions. Proceedings 
of the National Academy of Sciences of the United States of America, v. 109, n. 35, 
p. 14063–8, 2012.  

TILMAN, D. et al. Habitat destruction and the extinction debt. Nature, v. 371, n. 6492, 
p. 65–66, 1994.  

TOBLER, M. et al. Implications of collection patterns of botanical specimens on their 
usefulness for conservation planning: an example of two neotropical plant families 
(Moraceae and Myristicaceae) in Peru. Biodiversity and Conservation, v. 16, n. 3, p. 
659–677, 2007.  

TOLEDO, M. B. de; BUSH, M. B. A mid-Holocene environmental change in Amazonian 
savannas. Journal of Biogeography, v. 34, n. 8, p. 1313–1326, 2007.  

TOLLEFSON, J. Stopping deforestation: Battle for the amazon. Nature, v. 520, n. 7545, 
p. 20–23, 2015a.  

TOLLEFSON, J. Forests in spotlight at Paris climate talks. Nature, 1 dez. 2015b.  

TOLLEFSON, J. IPCC says limiting global warming to 1.5° C will require drastic action. 
Nature News, 2018. Disponívem em: https://www.nature.com/articles/d41586-018-
06876-2. Acesso em: 13.09.2018. 

TRAVIS, J. M. J. Climate change and habitat destruction: a deadly anthropogenic 
cocktail. Proceedings of the Royal Society of London B: Biological Sciences, v. 270, 
n. 1514, p. 467–473, 2003.  

TUCKER, C. M. et al. A guide to phylogenetic metrics for conservation, community 
ecology and macroecology. Biological Reviews, 2016.  

UNEP-WCMC; IUCN; PLANET, P. The world database on protected areas (WDPA)/The 
global database on protected areas management effectiveness (GD-PAME) [on-line], 
[04.04.2018]. Cambridge, UK: UNEP-WCMC and IUCN, 2018.  

URBANEK, M. S. rJava: low-level R to Java interface R package version 0.9-6, 2013.  

URBANEK, S. rJava: Low-Level R to Java Interface, 2017. Disponível em: 
https://cran.r-project.org/package=rJava. Acesso em: 30.10.2016.  

URREGO, D. H. et al. Holocene fires, forest stability and human occupation in south-
western Amazonia. Journal of Biogeography, v. 40, n. 3, p. 521–533, 2013.  

VAN DER SANDE, M. T. et al. Soil fertility and species traits, but not diversity, drive 
productivity and biomass stocks in a Guyanese tropical rainforest. Functional Ecology, 
v. 32, n. 2, p. 461–474, 2018.  

VAN PROOSDIJ, A. S. J. et al. Minimum required number of specimen records to 
develop accurate species distribution models. Ecography, v. 39, n. 6, p. 542–552, 2015. 



139 
 

VAN VUUREN, D. P. et al. Long-term multi-gas scenarios to stabilise radiative forcing 
– exploring costs and benefits within an integrated assessment framework. The Energy 
Journal, v. 27, n. Multi-greenhouse gas mitigation and climate policy, p. 201–233, 2006.  

VAN VUUREN, D. P. et al. Stabilizing greenhouse gas concentrations at low levels: An 
assessment of reduction strategies and costs. Climatic Change, v. 81, n. 2, p. 119–159, 
2007.  

VAN VUUREN, D. P. et al. The representative concentration pathways: an overview. 
Climatic Change, v. 109, n. 1, p. 5–31, 2011.  

VANDERWAL, J. et al. Abundance and the environmental niche: environmental 
suitability estimated from niche models predicts the upper limit of local abundance. 
American Naturalist, v. 174, n. 2, p. 282–291, 2009.  

VANDERWAL, J. et al. SDMTools: species distribution modelling tools: tools for 
processing data associated with species distribution modelling exercises R package 
version 1.1-20, 2014.  

VARELA, S. et al. Environmental filters reduce the effects of sampling bias and improve 
predictions of ecological niche models. Ecography, v. 37, n. 11, p. 1084–1091, 2014.  

WALKER, R. et al. Protecting the Amazon with protected areas. Proceedings of the 
National Academy of Sciences of the United States of America, v. 106, n. 26, p. 
10582–6, 2009.  

WALTHER, B. A.; MOORE, J. L. The concepts of bias, precision and accuracy, and their 
use in testing the performance of species richness estimators, with a literature review of 
estimator performance. Ecography, v. 28, n. 6, p. 815–829, 2005.  

WANG, J.-P. Species: An R package for species pichness estimation. Journal of 
Statistical Software, v. 40, n. 9, p. 1–15, 2011.  

WANG, J.-P. Z.; LINDSAY, B. G. A penalized nonparametric maximum likelihood 
approach to species richness estimation. Journal of the American Statistical 
Association, v. 100, n. 471, p. 942–959, 2005.  

WATANABE, S. et al. MIROC-ESM 2010: Model description and basic results of 
CMIP5-20c3m experiments. Geoscientific Model Development, v. 4, n. 4, p. 845–872, 
2011.  

WATSON, J. E. M. et al. The performance and potential of protected areas. Nature, v. 
515, n. 7525, p. 67–73, 2014.  

WENG, C.; BUSH, M. B.; ATHENS, J. S. Holocene climate change and hydrarch 
succession in lowland Amazonian Ecuador. Review of Palaeobotany and Palynology, 
v. 120, n. 1–2, p. 73–90, 2002.  

WENG, C.; BUSH, M. B.; SILMAN, M. R. An analysis of modern pollen rain on an 
elevational gradient in southern Peru. Journal of Tropical Ecology, v. 20, n. 1, p. 113–
124, 2004. 



140 
 

WHITNEY, B. S. et al. A 45kyr palaeoclimate record from the lowland interior of tropical 
South America. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 307, n. 1, p. 
177–192, 2011.  

WISZ, M. S. et al. Effects of sample size on the performance of species distribution 
models. Diversity and Distributions, v. 14, n. 5, p. 763–773, set. 2008. 

XIAO-GE, X.; TONG-WEN, W.; JIE, Z. Introduction of CMIP5 experiments carried out 
with the climate system models of beijing climate center. Advances in climate Change 
Research, v. 4, n. 1, p. 41–49, 2013.  

XU, H. et al. Assessing non-parametric and area-based methods for estimating regional 
species richness. Journal of Vegetation Science, v. 23, n. 6, p. 1006–1012, 2012.  

YEAGER, S. et al. A decadal prediction case study: late twentieth-century north Atlantic 
Ocean heat content. Journal of Climate, v. 25, n. 15, p. 5173–5189, 2012.  

ZIZKA, A. SpeciesgeocodeR: prepare species distributions for the use in phylogenetic 
analyses, 2015. Disponível em: https://cran.r-project.org/package=speciesgeocodeR. 
Acesso em: 01.08.2017. 

ZIZKA, A. et al. Finding needles in the haystack: where to look for rare species in the 
American tropics. Ecography, v. 41, n. 2, p. 321–330, 2018.  

ZIZKA, A.; ANTONELLI, A. SpeciesgeocodeR: an R package for linking species 
occurrences, user-defined regions and phylogenetic trees for biogeography, ecology and 
evolutionbioRxiv. 24 nov. 2015. Disponível em: 
http://biorxiv.org/content/early/2015/11/24/032755.abstract. Acesso em: 07.09.2017.  

  



141 
 

 

 

 

 

 

 

 

 

 

APÊNDICES  



142 
 

APÊNDICE A 

Figure S4.1- Current mean environmental suitability for the families Moraceae and Urticaceae (%). A, 
Moraceae. B, Urticaceae. Gray polygon, Amazonian rainforest. Circles in blue, Numbers of collections 
found in GBIF database, and checked for inconsistencies. Maps created with custom R script. Base map 
source (country.shp, rivers.shp): ESRI. 

 

Fonte: ESRI (2016); R Core Team (2018). 

Figure S4.2- Species richness. A, Modelled species richness for Moraceae. B, Modelled species richness 
for Urticaceae. Both maps are the result of stacking individual thresholded species distribution models. 
circles in blue, Numbers of species collected by 0.5 degree cell. Maps created with custom R script. 
Gray line, Amazonian rainforest. Circles in blue, Numbers of species collected by 0.5-degree cell. Base 
map source (country.shp, rivers.shp): ESRI. 

 

Fonte: ESRI (2016); R Core Team (2018).  
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Figure S4.3- Relative abundance for Moraceae and Urticaceae families. A, Relative abundance map for 
Moraceae based on tree inventory plot data. B, Relative abundance map for Urticaceae based on tree 
inventory plot data. circles in blue, number of plots with presence of the families. circles in pink, 
percentage of modern pollen assemblage of Moraceae/Urticaceae obtained from pollen diagrams of the 
paleoecological sites. Gray polygon, Amazonian rainforest. Maps created with custom R script. Base 
map source (country.shp, rivers.shp): ESRI. 

 
Fonte: ESRI (2016); R Core Team (2018). 

Figure S4.4- Increment in environmental suitability between the middle and late Holocene (%, between 
current and last 6 ka years). A, Increment for Moraceae family. B, Increment for Urticaceae family. 
Maps created with custom R script. Gray line, Amazonian rainforest and Amazonian sub-regions. Base 
map source (country.shp, rivers.shp): ESRI. 

 

Fonte: ESRI (2016); R Core Team (2018).  
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Figure S4.5- Increment in species richness between the middle and late Holocene (%, between current 
and last 6 ka years). A, Increament for Moraceae family. B, Increament for Urticaceae family. Gray 
polygon, Amazonian rainforest and Amazonian sub-regions. Maps created with custom R script. Maps 
created with custom R script. Base map source (country.shp, rivers.shp): ESRI. 

Fonte: ESRI (2016); R Core Team (2018). 
 

Figure S4.6- Relationship between relative abundance. A, all Moraceae species, and B, all Urticaceae 
species in the vegetation and the percent abundance of their pollen in lake/bog surface sediment pollen 
assemblages. 
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Figure S4.7- Map of original Amazonian lowland forest. The green area represents lowland forest area. 
Amazonia sub-regions: CA, central Amazonia; EA, eastern Amazonia; GS, Guiana Shield; SA, southern 
Amazonia; WAN, northwestern Amazonia; WAS, southwestern. Map created with custom R script. 
Base map source (country.shp, rivers.shp): ESRI. 

 

Fonte: ESRI (2016); R Core Team (2018). 
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Figure S4.8- Locations for 45 paleoecological sites. Amazonian paleoecological sites locations in green 
and numeric ID in red corresponding to Appendix S4.4. Maps created with custom R script. Base map 
source (country.shp, rivers.shp): ESRI. 

 
Fonte: ESRI (2016); R Core Team (2018). 
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Figure S5.1- Modelling the estimated area of occupancy (AOO). The representation of the area of 
occupancy (AOO) according to IUCN. a, Spatial distribution of all know collections of a species. b, 
Extent of occurrence (EOO) estimated as the boundary (convex hull) of all collections. c, Known area 
of occupancy (AOO), defined as the number of grid cells occupied by the species. d, Modelled AOO 
the result of modelling the suitable habitat for the species but constraining this by the known EOO plus 
a small buffer. 
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Figure S5.2- Deforestation scenarios by 2013 and projected forest loss by 2050. green, Forested area. red, Deforested area. a, Historical deforestation by 2013. b, 
Improved governance scenario (IGS) deforestation by 2050. c, Business as usual scenario (BAU) deforestation by 2050. Maps created with custom R script. Base 
map source (country.shp, rivers.shp): ESRI. 

 

Fonte: ESRI (2016); R Core Team (2018). 
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Figure S5.3- Amazonian protected areas network. green, Original Amazonian lowland forest. Blue, 

Amazonian protected areas network. Maps created with custom R script. Base map source (country.shp, 

rivers.shp): ESRI. 

 
Fonte: ESRI (2016); R Core Team (2018). 
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1e S5.4. Map of original Amazonian lowland forest. The green area represents lowland forest area. 
Amazonia sub-regions: CA, central Amazonia; EA, eastern Amazonia; GS, Guiana Shield; SA, 
southern Amazonia; WAN, northwestern Amazonia; WAS, southwestern. Maps created with custom R 
script. Base map source (country.shp, rivers.shp): ESRI. 

 
Fonte: ESRI (2016); R Core Team (2018). 
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Figure S5.5. Estimated AOO loss x population size loss. Loss in relative trees population size shows low but significant relationship with loss in trees AOO size in a, 
2013 deforestation. b, 2050 IGS deforestation. c, 2050 BAU deforestation scenarios. 
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1e S5.6. Contrasting the estimated AOO loss for three hyperdominant Amazonian tree species. Green, 
Forested area. Red, Deforested area. Salmon, Loss in AOO. A, Tetragastris altissima (Aubl.) Swart, 
eastern/southern species. B, Eperua falcata Aubl., northern/central species. C, Iriartea deltoidea Ruiz & 
Pav., western species. Maps created with custom R script. Base map source (country.shp, rivers.shp): 
ESRI. 

 

Fonte: ESRI (2016); R Core Team (2018). 
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Figure S5.7. Tree species richness loss (fraction) by grid cell. a, Original AOO only. b, Original AOO and 
2050 IGS deforestation. c, Original AOO and 2050 BAU deforestation. d, 2050 RCP 2.6 AOO scenario 
only. e, 2050 RCP 2.6 AOO scenario combined with 2050 IGS deforestation. f, 2050 RCP 2.6 AOO 
scenario combined with 2050 BAU deforestation, g, 2050 RCP 8.5 AOO scenario only. h, 2050 RCP 8.5 
AOO scenario combined with 2050 IGS deforestation. i, 2050 RCP 8.5 AOO scenario combined with 
2050 BAU deforestation. Maps created with custom R script. Base map source (country.shp, rivers.shp): 
ESRI. 

 

Fonte: ESRI (2016); R Core Team (2018). 
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Figure S5.8. Tree species richness of the forest fragments inside the protected area network. a, Species richness by 2013. b, Species richness by 2050 for the best-case 
scenario (RCP 2.6 AOO scenario and IGS deforestation). c, Species richness by 2050 for the worst-case scenario (RCP 8.5 AOO scenario and BAU deforestation). 
Maps created with custom R script. Base map source (country.shp, rivers.shp): ESRI. 

 

Fonte: ESRI (2016); R Core Team (2018). 
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Figure S5.9. Tree species richness of the forest fragments outside Amazonian protected area network. a, Species richness by 2013. b, Species richness by 2050 for 
the best-case scenario (RCP 2.6 AOO scenario and IGS deforestation). c, Species richness by 2050 for the worst-case scenario (RCP 8.5 AOO scenario and BAU 
deforestation). Maps created with custom R script. Base map source (country.shp, rivers.shp): ESRI. 

 

Fonte: ESRI (2016); R Core Team (2018). 

 


