

# ESTUDO DO PROCESSO DE PRODUÇÃO DE BIO-COMBUSTÍVEIS VIA PIRÓLISE DE RESÍDUOS DE PNEUS

WENDERSON GOMES DOS SANTOS

Belém-PA 2019



# ESTUDO DO PROCESSO DE PRODUÇÃO DE BIO-COMBUSTÍVEIS VIA PIRÓLISE DE RESÍDUOS DE PNEUS

# WENDERSON GOMES DOS SANTOS

Tese de Doutorado apresentada ao Programa de Pós-Graduação em Engenharia de Recursos Naturais da Amazônia, PRODERNA/ITEC, da Universidade Federal do Pará, como parte dos requisitos necessários para obtenção do Título de Doutor em Engenharia de Recursos Naturais.

ORIENTADORES: Nélio Teixeira Machado Sergio Duvoisin Junior

Belém-PA 2019

# ESTUDO DO PROCESSO DE PRODUÇÃO DE BIO-COMBUSTÍVEIS VIA PIRÓLISE DE RESÍDUOS DE PNEUS

Wenderson Gomes dos Santos

TESE SUBMETIDA AO CORPO DOCENTE DO PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA DE RECURSOS NATURAIS DA AMAZÔNIA (PRODERNA/ITEC) DA UNIVERSIDADE FEDERAL DO PARÁ COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR EM ENGENHARIA DE RECURSOS NATURAIS.

Aprovada por: Prof. Dr. - Ing. Nélio Teixera Machado (Orientador - FAESA/ITEC/UFPA) Prof. D. Sergio Duvoisin Junior (Membro Externo – UEA) NG Prof. Dr. Roberto Tetsuo Fujiyama (Membro Interno – PRODERNA/ITEC/UFPA) UN VE Prof. Dr. Marcelo Costa Santos (Membro Externo - UFRA) din. Prof. Dr. Hélio da Silva Almeida (Membro Externo - PPGEC/ITEC/UFPA)

Prof. Dr. Silvio Alex Pereira da Mota (Membro Externo - PPGQ/UNIFESSPA)

### Belém-PA 24 de Outubro de 2019

Dados Internacionais de Catalogação na Publicação (CIP) de acordo com ISBD Sistema de Bibliotecas da Universidade Federal do Pará Gerada automaticamente pelo módulo Ficat, mediante os dados fornecidos pelo(a) autor(a)

S237e Santos, Wenderson Gomes dos ESTUDO DO PROCESSO DE PRODUÇÃO DE BIO-COMBUSTÍVEIS VIA PIRÓLISE DE RESÍDUOS DE PNEUS / Wenderson Gomes dos Santos. — 2019. 239 f. : il. color.

> Orientador(a): Prof. Dr. Nélio Teixeira Machado Coorientador(a): Prof. Dr. Sergio Duvoisin Junior Tese (Doutorado) - Programa de Pós-Graduação em Engenharia de Recursos Naturais na Amazônia, Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2019.

1. Resíduos de pneus. 2. Óleo de pirólise de pneu. 3. Resíduos industriais. 4. Reologia de combustíveis. 5. dlimoneno. I. Título.

CDD 620

Dedico este trabalho:

Aos meus pais Manoel Domingos dos Santos e Maria Ivone Gomes, pelo amor e ensinamentos durante minha vida. À minha esposa Jamille dos Santos pelo companheirismo e apoio, essenciais para realização desse sonho. Aos meus filhos Alice e Arthur, pela enorme fonte de motivação que me faz querer melhorar sempre.

#### AGRADECIMENTOS

Ao meu pai Manoel Domingos, que sempre mostrou que a educação e o trabalho são fundamentais no crescimento do ser humano. Minha referência masculina.

A minha mãe Maria Ivone, que com seu enorme coração, sempre se mostrou amiga, principalmente nos momentos mais difíceis. Minha referência feminina.

A Jamille dos Santos, minha esposa, pelo companheirismo e amor durante essa nossa caminhada. Por contribuir na realização desse sonho, não somente com incentivos, mas com todo apoio na obtenção das matérias-primas e inteligência emocional.

Aos meus filhos Alice e Arthur, pela inesgotável fonte de motivação de sempre buscar o melhor.

A todos os meus irmãos (Neto, Walleson, Weberson, Antominaldo, Juliana, Welleson e Welderson) pelo apoio nesta nova investida, principalmente nos momentos de dificuldades.

A toda minha família, em especial aos meus tios Mivaldo e Ligia e ao meu avô "Dedico", os quais contribuíram direta e indiretamente para que eu pudesse alcançar mais este objetivo na minha vida.

Aos meus orientadores Prof. Dr. - Ing. Nélio Teixeira Machado e Prof. Dr. Sergio Duvoisin Junior, pela orientação, confiança, amizade, conhecimentos transmitidos e respeito a mim transmitidos, durante a realização deste trabalho.

Ao Dr. Anderson Mathias e ao Dr. Rafael Lopes, que contribuíram no apoio das análises de cromatografia e infravermelho, respectivamente.

Aos amigos desde os tempos da graduação, em especial aos amigos Dílson, Emerson e Romero, por todo o apoio ao longo de mais essa etapa.

Aos amigos do THEMITEK, em especial ao Douglas, Haroldo, Lauro, Paulinho, e outros que sempre ajudaram, quando solicitados, para a realização deste trabalho.

Agradeço ao Programa de Doutorado em Engenharia de recursos Naturais da Amazônia (PRODERNA/ITEC/UFPA), pela estrutura disponibilizada para a pesquisa.

Aos Laboratórios THEMITEK - UFPa, LABTERMO – UFAM e Central analítica - UEA, por fornecer estrutura necessária para a realização de diversas análises contidas nesse trabalho.

Por fim, agradeço a todos que de maneira direta e indireta contribuíram para a realização desse trabalho.

Resumo da Tese apresentada ao PRODERNA/UFPA como parte dos requisitos necessários para obtenção do grau de Doutor em Engenharia de Recursos Naturais. (D.Eng.)

# ESTUDO DO PROCESSO DE PRODUÇÃO DE BIO-COMBUSTÍVEIS VIA PIRÓLISE DE RESÍDUOS DE PNEUS Wenderson Gomes dos Santos

Orientadores: Nélio Teixeira Machado Sergio Duvoisin Junior

Área de Concentração: Uso e Transformação de Recursos Naturais.

Neste estudo, o processo pirólise de pneus inservíveis foi analisado nas escalas de bancada e piloto. Na escala menor, foi avaliado a variação de temperatura, o tipo de catalisador obtido comercialmente (CaCO<sub>3</sub>, Na<sub>2</sub>CO<sub>3</sub> e Ca(OH)<sub>2</sub>), o tipo de catalisador sintetizado/tratado a partir de rejeitos industriais (LV 1M HCl, LV 2M HCl e zeólita de caulim de enchimento) e a concentração da solução de NaOH impregnado no pneu (0,5; 1 e 2M) nos rendimentos e composições do óleo de pirolise de pneus (OPP). Na maior escala foi avaliado a evolução das propriedades físico-químicas e composicionais dos OPP's durante o processo de craqueamento térmico (T=400°C, T=450°C e T=500°C), visando obter um produto líquido com características de combustíveis fosseis e/ou compostos de elevado valor comercial. Os resultados mostraram que os rendimentos dos OPP's são influenciados pelo aumento da temperatura do processo, pelo tipo de catalisador e pelo tratamento químico na matéria prima. Sendo o processo à 500°C e com zeólita de caulim de enchimento como catalisador o que mais otimizou o processo quanto ao rendimento e produção de compostos alifáticos no OPP. O uso de catalisadores propiciou a redução dos compostos aromáticos e de compostos com enxofre na fração líquida. Ainda na menor escala, o comportamento dos compostos alifáticos nos processos térmicos, termocatalítico e com impregnação química da matéria prima, foi fortemente influenciado pela composição do d-limoneno nos óleos de pirólise de pneus. Os resultados da escala piloto permitiram concluir que houve variações das propriedades físico-químicas e reológicas durante o processo de craqueamento, mas tendem a se estabilizar em 65 minutos de processo, apresentando baixa acidez e a baixa viscosidade. As principais substâncias identificadas durante todo o processo foram o d-limoneno, o BTX (benzeno, tolueno e xilenos) e os cimenos. No fracionamento dos OPP's, a fração da gasolina ( $C_8$  a  $C_{10}$ ) e do querosene ( $C_8$  a  $C_{17}$ ) são constituídas essencialmente por hidrocarbonetos, enquanto o diesel leve ( $C_{15}$  a  $C_{21}$ ) e diesel pesado ( $C_{17}$  a  $C_{23}$ ) por heteroaromáticos. Conclui-se, ainda, que os compostos com enxofre e com halogênios tendem a ser separados a partir da faixa do diesel leve.

Abstract of Thesis presented to PRODERNA/UFPA as a partial fulfillment of the requirements for the degree of Doctor of Natural Resources Engineering (D.Eng.).

# STUDY OF THE PROCESS OF PRODUCTION OF BIOFUELS THROUGH PIROLYSIS OF TIRE WASTE

#### Wenderson Gomes dos Santos

Advisors: Nélio Teixeira Machado Sergio Duvoisin Júnior

Research Area: Use and Transformation of Natural Resources.

In this study, the pyrolysis process of waste tires was analyzed in the laboratory and pilot scales. In the lower scale, the temperature variation, the type of catalyst commercially obtained (CaCO<sub>3</sub>, Na<sub>2</sub>CO<sub>3</sub> and Ca(OH)<sub>2</sub>), the type of catalyst synthesized / treated from industrial waste (LV 1M HCl, LV 2M HCl and zeolite of kaolin) and the concentration of the NaOH solution impregnated into the tire (0.5, 1 and 2M) in the yields and compositions of the tire pyrolysis oil (TPO). In the larger scale, the evolution of the physicochemical and compositional properties of the TPO's during the thermal cracking process (T = 400 °C, T = 450 °C and T = 500 °C) was evaluated in order to obtain a liquid product with characteristics of fossil fuels and / or compounds of high commercial value. The results showed that the yield of the TPO's are influenced by the increase in process temperature, by the type of catalyst and by the chemical treatment in the raw material. Being the process at 500 °C and with kaolin zeolite as the catalyst which most optimized the process for the yield and production of aliphatic compounds in the TPO. The use of catalysts led to the reduction of aromatic compounds and sulfur compounds in the liquid fraction. On the smaller scale, the behavior of the aliphatic compounds in thermocatalytic processes and chemical impregnation of the raw material was strongly influenced by the composition of d-limonene in the oils of pyrolysis of tires. The results of the pilot scale allowed us to conclude that there were variations in the physicochemical and rheological properties during the cracking process, but tend to stabilize in 65 minutes of process, presenting low acidity and low viscosity. The main substances identified throughout the process were d-limonene, BTX (benzene, toluene and xylenes) and cymenes. In the fractionation of TPO's, the fraction of gasoline ( $C_8$  to  $C_{10}$ ) and kerosene ( $C_8$  to  $C_{17}$ ) are

essentially hydrocarbons, while light diesel ( $C_{15}$  to  $C_{21}$ ) and heavy diesel ( $C_{17}$  to  $C_{23}$ ) by heteroaromatics. It is also concluded that sulfur and halogen compounds tend to be separated from the light diesel range.

# SUMÁRIO

| CAPÍ           | TULO 1:INTRODUÇÃO 2                                                       | 21       |
|----------------|---------------------------------------------------------------------------|----------|
| 1.1            | OBJETIVOS                                                                 | 23       |
| 1.1.1          | Objetivo Geral                                                            | 23       |
| 1.1.2          | Objetivos Específicos                                                     | 23       |
| CAPÍ           | TULO 2: REVISÃO BIBLIOGRÁFICA 2                                           | 24       |
| 2.1 PN         | NEUS                                                                      | 24       |
| 2.2 O          | RESÍDUO DE PNEU COMO FONTE DE ENERGIA 2                                   | 26       |
| 2.3 A<br>A 201 | RECICLAGEM DE PNEUS INSERVÍVEIS NO BRASIL NOS ANOS DE 200<br>7            | )9<br>28 |
| 2.4 Cl         | RAQUEAMENTO DE PNEUS INSERVÍVEIS                                          | 36       |
| 2.4.1          | Anos de 2016, 2017 e 2018                                                 | \$6      |
| 2.5 CI         | RAQUEAMENTO TÉRMICO E TERMOCATALITICO NA UNIDADE PILOT                    | 0        |
| DE C           | RAQUEAMENTO DA UFPA5                                                      | 54       |
| 2.5.1          | Descrição da unidade5                                                     | 54       |
| 2.5.2          | Trabalhos desenvolvidos na unidade piloto de craqueamento termocatalítico | •        |
|                |                                                                           | 50       |
| 2.6 CI         | RAQUEAMENTO TERMOCATALÍTICO7                                              | 6'       |
| 2.7 C          | ATALISADORES                                                              | 6        |
| 2.8 L/         | AMA VERMELHA                                                              | 7        |
| 2.9 C          | AULIM E ZEÓLITA                                                           | 19       |
| CAPÍ           | TULO 3: MATERIAIS E MÉTODOS                                               | 31       |
| 3.1 M          | ATERIAIS                                                                  | 31       |
| <b>3.1.1</b>   | Matéria prima                                                             | 31       |
| 3.2 C          | ATALISADORES 8                                                            | 31       |
| 3.2.1          | Carbonato de Sódio (Na2CO3)                                               | 31       |
| 3.2.2          | Carbonato de Cálcio (CaCO3)                                               | 31       |

| 3.2.3 Hidróxido de Cálcio (Ca(OH)2)                                   | . 82 |
|-----------------------------------------------------------------------|------|
| 3.3.1 Impregnação química do NaOH no pneu                             | . 84 |
| 3.3.2 Lama Vermelha 1M HCl (LV 1M) e Lama Vermelha 2M HCl (LV 2M)     | . 84 |
| 3.3.3 Zeólita de rejeito de caulim de enchimento                      | . 85 |
| 3.3.4 Caracterização Do Pneu Inservível                               | . 85 |
| 3.3.4.1 Análise Granulométrica                                        | . 85 |
| 3.3.4.2 Análise Térmica Diferencial e Gravimétrica (ATD e TG)         | . 85 |
| 3.3.4.3 Espectroscopia de Infravermelho por Transformada de Fourier   | . 86 |
| 3.3.5 Caracterização dos catalisadores                                | . 86 |
| 3.3.5.1 Espectroscopia de Infravermelho por Transformada de Fourier   | . 86 |
| 3.3.5.2 Espectroscopia de fluorescência de raios X                    | . 86 |
| 3.3.5.3 Microscopia Eletrônica de Varredura (MEV)                     | . 87 |
| 3.3.5.4 Análise por Energia dispersiva de Raios-X (EDX)               | . 87 |
| 3.3.6 Caracterização do óleo de pirolise de pneu (OPP).               | . 87 |
| 3.3.6.1 Caracterização físico química                                 | . 87 |
| 3.3.6.2 Caracterização Composicional                                  | . 88 |
| 3.3.6.2.1 Espectroscopia de infravermelho por transformada de Fourier | . 88 |
| 3.3.6.2.2 Cromatografia                                               | . 88 |
| 3.3.6.3 Análise reológica                                             | . 89 |
| 3.4 PROCESSO DE CRAQUEAMENTO NA UNIDADE DE BANCADA                    | . 90 |
| 3.4.1 Aparato experimental                                            | . 90 |
| 3.4.2 Procedimento experimental                                       | . 91 |
| 3.5 PROCESSO DE CRAQUEAMENTO NA UNIDADE PILOTO                        | . 93 |
| 3.5.1 Procedimento experimental                                       | . 93 |
| 3.6 FRACIONAMENTO DO ÓLEO DE PIRÓLISE DE PNEU                         | . 96 |
| CAPÍTULO 4: RESULTADOS E DISCUSSÕES                                   | . 97 |
| 4.1 CARACTERIZAÇÃO DO PNEU INSERVÍVEL.                                | . 97 |

| 4.1.1 Análise Granulométrica do pó de borracha                                                |
|-----------------------------------------------------------------------------------------------|
| 4.1.2 Análise Térmica Diferencial e Gravimétrica (ATD e TG)                                   |
| <b>4.1.3 Espectroscopia de Infravermelho por Transformada de Fourier</b>                      |
| 4.2 CARACTERIZAÇÃO DOS CATALISADORES 101                                                      |
| 4.2.1 Espectrometria na região do infravermelho 101                                           |
| 4.2.2 Espectroscopia de fluorescência de raios X 103                                          |
| 4.2.3 Microscopia eletrônica de varredura (MEV) 104                                           |
| 4.2.3.1 Lama vermelha 104                                                                     |
| 4.2.3.2 Zeólita de caulim de enchimento 106                                                   |
| 4.2.4. Análise por energia dispersiva de raios X (EDX) 106                                    |
| 4.2.4.1 Lama vermelha 106                                                                     |
| 4.3 PROCESSO DE CRAQUEAMENTO EM ESCALA DE BANCADA 109                                         |
| 4.3.1 Índices de Acidez dos OPP's em escala de bancada 112                                    |
| <b>4.3.2</b> Composição dos OPP's em escala de bancada114                                     |
| 4.3.2.1 Caracterização por Infravermelho 114                                                  |
| 4.3.2.2 Cromatografia dos OPP's 118                                                           |
| 4.4 PROCESSO DE CRAQUEAMENTO TERMOCATALÍTICO EM ESCALA<br>PILOTO                              |
| 4.5 ESTUDO DO COMPORTAMENTO REACIONAL DO CRAQUEAMENTO EM<br>ESCALA PILOTO                     |
| 4.5.1 Caracterização Físico-Químicas                                                          |
| 4.5.1.1 Caracterização físico-química dos OPP's durante o processo (Experimento 02 – T=400°C) |
| 4.5.1.2 Caracterização físico-química dos OPP's durante o processo (Experimento 03 – T=450°C) |
| 4.5.1.3 Caracterização físico-química dos OPP's durante o processo (Experimento 04 – T=500°C) |
| 4.5.2 Caracterização por Espectroscopia na região do infravermelho                            |

| <b>4.5.3 Caracterização por CG-MS</b> 1                                                                                   | 35        |
|---------------------------------------------------------------------------------------------------------------------------|-----------|
| 4.5.3.1 Caracterização por Grupos 1                                                                                       | 35        |
| 4.5.3.2 Identificação dos principais compostos no experimento 4 1                                                         | 37        |
| 4.5.3.3 Estudo da influência da temperatura, durante o processo, na composição d<br>principais substâncias obtidas no OPP | das<br>40 |
| 4.6 COMPORTAMENTO REOLÓGICO1                                                                                              | 45        |
| 4.7 DESTILAÇÕES DO ÓLEO DE PIRÓLISE DE PNEU 1                                                                             | 50        |
| 4.7.1 - Rendimento e composição das frações do experimento 4 (T=500 °C) 1                                                 | 50        |
| CAPÍTULO 5: COSIDERAÇÕES FINAIS 1                                                                                         | 61        |
| 5.1 – CONCLUSÕES GERAIS 1                                                                                                 | 61        |
| 5.2 – SUGESTÕES PARA TRABALHOS FUTUROS 1                                                                                  | 64        |
| CAPÍTULO 6: REFERÊNCIAS BIBLIOGRÁFICAS 1                                                                                  | 65        |
| ANEXOS 1                                                                                                                  | 76        |

## LISTA DE FIGURAS

| Figura 2.1 - Estrutura do pneu                                                    | . 26  |
|-----------------------------------------------------------------------------------|-------|
| Figura 2.2 - Quantidade de pneus novos colocados no mercado de reposição          | . 30  |
| Figura 2.3 - Tecnologias utilizadas na destinação de pneus inservíveis            | . 31  |
| Figura 2.4 - Reciclagem de pneu no Brasil total e por pirólise                    | . 32  |
| Figura 2.5 - Quantidade de pneus inservíveis destinados por região brasileira     | . 33  |
| Figura 2.6 - Pontos de coleta de pneus inservíveis no Brasil                      | . 34  |
| Figura 2.7 - Pontos de coleta de pneus inservíveis declarados por região          | . 35  |
| Figura 2.8 - Esquema da configuração experimental para a pirólise de pneus        | . 37  |
| Figura 2.9 - Diagrama esquemático do sistema MP                                   | . 38  |
| Figura 2.10 - Diagrama esquemático do sistema experimental                        | . 39  |
| Figura 2.11 - Diagrama esquemático da configuração de pirólise em escala laborato | rial. |
|                                                                                   | . 40  |
| Figura 2.12 - Diagrama esquemático da planta de pirólise em escala de bancada     | . 41  |
| Figura 2.13- Configuração experimental da pirólise de resíduos de pneus           | . 42  |
| Figura 2.14 - Configuração experimental                                           | . 44  |
| Figura 2.15 - Representação esquemática da instalação em escala de bancada        | . 45  |
| Figura 2.16 - Sistema de pirólise à escala laboratorial                           | . 46  |
| Figura 2.17 - Diagrama esquemático do sistema fMACP                               | . 47  |
| Figura 2.18 - Diagrama esquemático do reator de pirólise                          | . 48  |
| Figura 2.19 - Diagrama esquemático do sistema de pirólise                         | . 49  |
| Figura 2.20 - Diagrama de fluxo e Fotografia da planta piloto de pirólise         | . 50  |
| Figura 2.21- Diagrama esquemático de configuração do motor                        | . 50  |
| Figura 2.22 - Esquema de montagem experimental para a produção de combustí        | veis  |
| líquidos a partir da borracha natural                                             | . 51  |
| Figura 2.23- Diagrama esquemático da configuração experimental                    | . 52  |
| Figura 2. 24 - Esquema da pirólise com radiação solar                             | . 53  |
| Figura 2.25- Diagrama esquemático do sistema Fresnel                              | . 54  |
| Figura 2. 26 - Planta de craqueamento termocatalítico                             | . 55  |
| Figura 2.27- Infravermelhos das amostras da evolução do processo com o tempo      | ) de  |
| reação                                                                            | . 72  |
| Figura 3.1 - Fluxograma dos procedimentos experimentais                           | 83    |

| Figura 3.2 - Sistema de craqueamento em bancada                                       |
|---------------------------------------------------------------------------------------|
| Figura 3.3 - Fluxograma da Usina Piloto de Craqueamento                               |
| Figura 4.1 - Granulometria do Pneu97                                                  |
| Figura 4.2 - TGA, DrTGA e DTA do resíduo de pneu                                      |
| Figura 4.3 - Espectro de infravermelho do Pneu101                                     |
| Figura 4.4 - Espectros de infravermelho dos catalisadores de resíduos industriais 102 |
| Figura 4.5 - Microscopia eletrônica de varredura da lama vermelha in natura 104       |
| Figura 4.6 - Microscopia eletrônica de varredura do catalisador lama vermelha ativada |
| (1M de HCl e 1000°C)                                                                  |
| Figura 4.7 - Microscopia eletrônica de varredura do catalisador lama vermelha ativada |
| (2M de HCl e 1000°C)                                                                  |
| Figura 4.8 - Microscopia eletrônica de varredura do catalisador Zeólita de caulim de  |
| enchimento                                                                            |
| Figura 4.9 - Análise por energia dispersiva de raios X da lama vermelha 107           |
| Figura 4.10 - Análise por energia dispersiva de raios X do catalisador lama vermelha  |
| ativada (1M de HCl)                                                                   |
| Figura 4.11 - Análise por energia dispersiva de raios X do catalisador lama vermelha  |
| ativada (2M de HCl)                                                                   |
| Figura 4.12 - Resultados do índice de acidez dos Óleos de Pirólise de Pneu obtidos do |
| craqueamento em Escala de Bancada113                                                  |
| Figura 4.13 - Espectros de Infravermelho dos OPP Térmico 115                          |
| Figura 4.14 - Espectros de Infravermelho dos OPP com catalisadores 116                |
| Figura 4.15 - Espectros de Infravermelho dos OPP Impregnado com NaOH 117              |
| Figura 4.16 - Composição química dos OPP's dos craqueamentos térmicos 118             |
| Figura 4.17 - Composição química dos OPP's dos craqueamentos térmico catalítico. 120  |
| Figura 4.18 - Redução dos Compostos com enxofre na composição dos OPP's 121           |
| Figura 4.19 - Composição química dos OPP's dos craqueamentos do Pneu impregnado       |
| com NaOH                                                                              |
| Figura 4.20 - Percentual de área cromatográfica do d-limoneno 123                     |
| Figura 4.21 - Rendimento dos produtos do Craqueamento Termocatalítico em Escala       |
| Piloto126                                                                             |
| Figura 4.22 - Comportamento reacional da evolução do produto pirolítico líquido do    |
| pneu no experimento 4 (T=500°C) 128                                                   |
| Figura 4.23 - Infravermelhos das amostras coletadas durante o Experimento 4 133       |

| Figura 4.24 - Picos divergentes nos Infravermelhos das amostras coletadas durante o      |
|------------------------------------------------------------------------------------------|
| Experimento 4                                                                            |
| Figura 4.25 - Composição química das amostras dos OPP's durante o processo de            |
| Craqueamento do Experimento 4 (T=500°C) 135                                              |
| Figura 4.26 – Formação de compostos aromáticos a partir do <i>d</i> -limoneno 136        |
| Figura 4.27 - Comportamento das principais substâncias do OPP durante o                  |
| craqueamento138                                                                          |
| Figura 4.28 - Produção do p-cimeno oriundo do limoneno 139                               |
| Figura 4.29 - Comportamento do d- limoneno durante o processo de Craqueamento do         |
| Experimento 2 ao 4                                                                       |
| Figura 4.30- Comportamento do tolueno durante o processo de Craqueamento do              |
| Experimento 2 ao 4                                                                       |
| Figura 4.31 - Comportamento do o-Xileno/ p-Xileno durante o processo de                  |
| Craqueamento do Experimento 2 ao 4 143                                                   |
| Figura 4.32 - Comportamento do p-Cimeno / Benzeno, 1-methyl-3-(1-methylethyl) - / o-     |
| Cimeno durante o processo de Craqueamento do Experimento 2 ao 4 144                      |
| Figura 4.33 - Comportamento reológico do produto pirolítico líquido do pneu em           |
| diferentes momentos do processo146                                                       |
| Figura 4.34 - Comportamento da tensão residual na cinética do produto pirolítico líquido |
| do pneu 149                                                                              |
| Figura 4.35 - Comportamento da viscosidade plástica na cinética do produto pirolítico    |
| líquido do pneu 150                                                                      |
| Figura 4.36 – Frações destiladas do óleo de pirolise de pneu                             |
| Figura 4.37 - Rendimentos das Frações destiladas do óleo de pirolise de pneu, no         |
| decorrer do processo                                                                     |
| Figura 4.38 – Cromatogramas dos destilados do OPP, obtido em 75 minutos de processo,     |
| nas faixas da gasolina, querosene, diesel leve e diesel pesado                           |
|                                                                                          |

## LISTA DE TABELAS

| Tabela 2.1 - Análise elementar, aproximada e poder calorifico de diferentes tipos de pneus |
|--------------------------------------------------------------------------------------------|
| reportado na literatura                                                                    |
| Tabela 2.2 - Poder calorífico de resíduos sólidos urbanos. 28                              |
| Tabela 2.3 - Dados dos processos de craqueamento na unidade piloto de craqueamento /       |
| THERMTEK / LEQ /UFPA 64                                                                    |
| Tabela 2.4 - Caracterização dos produtos líquidos Orgânicos por CG-MS 66                   |
| Tabela 2.5 - Destilações dos produtos líquidos orgânicos                                   |
| Tabela 2.6 - Área superficial da lama vermelha in natura e ativada                         |
| Tabela 3.1 – Métodos Físicos químicos aplicados aos OPP's                                  |
| Tabela 3.2 – Experimentos na Unidade de Escala de Bancada                                  |
| Tabela 3.3 – Experimentos na Unidade de Escala Piloto                                      |
| Tabela 4.1 - Estágios de perda de massa na faixa de temperatura de 25 a 1000 °C 99         |
| Tabela 4.2 - Fluorescência de raios-x da lama vermelha in natura 103                       |
| Tabela 4.3 - Elementos que compõem a lama vermelha e o catalisadores (LV 1M HCl e          |
| LV 2M HCl) em % massa                                                                      |
| Tabela 4.4 - Elementos que compõem a Zeólita de rejeito de caulim em % massa 109           |
| Tabela 4.5 - Parâmetros operacionais e rendimentos dos experimentos de craqueamento        |
| em Escala de Bancada utilizando Pneu Inservíveis 110                                       |
| Tabela 4.6 - Grupos funcionais encontrados nos OPP's do processo térmico 114               |
| Tabela 4.7 - parâmetros operacionais do processo de craqueamento de pneu inservível em     |
| escala piloto                                                                              |
| Tabela 4.8 - Parâmetros operacionais dos experimentos em Escala de Piloto 125              |
| Tabela 4.9 - Características das amostras coletadas no Experimento 2 T=400°C 130           |
| Tabela 4.10 - Características das amostras coletadas no Experimento 3 T=450°C 131          |
| Tabela 4.11 - Características das amostras coletadas no Experimento 4 T=500°C 132          |
| Tabela 4.12 - Parâmetros reológicos resultantes dos ajustes realizados na cinética do óleo |
| de pirólise de pneu (OPP)148                                                               |
| Tabela 4.13 - Composições químicas das frações destiladas dos OPP's, no decorrer do        |
| processo, na faixa da gasolina (40°C-175°C) 154                                            |
| Tabela 4.14 - Composições químicas das frações destiladas dos OPP's, no decorrer do        |
| processo, na faixa do querosene (175- 235°C) 155                                           |

| Tabela 4.15 - Composições químicas das fraç     | ões destiladas dos OPP's, no decorrer do |
|-------------------------------------------------|------------------------------------------|
| processo, na faixa do diesel leve (235 - 305°C) | ) 156                                    |
| Tabela 4.16 - Composições químicas das fraç     | ões destiladas dos OPP's, no decorrer do |
| processo, na faixa do diesel Pesado (305 - 400  | °C) 157                                  |

#### ABREVIATURAS

- ABNT Associação Brasileira de Normas Técnicas
- ANIP Agência Nacional da Indústria de Pneumáticos
- ASTM American Society for Testing
- AOCS American Oil Chemists' Society
- BR Polibutadieno
- BTX Benzeno, Tolueno e Xileno
- CLP Controlador Lógico Programável
- CONAMA Conselho Nacional do Meio Ambiente
- CTF Cadastro Técnico Federal
- DENATRAN Departamento Nacional de Trânsito
- DR X Difração de raios X
- DTA Análise Térmica Diferencial
- Ea Energia de ativação
- FR X Fluorescência de Raios X
- FTIR Fourier Transform Infrared Spectroscopy
- GC/MS Gas Chromatography / Mass spectrometry
- GLP Gás Liquefeito do Petróleo
- IBAMA Instituto Nacional do Meio Ambiente
- IUPAC International Union of Pure and Applied Chemistry
- Labtermo Laboratório de Termodinâmica Aplicada
- LV Lama Vermelha
- MEV Microscopia Eletrônica de Varredura
- NR Natural Rubber
- OPP Óleo de Pirólise de Pneu
- PC Poder Calorífico
- PLO Produto Líquido Orgânico
- PVL Pneu de Veículo Leve
- PVM Pneu de Veículo Médio
- PVP Pneu de Veículo Pesado
- RPA Resíduos de Pneus de Automóveis
- RU-Restaurante Universitário

- $SBR-Styrene \ Butadiene \ Rubber$
- TA Taxas de Aquecimentos
- TC Temperatura de Craqueamento
- TeIC Tempo inicial de Craqueamento
- TGA Thermal Gravimetric Analyser
- TIC: Temperatura Inicial de Craqueamento
- TTP Tempo Total de Processo
- UFPA Universidade Federal do Pará

### **CAPÍTULO 1**

### INTRODUÇÃO

Os resíduos sólidos, principalmente no meio urbano, têm gerado grande preocupação da sociedade, devido aos problemas ambientais oriundos da destinação inadequada destes rejeitos. Dentre esses resíduos, tem-se os pneus inservíveis que além de levarem centenas de anos para se decompor, ainda propiciam a proliferação de doenças (ex: dengue, Zica e Chikungunya), principalmente em épocas chuvosas, pois servem de criadores dos vetores destes males.

Além desses problemas com resíduos de pneus mencionados acima, os pneus também oferecem grandes oportunidades para a conservação de recursos, porque eles são uma fonte de grande potencial para obtenção de compostos valiosos (Limoneno, benzeno, tolueno, xileno), combustíveis (óleo de pirolise de pneu e suas frações) e energética (energia térmica) ( ANTONIOU *et al*, 2014).

Existem algumas tecnologias ambientalmente adequadas para destinações dos pneus inservíveis. Dentre as quais podemos citar o coprocessamento que se baseia na queima dos resíduos no forno rotativo de clínquer em condições especiais (Rocha *et al*, 2011), a granulação que consiste na trituração dos compostos de borracha para posterior reutilização como matéria prima reciclada (Floriani *et al* 2015), a laminação que consiste na transformação de pneus convencionais em artefatos como cintas de sofá, solados e tapetes para carros (Liu *et al.*, 2012), a indústria do xisto (processo industrial de coprocessamento do pneumático inservível juntamente com o xisto betuminoso, como substituto parcial de combustíveis (IBAMA, 2013), a regeneração que é um processo de desvulcanização onde os pneus depois de triturados, são submetidos à temperatura, pressão, recebem oxigênio e vapor de produtos químicos, como álcalis e óleos minerais, dentro de uma autoclave rotativa (Largarinhos & Tenório, 2008) e a pirólise que consiste em uma decomposição termoquímica dos compostos orgânicos presentes neles, quebrando as ligações químicas através do aquecimento de 400 °C a 800 °C e na ausência de oxigênio (Martinez *et al*,2013).

No Brasil a pirolise de pneus ainda é pouca empregada, talvez pelas complexidades inerentes ao processo em comparação, por exemplo, ao coprocessamento,

ou pelas dificuldades tecnológicas para recuperação / purificação dos produtos, o que geralmente encarece o processo.

Devido a isso, tem crescido o número de pesquisa a respeito das tecnologias aplicadas à pirólise de pneus, visando reduzir o alto teor de enxofre nos produtos da pirólise, recuperar substâncias valiosas, viabilizar economicamente o processo e adequar a emissão de gases aos padrões especificados pelas normas vigentes (DINA CZAJCZYNSKA *et al*, 2017). Dentre essas tecnologias, tem-se a pirólise atmosférica (realizada sob a pressão atmosférica), a pirólise a vácuo (conduzida sob pressão muito baixa), e a pirólise catalítica (uso de um catalisador para promover a melhora dos rendimentos, aprimorar as propriedades dos produtos, aumentar a taxa de reação e encurtar o tempo de reação). A pirólise também pode ser classificada em rápida e lenta (ZHANG *et al*, 2008).

Tem-se investigado, também, o craqueamento do diversos tipos de pneus (bicicleta, veículo leve, veículo médio e veículo pesado), a escala do craqueamento (bancada e piloto), o tipo de processo (térmico e termocatalítico), a co-pirólise ( pirólise do pneu junto com outra fonte de carbono) e a fonte geradora de energia térmica para o reator (forno, micro-ondas, energia solar).

No caso específico de craqueamento termocatalítico de pneus, diversos autores têm relatado que o uso de catalisadores de óxidos metálicos (Al<sub>2</sub>O<sub>3</sub>, MgO, FeO) ou zeóliticos tem grande aplicação na adsorção dos compostos de enxofre, e isso é de fundamental importância quando se deseja utilizar o óleo de pirólise como combustível. Muitos desses óxidos podem ser obtidos através de rejeitos das indústrias de alumínio e caulim.

Diante disso, este estudo propõe-se a investigar o processo de craqueamento térmico e termocatalítico dos pneus inservíveis em escala bancada e o craqueamento térmico em escala piloto. Na escala laboratorial buscou-se investigar as tecnologias para melhorar qualitativamente e quantitativamente o óleo de pirólise de pneu gerado. Na escala maior, buscou-se otimizar o processo para futura aplicação do produto líquido como combustível ou como precursor de compostos valiosos.

#### 1.1 OBJETIVOS

#### 1.1.1 Objetivo Geral

Investigar o processo de pirólise de pneus inservíveis, visando obter um produto líquido com características de combustíveis e/ou compostos de elevado valor comercial.

#### 1.1.2 Objetivos Específicos

 Investigar o processo de Craqueamento térmico e termocatalítico na escala de Bancada e térmico na Piloto;

Sintetizar catalisador oriundo de rejeito da indústria de caulim e realizar o tratamento químico e térmico do rejeito da indústria de alumínio.

Estudar a influência das variáveis do processo: Temperatura, teor de NaOH impregnado no pneu, teor e tipo de catalisador na eficiência dos processos;

Analisar a influência das variáveis do processo: Temperatura, teor de NaOH impregnado no pneu, teor tipo de catalisador na qualidade dos óleos de pirólise gerados;

Pesquisar a dinâmica do processo reacional na escala piloto, avaliando as características físico-químicas, reológicas e composicionais;

Avaliar o fracionamento do óleo de pirolise de pneu obtido no decorrer do processo de craqueamento.

### **CAPÍTULO 2**

### **REVISÃO BIBLIOGRÁFICA**

#### 2.1 PNEUS

O pneu é um material compósito formado, principalmente, por misturas de borracha, metal e fibras têxteis. Cada material tem propriedades específicas, que usadas na combinação certa fornecem ao pneu a força e a flexibilidade necessárias (DINA CZAJCZYNSKA *et al*, 2017).

As misturas de borrachas são formadas por borracha natural (NR), borracha sintética (BR e SBR), negro de fumo, sílica amorfa, agentes de vulcanização e muitos aditivos. Pode-se dizer que mais de cem compostos podem ser adicionados ao pneu, dependendo do uso específico a ser dado ao pneu (MASTRAL *et al*, 2000).

No entanto, os três componentes majoritários do pneu são: a borracha sintética, a borracha natural e o negro de fumo. Segundo estudos do BNDES (1998), o pneu de passeio no Brasil possui 27% de borracha sintética, 14% borracha natural, 28% de negro de fumo. Enquanto na Europa, segundo Sienkiewicz *et al* (2012), a composição do pneu de passeio apresenta 23% de borracha sintética, 22% borracha natural, 28% de negro de fumo. Para os caminhões a composição de borracha sintética é de 15%, 30% de borracha natural e 20% de negro de fumo. Essa diferença de composição do carro de passeio para os de cargas pode ser explicada pelas suas aplicações. Enquanto um é direcionado para resistir a velocidades o outro tem sua aplicação em resistir a elevadas cargas.

O negro de fumo é uma carga reforçante do pneu, proveniente da conversão de hidrocarbonetos em carbono elementar e hidrogênio, por combustão parcial ou por decomposição térmica. Ele é incorporado à borracha para aumentar a resistência mecânica dos pneus, e é considerado o grande problema para a indústria de pneus, uma vez que dificulta imensamente a reciclagem dos pneus usados, e está presente em percentuais semelhantes tanto em pneus de automóveis como os de caminhão (MARTÍNEZ, 2013).

A borracha natural é um polímero natural, extraído através do processo de sangria da seiva da árvore Hevea brasiliensis, e constituída essencialmente pelo polímero poliisopreno. Devido suas características físico-químicas (elasticidade, resistência ao desgaste, impermeabilidade a líquidos e gases, isolante elétrico, plasticidade etc.) continua sendo um dos principais constituintes na produção de pneus. (MORCELI, 2004).

As principais borrachas sintéticas utilizadas na confecção dos pneus são as borrachas de polibutadieno (BR) oriunda do monômero butadieno e as borrachas de estireno e butadieno (SBR) oriunda da copolimerização do estireno com o butadieno. Ambas borrachas sintetizadas a base da indústria do petróleo.

Na mistura das borrachas, pode-se destacar a incorporação de aditivos, que servirão para melhorar as propriedades mecânicas dos pneus, através da formação de ligações cruzadas (pontes) entre cadeias poliméricas individuais, durante o processo de cura. Entre os agentes de cura, pode-se destacar o uso de enxofre e o óxido de zinco, que são comumente usados como ativadores de vulcanização (DINA CZAJCZYNSKA *et al*, 2017).

A quantidade de produtos incorporados na confecção de um pneu acontece em função de sua estrutura, uma vez que este artefato é composto por várias partes: banda de rodagem, cintas de aço, talão, carcaça de lona, parede lateral ou flanco. Na figura 2.1, conforme o corte feito no pneu, pode-se notar mais precisamente todas as partes que compõem um pneu radial de veículo de passeio.

A Banda de rodagem é parte externa do pneu, é ela que faz o contato com o solo, por isso sua formação é feita por um composto de borracha que oferece grande resistência ao desgaste, além disso, seus desenhos são projetados cuidadosamente para proporcionar uma boa tração, estabilidade e segurança ao veículo. As Cintas de aço têm a função de estabilizar a carcaça dos pneus radiais. O talão é constituído por vários arames de aço de alta resistência unidos e recobertos por borracha, possuindo o formato de um anel e tem a função de manter o pneu acoplado ao aro sem permitir o vazamento do ar. A Carcaça de lona é a estrutura interna do pneu, responsável pela retenção do ar sob pressão e com função de suportar o peso do veículo, é constituída por lonas de poliéster, náilon ou aço, disposta na diagonal ou radial. A Parede lateral ou flanco é composto por borrachas de alto grau de flexibilidade, sua função é proteger a carcaça. Vale lembrar que também existem pneus sem a câmara de ar, os que não possuem esta câmara, na camada interna da carcaça há uma borracha chamada liner que garante a retenção do ar (ANDRADE,2007). Estes pneus oferecem um fator extra à questão da segurança, pois

caso sejam perfurados, o ar sairá de seu interior lentamente. Além disso esses pneus apresentam montagem e desmontagem mais rápida que os pneus que apresentar câmara de ar" (RAMOS, 2005).



Figura 2.1 - Estrutura do pneu. 1. Banda de rodagem, 2. Ranhura da banda de rodagem, 3. ombro, 4 e 5. Cintas de aços, 6. Liner, 7. Lonas de carcaça, 8. Parede lateral, 9. Cinta, 10. Talão, 11. Aro. Fonte: UNEP 2011

### 2.2 O RESÍDUO DE PNEU COMO FONTE DE ENERGIA

Nos combustíveis, uma propriedade muito importante é o poder calorífico, que quanto maior for o valor dessa propriedade maior será a energia contida nesse combustível. Os resíduos de pneus de carros e caminhões apresentam poder calorífico em torno de 30 a 40 MJ/kg, conforme mostra a tabela 2.1. Valores considerados altos e próximos aos encontrados nos combustíveis de origem fóssil, como a gasolina, o querosene e o diesel.

Segundo M. Rofiqul Islam *et al* (2008) o pneu de motocicleta (MT) tem um poder calorífico inferior que normalmente não excede 30 MJ / kg devido à fração volátil mais

baixa (58% em peso) bem como o maior teor de cinzas (20% em peso) para este tipo de pneu.

Os resíduos de pneus apresentam alto teor de carbono, entre 70 a 90% em peso. Percentual de carbono fixo entre 20 a 30%. O teor de materiais voláteis entre 56 a 69% e o teor de cinzas entre 4 a 21 % em peso. Valores estes, ótimos para aplicação na pirólise.

Tabela 2.1 - Análise elementar, aproximada e poder calorifico de diferentes tipos de pneus reportado na literatura.

| Análise elementar (base seca-%) |      |      |      |       | Análise Aproximada (%) |        |      |       |           |                                                |
|---------------------------------|------|------|------|-------|------------------------|--------|------|-------|-----------|------------------------------------------------|
| С                               | Н    | Ν    | S    | 0     | MV                     | CF     | U    | CI    | PC(MJ/kg) | Ref                                            |
| 85,06                           | 7,56 | 0,63 | 1,31 | 5,44  | 66,73                  | 28,20  | 1,85 | 3,22  | 16,97     | MZ. Farooq                                     |
|                                 |      |      |      |       |                        |        |      |       |           | et al (2018)                                   |
| 82,59                           | 8,17 | 0,92 | 2,18 | 6,14  | 66,76                  | 28,53  | 1,15 | 3,56  | 40        | N. Ahmad et                                    |
|                                 |      |      |      |       |                        |        |      |       |           | <i>al</i> (2018a)                              |
| 84,2                            | 7,9  | 1    | 1,4  | 5,5   | 64,5                   | 26,3   | 1,8  | 7,4   | 33,2      | R.K Singh <i>et</i><br><i>al</i> (2018)<br>PVL |
| 89,48                           | 7,61 | 0,27 | 1,88 | 0,76  | 56,72                  | 26,43  | 1,53 | 15,32 | 36,77     | R.K Singh <i>et</i><br><i>al</i> (2018)<br>PVM |
| 89,5                            | 7,5  | 0,25 | 2,09 | 0,66  | 68,43                  | 24,30  | 1,60 | 5,67  | 34,74     | R.K Singh <i>et</i><br><i>al</i> (2018)<br>PVP |
| 85,00                           | 5,5  | 0,21 | 1,2  | 8,09  | 56,4                   | 27,1   | 0,5  | 16,00 | 31,22     | J.I. Osayi et                                  |
|                                 |      |      |      |       |                        |        |      |       |           | al (2018)                                      |
| 70,9                            | 6,2  | 0,7  | 1,2  | 15,2  | 62,8                   | 31,9   | 0,44 | 4,9   | 30,22     | Qinghai Li et                                  |
|                                 |      |      |      |       |                        |        |      |       |           | al (2018)                                      |
| 81,14                           | 7,18 | 0,51 | 1,53 | 9,64  | 61,70                  | 30,30  | 0,69 | 7,31  | 40,24     | Z. Song <i>et al</i>                           |
|                                 |      |      |      |       |                        |        |      |       |           | (2017a)                                        |
| 84,3                            | 7,7  | 0,8  | 2,5  | 4,7   | 65,1                   | 29,9   | 0,60 | 4,90  | 38,20     | J. Alvarez et                                  |
|                                 |      |      |      |       |                        |        |      |       |           | al (2017)                                      |
|                                 |      |      |      |       |                        |        |      |       |           | M. Rofiqul                                     |
| 75,50                           | 6,75 | 0,81 | 1,44 | 15,50 | 57,50                  | 20,,85 | 1,53 | 20,12 | 29,12     | Islam <i>et al</i>                             |
|                                 |      |      |      |       | , -                    | ,, -   | ,    | ,     |           | (2008) PM                                      |

Em que C: carbono, H: Hidrogênio, S: enxofre, O: Oxigênio, MV: material volátel, CF: Carbono fixo, U: Umidade, CI: Cinzas, PC: Poder Calorífico, Ref: referências, PVL: Pneu de veículo leve, PVM: Pneu de Veículo Médio, PVP: Pneu de Veículo Pesado, PM: Pneu de Motocicleta. Fontes: 1-

Quando comparado a outros resíduos sólidos urbanos, ver tabela 2.2, pode-se constatar que o pneu inservível não pode ser tratado como um resíduo comum. Segundo Soares (2011) a madeira e plásticos duros possuem poder calorífico de 8,44 MJ/ Kg e 22,68 MJ/ Kg respectivamente, valores estes bem inferiores aos encontrados nos resíduos de pneus.

O teor de umidade dos resíduos de pneus é muito baixo em comparação com fontes alternativas de energia, como os resíduos sólidos urbanos (tabela 2.2). A composição dos pneus também é estável e não apresenta diferenças significativas. Tendo em conta esses fatores, os pneus usados devem ser considerados como uma fonte de energia altamente valiosa, em vez de resíduos (DINA CZAJCZYNSKA *et al*, 2017).

| Material         | Poder Calorifico | Umidade |
|------------------|------------------|---------|
|                  | (MJ/Kg)          | (bu %)  |
| Isopor           | 37,54            | 12,00   |
| Madeira          | 8,59             | 50,00   |
| Matéria Orgânica | 0                | 90,63   |
| Papel/ Papelão   | 8,44             | 37,50   |
| Plástico Fino    | 16,61            | 33,33   |
| Plástico Duro    | 22,68            | 50,00   |
| Trapos           | 6,75             | 70,00   |
| Coco             | 1,55             | 90,91   |
| Capim            | 4.66             | 75,00   |
| Fibras           | 3,70             | 60,00   |

Tabela 2.2 - Poder calorífico de resíduos sólidos urbanos.

Fonte: Soares (2011)

# 2.3 A RECICLAGEM DE PNEUS INSERVÍVEIS NO BRASIL NOS ANOS DE 2009 A 2017

A poluição ambiental causada pela má destinação de resíduos sólidos em todo mundo é um problema grave que precisa ser solucionado. Para os pneus inservíveis, por exemplo, a cada ano, cerca de 1,5 bilhão de pneus são produzidos em todo o mundo, o que corresponde a cerca de 17 milhões de toneladas de pneus usados (Czajczynska *et al*, 2017). A China, os países da União Europeia, os EUA, o Japão e a Índia produzem a maior quantidade de resíduos de pneus e, juntos, quase 88% do total (Kandasamy & Gokalp, 2014).

No Brasil, essa preocupação com o descarte adequado com os resíduos dos pneus, foi intensificado a partir resolução Conama nº 416, de 30 de setembro de 2009. A resolução determina aos fabricantes e importadores de pneus novos, com peso unitário superior a dois quilos, a coletarem e destinarem adequadamente os pneus inservíveis existentes no território nacional. Além disso, estabelece a implementação de pontos de coleta de pneus inservíveis em todos os municípios com população superior a 100 mil habitantes (CONAMA, 2009 e IBAMA, 2018).

O Ibama, por meio da Coordenação de Controle de Resíduos e Emissões, vinculada à Coordenação-Geral de Gestão da Qualidade Ambiental, da Diretoria de Qualidade Ambiental, é o responsável pelo controle e fiscalização da Resolução. Com esse intuito, publicou em 18 de março de 2010 a Instrução Normativa nº 01, que institui o Relatório de Pneumáticos: Resolução Conama nº 416/2009, inserido no Cadastro Técnico Federal de Atividades Potencialmente Poluidoras e/ou Utilizadora de Recursos Ambientais (CTF/APP), que é preenchido pelos fabricantes e importadores de pneus novos, bem como pelas empresas destinadoras de pneumáticos inservíveis. (IBAMA, 2011)

Conforme Rombaldo (2008), a complexa estrutura e a composição da borracha dos pneus dificultam sua reciclagem. Para a fabricação dos pneus são empregados diversos tipos de borrachas, tais como: borracha natural, polímero estireno-butadieno e copolímero.

O mercado de reposição é determinado a partir da declaração da produção e importação de pneus novos realizados pelos fabricantes e importadores, além das exportações e do envio de pneus às montadoras de veículos. (IBAMA, 2018).

Sabe-se que o mercado de reposição é dado por 4 variáveis que são: O total de pneus produzidos (P), o total de pneus importados (I), o total de pneus exportados (E) e o total de pneus que equipam veículos novos (EO), através da equação 2.1.

$$\mathbf{MR} = (\mathbf{P} + \mathbf{I}) - (\mathbf{E} + \mathbf{E0})$$
(equação 2.1)

Isso é de fundamental importância para a destinação adequada dos pneus inservíveis, pois a resolução Conama nº 416/2009 estabelece que, para cada pneu novo comercializado para o mercado de reposição, as empresas fabricantes ou importadoras devem dar destinação adequada a um pneu inservível (relação 1:1). A meta de destinação a ser cumprida é calculada a partir da conversão em peso dos pneus comercializados no mercado de reposição, considerando o desconto de 30% em peso pelo fator de desgaste do pneu novo (CONAMA, 2009 e IBAMA, 2012).

A figura 2.2 mostra a quantidade total, em unidades e em toneladas, de pneus novos colocados no mercado de reposição de 2009/2010 até 2017.



**Figura 2.2** - Quantidade de pneus novos colocados no mercado de reposição. Fonte CFT/IBAMA

Segundo a Associação nacional da indústria de pneumáticos (ANIP,2015) a indústria de pneus do país apresentou leve queda de produção em 2014, com relação ao ano anterior (-0,2%), apesar da indústria nacional de veículos ter produzido 15% a menos. Enquanto as vendas chegaram a um novo recorde, 74,3 milhões de pneus, em função do crescimento da frota nos períodos anteriores

Observa-se que no ano de 2017, por exemplo, houve a reposição de 60424080 unidades de pneus novos o que equivale a 839868,47 toneladas. Sendo que 73,15% foram fabricados no Brasil e 26,85% importadas (IBAMA, 2018).

Verifica-se, nos relatórios de pneumáticos, que desde o início da CTF/IBAMA ( 2009/2010) até o CTF/IBAMA de 2017, os fabricantes nacionais cumpriram com a meta de destinação adequada dos pneus inservíveis, mas os importadores de pneu não (IBAMA, 2011; IBAMA, 2012; IBAMA, 2013; IBAMA, 2014; IBAMA, 2015; IBAMA, 2016; IBAMA, 2017 e IBAMA, 2018). Segundo a ANIP (2015), constata-se, através dos mesmos relatórios, um acumulado de passivo ambiental, de 2009 a 2013, de aproximadamente 150 mil toneladas de pneus inservíveis de responsabilidade dos importadores, que não cumpriram sua meta. A figura 2.3 representa as tecnologias utilizadas na destinação de pneus inservíveis de 2009/2010 até 2017.



**Figura 2.3** - Tecnologias utilizadas na destinação de pneus inservíveis. Fonte CFT/IBAMA

Nota-se que o mercado de reciclagem de pneus realmente segue a tendência do mercado de reposição de pneus novos, em massa (figura 2.2). Do ano 2009/2010 até 2012 houve um decréscimo do mercado de reposição (MR), de 2012 á 2014 observa-se um efetivo crescimento do MR, de 2014 a 2016 o MR voltou a reduzir e, por fim, de 2016 á 2017 houve um substancial aumento. Essa tendência se reproduziu no mercado de reciclagem de pneus inservíveis conforme mostra a figura 2.3.

As tecnologias de destinação ambientalmente adequadas praticadas pelas empresas destinadoras e declaradas no Relatório de Pneumáticos em (IBAMA, 2011-IBAMA,2018) são o coprocessamento, a granulação, a laminação, a indústria do xisto, a regeneração e a pirolise.

Observa-se que o coprocessamento, a granulação e a laminação são as principais tecnologias de destinação dos pneus inservíveis, em todos os anos estudados (2009-2017).

No ano de 2016, quanto ao destinamento adequado dos pneus inservíveis, o coprocessamento correspondeu à 60,23%, a granulação à 27,15%, a laminação a 11,54% e a pirolise à 1,08%. Segundo o relatório de pneumáticos (2017) não houve registro de destinação nem na indústria do xisto nem na da regeneração no ano de 2016.

No ano de 2017, o coprocessamento em fornos rotativos para produção do clínquer continua sendo a principal tecnologia realizada no País, apesar da evidente queda em relação ao ano anterior. No total, 30 empresas cimenteiras declararam este tipo de destinação ao Ibama, o que representou 46,96% do total de pneumáticos destinados. Em segundo lugar, permanece a granulação, com 36,84%. (IBAMA, 2018). Esse lugar de destaque, na reciclagem dos pneus usados, ocupado pelo coprocessamento se deve principalmente pelo crescimento do mercado de cimento no Brasil. Quando esse mercado apresentou queda a reciclagem por coprocessamento também reduziu.

A figura 2.4 representa o quantitativo total de pneus reciclados e reciclado por pirolises de 2009/2010 até 2017.



**Figura 2.4** - Reciclagem de pneu no Brasil total e por pirólise. Fonte CFT/IBAMA

Verifica-se na figura 2.4 que a contribuição por pirólise como tecnologia de destinação de pneus inservíveis e ínfima no Brasil quando comparada, por exemplo, com

o coprocessamento. Nos primeiros anos da resolução Conama nº 416/2009, de 2010 a 2014, constata-se valores próximo a zero. A partir do ano de 2015, nota-se um crescimento significativo, chegando ao seu máximo no ano de 2017, correspondendo a 2,26 % do total de pneus reciclados no Brasil, o que equivale à 13208,46 toneladas.

Segundo Rocha *el al*, (2011), o coprocessamento surgiu como uma estratégia para melhorar o desempenho econômico (menor consumo energético) da indústria cimenteira. Desde então essa tecnologia vem sendo empregada e está bem consolidada. A pirolise, em contrapartida, apesar de ser uma tecnologia antiga, ainda não encontra espaço na reciclagem de pneus no Brasil, devido à falta de investimentos e legislação adequada sobre a qualidade dos produtos gerados.

A figura 2.5 representa a quantidade de pneus inservíveis destinados por região brasileira de 2009/2010 até 2017.



**Figura 2.5** - Quantidade de pneus inservíveis destinados por região brasileira. Fonte CFT/IBAMA (2017)

Pode-se observar que a maioria das destinações de pneus inservíveis foram realizadas nas Regiões Sul e Sudeste, no período de outubro de 2010 a dezembro de 2017. Segundo Lagarinhos *et al* (2008) os estados de São Paulo, Minas Gerais e Paraná concentram a maior parte das empresas que processam e destinam os pneus inservíveis.

A região sudeste, no período estudado, sempre foi a maior região do país em termos de destinos adequados aos pneus inservíveis, embora note-se um decrescimento constante desde o ano de 2010 (62,9%) até 2016 (50,9%). No ano de 2017 a destinação dos pneus inservíveis na região sudeste cresceu, em relação ao ano anterior, atingindo um valor de 56,8%.

Em contraste a região sudeste temos a região norte, em termos de destinação adequada aos pneus inservíveis. Nota-se um crescimento do ano de 2010 (1,3%) até o ano de 2014 (2,7%) devido principalmente às empresas destinadoras localizadas no estado do Amazonas (AM). Em 2017 encontra-se o maior valor (3,2%) de pneus com destinação adequada na região norte, no período estudado, o que corresponde 18571,38 toneladas. Isso pode ser explicado, além das contribuições das empresas localizadas no Estado do Amazonas, pelo crescimento de uma empresa no Pará.

A figura 2.6 mostra os pontos de coleta de pneus inservíveis declarados no Brasil de 2009/2010 até 2017.



Figura 2.6 - Pontos de coleta de pneus inservíveis no Brasil. Fonte CFT/IBAMA

Em 2011 houve uma redução no número dos pontos de coletas em relação ao ano de 2010, 1127 e 1894 pontos respectivamente, uma vez que foram identificados alguns locais cadastrados inadequadamente (IBAMA, 2012).

Em 2017, foram cadastrados 1.718 pontos de coleta, sendo 925 localizados em municípios com população residente acima de 100 mil habitantes, restando 12 municípios com esta característica sem nenhum ponto de coleta declarado (Brasil, 2018). De acordo com Largarinhos & Tenório (2012), com relação às especificações para a montagem de um ponto de coleta, não existe uma legislação, o que há é a proibição para a armazenagem dos pneus a céu aberto

A figura 2.7 mostra os pontos de coleta de pneus inservíveis declarados por região de 2009/2010 até 2017.



Figura 2.7 - Pontos de coleta de pneus inservíveis declarados por região. Fonte CFT/IBAMA

De maneira geral os pontos de coleta de pneus inservíveis declarados por região seguem a tendência da quantidade de pneus inservíveis destinados por região. Sudeste > Sul > Norte. A região nordeste foi maior do que a região centro Oeste dos anos de 2010 até 2015, em 2016 e 2017 a região centro Oeste ultrapassou a região nordeste em relação ao número de pontos de coleta de pneus inservíveis.
Em 2017 foram cadastrados 20 pontos de coleta no estado do Pará e 9 no Amazonas dos 45 da região norte, sendo que 4 estão localizadas na cidade de Parauapebas e 8 na cidade de Manaus (Brasil, 2018). Essa discrepância, entre os números de pontos de coleta, entre esses dois Estados se deve, principalmente, pelo quantitativo da frota veicular. Segundo DENATRAN (2017), a frota de veículos automotivos no Estado do Pará, em dezembro de 2017, foi de 1.918.077 enquanto no Amazonas foi de 846.928 veículos.

### 2.4 CRAQUEAMENTO DE PNEUS INSERVÍVEIS

Nesta seção abordaremos os artigos sobre craqueamento de pneus nos anos de 2016, 2017 e 2018. Buscou-se uma literatura atualizada, mas que abordasse o tema do craqueamento de pneu de forma completa. Assim, os estudos a seguir irão mostrar o craqueamento de pneus tendo como variáveis os tipos de pneus (bicicleta, veículo leve, veículo médio e veículo pesado), a escala do craqueamento (bancada e piloto), o tipo de processo (térmico e termocatalítico), a co-pirólise (pirólise do pneu junto com outra fonte de carbono), a fonte geradora de energia térmica para o reator (forno, micro-ondas, energia solar) e um teste deste biocombustível em motores.

## 2.4.1 Anos de 2016, 2017 e 2018.

Em F. Xu *et al* (2018) estudaram o comportamento de decomposição térmica, mecanismo de pirólise e distribuição de produtos de pneus de bicicletas residuais. De acordo com os resultados do TG, foram observados dois estágios principais de pirólise de resíduos de pneus de bicicletas, que foram considerados como a decomposição de borracha (285-531°C) e posterior pirólise de produtos pirolíticos (663-847 °C), respectivamente. As características de liberação dos voláteis e o espectro de FTIR nas diferentes temperaturas apresentaram boa consistência com o comportamento de pirólise. Uma informação detalhada dos produtos de pirólise foi analisada por Py-GC / MS, que inclui principalmente gases, alcenos e aromáticos. O mecanismo de pirólise do pneu de bicicleta residual era reação de radicais livres, e a possível outra via de pirólise de D-limoneno e estireno também foi apresentada. Além disso, a distribuição dos produtos sob

diferentes temperaturas de pirólise e as condições das taxas de aquecimento foram resumidas.

No trabalho de J.I Osayi *et al* (2018) um reator químico de deposição de vapor, figura 2.8, foi utilizado para a pirólise do pneu, e os efeitos das variáveis operacionais no processo foram estudados. As variáveis operacionais foram a massa e tamanho das partículas do pneu na alimentação, a taxa de aquecimento e a temperatura. Os parâmetros operacionais também foram otimizados para produzir um rendimento ótimo de 34,03% em peso para o produto líquido (óleo pirolítico) temperatura de funcionamento de 600°C a uma taxa de aquecimento de 15 °C / min para um tamanho de partícula de alimentação de 6 mm. Os resultados obtidos revelam que o óleo pirolítico é uma mistura complexa, principalmente de compostos alifáticos e aromáticos, que pode servir como matéria-prima na aplicação industrial. Além disso, as propriedades físico-químicas do óleo eram comparáveis às do óleo combustível convencional, o que implica a possibilidade de os pneus usados serem uma fonte alternativa de combustível líquido.



**Figura 2.8** - Esquema da configuração experimental para a pirólise de pneus. Fonte: JI Osayi *et al* (2018)

Em Z. Song *et al* (2017a) o desempenho pirolítico do pó de pneu tratado sob diferentes potências espectrais de micro-ondas (EMO), potências por 1 g de amostra, (9, 15 e 24 W / g) foi investigado, ver figura 2.9. Os resultados experimentais mostram que o nível de pirólise do pó do pneu foi aumentado com o aumento do EMO. Os rendimentos máximos do produto líquido (45%) e do produto gasoso (18,5%) foram obtidos em 15 e 24 W / g, respectivamente. Além disso, foram calculadas as taxas de conversão dos principais elementos orgânicos transferidos para produtos trifásicos. Todos os gases

desenvolvidos foram coletados em sacos de gasolina sucessivos, e 80% dos volumes eram gases de baixo peso molecular, como H<sub>2</sub>, CH<sub>4</sub> e C<sub>2</sub>H<sub>4</sub>; a fração de gases gerada aumentou com o aumento do EMO. Os produtos líquidos continham uma grande quantidade de hidrocarbonetos aromáticos, e mais limoneno (quase 10%) foi produzido na pirólise por micro-ondas do que na pirólise convencional de pneus. As análises imediatas e final do produto sólido mostraram uma pequena diferença na composição em função do EMO. Além disso, pode haver uma reação competitiva entre a liberação de enxofre para os voláteis e a fixação de enxofre, formando ZnS; a quantidade de ZnS variou com o EMO.



Figura 2.9 - Diagrama esquemático do sistema MP.

Fonte: Z. Song *et al* (2017a). 1-Nitrogênio; 2-Rotametro; 3-Microondas; 4-Reator de Quartzo; 5-Sistema de Coleta do OPP; Sistema de Coleta de Gás

Z. Song *et al* (2017b) estudaram a evolução dos produtos de pós de pneus, com especial atenção para os rendimentos e composição ao longo do tempo sob a pirólise de micro-ondas. Os produtos sólidos, líquidos e gasosos gerados foram coletados separadamente durante o processo de pirólise e caracterizados. A temperatura da amostra primeiro subiu, depois caiu e finalmente se estabilizou em aproximadamente 500 °C. Os principais componentes dos gases de pirólise foram H<sub>2</sub>, CH<sub>4</sub> e C<sub>2</sub>H<sub>4</sub>. Os produtos líquidos eram misturas complexas de compostos orgânicos com grandes proporções de aromáticos e limoneno. Os resíduos sólidos, com alto conteúdo de negro de fumo e S, pirolisaram quase completamente aos 20 min, e as amostras no centro do reator foram pirolisadas mais cedo do que as das áreas circundantes. Ao final da pirólise, foram obtidos 43% dos resíduos sólidos, 45% dos óleos e 12% dos gases de pirólise.

Z. Song *et al* (2018) realizaram a pirólise de pneus inservíveis em micro-ondas buscando investigar os efeitos de diferentes fatores nas características de produção de

limoneno em óleos, ver figura 2.10. Os resultados mostraram que os parâmetros ótimos

de processamento para a produção de limoneno foram a potência específica de microondas de 15 W / g, a velocidade espacial de 3,75 h<sup>-1</sup>, o tamanho de partícula do pneu de 0,6 mm e a ausência de fios de aço. O rendimento de limoneno no óleo de pirólise sob este conjunto de condições foi de até 23,4%. Em comparação com a pirólise convencional, a pirólise por micro-ondas dos resíduos de pneus tem um rendimento mais alto de limoneno em condições otimizadas. Os resultados fornecem uma referência importante para a utilização de alto valor de resíduos de pneus e a utilização de recursos, especialmente a produção subsequente de limoneno.



Figura 2.10 - Diagrama esquemático do sistema experimental.
Fonte: Song *et al* (2018). 1-Nitrogênio; 2-Rotametro; 3-Microondas; 4-Reator de Quartzo; 5-Sistema de Coleta do OPP; Sistema de Coleta de Gás

R. Kumar Singh *et al* (2018) realizaram a pirólise térmica, ver figura 2.11, de três resíduos de pneus de automóveis (RPA) - pneu de veículo leve (PVL), pneu de veículo médio (PVM) e pneu de veículo pesado (PVP). Foram investigados o efeito das frações de borrachas naturais e sintéticas sobre o rendimento do produto dos diferentes tipos de resíduos de pneus. Os rendimentos dos produtos foram influenciados fortemente pela temperatura do reator. A temperatura mais alta favorecendo a formação de mais gases e mais carvão sendo formado a temperaturas mais baixas. A faixa de temperatura de degradação foi considerada a menor para o PVL e continha principalmente borracha natural (NR), enquanto era o maior para PVP devido à presença de NR e borracha butílica sintética (SBR), tendo temperaturas de degradação muito diferentes. No reator batelada,

os rendimentos máximos líquidos de 51%, 45% e 63,5% foram obtidos para PVL, PVM e PVP nas temperaturas ótimas de 650 °C, 750 °C e 750 °C, respectivamente, a uma taxa de aquecimento de 20 °C/min. O óleo obtido de PVL apresenta alto teor aromático, enquanto o óleo de PVM e PVP apresenta alta presença de componente naftalênico. O perfil de pressão no reator mostrou que o PVL começou a produzir a fração gasosa não condensável mais cedo devido à degradação mais rápida. Mais reações secundárias para o PVM geraram mais gases, levando à maior pressão final do reator e à alta concentração de gases não condensáveis. A análise por cromatografia gasosa (CG) indicou que H<sub>2</sub>, CO, CO<sub>2</sub>, CH<sub>4</sub>, C<sub>2</sub>, C<sub>3</sub>H<sub>8</sub> e C<sub>4</sub> foram os principais gases obtidos para todos os tipos de resíduos de pneus. As energias de ativação para a reação de pirólise dos resíduos de PVL, PVM e PVP foram estimadas em 53,185, 62,489 e 64,574 kJ/mol, respectivamente.



**Figura 2.11** - Diagrama esquemático da configuração de pirólise em escala laboratorial. Fonte: Singh *et al* (2018)

A degradação de pneus de caminhões usados, em J. Alvarez *et al* (2017), foi realizada por pirólise rápida em um reator cônico de leito de jorro na faixa de 425 e 575 °C, ver figura 2.12. Verificou-se que o rendimento do óleo de pirólise do pneu (OPP) diminuía com o aumento da temperatura enquanto o rendimento do gás aumentava. O efeito da temperatura nas propriedades da OPP foi estudado para estabelecer a melhor rota de valorização possível. FTIR e análise cromatográfica revelaram a presença de alguns compostos indesejados com funcionalidades de enxofre, nitrogênio ou oxigênio (benzotiatholes, nitrilas e ácidos carboxílicos, entre outros) e um aumento da aromatização da OPP com o aumento da temperatura. O teor de carbono, enxofre e poder

calorifico do OPP aumentaram com a temperatura. A destilação simulada demonstrou que aproximadamente 70% dos OPP's produzidos a 425 e 475 °C correspondem à faixa do diesel, enquanto o OPP obtido a 575 °C está entre as faixas do diesel e da gasolina. As propriedades dos OPP's evidenciaram seu potencial para substituir os combustíveis convencionais. No entanto, alguns deles precisam de ser melhorados, isto é, por redução do teor de enxofre, nitrogênio e aromático. Além disso, o OPP obtido em 425 e 475 °C pode ser uma importante fonte de limoneno e a 575 °C de xilenos, embora os métodos atuais de remoção apresentem algumas limitações.



**Figura 2.12** - Diagrama esquemático da planta de pirólise em escala de bancada. Fonte: Alvarez *et al* (2017)

N. Akkouche *et al* (2017) realizaram o craqueamento do pó de pneu de caminhão inservíveis em um reator de leito fixo, ver figura 2.13, em taxas de aquecimentos (TA) variando de 5 a 25 °C. min<sup>-1</sup>. A TA, que praticamente não tem influência na qualidade e no rendimento do carvão (38% em peso), tem um efeito significativo sobre os vapores pirolíticos, especialmente nas reações de craqueamento dos vapores pesados. Ao aumentar a TA de 5 a 25 °C min<sup>-1</sup>, o rendimento do gás aumenta de 7,24 para 18,04% em peso, em detrimento do rendimento de óleo. As altas taxas de aquecimento favorecem a produção de CH<sub>4</sub> e prejudicam a produção de C<sub>4</sub>H<sub>8</sub>. Além disso, as taxas de aquecimento entre 10 e 15 °C min<sup>-1</sup> minimizam as concentrações de H<sub>2</sub>, CO e CO<sub>2</sub> e maximizam o C<sub>2</sub>H<sub>6</sub>, C<sub>3</sub>H<sub>6</sub>, C<sub>4</sub>H<sub>6</sub> e Concentrações de H<sub>2</sub>S. No que diz respeito aos óleos produzidos, consistem principalmente em produtos aromáticos cujo poder calorifico

superior é de cerca de 40 MJ kg<sup>-1</sup>. Independentemente das taxas de aquecimento, cerca de 97,15% da energia contida na matéria-prima (pneu) é encontrada nos três produtos de pirólise. Os compostos orgânicos sulfurados aparecem nas formas de  $C_7H_5NS$ ,  $C_{15}H_{16}O_3S$  e  $C_{16}H_{14}O_2N_2S$ .



**Figura 2.13-** Configuração experimental da pirólise de resíduos de pneus. Fonte: Akkouche *et al* (2017). 1-Reator; 2-Coluna de aço; 3-Condensador; 4-Funil de decantação; 5-Sistema de Coleta de Gás

G.G Choi *et al* (2017a) utilizaram um pirolisador contínuo de dois estágios consistindo em um reator helicoidal e reator de leito fluidizado e vários aditivos (CaO, Fe, FeO, olivina calcinada) foram testados para a dessulfuração in-situ. O reator helicoidal operado a ~ 340 °C produziu um fluido com 3 e 5% em peso. O teor de DL-limoneno neste produto líquido foi ~ 51% em peso e aumentou ainda mais para ~ 76% em peso através da subsequente extração com etanol. O reator de leito fluidizado (~ 510 ° C) produziu óleos de pirólise com rendimentos em torno de 30 e 37% em peso. A maioria dos aditivos dessulfurizantes testados reduziu o teor de enxofre no óleo de pirólise, e a aplicação de pó de FeO e N<sub>2</sub>, em particular, produziu óleo de pirólise com etanol e oxidação / extração com etanol) foram testados para reduzir ainda mais o teor de enxofre. O método de oxidação / extração com etanol reduziu o teor de enxofre no óleo de pirólise para 0,17% em peso.

G.G Choi *et al* (2016) realizaram a pirólise do pneu de inservíveis utilizando um pirolisador de dois estágios, consistindo em um reator helicoidal e um reator de leito fluidizado para produzir um óleo de pirólise com baixo teor de enxofre. Nos

experimentos, o efeito do tempo de residência do material de alimentação no reator de parafuso sem-fim foi investigado em ~ 300 (reator de parafuso sem fim) e 500°C (reator de leito fluidizado). Além disso, dolomita natural, olivina natural, dolomita calcinada e olivina calcinada foram usadas como materiais de leito fluidizado para examinar seus efeitos na redução do teor de enxofre do óleo de pirólise. Nos experimentos, os rendimentos do óleo do reator helicoidal foram de 1,4 e 3,7% em peso, e foi enriquecido com DL-limoneno cujo conteúdo no óleo foi de 40 e 50% em peso. Os rendimentos do óleo do reator helicoidal foram 42 e 46% em peso. O tempo de residência ideal do material de alimentação no reator helicoidal foi de 3,5 min. A dolomita calcinada e a olivina calcinada diminuíram significativamente o teor de enxofre do óleo de pirólise. Os óxidos metálicos dos aditivos pareciam reagir com o  $H_2S$  para formar sulfetos metálicos.

S. Vichaphund *et al* (2017) realizaram a pirólise de resíduos de borracha coletados da indústria de freios de bicicletas com interesse na produção de combustível líquido. Três zeólitas HZSM-5 foram utilizados como catalisador. O primeiro sintetizado a partir do método hidrotérmico convencional (CV-HZSM-5), o segundo sintetizado com niquel (Ni-HZSM-5) e o terceiro com HZSM-5 derivado de cinza volante (FA-HZSM-5). A pirólise foi realizada a 500 °C com diferentes proporções de peso de borracha: catalisador (1: 1, 1: 5 e 1:10). O aumento do teor de catalisador aumentou notavelmente a formação de hidrocarbonetos aromáticos e diminuiu drasticamente as frações não aromáticas, e a melhor proporção de borracha: catalisador foi a de 1:5 produzindo 80,8 - 95,9% de produtos de hidrocarbonetos aromáticos e 2,8 - 18,7% de alifáticos e apenas aproximadamente 2% oxigenados e nitrogenados. A seletividade aromática dos catalisadores foi classificada na ordem de CV-HZSM5> Ni-HZSM-5> FA-HZSM5. No geral, os três catalisadores HZSM-5 mostraram um desempenho catalítico superior para melhorar os vapores pirolíticos dos resíduos de borracha em termos de aumentar a produção aromática, especialmente os compostos benzeno, tolueno e xileno.

Em S. Kordoghli *et al* (2017a), um gás alternativo foi produzido a partir de resíduos de pneus de automóveis por meio de uma pirólise controlada. Para tanto, um novo sistema catalítico foi projetado com o objetivo de aumentar a taxa de conversão e melhorar a qualidade dos produtos de pirólise, ver figura 2.14. Este trabalho teve como objetivo também reduzir a severidade das reações globais, utilizando catalisadores em pó (MgO, Al<sub>2</sub>O<sub>3</sub>, CaCO<sub>3</sub> e zeólita ZSM-5) uniformemente distribuídos em duas camadas de partículas de conchas de ostras (CO). A relação massa catalítica / pneus foi mantida para

todos os testes em 1/30. O reator de pirólise foi mantido a 500 °C e a influência de cada catalisador e do número de camadas de conchas (0, 1 ou 2), no rendimento e composição dos produtos derivados, foi examinada. Verificou-se que, com o uso de catalisador suportado, o gás produzido é 45% maior em comparação com a pirólise térmica clássica. O valor de aquecimento do gás produzido também foi melhorado pelo uso de catalisadores suportados. Foi encontrado 16% maior com o uso de Al<sub>2</sub>O<sub>3</sub> / OS comparado a pirólise não catalítica. Quando comparado com o gás obtido de apenas um leito catalítico, o teor de enxofre foi reduzido em 80% com o uso de CaCO<sub>3</sub> / OS em dois leitos catalíticos.



Figura 2.14 - Configuração experimental.

Fonte: S. Kordoghli *et al* (2017). 1-Reator de leito fixo; 2-Aquecedor elétrico; 3-Controlador; 4 e 5-Leitos catalíticos; 6-Condensador; 7-Sistema de Coleta de OPP; 8-Gelo; 9-Cromatógrafo

No trabalho de S. Kordoghli *et al* (2017b) a correlação entre a influência de catalisadores na pirólise de resíduos de pneus em instalações de pequena escala e em escala laboratorial é destacada, ver figura 2.15. Parâmetros cinéticos e termodinâmicos de transformações termoquímicas de borracha de pneus foram avaliados usando análises termogravimétricas (TGA). Para isso, zeólita (ZSM-5), alumina (Al<sub>2</sub>O<sub>3</sub>), carbonato de cálcio (CaCO<sub>3</sub>) e óxido de magnésio (MgO) foram utilizados como catalisadores. Verificou-se que todos os catalisadores induzem um início tardio do processo pirolítico e MgO e CaCO<sub>3</sub> reduziram significativamente a energia de ativação (Ea) de 246,89 kJ/mol (pirólise térmica) para 121,82 e 128,34 kJ/moles, respectivamente. Em escala de laboratório, um reator de leito fixo foi utilizado para distinguir como a forma de contato entre pneus e catalisadores influencia o rendimento dos produtos de pirólise, bem como a qualidade do gás. Foi provado que CaCO<sub>3</sub> e Al<sub>2</sub>O<sub>3</sub> são os catalisadores mais adequados para aumentar a fração de gás, enquanto o MgO promove a formação de fração líquida.



**Figura 2.15** - Representação esquemática da instalação em escala de bancada. Fonte: Kordoghli *et al* (2017b). 1-Reator de leito fixo; 2-Aquecedor elétrico; 3-Controlador; 4-Leito catalítico; 5-Condensador; 6-Sistema de Coleta de OPP; 7-Gelo; 8-Cromatografo

A reforma catalítica do óleo pirolítico proveniente da borracha de pneus inservíveis (STR) foi estudada por C.T Ruiz et al (2018) utilizando três catalisadores heteropoliácidos (HPA) suportados em sílica comercial (CARIACT Q-10); H<sub>3</sub>PW<sub>12</sub>O<sub>40</sub> (HPW), H<sub>3</sub>PMo<sub>12</sub>O<sub>40</sub> (HPMo) e H<sub>4</sub>PMo<sub>11</sub>VO<sub>40</sub> (HPMoV). Uma atenção específica foi dada à influência da acidez dos catalisadores (Lewis e / ou Brønsted) na concentração de cimenos no óleo pirolítico. O desempenho catalítico foi avaliado num reator de leito fixo à escala laboratorial equipado com duas zonas térmicas independentes; no primeiro, a pirólise do STR produz compostos voláteis que, consequentemente, foram transformados em uma zona catalítica, ver figura 2.16. Os resultados mostraram uma diminuição no rendimento do óleo pirolítico quando os catalisadores baseados em HPA foram utilizados, o que parece ser promovido por um maior número de sítios de Brønsted. Alcançou um aumento na concentração de aromáticos, em comparação com o ensaio sem catalisador, de até 140% para os catalisadores à base de molibdênio e próximo a 89% para o catalisador à base de tungstênio. Os principais compostos obtidos foram as cimenos e sua produção estava intimamente associada ao tipo e à força dos sítios ácidos. Assim, a maior quantidade de cimenos (principalmente p-cimeno) foi obtida com o maior número de sítios de Lewis e a maior proporção de sítios ácidos de Lewis / Brønsted (catalisadores à base de molibdénio). Pelo contrário, os menores rendimentos foram obtidos quando o catalisador à base de tungstênio foi utilizado associado ao maior número de sítios ácidos de Brønsted e sua forte acidez que promove as reações de craqueamento.



Figura 2.16 - Sistema de pirólise à escala laboratorial.

Fonte: C.T Ruiz *et al* (2018). (1) a seção de suprimento de gás, (2) a seção de reação com um reator de leito fixo, (3) a zona de resfriamento e (4) a zona de evacuação de gás. V-1 a V-9 são válvulas. T1 a T3 são pontos de medição da temperatura. P1 a P3 são pontos de medição da pressão. F1 e F2 são medidores de fluxo

L. Dai *et al* (2017) produziram bio-óleo através da co-pirólise rápida catalítica assistida por micro-ondas usando HZSM-5 como catalisador e sabão e resíduos de pneus como matéria prima, ver figura 2.17. Foram estudados os efeitos da temperatura da copirólise, da relação entre o catalisador e a alimentação de matéria prima e da relação entre o sabão e pneu na alimentação, com relação aos rendimentos fracionados do produto e da composição química. Resultados experimentais indicaram que a temperatura ótima de copirólise foi de 550 °C, onde se obteve o maior rendimento de bio-óleo e proporção de aromáticos, mas reduziu o rendimento de bio-óleo. O resíduo de pneu apresentou um efeito sinérgico significativo com o sabão para facilitar a produção de aromáticos no bio-óleo. Além disso, o carvão como subproduto pode ser usado como aditivo do solo ou combustível sólido.



Figura 2.17 - Diagrama esquemático do sistema fMACP.

Fonte: Dai *et al* (2017). 1- Alimentador de biomassa semi-contínuo; 2- conector de entrada e saída; 3- micro-ondas; 4- reator de quartzo; 5- leito absorvente de micro-ondas; 6- termopar tipo K; 7- conector de quartzo; 8- condensador; 9 – água; 10-conecção para bomba de vácuo

MZ Farooq *et al* (2018) investigaram o efeito da adição de resíduos de pneus (RP) à matéria-prima de pirólise de palha de trigo (PT) na consequente qualidade e quantidade de rendimento líquido. Amostras de RP, PT e diferentes taxas de mistura dos dois resíduos foram alimentadas a um reator de leito fixo, ver figura 2.18. A temperatura do reator foi aumentada a 20 ° C/min até 500 ° C, como sugerido pela análise termogravimétrica das matérias primas. O nitrogênio foi usado como gás de varredura. Entre as misturas, PT / RP 2 : 3 produziu rendimento líquido máximo. A adição de RP aumentou o poder calorífico (de 23,3 para 40,7 MJ / kg), carbono (58 para 85%) e hidrogênio (8,6 para 9,6%) e diminuiu o conteúdo de oxigênio (de 32,8 para 5,1%) do óleo de co-pirólise comparado com o do PT. O óleo de co-pirólise também foi considerado o mais estável devido possuir menor quantidade de aldeídos.



**Figura 2.18** - Diagrama esquemático do reator de pirólise. Fonte: Farooq *et al* (2018)

N. Ahmed *et al* (2018b) investigaram o potencial do resíduo de pneu e do bagaço de cana como matéria-prima da co-pirólise com foco no rendimento líquido. As duas matérias-primas foram alimentadas ao reator de leito fixo em várias proporções de mistura, ver figura 2.19. Os experimentos foram realizados a 500 °C com taxa de aquecimento de 20 °C /min e Nitrogênio (vazão: 50 ml / min) como gás carreador. A razão de bagaço de cana de açúcar / pneu (1: 3) produziu o maior rendimento líquido (49,7% em peso contra 42,1% do bagaço de cana pura). Efeitos sinérgicos significativos foram indicados pela qualidade e quantidade do rendimento líquido da co-pirólise. A melhor mistura de matéria-prima produziu óleo com poder calorífico de 41 MJ/kg com menor viscosidade quando comparado ao óleo de pirólise puro de bagaço de cana de açúcar. O óleo de co-pirólise mostrou alto potencial para ser usado como matéria-prima para a produção de combustível após o processamento requerido.



Figura 2.19 - Diagrama esquemático do sistema de pirólise. Fonte: Ahmed *et al* (2018b)

Na pesquisa de Mohammad Abdul Aziz *et al* (2017), um teste de desenvolvimento e desempenho de um reator de pirólise de lote de leito fixo para produção de óleo de pirólise em escala piloto foi concluído com sucesso, ver figura 2.20. Um condensador horizontal sólido, um queimador para aquecimento do forno e uma blindagem do reator foram projetados. Devido à escala piloto, a produção de óleo pirolítico encontrou numerosos problemas durante a operação da usina. Este método de reator de pirólise por lote de leito fixo demonstrará o conceito de economia de energia do pneu de resíduos sólidos, criando estabilidade de energia. Desta experiência, os rendimentos de produto (% em peso) foram de 49% para o óleo pirolítico, 38,3% para o coque e 12,7% para o gás pirolítico, com um tempo de operação de 185 minutos.



**Figura 2.20** - Diagrama de fluxo e Fotografia da planta piloto de pirólise. Fonte: Aziz *et al* (2017)

Das e Sharma (2017) realizaram uma investigação experimental sobre o potencial de uso de biodiesel de palma (PB) e óleo de pirólise de pneu (OPP) como substituto dos combustíveis convencionais à base de petróleo, ver figura 2.21. Os resultados mostraram que a eficiência térmica do freio a cargas menores de ambos os combustíveis, PB90TPO10 e PB80TPO20, é quase igual, mas nas cargas mais altas, a mistura com maior teor de TPO (PB80TPO20) resulta em maior eficiência térmica do freio. A partir dos dados de consumo específicos do freio, pode-se concluir que um maior teor de TPO significa uma combustão imediata e melhor do combustível, resultando em menor consumo de combustível por unidade de energia gasta. Foi possível demonstrar, também, que os parâmetros de desempenho e as propriedades físicas das misturas deste combustível estão em proximidade com as do diesel convencional.



**Figura 2.21**- Diagrama esquemático de configuração do motor Fonte: Das e Sharma (2017)

No estudo de Ahmad et al (2018a) a borracha natural (NR) foi liquefeita para produzir combustíveis líquidos utilizando a técnica da pirólise hidratada. O estudo foi realizado no reator em batelada autoclave em diferentes temperaturas (300 - 400 °C), com diferentes proporções de massa de água para borracha natural (1:1-5:1) e diferentes tempos de reação (15 - 75 min), ver figura 2.22. Os resultados mostraram que o maior rendimento líquido de 76% em peso foi obtido na temperatura, na proporção de H<sub>2</sub>O / massa do material e no tempo de 375 °C, 3: 1 e 30 min, respectivamente. Entre os parâmetros, a temperatura foi o parâmetro mais importante, mostrando um efeito positivo notável na qualidade e quantidade do óleo líquido. Os resultados da caracterização mostraram que o óleo apresentou alta densidade energética, baixo teor de oxigênio e enxofre e não-ácido. A análise GC-MS mostrou que o óleo obtido era dominado por alquenos, aromáticos e alquilas. De todos os resultados característicos, mostrou-se que o óleo de NR era mais adequado para ser usado como combustível comparado ao óleo derivado de resíduos de pneu, onde o estudo sobre pirólise hidratada de resíduos de pneu também foi fornecido neste manuscrito como estudo comparativo. Além disso, a produção de combustível a partir da pirólise hidratada de NR na Malásia poderia aumentar o potencial de energia em cerca de 15 PJ / ano ou equivalente a 2,5 milhões de barris de petróleo por ano.



Figura 2.22 - Esquema de montagem experimental para a produção de combustíveis líquidos a partir da borracha natural.

Fonte: Ahmad et al (2018)

Q. Li et al (2018) realizaram a termólise de resíduos de pneu (RP), borracha natural (NR) e borracha de estireno-butadieno (SBR) em água subcrítica e supercrítica utilizando um reator tubular de lote ajustável e independente de pressão-temperatura, ver figura 2.23. Como resultado, o rendimento do óleo aumentou à medida que a temperatura e a pressão aumentaram, e eles atingiram valores máximos, já que o estado da água estava próximo do ponto crítico. No entanto, novos aumentos na temperatura e pressão da água reduziram o rendimento do óleo. O rendimento máximo de óleo, 21,21%, foi obtido à 420 °C e 18 MPa com um tempo de reação de 40 min. Os pesos moleculares relativos dos produtos químicos nos produtos petrolíferos estavam na faixa de 70-140 g / mol. O óleo produzido a partir de RP, NR e SBR continha compostos químicos semelhantes, mas o rendimento de óleo de RP estava entre os de NR e SBR. O rendimento de óleo da termólise de água subcrítica ou supercrítica deve ser melhorado. Os principais produtos gasosos, incluindo CH<sub>4</sub>, C<sub>2</sub>H<sub>2</sub>, C<sub>2</sub>H<sub>4</sub>, C<sub>2</sub>H<sub>6</sub> e C<sub>3</sub>H<sub>8</sub>, aumentaram com o tempo de reação, temperatura e pressão, enquanto os resíduos sólidos, incluindo negro de fumo e diminuíram. Estes resultados fornecem informações úteis para o impurezas. desenvolvimento de um processo de termólise da água sub / supercrítico para regeneração de energia e materiais a partir de resíduos de pneus.



**Figura 2.23**- Diagrama esquemático da configuração experimental. Fonte: Li *et al et al* (2018)

Rahman e Aziz (2018) realizaram a pirólise de resíduos de pneus usando radiação solar concentrada, ver figura 2.24. Nesta investigação, foi determinada a melhor condição

de operação para maximizar o rendimento do piro-óleo. Os parâmetros variados foram a temperatura do reator, a taxa de fluxo do gás nitrogênio e o tamanho das partículas de alimentação. O rendimento máximo do piro-óleo foi de 52% em peso a 400 °C no reator e taxa de fluxo de nitrogênio de 6 lpm para um tamanho de alimentação de 4 cm<sup>3</sup>. Esta pesquisa mostrou a viabilidade de converter pneus inservíveis em piro-óleos usando energia solar por meio de pirólise e a análise mostrou o potencial do óleo e do coque como fonte valiosa de produtos químicos.



Figura 2. 24 - Esquema da pirólise com radiação solar.

Fonte: Rahman e Aziz (2018). 1- Heliostat; 2- modulador; 3- prato parabólico; 4- reator; 5cadinho; 6- cilindro de N<sub>2</sub>; 7- medidor de vazão; 8 e 9- condensadores; 10-lavador; 11-saida do gás; 12pirômetro

No trabalho de J. Zeaiter *et al* (2018), investigou-se a pirólise de resíduos de pneus integrados com energia solar concentrada (ESC) usando a tecnologia de refletores Fresnel lineares, ver figura 2.25. O fluido de transferência de calor é aquecido à temperaturas de 520 °C para fornecer a energia térmica necessária para o reator de pirólise operando a 550 °C. O uso do Modelo System Advisor integrado com o fluxograma de pirólise de pneus Aspen Plus® provou que a energia solar no Líbano pode fornecer, em média, 47,14% das demandas anuais de energia do reator de pirólise. A economia de energia pode diminuir em média para 26,6% no inverno e aumentar para 60,8% no verão.



Figura 2.25- Diagrama esquemático do sistema Fresnel.

Fonte: J. Zeaiter et al (2018)

# 2.5 CRAQUEAMENTO TÉRMICO E TERMOCATALITICO NA UNIDADE PILOTO DE CRAQUEAMENTO DA UFPA

# 2.5.1 Descrição da unidade

A descrição da unidade piloto de craqueamento térmico e termocatalítico foi detalhada conforme Lhamas (2013) e Mota (2012), representado na Figura 2.26.

Inicialmente a unidade piloto de craqueamento térmico e termocatalítico foi projetada para operar com matéria prima na fase líquida, constituída de 09 sistemas.

- N°1: Sistema de Resfriamento;
- N°2: Sistema de Alimentação;
- N°3: Sistema de Pré-aquecimento;
- Nº4: Sistema de Queima ou Combustão;
- Nº5: Sistema de Transformação Termoquímica ou de Reação;
- N°6: Sistema de Agitação;
- N°7: Sistema de Condensação;
- Nº8: Sistema de Coleta de Produto Craqueado ou de Separação;

## • N°09: Sistema de Controle da Planta Piloto



**Figura 2. 26** - Planta de craqueamento termocatalítico. Fonte: Mota (2012) adaptado em Santos (2013)

Sistema de resfriamento: constituído por três (03) tanques de polietileno, subdivididos em uma estrutura de madeira com formato retangular, sendo dois tanques com capacidade de 500L direcionados para o ciclo de resfriamento ou troca térmica dentro do condensador e o terceiro tanque com capacidade de 350L, instalado na parte superior da estrutura de madeira, o qual foi direcionado para constituir um ciclo de troca térmica no interior do selo de resfriamento do sistema de agitação do reator de craqueamento. Os tanques continham aproximadamente oitenta por cento (80%) da sua capacidade preenchidos com água, onde o bombeamento ocorria de forma contínua por duas (02) bombas centrífugas.

## Sistema de Alimentação.

O sistema de alimentação é composto por um vaso constituído de polietileno, o qual possui capacidade volumétrica de 200L, formato cilíndrico na parte superior e cônico

na parte inferior, sendo esta última acoplada a uma válvula globo também de polietileno e subsequentemente interligada a uma corrente de condução de alimentação (tubulações) constituída de ferro fundido, pela qual é bombeado o material a ser craqueado (óleos vegetais, gorduras animais ou vegetais, assim como materiais residuais orgânicos passiveis de craqueamento) através de uma bomba dosadora B01 de deslocamento positivo modelo (tipo NM015By01L06B), a qual é controlada por um inversor de frequência CFW 08, e operado no painel de controle geral da planta piloto.

#### Sistema de Pré-aquecimento

Constituído por um trocador de calor de aço inox, modelo TMO-E com um comprimento de 90 cm e diâmetro externo de 22 cm, apresentando uma resistência elétrica interna com potência de 15.000 w, pressão de 1 atm e temperatura de operação de 200 °C, além de um medidor de temperatura na saída da corrente de alimentação do sistema pré-aquecedor/reator que consiste de um sensor de temperatura ou termopar do tipo K, o qual transmite um sinal ao painel de controle geral da planta piloto, para que possa ser visualizada a temperatura de operação e compara-la com o set-point prédeterminado pelo operador. Este sistema (pré-aquecedor) possui a finalidade de elevar inicialmente a temperatura do material a ser craqueado, além de liquefazer e otimizar o escoamento do material utilizado como matéria prima no processo de craqueamento, contribui também para o alcance da temperatura inicial de craqueamento, diminuindo desta forma o consumo de gás GLP no sistema de queima e combustão da planta piloto, além disso diminui o tempo reacional de processo sendo portanto um fator primordial na questão da viabilidade econômica do projeto Unidade Piloto de Craqueamento, para completar o processo de craqueamento. Em relação ao gás GLP utilizado no processo de craqueamento este é armazenado em cilindros, os quais ficam acoplados ao sistema de queima ou combustão.

#### Sistema de Queima ou Combustão.

Esse sistema é constituído por um soprador de ar, o qual é acoplado a um sistema de injeção de combustível (GLP) controlado por um conjunto de solenoides responsáveis pelo acionamento de estágios de queima. O sistema de combustão foi projetado para trabalhar com dois estágios de queima, sendo o primeiro responsável pela injeção e

homogeneização do ar com o combustível GLP, para alimentar o sistema de queima, e o segundo possuí a finalidade de aumentar à entrada de gás combustível, gerando desta forma a energia necessária para completar o processo de craqueamento. Em relação ao gás GLP utilizado no processo de craqueamento este é armazenado em cilindros de 108 L 1,70 Mpa com válvula de redução de pressão, os quais ficam acoplados ao sistema de queima ou combustão.

Com o decorrer do tempo, houve a necessidade da mudança do layout desse sistema, para proporcionar uma maior segurança dos operadores. No início do projeto os cilindros com GLP ficavam próximos ao reator de craqueamento. Hoje, esses cilindros ficam do lado externo da planta dentro de uma "casinha" que permite o isolamento térmico em relação ao reator.

## Sistema de Transformação Termoquímica ou de Reação.

O sistema de transformação termoquímica ou de reação é constituída por dois reatores, sendo um reator de leito agitado e outro de leito fixo ou catalítico. O reator de leito agitado, denominado R01 possui uma estrutura de aço inox com capacidade total de 143 L e capacidade de operação de 125L; além disso o reator é revestido por um sistema de isolamento térmico com formato cilíndrico, constituído internamente por um material de alta resistência térmica (refratário), e externamente o revestimento isolante é envolvido por uma chapa metálica também no formato cilíndrico. O reator R01 foi projetado para operar sob pressão atmosférica (1atm), temperatura de operação de 500°C e eficiência de 0,7. O reator R01 ainda possui uma saída de corrente denominada R01/condensador, na qual percorre o produto gerado durante o processo de craqueamento (PLO e gases residuais não condensáveis); possui também uma saída na extremidade inferior, pela qual pode-se retirar materiais residuais de processo, obtidos após o término da operação de produção, além da utilidade de saída está também possui outra utilidade, como a entrada de catalisador, o qual será utilizado no processo de craqueamento; outra saída situada no reator R01 é denominada saída R01/R02, na qual percorrem correntes e gases gerados (PLO e gases residuais não condensáveis) durante o processo de craqueamento térmico no reator de leito agitado, os quais são direcionados para o reator de leito fixo R02, sendo está trajetória possível devido a fechamento da válvula de gaveta localizada na saída R01/condensador e abertura da válvula de gaveta localizada na saída R01/R02. O reator R01 ainda possui na parte superior um sistema de isolamento térmico constituído por lã de vidro, a qual é responsável pela conservação e diminuição da energia térmica conduzida no sentido do reator R01 para o motor elétrico do sistema de agitação.

Quanto ao reator de leito fixo ou catalítico, denominado R02, este é constituído de uma estrutura de aço inox com formato cilíndrico e base cônica, possui uma capacidade total de 24 L e capacidade de operação de 20 L, além disso, o reator é revestido por um sistema de isolamento térmico (manta térmica), constituída de lã de vidro. O reator R02 foi projetado para operar sob pressão de projeto e operação de uma atmosfera (1atm), temperatura de projeto de 550 °C e de operação de 500 °C, além de possuir uma eficiência de 0,7. Na parte inferior do reator R02 estão situados duais flanges, sendo que a flange localizada na extremidade inferior do reator R02 é responsável pela percolação dos gases através do leito catalítico, os quais são produzidos durante o processo de craqueamento térmico no reator R01. Outra flange também localizada na parte inferior é responsável pela retirada do catalisador utilizado durante o processo de craqueamento, o qual é introduzido por uma flange localizada na parte superior do reator R02, e também está acoplado a uma linha de corrente (tubo de aço inox), a qual é direcionada ao sistema de condensação, pelo qual passam os gases produto do processo de craqueamento térmico e catalítico.

O sistema de reação da planta piloto de craqueamento possui um conjunto de medidas os quais determinam o tipo de processo a ser realizado. Todos procedimentos citados anteriormente são pré-estabelecidos pelo operador, o qual estabelece o tipo de processo a ser realizado na planta piloto.

## Sistema de Agitação Mecânica.

O sistema de agitação denominado AG01, é um sistema auxiliar localizado na parte superior do reator de craqueamento R01. Ele é constituído por um agitador impelidor do tipo turbina com seis (06) pás posicionadas com uma inclinação angular de 45°, sendo quatro (04) pás na extremidade inferior e duais (02) pás no meio, além de apresentar um diâmetro de 35cm. Em relação ao número de rotações por tempo, o agitador impelidor foi projetado para atingir uma agitação máxima de 175 rpm. O sistema de agitação tem a função de misturar ou homogeneizar o meio reacional dentro do reator R01, neste caso, o material a ser craqueado juntamente com o catalisador utilizado no processo de craqueamento. Outra função é atribuída ao sistema de agitação, a qual

corresponde a distribuição uniforme ou transferência de calor fornecida pelo sistema de queima ou combustão, em diferentes pontos dentro do reator R01.

# Sistema de Coleta de Produto Craqueado ou de Separação.

O sistema de coleta da unidade piloto de craqueamento denominado de VC01 inicialmente foi projetado com um (01) vaso de coleta de condensado ou vaso de separação flash, o qual é constituído de aço inox e capacidade de 30L, além destas especificações o vaso de coleta é caracterizado por uma pressão de projeto de 1atm, temperaturas de projeto e de operação correspondentes a 550°C e 500°C respectivamente, e uma eficiência de 0,7. O vaso de coleta VC01 possui uma entrada, a qual está ligada ao sistema de condensação, correspondente a entrada de PLO e gases residuais não condensáveis oriundos do processo de craqueamento. Possui também duais saídas, dentre as quais, existe uma saída na parte superior, a qual corresponde à saída de gases não condensáveis, onde esta saída possui duais finalidades, uma possível queima ou combustão do gás residuais, evitando que o mesmo seja emitido para a atmosfera, outra é a finalidade de cogeração, objetivando-se realizar o reaproveitamento da energia contida nos gases residuais.

## Sistema de Controle da Planta Piloto.

O controle do processo é realizado através de um painel de controle constituído por um Controlador Lógico Programável (CLP) N1100. Objetivando-se realizar o monitoramento ou controle do sistema operacional da planta piloto de craqueamento, em relação ao parâmetro temperatura, foram instalados sensores de temperatura (termopar e PT-100) denominados CT, os quais estão presentes nas entradas e ou saídas de correntes dos sistemas de pré-aquecimento, sistema de transformação termoquímica, sistema de condensação e no sistema de queima ou combustão. Esses sensores enviam informações para os controladores de temperatura PID, os quais possuem um duplo display, permitindo uma fácil e rápida ação sobre o processo, localizados no painel de controle da unidade piloto.

Os comandos de agitação do reator craqueador (R01), assim como o acionamento da bomba dosadora B01, pertencente ao sistema de alimentação, foram feitos através de inversores de frequência CFW08 (inversor agitador AG01/reator-R01; inversor

Bb/dosadora-B01), com módulos de comunicação feita utilizando-se uma interface serial RS232 (KCS - CFW08) ou RS485 (KRS485 - CFW08) ligado a um gateway MFW01 para Profibus DP, situados também no painel de controle da planta piloto.

Outro comando realizado no painel de controle é o acionamento das bombas 01 e 02 (marca DANCOR, CHS-17 e potência de 1cv), responsáveis pelo fluxo contínuo da água de resfriamento constituinte do sistema de resfriamento, através de chaves seletoras.

## 2.5.2 Trabalhos desenvolvidos na unidade piloto de craqueamento termocatalítico.

Nesta seção é apresentada uma revisão de alguns trabalhos realizados na Unidade Piloto de Craqueamento / THERMTEK / LEQ /UFPA, onde se obtêm biocombustíveis denominado de "Produto Craqueado Líquido" ou de "Produto Líquido Orgânico (PLO)" e seus derivados. As teses e dissertações foram obtidas no repositório institucional da Universidade Federal do Pará (<u>http://repositorio.ufpa.br/jspui/</u>) no dia 07/02/2017.

Lhamas (2013) estudou o processo de craqueamento termocatalítico do óleo de palma para produção de biocombustíveis utilizando o carbonato de cálcio (CaCO<sub>3</sub>) como catalisador. Nessa escala, observou-se que os rendimentos em produtos líquidos aumentaram com o aumento da temperatura de operação e da porcentagem do catalisador básico. Parte dos produtos obtidos nesta escala foi submetida à destilação em bancada, visando obter frações correspondentes às faixas da gasolina, querosene, diesel leve e diesel pesado. Os resultados das análises cromatográficas dos produtos líquidos e destas frações destiladas confirmaram a presença de hidrocarbonetos correspondentes às principais frações de petróleo.

No trabalho desenvolvido por da Mota (2013), foi realizado o craqueamento em escala piloto seguido da etapa de destilação, onde se utilizou óleo de palma e Na<sub>2</sub>CO<sub>3</sub> como catalisador, tendo como resultado à confirmação da obtenção hidrocarbonetos na faixa da gasolina, do querosene e do diesel, apresentando compostos parafínicos, olefínicos, naftênicos e traços de aromáticos em suas composições, variando a concentração destes para cada tipo de biocombustível produzido.

Santos (2013) estudou o processo de craqueamento termocatalítico do óleo de fritura residual, variando-se o percentual do catalisador carbonato de sódio de 5 e 10% m/m em relação a matéria prima utilizada e temperatura de 440 °C. Os resultados mostraram que o catalisador carbonato de sódio forneceu produtos de baixa acidez e com boas características para uso como combustível. A variação do percentual de catalisador

influencia significamente as propriedades físico químicas e composição tanto do produto líquido quanto de suas frações. Verificou-se, ainda, que o craqueamento termocatalítico do óleo de fritura propicia a formação de hidrocarbonetos ricos na fração do diesel (19,16% diesel leve e 41,18% diesel pesado para o teste com 10% de Na<sub>2</sub>CO<sub>3</sub> e de 13,53% leve e 52,73% diesel pesado para o teste com 5% de Na<sub>2</sub>CO<sub>3</sub>). Para esses testes foi constatado que os intervalos de tempos finais do craqueamento (50-80 min após início do craqueamento) geram um combustível com baixo teor de acidez e com propriedades físico químicas em conformidade a norma especificada para o diesel mineral. A partir dos dados experimentais da evolução do processo de craqueamento, Santos (2013) sugeriu uma modificação nessa planta piloto de craqueamento. Uma válvula controladora de três vias seria instalada na saída do reator R01. Nos primeiros 50 minutos após o início do craqueamento todos os gases gerados seriam desviados, através dessa válvula, para o reator (R02) de leito catalítico, com o intuito da reduzir a elevada acidez nesse período. Decorridos esse tempo acionaria o comando para a válvula desviar os gases diretamente para o condensador, tendo em vista que nesses períodos a acidez do produto está reduzida.

No trabalho desenvolvido por Santos (2015) foi estudado o craqueamento termocatalítico da borra de neutralização do óleo de palma oriundo do processo de neutralização. Neste estudo foram realizados experimentos de craqueamento termocatalítico da borra de neutralização, utilizando Na<sub>2</sub>CO<sub>3</sub> como catalisador nas proporções de 5 e 15% (m/m) a 440°C. Os resultados mostraram o maior rendimento (71%) obtido com 15% de Na<sub>2</sub>CO<sub>3</sub> na temperatura de 440 °C. Os resultados obtidos das análises cromatográficas dos PLO's obtidos nesta escala confirmaram que o aumento no percentual de catalisador possibilitou a formação de um PLO rico em hidrocarbonetos (91,22%) contendo alifáticos, olefínicos, naftênicos e aromáticos e baixos teores de compostos oxigenados (8,78%).

Mancio (2015), investigou as seguintes etapas: (1) etapa de produção dos biocombustíveis via craqueamento térmico catalítico; (2) etapa de fracionamento dos biocombustíveis e (3) etapa de tratamento dos biocombustíveis através da aplicação da extração líquido-líquido e da adsorção como alternativas a desacidificação dos biocombustíveis. Os resultados da etapa de produção de biocombustíveis mostram que a conversão variou de 86 a 97%. O rendimento em PLO aumentou de 41 a 76% e as propriedades físico-químicas como o Número de Ácidos Totais, diminuíram com o aumento da porcentagem de catalisador. Os resultados de GC-MS mostram que o aumento da porcentagem de catalisador promove um aumento no teor de hidrocarbonetos

e diminuição de compostos oxigenados no PLO. As olefinas foram as principais classes de hidrocarbonetos presentes no PLO.

O estudo da obtenção de biocombustíveis a partir do processo de Craqueamento Térmico-Catalítico em escala piloto, a partir da gordura residual removida das caixas de gordura do restaurante universitário da Universidade Federal do Pará (RU-UFPA) foi o objetivo do trabalho de Almeida (2015). Foram utilizados como catalisadores o carbonato de sódio e a lama vermelha ativada termicamente a 1000 °C, material rejeito da produção de alumina da empresa Hydro-Alunorte, que também se trata de um passivo ambiental. Após o craqueamento, o Produto Líquido Orgânico obtido foi caracterizado e destilado em escalas de laboratório e piloto, obtendo-se bicombustíveis na faixa do bioquerosene, biogasolina, diesel leve e pesado. O maior rendimento em PLO, em torno de 82 %, foi obtido com 15% de catalisador carbonato de sódio. O índice de acidez do PLO (14,97 mg KOH/g) apresentou um valor considerado baixo e bastante satisfatório quando comparado a valores obtidos na literatura. Os resultados cromatográficos do experimento com 10% de carbonato de sódio apresentaram elevado teor de hidrocarbonetos PLO (78,98%), querosene verde (92,64% de hidrocarbonetos) e diesel leve (90,21% de hidrocarbonetos). Os resultados obtidos denotam viabilidade na produção dos biocombustíveis, a partir da gordura residual tratada das caixas de gordura.

Pereira (2017) estudou a utilização do sebo bovino como matéria-prima para a produção de biocombustível através do processo de reação de craqueamento térmico catalítico. Para o desenvolvimento deste estudo foram realizados três experimentos de craqueamento térmico catalítico em um reator de 143 litros, operando em modo descontínuo a 450 °C a pressão atmosférica, utilizando como catalisador o carbonato de sódio (Na<sub>2</sub>CO<sub>3</sub>). Dois experimentos foram realizados com o sebo bovino bruto (5 e 10 % de Na<sub>2</sub>CO<sub>3</sub> – massa/massa) e um com o sabão de sebo bovino (5 % de Na<sub>2</sub>CO<sub>3</sub> – massa/massa). Os produtos líquidos orgânicos obtidos das reações foram analisados através de análises físico-químicas e de composição química. Nestes produtos também foram realizadas a destilação fracionada com o intuito de obter frações de gasolina, querosene e diesel leve semelhantes ao do petróleo. Com o intuito de acompanhar as reações ao longo do tempo foram retiradas alíquotas de 10 em 10 minutos até um total de 10 amostras com o primeiro ponto coletado em 30 minutos de reação. Foram realizadas análises físico-químicas e de identificação dos compostos químicos nas amostras coletadas. Os resultados obtidos mostram uma tendência em obter rendimentos maiores em produto líquido orgânico (PLO) com o uso de catalisador em maiores quantidades

com a amostra bruta. A identificação química mostrou a quantidade de hidrocarbonetos presentes (parafinas e olefinas) variando de 89,28 a 92,23 % e os oxigenados (cetonas) de 7,77 a 10,72 %. Após as destilações fracionadas verificou-se uma predominância na fração referente ao diesel (235 – 305 °C) enquanto as frações de gasolina e querosene foram mais baixas, esse comportamento repetiu-se em todos os experimentos. Em relação as amostras coletadas ao longo do tempo das reações são possíveis verificar um aumento no índice de acidez e formação de oxigenados até em 60/70 minutos indicando a ocorrência do craqueamento primário e em seguida, até o final da reação, um decréscimo nestes valores evidenciando o craqueamento secundário.

Na tabela 2.3, encontra-se alguns dados dos processos de craqueamento na Unidade Piloto de Craqueamento / THERMTEK / LEQ /UFPA.

De acordo com Lhamas (2013) pode-se observar que o aumento da temperatura proporciona um aumento no rendimento em produtos líquidos, verificando-se um maior rendimento em produto líquido orgânico para a temperatura de operação de 440 °C. Os resultados encontrados para o rendimento em produto líquido estão de acordo com a literatura. Araújo (2012) variou a temperatura de craqueamento termocatalítico do óleo de girassol (300, 375, 400 e 425 °C) e obteve o maior rendimento na temperatura máxima de operação a 425 °C, e Silva (2010) realizou o craqueamento do óleo de soja nas temperaturas de 400, 440 e 460 °C obtendo rendimentos para os produtos líquidos de 66, 69 e 77%, respectivamente. Claramente, o aumento da porcentagem de produtos líquidos com a temperatura é consequência da conversão da carga (evidenciada pela redução do resíduo sólido). A produção de gás oscilou nos testes, sem mostrar um padrão mais definido. Ao analisar o índice de acidez, nota-se uma redução deste parâmetro com a elevação da temperatura, no entanto a diferença é menos significativa entre os experimentos a 430 e 440°C. Na temperatura de 400 °C a degradação das espécies ácidas, principalmente os ácidos carboxílicos, não foi eficiente elevando o índice de acidez para 64 mg KOH/g. Entretanto, em comparação com o craqueamento térmico, o resultado encontrado já é cerca de 50% mais baixo. Desta forma, provavelmente a elevação da temperatura contribui para o craqueamento secundário das moléculas, originando produtos mais ricos em hidrocarbonetos e apresentando uma menor formação de compostos oxigenados, principalmente os ácidos carboxílicos.

| Estudo           | Tipo<br>Catalisador                           | Catalisador<br>(%) | T (°C) | PL<br>(%) | Coque<br>(%) | Gás<br>(%) | I.A<br>(mgKOH/g) |
|------------------|-----------------------------------------------|--------------------|--------|-----------|--------------|------------|------------------|
| Lhamas<br>(2013) | CaCO <sub>3</sub>                             | 5                  | 440    | 52,76     | 19,28        | 27,96      | 61,95            |
|                  | CaCO <sub>3</sub>                             | 7,5                | 440    | 73,40     | 16,26        | 10,34      | 71,05            |
|                  | CaCO <sub>3</sub>                             | 10                 | 440    | 76,60     | 9,42         | 11,98      | 22,60            |
|                  | CaCO <sub>3</sub>                             | 10                 | 430    | 56,14     | 20,32        | 23,54      | 23,30            |
|                  | CaCO <sub>3</sub>                             | 10                 | 400    | 37,14     | 52,76        | 10,10      | 64,00            |
|                  | Na <sub>2</sub> CO <sub>3</sub><br>Recuperado | 10                 | 450    | 59,00     | 3,70         | 37,30      | 39,00            |
|                  | Na <sub>2</sub> CO <sub>3</sub>               | 10                 | 450    | 63,60     | 8,00         | 28,4       | 8,98             |
| Mota<br>(2013)   | Na <sub>2</sub> CO <sub>3</sub>               | 20                 | 450    | 68,36     | 1,4          | 30,24      | 1,02             |
| (2013)           | Lama<br>vermelha                              | 5                  | 450    | 75,2      | 20,2         | 4,6        | 3,00             |
|                  | Lama<br>vermelha                              | 10                 | 450    | 57,21     | 30,08        | 12,71      | 83,90            |
|                  | -                                             | -                  | 440    | *         | *            | *          | 122              |
| Santos (2013)    | Na <sub>2</sub> CO <sub>3</sub>               | 5                  | 440    | 68,4      | 16,6         | 15         | 29,86            |
| (2013)           | Na <sub>2</sub> CO <sub>3</sub>               | 10                 | 440    | 43,6      | 25,8         | 30,6       | 14,27            |
|                  | Na <sub>2</sub> CO <sub>3</sub>               | 5                  | 450    | 62,32     | 15,19        | 5,09       | 51,56            |
| Mancio           | Na <sub>2</sub> CO <sub>3</sub>               | 10                 | 450    | 47,15     | 14.62        | 29.07      | 4,10             |
| (2015)           | Na <sub>2</sub> CO <sub>3</sub>               | 15                 | 450    | 58,74     | 15,47        | 12,15      | 3,55             |
|                  | Na <sub>2</sub> CO <sub>3</sub>               | 20                 | 450    | 41,46     | 0,42         | 47,29      | 1,26             |
|                  | Na <sub>2</sub> CO <sub>3</sub>               | 5                  | 450    | 41,87     | 12,33        | 19,65      | 39,97            |
|                  | Na <sub>2</sub> CO <sub>3</sub>               | 10                 | 450    | 49,89     | 3,65         | 19,05      | 14.97            |
| Amaida           | Na <sub>2</sub> CO <sub>3</sub>               | 15                 | 450    | 63,02     | 5,63         | 8,42       | 13,6             |
| (2015).          | Sabão Na <sub>2</sub> CO <sub>3</sub>         | 10                 | 450    | 41,58     | 7,98         | 31,53      | 8,18             |
|                  | Lama<br>Vermelha                              | 5                  | 450    | 63,62     | 9,30         | 18,43      | 84,66            |
|                  | Lama<br>Vermelha                              | 15                 | 450    | 68,33     | 18,70        | 17,96      | 109,55           |
|                  | Na <sub>2</sub> CO <sub>3</sub>               | 5                  | 420    | 50,79     | 22,06        | 10,73      | 9,14             |
| Santos<br>(2015) | Na <sub>2</sub> CO <sub>3</sub>               | 5                  | 440    | 46,65     | 11,46        | 30,35      | 0,25             |
|                  | Na <sub>2</sub> CO <sub>3</sub>               | 10                 | 440    | 53,13     | 29,50        | 12,85      | 0,58             |
|                  | Na <sub>2</sub> CO <sub>3</sub>               | 15                 | 440    | 71,37     | 23,89        | 0,41       | 1,07             |
|                  | Na <sub>2</sub> CO <sub>3</sub> Sabão         | 5                  | 450    | 56,8      | 11,37        | 23,54      | 5,79             |
| Pereira          | Na <sub>2</sub> CO <sub>3</sub>               | 5                  | 450    | 64,76     | 4,4          | 30,16      | 27,68            |
| (2017)           | Na <sub>2</sub> CO <sub>3</sub>               | 10                 | 450    | 66,5      | 7,7          | 23,6       | 8,36             |

Tabela 2.3 - Dados dos processos de craqueamento na unidade piloto de craqueamento / THERMTEK / LEQ /UFPA.

T: Temperatura; PL: Produto líquido; I.A: índice de acidez; \* não calculado

Ainda em Lhamas (2013), observou-se que os rendimentos em produtos líquidos aumentaram com a elevação da porcentagem de catalisador no processo, fato esse também demonstrado em. Lopes *et al.*, (2012) avaliaram o rendimento do produto obtido do craqueamento catalítico do sabão do óleo de palma obtendo como resultado um rendimento de 46, 65 % com 5,7 % de carbonato de sódio e 71,35 % com 22 % de carbonato de sódio, evidenciando que o aumento no teor de catalisador favorece no aumento de produtos líquidos. Pode-se observar que o aumento da porcentagem de catalisador, além de favorecer um maior rendimento em produtos líquidos, também proporcionou um menor teor de resíduo. A quantidade de gás formada foi maior para o experimento com a menor quantidade de catalisador. Esses comportamentos foram corroborados nos trabalhos de Mota (2013); Almeida (2015) e Pereira (2017).

Esse comportamento, em relação ao produto líquido, observado por Lhamas (2013) Mota (2013); Almeida (2015) e Pereira (2017) não se repetiu nos trabalhos de Santos (2013) e Mancio (2015), que de maneira geral, o aumento do percentual de catalisador propiciou a diminuição do rendimento do produto líquido. Isso demonstra que a matéria prima e o processo empregado são, também, parâmetros que influenciam no processo de craqueamento termocatalítico.

No estudo de Mota (2013) foi realizada também a comparação da eficiência do processo de craqueamento, mediante utilização de Na<sub>2</sub>CO<sub>3</sub> virgem e reutilizado como catalisador. Foi verificado, que a quantidade de produto líquido. não se reduziu drasticamente quando se empregou o catalisador reutilizado, verificado pela diminuição de apenas 4,6 % em comparação ao craqueamento com catalisador virgem. Porém a qualidade do produto líquido foi bastante alterada. Isso pode ser verificado pela análise do índice de acidez desses produtos. Houve um aumento do índice de acidez em mais de 400% quando se empregou o carbonato de sódio reutilizado.

Com relação ao índice de acidez, observou-se o maior valor (122 mgKOH/g), entre os estudos aqui citados, para o craqueamento térmico do óleo de fritura neutralizado, realizado por Santos (2013). Isso demonstra que o uso de catalisadores, empregado nos outros trabalhos, favorece a degradação dos ácidos carboxílicos formados no craqueamento primário, reduzindo, assim tal parâmetro. Vale ressaltar que neste experimento não foi possível aferição do balanço de massa devido a excessiva liberação de acroleína durante a reação de craqueamento, porém tal experimento se torna útil para justificar e comparar o uso de catalisador nos craqueamentos de óleos e gorduras. Observou-se, ainda, que um aumento na porcentagem de catalisador básico propicia uma redução expressiva do índice de acidez. Isso não se repetiu nos trabalhos de Mota (2013) Almeida (2015) quando estes empregaram como catalisador a lama vermelha. Nesses trabalhos, conforme se aumentava o percentual de catalisador, a acidez do produto líquido também aumentava.

Nos estudos realizados por Almeida (2015) e Pereira (2017), quando estes aplicavam a técnica de saponificação de suas matérias primas antes do craqueamento, verificavam que apesar de uma redução significativa no rendimento do produto líquido do craqueamento, obtinham um produto de melhor qualidade, observado pela redução no índice de acidez.

Os produtos líquidos obtido da unidade em escala piloto também, em alguns estudos, foram caracterizados em sua composição por meio de cromatografia gasosa acoplada ao espectro de massas (CG-MS), ver tabela 2.4.

| Lhamas (2013) – Óleo de Palma                         |                       |                        |                       |  |  |
|-------------------------------------------------------|-----------------------|------------------------|-----------------------|--|--|
|                                                       | 10% CaCO <sub>3</sub> | 7,5% CaCO <sub>3</sub> | 5 % CaCO <sub>3</sub> |  |  |
| Parafinas                                             | 31,107                | 19,977                 | 23,194                |  |  |
| Olefinas                                              | 24,525                | 20,696                 | 30,933                |  |  |
| Naftênicos                                            | 7,708                 | 8,798                  | 3,446                 |  |  |
| Aromáticos                                            | -                     | -                      | 0,385                 |  |  |
| Total de                                              | 63,34                 | 49,471                 | 57,958                |  |  |
| Hidrocarbonetos                                       |                       |                        |                       |  |  |
| Ácidos graxos                                         | 9,944                 | 41,163                 | 26,187                |  |  |
| álcoois                                               | 6,213                 | 1,165                  | 3,98                  |  |  |
| cetonas                                               | 20,504                | 8,202                  | 9,987                 |  |  |
| Aldeídos                                              | -                     | -                      | 1,888                 |  |  |
| Total de                                              |                       |                        |                       |  |  |
| Compostos                                             | 36,66                 | 50,53                  | 42,042                |  |  |
| oxigenados                                            |                       |                        |                       |  |  |
| Almeida (2015) – Resíduos Sólidos de Caixa de Gordura |                       |                        |                       |  |  |
| 10% de Na2CO3 5% de L.V                               |                       |                        |                       |  |  |
| Parafinas                                             | 3                     | 1,91                   | 14,16                 |  |  |
| Olefinas                                              | 4                     | 1,45                   | 10,87                 |  |  |
| Naftênicos                                            | 2                     | 4,12                   | 12,5                  |  |  |
| Aromaticos                                            |                       | 1,5                    | 0                     |  |  |
| Total de                                              | 7                     | 8,98                   | 37,47                 |  |  |
| Hidrocarbonetos                                       |                       |                        |                       |  |  |
| Acidos graxos                                         |                       | 5,84                   | -                     |  |  |

Tabela 2.4 - Caracterização dos produtos líquidos Orgânicos por CG-MS.

| alcoois                       | 1,9   | -     |  |  |
|-------------------------------|-------|-------|--|--|
| cetonas                       | 6,98  | 1,14  |  |  |
| Éster                         |       | 0,55  |  |  |
| Outros                        | 5,3   | 60,82 |  |  |
| Total de                      |       |       |  |  |
| Compostos                     | 21,02 | 62,51 |  |  |
| oxigenados                    |       |       |  |  |
| Mancio (2015) – Óleo de Palma |       |       |  |  |

|                 |                                 | Oleo de l'allita                |                                 |                                 |
|-----------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
|                 | 5% de                           | 10%                             | 15%                             | 20%                             |
|                 | Na <sub>2</sub> CO <sub>3</sub> |
| Parafinas       | 23.40                           | 41.93                           | 27.53                           | 24.28                           |
| Olefinas        | 31.10                           | 25.34                           | 54.78                           | 51.74                           |
| Naftênicos      | 6.51                            | 21.97                           | 10.53                           | 12.08                           |
| Aromáticos      | 0                               | 0                               | 0                               | 0,00                            |
| Total de        | 61.01                           | 89.24                           | 92.84                           | 88.10                           |
| Hidrocarbonetos |                                 |                                 |                                 |                                 |
| Ácidos          | 15.17                           | 2.63                            | 0,00                            | 3.10                            |
| carboxílicos    |                                 |                                 |                                 |                                 |
| álcoois         | 0.41                            | 3.37                            | 2.66                            | 3.31                            |
| cetonas         | 4.46                            | 4.62                            | 4.50                            | 5.49                            |
| Éster           | 18.95                           |                                 | 0,00                            | 0,00                            |
| Outros          | 0                               | 0.14                            | 0,00                            | 0,00                            |
| Total de        | 38.99                           | 10.76                           | 7.16                            | 11.90                           |
| Compostos       |                                 |                                 |                                 |                                 |
| oxigenados      |                                 |                                 |                                 |                                 |

# Santos (2015) - "Borra de Neutralização do óleo de Palma"

|                 | 5% de Na2CO3 | 15% de Na2CO3 |
|-----------------|--------------|---------------|
| Parafinas       | 27,38        | 30,75         |
| Olefinas        | 38,06        | 53,72         |
| Naftênicos      | 3,12         | 4,5           |
| Aromáticos      | 1,97         | 2,25          |
| Total de        | 70,53        | 91,92         |
| Hidrocarbonetos |              |               |
| Ácidos          | -            | -             |
| carboxílicos    |              |               |
| álcoois         | 4,93         | 2,27          |
| cetonas         | 6,7          | 5,34          |
| Éster           | 4,08         | -             |
| Éter            | -            | 1,17          |
| Outros          | 13,76        | -             |
| Total de        |              |               |
| Compostos       | 28,82        | 8,78          |
| oxigenados      |              |               |

|                 | Pereira (2017) – Sebo Bovino    |                                 |                                        |  |
|-----------------|---------------------------------|---------------------------------|----------------------------------------|--|
|                 | 5 % de 10 % de                  |                                 | Sabão com                              |  |
|                 | Na <sub>2</sub> CO <sub>3</sub> | Na <sub>2</sub> CO <sub>3</sub> | 5 % de Na <sub>2</sub> CO <sub>3</sub> |  |
| Parafinas       | 36,27                           | 33,144                          | 25,68                                  |  |
| Olefinas        | 53,01                           | 57,623                          | 66,55                                  |  |
| Naftênicos      | -                               | -                               | -                                      |  |
| Aromáticos      | -                               | -                               | -                                      |  |
| Total de        | 89,28                           | 90,77                           | 92,23                                  |  |
| Hidrocarbonetos |                                 |                                 |                                        |  |
| Ácidos          | -                               | -                               | -                                      |  |
| carboxílicos    |                                 |                                 |                                        |  |
| álcoois         | -                               | -                               | -                                      |  |
| cetonas         | 10,72                           | 9,233                           | 7,773                                  |  |
| Éster           | -                               | -                               | -                                      |  |
| Outros          | -                               | -                               | -                                      |  |
| Total de        |                                 |                                 |                                        |  |
| Compostos       | 10,72                           | 9,23                            | 7,77                                   |  |
| oxigenados      |                                 |                                 |                                        |  |

Os resultados dos cromatogramas representados na Tabela 2.4 evidencia que o PLO's, obtidos no processo de Craqueamento Termocatalítico na escala piloto, apresenta em sua composição hidrocarbonetos na forma de parafinas, olefinas, naftênicos e aromáticos, assim como compostos oxigenados na forma de álcoois, éteres, cetonas, ácidos carboxílicos e ésteres.

O estudo realizado por Mancio (2015), entre os trabalhos aqui apresentados, foi o que apresentou o maior percentual de hidrocarbonetos (92.84%) e consequentemente menor de oxigenados (7.16%), quando este autor realizou o craqueamento termocatalítico do óleo de palma com 15% (peso) de Carbonato de Sódio a 450 °C e 1 atm. Na contramão disso, observa-se que o menor percentual de hidrocarbonetos (37,47%) e maior de oxigenados (62,51%) formados, foi encontrado no trabalho de Almeida (2015) quando este submeteu os resíduos sólidos de caixa de gordura ao craqueamento termocatalítico com 5% de lama vermelha como catalisador a 450°C e 1 atm. Isso demonstra a efetividade dessa planta piloto na conversão de materiais de origem vegetal (óleos e gorduras), de animal (gordura) e até de rejeitos industriais em combustíveis com propriedades e composições semelhantes aos combustíveis fosseis.

Outra informação que podemos tirar dessa tabela é que as composições dos produtos são afetadas pelo teor de catalisador. Desta forma, os autores constataram que a conversão e a quantidade de hidrocarbonetos, de maneira geral, foram favorecidas pelo

aumento do teor do catalisador, enquanto as quantidades de espécies ácidas diminuíram com o aumento do teor de catalisador.

Observa-se que a porcentagem de catalisador tem um efeito significativo na distribuição de hidrocarbonetos, oxigenados e classes químicas de hidrocarbonetos. Nos estudos realizados com carbonato de sódio, como catalisador, observou-se, de forma geral, que o aumento no percentual de Na<sub>2</sub>CO<sub>3</sub> favorece a formação de olefinas.

Lhamas (2013), verificou-se que o produto obtido com 10% de CaCO<sub>3</sub> apresentou maior quantidade em hidrocarbonetos (63,34%), ao passo que o produto mais rico em compostos oxigenados foi aquele obtido com 7,5% de CaCO<sub>3</sub> (50,53%). Outro fato relevante seria a redução significativa dos picos referentes aos ácidos graxos de cadeia longa, principalmente do ácido palmítico, observados na comparação do cromatograma do PLO com 10% de CaCO<sub>3</sub> com os cromatogramas dos experimentos obtidos com 5 e 7,5% de CaCO<sub>3</sub>. Os resultados reforçam as evidências de que a quantidade de catalisador com maior atividade para a desoxigenação dos produtos foi de 10% de CaCO<sub>3</sub>, ou seja, o craqueamento secundário foi mais eficiente neste experimento, ocorrendo uma maior decomposição das espécies ácidas, principalmente os ácidos carboxílicos, formados na primeira etapa do craqueamento, o qual é feito via reações de descarboxilação e descarbonização

Em Santos (2015), dentre os compostos oxigenados obtidos, pode-se observar que o maior percentual foi para as Cetonas (5,34%), além disso, não foram obtidos ácidos carboxílicos, confirmado pelo baixo valor do índice de acidez e pela ausência das bandas características da carbonila dos ácidos. Em se tratando da influência da porcentagem de catalisador na formação dos compostos oxigenados, houve um aumento considerável relacionado ao teor de catalisador, ou seja, a diminuição no percentual de catalisador confirma que a quantidade de catalisador empregado está diretamente relacionada com a desoxigenação dos produtos formados durante a etapa de craqueamento primário.

Pereira (2017) destacou em seu estudo que uso do catalisador em concentrações mais altas (10% de Na<sub>2</sub>CO<sub>3</sub>) e a saponificação da matéria-prima favorecem positivamente na desoxigenação dos produtos craqueados.

Mancio (2015) verificou que o PLO é formado por hidrocarbonetos e oxigenados. Os principais grupos de hidrocarbonetos encontrados foram identificados em 03 (três) classes químicas distintas: parafina normal, olefinas e naftênicos. Os oxigenados são compostos por ácidos carboxílicos, álcoois, cetonas e ésteres, indicando a presença de óleo de palma não reagido no PLO. No craqueamento térmico catalítico de óleo de palma bruto a 450°C e 1 atm, utilizando 5, 10, 15 e 20% (p / p) de Carbonato de Sódio como catalisador, pode-se observar a presença de classes químicas de compostos semelhantes, embora com ligeiras diferenças de concentração. Os maiores níveis de concentração de ácidos graxos e ésteres (nenhum óleo de palma reagido) foram observados na experiência do craqueamento térmico catalítico usando 5% (p / p) de Carbonato de Sódio, mostrando a presença de ácido hexadecanóico, seguido por ido hexadecanico, metilpalmitato, metiloleato e metilestearato. De acordo com a Tabela, não foram detectadas as presenças de hidrocarbonetos aromáticos nos Produtos Líquidos Orgânicos.

Outro dado importante obtido em Mancio (2015) está relacionado ao efeito do teor de catalisador na distribuição de hidrocarbonetos e oxigenados no PLO. A quantidade de hidrocarbonetos aumenta com o aumento do teor de Carbonato de Sódio, enquanto a quantidade de oxigenados diminui, mantendo-se praticamente constante para 10, 15 e 20% (p/p) de Carbonato de Sódio. As frações de hidrocarbonetos nos Produtos Líquidos Orgânicos aumentam de 61,01 para 92,84 (p/p), enquanto o teor de oxigenados reduziu de 38,99 para 7,16% (p/p), com o aumento do teor de Carbonato de Sódio. Isso pode ser explicado de acordo com Dandik & Aksoy (1998), que afirmaram que os ácidos graxos produzidos pelo craqueamento de triglicerídeos reagem provavelmente primeiro com Na<sub>2</sub>CO<sub>3</sub> para formar sais de sódio, sendo decompostos para formar frações de hidrocarbonetos.

Destaca-se ainda em Mancio (2015), que houve uma mudança significativa na distribuição das classes químicas de hidrocarbonetos presentes no PLO. A produção de parafinas normais foi evidenciada para a experiência utilizando Carbonato de Sódio a 10% (p/p), enquanto a produção de olefinas foi otimizada nas experiencias utilizando 15 e 20% (p/p) de Carbonato de Sódio. Além disso, foi observado para todos os experimentos, exceto o que utilizou 10% (p/p) de Carbonato de Sódio, que o teor de olefina excedeu os parafínicos e naftênicos normais, ou seja, o Carbonato de Sódio favoreceu a formação de olefinas. Segundo Chen *et al.* (2010), as olefinas têm um efeito adverso na estabilidade à oxidação do PLO e, portanto, as grandes quantidades de olefinas no PLO produzidas por craqueamento térmico catalítico de óleo de palma a 450 ° C e 1 atm usando Carbonato de Sódio Cobservou-se, ainda, que a concentração de ácidos carboxílicos em Produtos Líquidos Orgânicos diminui quase exponencialmente com o aumento do teor de Carbonato de Sódio.

A caracterização físico química e composicional (Infravermelho e CG-MS), durante o processo de craqueamento termocatalítico, também foi analisada.

Em Santos (2013) foram coletadas amostras na saída do vaso V-02, em intervalos regulares de 10 minutos, totalizando um total de oito amostras, a partir da temperatura inicial de craqueamento do produto condensado. Nas amostras iniciais predominava a fase com coloração amarelo claro e amarelo escuro, nas intermediarias as marrons e nas finais as pretas. Nestes testes em escala piloto, inferiu-se que os intervalos de tempos finais (a partir de 50 minutos de craqueamento) do craqueamento propicia a formação de um combustível com baixo teor de acidez, indicando que a ação do catalisador foi mais efetiva, quanto à desoxigenação dos ácidos graxos, nos instantes finais. As propriedades físico químicas dos produtos formados variaram durante todo o processo, mas entraram em conformidade a norma especificada para o diesel nos períodos finais do processo.

Ainda em Santos (2013), os infravermelhos das amostras da evolução do processo com o tempo de reação do craqueamento termocatalítico com 10% de Na<sub>2</sub>CO<sub>3</sub> estão apresentados na Figura 2.27.

Nos espectros de infravermelho de 20 minutos, 30 minutos e 40 minutos da dinâmica de processo, ocorre um alargamento na faixa de 2400 cm<sup>-1</sup> a 3400 cm<sup>-1</sup> e presença da banda de estiramento característica de ácidos carboxílicos em 1710 cm<sup>-1</sup>, ratificando a alta acidez dessas amostras. A partir de 50 minutos observa-se que o estreitamento na faixa de 2400 cm<sup>-1</sup> a 3400 cm<sup>-1</sup>, junto com a redução da intensidade de transmitância da banda característica de ácidos carboxílicos em 1710 cm<sup>-1</sup>. Assim, observa-se a redução gradativa dos ácidos graxos. Pode-se inferir, também, que a banda próxima a 3426 cm<sup>-1</sup> está associada ao estiramento 1710 cm<sup>-1</sup> que indicam a presença de ácido carboxílico. As demais bandas dos espectros estavam presentes em todas as amostras. Vibração na região de 3.404 a 3.445 cm<sup>-1</sup> que é atribuída ao estiramento (Deformação axial) do grupo hidroxila (OH), e no intervalo de 2852 a 2946 cm<sup>-1</sup>, referente ao estiramento C–H de CH<sub>3</sub> e CH<sub>2</sub>, sobrepostos à larga banda de estiramento O–H (ALBUQUERQUE et al., 2005; )


Figura 2.27- Infravermelhos das amostras da evolução do processo com o tempo de reação. Fonte: Santos (2013)

Os espectros do óleo analisado apresentam bandas de estiramentos típicos de óleos vegetais, com destaque para a banda em 1743 cm<sup>-1</sup> característica das carbonilas dos ésteres de triglicerídeos. Essa banda desapareceu em todas amostras da evolução do processo, indicando a efetiva transformação do óleo de fritura em um biocombustível semelhante ao diesel de petróleo.

Abreu (2013) e Santos (2015) estudaram a evolução do processo tendo a borra de neutralização do óleo de palma como matéria prima à 440°C, utilizando de Na<sub>2</sub>CO<sub>3</sub> como catalisador. Nestes estudos fez-se a coleta das amostras e intervalos de 10 minutos, totalizando 10 amostras. Pela análise da dinâmica do processo notou-se que os parâmetros viscosidade, densidade, ponto de fulgor e índice de saponificação diminuem com o tempo e aumento da temperatura, formando hidrocarbonetos mais leves. À medida que o tempo e a temperatura de reação avançam foi possível observar uma efetiva transformação da matéria prima com o tempo, evidenciada pelo aumento na taxa das reações do craqueamento (aumento da massa de PLO com o tempo), assim como na redução do índice de acidez. A água gerada tende a diminuir com o tempo e temperatura, levando em conta que a maior parte seria de água residual contida na borra retirada nos primeiros 30 minutos de reação.

Pereira (2017) fez o estudo do comportamento reacional do craqueamento térmico catalítico do sebo bovino. As amostras foram coletadas em intervalos de 10 minutos, perfazendo um total de 10 amostras, sendo a primeira amostra coletada com 30 minutos de reação. Essas amostras foram analisadas, em especial, quanto a composição por cromatografia gasosa. Foram realizados três experimentos. O experimento 1 (450 °C e 10 % de Na<sub>2</sub>CO<sub>3</sub>), o experimento 2 (450 °C e 5 % de Na<sub>2</sub>CO<sub>3</sub>) e o experimento 3 (sabão de sebo bovino, 450 °C com 5 % de Na<sub>2</sub>CO<sub>3</sub>). Em relação as amostras coletadas ao longo do tempo dos experimentos 1 e 2, que utilizaram o sebo bovino bruto, é possível verificar um aumento no índice de acidez e formação de oxigenados até em 60/70 minutos indicando a ocorrência do craqueamento primário e em seguida, até o final da reação, um decréscimo nestes valores evidenciando a desoxigenação dos compostos, ou seja, o craqueamento secundário. Este comportamento já não foi observado no experimento 3, que utilizou o sabão de sebo bovino, e sim uma oscilação na produção destes compostos.

Geralmente os PLO's obtidos em escala piloto, também são submetidos a destilações em escala de laboratório, ver tabela 2.5. As destilações foram realizados com o intuito de obter frações correspondentes a faixa de gasolina (40°C-175°C), querosene (175°C-235°C), diesel leve (235°C-305°C) e diesel pesado (305°C-400°C), de acordo com as faixas de temperatura descrita na literatura (THOMAS et al., 2004; SZKLO e ULLER, 2008)

De maneira geral, pode-se inferir que as frações dos biocombustíveis geradas por destilação fracionada em escala de bancada são significamente influenciados, tanto quantitativamente quanto qualitativamente, pela matéria prima utilizada. O aumento no percentual de catalisador provoca redução dos índices de acidez das frações. O aumento da temperatura de craqueamento proporciona a diminuição dos rendimentos e índices de acides das frações nas faixas do querosene, diesel leve e diesel pesado.

| Estudo  | Matéria Prima                | Catalizador                     | Temperatura<br>do<br>Craqueamento<br>(°C) | Catalisador<br>(%) | Gasolina<br>(40-175°C)<br>Rend. (%) / IA<br>(mgKOH/g) | Querosene<br>(175-235°C)<br>Rend. (%) / IA<br>(mgKOH/g) | Diesel leve<br>(175-235°C )<br>Rend. (%) / IA<br>(mgKOH/g) | Diesel Pesado<br>(175-235°C)<br>Rend. (%) / IA<br>(mgKOH/g) |
|---------|------------------------------|---------------------------------|-------------------------------------------|--------------------|-------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|
| Santos  | Óleo de Fritura              | Na <sub>2</sub> CO <sub>3</sub> | 440                                       | 10                 | 1,12 / 7,77                                           | 8,36 / 27,09                                            | 19,16 / 15,66                                              | 41,18 / 9,85                                                |
| (2013)  |                              |                                 | 440                                       | 5                  | 1,55 / 30,50                                          | 4,65 / 9,08                                             | 13,53 / 18,04                                              | 52,73 / 57,12                                               |
| Lhamas  | Óleo de Palma                | CaCO <sub>3</sub>               | 430                                       | 10                 | 1,47 / 13,68                                          | 5,31 / 33,10                                            | 15,28 / 25,34                                              | 26,06 / 26,13                                               |
| (2013)  |                              |                                 | 440                                       | 10                 | 0,32 / 18,81                                          | 2,23 / 18,95                                            | 15,3 / 22,95                                               | 16,88 / 25,33                                               |
| Corrêa  | Resíduos de caixa de gordura | Na <sub>2</sub> CO <sub>3</sub> | 450                                       | 10                 | -                                                     | 14,9/5,43                                               | 32,01 / 6,79                                               | 19,35 / 7,27                                                |
| (2015)  | U                            |                                 |                                           |                    |                                                       |                                                         |                                                            |                                                             |
| Almeida | Resíduos                     | Lama                            |                                           | 5                  | -                                                     | -                                                       | 6,39 / 126,24                                              | 41,33 / 94,18                                               |
| (2015)  | Sólidos de Caixa             | Vermelha                        | 450                                       | 10                 | -                                                     | -                                                       | 1,93 / 70,20                                               | 36,29 / 101,55                                              |
| (2015)  | de Gordura                   | Calcinada<br>1000°C             |                                           | 15                 | -                                                     | -                                                       | 4,8 / 77,00                                                | 40,20/ 136,08                                               |
|         |                              |                                 |                                           | 5                  | -                                                     | 1,93/ -                                                 | 16,47 / 0,35                                               | 33,95 / 45,54                                               |
| Mancio  | Óleo de Palma                | Na <sub>2</sub> CO <sub>3</sub> |                                           | 10                 | -                                                     | 7,05 / 7,88                                             | 16,39 / 1,15                                               | 45,82 / 35,79                                               |
| (2015)  |                              |                                 | 450                                       | 15                 | -                                                     | 11,04 / 1,28                                            | 20,57 / 0,29                                               | 64,71 / 33,26                                               |
|         |                              |                                 |                                           | 20                 | -                                                     | 13,82 / 0,79                                            | 30,51 / 0,70                                               | 80,70 / 5,14                                                |

Tabela 2.5 - Destilações dos produtos líquidos orgânicos.

Em Santos (2013) Observou-se que o maior percentual de hidrocarbonetos formados no processo de craqueamento termocatalítico de óleo de fritura com 10% de Na<sub>2</sub>CO<sub>3</sub>, encontra-se na fase diesel (19,16% diesel leve e 41,18% diesel pesado). Justificado pela matéria prima ser majoritariamente constituída de óleo de soja, onde se destaca o ácido graxo linoleico (18:2). O teste com %5 de Na<sub>2</sub>CO<sub>3</sub> apresentou um rendimento de diesel pesado maior que aquele realizado com 10 % de catalisador, demonstrando que a quantidade de catalisador influencia quantitativamente no produto. Nota-se, para o parâmetro índice de acidez, que a fração do diesel pesado apresenta um aumento significativo em relação à fração de gasolina, isto pode estar relacionado à presença de ácidos graxos de cadeia longa nessa fração (Palmítico, Esteárico, Oléico e Linoléico).

Lhamas (2013) observou que as faixas correspondentes à gasolina e querosene apresentaram os menores rendimentos, enquanto as faixas correspondentes ao diesel leve e pesado apresentaram maiores rendimentos. Também foi verificado que ao analisar os parâmetros de índice de acidez, verifica-se que a frações correspondente à gasolina e querosene apresentam valores baixos ao comparado com as outras faixas de destilação, o qual pode ser justificado pela presença de ácidos graxos livres em menores quantidades nessas frações ou o processo de destilação em temperaturas mais elevadas ocasionou o arraste em maiores quantidades dos ácidos graxos livres presentes no PLO, fato observado no resíduo obtido da destilação

Em Corrêa (2015) destacou-se a não presença da fração correspondente a gasolina, resultando somente as frações nas faixas do querosene (175°C-235°C), diesel leve (235°C-305°C) e diesel pesado (305°C-400°C). O processo de destilação do PLO de 10% de Na2CO3 apresentou maior rendimento para produção de frações nas faixas de temperatura do diesel verde leve e diesel verde pesado, sendo aproximadamente 32% e 19%, respectivamente.

Almeida (2015) verificou que não houve obtenção de biocombustíveis nas faixas da biogasolina e querosene verde. Obteve-se nos três experimentos, frações do diesel leve verde e diesel pesado verde. Os melhores rendimentos foram obtidos na faixa de diesel pesado, sendo que a variação dos rendimentos, para os três experimentos, foi pequena em relação aos diferentes percentuais de catalisador utilizado no processo. No que tange ao índice de acidez, obteve-se valores altos para todas as frações de diesel pesado em comparação com os produtos líquidos orgânicos correspondentes.

Mancio (2015) concluiu que os maiores rendimentos das frações destiladas nas faixas de temperatura de destilação da gasolina (40-175°C), querosene (175-235°C), diesel leve (235-305°C) e diesel pesado (305-400°C) são alcançados a partir do fracionamento de PLO's obtidos por craqueamento térmico catalítico de óleo de palma empregando 15 e 20% de catalisador. Além disso, não se obteve fração de gasolina na faixa de temperatura de destilação de 40 a 175°C. Também foi possível concluir que o fracionamento do PLO promoveu uma redução nos valores de índice de acidez para todas as frações quando comparados com o índice de acidez dos PLO's.

#### 2.6 CRAQUEAMENTO TERMOCATALÍTICO

A presença de catalisadores na reação de craqueamento pode favorecer determinadas rotas, resultando na otimização do tempo da reação química e induzindo a formação de maiores alíquotas dos produtos mais desejados, pela formação de novos intermediários e pela seletividade química inerente a cada tipo de catalisador (IDEM *et al.*, 1996).

Quando se faz o craqueamento termocatalitico de óleos e gorduras, o principal objetivo do uso de catalisadores é reduzir o percentual de ácidos carboxilicos formados durante o craqueamento primário, visando obter um biocombustível com baixo valor para a acidez.

No caso do craqueamento termocatalítico de pneus inservíveis, o uso de catalisador, relatados em diversos trabalhos na literatura, se emprega, entre outros motivos, na redução do teor de enxofre no produto líquido.

D.Y.C Leung *et al* (2002) realizaram a pirolise do pneu utilizando dolomita calcinada (CaCO<sub>3</sub>-MgCO<sub>3</sub>) e calcário (CaCO<sub>3</sub>) para explorar o seu efeito na distribuição do produto pirolisado e composição do produto gasoso. Descobriu-se que ambos afetam a distribuição do produto e que o H<sub>2</sub>S pode ser absorvido efetivamente usando qualquer um deles. Cerca de 57% de enxofre é retido no carvão e 6% na fase gasosa.

# 2.7 CATALISADORES

Catalisador é uma substância que afeta a velocidade de uma reação, porem sai inalterado do processo (FOGLER, 2009). O catalisador geralmente muda uma velocidade de reação por meio de uma diferente rota molecular ("mecanismo") para a reação. O

desenvolvimento e o uso de catalisadores consistem na busca constante por novas maneiras de aumentar o rendimento no produto desejado. O uso de um catalisador proporciona um caminho de reação que tem energia de ativação mais baixa do que o da reação não catalisada (ATKINS, 2006).

Catalisador pode tanto acelerar como retardar a formação de um produto particular, no entanto o catalisador não altera a composição final do equilíbrio termodinâmico do sistema, e somente modifica a velocidade com que o sistema se aproxima deste equilíbrio (ATKINS, 2006).

No caso de catalisadores sólidos heterogêneos, onde a reação catalítica ocorre na interface sólido-fluido, uma grande área interfacial é quase sempre essencial para atingir significativa atividade. Em muitos catalisadores essa área é provida por uma estrutura porosa interna. Um catalisador que tem uma grande área resultante dos poros é dito ser um catalisador poroso. Algumas vezes, os poros são tão pequenos que admitem apenas pequenas moléculas, impedindo a entrada de moléculas maiores.

Segundo Ciola (1981) Um catalisador heterogêneo deve ser ativo, seletivo, estável em relação às condições térmicas do processo e à natureza do substrato, suficientemente resistente ao atrito, pouco friável, possuir uma atividade catalítica, e por qualquer fenômeno, perdê-la, caso seja possivel, economicamente, recuperá-lo através de um processo reacional simples de regeneração.

# 2.8 LAMA VERMELHA

A Lama Vermelha (LV), resíduo oriundo do processo Bayer na produção de alumina, é um resíduo insolúvel gerado após a digestão de bauxita com hidróxido de sódio à temperatura e pressão elevadas. Apresenta na sua composição fases cristalinas e amorfas constituídas principalmente de Fe<sub>2</sub>O<sub>3</sub>, Al<sub>2</sub>O<sub>3</sub>, SiO<sub>2</sub> e TiO<sub>2</sub> em concentrações variáveis que dependem da natureza da bauxita de partida (PARANGURU *et al.*, 1999). Os óxidos de V, Ga, P, Mn, Mg, Zn, Zr, Th, Cr, Nb, etc., estão presentes em concentrações diminutas.

A LV possui ampla distribuição granulométrica, cujos valores típicos respondem por 90% do volume abaixo de 75  $\mu$ m, variando a área superficial específica (BET) entre  $10 - 32 \text{ m}^2/\text{g}$  (tabela 2.6) e tem como principal característica uma alcalinidade elevada, pH na faixa de 10,0 a 13,0 (PRADHAN *et al.*, 1998; HIND *et al.*, 1999). A área superficial específica (BET) da lama vermelha é de cerca de 10-25 m<sup>2</sup>/g.

|           | Área específica (BET)<br>m²/g | Ref.                          |
|-----------|-------------------------------|-------------------------------|
| LV        | 31,25                         | M.L.P Antunes et<br>al (2011) |
| LV400     | 39,06                         | M.L.P Antunes et<br>al (2011) |
| LV        | 29,70                         | Mancio (2015)                 |
| LV400     | 35,24                         | Mancio (2015)                 |
| LV 1M HCl | 45,97                         | Mancio (2015)                 |
| LV 2M HCl | 43,17                         | Mancio (2015)                 |

Tabela 2.6 - Área superficial da lama vermelha in natura e ativada.

Devido possuir alto potencial de adsorção, ela pode ser usada na área de remediação ambiental como amenizante para solos contaminados (COSTA *et al.*, 2008), como sequestrador de CO<sub>2</sub> (SAHU *et al*, 2010), como adsorvente para a remoção de metais pesados (AHMARUZZAMAN, 2011), de corantes em efluentes líquidos (SILVA FILHO & ALVES, 2008), na adsorção de derivados de petróleo (benzeno, tolueno e xileno) (SOUZA, 2013), na desacificação de produto líquido orgânico oriundo do processo de craqueamento termocatalítico de óleos vegetais (MANCIO, 2015), além de ser empregado como catalisador, em diferentes sistemas reacionais (BALAKRISHNAN et al., 2009; KARIMI et al., 2012).

A lama vermelha in natura, apresenta baixa área superficial, e por isso baixo desempenho como adsorvedor. Entretanto quando ativado (térmico, químico ou químico/térmico) sua área superficial cresce de maneira considerável, tornando-se um adsorvedor de baixo custo, quando comparada com outros adsorvedores como: a sílicagel, o carvão ativado e as peneiras moleculares (SILVA FILHO *et al*, 2007). A ativação da LV pode ser feita através de tratamento térmico por calcinação, aumentando de 3 a 4 vezes sua área superficial. A lama vermelha também pode ser ativada por tratamento químico ou químico e térmico (ANTUNES *et al.*, 2012). Prado *et al.* (2012) relatam que a ativação química com ácidos, de forma geral, propicia o aumento da área específica do sólido, devido à desorganização da estrutura, bem como à eliminação de diversas impurezas minerais e criação de sítios vazios.

#### 2.9 CAULIM E ZEÓLITA

Caulim é um minério constituído principalmente pelo argilomineral caulinita (ou outro mineral pertencente ao grupo da caulinita), além de outros minerais acessórios como o quartzo, mica, feldspato, óxidos de Fe, Ti, Al. A caulinita é o mineral de argila mais importante e comum do grupo da caulinita, que é composto também pela halloysita, dickita e nacrita (SANTOS 1989; MURRAY e KELLER, 1993 e BARATA, 1998).

O processo de beneficiamento de caulim gera uma quantidade significativa de rejeito, muitas vezes exposto de forma inadequada ao meio ambiente. O rejeito do beneficiamento de Caulim, mesmo não sendo um produto tóxico, é objeto de discussões ambientais devido ao grande volume gerado, devendo ser dada uma destinação final adequada a esse tipo de resíduo (RODRIGUES, 2013).

Um dos rejeitos do beneficiamento do caulim é formado por uma suspensão aquosa volumosa, constituída essencialmente de caulinita, que tem em sua estrutura Si e Al, proveniente em grande parte das centrífugas, o qual corresponde a aproximadamente 26% em relação ao caulim processado (SANTANA et al., 2012). Esse rejeito mineral possui granulometria e alvura inadequadas para utilização em cobertura de papel, podendo assim, ser utilizado como fonte alternativa e de baixo custo de matéria prima para a produção de zeólitas (SANTANA et al., 2012; CORREA,2006).

De acordo com Coriolano *et al* (2015) zeólita são aluminossilicatos hidratados de metais alcalinos ou alcalinos terrosos (principalmente sódio, potássio, magnésio e cálcio), estruturados em redes cristalinas tridimensionais, compostas de tetraedros do tipo TO4 (T = Si, Al, B, Ge, Fe, P, Co) unidos nos vértices através de átomo de oxigênio, com propriedades de adsorção, troca iônica e catalise.

As zeólitas possuem propriedades catalíticas não encontradas nos catalisadores convencionais amorfos. Essas propriedades são consequência da morfologia, da superfície ativa, do sistema interno de passagens e vazios, do tamanho das cavidades internas, da estabilidade térmica e a propriedade de troca catiônica (MORAES, 2010).

De acordo com environmental (1996), hazardous (2002), as principais aplicações das zeólitas como catalisador ou suporte, estão no craqueamento, hidro craqueamento, hidroisomerização, conversão de metanol em gasolina, alquilação, isomerização de aromáticos, polimerização, síntese orgânica e inorgânica (química fina).

Malvesti *et al* (2009) estudou a adsorção de compostos sulfurados (benzotiofeno dibenzotiofeno), presentes nos combustíveis fósseis, empregando zeólitas e constatou que

essas peneiras moleculares possuem grande capacidade de adsorção desses compostos à base de enxofre.

# **CAPÍTULO 3**

# **MATERIAIS E MÉTODOS**

#### **3.1 MATERIAIS**

# 3.1.1 Matéria prima

No presente trabalho foi utilizada como matéria prima o pneu inservível triturado, cedido pela empresa JM pneus que fica localizada na rodovia BR 316 km 57 em Castanhal-Pará. Os pneus inservíveis inteiros passaram pelo processo de trituração, em trituradores industriais, que transformaram o pneu inteiro em grãos de borracha de pneu. Antes dos experimentos de craqueamento, o pneu triturado foi submetido ao processo de secagem à 100°C por 3 horas.

#### **3.2 CATALISADORES**

Para os experimentos em escala de bancada, utilizou-se catalisadores obtidos comercialmente (Carbonato de Sódio, Carbonato de Cálcio e Hidróxido de Cálcio) e catalisadores produzidos a partir de resíduos industriais (Lama Vermelha 1M HCl, Lama vermelha 2M HCl e zeólita de rejeito de caulim de enchimento).

# 3.2.1 Carbonato de Sódio (Na<sub>2</sub>CO<sub>3</sub>)

O Carbonato de sódio anidro PA – ACS foi fornecido pela Dinâmica química contemporânea ltda.

#### 3.2.2 Carbonato de Cálcio (CaCO<sub>3</sub>)

O Carbonato de Cálcio PA - ACS foi fornecido pela Dinâmica química contemporânea ltda.

#### 3.2.3 Hidróxido de Cálcio (Ca(OH)<sub>2</sub>)

O Hidróxido de Cálcio PA foi fornecido pela Dinâmica química contemporânea ltda.

# 3.2.4 Lama vermelha e Rejeito de caulim de enchimento

A lama vermelha utilizada neste trabalho, foi fornecida pela indústria de refino Hydro-Alunorte localizada na região de Barcarena-PA. Enquanto o rejeito de caulim de enchimento, foi obtido junto a Imerys Rio Capim Caulim S/A – IRCC, localizada no município de Barcarena, no estado do Pará.

#### 3.3 METODOLOGIA

A metodologia realizada neste trabalho consistiu no craqueamento de pneus inservíveis em escala de bancada e piloto. Na escala menor, foram desenvolvidos quatorze experimentos com o objetivo de avaliar a influência dos parâmetros de processo como temperatura, tipo catalisador, origem do catalisador e concentração do hidróxido de sódio impregnado na matéria prima, na qualidade e quantidade do óleo de pirólise de pneu.

Na escala maior, realizou-se quatro experimentos avaliando a variação da massa da matéria prima e da temperatura de craqueamento nas características do OPP. Ainda na escala piloto, foi estudado o comportamento físico-químico, composicional e reológico do óleo de pirólise de pneu, durante o processo. Posteriormente, essas amostras foram fracionadas, via destilação fracionada, nas faixas da gasolina (40-175°C), do querosene (175-235°C), do diesel leve (235-305°C) e do diesel pesado (305-400°C), visando obter informações quantitativas e qualitativas acerca das frações do OPP, durante o processo. Esses procedimentos estão ilustrados na figura 3.1.



Figura 3.1 - Fluxograma dos procedimentos experimentais.

#### 3.3.1 Impregnação química do NaOH no pneu

Nos experimentos 12, 13 e 14 na escala de bancada, a matéria prima utilizada foi modificada. Para esses experimentos se fez a impregnação química do hidróxido de sódio, em diferentes concentrações, no pneu.

O processo de impregnação consistiu no contato direto de 56g de pneu seco com 112 g de uma solução de NaOH (0,5M; 1,0M e 2,0M) sob agitação constante, durante 2 horas, na temperatura ambiente. Após isso, o pneu impregnado passou pelo processo de secagem a 100°C, em uma estufa, por 3 horas.

# 3.3.2 Lama Vermelha 1M HCl (LV 1M) e Lama Vermelha 2M HCl (LV 2M)

A metodologia utilizada para síntese dos catalisadores a base de lama vermelha seguiu a utilizada por Gomes *et al* (2018). Inicialmente a lama vermelha foi seca à 100°C durante 24 horas. Ao final desta etapa foi verificado um valor de pH, em um pHmetro de bancada (RBR modelo 0162), de 12,80.

A lama vermelha desidratada foi submetida a uma etapa de cominuição em um moinho de bolas durante 30 minutos. Logo em seguida, foi realizado a ativação química.

A ativação química da lama vermelha foi realizada com uma solução de ácido clorídrico (HCl), nas concentrações 1 molar e 2 molares, nas proporções mássicas de 2 para 3, respectivamente. Esse processo ocorreu sobre agitação constante durante 60 minutos. Em seguida o material ficava em repouso por 24 horas para posterior ativação térmica.

Passando as 24 horas o material era submetido a uma secagem à 100 °C por 24 horas, a fim de se retirar o excesso de água contida na mistura. Após isso o material era submetido a uma recominuição no moinho de bolas, e em seguida, armazenados em recipientes de polietileno com vedação para evitar contato com a umidade do ar, para posteriormente serem encaminhados para última etapa de tratamento, a calcinação.

Na calcinação, a lama vermelha tratada e cominuida era acondicionada, em porções de 100 gramas em um forno mufla elétrico à 1000°C por 2 horas. Após o término, os catalisadores prontos eram retirados, pesados em balança analítica e armazenados para posterior utilização no processo de craqueamento.

#### 3.3.3 Zeólita de rejeito de caulim de enchimento

As produções das zeólitas a partir de resíduo de caulim de enchimento foi realizada conforme metodologia desenvolvida em Rodrigues *et al* (2019). O caulim de enchimento foi transformado em metacaulim através do aquecimento em mufla à 600°C durante 2 horas. Então, 150g de metacaulim foi reagido com 350 ml de NaOH (5M) à 90°C durante 60 minutos sob agitação de 60 rpm. Após resfriamento, a Zeólita foi filtrada em papel de filtro. Logo em seguida, fez o ajuste do pH da zeólita, através de lavagens com água destiladas até pH se torne neutro. Após o término, os catalisadores prontos eram retirados, pesados em balança analítica e armazenados para posterior utilização no processo de craqueamento.

# 3.3.4 Caracterização Do Pneu Inservível

No pneu inservível foi realizado as análises de granulometria, de termogravimetria e de composição (FT-IR).

3.3.4.1 Análise Granulométrica

A caracterização granulométrica da matéria prima foi realizada na usina de materiais (USIMAT/FEQ/UFPA). Essa análise foi realizada conforme norma NBR NM 248 (ABNT,2013) em um sistema de peneiramento, utilizando as peneiras #3,5; #7; #9; #12; #14; #28; #35; e #150 durante 15 minutos a uma potência de 10.

3.3.4.2 Análise Térmica Diferencial e Gravimétrica (ATD e TG)

A análise térmica foi realizada no Laboratório de Óleos da Amazônia, localizado no Parque de Ciência e Tecnologia - UFPA, com o intuito de conhecer a estabilidade térmica e o processo de vaporização e decomposição dos constituintes das borrachas do Pneu.

As curvas termogravimétricas foram realizadas em um analisador térmico da Marca TA Instrument, Modelo SDT Q600. Inicialmente foi aferido aproximadamente 5 mg da amostra à 25°C em um cadinho de platina de 90 microlitros sem tampa, para posterior aquecimento a uma taxa de 10 °C/min até 1.000 °C, com fluxo de gás nitrogênio de 20 ml/min.

# 3.3.4.3 Espectroscopia de Infravermelho por Transformada de Fourier

A caracterização química da matéria prima foi realizada na central analítica da Universidade do Estado do Amazonas UEA.

A análise de espectroscopia no infravermelho foi realizada em um espectrofotômetro FTIR Shimadzu modelo IRAffinity-1S com acessório ATR- 8000 acoplado. O espectro foi obtido por reflexão total atenuada horizontal com prisma de ZnSe com 64 varreduras.

Inicialmente, fazia-se a análise do "branco" (varredura do infravermelho sem amostras). Logo em seguida, a amostra era adicionada em um prisma, onde incidia os raios na região do infravermelho, com uma leve pressão sobre o sólido. Então, iniciavase a varredura, na faixa de 400 a 4000 cm<sup>-1</sup>, e após as 64 varreduras o software gerava um gráfico do infravermelho da amostra, com as devidas correções do "branco".

A identificação dos compostos foi realizada com a ajuda do software LabSolutions IR, parte integrante espectrofotômetro FTIR Shimadzu modelo IRAffinity-1S.

### 3.3.5 Caracterização dos catalisadores

Os catalisadores produzidos neste trabalho (LV 1M HCl, LV 2M HCl e zeólita de caulim de enchimento) foram caracterizados em relação as análises de FTIR e MEV e EDX.

3.3.5.1 Espectroscopia de Infravermelho por Transformada de Fourier

Os infravermelhos dos catalisadores foram feitos conforme metodologia descrita no item 3.4.3.

3.3.5.2 Espectroscopia de fluorescência de raios X

A composição química da lama vermelha in natura foi obtida por espectrometria fluorescência de raios X (FRX) no programa IQ+ semiquant utilizando o espectrômetro

sequencial Axios Minerals, tubo de raios – x cerâmico ânodo de Rh de 2,4 KW, PANalytical. Na análise de FRX deste material foram feitas duas pastilhas prensadas com cerca de 3 cm de diâmetro, contendo uma mistura de 3 g de cada amostra e 0,6 g de parafina, utilizada como aglomerante. A aquisição de dados foi feita com o software IQ+, também da PANalytical, sendo o resultado normalizado para 100% (ALMEIDA,2015).

#### 3.3.5.3 Microscopia Eletrônica de Varredura (MEV)

A composição morfológica física e química dos catalisadores foi determinada por um microscópio eletrônico de varredura (Hitachi modelo TM 3000) acoplado a um espectrofotômetro de energia dispersiva de Raios X (EDX) utilizando a energia do feixe de 20 kV com corrente de 25 mA com leitura de 150 segundos, e a pressão de 10<sup>-1</sup> mbar. As amostras foram montadas sobre suportes de alumínio com 10 mm de diâmetros através de fita adesiva de carbono antes da colocação na câmara de análise para a digitalização. As imagens foram geradas a partir de elétrons secundários (SE), e registradas em alta resolução.

#### 3.3.5.4 Análise por Energia dispersiva de Raios-X (EDX)

A análise por energia dispersiva de Raios-X realizada no microscópio eletrônico de varredura baseia-se na emissão de linhas características de raios X a partir de excitação efetuada pelo feixe de elétrons que incide sobre a amostra, com energias típicas da ordem de 15 keV a 25 keV. A análise elementar pode ser feita sobre toda a região da imagem, ou sobre um ponto determinado da amostra. Neste caso, a região analisada tem diâmetros da ordem de 1  $\mu$ m a 2  $\mu$ m. É possível ainda traçar perfis do teor de um dado elemento ao longo de uma linha, obter mapas de composição, etc. (NEYVA, 2004).

Esta análise foi realizada conjuntamente com a caracterização por MEV, visto que o microscópio eletrônico de varredura se encontrava equipado com um analisador de energia dispersiva (EDX), o qual permite obter a composição elementar da liga.

# 3.3.6 Caracterização do óleo de pirolise de pneu (OPP).

#### 3.3.6.1 Caracterização físico química

As análises fisico-quimicas dos produtos pirolíticos líquidos do pneu foram relizadas no Laboratório de Processos de Separações Térmicas (THERMTEK), da Faculdade de Engenharia Química – UFPA e no Laboratório de Termodinâmica Aplicada (Labtermo) da Faculdade de Ciências Agrárias – UFAM, de acordo com os métodos padrões AOCS, ASTM, NBR mostradas na tabela 3.1.

|                           | Método                  | Observações             |
|---------------------------|-------------------------|-------------------------|
| Índice de Acidez          | AOCS Cd 3d-63 (AOCS,    | Adaptado com            |
|                           | 2004)                   | m <sub>opp</sub> =5g    |
| Viscosidade Cinemática    | EN/ISO 3105, ASTM 446 e | capilar N° 300          |
|                           | ASTM D 2515             |                         |
| Massa Específica          | AOCS Cc 10c-95 (AOCS,   | $T_{opp} = 20^{\circ}C$ |
|                           | 2004)                   |                         |
| Corrosividade à Lâmina de | NBR 14359               | -                       |
| Cobre                     |                         |                         |

Tabela 3.1 – Métodos Físicos químicos aplicados aos OPP's.

#### 3.3.6.2 Caracterização Composicional

#### 3.3.6.2.1 Espectroscopia de infravermelho por transformada de Fourier

Os infravermelhos dos OPP's foram feitos conforme metodologia descrita no item 3.3.4.3, Porém, como essas amostras se encontravam no estado líquido, fez-se necessário a utilização de um acessório junto ao prisma, com o objetivo de concentrar a amostra no feixe de infravermelho, evitando o espalhamento da amostra.

#### 3.3.6.2.2 Cromatografia

As análises cromatográficas foram realizadas na Central Analítica da Universidade do Estado do Amazonas (UEA) e o sistema de cromatografia foi utilizado para a separação e identificação dos componentes presentes nos óleos de pirolise de pneu (OPP) tanto dos experimentos de bancada quanto os de escala piloto.

A separação e a identificação dos componentes presentes foram realizadas no equipamento Agilent Technologies – Modelo CG-7890B acoplado a Espectrômetro de Massas modelo MS-5977A, coluna capilar de sílica fundida SLBTM-5ms (30m x 0,25mm x 0,25mm).

As condições utilizadas no CG-MS foram: temperatura do injetor: 250 °C; split: 1:50 temperatura do detector: fonte: 230 °C e quadrupolo: 150 °C; volume de injeção: 1,0 uL; forno: 30 °C/1 min. – 5,0 °C.min<sup>-1</sup> – 280 °C/13 min para as amostras do OPP's de bancada e evolução em escala piloto. Para as frações dos OPP's o forno foi programado com 70 °C/1 min. – 10,0 °C.min<sup>-1</sup> – 280 °C/39 min.

Este método de análise consiste na volatilização da amostra e no seu transporte por meio de um gás de arraste através de uma coluna cromatográfica onde acontece a separação. Para cada pico analisado foi registrada a sua intensidade, tempo de retenção e a identificação do composto de acordo com a biblioteca de espectros de massas da National Institute of Standards and Technology (NIST Standard Reference Database 1A v14) que faz parte do software usado. A identificação é feita baseando-se na similaridade do espectro de massas do pico obtido com os espectros que fazem parte do banco de dados da biblioteca inclusa no software. Os teores de todos os compostos presentes nas amostras (hidrocarbonetos, compostos com oxigênio, enxofre, nitrogênio, etc) foram separados e estimada a composição química de cada experimento, em percentual de área do cromatograma.

# 3.3.6.3 Análise reológica

As amostras dos combustíveis obtidos através do experimento 04, do ponto 1 (OPP 45 min) ao ponto 08 (OPP 115 min), foram separadas em diferentes frascos e identificadas conforme a sequência de obtenção no experimento a seguir.

Para a determinação da viscosidade dinâmica utilizou-se um Viscosímetro rotacional (HAAKE Viscotester modelo VT 550). O equipamento possui diferentes modelos de spindles, que possuem variação geométrica conforme a viscosidade de cada fluido. Para essa pesquisa foi utilizado a configuração cilindros coaxiais copo SV e cilindros SV<sub>1</sub>. As amostras inicialmente foram inseridas em um banho termostático com precisão de  $\pm 0.1^{\circ}C$  acoplado ao viscosímetro, na qual foi programada uma temperatura constante de 28°C.

Na análise, variou-se a taxa de cisalhamento entre 0 a 600s<sup>-1</sup> num tempo de 180 s, a análise e os resultados foram programados e obtidos respectivamente utilizando o software computacional do equipamento (Thermo Scientific<sup>™</sup> HAAKE<sup>™</sup> RheoWin<sup>™</sup> Measuring and Evaluation Software). A dependência da taxa de cisalhamento dos Óleos de pirólise de pneu (OPP), do ponto 01 ao 08, foi investigada usando modelos reológicos de Herschel-Bulkley, Bingham e Ostwald de-Waele (Equações 3.1 a - 3.3), respectivamente.

$$\tau = \tau_0 + K\gamma^n \qquad (equação 3.1)$$

$$\tau = \tau_0 + \eta_p \gamma \qquad (equação 3.2)$$

$$\tau = K\gamma^n \tag{equação 3.3}$$

Onde:  $\tau$  é a tensão de cisalhamento (Pa);  $\tau_0$  é a tensão de cisalhamento residual (Pa);  $\gamma$  é a taxa de deformação (s<sup>-1</sup>); K é o índice de consistência (Pa.s<sup>n</sup>); *n* é o índice de comportamento (adimensional) e  $\eta_p$  é a viscosidade plástica;

# 3.4 PROCESSO DE CRAQUEAMENTO NA UNIDADE DE BANCADA

Os experimentos de Craqueamento na Unidade de Bancada foram realizados no Laboratório de Separações térmicas (THEMITEK) na faculdade de Engenharia Química da Universidade Federal do Pará.

#### **3.4.1 Aparato experimental**

Os testes em escala de bancada foram realizados em reator de vidro boro-silicato de geometria cilíndrica com capacidade volumétrica de 125 ml. O reator era aquecido por um forno de aquecimento com resistências cerâmicas em geometria cilíndrico. O aquecimento e a taxa de aquecimento eram controlados através um controlador e indicador de temperatura (THERMA, Modelo: TH90DP201-000) ligado a um termopar tipo K (Ecil, Modelo: QK.2) que se encontrava entre o reator e o forno. O reator foi acoplado a um condensador de vidro borosilicato conectado com o sistema de resfriamento constituído por um banho termostático com controle digital de temperatura. Os produtos condensados (OPP) foram recolhidos em um balão de vidro borosilicato de 50 ml. Os gases não condensáveis eram liberados por uma abertura (válvula) na curva acoplada entre o condensador e o balão de coleta, onde se realizava a combustão do mesmo e então, direcionados ao sistema de exaustão, figura 3.2.



Figura 3.2 - Sistema de craqueamento em bancada.

#### 3.4.2 Procedimento experimental

Os testes de craqueamento do pneu inservível, em escala de bancada, foram realizados de acordo com a Tabela 3.2. Inicialmente a matéria prima e o catalisador (para os testes termocatalíticos) utilizados para cada experimento foram pesados em uma balança (QUIMIS, Q – 500L210C), em seguida foram alocados no reator de vidro borosilicato de 100 mL. O reator, contendo o pneu triturado e o catalisador, foi inserido no forno cilíndrico com resistência cerâmica, onde o controle da temperatura foi realizado com o auxílio do termopar (sensor de temperatura) localizado na parede do reator. O aparato experimental foi montado com o acoplamento do reator no condensador. Deste modo, os produtos gasosos foram condensados a partir de um sistema acoplado à saída do reator, constituído pelo condensador acoplado a um banho termostático e controle de temperatura.

O controle de temperatura do craqueamento foi realizado por um Controlador, onde foram estabelecidos os seguintes parâmetros: A temperatura de operação (*set-point*), a taxa de aquecimento, o tempo reacional e o tempo na temperatura de operação. O tempo reacional consiste ao intervalo de tempo desde a o início do processo até o momento em que o sistema atinge a temperatura de operação. O tempo na temperatura de operação é o tempo em que o craqueador é mantido na temperatura determinada. A massa de pneu triturado utilizada para cada experimento foi de 46 g.

|             |            |                 |                                 | Temperatura  |
|-------------|------------|-----------------|---------------------------------|--------------|
| Experimento | Matéria    | Tipo de         | Catalisador                     | de           |
|             | Prima      | Craqueamento    |                                 | Craqueamento |
|             |            |                 |                                 | (°C)         |
| 1           | Pneu       | Térmico         | -                               | 400          |
| 2           | Pneu       | Térmico         | -                               | 425          |
| 3           | Pneu       | Térmico         | -                               | 450          |
| 4           | Pneu       | Térmico         | -                               | 475          |
| 5           | Pneu       | Térmico         | -                               | 500          |
| 6           | Pneu       | Termocatalítico | 10 % de                         | 500          |
|             |            |                 | CaCO <sub>3</sub>               |              |
| 7           | Pneu       | Termocatalítico | 10 % de                         | 500          |
|             |            |                 | Na <sub>2</sub> CO <sub>3</sub> |              |
| 8           | Pneu       | Termocatalítico | 10 % de                         | 500          |
|             |            |                 | Ca(OH) <sub>2</sub>             |              |
| 9           | Pneu       | Termocatalítico | 10 % de Lama                    | 500          |
|             |            |                 | vermelha -1M                    |              |
|             |            |                 | HC1                             |              |
| 10          | Pneu       | Termocatalítico | 10 % de Lama                    | 500          |
|             |            |                 | vermelha -2M                    |              |
|             |            |                 | HC1                             |              |
| 11          | Pneu       | Termocatalítico | 10 % Zeólita                    | 500          |
| 12          | Pneu       | Térmico         | -                               | 500          |
|             | Impregnado |                 |                                 |              |
|             | 0,5 M NaOH |                 |                                 |              |
| 13          | Pneu       | Térmico         | -                               | 500          |
|             | Impregnado |                 |                                 |              |
|             | 1,0 M NaOH |                 |                                 |              |
| 14          | Pneu       | Térmico         | -                               | 500          |
|             | Impregnado |                 |                                 |              |
|             | 2,0 M NaOH |                 |                                 |              |

Tabela 3.2 – Experimentos na Unidade de Escala de Bancada.

O óleo de pirólise de pneu recolhido no balão de vidro borosilicato foi pesada para a obtenção do rendimento do processo. Após a reação, o OPP foi armazenado em frascos de vidro, para posterior análises e destilações.

Na unidade em Escala de Bancada foram realizados 14 (Quatorze) experimentos, divididos em 4 (quatro) grupos. No primeiro grupo foi estudado o comportamento desse processo com relação a variação da temperatura (T=400°C, T=425°C, T=450°C, T=475 e T= 500°C). No segundo, modificou-se os catalisadores comerciais (carbonato de cálcio, carbonato de sódio e hidróxido de cálcio). O terceiro grupo foi composto por catalisadores oriundos de resíduos industriais (lama vermelha 1M HCl, lama vermelha 2M HCl e zeólita de caulim de enchimento). O último grupo foi composto por craqueamento do pneu impregnado com hidróxido de sódio em diferentes concentrações (0,5M; 1,0M e 2,0M). Assim, nos experimentos foi avaliado a influência dos parâmetros de processo como temperatura, tipo e origem do catalisador e concentração do hidróxido de sódio.

# 3.5 PROCESSO DE CRAQUEAMENTO NA UNIDADE PILOTO

Os experimentos de Craqueamento na Unidade Piloto foram realizados na Usina Piloto de Craqueamento (THERMTEK/FEQ/IME/UFPA).

#### 3.5.1 Procedimento experimental

Normalmente, usa-se essa unidade de craqueamento para processar matérias primas líquidas, como descrito no trabalho de Mancio (2015). Porém para este trabalho, como a matéria prima está no estado sólido, precisou-se realizar algumas mudanças na metodologia adotada por Lhamas(2013), Santos (2013) e Mota (2013).

Para os testes com pneu inservível, modificou-se o sistema de alimentação, decrito na seção 3.4.1. O pneu triturado foi inserido no reator (R-01) através de uma entrada no topo do reator de tanque agitado.

Após acomodação de toda a massa de pneu dentro do reator, o mesmo era fechado. Após isso, no painel de controle, era acionado o sistema de resfriamento do condensador e do "selo" de agitação. Ainda no painel de controle, ajustava-se a temperatura de processo (500°C) no controlador de temperatura e então, fazia-se a abertura manual da válvula do fluxo de gás GLP (fonte de energia térmica). Após todo esse procedimento, acionava-se o queimador, dando início ao processo de craqueamento do pneu inservível.

Com o início das quebras das cadeias poliméricas, houve a produção de vapores e estes foram submetidos ao processo de condensação realizado pelo condensador (casco e tubo), de aço inoxidável acoplado na saída superior do reator (R01). Os gases passavam por dentro dos tubos e a água de refrigeração (em contracorrente) pelo casco.

O produto líquido condensado foi coletado no vaso de coleta (V-02) de 50L. No final de cada experimento, o óleo de pirólise do pneu (OPP) foi pesado, a fim de calcular o rendimento do processo, enquanto os gases não condensáveis (H<sub>2</sub>, CH<sub>4</sub>, C<sub>n</sub>H<sub>m</sub>, etc.) gerados durante a reação foram conduzidos por uma tubulação de aço para serem

queimados na saída em uma tocha com o intuito de reduzir os impactos ambientais desse processo.

Objetivando o estudo do comportamento reacional no decorrer do processo de craqueamento foram coletadas na saída do vaso V-02 alíquotas em intervalos regulares de 10 minutos, totalizando um total de oito amostras, a partir da temperatura inicial de craqueamento do produto condensado. Após a retirada dessas alíquotas, o óleo de pirolise de pneudo pneu (OPP) restante, considerado neste trabalho como o nono ponto, foi armazenado em toneis de polietileno com capacidade de 100 L, para posterior purificação e análise. A Figura 3.3 mostra o Fluxograma da planta piloto.



Figura 3.3 - Fluxograma da Usina Piloto de Craqueamento.

O rendimento do óleo da pirólise do pneu, a partir de cada experimento realizados nas diferentes escalas (Escala de Bancada e Escala Piloto) foi calculado conforme equação 3.4. O resíduo no reator foi pesado para se obter o rendimento de coque ( equação 3.5), e nos casos de Experimentos Termocatalíticos, o catalisador foi subtraido da massa do coque. O rendimento da fase gasosa não condesável foi determinado por diferença considerando o rendimento total de 100% (equação 3.6).

$$\eta_{OPP} = \frac{M_{OPP}}{M_P} \times 100 \qquad (equação 3.4)$$

$$\eta_{\rm C} = \frac{M_{\rm coque}}{M_{\rm p}} \times 100 \qquad (equação 3.5)$$

$$\eta_{\rm G} = \left(1 - \frac{M_{\rm OPP}}{M_{\rm p}} - \frac{M_{\rm coque}}{M_{\rm p}}\right) x100 \qquad (equação 3.6)$$

Onde:

 $\eta_{OPP}$  – Rendimento do óleo da pirólise do pneu (%)  $\eta_{C}$  – Rendimento do Coque (%)  $\eta_{G}$  – Rendimento do Gás (%)  $M_{OPP}$  - Massa do Produto Pirolítico Líquido do Pneu;  $M_{p}$  - Massa inicial de pneu;  $M_{coque}$  - Massa de coque sem o catalisador.

Na unidade em Escala Piloto foram realizados 4 (quatro) experimentos térmicos, conforme mostrado na tabela 3.3, objetivando avaliar a variação da massa inicial de pneu e da Temperatura do craqueamento. Entretanto, como as maiorias dos processos industriais são contínuos e as propriedades dos OPP's no decorrer do processo são variáveis, buscou-se analisar durante o processo as características físico-químicas e composicional durante a reação de craqueamento.

| Experimentos | Temperatura de    | Massa de Pneu inicial |  |  |
|--------------|-------------------|-----------------------|--|--|
|              | Craqueamento (°C) | ( <b>kg</b> )         |  |  |
| 1            | 400               | 30                    |  |  |
| 2            | 400               | 20                    |  |  |
| 3            | 450               | 20                    |  |  |
| 4            | 500               | 20                    |  |  |

Tabela 3.3 – Experimentos na Unidade de Escala Piloto.

# 3.6 FRACIONAMENTO DO ÓLEO DE PIRÓLISE DE PNEU

As amostra coletadas no experimento 4 (T=500°C), no decorrer do processo nos tempos de 55'; 65'; 75'; 85'; 95'; 105'; 115' e após 115'), foram fracionadas, via destilação fracionada, em frações de acordo com a faixa de ebulição dos combustíveis derivados do petróleo (THOMAS et al. 2004). O sistema de destilação foi composta por: manta de aquecimento da QUIMIS modelo 0321A15, um balão de fundo redondo de duas vias (500 ml), uma coluna de fracionamento do tipo *"Vigreux"* de oito estágios, um condensador acoplado a um banho termostático (QUIMIS, modelo 0214M2), um funil de decantação de 500 ml e dois indicadores de temperatura, modelo POLI PM-1010, acoplado aos sensores de temperatura (termopar tipo k) . Esse sistema de destilação foi isolado termicamente com uma camada de lã de vidro coberta com papel alumínio, com o intuito de se evitar a perda de energia térmica entre o balão e a Coluna *"Vigreux"* e meio externo, e assim aumentar a eficiência do processo (SANTOS, 2013).

Então, o banho termostático era ligado para que o sistema de condensação operasse na temperatura de 10 °C. Em seguida eram adicionados 200g do OPP no balão. Posteriormente, ligava-se a manta aquecedora, estando à mesma ajustada para operar com 4/5 de potência máxima, com o objetivo de evitar a ebulição abrupta da amostra. Os condensados foram coletados em um funil de decantação de acordo a faixa de destilação da gasolina (40°C-175°C), querosene (175°C-235°C), diesel leve (235°C-305°C) e diesel pesado (305°C-400 °C), sendo essas temperaturas aferidas no topo da coluna "*Vigreux*". Estas frações foram então armazenadas em recipientes de vidro com tampa para posteriores análises de composição.

# **CAPÍTULO 4**

# **RESULTADOS E DISCUSSÕES**

# 4.1 CARACTERIZAÇÃO DO PNEU INSERVÍVEL.

#### 4.1.1 Análise Granulométrica do pó de borracha





Figura 4.1 - Granulometria do Pneu.

Observa-se que o pneu triturado apresenta 96,13% das suas partículas com diâmetro inferior à 2,83mm, 90% das suas partículas com diâmetro inferior à 1,90, 50% das suas partículas (tamanho médio de partícula) com diâmetro inferior à 1,44 mm e 10% das suas partículas com diâmetro inferior à 0,55 mm. Choi *et al* (2014) realizou o craqueamento de pneus com granulometria variando entre 2 e 3 mm, valores estes semelhantes aos usados nessa pesquisa. Raj *et al* (2013) estudou a influência dos

tamanhos das partículas do pneu (0,30; 0,48;0,71; 1,00 e 1,18mm) no rendimento do óleo

pirolítico produzido, e constatou que o rendimento da fração líquida desse processo é diretamente proporcional ao tamanho das partículas. Para aguado *et al* (2005) o tamanho das partículas tem um grande efeito na cinética da pirólise, que é uma consequência das limitações na taxa de aquecimento das partículas e das limitações de transferência de calor e massa dentro da partícula durante a pirólise. Portanto, para aplicações industriais de um processo contínuo, é indicado trabalhar na faixa de tamanho entre 0,8 e 4,0 mm.

Através da curva de frequência, verifica-se que o material apresenta uma distribuição bimodal, com picos máximos em 1,41 mm e 2,83mm.

#### 4.1.2 Análise Térmica Diferencial e Gravimétrica (ATD e TG)

A Figura 4.2 apresenta as curvas das análises de termogravimétrica (TGA), termogravimétrica derivada (DrTGA) e térmica diferencial (DTA) para o resíduo de pneu.



Figura 4.2 - TGA, DrTGA e DTA do resíduo de pneu.

As curvas TG e DTG mostraram sete estágios de perda de massa dentro da faixa de temperatura de 25 a 1000 °C, especificado na tabela 4.1. Nenhuma mudança de massa óbvia foi registrada antes de 200 °C, indicando o teor de umidade é insignificante na

amostra de resíduo de pneu. A degradação térmica no intervalo de temperatura de 200 a 329,95 °C está associada à decomposição ou volatilização de aditivos usados no processo de fabricação de pneus, como agentes de vulcanização, plastificantes e óleos. O Terceiro estágio de perda de massa ocorreu dentro da faixa de 329,95-394 °C, que pode ser explicada pela decomposição da borracha natural (NR), que ocorre em temperaturas mais baixas que as borrachas de estireno-butadieno (SBR) e borracha de butadieno (BR) (CHOI, 2014). O quarto estágio ocorreu no intervalo de temperatura de 394 – 471,39 °C, atribuído a degradação do SBR e/ou componentes BR em pneus (T. KAN et al., 2017). O quinto estágio de perda de massa ocorreu de 471,39 a 579,46 °C pode ser atribuído à decomposição de borracha de butadieno (BR) (SEIDELT, 2006). Nota-se nesse estágio uma leve estabilização do resíduo de pneu em relação ao comportamento térmico. O sexto estágio corresponde a perda de massa entre 579,46 Á 792,68 °C, atribuída ao craqueamento térmico de carbono fixo do negro de fumo. No último estágio, 792,68 a 1000°C, houve uma estabilidade térmica do material, relacionado aos compostos inorgânicos adicionados como aditivos durante o processamento de borracha (S. VICHAPHUND,2017; WILLIAMS, 2013).

| Estánica | т      | т       | т      | DTC                                     | DMC   | DCD         |
|----------|--------|---------|--------|-----------------------------------------|-------|-------------|
| Estagios | Li     | lf      | 1 pico | DIGpico                                 | PMC   | PCD         |
|          | (°C)   | (°C)    | (°C)   | [mg.s <sup>-1</sup> .10 <sup>-2</sup> ] | (%)   |             |
| Ι        | 25,00  | 200,00  | -      | -                                       | -     | Água        |
| II       | 200,0  | 329,95  | -      | -                                       | 8,92  | Aditivos    |
|          |        |         |        |                                         |       | Orgânicos   |
| III      | 329,95 | 394,00  | 375,00 | 3,28                                    | 34,60 | NR          |
| IV       | 394,00 | 471,39  | 450,00 | 4,21                                    | 58,13 | SBR         |
| V        | 471,39 | 579,46  | -      | -                                       | 65,79 | BR          |
| VI       | 579,46 | 792,68  | 690,00 | 1,27                                    | 93,39 | NF          |
| VII      | 792,68 | 1000,00 | -      | -                                       |       | Aditivos    |
|          |        |         |        |                                         |       | Inorgânicos |

Tabela 4.1 - Estágios de perda de massa na faixa de temperatura de 25 a 1000 °C.

\*PMC- Perda de massa cumulativa; PCD - Principal composto degradado

Na curva DrTGA, observa-se dois picos acentuados abaixo de 500°C. O primeiro desses picos aparece em 375,54°C e o segundo em 452,04°C. Segundo Osayi *et al* (2018), quando estes resultados são comparados com os valores de degradação térmica de tipos individuais de borrachas na literatura (WILLIAMS, 2013; QUEK & BALASUBRAMANIAN (2013) (NR degrada a cerca de 375 ° C, SBR a cerca de 445 °

C, e BR a cerca de 465 ° C), revela que o primeiro pico pode ser atribuído à degradação de NR e o segundo pico dominante indica a degradação de SBR e BR, um dos principais tipos de polímero na formulação de pneus de automóveis. Acima de 500° C verifica-se um pico muito largo, indicando a degradação do negro de fumo.

Xu *et al* (2018) diz que, Matematicamente, DTG é a curva diferencial da TG, que representa a taxa de perda de massa. Com a curva DTG fica mais claro observar a mudança de perda de massa do que a curva TG. Geralmente, quanto maior o valor do DTG, mais rápida será a reação. Assim, pode-se inferir que as degradações ocorridas antes de 500 °C são as principais reações de pirólise devido aos acentuados picos das curvas de DTG.

Quanto a análise das curvas da DTA, observa-se picos endotérmicos em 350,83°C e 426,76°C, que corrobora as análises de TG e DrTG, para a Volatização / degradação da NR e SBR, respectivamente. Porém, dois picos endotérmicos, encontrados em 479,81 e 498,44°C, provavelmente relacionado a degradação da borracha BR, puderam ser vistos com clareza apenas nessa análise.

O resíduo sólido, à 792,68°C, foi relativamente baixo (6,61%), o que foi relacionado aos compostos inorgânicos adicionados como aditivos durante o processamento de borracha (WILLIAMS, 2013). Enquanto o resíduo sólido na temperatura de 471,19°C foi de 41,87%.

# 4.1.3 Espectroscopia de Infravermelho por Transformada de Fourier

A análise de espectroscopia de infravermelho com transformada de Fourier (FTIR) foi aplicada para determinar quais os grupos funcionais presentes na superfície do pneu. A Figura 4.3 apresenta a análise por infravermelho do pneu inservível.



Figura 4.3 - Espectro de infravermelho do Pneu.

A composição da borracha de pneus depende entre outros fatores do fabricante e do tipo de pneu, podendo ser constituído por borracha natural e SBR, polibutadieno ou uma mistura destes (Williams et al, 1990).

Este Estudo obteve picos na região do infra vermelho semelhante aos encontrados por T. Kan *et al* (2017) que realizaram a caracterização da borracha de pneu inservível por meio de FT-IR e concluíram que a borracha analisada indicava mais características de borracha natural (2924 cm<sup>-1</sup> e 2855 cm<sup>-1</sup>) e SBR (773 cm<sup>-1</sup> e 667 cm<sup>-1</sup>).

Verifica-se, ainda na figura 5.3, picos frequentes entre 4000 cm<sup>-1</sup> a 3500 cm<sup>-1</sup> e entre 2000 cm<sup>-1</sup> a 1312 cm<sup>-1</sup>, associado a vapores d'agua, provenientes da amostra e/ou do meio. O pico em 2358 cm<sup>-1</sup> se relaciona a presença de dióxido de carbono, proveniente do meio externo à amostra.

# 4.2 CARACTERIZAÇÃO DOS CATALISADORES

# 4.2.1 Espectrometria na região do infravermelho

Na figura 4.4 está representada a análise de espectrometria na região do infravermelho dos catalisadores oriundos de rejeito industriais. Analisando o espectro da região do infravermelho da lama vermelha, tratadas com 1M e 2M de HCl, e da zeólita de rejeito de caulim é possível determinar a presença compostos como: óxidos de ferro, óxidos de silício e óxidos de alumínio. Estes materiais enquanto reação com hidróxido de

sódio formam estruturas com ligações Si-O-Al, o que pode indicar a presença de sodalita, que é uma zeólita com estrutura de faces quadradas (sem o prisma), com grande capacidade de troca catiônica devido ao Si e Al, responsável pela maior adsorção em materiais porosos.

Pode-se verificar também a presença de bandas no intervalo de 4000 cm<sup>-1</sup> a 3500 cm<sup>-1</sup> que são referentes ao estiramento de grupos O-H indicando a presença de água no material (CASTALDI *et al*,2008). A vibração na banda 1646 cm<sup>-1</sup> corresponde a presença de Fe-O e o indício dos carbonatos é confirmada pela presença da banda característica em 1384 cm<sup>-1</sup>, indicativo da ligação C-O (AGRAWAL et al,2004). Os picos localizados entre a região 800 cm<sup>-1</sup> a 600 cm<sup>-1</sup> corroboram a presença de ligações Al-O em coordenada tetraédrica (CLAYDEN *et al*,2001).

Conforme observado nos infravermelhos, a maioria dos picos estão presentes em ambos catalisadores. A única exceção se encontra no pico localizado em 984 cm<sup>-1</sup> que segundo Almeida (2015) e Castaldi *et al* (2008) é um pico característico das ligações do tipo Si-O-Al. Para o catalisador LV 1M HCl esse pico é quase imperceptível enquanto na zeólita é o que apresenta maior intensidade.



Figura 4.4 - Espectros de infravermelho dos catalisadores de resíduos industriais.

#### 4.2.2 Espectroscopia de fluorescência de raios X

Segundo Almeida (2015), o aumento da temperatura da calcinação (1000°C) não influencia de forma significativa na variação da composição dos óxidos metálicos majoritários (Fe<sub>2</sub>O<sub>3</sub>, SiO<sub>2</sub>, TiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, CaO). Conforme observado na tabela 4.2, fluorescência de raios-x da lama vermelha in natura, tem-se grande presença de óxidos característicos destes materiais como: óxido de ferro (50.65%), óxido de silício (22,49%), óxido de titânio (6,24%) e alumina (3,04%). Infere-se que esses percentuais de óxidos sejam mantidos para os catalisadores a base de lama vermelha. Fator esse desejado no processo de craqueamento do pneu, devido a adsorção dos componentes a base de enxofre do combustível formado.

Esses óxidos são provenientes do minério da bauxita, enquanto o sódio (13,60%) deve-se a adição de hidróxido de sódio durante a etapa de digestão do processo Bayer.

| Constituintes                  | Massa % |
|--------------------------------|---------|
| Fe <sub>2</sub> O <sub>3</sub> | 50,65   |
| SiO <sub>2</sub>               | 22,49   |
| Na                             | 13,60   |
| TiO <sub>2</sub>               | 6,24    |
| Al <sub>2</sub> O <sub>3</sub> | 3,04    |
| CaO                            | 2,26    |
| Zr                             | 0,62    |
| Ag                             | 0,25    |
| Cl                             | 0,24    |
| MnO                            | 0,14    |
| Со                             | 0,12    |
| S                              | 0,10    |
| K <sub>2</sub> O               | 0,09    |
| V                              | 0,09    |
| Cr                             | 0,04    |
| Nb                             | 0,03    |

Tabela 4.2 - Fluorescência de raios-x da lama vermelha in natura.

#### 4.2.3 Microscopia eletrônica de varredura (MEV)

### 4.2.3.1 Lama vermelha

A figuras 4.5, 4.6, e 4.7 mostram as microscopias eletrônicas de varredura da lama vermelha in-natura e dos catalisadores ativados.

Verifica-se, tanto na LV in-natura quanto nos catalisadores (LV 1M HCl e LV 2M HCl), que os materiais são constituídos por partículas finas com formas de aglomerados, apresentando estrutura superficial e distribuição de tamanho das partículas irregulares. Nota-se ainda, que as amostras de lama vermelha não apresentaram mudanças estruturais significativas e visíveis em sua morfologia pós-tratamento, apresentando, de forma geral, apenas um aumento dos aglomerados de micropartículas com características amorfas.



Figura 4.5 - Microscopia eletrônica de varredura da lama vermelha in natura.



**Figura 4.6** - Microscopia eletrônica de varredura do catalisador lama vermelha ativada (1M de HCl e 1000°C).



Figura 4.7 - Microscopia eletrônica de varredura do catalisador lama vermelha ativada (2M de HCl e 1000°C).

4.2.3.2 Zeólita de caulim de enchimento

de enchimento.

 SEM HY: 15.0 kV
 WD: 7.97 mm
 VEGA TESCAN

A figuras 4.8 mostra a microscopia eletrônica de varredura da zeólita de caulim

Figura 4.8 - Microscopia eletrônica de varredura do catalisador Zeólita de caulim de enchimento.

Através desta análise, pode-se constatar que o catalisador apresenta em sua morfologia, característica da zeólita A, identificada pela presença dos cristais no formato cúbico, e da hidroxisodalita, caracterizado pela presença de compostos com morfologia esférica.

# 4.2.4. Análise por energia dispersiva de raios X (EDX)

4.2.4.1 Lama vermelha

Na análise do EDX obtido do MEV, foi possível identificar, através dos mapas das superfícies selecionadas, a composição química dos catalisadores. Nas figuras 4.9, 5.10 e 5.11 estão representados os espectros da lama vermelha in-natura, do catalisador "LV 1M HCl" e do catalisador "LV 2 M HCl". As Figuras 4.9, 4.10 e 4.11 mostram que os principais elementos na lama vermelha in natura e catalisadores ("LV 1M HCl" e "LV 2M HCl") foram: O, Al, Na, Si, Ti e Fe. Cloro e cálcio também foram encontrados, provavelmente devido à ativação química do catalisador com ácido clorídrico e carbonatos presentes no minério, respectivamente.



Figura 4.9 - Análise por energia dispersiva de raios X da lama vermelha.



Figura 4.10 - Análise por energia dispersiva de raios X do catalisador lama vermelha ativada (1M de HCl).



**Figura 4.11** - Análise por energia dispersiva de raios X do catalisador lama vermelha ativada (2M de HCl).

Devido ao EDS ser uma análise elementar semiquantitativa da superfície do mineral, é possível obter valores para os elementos químicos identificados em termos de
% massa e % de massa atômica. Na tabela 4.3 está representado a composição química dos elementos, em % massa, para a lama vermelha in-natura e para os catalisadores (LV 1M HCl e LV 2M HCl).

Notou-se que conforme aumento da concentração do ácido, na ativação do catalisador, o teor de oxigênio diminuiu enquanto o de titânio e ferro aumentava. Podese, ainda, quantificar a presença de cloro nos catalisadores.

Nos três materiais, os componentes majoritários foram o oxigênio (29,903-46,672%), ferro (21,631-27,980%), Alumínio (7,341-14,332%) e sódio (4,955-8,511%), ratificando os dados obtidos na análise de fluorescência de raios-x.

| Elementos | Lama Vermelha | LV 1M HCl | LV 2M HCl |
|-----------|---------------|-----------|-----------|
| 0         | 50.23         | 45.72     | 43.76     |
| Na        | 12.27         | 9.31      | 9.29      |
| Al        | 11.50         | 12.28     | 12.53     |
| Si        | 7.66          | 8.06      | 7.42      |
| Ti        | 2.08          | 2.16      | 2.41      |
| Fe        | 15.67         | 21.11     | 22.77     |
| Cl        | 0.29          | 0.15      | 0.64      |
| Ca        | 0.21          | 1.01      | 0.86      |
| K         | 0.05          | 0.13      | 0.05      |
| V         | 0.05          | 0.07      | -         |
| S         | -             | -         | 0.09      |
| Zr        | -             | -         | 0.19      |
| Total     | 100.00        | 100.00    | 100.00    |

Tabela 4.3 - Elementos que compõem a lama vermelha e o catalisadores (LV 1M HCl e LV 2M HCl) em % massa.

# 4.2.4.2 Zeólita

A partir da análise do MEV da zeólita, foi possível identificar a presença de dois tipos de zeólita (zeólita A e hidroxisodalita). Então a análise do EDS, deste material, foi realizada tanto por pontos selecionados (pontos onde se obtinha os compostos com morfologia cúbica e esférica) quanto por mapas das superfícies selecionadas. Os resultados estão mostrados na tabela 4.4, em % massa.

Comparado as duas zeólitas, observa-se baixa variação no percentual dos elementos químicos identificados. Porém, notou-se traços de ferro apenas na hidroxisodalita.

A razão Si/Al para zeólita A, foi de 1,014, enquanto para a hidroxisodalita foi de 0,997. Para o catalisador, como um todo, foi de 0,960, o que é próximo a 1, significando que a síntese das zeólitas foi realizada com êxito, pois segundo Wang *et al* (2009) e Freitas *et al* (2011) estas zeólitas apresentam relação Si/Al entre 1, e 1,2.

Observa-se, ainda, nas análises realizadas por pontos, valores elevados para o elemento carbono (próximo a 13%), enquanto na análise realizada por superfície não se identificou tal elemento. Então, pode-se inferir que este carbono pode advir da fita dupla face que prende o material a ser analisado ao suporte.

| Elementos | Zeólita A        | Hidroxisodalita     | Zeólita de rejeito |  |
|-----------|------------------|---------------------|--------------------|--|
|           |                  |                     | de caulim          |  |
| 0         | $55,53 \pm 2,24$ | $52,71 \pm 9,73$    | 53.57              |  |
| Na        | $9,31 \pm 0,14$  | $7{,}98 \pm 0{,}41$ | 15.14              |  |
| Al        | $11,14 \pm 1,90$ | $12,82 \pm 3,45$    | 15.79              |  |
| Si        | $11,11 \pm 2,18$ | $13,21 \pm 4,04$    | 15.08              |  |
| Ti        | -                | -                   | 0.13               |  |
| Fe        | -                | 0,17*               | 0.26               |  |
| С         | $13,33 \pm 1,99$ | $13,19 \pm 2,77$    | -                  |  |
| Total     | -                | -                   | 100,00             |  |

Tabela 4.4 - Elementos que compõem a Zeólita de rejeito de caulim em % massa.

\* Identificado apenas em um ponto.

## 4.3 PROCESSO DE CRAQUEAMENTO EM ESCALA DE BANCADA

O estudo do processo de craqueamento, em escala de bancada, ocorreu por meio de quatro grupos: No primeiro grupo foi estudado o comportamento desse processo com relação a variação da temperatura (T=400°C, T=425°C, T=450°C, T=475 e T= 500°C). No segundo, modificou-se os catalisadores comerciais (carbonato de cálcio, carbonato de sódio e hidróxido de cálcio). O terceiro grupo foi composto por catalisadores oriundos de rejeitos industriais (lama vermelha 1M HCl, lama vermelha 2M HCl e zeólita). O último

grupo foi composto por craqueamento do pneu impregnado com hidróxido de sódio em diferentes concentrações (0,5M, 1,0M e 2,0M).

A Tabela 4.5 mostra os parâmetros operacionais e os resultados obtidos para os quatorze experimentos de craqueamento de pneus inservíveis. Assim, nos experimentos foi avaliado a influência dos parâmetros de processo como temperatura, tipo e origem do catalisador e concentração do hidróxido de sódio. Todos experimentos, nessa escala, foram realizados à uma mesma taxa de aquecimento (10 °C/min).

|                                   | то   | TIC  | тю    | TTD   | ODD   | C     | <u><u> </u></u> |
|-----------------------------------|------|------|-------|-------|-------|-------|-----------------|
| Parametros                        | IC   | TIC  | leic  | IIP   | OPP   | Coque | Gas             |
| processo                          | (°C) | (°C) | (min) | (min) | (%)   | (%)   | (%)             |
| Pneu (térmico)                    | 400  | 284  | 26    | 65    | 19,84 | 71,76 | 8,4             |
| Pneu (térmico)                    | 425  | 247  | 25    | 65    | 30,63 | 64,35 | 5,02            |
| Pneu (térmico)                    | 450  | -    | -     | 71    | 41,02 | 52,76 | 6,22            |
| Pneu (térmico)                    | 475  | 216  | 19    | 71    | 47,22 | 44,26 | 8,52            |
| Pneu (térmico)                    | 500  | 313  | 26    | 70    | 47,43 | 43,94 | 8,63            |
| Pneu (10 %                        | 500  | 253  | 23    | 75    | 47,3  | 45,45 | 7,25            |
| CaCO <sub>3</sub> )               |      |      |       |       |       |       |                 |
| Pneu (10 %                        | 500  | 342  | 27    | 75    | 49,99 | 41,82 | 8,19            |
| Na <sub>2</sub> CO <sub>3</sub> ) |      |      |       |       |       |       |                 |
| Pneu (10 %                        | 500  | 337  | 32    | 75    | 47,78 | 43    | 9,22            |
| Ca(OH) <sub>2</sub>               |      |      |       |       |       |       |                 |
| Pneu (10 % Lama                   |      |      |       |       |       |       |                 |
| vermelha -1M HCl)                 | 500  | 377  | 35    | 70    | 47,6  | 42,78 | 9,62            |
| Pneu (10 % Lama                   |      |      |       |       |       |       |                 |
| vermelha -2M HCl)                 | 500  | 377  | 35    | 70    | 49,77 | 42,49 | 7,74            |
| Pneu (10 %                        | 500  | 262  | 24    | 70    | 52,42 | 39    | 8,58            |
| Zeólita)                          |      |      |       |       |       |       |                 |
| Pneu Impregnado                   | 500  | 406  | 32    | 70    | 44,95 | 44,81 | 10,24           |
| 0,5 M NaOH                        |      |      |       |       |       |       |                 |
| Pneu Impregnado                   | 500  | 408  | 39    | 70    | 46,66 | 43,85 | 9,49            |
| 1,0 M NaOH                        |      |      |       |       |       |       |                 |
| Pneu Impregnado                   | 500  | 393  | 32    | 70    | 46,44 | 44,73 | 8,83            |
| 2,0 M NaOH                        |      |      |       |       |       |       |                 |

Tabela 4.5 - Parâmetros operacionais e rendimentos dos experimentos de craqueamento em Escala de Bancada utilizando Pneu Inservíveis.

TC: temperatura de craqueamento; TIC: Temperatura inicial de Craqueamento; TeIC: Tempo inicial de Craqueamento; TTP: Tempo total de processo

Verifica-se, nos craqueamentos térmicos que os rendimentos dos produtos líquidos crescem conforme a temperatura do processo aumenta. No craqueamento com

temperatura de 400°C o rendimento do OPP foi de 19,84% enquanto o realizado à 500°C foi de 47,43%. Conforme verificado nas análises termogravimétricas do pneu (seção 5.1.2), em torno de 400°C ocorre majoritariamente a degradação da borracha natural enquanto em temperaturas próximas a 500°C, além do NR, tem-se a degradação de SBR e BR que contribuem para aumentar o rendimento da fase líquida.

O resíduo sólido do processo de craqueamento obteve comportamento inverso ao líquido. Com o aumento da temperatura, o rendimento do coque diminuiu. O resíduo sólido para o processo com temperatura de 400°C foi de 71,76% enquanto o realizado à 500°C foi de 47,43%. Essa redução do coque com o aumento da temperatura também foi encontrada no trabalho de Osayi *et al* (2018) que craquearam pneu em temperaturas de 350 a 750°C.

Os gases obtiveram pouca variação no processo térmico. O menor valor foi obtido na temperatura de 425°C (5,02%) e a maior em 500°C (8,63%). Porém, observa-se um crescimento do percentual dos gases com o aumento da temperatura quando se estuda o intervalo de 425° à 500°C. Na temperatura de 400°C obtêm-se 8,4% de gases formados, valor este superior aos encontrados nas temperaturas de 425°C e 450°C. Possivelmente atribuído a gases de baixo peso molecular.

Para o craqueamento com catalisadores comerciais (CaCO<sub>3</sub>, Na<sub>2</sub>CO<sub>3</sub> e Ca(OH)<sub>2</sub>), verificou-se que eles propiciam uma elevação no rendimento do OPP quando comparado com o processo térmico na mesmo temperatura, sendo o processo com carbonato de sódio o que apresentou o maior rendimento (49,99%).

Nos processos com catalisadores de rejeitos industriais (LM 1M HCl, LM 2M HCl e zeólita de caulim de enchimento), constata-se que todos os rendimentos líquidos foram superiores ao craqueamento térmico à mesma temperatura. Destaque para o craqueamento com zeólita de caulim de enchimento que obteve o maior rendimento da fase líquida (52,42%) entre todos os 14 experimentos. Isso pode ser atribuído a estabilização do *d*-limoneno, junto com essa zeólita, em temperaturas acima de 400°C, para posterior condensação, aumentando assim o rendimento da fase líquida. Os rejeitos sólidos desses processos seguiram a seguinte ordem: Coque<sub>LV1M</sub> > Coque<sub>LV2M</sub> > Coque<sub>Zeólita</sub>, Comportamento inverso ao encontrado na fase líquida.

Quanto aos processos de craqueamento utilizando pneu impregnado com hidróxido de sódio (0,5; 1,0 e 2,0 M) obtêm-se rendimentos, da fase líquida, inferiores aos demais processos à mesma temperatura, destaque para o processo com 0,5M de NaOH que obteve o menor rendimento do OPP (44,95%), entre todos experimentos de bancada.

Além disso, notou-se, neste experimento, que a fração gasosa foi a maior (10,24%) entre todos os experimentos. Provavelmente o ataque químico na borracha do pneu inservível propiciou um enfraquecimento de algumas ligações químicas gerando mais compostos de cadeia menores (não condensáveis) após a pirólise.

Para os parâmetros tempo inicial de craqueamento (TIC) e temperatura inicial de craqueamento (TeIC), verifica-se que os menores valores foram encontrados para o processo térmico a 475°C e o maior para processo utilizando pneu impregnado 1M de NaOH à 500°C.

Constata-se que o processo com carbonato de cálcio proporciona a maior redução dos valores tanto do TIC quanto do TeIC em comparação ao craqueamento térmico à mesma temperatura, mostrando que este catalisador possui uma ação mais efetiva na quebra das cadeias carbônicas, nos períodos iniciais, entre todos catalisadores estudados. Esse comportamento, redução da energia de ativação, do processo de craqueamento com CaCO<sub>3</sub>, como catalisador, também foi identificado nos estudos de Santos (2015), onde o processo com este catalisador foi o mais efetivo em comparação aos realizados com carbonato de sódio e alumina ativada.

Por outro lado, os processos com pneu impregnado obtiveram os valores de TIC e de TeIC elevados, indicando que o tratamento químico com NaOH no pneu inservível, antes do craqueamento, aumenta a estabilidade térmica do pneu. Destaque para o processo com pneu impregnado com 1M de NaOH, que obteve os maiores valores de TIC ( 39 minutos ) e TeIC (408°C)

# 4.3.1 Índices de Acidez dos OPP's em escala de bancada

A figura 4.12 apresenta os índices de acidez dos Óleos de Pirólise de Pneu obtidos do craqueamento em Escala de Bancada.

Para o processo térmico (T=400°C, T=425°C, T=450°C, T=475°C, T=500°C), verifica-se que o índice de acidez apresenta valores relativamente baixos, quando se comparados com craqueados de óleos e gorduras. Essa diferença, possivelmente, deve estar associada à redução de ácidos carboxílicos com curtas cadeias carbônicas. Constata-se, ainda, que não houve uma variação significativa, desse parâmetro, nesses OPP's, com exceção do experimento em T=425°C, que obteve o menor valor em média (3,35 mgKOH/g).

Para os processos com catalisadores comerciais, segundo grupo, observa-se comportamentos bastantes distintos, dependendo do catalisador empregado. O craqueamento com carbonato de sódio (7,24 mgKOH/g) apresentou o maior valor para o índice de acidez e o com hidróxido de cálcio o menor (0,13 mgKOH/g) entre todos os processos estudados. No caso do processo com Na<sub>2</sub>CO<sub>3</sub>, pode-se inferir que o uso desse catalisador faz com que a acidez do OPP cresça, possivelmente pela facilitação das reações de substâncias oxigenadas, presentes no pneu, com radicais livres, gerando OPP com maior percentual de produtos oxigenados. Enquanto no craqueamento com Ca(OH)<sub>2</sub>, propicia a redução da acidez, provavelmente atribuída pela fusão por parte desse catalisador gerando uma base forte.





Os índices de acidez do processo com catalisadores oriundos de rejeitos industriais, grupo 3, também apresentaram valores superiores ao craqueamento térmico

113

na mesma temperatura. A acidez desses processos ficou classificada da seguinte maneira:  $I.A_{LV1M} > I.A_{LV2M} > I.A_{zeólita}$ .

Para o grupo 4, os valores para esse parâmetro foram inferiores a 1 mgKOH/g, demonstrando que o emprego dessa técnica (impregnação de NaOH no pneu) foi bemsucedida na redução da acidez do produto. Uma possível explicação para isso, pode ser atribuído à reação de neutralização dos cristais de NaOH, impregnado no pneu, com os com compostos ácidos gerados nesses craqueamentos.

### 4.3.2 Composição dos OPP's em escala de bancada

#### 4.3.2.1 Caracterização por Infravermelho

A Figura 4.13 apresenta os espectros de infravermelho dos OPP obtidos nos processos de craqueamento térmico em escala de bancada.

A partir desses gráficos foi possível identificar os principais grupos funcionais encontrados nos OPP's do processo térmico e verificar se o incremento da temperatura altera na presença de um grupo funcional. Esses dados são mostrados na tabela 4.6.

| Tipo de   | N° Onda   | Classe do      | T. <b>5</b> 0000 | T 47500 | T 45000 | T 4250C | T 4000C |
|-----------|-----------|----------------|------------------|---------|---------|---------|---------|
| Grupo     | (cm-1)    | Componente     | 1=500°C          | 1=4/5°C | 1=450°C | 1=425°C | 1=400°C |
| funcional |           |                |                  |         |         |         |         |
| C-H Axial | 3000-2800 | Alcanos        | Х                | Х       | Х       | Х       | х       |
| C=O       | 1710-1760 | Ácidos         | -                | -       | -       | -       | -       |
| Axial     |           | carboxílicos   |                  |         |         |         |         |
| C=C       | 1630-1590 | Acenos         | Х                | Х       | Х       | Х       | х       |
| Axial     |           |                |                  |         |         |         |         |
| C-H Axial | 1465-1350 | Alcanos        | Х                | Х       | Х       | Х       | Х       |
| C-O Axial |           | Álcool 1°, 2°, |                  |         |         |         |         |
| O-H       | 1300-950  | 3°, Fenol      | Х                | -       | Х       | Х       | -       |
| Angular   |           |                |                  |         |         |         |         |
| C-H Axial | 900-650   | Aromáticos     | X                | х       | Х       | X       | Х       |

Tabela 4.6 - Grupos funcionais encontrados nos OPP's do processo térmico.

Observa-se estiramento vibracional C-H entre 2800 e 3000 cm<sup>-1</sup> e deformação vibracional entre 1465 e 1350 cm<sup>-1</sup> indicando a presença de carbonos com hibridização do tipo sp<sup>3</sup>, característicos de alcanos. Essas bandas foram encontradas para todos 5



Figura 4.13 - Espectros de Infravermelho dos OPP Térmico.

Porém, nem todos grupos funcionais foram identificados em todos os experimentos. Os álcoois, identificado pelo estiramento axial do C-O e deformação angular O-H entre 1300-950 cm<sup>-1</sup>, foram encontrados apenas nos processos em T=425°C, T=450°C e T=500°C.

A Figura 4.14 apresenta os espectros de infravermelho dos OPP obtidos para os processos de craqueamento termocatalíticos utilizando catalisadores comerciais (2° grupo) e catalisadores oriundos de rejeitos industriais (3° grupo) em escala de bancada.



Figura 4.14 - Espectros de Infravermelho dos OPP com catalisadores.

Nestes espectros, observa-se que os picos identificados no tratamento térmico à 500°C foram também identificados nos Infravermelhos dos processos com catalisadores comerciais e com catalisadores oriundos de rejeitos industriais. Constata-se, porém, alteração na intensidade da transmitância quando se altera os catalisadores. Então, pode-se inferir que possivelmente os OPP's apresentam os mesmos compostos, mas com concentrações distintas.

A banda próxima de 2360 cm<sup>-1</sup>, refere-se à deformação axial assimétrica característica do  $CO_2$ , estiramento este presente em todos tratamentos com catalisadores.

Os espectros de infravermelho apresentados na Figura 4.15 mostra a análise composicional por Espectros de FIT-IR dos produtos líquidos, para os tratamentos com impregnação de NaOH em 0,5M; 1,0M e 2,0M.



Figura 4.15 - Espectros de Infravermelho dos OPP Impregnado com NaOH.

Os picos característicos de alcanos, alcenos e álcoois caracterizados nos espectros de FTIR do processo térmico à 500°C se repetiram para todos processos de craqueamento que utilizaram a impregnação química do pneu.

No espectro de FTIR do OPP com 2M de NaOH, houve uma importante mudança em comparação aos demais espectros. As bandas 770 cm<sup>-1</sup> e 668 cm<sup>-1</sup>, relacionadas aos aromáticos mono ou dissubstituídos, desapareceram.

## 4.3.2.2 Cromatografia dos OPP's

A figura 4.16 mostra a composição química dos OPP's obtidos dos craqueamentos térmicos (T=400°C, T=425°C, T=450°C, T=475°C, T=500°C). Os compostos foram idenficados e classificados em 3 grupos: Hidrocarbonetos aromáticos, alifáticos e heteroaromáticos (compostos que possuem outros elementos além de carbono e hidrogênio).



Figura 4.16 - Composição química dos OPP's dos craqueamentos térmicos.

Verifica-se que o percentual de hidrocarbonetos aromáticos foi semelhante ao encontrado na literatura. No trabalho Alvarez *et al* (2017) o percentual de aromáticos foi de 12,01 à 425°C e 12,76°C à 475°C.

Observa-se que houve variação desses hidrocarbonetos conforme se alterava a temperatura do processo, obtendo como 0,00% de aromáticos no processo à 400°C e 11,40% à 500°C. Em Pinho *et al* (2018), o percentual de aromáticos trambém aumentou com o aumento da temperatura, o percentual de aromáticos à 425°C foi de 5,4% e à 500°C foi de 7,8%.

Os compostos alifáticos foram os compostos com maior percentual em todas as temperaturas, obtendo o valor máximo para T =  $400^{\circ}$ C (76,79%) e mínimo para T =  $425^{\circ}$ C (51,67%). Alvarez *et al* (2017) encontrou um percentual de alifáticos à  $425^{\circ}$ C de 40,85% e à  $475^{\circ}$ C de 44,14% enquanto Pinho *et al* (2018) encontrou à  $425^{\circ}$ C um valor de 31,4% e à  $500^{\circ}$ C de 29,8%. Provavelmente, essa diferença com a literatura se dê em decorrencia do percentual de borracha natural empregado, na constituição do pneu deste estudo, ser maior do que observado na literatura.

Na temperatura de 400°C, encontra-se o mínimo valor para os hidrocarbonetos aromáticos (0,00%) e o máximo valor para compostos alifaticos (76,79%) entre todos craqueamentos térmicos. Isso ocorreu, possivelmente, pela degradação do polímero da borracha natural, gerando D-limonemo e compostos derivados dele, que ocorre em temperaturas mais baixas que as borrachas de estireno-butadieno (SBR) e borracha de butadieno (BR).

A partir de 425°C os OPP's do processo térmico obtiveram comportamento linear crescente para os compostos aromáticos e alifáticos e linear decrescente para os heteroaromáticos. Constata-se também que o percentual de heteroaromáticos decresce com o aumento de alifáticos.

A figura 4.17 mostra a composição química dos OPP's obtidos dos craqueamento do grupo 2 (com catalisadores comerciais) e do 3 (com catalisadores oriundos de rejeitos industriais). Os compostos foram idenficados e classificados em 3 grupos: Hidrocarbonetos aromáticos, alifáticos e heteroaromáticos (compostos que possuem outros elementos além de carbono e hidrogênio).

De maneira geral, pode-se inferir que o uso de catalisadores favorece a produção de compostos alifáticos, sendo o processo com zeólita o que obteve o maior aumento em relação ao processo térmico (31,90%). Quanto aos compostos aromáticos, os processos com catalisadores proporcionaram uma redução dos mesmos, sendo o processo com lama vermelha 1M HCL o que obteve a maior redução (45,89%), justificado pela ausência dos picos característicos do tolueno e xilenos, e menor área de composto com benzeno em relação ao experimento com LV 2M e zeólita. Os compostos com mais de dois elementos

químicos em sua composição obtiveram, de maneira geral, uma redução em comparação ao processo térmico, sendo o processo com lama vermelha 2M o que obteve a maior redução (52,02%).



Figura 4.17 - Composição química dos OPP's dos craqueamentos térmico catalítico.

No craqueamento do grupo 2, chama-se a atenção para o processo com  $Ca(OH)_2$ que obteve o maior percentual de aromáticos (12,63%) e alifáticos (66,39%), e consequentemente menor percentual de heteroaromáticos (20,98%).

Para o processo do grupo 3 destaca-se o craqueamento com lama vermelha 2M e com zeólita, pois ambos processos se assemelham quanto a composição, obtendo valores máximos para os alifáticos, 78,62 e 79,40 respectivamente, e mínimos para heteroaromáticos, 13,63% e 13,79% respectivamente.

Destaca-se, ainda, que os catalisadores oriundos de resíduos industriais possibilitaram os menores valores para os aromáticos. Nos processos com LV 1M, LV 2M e zeólita de caulim, obteve-se valores de 6,17; 7,75 e 6,82 em % de área, respectivamente. Isso pode ser explicado pela ausência de picos característicos do tolueno e xilenos. Souza (2013) avaliou a aplicação da lama vermelha na remoção de derivados

do petróleo (benzeno, tolueno e xileno) e verificou que esse rejeito possui a capacidade de adsorver esses compostos (BTX) em cerca de 85%.

Uma importante constatação obtida nos cromatogramas, mostrada na figura 4.18, refere-se a presença de compostos com enxofre na composição dos OPP's. Verifica-se que o uso de catalisadores no processo de craqueamento de pneus, favorece a redução ou eliminação de compostos com enxofre na fração líquida. Com exceção do experimento com CaCO<sub>3</sub>, nota-se que o pico característico do composto C<sub>17</sub>H<sub>23</sub>NO<sub>5</sub>S, obtido no experimento térmico à 500°C, desloucou-se, indicando presença de outros compostos sem enxofre, ou desapareceu.



Figura 4.18 - Redução dos Compostos com enxofre na composição dos OPP's

A figura 4.19 mostra a composição química dos OPP obtidos dos craqueamentos dos grupos 4. Os compostos foram idenficados e classificados em 3 grupos: Hidrocarbonetos aromáticos, alifáticos e heteroaromáticos (compostos que possuem outros elementos além de carbono e hidrogênio).



Figura 4.19 - Composição química dos OPP's dos craqueamentos do Pneu impregnado com NaOH.

Verifica-se, nas concentrações estudadas de NaOH, que o aumento da concentração da base favorece a formação de compostos heteroaromáticos e redução de alifáticos. Para o processo com 1M de NaOH obteve-se um aumento de 40,21% de heteroaromáticos e uma redução de 30,59% de alifático em comparação ao processo térmico. Uma possível explicação para isso, pode ser atribuída ao enfraquecimento das ligações do polímero da borracha natural pelo ataque químico da base, favorecendo a reação do oxigênio, ou outro elemento químico diferente do carbono e hidrogênio, com os radicais gerados da NR.

Dentro dos alifáticos, que foram os compostos com maiores áreas, em todos os experimentos, tem-se um composto que é primordial para que isso ocorra e esse composto é denominado de d-limoneno. Então, na figura 4.20 estão mostrados a variação desse componente para os craqueamentos dos 4 grupos.

No primeiro grupo, craqueamento térmico, verificou-se que o percentual de dlimoneno aumentou conforme aumento da temperatura, para a faixa de 425°C á 500°C. Porém o experimento realizado à 400°C apresentou a maior área (56,06%) de d- limoneno entre os experimentos térmicos. Para o segundo grupo, com catalisadores comerciais, verifica-se que o experimento com carbonato de cálcio não teve influência significativa na quantidade de d-limoneno formada, enquanto o carbonato de sódio apresentou um incremento de 11,04% de área e o hidróxido de cálcio de 6,70% de área em relação ao experimento térmico na mesma temperatura.

No craqueamento térmico, tem-se a maior área cromatográfica (56,06%) para o experimento à 400°C, devido este ser o processo com temperatura final mais próximo a temperatura de degradação do d-limoneno (T=394°C). Ahmad *et al* 2018 realizou craqueamento da borracha natural nas temperaturas de 300°C, 375°C e 400°C e obteve áreas cromatográficas para o d-limoneno de 26,89; 50,33 e 25,85%; respectivamente. Enquanto Alvarez *et al* (2017) realizou o craqueamento de pneus de caminhão nas temperaturas de 425°C, 475°C e 575°C e obteve áreas para o d-limoneno de 21,05; 22,84% e 7,04%, respectivamente. Mostrando a coerência dos dados deste trabalho com os da literatura.



Figura 4.20 - Percentual de área cromatográfica do d-limoneno

Os maiores valores de área para o d-limoneno foram encontrados nos experimentos com lama vermelha 2 M (61,21%) e Zeólita de rejeito de caulim (62.65%). Como esses catalisadores, oriundos de rejeitos, passaram por processos de estabilização térmica e química, é provável que ajudem na estabilização térmica do d-limoneno, evitando que o mesmo se degrade.

Por outro lado, o uso de impregnação de hidróxido de sódio no pneu, reduz a área do d-limoneno no cromatograma. Essa redução é ainda maior quando se aumenta a concentração da base. Para o experimento com impregnação de 0,5M de NaOH essa redução foi de 7,47 e para o de 1 M foi de 37,16% em relação ao experimento térmico. Esse ataque químico, provavelmente, enfraqueceu as ligações do poli-isopreno, que possibilitou o ataque de outros elementos químicos, oxigênio por exemplo, na molécula do d-limoneno, reduzindo, assim o percentual de d-limoneno no produto.

# 4.4 PROCESSO DE CRAQUEAMENTO TERMOCATALÍTICO EM ESCALA PILOTO

Em escala piloto, foram realizados quatro experimentos no qual foi investigado a quantidade de massa do pneu inservível, bem como a variação da temperatura de craqueamento, mostrado na tabela A Tabela 4.7. Também foram investigados o comportamento físico-químico, composicional e reológico durante o processo, através da coleta de amostras, nos respectivos experimentos, em intervalos regulares de tempo (10 minutos), iniciando a partir da temperatura inicial de craqueamento (início da formação do produto líquido condensado).

| escala piloto. |                   |               |  |  |  |  |  |  |  |
|----------------|-------------------|---------------|--|--|--|--|--|--|--|
|                | Temperatura de    | Massa de Pneu |  |  |  |  |  |  |  |
| Experimentos   | Craqueamento (°C) | inicial (kg)  |  |  |  |  |  |  |  |
| Exp. 1         | 400               | 30            |  |  |  |  |  |  |  |
| Exp. 2         | 400               | 20            |  |  |  |  |  |  |  |

450

500

Exp. 3

Exp. 4

Tabela 4.7 - parâmetros operacionais do processo de craqueamento de pneu inservível em

20

20

A tabela 4.8 mostra Parâmetros operacionais dos experimentos em escala piloto, onde se pode notar que os parâmetros operacionais do experimento 01 apresentaram valores altos em comparação aos encontrados no experimento 02, que ocorre à mesma temperatura, mas com massa inferior. Pode-se inferir que o aumento da massa inicial de pneu, aumenta a temperatura inicial de craqueamento (TIC), tempo inicial de craqueamento (TEC) e tempo total de processo (TTP).

Pode-se constatar que a temperatura inicial de queima de gases foi semelhante em todos os experimentos, apresentando valores em torno de 106-115°C, mostrando que o processo de craqueamento de pneus em escala piloto começa a craquear em baixas temperaturas. Porém, esses gases são tão leves que não podem ser condensáveis. Pouco tempo depois, começou-se a quebrar e formar moléculas maiores que condensaram. Nesse ponto foram registrados os TIC's e TeIC's. Notou-se que os TIC's e os TeIC's tendem a aumentar com o aumento da temperatura. Santos (2015) realizou craqueamento de borra de neutralização em escala piloto e obteve uma redução tanto nas TIC's quanto nos TeIC's com o aumento da temperatura.

| Parâmetros processo     | Exp1 | Exp2 | Exp3 | Exp4 |  |  |  |
|-------------------------|------|------|------|------|--|--|--|
|                         |      |      |      |      |  |  |  |
| Temperatura             | 400  | 400  | 450  | 500  |  |  |  |
| Craqueamento (°C)       |      |      |      |      |  |  |  |
| Temperatura inicial de  | 107  | 106  | 106  | 115  |  |  |  |
| Queima gases (°C)       |      |      |      |      |  |  |  |
| Temperatura inicial de  | 365  | 124  | 128  | 181  |  |  |  |
| Craqueamento (°C)       |      |      |      |      |  |  |  |
| Tempo inicial de        | 67   | 31   | 32   | 35   |  |  |  |
| Craqueamento (min)      |      |      |      |      |  |  |  |
| Tempo total de processo | 137  | 111  | 112  | 115  |  |  |  |
| (min)                   |      |      |      |      |  |  |  |

Tabela 4.8 - Parâmetros operacionais dos experimentos em Escala de Piloto.

Apesar dos TIC's aumentarem conforme aumento da temperatura, na mesma massa inicial, observou-se que essa variação é no máximo de 4°C. Devido a isso, para o estudo do comportamento reacional, o ponto de coleta inicial foi realizado aos 45 minutos do processo, para todos os experimentos.

Esse estudo considerou o tempo total de processo como, apenas, o tempo necessário para coletar as oito amostras, a partir do tempo inicial de craqueamento (TIC).

Porém, passado esse tempo, como o reator ainda apresentava temperaturas elevadas, o mesmo ainda continuava realizando o processo de craqueamento. Toda a amostra coletada após os oitos pontos foi quantificada e denominada de após 115 minutos.

OPP OPP Coque Gás Gás

10

0

T=400°C m 30kg

Na figura 4.21 são mostrados os rendimentos das fases líquida (OPP), sólida (coque) e gasosa (gás) nos quatro experimentos.

**Figura 4.21** - Rendimento dos produtos do Craqueamento Termocatalítico em Escala Piloto.

T=450°C

T=500°C

T=400°C m 20kg

De acordo com a figura 5.21, o rendimento da fase líquida teve uma crescente, quando se reduziu a massa inicial de pneu de 30kg para 20kg e quando se aumentou a temperatura final do processo. Esse aumento do rendimento da fase líquida está associado a uma maior degradação do pneu quando se tem uma menor massa inicial. No caso da temperatura, o aumento desse parâmetro na faixa estudada, favoreceu a uma maior degradação do pneu gerando um incremento de gases condensáveis e isso também ocorreu nos trabalhos de Rodrigues *et al* (2001) e Islam *et al* (2008).

Uma importante mudança do experimento 1 para o 2, além da redução da massa, foi otimizar o processo de troca térmica no condensador. O condensador foi retirado do sistema, com o intuito da limpeza dos tubos internos (ver figura anexo A.1), objetivando aumentar a área de contato de troca térmica. Após essas mudanças o rendimento da fase líquida aumentou 68,02% e a fase gasosa reduziu em 15,81%.

Em comparação aos testes de bancada na mesma temperatura, observa-se que os realizados em escala piloto obtiveram menores rendimentos da fase líquida e maiores da fase sólida. Isso, provavelmente, ocorreu devido as complexidades das transferências de calor e massa inerentes ao processo de maior escala. Uma possível forma de otimizar o processo em escala piloto seria distribuir de forma mais homogênea o calor no reator, como ocorre no reator de menor escala e melhorar o sistema de troca térmica no condensador. Pode-se também evitar perdas de energia térmica no reator por meio de um melhor isolamento térmico do mesmo.

Conforme mostrado na figura 4.21, o rendimento dos OPP do experimento 04 foi de 28,41% o que corresponde a 5681,61g e considerando apenas os gastos com energia elétrica e com gás para o aquecimento do reator (ver tabela anexo A.1), tem-se um custo de R\$ 14,63 por quilograma de OPP produzido ou R\$ 13,09 por litro de OPP produzido, considerando a massa especifica média de 0,8947 g/ml. Esse alto valor para produção desse OPP pode ser subsidiado pelo governo, como acontece com o biodiesel, justificado pelas reduções das poluições ambientais e problemas de epidemias (dengue, zica e chicungunha). Atrelado a isso, a incorporação desse novo combustível na matriz energética Brasileira, significaria um avanço quanto à diminuição da dependência de combustíveis oriundos diretamente do petróleo.

A fase gasosa da escala piloto foi superior ao de bancada com exceção dos experimentos na temperatura de 500°C.

# 4.5 ESTUDO DO COMPORTAMENTO REACIONAL DO CRAQUEAMENTO EM ESCALA PILOTO.

Durante o processo de Craqueamento do pneu em Escala Piloto foi realizado um estudo do comportamento reacional do processo, o qual consistiu na coleta das amostras para os respectivos experimentos em intervalos de 10 minutos, perfazendo um total de 08 amostras, a partir da temperatura inicial de craqueamento do OPP. Este estudo foi detalhado para o experimento 04 (T=500°C), porém os dados das massas, durante o processo, dos experimentos 02 (T=400°C) e 03 (T=450°C) estão mostrados na figura do anexo A.2.

Observou-se que no resfriamento do reator para a temperatura ambiente, houve formação de OPP e esse líquido foi analisado com a denominação de após 115 min.

A Figura 4.22 mostra a massa do OPP (%), a massa de OPP cumulativa (%) e a temperatura do processo (°C) em função do tempo de craqueamento (min) a 500°C e 1,0 atmosfera. Observa-se que o primeiro ponto coletado foi realizado em 45 minutos do processo e o oitavo aos 115 minutos. Nota-se que o tempo inicial de coleta do OPP foi elevado, devido se tratar de um material sólido, necessitando passar por diversas transformações físicas (fusão – vaporização – condensação), até ser coletado. Outro fator que pode ter influenciado isso, se deve por se tratar de um compósito reticulado constituído por substâncias que precisam de altas temperaturas para se decompor. Pereira (2017) realizou craqueamento termocatalítico do sebo bovino em escala piloto e teve como o primeiro ponto de coleta em 30 minutos de processo na temperatura de 66°C, temperatura essa bem inferior à encontrada neste estudo (em torno de 280°C).



Figura 4.22 - Comportamento reacional da evolução do produto pirolítico líquido do pneu no experimento 4 (T=500°C)

Além disso, pode-se explicar esse alto tempo para se coletar a primeira amostra, em virtude da quantidade de amostra utilizada nesse experimento (20 kg), pois a medida que se aumenta a escala de um experimento, se aumenta também, as complexidades inerentes ao transporte de massa e energia do processo. A partir do primeiro ponto de coleta, observa-se um aumento gradual na massa coletada até o sexto ponto (95 minutos). Esse aumento é devido, principalmente, pela elevação da temperatura do processo. Quando a temperatura se estabiliza, em torno de 500° C, nota-se que a massa coletada tende a reduzir, como observado nos pontos de 105 e 115 minutos. Isso possivelmente ocorreu, pelo cessamento de energia térmica externa ao reator, quando este atingiu a temperatura setada, ocasionando maiores tempos de residência dos vapores do produto pirolítico dentro do reator.

Como houve massa coletada em todos os 8 pontos da cinética, verifica-se que a massa cumulativa aumentou no decorrer do processo de forma linear, atingindo 75,36 % de todo OPP coletado, no oitavo ponto (115 minutos).

Quanto a temperatura do processo, pode-se dividi-la em 4 zonas. As 3 primeiras apresentando comportamento crescente e linear e a última com comportamento constante. A primeira zona corresponde ao tempo de 0 a 30 minutos, a segunda de 30 à 50 minutos, a terceira de 50 à 100 minutos e a quarta de 100 à 120 minutos

## 4.5.1 Caracterização Físico-Químicas

4.5.1.1 Caracterização físico-química dos OPP's durante o processo (Experimento 02 – T=400°C).

Na tabela 4.9 está mostrado a caracterização físico-químicas dos OPP's do experimento 02, durante o processo, através das análises de índice de acidez, viscosidade, massa específica e corrosividade ao cobre.

De forma geral, o índice de acidez dos OPP's apresentou valores baixos, em relação aos produtos líquidos oriundos de craqueamento de óleos e gorduras, durante todo o processo, apresentando pico máximo no primeiro ponto de coleta (2,23 mgKOH/g) e mínimo no segundo ponto (1,63 mgKOH/g). A partir do segundo ponto de coleta (55minutos de processo) a acidez permaneceu estável em torno de 1,6 mgKOH/g. Santos (2013) realizou o craqueamento de óleo de fritura neutralizado e obteve uma acidez, para o produto líquido, de 105,41 mgKOH/g, enquanto Pereira (2017) realizou o craqueamento termocatalítico de sebo bovino com Na<sub>2</sub>CO<sub>3</sub> e obteve uma acidez para o produto líquido no valor de 27,68 mgKOH/g.

| Características                | 45<br>min | 55<br>min | 65<br>min | 75<br>min | 85<br>min | 95<br>min | 105<br>min | 115<br>min | Após<br>115<br>min |
|--------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|--------------------|
| Temperatura<br>(°C)            | 201       | 303       | 330       | 353       | 387       | 426       | 451        | 443        | *                  |
| Índice de Acidez<br>(mg KOH/g) | 2,23      | 1,63      | 1,69      | 1,68      | 1,67      | 1,65      | 1,66       | 1,69       | 1,68               |
| Viscosidade (cSt)              | 2,097     | 1,844     | 1,701     | 1,639     | 2,377     | 2,233     | 1,973      | 1,486      | *                  |
| Massa específica<br>(g/ml)     | 0,860     | 0,855     | 0,914     | 0,846     | 0,866     | 0,871     | 0,863      | 0,854      | *                  |
| Corrosividade                  | 1         | 1         | 1         | 1         | 1         | 1         | 1          | 1          | 1                  |

Tabela 4.9 - Características das amostras coletadas no Experimento 2 T=400°C.

\*Não quantificado.

A viscosidade apresentou comportamento variável durante o processo, podendo ser estudada em duas zonas. Na primeira, de 55 até 75 minutos de processo, tem-se um comportamento decrescente, apresentando valores de 2,097 a 1,639 cSt, respectivamente. O ponto em 85 minutos, início da segunda zona, apresenta um aumento substancial da viscosidade em relação ao ponto anterior. Esse aumento dessa propriedade, nesse ponto, pode ser explicado pelo início da degradação da borracha de estireno butadieno (SBR) e borracha de butadieno (BR), pois o processo apresentava temperatura de 387°C. O restante desta segunda zona, apresentou comportamento decrescente.

A massa específica e a corrosividade ao cobre, apresentaram-se estáveis durante todo o processo, apresentando valores em torno de 0,860 g/ml e 1, respectivamente.

 4.5.1.2 Caracterização físico-química dos OPP's durante o processo (Experimento 03 – T=450°C)

A tabela 4.10 apresenta as características físico-químicas dos OPP's, durante o processo do experimento 3, realizada através das análises de índice de acidez, viscosidade, massa específica e corrosividade ao cobre.

O índice de acidez apresenta comportamento distinguindo em duas zonas. A primeira decrescente (de 45 a 85 minutos de processo), variando de 3,51 a 2,13 mgHOH/g, e a segunda constante (de 85 a 115 minutos de processo) em torno de 2,2 mgHOH/g.

| Características   | 45<br>min | 55<br>min | 65<br>min | 75<br>min | 85<br>min | 95<br>min | 105<br>min | 115<br>min | Após<br>115<br>min |
|-------------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|--------------------|
| Temperatura       | 200       | 279       | 324       | 361       | 401       | 445       | 470        | 472        | *                  |
| (°C)              |           |           |           |           |           |           |            |            |                    |
| Índice de Acidez  | 3,51      | 3,27      | 2,76      | 2,59      | 2,13      | 2,22      | 1,68       | 2,19       | 2,22               |
| (mg KOH/g)        |           |           |           |           |           |           |            |            |                    |
| Viscosidade (cSt) | 3,227     | 2,002     | 1,912     | 2,080     | 2,349     | 2,418     | 2,302      | 1,985      | 1,489              |
| Massa Específica  |           |           |           |           |           |           |            |            |                    |
| (g/ml)            | 0,885     | 0,863     | 0,861     | 0,866     | 0,882     | 0,877     | 0,881      | 0,875      | *                  |
| Corrosividade     | 1         | 1         | 1         | 1         | 1         | 1         | 1          | 1          | 1                  |

Tabela 4.10 - Características das amostras coletadas no Experimento 3 T=450°C.

Neste experimento, a viscosidade apresentou comportamento bastante variável (3,227 a 1,489 cSt). Porém, a massa específica e a corrosividade ao cobre, mantiveramse estáveis durante todo o processo.

4.5.1.3 Caracterização físico-química dos OPP's durante o processo (Experimento 04 – T=500°C)

Na Tabela 4.11 são apresentadas as características físico-químicas das amostras coletadas em intervalos de 10 minutos durante o Experimento 4 de craqueamento do pneu à T= $500^{\circ}$ C.

Os resultados para o índice de acidez de todas as amostras apresentaram valores relativamente baixos. No início, 45min de processo, tem-se uma acidez maior que as 5 amostras posteriores, evidenciando um maior percentual de oxigenados gerados, possivelmente oriundos dos aditivos deste pneu. Nota-se, ainda, um crescente aumento desse parâmetro do ponto 55 min até o 115 min, indicando um incremento ao longo do tempo de experimento, o que evidencia uma transformação efetiva da matéria prima, com o aumento da temperatura.

A viscosidade variou de 2,980 a 2,131 Cst durante o processo, sendo que o maior valor foi obtido para o tempo de 45min e o menor para o de 75 min. Com exceção do primeiro ponto, infere-se que a viscosidade foi relativamente estável durante todo o processo.

| Características                | 45<br>min | 55<br>min | 65<br>min | 75<br>min | 85<br>min | 95<br>min | 105<br>min | 115<br>min | Após<br>115<br>min |
|--------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|--------------------|
| Temperatura (°C)               | 277       | 346       | 383       | 426       | 467       | 498       | 511        | 507        | *                  |
| Índice de Acidez<br>(mg KOH/g) | 2,82      | 1,62      | 1,76      | 2,21      | 2,28      | 2,61      | 3,52       | 3,84       | 3,85               |
| Viscosidade<br>(cSt)           | 2,980     | 2,220     | 2,137     | 2,131     | 2,162     | 2,439     | 2,470      | 2,4345     | 2,434              |
| Massa Específica<br>(g/ml)     | 0,929     | 0,916     | 0,866     | 0,865     | 0,864     | 0,881     | 0,875      | 0,928      | 0,928              |
| Corrosividade                  | 1         | 1         | 1         | 1         | 1         | 1         | 1          | 1          | 1                  |

Tabela 4.11 - Características das amostras coletadas no Experimento 4 T=500°C.

Em relação a massa específica, identificou-se uma redução no início do processo, para posterior estabilização até o sétimo ponto (105min). No oitavo ponto a densidade voltou a aumentar, possivelmente devido à formação de substâncias com maiores pesos moleculares.

Os dados da corrosividade mostraram-se estáveis em função do tempo e temperatura, o mesmo verificado por Lhamas (2013), Santos (2015) e Mota (2013).

### 4.5.2 Caracterização por Espectroscopia na região do infravermelho

A Figura 4.23 apresenta os espectros de infravermelho das oito amostras coletadas em intervalos de 10 minutos durante o processo de Craqueamento Termocatalítico do Experimento 4.

Comparando os espectros de infravermelho obtidos das amostras coletadas durante o processo de craqueamento, notou-se que a maioria apresenta bandas de vibração semelhantes na mesma região de cada espectro, porém algumas variando apenas na intensidade. Deste modo percebe-se que a variação no tempo reacional de craqueamento contribuiu, na maioria dos casos, na formação de compostos semelhantes, porém em diferentes proporções.

Foram observados, em todos os pontos da cinética, picos próximos de 2960 cm<sup>-1</sup> atribuído ao estiramento antissimétrico do grupo CH<sub>3</sub>, 2923 cm<sup>-1</sup> atribuído ao estiramento



antissimétrico do grupo CH<sub>2</sub>, 2860 cm<sup>-1</sup> associado ao estiramento simétrico dos grupos CH<sub>2</sub>.

Figura 4.23 - Infravermelhos das amostras coletadas durante o Experimento 4

Vibrações de deformação C-H em 1455 e 1375  $\text{cm}^{-1}$  indicam a presença de alcanos. Vários sinais foram identificados entre os números de onda 900-675  $\text{cm}^{-1}$ , o que

confirmou a presença de compostos aromáticos. O  $CO_2$  foi detectado, em todos os pontos, através do pico 2360 cm<sup>-1</sup>.

Portanto, os OPP's obtidos no decorrer do processo, compreendem principalmente compostos alifáticos e aromáticos com a presença de outros compostos funcionais de hidrocarbonetos em baixa proporção.

Para visualizar os picos que foram divergentes, os espectros de infravermelho foram plotados e ampliados entre os números de onda de 700 a 2500 cm<sup>-1</sup>, como mostrado na Figura 4.24.

Verifica-se que o sexto ponto de coleta (95 min de processo) foi o que apresentou picos divergentes dos demais. Observou-se que os picos em 1219 cm<sup>-1</sup> e 766 cm<sup>-1</sup> foram observados apenas neste ponto. O primeiro pico pode ser atribuído ao estiramento axial do C-O e deformação angular O-H de álcoois e o segundo a presença de anel aromático. Essa diferença provavelmente ocorreu devido que nesse ponto a temperatura do processo atingiu seu máximo, cerca de 500°C, proporcionando a geração de aromáticos em maior quantidade.



Figura 4.24 – Picos divergentes nos Infravermelhos das amostras coletadas durante o Experimento 4.

### 4.5.3 Caracterização por CG-MS

Nesta seção, objetivou-se estudar o comportamento das principais substâncias encontradas nos OPP's, em grupos e isoladas, visando a otimização do processo para a recuperação química desses compostos.

#### 4.5.3.1 Caracterização por Grupos

A figura 4.25 mostra a composição química das amostras dos OPP's coletadas em intervalos de 10 minutos durante o processo de Craqueamento do Experimento 4 (T=500°C). Os compostos foram idenficados e classificados em 3 grupos: Hidrocarbonetos aromáticos, alifáticos e heteroaromáticos (compostos que possuem outros elementos além de carbono e hidrogênio).



**Figura 4.25** - Composição química das amostras dos OPP's durante o processo de Craqueamento do Experimento 4 (T=500°C).

Pode-se notar que os compostos aromáticos foi o grupo de substâncias predominante durante todo experimento, variando de 49,48 a 80,14% de área

cromatográfica. Os alifáticos tiveram variação de 14,53 a 37,57% e os heteroaromáticos de 4,78 a 14,79 %. Resultados estes coerentes com a literatura uma vez que segundo Song *et al* (2017) e William e Besler (1995) os óleos de pirólise de pneu são uma mistura de compostos aromáticos e alifáticos, uma vez que os principais componentes da borracha butadieno-estireno-borracha (SBR) possuem estrutura aromática (unidade repetitiva de estireno) e estrutura alifática (a da unidade repetitiva de butadieno). Além disso, uma possível explicação para essa alta quantidade de aromáticos, nos experimentos em escala piloto, pode ser atribuído a um maior tempo de residência dos compostos gerados, dentro do reator, possibilitando reações de ciclização e aromatização.

Notou-se que os aromáticos, constituídos majoritariamente por compostos BTX (benzeno, tolueno e xilenos) e cimenos, tiveram comportamento proporcional a temperatura do processo. Conforme aumento da temperatura durante o processo, mais substância aromáticas se formavam. A máxima porcentagem de área formada, para esse grupo de composto, foi encontrada no oitavo ponto de coleta (115 minutos de processo) na temperatura de 508°C. Esse aumento pode estar relacionado, além da natureza aromática do material polimérico (SBR), às reações de recombinação que ocorrem entre os radicais livres alifáticos e aromáticos e, também, à ciclização de cadeias alifáticas (RODRIGUES et al, 2001), conforme mostra a figura 4.26.



**Figura 4.26** – Formação de compostos aromáticos a partir do *d*-limoneno. Fonte: Adaptado de F. Xu *et al* (2018)

No terceiro ponto de coleta, notou-se o menor valor de área cromatográfica para os compostos aromáticos, e isso se deve à redução dos compostos BTX, ao aumento da área do *d*-limoneno e ao aumento dos compostos heteroaromáticos. Isso pode ser explicado pela temperatura do processo, que nesse ponto era de 384°C, valor este ótimo para degradação do poliisopreno.

Os compostos alifáticos tiveram comportamento divididos em 3 zonas. A primeira, até 65 minutos de processo, possuía comportamento estável em torno de 35% de área cromatográfica. A segunda, de 65 a 95 minutos de processo, também permaneceu estável, porém em torno de 21% de área. A última zona, de 95 a 115 minutos de processo, apresentou comportamento decrescente, registrando seu mínimo valor no último ponto de coleta (14,53%). De maneira geral, pode-se inferir que a composição dos compostos alifáticos teve comportamento inversamente proporcional a temperatura do processo.

Os compostos denominados de heteroaromáticos, constituídos majoritariamente por compostos oxigenados, tiveram o seu máximo valor no terceiro ponto de coleta (65 minutos de processo). Isso, provavelmente, ocorreu devido ao ataque do oxigênio, presente nos constituintes do pneu, aos radicais livres (oriundos de anéis benzênicos). Fato esse confirmado pela identificação do pico do 2-Naftalenol, 1,2-dihidro- acetato (não detectado nos pontos anteriores) e aumento da área cromatográfica para o composto 2,4,6-trimetilbenzil Álcool. Alvarez *et al* (2017) relata que a presença de compostos oxigenados é provavelmente devida à degradação térmica de alguns aditivos do pneu, como ácido esteárico ou óleos extensores que contêm oxigênio em sua estrutura molecular. Assim como as espécies nitrogenadas e nitrosulfuradas derivam dos aceleradores utilizados para a vulcanização da borracha, que são frequentemente compostos orgânicos à base de enxofre (ROFICUL *et al*, 2008).

### 4.5.3.2 Identificação dos principais compostos no experimento 4

A Figura 4.27 apresenta o comportamento das doze substâncias com maior área nas análises cromatográficas das amostras coletadas em intervalos de 10 minutos durante o processo de Craqueamento do Experimento 4, juntamente com a variação da temperatura do processo em relação ao tempo. No anexo A.3 e A.4, encontra-se os gráficos para o experimento 2 e 3.



Figura 4.27 - Comportamento das principais substâncias do OPP durante o craqueamento.

Essas substâncias foram agrupadas em três grupos, conforme a intensidade da área do pico. No primeiro grupo estão o tolueno, o o-xileno / p-xileno, o p-cimeno/Benzeno 1 metil-3-(metiletil)-/o-cimeno e o D-limoneno. No segundo encontram-se o Benzeno 1,3-dimetil-, o etilbenzeno, o Benzeno 1-etil-3-metil e o mesitileno (Benzeno 1,3,5-trimetil-) / benzeno 1,2,4 – trimetil-. Por fim, o terceiro grupo é composto por benzeno, ciclohexanol 1-metil-4-(1-metiletenil) - acetato e tetradecano 2,6,10- trimetil-. Vale ressaltar que algumas áreas foram denominadas por mais de uma substância, exemplo do o-xileno / p-xileno. Optou-se por isso, devido que nesses pontos as probabilidades da ocorrência dessas substâncias eram próximas e nenhuma substância se apresentava majoritariamente em todas as amostras da cinética.

Observou-se que o d-limoneno foi a principal substância encontrada no início do craqueamento, apresentado área em torno de 30% nas três primeiras amostras (até 65 minutos de processo). No quarto ponto (75 minutos de processo), nota-se uma queda brusca dessa área, ficando em 19,4% e a partir desse ponto essa tendência de queda foi

percebida até o sétimo ponto (95 minutos de processo) que estabilizou em torno de 10%. Segundo Sun *et al* (2012), o limoneno é produzido pela reação de ciclização Diels-Alder do isopreno, derivada da despolimerização do hidrocarboneto de borracha, e se decompõe em elevadas temperaturas.

O tolueno apresentou um elevado pico de área no primeiro ponto (19,4%) reduzindo esse valor para de 8,8% no terceiro ponto. Do terceiro ao quinto ponto a área aumentou, chegando a 12,25%. No sexto ponto a área voltou a diminuir se estabilizando em torno de 10%. Song *et al* (2017) estudou a evolução dos produtos do craqueamento do pneu em escala de bancada e obteve para o tolueno valores de 6,06%, 7,65% e 7,32% de área cromatográfica em 10, 20 e 30 minutos de processo respectivamente. Essa diferença com a literatura, provavelmente, é devido ao tipo de pneu utilizado e a escala adotada.

O percentual do pico de área do o-xileno / p-xileno apresentou valores próximos à 12% durante todo o processo, com exceção do segundo e quinto ponto que apresentaram área de 14,9% e 14,6% respectivamente.

Quanto ao comportamento do p-cimeno / Benzeno 1 metil-3-(metiletil) - / ocimeno, verifica-se que houve um crescimento do percentual de área até o quinto ponto, onde atingiu um valor de 18,4%. Esse aumento, possivelmente, ocorreu devido a degradação do d-limoneno pela adsorção da dupla ligação extra cíclica do dipenteno no sítio ácido, seguido pelo deslocamento do próton para formar o íon terciário carbônico mais estável a partir do qual os terpinolenos ou terpinenos são formados. Então os terpinenos são desidrogenados para produzir principalmente p-cimeno, ver figura 4.28 (MARTÍN-LUENGO *et al*, 2008). Após o quinto ponto de coleta o valor da área reduziu, estabilizando em torno de 13%.



Figura 4.28 - Produção do p-cimeno oriundo do limoneno

No grupo 2, verifica-se a presença do etil benzeno no início do processo (de 45 min até 65 min), onde a área reduz de 8,6% até 6,1%. A partir do quarto ponto esse comportamento desaparece, surgindo o Benzeno 1,3-dimetil- que permanece em torno de 6,1% no quarto e quinto ponto. No sexto ponto essa área é reduzida para um valor entorno de 5 %, permanecendo assim no restante do craqueamento.

O Benzeno 1-etil-3-metil no primeiro ponto de coleta não foi identificado, justificado pela baixa temperatura nesse ponto (~278°C). A partir do segundo ponto verifica-se a presença desse componente, apresentando comportamento crescente no decorrer do processo, atingindo seu máximo valor no oitavo ponto de coleta, onde a temperatura do processo estava estabilizada em torno de 500°C.

O mesitileno (Benzeno 1,3,5-trimetil-) / benzeno 1,2,4 – trimetil- apresentaram comportamento estável durante o processo, ficando entre 3,2 a 4,0%. O único pico fora dessa faixa foi encontrado no sétimo ponto, que possui uma área de 5,3%.

O terceiro grupo de substâncias, composto por benzeno, ciclohexanol 1-metil-4-(1-metiletenil) - acetato e tetradecano 2,6,10- trimetil- foram identificados, embora em baixo percentual de área, em todos os pontos do processo, apresentando variações de 0,7 à 4,8% de área.

De maneira geral, verifica-se no início do craqueamento, onde as temperaturas são baixas, a formação majoritariamente de componentes alifáticos, e conforme o gradativo aumento da temperatura, tem-se a redução dos alifáticos e aumento das substâncias aromáticas.

4.5.3.3 Estudo da influência da temperatura, durante o processo, na composição das principais substâncias obtidas no OPP.

Do experimento 2 ao 4 variou-se a temperatura final do processo de 400°C à 500°C, então este tópico visa estudar a variação das 4 substâncias com maior área nos cromatogramas (grupo 1) nesses 3 experimentos, comparando-os com a mudança de temperatura durante o processo.

A Figura 4.29 apresenta o comportamento do d- limoneno durante o processo de Craqueamento do Experimento 2 ao 4, juntamente com a variação da temperatura do processo em relação ao tempo.



**Figura 4.29** - Comportamento do *d*- limoneno durante o processo de Craqueamento do Experimento 2 ao 4

A partir da análise do gráfico é possível verificar a melhor temperatura para se obter a máxima área cromatográfica do d-limoneno. Para o processo com temperatura final de 500 °C, esse ponto ótimo ocorreu entre 278 °C à 384 °C. Para o processo com temperatura final de 450 °C esse ponto ótimo ocorreu entre 224 °C à 333 °C e para o processo com temperatura final de 400 °C esse ponto ótimo ocorreu entre 246°C à 339 °C. Essas faixas de temperaturas correspondem nos 3 primeiros pontos de coleta que equivale aos 65 minutos iniciais do processo. Cabe ressaltar que nesses primeiros pontos, a área de d-limoneno do processo à 500°C sempre foi maior que as dos outros 2 processos. Possivelmente atribuído a uma maior aproximação do limite da temperatura de degradação do d-limoneno (T=394°C), mostrado na análise termogravimétrica. Isso fez com que a reação de pirólise acontecesse de forma mais rápida e intensa, empurrando imediatamente o d-limoneno recém-formado para fora do reator. Outro fator que corrobora para utilização do processo "setado" a 500°C é a quantidade de massa formada nesses primeiros três pontos. Conforme mostrado no anexo A.2, a massa acumulada até

65 minutos de processo para o experimento à 500°C foi de 1153,88g enquanto para os experimentos à 450°C e 400°C foi de 935,89g e 925g respectivamente.

Verifica-se, ainda, que a partir de 85 minutos de processo todos os experimentos têm temperaturas superiores a 400°C e mesmo assim apresentam uma elevada porcentagem de área (cerca de 17%). Isso ocorre, provavelmente, devida a não uniformidade de transferência de calor por toda a amostra, que faz com que parte da amostra craqueie em tempos distintos.

Então, se o objetivo for obter um produto com um máximo de d-limoneno, sugerese que o processo seja programado com rampas de temperaturas. No primeiro momento seria setado a temperatura de 500°C e aos 65 minutos de processo essa temperatura seria mudada para 394°C, mantendo-se essa temperatura até o fim do gotejamento da fase líquida.

A Figura 4.30 apresenta o comportamento do tolueno durante o processo de Craqueamento do Experimento 2 ao 4, juntamente com a variação da temperatura do processo em relação ao tempo.



Figura 4.30- Comportamento do tolueno durante o processo de Craqueamento do Experimento 2 ao 4.

Comparando-se a temperatura final do processo, verifica-se que em todos os experimentos, os maiores picos de áreas foram encontrados nos três (3) primeiros pontos de coleta e que o experimento 3 (T=450°C) obteve área superior nesses pontos em relação ao experimento 2 ( $T=400^{\circ}C$ ) e 4 (T=500°C). O pico máximo encontrado nesses experimentos foi registrado para o experimento 3 no primeiro ponto de coleta (área de 19,88% e T=224°C).

A Figura 4.31 apresenta o comportamento do o-xileno/ p-xileno durante o processo de Craqueamento do Experimento 2 ao 4, juntamente com a variação da temperatura do processo em relação ao tempo.



Figura 4.31 - Comportamento do o-Xileno/ p-Xileno durante o processo de Craqueamento do Experimento 2 ao 4.
O ponto ótimo (área = 16,35%) de obtenção do o-xylene/ p-xylene ocorreu no oitavo ponto de coleta (115 minutos de processo) do experimento 3, onde se registrava a temperatura de 468°C.

Considerando-se apenas os 8 primeiros pontos de coleta, verifica-se que essa substância para o experimento 2 variou entre 9,03% a 12,46%, para o experimento 3 de 11,46 à 16,35% e para o experimento 4 de 11,67% à 14,90% de área.

A Figura 4.32 apresenta o comportamento do p-Cimeno / Benzeno, 1-methyl-3-(1-methylethyl) - / o-Cimeno durante o processo de Craqueamento do Experimento 2 ao 4, juntamente com a variação da temperatura do processo em relação ao tempo.



Figura 4.32 - Comportamento do p-Cimeno / Benzeno, 1-methyl-3-(1-methylethyl) - / o-Cimeno durante o processo de Craqueamento do Experimento 2 ao 4.

Considerando apenas os 8 pontos iniciais de coleta, o ponto ótimo (área = 24,16%) de obtenção do p-Cimeno / Benzeno, 1-methyl-3-(1-methylethyl)- / o-Cimeno ocorreu no

oitavo ponto de coleta (115 minutos de processo) do experimento 2, onde se registrava a temperatura de 434°C.

#### 4.6 COMPORTAMENTO REOLÓGICO

A figura 4.33 mostra o comportamento reológico do oléo de pirólise de pneu (OPP) em diferentes momentos do processo, onde o diagrama de tensão de cisalhamento (Pa) e viscosidade (Pa.s) são apresentados como uma função da taxa de cisalhamento ou deformação (s<sup>-1</sup>). Nas curvas tensão x deformação são mostradas as modelagens realizadas pela equação de Herschel-Bulkley.

Nas curvas viscosidade x Tempo de craqueamento, observa-se 3 zonas. Na primeira, em pequenas taxas de cisalhamento ( $<200s^{-1}$ ), a viscosidade decresce, indicando comportamento não newtoniano e com tensão inicial. Na segunda, entre de  $200s^{-1}$  e  $400s^{-1}$  a viscosidade tende a se estabilizar, apresentando viscosidade praticamente constantes entre 0,004 e 0,006 Pa.s. Comportamento semelhante foram encontrados em Nik *et al* (2005) para viscosidade de óleos bio comestíveis (palma, coco, canola, milho e girassol). Para Al-Zahrani (1997) este comportamento pode ser explicado devido ao cisalhamento aplicado no fluido quebrar a estrutura interna dentro do fluido muito rapidamente, reversível e sem dependência de tempo. Na terceira zona, em taxas de deformação maiores ( $400 s^{-1} - 600 s^{-1}$ ), os valores para a viscosidade aumentaram. Segundo Capelli (2012), esse aumento de viscosidade, provavelmente, é devido à baixa viscosidade dos materiais analisados que, em altas taxas de deformação, apresentariam regime turbulento de escoamento.

Observa-se, de maneira geral, que todos os líquidos analisados apresentam uma resistência inicial ao escoamento, provavelmente devido às interações intermoleculares que conferem ao material um comportamento semelhante ao de sólidos.



Figura 4.33 - Comportamento reológico do produto pirolítico líquido do pneu em diferentes momentos do processo.

Conforme verificado na tabela 4.12 o modelo de Herschel- Bulkley foi o que mais se enquadrou aos dados experimentais, o que sugere uma influência da taxa de

deformação sobre a viscosidade do fluido, e por isso foi representado nos gráficos tensão x deformação da cinética (figura 5.32). Capelli (2012) verificou que o modelo de Ostwald de Walle era o mais indicado para representar o comportamento reológico do diesel B (Diesel B S1800/100 5%) nas temperaturas 25 °C, 35 °C, 45 °C e 55 °C.

Outra constatação observada na tabela 4.12, diz que as amostras dos tempos finais do craqueamento se adequam melhor aos modelos estudados. Pode-se verificado, isso, por meio da análise dos  $R^2$  das modelagens. A amostra de 55 minutos apresentou o menor valor de  $R^2$  (0,9843) enquanto a de 115 minutos apresentou o maior valor (0,9924) na modelagem da cinética aplicando o modelo de Herschel-Bulkley. Para o modelo de Bingham o menor valor foi para a amostra de 45 minutos (0,9683) e o maior foi para 115 minutos (0,9789). Para o modelo de Ostwald de waele o menor valor foi para a amostra de 55 minutos (0,9741) e o maior foi para 115 minutos (0,9909).

Ao comparar os valores dos índice de consistência, que indica o grau de resistência do fluido diante do escoamento, obtidos a partir do modelo de Herschel-Bulkley para diversos tempos de craqueamento, verifica-se que os valores seguem esta sequência:  $(K_{75'}) > (K_{115'}) > (K_{65'}) = (K_{85'}) > (K_{95'}) > (K_{55'}) > (K_{45'}) > (K_{105'})$ . Para o modelo de Ostwald de Waele temos:  $(K_{55'}) > (K_{75'}) > (K_{45'}) > (K_{105'}) > (K_{115'}) > (K_{95'}) > (K_{65'}) =$  $(K_{85'})$ .

Comparando os valores do índice de comportamento de fluxo, que indica fisicamente o afastamento do fluido do modelo Newtoniano, obtidos a partir do modelo Herschel-Bulkley (n), encontra-se a seguinte sequência:  $(n_{105'}) > (n_{45'}) > (n_{95'}) > (n_{55'}) > (n_{65'}) = (n_{85'}) > (n_{75'}) > (n_{75'})$ . Para o modelo de Ostwald de Waele temos:  $(n_{65'}) = (n_{85'}) > (n_{95'}) > (n_{115'}) > (n_{105'}) > (n_{45'}) > (n_{75'}) > (n_{55'}) > (n_{55'}) > (n_{95'}) > (n_{115'}) > (n_{105'}) > (n_{45'}) > (n_{75'}) > (n_{55'})$ . Conforme mostrado na tabela 4.12, todos os valores dos índices de comportamento do fluxo são maiores que 1, indicando que o produto pirolítico líquido do pneu apresenta, no âmbito global, comportamento dilatante.

Tanto os valores de de K quanto os de  $\eta$  não permanecem os mesmos ao longo da evolução do OPP, uma vez que diferentes compostos são formados no decorrer do processo.

| Tempo (min) | HERSCHEL-BULKLEY |                        |       | BINGHAM        |         |          | OSTWALD DE-WAELE |                       |       |                |
|-------------|------------------|------------------------|-------|----------------|---------|----------|------------------|-----------------------|-------|----------------|
|             | <b>τ0 (Pa)</b>   | K (Pa.s <sup>n</sup> ) | n     | R <sup>2</sup> | τ0 (Pa) | ηp(Pa.s) | R <sup>2</sup>   | K(Pa.s <sup>n</sup> ) | n     | R <sup>2</sup> |
| 45          | 0,5557           | 2,79E-05               | 1,887 | 0,9888         | 0,265   | 8,38E-03 | 0,9683           | 8,70E-04              | 1,358 | 0,9805         |
| 55          | 0,4642           | 7,84E-05               | 1,675 | 0,9843         | 0,2953  | 6,07E-03 | 0,9688           | 1,94E-03              | 1,186 | 0,9741         |
| 65          | 0,1737           | 9,35E-05               | 1,669 | 0,9855         | 0,3822  | 6,92E-03 | 0,9691           | 2,97E-04              | 1,492 | 0,9841         |
| 75          | 0,3516           | 2,56E-04               | 1,508 | 0,9867         | 0,1069  | 6,79E-03 | 0,9789           | 1,86E-03              | 1,206 | 0,982          |
| 85          | 0,1737           | 9,35E-05               | 1,669 | 0,9855         | 0,3822  | 6,92E-03 | 0,9691           | 2,97 E-04             | 1,492 | 0,9841         |
| 95          | 0,2006           | 9,08E-05               | 1,682 | 0,99           | 0,3933  | 7,31E-03 | 0,973            | 3,23E-04              | 1,488 | 0,9884         |
| 105         | 0,4451           | 2,31E-05               | 1,898 | 0,9907         | 0,2507  | 7,32E-03 | 0,9644           | 4,69E-04              | 1,436 | 0,9821         |
| 115         | 0,2196           | 1,11E-04               | 1,665 | 0,9924         | 0,4118  | 8,04E-03 | 0,9789           | 3,95E-04              | 1,471 | 0,9909         |

Tabela 4.12 - Parâmetros reológicos resultantes dos ajustes realizados na cinética do óleo de pirólise de pneu (OPP).

Na figura 4.34 encontra-se representado o parâmetro reológico denominado de tensão residual ( $\tau$ 0) tanto do modelo de Herschel-Bulkley quanto do Bingham em relação ao tempo de craqueamento do pneu. Para o modelo de Herschel-Bulkley, verifica-se que no tempo de 45 minutos se encontra o maior valor para esse parâmetro (0,5557 Pa) e decresceu até o tempo de 65 minutos apresentando um valor em torno de 0,2 Pa. A partir deste ponto houve flutuações, porém observou-se nos pontos de 85, 95 e 105 minutos valores próximos a 0,2 Pa. Para o modelo de Bingham, esse parâmetro ( $\tau$ 0) em 45 minutos de craqueamento apresentou um valor baixo (0,265 Pa) e conforme aumento do tempo de craqueamento o  $\tau$ 0 aumentou linearmente até o tempo de 65 minutos, e após esse ponto também houveram flutuações próximos ao valor de 0,4 Pa, nos pontos 85, 95 e 105 minutos.



Figura 4.34 - Comportamento da tensão residual na cinética do produto pirolítico líquido do pneu

Verifica-se de maneira geral, tanto no modelo de Herschel-Bulkley quanto no de Bingham, que o  $\tau 0$  se estabiliza por volta de 65 minutos de craqueamento. Essa estabilização ocorre na terceira zona de temperatura do processo, onde, possivelmente, os compostos formados apresentam comportamento mais uniforme tanto em termos de qualidade quanto de quantidade. Entretanto, dois pontos da cinética (75 e 105 minutos) não seguiram essa estabilização.

A figura 4.35 mostra o parâmetro conhecido como viscosidade plástica (ηp) do modelo de Bingham em função do tempo de craqueamento do pneu. Verifica-se que a viscosidade plástica variou entre 0,006065 e 0,008383 Pa.s. O maior valor encontrado foi para o tempo de 45 minutos de craqueamento e o menor foi para o tempo de 55 minutos. Verifica-se que nos instantes iniciais do craqueamento do pneu, temos uma brusca variação da viscosidade plástica, tendendo a se estabilizar em torno de 0,007 Pa.s a partir de 65 minutos. Nos instantes finais do craqueamento, observa-se um leve aumento da viscosidade plástica, isso se deve, possivelmente, à formação de moléculas maiores.



Figura 4.35 - Comportamento da viscosidade plástica na cinética do produto pirolítico líquido do pneu

#### 4.7 – DESTILAÇÕES DO ÓLEO DE PIRÓLISE DE PNEU

#### 4.7.1 - Rendimento e composição das frações do experimento 4 (T=500 °C)

O estudo da destilação dos óleos de pirolise de pneu ocorreu de acordo com a faixa de ebulição dos combustíveis derivados do petróleo (THOMAS et al. 2001). Os destilados separados segundo a faixa de destilação da gasolina (40°C-175°C), querosene (175°C-235°C), diesel leve (235°C-305°C) e diesel pesado (305°C-400 °C).

A figura 4.36 mostra as frações destiladas do óleo de pirólise de pneu. A fração

na faixa da gasolina possui uma coloração amarelo claro, enquanto o produto na faixa do querosene apresenta coloração verde claro. Para a faixa do diesel leve e pesado, observase uma coloração verde escuro.



Figura 4.36 – Frações destiladas do óleo de pirolise de pneu.

Os rendimentos dessas frações, no decorrer do processo, estão representados na figura 4.37 e na tabela do anexo A.2. Observa-se uma variação, em termos de quantidade, das frações durante o processo. O destilado na faixa da gasolina teve uma variação de 20,05 a 38,94% do total de produtos. Para os produtos na faixa do querosene, diesel leve e diesel pesado essa variação ficou nas faixas de 9.77 - 19.79%, 10.22 - 38.33% e 0 -25.83%, respectivamente. Assim, nota-se que as destilações dos OPP's geram produtos em todas as faixas, devido as inúmeras matérias primas, com diferentes composições, que constituem a formulação do pneu. Diferente disso, foi relatado por Santos (2013) e Lhamas (2013) que a destilação dos produtos líquidos dos craqueamentos do óleo de fritura e palma, respectivamente, favorecem um produto na faixa do diesel, provavelmente devido a composição das matérias primas. Segundo Gustone (2005), os três principais ácidos graxos presentes no reino vegetal são o palmítico (16:0), o oléico (18:1) e o linoléico (18:2), acompanhados algumas vezes do ácido esteárico (18:0) e linolênico (18:3) e de acordo com Thomas et al. (2001) o diesel pesado é formado por 18 a 25 átomos de carbono, corroborando que a matéria prima influencia os produtos da destilação.

O maior rendimento, para a fração na faixa da gasolina, foi obtido para a destilação do OPP 85' (38,94%) e o mínimo para o OPP 55' (20,05%), mostrando que os OPP's deste trabalho, propiciam maiores rendimentos, na fração da gasolina, em comparação aos destilados de óleos e gorduras. Pereira (2017) realizou a destilação do produto líquido

do craqueamento do sebo bovino, e obteve valores para a faixa da gasolina variando de 10,93 a 12,92%, enquanto em Mancio (2015) não se observou destilado na fração da gasolina, quando a mesma realizou a destilação do produto do craqueado líquido do óleo de palma.



**Figura 4.37** – Rendimentos das Frações destiladas do óleo de pirolise de pneu, no decorrer do processo.

Diferentemente da faixa anterior, a produto na faixa do querosene obteve um máximo rendimento no OPP 55' (19,79%) e mínimo no OPP 115' (9,77%). A fração do diesel leve teve seu maior rendimento para a destilação do OPP 95' e o menor para OPP 115', enquanto o diesel pesado o máximo valor obtido foi observado no OPP 65' e o mínimo para os OPP's 55', 85' e 95', onde não se obteve destilado nessa faixa. Ferreira *et al* (2017) realizaram a destilação, em escala piloto, do produto líquido orgânico (PLO) obtido do craqueamento do óleo de palma e obtiveram um rendimento para as frações de gasolina, querosene, diesel leve e diesel pesado de 3,95; 10,35; 18,38 e 0%, respectivamente.

As composições químicas das frações destiladas dos OPP's, no decorrer do processo, estão mostradas nas tabelas 4.13, 4.14, 4.15 e 4.16. Na tabela 4.13, 4.14, 4.15 e 4.16 estão as composições na faixa da gasolina (40-175°C), do querosene (175- 235°C), do diesel leve (235-305°C) e do diesel pesado (305-400°C), respectivamente. Cada fração foi dividida em dois grandes grupos. O Primeiro denominado de hidrocarbonetos e o

segundo de heteroaromáticos (compostos que possuem outros elementos além de carbono e hidrogênio). Os hidrocarbonetos foram subdivididos em parafínicos, olefínicos, naftênicos e aromáticos, enquanto os heteroaromáticos foram subdivididos em compostos oxigenados, nitrogenados, com enxofre e compostos com halogênios.

|                            | ÁREAS CROMATOGRÁFICAS (%) |       |       |       |       |       |       |           |  |
|----------------------------|---------------------------|-------|-------|-------|-------|-------|-------|-----------|--|
| Temperatura (°C)           | 278                       | 346   | 384   | 428   | 469   | 500   | 511   | 508       |  |
| Compostos                  | 55'                       | 65'   | 75'   | 85'   | 95'   | 105'  | 115'  | Após 115' |  |
| Hidrocarbonetos            | 94,18                     | 84,56 | 86,57 | 82,98 | 90,01 | 93,54 | 83,95 | 70,11     |  |
| Parafínicos                | 0,00                      | 0,00  | 0,00  | 0,00  | 0,00  | 0,00  | 0,00  | 0,00      |  |
| Olefínicos                 | 0,00                      | 0,00  | 0,00  | 0,00  | 0,00  | 0,00  | 0,00  | 0,00      |  |
| Naftênicos                 | 22,34                     | 22,35 | 21,65 | 21,51 | 19,70 | 15,84 | 26,15 | 31,49     |  |
| Aromáticos                 | 71,83                     | 62,22 | 64,93 | 61,47 | 70,31 | 77,70 | 57,81 | 38,62     |  |
| Heteroaromáticos           | 5,83                      | 15,44 | 13,43 | 17,02 | 9,99  | 6,46  | 16,05 | 29,89     |  |
| Compostos<br>Oxigenados    | 4,19                      | 12,59 | 10,73 | 15,64 | 8,59  | 6,46  | 15,30 | 26,56     |  |
| Compostos<br>Nitrogenados  | 1,64                      | 2,85  | 2,70  | 1,39  | 1,40  | 0,00  | 0,00  | 3,33      |  |
| Compostos com<br>enxofre   | 0,00                      | 0,00  | 0,00  | 0,00  | 0,00  | 0,00  | 0,00  | 0,00      |  |
| Compostos com<br>Halogênio | 0,00                      | 0,00  | 0,00  | 0,00  | 0,00  | 0,00  | 0,75  | 0,00      |  |
| Total                      | 100                       | 100   | 100   | 100   | 100   | 100   | 100   | 100       |  |

Tabela 4.13 - Composições químicas das frações destiladas dos OPP's, no decorrer do processo, na faixa da gasolina (40°C-175°C).

|                            | ÁREAS CROMATOGRÁFICAS (%) |     |       |       |       |       |       |           |
|----------------------------|---------------------------|-----|-------|-------|-------|-------|-------|-----------|
| Temperatura (°C)           | 278                       | 346 | 384   | 428   | 469   | 500   | 511   | 508       |
| Compostos                  | 55'                       | 65' | 75'   | 85'   | 95'   | 105'  | 115'  | Após 115' |
| Hidrocarbonetos            | 82,21                     | -   | 73,88 | 48,48 | 78,19 | 69,23 | 68,87 | 22,38     |
| Parafínicos                | 0,00                      | -   | 0,00  | 2,03  | 0,00  | 0,00  | 0,00  | 5,38      |
| Olefínicos                 | 0,00                      | -   | 0,212 | 8,20  | 0,00  | 0,00  | 0,00  | 8,50      |
| Naftênicos                 | 33,35                     | -   | 28,33 | 3,02  | 23,34 | 21,79 | 27,57 | 4,87      |
| Aromáticos                 | 48,86                     | -   | 45,34 | 35,24 | 54,85 | 47,44 | 41,30 | 3,63      |
| Heteroaromáticos           | 17,79                     | •   | 26,12 | 51,52 | 21,81 | 30,77 | 31,16 | 77,62     |
| Compostos<br>Oxigenados    | 13,61                     | -   | 20,98 | 49,15 | 15,77 | 26,18 | 24,95 | 71,93     |
| Compostos<br>Nitrogenados  | 2,46                      | -   | 2,93  | 2,37  | 1,48  | 2,89  | 3,04  | 2,96      |
| Compostos com<br>enxofre   | 0,00                      | -   | 0,00  | 0,00  | 0,00  | 0,00  | 1,33  | 1,66      |
| Compostos com<br>Halogênio | 1,72                      | -   | 2,21  | 0,00  | 4,57  | 1,69  | 1,84  | 1,08      |
| Total                      | 100                       | -   | 100   | 100   | 100   | 100   | 100   | 100       |

Tabela 4.14 - Composições químicas das frações destiladas dos OPP's, no decorrer do processo, na faixa do querosene (175-235°C).

|                            | ÁREAS CROMATOGRÁFICAS (%) |       |       |       |       |      |      |           |
|----------------------------|---------------------------|-------|-------|-------|-------|------|------|-----------|
| Temperatura (°C)           | 278                       | 346   | 384   | 428   | 469   | 500  | 511  | 508       |
| Compostos                  | 55'                       | 65'   | 75'   | 85'   | 95'   | 105' | 115' | Após 115' |
| Hidrocarbonetos            | 20,69                     | 19,77 | 19,18 | 27,53 | 38,34 | -    | -    | -         |
| Parafínicos                | 12,16                     | 6,35  | 7,62  | 9,61  | 5,16  | -    | -    | -         |
| Olefínicos                 | 0,00                      | 0,00  | 0,00  | 0,00  | 2,52  | -    | -    | -         |
| Naftênicos                 | 0,00                      | 6,55  | 6,78  | 2,73  | 4,14  | -    | -    | -         |
| Aromáticos                 | 8,53                      | 6,87  | 4,77  | 15,19 | 26,52 | -    | -    | -         |
| Heteroaromáticos           | 79,32                     | 80,24 | 80,77 | 72,47 | 61,67 | -    | -    | -         |
| Compostos<br>Oxigenados    | 65,79                     | 70,43 | 71,15 | 38,44 | 46,84 | -    | -    | -         |
| Compostos<br>Nitrogenados  | 1,48                      | 6,40  | 4,78  | 13,03 | 7,24  | -    | -    | -         |
| Compostos com<br>enxofre   | 0,00                      | 0,00  | 4,84  | 5,34  | 2,05  | -    | -    | -         |
| Compostos com<br>Halogênio | 12,04                     | 3,41  | -     | 15,66 | 5,55  | -    | -    | -         |
| Total                      | 100                       | 100   | 100   | 100   | 100   | -    | -    | -         |

Tabela 4.15 - Composições químicas das frações destiladas dos OPP's, no decorrer do processo, na faixa do diesel leve (235 - 305°C).

|                            | ÁREAS CROMATOGRÁFICAS (%) |       |       |     |       |      |      |           |  |
|----------------------------|---------------------------|-------|-------|-----|-------|------|------|-----------|--|
| Temperatura (°C)           | 278                       | 346   | 384   | 428 | 469   | 500  | 511  | 508       |  |
| Compostos                  | 55'                       | 65'   | 75'   | 85' | 95'   | 105' | 115' | Após 115' |  |
| Hidrocarbonetos            | -                         | 22,52 | 20,60 | -   | 25,03 | -    | -    | -         |  |
| Parafínicos                | -                         | 4,70  | 5,69  | -   | 4,98  | -    | -    | -         |  |
| Olefínicos                 | -                         | 0,00  | 0,00  | -   | 0,00  | -    | -    | -         |  |
| Naftênicos                 | -                         | 1,60  | 0,00  | -   | 0,38  | -    | -    | -         |  |
| Aromáticos                 | -                         | 16,22 | 14,91 | -   | 19,67 | -    | -    | -         |  |
| Heteroaromáticos           | -                         | 77,48 | 79,40 | -   | 74,97 | -    | -    | -         |  |
| Compostos<br>Oxigenados    | -                         | 51,34 | 40,41 | -   | 52,23 | -    | -    | -         |  |
| Compostos<br>Nitrogenados  | -                         | 9,17  | 8,25  | -   | 8,22  | -    | -    | -         |  |
| Compostos com<br>enxofre   | -                         | 4,08  | 0,43  | -   | 0,00  | -    | -    | -         |  |
| Compostos com<br>Halogênio | -                         | 12,88 | 30,32 | -   | 14,53 | -    | -    | -         |  |
| Total                      | -                         | 100   | 100   | -   | 100   | -    | -    | -         |  |

Tabela 4.16 - Composições químicas das frações destiladas dos OPP's, no decorrer do processo, na faixa do diesel Pesado (305 - 400°C).

De maneira geral, verifica-se na tabela 4.13, que o produto obtido na faixa da gasolina é constituído majoritariamente por hidrocarbonetos aromáticos e naftênicos. Os aromáticos constituídos, essencialmente, por compostos BTX (benzeno, tolueno e xileno) e cimenos, enquanto os naftênicos, em sua grande parte, por d-limoneno. Devido à presença desses cinco compostos, foi possível observar que essa fração, no decorrer do processo, é formada por 70,11 a 94,18% de hidrocarbonetos, em % de área cromatográfica.

Ainda na faixa da gasolina, os compostos oxigenados foram os heteroaromáticos em maior percentual de área cromatográfica, variando de 5,83 a 29,89%. Seguido por compostos nitrogenados. Nota-se, ainda, que os compostos com halogênio, somente foi verificado para a destilado do OPP 115' e não houve presença de compostos com enxofre nesses destilados.

Analisando a tabela 4.14, compostos separados na faixa do querosene, verifica-se, de maneira geral, que os hidrocarbonetos reduziram e os heteroaromáticos aumentaram, em comparação a fração da gasolina. Provavelmente esse aumento vertiginoso dos heteroaromáticos se deve pelo ataque de heteroátomos, principalmente o oxigênio, nos compostos aromáticos. No destilado do OPP após 115' verifica-se, na faixa do querosene, um total de 71,93% de compostos oxigenados e 3,63% de aromáticos, enquanto para a faixa da gasolina, tem-se 26,56% de compostos oxigenados e 38,62% de aromáticos.

Na tabela 4.15, compostos na faixa do diesel leve, verifica-se que o percentual de hidrocarbonetos continuou reduzindo, em comparação as faixas anteriores. Agora, além da redução dos compostos aromáticos, verifica-se a redução dos compostos naftênicos, principalmente o d-limoneno. Nessa faixa de destilação o percentual de naftênicos variou de 0 a 6,78% de área cromatográfica, enquanto na faixa do querosene esse grupo de compostos estava entre 4,87 a 33,35% e na faixa da gasolina entre 15,84 a 31,49%.

Ainda na faixa do diesel leve, verifica-se um crescimento significativo dos heteroaromáticos. Isso foi possível devido ao crescimento dos compostos com oxigênio, nitrogênio, enxofre e halogênios, de modo geral. Nessa faixa, encontra-se o maior percentual de área cromatográfica para os compostos oxigenados (71,15%), entre todas as amostras estudadas. Encontra-se, também, maiores percentuais de compostos com enxofre (5,34%) e com halogênios (15,66%), obtidos na destilação do OPP 85', comparado à fração anterior. O enxofre é um agente de vulcanização que ao ser adicionado ao pneu, juntamente com o incremento de calor e pressão, propiciará um aumento das ligações entre as macromoléculas ("crosslinking") nas borrachas naturais e

sintéticas, transformando-as do estado plástico ao elástico. Os compostos com halogênios, podem advir de borrachas bromobutil e clorobutil, comumente utilizadas na fabricação de pneus, enquanto os compostos oxigenados e nitrogenados podem ser originados de diferentes fontes, deste a composição de alguns elastômeros (Elastômeros de Acrilonitrila-Butadieno - NBR) até na constituição dos aditivos (aceleradores de vulcanização, antioxidantes, ativadores, cargas, plastificantes, etc.) (GRISON,2010).

Para a faixa do diesel pesado, tabela 4.16, destaca-se um incremento de compostos halogenados, em relação aos destilados anteriores. O maior percentual de área cromatográfica para os halogenados, entre todos destilados, foi encontrado na destilação do OPP 75' na fração do diesel pesado. (30,32%).

Assim, pode-se inferir que a fração da gasolina e do querosene são constituídas essencialmente por hidrocarbonetos, enquanto o diesel leve e pesado por heteroaromáticos. Nota-se, ainda, que os compostos com enxofre e com halogênios tendem a ser separados a partir da faixa do diesel leve, conforme mostra a figura 4.38.



Figura 4.38 – Cromatogramas dos destilados do OPP, obtido em 75 minutos de processo, nas faixas da gasolina, querosene, diesel leve e diesel pesado.

Pode-se observar, também, que as composições químicas dos destilados, no decorrer do processo, sofreram alterações tanto do número de substâncias identificadas quanto na quantificação desses compostos, em termos de % de área cromatográfica. Isso ocorreu em todas as faixas destiladas, conforme mostra os anexos I (faixa da gasolina), J

(faixa do querosene), K (faixa do diesel leve) e L (faixa do diesel pesado). Porém, constata-se que a faixa da gasolina é formada, predominantemente, por compostos com 8 a 10 carbonos ( $C_8 \ a \ C_{10}$ ), a faixa do querosene por  $C_8 \ a \ C_{17}$ , a faixa do diesel leve por  $C_{15}$  a  $C_{21}$  e a faixa do diesel pesado por  $C_{17} \ a \ C_{23}$ . Estes valores estão em conformidade aos destilados derivados do petróleo em relação aos números de carbonos, pois segundo Thomas *et al.*, (2004) e Szklo e Uller, (2008) as composições aproximadas dessas frações são: gasolina ( $C_5 \ a \ C_{10}$ ), querosene ( $C_{11} \ a \ C_{12}$ ), diesel leve ( $C_{13} \ a \ C_{17}$ ) e diesel pesado ( $C_{18} \ a \ C_{25}$ ).

## **CAPÍTULO 5**

### **COSIDERAÇÕES FINAIS**

#### 5.1 – CONCLUSÕES GERAIS

De acordo com os resultados obtidos na realização deste trabalho foram possíveis as seguintes conclusões:

Através da análise granulométrica foi possível verificar que 85,21% das partículas possuíam granulometria variando entre 0,94 a 2,83 mm. Valores estes ideais para aplicações industriais de um processo contínuo de pirólise.

A caracterização dos catalisadores permitiu concluir que esses materiais, sintetizados / tratados a partir de rejeitos industriais, possuíam características morfológicas e composicional propícios para aplicação em processos de pirólise de pneus.

Verificou-se, dentro da faixa de temperatura estudada, nos craqueamentos térmicos, que os rendimentos dos óleos de pirólise de pneu (OPP) se comportam de maneira diretamente proporcional a temperatura, enquanto o coque se comporta de modo inverso. Esses comportamentos foram constatados tanto na escala de bancada quanto na piloto.

O uso de catalisador no processo de craqueamento do pneu, favorece o aumento do rendimento do óleo de pirólise, principalmente nos processos que envolveram catalisadores oriundos de rejeitos industriais. Porém, o tratamento químico com NaOH na matéria prima fez com que os rendimentos da fase líquida da pirólise diminuíssem.

Os índices de acidez dos OPP's, tanto dos processos térmicos quanto dos termocatalíticos, mostraram-se baixos em comparação aos processos com óleos e gorduras. O uso do catalisador Ca(OH)<sub>2</sub> e da técnica de impregnação de NaOH no pneu, propiciou obter valores inferiores a 1 mgKOH/g. Esse parâmetro é fundamental, pois elevados valores tornam inviável a utilização do OPP em motores, devido à redução da vida útil destes.

No processo em escala de bancada, obtêm-se elevados valores para compostos alifáticos e mínimos para os aromáticos. No processo térmico essa constatação foi mais evidente para o processo realizado a T=400°C.

No craqueamento termocatalítico, em T=500°C (maior rendimento), o uso de catalisadores favorece a produção de compostos alifáticos, sendo o processo com zeólita o que obteve o maior aumento em relação ao processo térmico (31,90%). Quanto aos compostos aromáticos, os processos com catalisadores proporcionaram uma redução dos mesmos, sendo o processo com lama vermelha 1M HCl o que obteve a maior redução (45,89%). Constata-se, ainda, que o uso de catalisadores no processo de craqueamento de pneus, favorece a redução ou eliminação de compostos com enxofre na fração líquida.

Verifica-se nos processos com impregnação química do pneu, nas concentrações estudadas de NaOH, que o aumento da concentração da base favorece a formação de compostos heteroaromáticos e redução de alifáticos.

O comportamento dos compostos alifáticos nos processos térmicos, termocatalítico e com impregnação química da matéria prima, foi fortemente influenciado pela produção do *d*-limoneno nos óleos de pirólise de pneus.

O acompanhamento da evolução do processo em escala piloto permitiu concluir que:

A propriedades físico-químicas apresentam variações durante o processo de craqueamento, e essas flutuações foram mais evidentes no início do processo. Destaca-se a baixa acidez e a baixa viscosidade desse produto durante todo o processo.

Pode-se notar que os compostos aromáticos foi o grupo de substâncias predominante durante todo experimento. Esse grupo é constituído majoritariamente por compostos BTX (benzeno, tolueno e xilenos) e cimenos. E sua formação é favorecida pelo aumento temperatura durante o processo.

A análise cromatográfica permitiu identificar e quantificar as principais substâncias obtidas nos OPP's durante o processo. Sendo os compostos d-limoneno e BTX (benzeno, tolueno e xilenos) e os cimenos os que se apresentavam em maior quantidade.

Para obtenção de compostos valiosos para a indústria química, a partir dos pneus inservíveis, faz-se necessário além da otimização dos parâmetros de projeto ( homogeneização do calor no reator, isolamento do condensador, etc.) o ajuste das rampas de temperaturas no processo: A primeira rampa se daria em uma taxa elevada de temperatura até 394°C, mantendo-se nessa temperatura até o máximo de coleta de OPP.

Após isso, a taxa seria reduzida com aquecimento programado até 500°C, onde essa temperatura seria mantida até fim do gotejamento do OPP.

No estudo reológico dos OPP's durante o processo de craqueamento de pneus, pode-se inferir que:

A caracterização reológica do óleo de pirólise de pneu durante a evolução do processo, na temperatura de 28 °C e em taxas de deformação entre 0 s<sup>-1</sup> à 600 s<sup>-1</sup>, demonstrou que todas as amostras apresentam comportamentos complexos. Em pequenas taxas ( $< 200 \text{ s}^{-1}$ ) comportam-se como fluidos pseudoplásticos, em taxas moderadas (200 s<sup>-1</sup> à 400 s<sup>-1</sup>) como fluidos newtonianos e em taxas elevadas (400 s<sup>-1</sup> à 600 s<sup>-1</sup>) como fluidos dilatantes. Porém, no âmbito global, as amostras apresentam comportamento de fluidos dilatantes.

Curvas de fluxo e de viscosidade foram obtidas experimentalmente e testadas pelos modelos de Herschel-Bulkley, Bingham, e Ostwald de Waele. Todos os modelos apresentaram bons coeficientes de determinação quando ajustados aos dados de fluxo, mas as análises dos parâmetros reológicos confirmaram que o modelo de Herschel-Bulkley é o que melhor descreve o comportamento reológico do fluido em todos os pontos da evolução do processo.

Os parâmetros reológicos dos modelos de Herschel-Bulkley, Bingham, e Ostwald de Waele tiveram variações no início do craqueamento, mas tendem a se estabilizar em torno de 65 minutos de processo.

Em Relação ao fracionamento dos OPP's, durante o processo de craqueamento de pneus, pode-se concluir:

Os rendimentos das frações na faixa da gasolina (20,05 a 38,94%), do querosene (9,77 – 19,79%), do diesel leve (10.22 - 38.33%) e do diesel pesado (0 -25.83%) foram influenciados pelo tempo de reação de craqueamento.

Os destilados na faixa da gasolina e do querosene são constituídos essencialmente por hidrocarbonetos aromáticos e naftênicos. Os compostos aromáticos são constituídos, principalmente, por compostos BTX (benzeno, tolueno e xileno) e cimenos, enquanto os naftênicos, em sua grande parte, por d-limoneno. Verificou-se também, que o d-limoneno é obtido, em maior quantidade, na faixa da gasolina e do querosene.

Os destilados na faixa do diesel leve e do diesel pesado são constituídos majoritariamente por compostos oxigenados, nitrogenados e halogenados. Nota-se, ainda, que os compostos com enxofre e com halogênios tendem a ser separados a partir da faixa do diesel leve.

A faixas de destilações proposto por Thomas *et al.* (2004), e utilizadas para fracionar os OPP's desse trabalho, mostraram-se adequadas para se obter compostos, em relação ao número de carbono, semelhantes aos derivados do petróleo (gasolina, querosene, diesel leve e diesel pesado).

#### 5.2 – SUGESTÕES PARA TRABALHOS FUTUROS

- Otimizar o processo de craqueamento, em escala piloto, objetivando aumentar o rendimento do óleo de pirólise de pneu.
- Realizar o craqueamento termocatalítico, com catalisadores oriundos de rejeitos industriais, em escala piloto.
- Investigar o óleo de pirólise de pneu, justamente com suas frações, com padrões analíticos correspondentes, objetivando conhecer a real composição destes componentes.
- Estudar as aplicações de operações (extração líquido-líquido, adsorção, destilações, etc.) na retirada de compostos com enxofre nos óleos de pirólise de pneu.
- 5. Realizar testes em motores do óleo de pirolise de pneu e de suas frações.

## **CAPÍTULO 6**

## **REFERÊNCIAS BIBLIOGRÁFICAS**

A. Agrawal, K. K. Sahu,; B. D. Pandey, Solid waste management in nonferrous industries in indian. Resources, Conservation & Recycling, n. 42, pp. 99-120, 2004.

Abreu, D. H. S. Craqueamento termocatalítico da borra de neutralização do óleo de palma (elaeis guineensis) em escala piloto. Dissertação (Mestrado em Engenharia Química). Universidade de Federal do Pará. Belém. 2013.

A. C. Neyva, Caracterização de Materiais por Espectroscopia, Difração. São Paulo: PQI / EPUSP, 2004. Apostila da disciplina de pós-graduação do Departamento de Engenharia Química PQI - 5841.

AHMARUZZAMAN, M. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Advances in Colloid and Interface Science, New York, v. 166, n. 1/2, p. 36-59, 2011.

ALBUQUERQUE, M.L.S.; GUEDES, I.; ALCANTARA JR., P.; MOREIRA, S.G.C.; BARBOSA NETO, N.M.; CORREA, D.S.; ZILIO S.C. Characterization of. Buriti (Mauritia flexuosa L.) Oil by Absorption and Emission Spectroscopies J. Braz. Chem. Soc., v.16, n°6 a, p.1113-1117, 2005.

Almeida, H.S. Produção de biocombustíveis via craqueamento térmico-catalítico de resíduos sólidos de caixas de gordura com carbonato de sódio e lama vermelha ativada termicamente. Tese (Doutorado em Engenharia de Recursos Naturais). Universidade Federal do Pará. Belém. 2015.

Al-Zahrani SM. A generalized rheological model for shear thinning fluids. J. Pet. Sci. Eng. 17: 211–215, 1997. https://doi.org/10.1016/S0920-4105(96)00072-1.

Andrade, H.S. Pneus inservíveis: Alternativas possíveis de reutilização. Monografia (Graduação em ciências econômicas). Universidade Federal de Santa Catarina. Florianópolis. 2007.

ANIP - Associação Nacional da Indústria de Pneumáticos. Livro branco da indústria de pneus – uma política industrial para o setor .2015 Disponível em <<u>http://www.anip.org.br/anip-em-numeros/publicacoes/</u>> Acesso em: Fevereiro 2019.

ANTUNES, M. L. P.; CONCEIÇÃO, F. T.; NAVARRO, G. R. B. Caracterização da Lama Vermelha Brasileira (Resíduo do Refino da Bauxita) e Avaliação de suas Propriedades para Futuras Aplicações. 3rd International Workshop Advances in Cleaner Production. São Paulo – Brazil – May 18th-20ndth – 2011.

Associação Nacional da Indústria de Pneumáticos (ANIP). Acessado em < <u>http://www.anip.com.br/</u> em 03/02/2019>.

Antoniou N, Stavropoulos G, Zabaniotou A. Activation of end of life tyres pyrolytic char for enhancing viability of pyrolysis e critical review, analysis and recommendations for a hybrid dual system. Renew Sustain Energy Rev 2014;39:1053e73. http://dx.doi.org/10.1016/j.rser.2014.07.143.

ATKINS, P; DE PAULA, J. Físico química, LTC, v 02, ed 08, 2006.

Aylon, E, Fernandez-Colino A, Murillo R, Navarro MV, García, T, Mastral, AM. Valorisation of waste tyre by pyrolysis in a moving bed reactor. Waste Management. 30: 1220–1224, 2010. <u>https://doi:10.1016/j.wasman.2009.10.001.</u>

BALAKRISHNAN, M. et al. Hydrogen production from methane in the presence of red mud: making mud magnetic. Green Chemistry, Cambridge, v. 11, n. 1, p. 42-45, Jan. 2009.

BANCO NACIONAL DE DESENVOLVIMENTO ECONÔMICO E SOCIAL (BNDES). Panorama da indústria de pneus no Brasil: ciclo de investimentos, novos competidores e a questão do descarte de pneus inservíveis. Brasília. Jun. 1998. Disponível em: <u>https://web.bndes.gov.br/bib/jspui/handle/1408/2529</u> >. Acesso em: 05 junho 2019.

BARATA, M. S. Concreto de Alto Desempenho no Pará: Estudo da viabilidade Técnica e Econômica de produção de concreto de alto desempenho com os materiais disponíveis em Belém através do emprego de adições de sílica ativa e metacaulim. 1998. 164 f. Dissertação (Mestrado em Engenharia Civil) – Programa de Pós-Graduação em Engenharia Civil, Universidade Federal do Rio Grande do Sul, Porto Alegre.

Besma Khiari , Sana Kordoghli , Daoud Mihoubi , Fethi Zagrouba , Mohand Tazerout.Modeling kinetics and transport phenomena during multi-stage tire wastes pyrolysis using<br/>Comsol.WasteManagement78:337-345,2018.https://doi.org/10.1016/j.wasman.2018.06.002

Capelli.A. Influência da faixa de taxas de deformação na precisão de caracterizações reológicas de fluidos. Dissertação. Universidade Estadual Paulista "Júlio de Mesquita Filho", 2012.

Claudia Tavera-Ruiz, Paola Gauthier-Maradei, Mickaël Capron, Deyanira Ferreira-Beltran, ·Cristian Palencia-Blanco, · Jean-Charles Morin, · Franck Dumeignil. An Alternative to the Cymenes Production from Scrap Tire Rubber Using Heteropolyacid Catalysts. Waste and Biomass Valorization, 2018. <u>https://doi.org/10.1007/s12649-018-0310-1</u>.

Choi GG, Jung SH, Oh SJ, Kim JS. Total utilization of waste tire rubber through pyrolysis to obtain oils and CO2 activation of pyrolysis char. Fuel Process Technol 2014;123:57 - 64. <u>http://dx.doi.org/10.1016/j.fuproc.2014.02.007</u>.

CIOLA. R. Fundamentos da catálise, 1<sup>a</sup> edição, Editora Moderna, Editora da Universidade de São Paulo, 1981.

Claudia Tavera-Ruiz, Paola Gauthier-Maradei, Mickaël Capron, Deyanira Ferreira-Beltran, Cristian Palencia-Blanco, · Jean-Charles Morin, · Franck Dumeignil. An Alternative to the Cymenes Production from Scrap Tire Rubber Using Heteropolyacid Catalysts Waste and Biomass Valorization. <u>https://doi.org/10.1007/s12649-018-0310-1</u>. CONAMA - Conselho Nacional do Meio Ambiente. Resolução nº 416, de 30 de setembro de 2009. Brasília: DOU nº 188, em 01/10/2009, págs. 64-65.

Coriolano, A.C.F; Barbosa, A.M.A; Lima, A.F; Melo, P.M.G; Araujo, A.S. Aplicações ambientais de zeólitas na indústria do petróleo. Revista eletrônica de petróleo e gás. P. 9-18, abr./set.2015. ISSN 2316-6681

CORREA, E. S. Síntese e caracterização de analcina obtida a partir o rejeito caulim com aplicação em adsorção. Universidade Federal do Pará. Instituto de Tecnologia (Dissertação de Mestrado). Belém, 2006.

Correa, O. A. Produção de biocombustíveis em diferentes escalas via craqueamento termico catalítico de resíduos de caixa de gordura com catalisador Na<sub>2</sub>CO<sub>3</sub>. Dissertação (Mestrado em Engenharia Química). Universidade de Federal do Pará. Belém. 2015.

COSTA, E. T. de S. et al. Subproduto da indústria de alumínio como amenizante de solos contaminados com cádmio e chumbo. Revista Brasileira de Ciência do Solo, Viçosa, MG, v. 32, n. 6, p. 2533-2546, nov./dez. 2008. Disponível em: <a href="http://www.scielo.br/scielo.php?script=sci\_arttext&pid=S0100-06832008000600030&nrm=iso">http://www.scielo.br/scielo.php?script=sci\_arttext&pid=S0100-06832008000600030&nrm=iso</a>. Acesso em: 10 ago. 2012.

Czajczynska. D; Krzyzynska.R; Jouhara.H; Spencer.N. Use of pyrolytic gas from waste tire as a fuel: A review. Energy, 134, 1121 – 1131, 2017. http://dx.doi.org/10.1016/j.energy.2017.05.042.

DENATRAN - Departamento Nacional de Trânsito. Frota 2017. Disponível. <<u>http://www.denatran.gov.br/index.php/estatistica/610-frota-2017</u>> Acesso em: Fevereiro 2019.

D.Y.C. Leung, X.L. Yin, Z.L. Zhao, B.Y. Xu, Y. Chen. Pyrolysis of tire powder: influence of operation variables on the composition and yields of gaseous product. Fuel Processing Technology 79 (2002) 141–155.

Doğan O, Çelik M.B, Bülent Ö. The effect of tire derived fuel/diesel fuel blends utilization on diesel engine performance and emissions. Fuel. 95: 340-346, 2012. https://doi:10.1016/j.fuel.2011.12.033

Economia. 2º Edição revisada. Rio de Janeiro: Editora Interciência, 2008.

E. C. Rodrigues; h. S. Almeida; j. C. F. Reis jr; c. A. F. Rocha junior; e. N. Macêdo; j. A. S. Souza. Síntese de material zeolítico a partir de caulim da amazônia para adsorção de cobre. 2019.

Edwin Raj R, Robert Kennedy Z, Pillai BC. Optimization of process parameters in flash pyrolysis of waste tyres to liquid and gaseous fuel in a fluidized bed reactor. Energy Convers Manag 2013;67:145e51. <u>http://dx.doi.org/10.1016/</u> j.enconman.2012.11.012.

Fanfan Xu, Bo Wang, Dan Yang, Xue Ming, Yuan Jiang, Junhui Hao, Yingyun Qiao, Yuanyu Tian. TG-FTIR and Py-GC/MS study on pyrolysis mechanism and products distribution of waste bicycle tire. Energy Conversion and Management 175 (2018) 288–297. <u>https://doi.org/10.1016/j.enconman.2018.09.013</u>.

Ferreira CC, Costa EC, de Castro DAR, Pereira MS, Mâncio AA, Santos MC, et al. Deacidification of organic liquid products by fractional distillation in laboratory and pilot scales. Journal of Analytical and Applied Pyrolysis. 2017;**127**:468-489.

Floriani.M.A; Furlanetto. V. C; Sehnem. S. Descarte sustentável de pneus inservíveis. Navus, 6, n. 2, 37 – 51, 2016. https://doi.org/10.22279/navus.2016.v6n2.p37-51.347.

FOGLER, H.S. Elementos de Engenharia das reações Químicas. LTC, 4 ed: , 2009.

Gabas, A.L; Menezes, R.S; Romero, J.T. Reologia na indústria de biocombustíveis. Ed. Indi. 1° Ed. Lavras, (2012).

Grison, É.C; Becker, E.J; Sartori, A.F. Borrachas e seus aditivos: componentes, influências e segredos; ed letra e vida. Posto Alegre, 2010.

Gomes, I. F. G; oliveira, r. M; guerreiro, I. H. H; castro, d. A. R; Santos, W. G. ; souza, j. A. S; machado, n. T; "estudo do processo de craqueamento termocatalítico da gordura residual do restaurante universitário da ufpa com diferentes porcentagens de catalizador.", p. 116-119 . In: . São paulo: blucher, 2018.issn 2359-1757, doi 10.5151/cobeq2018-pt.0037.

GUNSTONE, F.D. Vegetable Oils In: SHAHIDI, F. (Org.) Bailey's Industrial Oil &Fat Products. 6<sup>a</sup> ed. v.1, John Wiley & Son, New York, p.213-268, 2005.

Gyung-Goo Choi, Seung-Jin Oh, Joo-Sik Kim. Clean pyrolysis oil from a continuous two-stage pyrolysis of scrap tires using in-situ and ex-situ desulfurization. Energy 141 (2017a) 2234 - 2241. <u>https://doi.org/10.1016/j.energy.2017.12.015</u>.

Gyung-Goo Choi, Seung-Jin Oh, Joo-Sik Kim. Scrap tire pyrolysis using a new type twostage pyrolyzer: Effects of dolomite and olivine on producing a low-sulfur pyrolysis oil. Energy 114 (2016) 457 – 464. <u>http://dx.doi.org/10.1016/j.energy.2016.08.020</u>.

Hazardous Waste Management System Identification and Listing of Hazardous Waste: Spent Catalysts from Dual-Purpose Petroleum Hydroprocessing Reactors. Federal Register, v. 67, p.30811-30818, 2002.

HIND, R. A.; BHARGAVA, S. K.; GROCOTT, S. C. The surface chemistry of Bayer process solids: a review. Colloids and surfaces A: Physicochemical and engineering aspects, n. 146, p.359-374, 1999.

IBAMA - Instituto Brasileiro de Meio Ambiente e dos Recursos Naturais Renováveis. Relatório de Pneumáticos. Dados apresentados no Relatório de Pneumáticos – Resolução CONAMA nº 416/09 do Cadastro Técnico Federal, Brasília, (2011).

IBAMA - Instituto Brasileiro de Meio Ambiente e dos Recursos Naturais Renováveis. Relatório de Pneumáticos. Dados apresentados no Relatório de Pneumáticos – Resolução CONAMA nº 416/09 do Cadastro Técnico Federal, Brasília, (2012).

IBAMA - Instituto Brasileiro de Meio Ambiente e dos Recursos Naturais Renováveis. Relatório de Pneumáticos. Dados apresentados no Relatório de Pneumáticos – Resolução CONAMA nº 416/09 do Cadastro Técnico Federal, Brasília, (2013). IBAMA - Instituto Brasileiro de Meio Ambiente e dos Recursos Naturais Renováveis. Relatório de Pneumáticos. Dados apresentados no Relatório de Pneumáticos – Resolução CONAMA nº 416/09 do Cadastro Técnico Federal, Brasília, (2014).

IBAMA - Instituto Brasileiro de Meio Ambiente e dos Recursos Naturais Renováveis. Relatório de Pneumáticos. Dados apresentados no Relatório de Pneumáticos – Resolução CONAMA nº 416/09 do Cadastro Técnico Federal, Brasília, (2015).

IBAMA - Instituto Brasileiro de Meio Ambiente e dos Recursos Naturais Renováveis. Relatório de Pneumáticos. Dados apresentados no Relatório de Pneumáticos – Resolução CONAMA nº 416/09 do Cadastro Técnico Federal, Brasília, (2016).

IBAMA - Instituto Brasileiro de Meio Ambiente e dos Recursos Naturais Renováveis. Relatório de Pneumáticos. Dados apresentados no Relatório de Pneumáticos – Resolução CONAMA nº 416/09 do Cadastro Técnico Federal, Brasília, (2017).

IBAMA - Instituto Brasileiro de Meio Ambiente e dos Recursos Naturais Renováveis. Relatório de Pneumáticos. Dados apresentados no Relatório de Pneumáticos – Resolução CONAMA nº 416/09 do Cadastro Técnico Federal, Brasília, (2018).

IDEM, R. O.; KATIKANENI, S. P. R.; BAKHSHI, N. Thermal cracking of canola oil:reaction products in the presence and absence of steam. Energy and Fuels, v. 10, p. 1150-1162, 1996.

J. Alvarez, G. Lopez, M. Amutio, N.M. Mkhize, B. Danon, P. van der Gryp, J.F. Gorgens, J. Bilbao, M. Olazar. Evaluation of the properties of tyre pyrolysis oils obtained in a conical spouted bed reactor. Energy 128 (2017) 463 – 474. http://dx.doi.org/10.1016/j.energy.2017.03.163.

J. Clayden, et al. Organic Chemistry. Oxford University, 2001.

Joseph Zeaiter, Fouad Azizi, Mohammad Lameh, Dia Milani, Hamza Y. Ismail, Ali Abbas. Waste tire pyrolysis using thermal solar energy: An integrated Approach. Renewable Energy 123 (2018) 44 – 51. <u>https://doi.org/10.1016/j.renene.2018.02.030</u>.

Juan Daniel Martínez, Neus Puy, Ramón Murillo, Tomás Garcia, Maria Victoria Navarro, Ana Maria Mastral Waste tyre pyrolysis - A review. Renewable and Sustainable Energy Reviews 23:179–213. 2013

Julius I. Osayi, Sunny Iyuke, Michael O. Daramola, Peter Osifo, Izak J. Van Der Walt Samuel E. Ogbeide. Pyrolytic conversion of used tyres to liquid fuel: characterization and effect of operating conditions. Journal of Material Cycles and Waste Management (2018) 20:1273–1285 <u>https://doi.org/10.1007/s10163-017-0690-5</u>.

Kandasamy. J, Gokalp I. Pyrolysis, combustion, and steam gasification of various types of scrap tires for energy recovery. Energy & Fuels, 29, 346 -354, 2014. http://dx.doi.org/10.1021/ef502283s. KARIMI, E. et al. Ketonization and deoxygenation of alkanoic acids and conversion of levulinic acid to hydrocarbons using a Red Mud bauxite mining waste as the catalyst. Catalysis Today, Amsterdam, v. 190, n. 0, p. 73-88, 2012.

Kar Y. Catalytic pyrolysis of car tire waste using expanded perlite. Waste Management. 31: 1772–1782, 2011. <u>https://doi.org/10.1016/j.wasman.2011.04.005.</u>

Lagarinhos, C.A.F; Tenório, J.A.S. Logística reversa dos pneus usados no Brasil. Polimeros-Ciencia e Tecnologia, 23, 1-10, 2012. <u>http://dx.doi.org/10.1590/S0104-14282012005000059</u>.

Lagarinhos, C.A.F; Tenório, J.A.S; Espinosa, D.C.R. A evolução da logística reversa dos pneus inservíveis no brasil após a aprovação da resolução conama no 416/09. In. Anais do 12° Congresso Brasileiro de Polímeros, 2013.

L. Dandik; H.A. Aksoy. Pyrolysis of used sunflower oil in the presence of sodium carbonate by using fractionating pyrolysis reactor. Fuel Processing Technology. 57 (1998) 81–92.

Leilei Dai, Liangliang Fan, Dengle Duan, Roger Ruan, Yunpu Wang, Yuhuan Liu, Yue Zhou, Yunfeng Zhao, Zhenting Yu. Microwave-assisted catalytic fast co-pyrolysis of soapstock and waste tire for bio-oil production. Journal of Analytical and Applied Pyrolysis 125 (2017) 304–309. <u>http://dx.doi.org/10.1016/j.jaap.2017.03.012</u>.

LHAMAS, D. E. L. Estudo do processo de craqueamento termocatalítico do óleo de palma (Elaeis guineensis) e do óleo de buriti (Mauritia flexuosa l.) para produção de biocombustível. 2013. 219 f. Tese (Doutorado em Engenharia de Recursos Naturais) - Universidade Federal do Pará. Belém, Pará, 2013.

LIU, X.; LIU, J.; PANG, Z. The Process Rebuilding of Tire Liner Product Line System. Applied Mechanics and Materials, 184, 570-573, 2012. https://doi.org/10.4028/www.scientific.net/AMM.184-185.570.

LOPES, J. V. M.; ABREU, D. H. S.; SANTOS, M. C. et al. Estudo comparativo davariação da concentração de catalisador no craqueamento catalítico do sabão de óleo depalma em escala piloto. In: CONGRESSO INTERNACIONAL DE BIOENERGIA, 7,2012, São Paulo. CD-ROM.

MANCIO, A. A. Produção, Fracionamento e Desacidificação de Biocombustíveis Obtidos Via Craqueamento Térmico Catalítico de Óleos Vegetais. Tese (Doutorado em Engenharia de Recursos Naturais). Universidade de Federal do Pará. Belém. 2015.

Malvesti, Álvaro L.; Mignoni, Marcelo L.; Scherer, Robison P.; Penha, Fábio G, Pergher, S.B.C. Estudo da adsorção de compostos sulfurados empregando zeólitas contendo zinco. Quim. Nova, Vol. 32, No. 6, 1491-1494, 2009.

Martinez JD, Puy N, Murillo R, Garcia T, Navarro MV, Mastral AM. Waste tyre pyrolysis - a review. Renewable Sustainable Energy Rev. 23, 179 – 213, 2013. http://dx.doi.org/10.1016/j.rser.2013.02.038. Martın Olazar, Roberto Aguado, David Velez, Miriam Arabiourrutia, and Javier Bilbao. Kinetics of Scrap Tire Pyrolysis in a Conical Spouted Bed Reactor 2005 Ind. Eng. Chem. Res. 2005, 44, 3918-3924

M. A. Rahman, M. A. Aziz. Solar pyrolysis of scrap tire: optimization of operating parameters. Journal of Material Cycles and Waste Management (2018) 20:1207–1215.<u>https://doi.org/10.1007/s10163-017-0686-1</u>.

Mastral A.M, Murillo R, Callén M.S, Garcia T, Snape C.E. Influence of process variables on oils from tire pyrolys is and hydropyrolysis in as wept fixed bed reactor. Energy Fuel,14:739–44, 2000.

M. L. P. Antunes, F. T. da Conceição, G. R. B. Navarro. Caracterização da Lama Vermelha Brasileira (Resíduo do Refino da Bauxita) e Avaliação de suas Propriedades para Futuras Aplicações. 3rd International Workshop Advances in Cleaner Production. 2011

Morceli P. Borracha natural Perspectiva para a safra de 2004/05. Revista de Política Agricola, 2014: 56 - 67.

Mohammad Abdul Aziz, Rami Ali Al-khulaidi, MM Rashid, M.R Islam, MAN Rashid. Design and fabrication of a fixed-bed batch type pyrolysis reactor for pilot scale pyrolytic oil production in Bangladesh. Materials Science and Engineering 184 (2017) 012056. https://doi.org/10.1088/1757-899X/184/1/012056.

M. Rofiqul Islam, H. Haniu, M. Rafiqul Alam Beg. Liquid fuels and chemicals from pyrolysis of motorcycle tire waste: product yields, compositions and related properties. Fuel 2008;87:3112–22.

Muhammad Zohaib Farooq, Muhammad Zeeshan, Saeed Iqbal, Naveed Ahmed, Syed Asfand Yar Shah. Influence of waste tire addition on wheat straw pyrolysis yield and oil quality. Energy 144 (2018) 200-206

MORAES, C. G. Desenvolvimento de Processo para Produção de Zeólita Analcima: Estudo da Influência do Reciclo da Solução de Hidróxido de Sódio. 2010. Dissertação (Mestrado em Engenharia Química) Universidade Federal do Pará, Belém, 2010.

MOTA, S. A. P. Estudo da Obtenção de Biocombustíveis a partir do Processo de Craqueamento em Diferentes Escalas de Produção. Qualificação de Tese (Engenharia de Recursos Naturais da Amazônia) - Universidade Federal do Pará. Belém, 2012.

MOTA, S. A. P.; Craqueamento Termocatalítico de Óleos Vegetais em Diferentes Escalas de Produção. 2013. 332.f. Tese (Doutorado em Engenharia de Recursos Naturais da Amazônia) – Universidade Federal do Pará. Belém/PA, 2013.

Mota SAP, Mancio AA, Lhamas DEL, de Abreu DH., da Silva M.S, dos Santos WG, de Castro DAR, de Oliveira RM., Araujo ME, Borges LEP, Machado NT. Production of green diesel by thermal catalytic cracking of crude palm oil (Elaeis guineensis Jacq) in a pilot plant. J. Anal. Appl. Pyrolysis 110: 1–11, 2014 https://doi.org/10.1016/j.jaap.2014.06.011.

Mohammad Abdul Aziz, Rami Ali Al-khulaidi, MM Rashid, M.R Islam, MAN Rashid. Design and fabrication of a fixed-bed batch type pyrolysis reactor for pilot scale pyrolytic

oil production in Bangladesh. Materials Science and Engineering. 184: 012056, 2017. https://doi.org/10.1088/1757-899X/184/1/012056.

MURRAY, H. H., KELLER, W. D. Kaolins, kaolins and kaolins. In: MURRAY, H. H., BUNDY, W. M., HARVEY, C. C. (ed.). Kaolin Genesis and Utilizations. Colorado: The Clay Minerals Society, 1993.

Naim Akkouche, Mourad Balistrou, Khaled Loubar, Sary Awad, Mohand Tazerout. Heating rate effects on pyrolytic vapors from scrap truck tires. Journal of Analytical and Applied Pyrolysis 123 (2017) 419–429. <u>http://dx.doi.org/10.1016/j.jaap.2016.10.005</u>.

Nabeel Ahmad, Faisal Abnisa, Wan Mohd Ashri Wan Daud. Liquefaction of natural rubber to liquid fuels via hydrous pyrolysis. Fuel 218 (2018a) 227–235. https://doi.org/10.1016/j.fuel.2017.12.117

Naveed Ahmed, Muhammad Zeeshan, Naseem Iqbal, Muhammad Zohaib Farooq, Syed Asfand Shah. Investigation on bio-oil yield and quality with scrap tire addition in sugarcane bagasse pyrolysis. Journal of Cleaner Production 196 (2018bb) 927e934. https://doi.org/10.1016/j.jclepro.2018.06.142.

Nik WBW, Ani FN, Masjuki, HH, Giap SGE. Rheology of bio-edible oils according to several rheological models and its potential as hydraulic fluid. Ind. Crop. Prod. 22: 249-255, 2005. https://doi.org/10.1016/j.indcrop.2005.01.005.

PARANGURU, R.K., RATH, P.C., MISRA, V.N., "Trends in red mud utilization - A review", Mineral Processing and Extractive Metallurgy Review, v. 26, n. 1, pp. 1-29, 2005.

Pereira, A.M. Estudo do processo de craqueamento térmico catalítico do sebo bovino para produção de biocombustível. Tese (Doutorado em Engenharia de Recursos Naturais). Universidade de Federal do Pará. Belém. 2017.

PRADHAN, J.; DAS, J.; DAS, S.; THAKUR, R. S. Adsorption of Phosphate from Aqueous Solution Using Activated Red Mud. Journal of Colloid and Interface Science, v. 204, p. 169-172, 1998.

PRADO, C. M. R. et al. Estudo da ativação ácida e tratamento térmico de bauxita extraída de jazidas em Minas Gerais, Brasil. Cerâmica, São Paulo, V. 58, n. 1, p. 111–117, 2012.

P.T. Williams, Pyrolysis of waste tyres: a review, Waste Manage. 33 (2013) 1714–1728.

P.T. Williams, S. Besler e D.T. Taylor; "The Pyrolysis of Scrap Automotive Tyres"; Fuel, 1990, 69(12), 1474-1482.

P. Castaldi,, M. Silvetti,, L. Santone,, S. Enzo,, P. Melis,, XRD, FTIR, and thermal analysis of bauxite ore-processing waste, Clays and Clay Mineral, v. 56, n 4, pp. 461-469, 2008.

Qinghai Li, Fuxin Li, Aihong Meng, Zhongchao Tan Yanguo Zhang. Thermolysis of scrap tire and rubber in sub/super-critical water. Waste Management 71 (2018) 311–319. https://doi.org/10.1016/j.wasman.2017.10.017. Quek A, Balasubramanian R (2013). Liquefaction of waste tires by pyrolysis for oil and chemicals? a review. J Anal Appl Pyrolysis 101:1–16

RAMOS Leonardo Sohn Nogueira. A logística Reversa de Pneus Inservíveis: O problema da Localização dos Pontos de Coleta. Dissertação de Mestrado. 2005, 99 p. Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Engenharia de Produção, Florianópolis.

R. K. Das, Sunil Kumar Sharma. Fuel characterization and performance parameters analysis of diesel engine using blends of palm biodiesel and tyre pyrolysis oil. J Braz. Soc. Mech. Sci. Eng. (2017) 39:1491–1497. <u>https://doi.org/10.1007/s40430-016-0696-2</u>.

Rocha, S. D. F; Lins, V.F.C; Espírito Santo, B. C. Aspectos do coprocessamento de resíduos em fornos de clínquer. Eng Sanit Ambient, 16, 1-10, 2011. https://dx.doi.org/10.1590/S1413-41522011000100003

Rodrigues, E.C. Estudo da influência do tempo de reação e do teor de "na" na síntese de zeólitas. (Mestrado em Engenharia Química). Universidade de Federal do Pará. Belém. 2013.

Rodriguez IM, Laresgoiti MF, Cabrero MA, Torres A, Chomón MJ, Caballero B (2001) Pyrolysis of scrap tyres. Fuel Process Technol 72:9–22)

Rohit Kumar Singh, Biswajit Ruj, Anusua Jana, Sourav Mondal, Banibrata Jana, Anup Kumar Sadhukhan, Parthapratim Gupta. Pyrolysis of three different categories of automotive tyre wastes: Product yield analysis and characterization. Journal of Analytical and Applied Pyrolysis 135 (2018) 379 – 389 380. https://doi.org/10.1016/j.jaap.2018.08.011.

Rombaldo, C. F.S. Síntese de carvão ativado e óleo combustível a partir da borracha de pneu usado. Campinas – SP, Dissertação (mestrado em engenharia química) – Unicamp. 2008.

SAHU, R. C.; PATEL, R. K.; RAY, B. C. Adsorption of Zn(II) on activated red mud: neutralized by CO2. Desalination, Amsterdam, v. 266, n. 1/3, p. 93-97, 2011.

Sana Kordoghli, Besma Khiari, Maria Paraschiv, Fethi Zagrouba, Mohand Tazerout. Impact of different catalysis supported by oyster shells on the pyrolysis of tyre wastes in a single and a double fixed bed reactor. Waste Management 67 (2017) 288–297. http://dx.doi.org/10.1016/j.wasman.2017.06.001.

Sana Kordoghli, Maria Paraschiv, Radu Kuncser, Mohand Tazerout and Fethi Zagrouba. Catalysts' Influence on Thermochemical Decomposition of Waste Tires. Environmental Progress & Sustainable Energy (Vol.36, No.5). DOI 10.1002/ep.12605.

SANTANA, D. L.; SARAIVA, A. C. F.; NEVES, C. F.; Silva, D. L. Zeólita A sintetizada a partir de rejeitos do processo de beneficiamento de caulim. Cerâmica, 2012. 238-243.

Santos, W. G. Craqueamento termocatalítico do óleo de fritura residual. Dissertação (Mestrado em Engenharia Química). Universidade de Federal do Pará. Belém. 2013.

Santos, M. C. Estudo do processo de craqueamento termocatalítico da borra de neutralização do óleo de palma para produção de biocombustível. Tese (Doutorado em Engenharia de Recursos Naturais). Universidade de Federal do Pará. Belém. 2015.

SANTOS, P. S.; Ciência e Tecnologia de Argilas. 2. ed. São Paulo: Edgar Blücher, 1989, v.1.

SANTOS, P. S.; Ciência e Tecnologia de Argilas. 2. ed. São Paulo: Edgar Blücher, 1989, v.2.

Seidelt S, Müller-Hagedorn M, Bockhorn H. Description of tire pyrolysis by thermal degradation behaviour of main components. J Anal Appl Pyrol 2006;75:11–8.

Sienkiewicz M, Kucinska-Lipka J, Janik H, Balas A. Progress in used tyres management in the European Union: a review. Waste Manag 2012;32: 1742e51. http://dx.doi.org/10.1016/j.wasman.2012.05.010.)

SILVA FILHO, E. da; ALVES, M. Estudo sobre a utilização da lama vermelha para a remoção de corantes em efluentes têxteis. Química Nova, São Paulo, v. 31, n. 5, p. 985-989, set./out. 2008.

SILVA FILHO, E. B.; ALVES, M. C. M.; DA MOTTA, M. Lama vermelha da indústria de beneficiamento de alumina: produção, características, disposição e aplicações alternativas. Revista Matéria, v. 12, n. 2, pp. 322 – 338, 2007.

Soares, Erika Leite de Souza Ferreira. Estudo da Caracterização Gravimétrica e Poder Calorífico dos Resíduos Sólidos Urbanos. Rio de Janeiro: UFRJ/COPPE, 2011. Dissertação (mestrado) – UFRJ/ COPPE/ Programa de Engenharia Civil, 2011.

SOUZA, R. S. "Avaliação da Lama Vermelha na Remoção de Derivados de Petróleo – Benzeno, Tolueno e Xileno (BTX)". Tese (Doutorado em Engenharia Química). Universidade Estadual de Campinas. Campina. 2013.

STUDY - Office of Solid Waste Hazardous Waste Identification Division, Washington, DC, 1996.

S. Vichaphund, D. Aht-ong, V. Sricharoenchaikul, D. Atong. Effect of CV-ZSM-5, Ni-ZSM-5 and FA-ZSM-5 catalysts for selective aromatic formation from pyrolytic vapors of rubber wastes. Journal of Analytical and Applied Pyrolysis 124 (2017) 733–741. http://dx.doi.org/10.1016/j.jaap.2016.11.011.

SZKLO, A.; ULLER, V. C. Fundamentos do Refino de Petróleo: Tecnologia e Economia. 2º Edição revisada. Rio de Janeiro: Editora Interciência, 2008.

Tao Kan, Vladimir Strezov, Tim Evans. Fuel production from pyrolysis of natural and synthetic rubbers. Fuel 191 (2017) 403–410.

THOMAS, J. E.; et al. Fundamentos de Engenharia de Petróleo. 2° Ed. Rio de Janeiro: Editora Interciência, 2004.

United Nations Environment Programme. Revised technical guidelines for the environmentally sound management of used and waste pneumatic tyres. Columbia: Cartagena; 2011.

V. A. A. de Freitas, J. S. V. Lima, P. R. da C. Couceiro. Caracterização e análise estrutural da hidroxisodalita sintetizada a partir de amostras de solo amazônico. Cerâmica 57 (2011) 281-287.

WANG, C., LI, J., SUN, X., WANG, L., SUN, X. Evaluation of zeolites synthesized from fly ash as potential adsorbents for wastewater containing heavy metals. Journal of Environmental Sciences., v. 21, p. 127-136, 2009.

Y. Chen; C. Wang; W. Lu; Z. YANG. Study of the co-deoxy-liquefaction of biomass and vegetable oil for hydrocarbon oil production. Bioresource Technology. 101 (2010) 4600–4607.

Yuanyu Tian. TG-FTIR and Py-GC/MS study on pyrolysis mechanism and products distribution of waste bicycle tire. Energy Conversion and Management 175 (2018) 288–297. <u>https://doi.org/10.1016/j.enconman.2018.09.013</u>.

Zhang X, Wang T, Ma L, Chang J. Vacuum pyrolysis of waste tires with basic additives. Waste Manag; 28: 2301- 2310, 2008. <u>http://dx.doi.org/10.1016/j.wasman.2007.10.009</u>

Zhanlong Song, Yaqing Yang, Jing Sun, Xiqiang Zhao, Wenlong Wang, Yanpeng Mao, Chunyuan Ma. Effect of power level on the microwave pyrolysis of tire powder. Energy 127 (2017a) 571 -580. <u>http://dx.doi.org/10.1016/j.energy.2017.03.150</u>.

Zhanlong Song, Yaqing Yang, Xiqiang Zhao, Jing Sun, Wenlong Wang, Yanpeng Mao, Chunyuan Ma. Microwave pyrolysis of tire powders: Evolution of yields and composition of products. Journal of Analytical and Applied Pyrolysis 123 (2017b) 152–159. http://dx.doi.org/10.1016/j.jaap.2016.12.012.

Zhanlong Song , Li Liu, Yaqing Yang, Jing Sun, Xiqiang Zhao, Wenlong Wang, Yanpeng Mao, Xueliang Yuan, Qingsong Wang. Characteristics of limonene formation during microwave pyrolysis of scrap tires and quantitative analysis. Energy 142 (2018) 953 – 961. <u>https://doi.org/10.1016/j.energy.2017.10.101</u>.

# ANEXOS

## ANEXO A



Figura A.1 – Limpeza dos tubos internos do condensador da planta piloto de craqueamento.



Figura A.2 - Massa durante o processo de craqueamento nos experimentos 2, 3 e 4



Figura A.3 – Comportamento das principais substâncias do OPP durante o craqueamento do experimento 02 - T =  $400^{\circ}$ C



Figura A.4 – Comportamento das principais substâncias do OPP durante o craqueamento do experimento 03 -  $T = 400^{\circ}C$ 

| Tabela A | <b>4.1</b> – Gastos | energéticos | na produção | o do óleo d | le pirólise de | e pneu do | experimento |
|----------|---------------------|-------------|-------------|-------------|----------------|-----------|-------------|
| 04 - T = | 500°C               |             |             |             |                |           |             |

| Gastos Energéticos                                                                                                                                                         |                     |                 |                             |                |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------|-----------------------------|----------------|--|--|--|--|
| Descrição                                                                                                                                                                  | Unidades            | Potência<br>(W) | Potência<br>total<br>(KW/h) | Gasto<br>total |  |  |  |  |
| Bomba d'agua centrifuga (marca: dancor;<br>modelo: chs-17 1.1/2". 1,0 cv.t; ; t: 220 v;<br>a:3,25/1,88; afs: 4,24/2,46; fs: 1,40;<br>rendimento: 74%; f: 60 hz e 3470 rpm) | 2                   | 3000            | 11,5                        | 9,20           |  |  |  |  |
| Solenoides (marca holomaq; t: 220v; f: 50 hz)                                                                                                                              | 2                   | 30              | 0,115                       | 0,09           |  |  |  |  |
| Ventuinha (marca holomaq; modelo: mb-<br>20/ab-r série 05/10; t: 220 v; pressão: 45 bar;<br>potência térmica: 5000-30000 kcal/h)                                           | 1                   | 6000            | 11,5                        | 9,20           |  |  |  |  |
| Placa 1 (marca: brahma; modelo: tc1ltcsf; f: 50<br>hz; t primary: 220v; t secundar: 15 kv com a: 15<br>ma)                                                                 | 1                   | 225             | 0,4312                      | 0,34           |  |  |  |  |
| Placa 2 (marca: roneywell; modelo: dkg 972-n;<br>t: 220 v; f: 50 hz)                                                                                                       | 1                   | 8,4             | 0,0116                      | 0,02           |  |  |  |  |
| Lâmpadas fluorescentes                                                                                                                                                     | 5                   | 25              | 0,2396                      | 0,19           |  |  |  |  |
|                                                                                                                                                                            |                     |                 | Subtotal                    | 19,04          |  |  |  |  |
| Gaste                                                                                                                                                                      | os com Gás          |                 |                             |                |  |  |  |  |
| Descrição                                                                                                                                                                  | Quantidade<br>Usada | Preço U         | Unitário                    | Gasto<br>total |  |  |  |  |
| Botijão de Gás GLP 45 kg                                                                                                                                                   | 9,3                 | 3               | 10                          | 64,07          |  |  |  |  |
| Total de Gastos (R\$)                                                                                                                                                      |                     |                 |                             | 83,11          |  |  |  |  |

**Tabela A.2** – Balanço de massa das frações destiladas do Óleo de pirolise de pneu, no decorrer do processo, no craqueamento do experimento 04 -  $T = 500^{\circ}C$ 

|                         | 45 min | 55 min | 65 min | 75 min | 85 min | 95 min | 105min | 115min |
|-------------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| Gasolina (%)            | 30,51  | 20,05  | 27,12  | 22,65  | 38,94  | 26,92  | 24,3   | 28,32  |
| Querosene (%)           | 10,18  | 19,79  | 14,56  | 13,82  | 10,94  | 13,32  | 16,14  | 9,77   |
| Diesel leve (%)         | 15,67  | 27,38  | 19,32  | 20,82  | 13,27  | 38,33  | 26,67  | 10,22  |
| Diesel pesado<br>(%)    | 23,01  | 0      | 25,83  | 8,82   | 0      | 0      | 16,23  | 20,25  |
| Produto de<br>fundo (%) | 10,13  | 19,18  | 6,17   | 17,1   | 34,52  | 16,55  | 11,35  | 1,7    |
| Gás (%)                 | 10,49  | 13,59  | 7      | 16,78  | 2,33   | 4,88   | 5,31   | 29,75  |
# ANEXO B



**Figura B.1** – Cromatogramas dos OPP's obtidos via craqueamento térmico em escala de bancada (grupo 1).

**Tabela B.1** - Compostos identificados no espectro de massas do OPP obtido via craqueamento térmico, em escala de bancada, em T=400°C.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                                                                   | Fórmula<br>molecular                           | CAS<br>Number         | Área<br>(%) |
|------|--------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------|-------------|
| 1    | 3.724                          | Ethinamate                                                                                 | C9H13NO2                                       | 126-52-3              | 1,164       |
| 2    | 4.326                          | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-α-<br>methylene-                               | $C_{10}H_{14}O_2$                              | 5951-57-5             | 1,245       |
| 3    | 4.470                          | 1,5,5-Trimethyl-6-methylene-cyclohexene                                                    | $C_{10}H_{16}$                                 | 514-95-4              | 1,462       |
| 4    | 4.689                          | Cyclohexanol, 1-methyl-4-(1-methylethenyl) -, acetate                                      | $C_{12}H_{20}O_2$                              | 10198-23-9            | 3,961       |
| 5    | 4.813                          | Bicyclo[4.1.0]heptane, 3,7,7-trimethyl-, [1S-<br>(1α,3β,6α)]-                              | C <sub>10</sub> H <sub>18</sub>                | 2778-68-9             | 0,848       |
| 6    | 4.871                          | (3S,4R,5R,6R) -4,5-Bis(hydroxymethyl)-3,6-<br>dimethylcyclohexene                          | $C_{10}H_{18}O_2$                              | <u>ID#:</u><br>102821 | 0,948       |
| 7    | 5.030                          | Cyclopropane, trimethyl(2-methyl-1-propenylidene) -                                        | $C_{10}H_{16}$                                 | 14803-30-6            | 1,033       |
| 8    | 5.057                          | Cyclohexene, 1-methyl-4-(1-methylethyl) -, (R)-                                            | C <sub>10</sub> H <sub>18</sub>                | 1195-31-9             | 1,255       |
| 9    | 5.382                          | 1,5,5-Trimethyl-6-methylene-cyclohexene                                                    | C <sub>10</sub> H <sub>16</sub>                | 514-95-4              | 1,070       |
| 10   | 5.656                          | Bicyclo[3.1.1]hept-2-en-6-ol, 2,7,7-trimethyl-,<br>acetate, [1S-(1α,5α,6β)]-               | $C_{12}H_{18}O_2$                              | 50764-55-1            | 6,376       |
| 11   | 5.720                          | D-Limonene                                                                                 | $C_{10}H_{16}$                                 | 5989-27-5             | 56,061      |
| 12   | 6.680                          | 1,5,5-Trimethyl-6-methylene-cyclohexene                                                    | C <sub>10</sub> H <sub>16</sub>                | 514-95-4              | 1,189       |
| 13   | 10.597                         | 2-Methyl-4-(2,6,6-trimethylcyclohex-1-enyl)but-2-<br>en-1-ol                               | C <sub>14</sub> H <sub>24</sub> O              | 62924-17-8            | 1,499       |
| 14   | 11.106                         | β-Longipinene                                                                              | $C_{15}H_{24}$                                 | 41432-70-6            | 1,280       |
| 15   | 11.324                         | 1,3,6,10-Cyclotetradecatetraene, 3,7,11-trimethyl-14-<br>(1-methylethyl) -, [S-(E,Z,E,E)]- | $C_{20}H_{32}$                                 | 1898-13-1             | 2,677       |
| 16   | 11.515                         | Cyclohexanol, 1-methyl-4-(1-methylethenyl) -, acetate                                      | C <sub>12</sub> H <sub>20</sub> O <sub>2</sub> | 10198-23-9            | 3,202       |

| 17 | 11.682 | 2(3H)-Benzofuranone, 6-ethenylhexahydro-6-methyl-<br>3-methylene-7-(1-methylethenyl)-, [3aS-<br>(3aα,6α,7β,7aβ)]- | C <sub>15</sub> H <sub>20</sub> O <sub>2</sub> | 28290-35-9        | 2,600 |
|----|--------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------|-------|
| 18 | 11.751 | 1,3,6,10-Cyclotetradecatetraene, 3,7,11-trimethyl-14-<br>(1-methylethyl) -, [S-(E,Z,E,E)]-                        | $C_{20}H_{32}$                                 | 1898-13-1         | 1,505 |
| 19 | 11.865 | 1H-Cycloprop[e]azulene, 1a,2,3,5,6,7,7a,7b-<br>octahydro-1,1,4,7-tetramethyl-, [1aR-<br>(1aα,7α,7a,β,7bα)]-       | C <sub>15</sub> H <sub>24</sub>                | 21747-46-6        | 4,427 |
| 20 | 12.155 | 1H-Cycloprop[e]azulene, 1a,2,3,5,6,7,7a,7b-<br>octahydro-1,1,4,7-tetramethyl-, [1aR-<br>(1aα,7α,7aβ,7bα)]-        | C <sub>15</sub> H <sub>24</sub>                | 21747-46-6        | 0,951 |
| 21 | 12.281 | α-acorenol                                                                                                        | C <sub>15</sub> H <sub>26</sub> O              | <u>ID#:</u> 99931 | 1,771 |
| 22 | 12.306 | 1H-Benzocycloheptene, 2,4a,5,6,7,8,9,9a-octahydro-<br>3,5,5-trimethyl-9-methylene-, (4aS-cis) -                   | $\mathrm{C}_{15}\mathrm{H}_{24}$               | 3853-83-6         | 2,036 |
| 23 | 13.035 | 1-Oxaspiro[2.5]octane, 5,5-dimethyl-4-(3-methyl-1,3-<br>butadienyl)-                                              | C <sub>14</sub> H <sub>22</sub> O              | <u>ID#:</u> 3796  | 1,440 |
|    |        |                                                                                                                   |                                                |                   |       |

**Tabela B.2** - Compostos identificados no espectro de massas do OPP obtido via craqueamento térmico, em escala de bancada, em T=425°C.

| Pico | Tempo de          |                                                                            | Fórmula                                        | CAS                   | Área   |
|------|-------------------|----------------------------------------------------------------------------|------------------------------------------------|-----------------------|--------|
|      | retençao<br>(min) | Composto                                                                   | molecular                                      | Number                | (%)    |
| 1    | 5.185             | Cyclobutane, (1-methylethylidene) -                                        | C7H12                                          | 1528-22-9             | 0,713  |
| 2    | 5.588             | Toluene                                                                    | C <sub>7</sub> H <sub>8</sub>                  | 108-88-3              | 0,539  |
| 3    | 5.627             | Toluene                                                                    | C <sub>7</sub> H <sub>8</sub>                  | 108-88-3              | 0,661  |
| 4    | 6.655             | 1,3-Dimethyl-1-cyclohexene                                                 | C <sub>8</sub> H <sub>14</sub>                 | 2808-76-6             | 0,478  |
| 5    | 7.144             | 1,3-Dimethyl-1-cyclohexene                                                 | C <sub>8</sub> H <sub>14</sub>                 | 2808-76-6             | 0,201  |
| 6    | 7.471             | 3-Cyclohexene-1-ethanol                                                    | C <sub>8</sub> H <sub>14</sub> O               | 18240-10-3            | 1,167  |
| 7    | 8.218             | 1,2,4,4-Tetramethylcyclopentene                                            | C9H16                                          | 65378-76-9            | 0,156  |
| 8    | 8.324             | Ethylbenzene                                                               | C <sub>8</sub> H <sub>10</sub>                 | 100-41-4              | 1,058  |
| 9    | 8.622             | o-Xylene                                                                   | C <sub>8</sub> H <sub>10</sub>                 | 95-47-6               | 1,023  |
| 10   | 9.013             | Cyclohexene, 3-(1-methylethyl) -                                           | C9H16                                          | 3983-08-2             | 0,277  |
| 11   | 9.084             | 3-Cyclohexene-1-carboxaldehyde, 1-methyl-                                  | C <sub>8</sub> H <sub>12</sub> O               | 931-96-4              | 0,414  |
| 12   | 10.055            | 1,5,5-Trimethyl-6-methylene-cyclohexene                                    | C <sub>10</sub> H <sub>16</sub>                | 514-95-4              | 0,215  |
| 13   | 10.379            | Benzene, (1-methylethyl) -                                                 | C9H12                                          | 98-82-8               | 0,556  |
| 14   | 10.490            | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-α-<br>methylene-               | C <sub>10</sub> H <sub>14</sub> O <sub>2</sub> | 5951-57-5             | 0,465  |
| 15   | 11.011            | 1,5,5-Trimethyl-6-methylene-cyclohexene                                    | $C_{10}H_{16}$                                 | 514-95-4              | 0,888  |
| 16   | 11.429            | Bicyclo [4.1.0]heptane, 7-(1-methylethylidene)-                            | $C_{10}H_{16}$                                 | 53282-47-6            | 0,600  |
| 17   | 11.515            | Cyclohexanol, 1-methyl-4-(1-methylethenyl) -, acetate                      | C <sub>12</sub> H <sub>20</sub> O <sub>2</sub> | 10198-23-9            | 1,919  |
| 18   | 11.690            | 1-(1-Propynyl) cyclohexanol                                                | C9H14O                                         | 697-37-0              | 1,023  |
| 19   | 11.851            | Bicyclo[4.1.0]heptane,-3-cyclopropyl,-7-<br>hydroxymethyl, (cis)           | C <sub>11</sub> H <sub>18</sub> O              | <u>ID#:</u> 32711     | 0,730  |
| 20   | 11.989            | 1,5,5-Trimethyl-6-methylene-cyclohexene                                    | C <sub>10</sub> H <sub>16</sub>                | 514-95-4              | 0,688  |
| 21   | 12.208            | Cyclopropane, 1-methyl-2-(1-methylethyl)-3-(1-<br>methylethylidene)-, cis- | C <sub>10</sub> H <sub>18</sub>                | 24524-52-5            | 0,317  |
| 22   | 12.363            | 1,5,5-Trimethyl-6-methylene-cyclohexene                                    | C <sub>10</sub> H <sub>16</sub>                | 514-95-4              | 0,472  |
| 23   | 12.452            | Bicyclo[4.1.0]heptane, $3,7,7$ -trimethyl-, $(1\alpha,3\alpha,6\alpha)$ -  | $C_{10}H_{18}$                                 | 18968-23-5            | 1,617  |
| 24   | 12.637            | 1,6-Octadiene, 2,6-dimethyl-                                               | C <sub>10</sub> H <sub>18</sub>                | 31222-43-2            | 0,468  |
| 25   | 12.677            | Cyclohexene, 1,4,6,6-tetramethyl-                                          | $C_{10}H_{18}$                                 | 70092-37-4            | 0,480  |
| 26   | 12.802            | 2H-Indeno[1,2-b] oxirene, octahydro-,<br>(1aα,1bβ,5aα,6aα)-                | с <sub>9</sub> н <sub>14</sub> о               | 55402-31-8            | 0,502  |
| 27   | 12.928            | cis-2,6-Dimethyl-2,6-octadiene                                             | $C_{10}H_{18}$                                 | 2492-22-0             | 1,250  |
| 28   | 13.119            | 1,5,5-Trimethyl-6-methylene-cyclohexene                                    | C <sub>10</sub> H <sub>16</sub>                | 514-95-4              | 0,530  |
| 29   | 13.416            | 1,5,5-Trimethyl-6-methylene-cyclohexene                                    | C <sub>10</sub> H <sub>16</sub>                | 514-95-4              | 0,453  |
| 30   | 13.572            | 1,5,5-Trimethyl-6-methylene-cyclohexene                                    | C <sub>10</sub> H <sub>16</sub>                | 514-95-4              | 0,466  |
| 31   | 13.725            | Benzene, 1,2,4-trimethyl-                                                  | C9H12                                          | 95-63-6               | 0,444  |
| 32   | 13.789            | Cyclohexene, 1-methyl-4-(1-methylethyl) -                                  | C <sub>10</sub> H <sub>18</sub>                | 5502-88-5             | 1,762  |
| 33   | 13.832            | Benzene, 1-methyl-3-(1-methylethyl) -                                      | C <sub>10</sub> H <sub>14</sub>                | 535-77-3              | 3,860  |
| 34   | 14.008            | D-Limonene                                                                 | C <sub>10</sub> H <sub>16</sub>                | 5989-27-5             | 31,404 |
| 35   | 14.198            | 5-Methylene-1,3a,4,5,6,6a-hexahydropentalen-1-ol                           | C <sub>9</sub> H <sub>12</sub> O               | <u>ID#:</u><br>122501 | 0,775  |
| 36   | 14.995            | Hexane, 1-chloro-5-methyl-                                                 | C7H15Cl                                        | 33240-56-1            | 0,700  |

| 37 | 15.913 | Cyclohexene, 1-methyl-4-(1-methylethylidene) -                                                                    | C <sub>10</sub> H <sub>16</sub>                                | 586-62-9              | 1,550 |
|----|--------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------|-------|
| 38 | 16.699 | (R)-1-Methyl-4-(6-methylhept-5-en-2-yl)cyclohexa-<br>1,4-diene                                                    | $C_{15}H_{24}$                                                 | 28976-67-2            | 0,381 |
| 39 | 17.777 | Bicyclo[3.1.1]hept-3-ene-spiro-2,4'-(1',3'-dioxane),<br>7,7-dimethyl-                                             | $C_{12}H_{18}O_2$                                              | <u>ID#:</u> 433       | 0,616 |
| 40 | 18.014 | 1-Phenyl-1-butene                                                                                                 | $C_{10}H_{12}$                                                 | 824-90-8              | 0,283 |
| 41 | 19.267 | Benzene, (3-methyl-2-butenyl) -                                                                                   | $C_{11}H_{14}$                                                 | 4489-84-3             | 0,602 |
| 42 | 19.533 | Benzene, (3-methyl-2-butenyl) -                                                                                   | $C_{11}H_{14}$                                                 | 4489-84-3             | 0,941 |
| 43 | 20.443 | Bicyclo[3.1.1]hept-3-ene-spiro-2,4'-(1',3'-dioxane),<br>7,7-dimethyl-                                             | C <sub>12</sub> H <sub>18</sub> O <sub>2</sub>                 | <u>ID#:</u> 433       | 0,380 |
| 44 | 21.592 | Bicyclo[3.1.1]hept-3-ene-spiro-2,4'-(1',3'-dioxane),<br>7,7-dimethyl-                                             | C <sub>12</sub> H <sub>18</sub> O <sub>2</sub>                 | <u>ID#:</u> 433       | 0,713 |
| 45 | 21.823 | Panaxydol                                                                                                         | C <sub>17</sub> H <sub>24</sub> O <sub>2</sub>                 | 72800-72-7            | 0,409 |
| 46 | 22.492 | 2,5-Octadecadiynoic acid, methyl ester                                                                            | C <sub>19</sub> H <sub>30</sub> O <sub>2</sub>                 | 57156-91-9            | 0,428 |
| 47 | 22.780 | Hydrocinnamic acid, o-[(1,2,3,4-tetrahydro-2-<br>naphthyl) methyl] -                                              | C <sub>20</sub> H <sub>22</sub> O <sub>2</sub>                 | 23804-21-9            | 0,851 |
| 48 | 23.264 | Falcarinol                                                                                                        | с <sub>17</sub> н <sub>24</sub> о                              | 21852-80-2            | 0,247 |
| 49 | 23.487 | 12-Oxatetracyclo [4.3.1.1(2,5).1(4,10)]dodecane, 11-<br>isopropylidene-                                           | C <sub>14</sub> H <sub>20</sub> O                              | 105191-67-<br>1       | 1,070 |
| 50 | 23.899 | 2-Methyl-4-(2,6,6-trimethylcyclohex-1-enyl)but-2-<br>en-1-ol                                                      | С <sub>14</sub> Н <sub>24</sub> О                              | 62924-17-8            | 0,575 |
| 51 | 24.861 | Aromadendrene oxide-(2)                                                                                           | C <sub>15</sub> H <sub>24</sub> O                              | <u>ID#:</u> 2891      | 1,068 |
| 52 | 24.931 | 5,8-Dimethyl-1,2,3,4-tetrahydro-1-naphthol                                                                        | C <sub>12</sub> H <sub>16</sub> O                              | 32820-12-5            | 0,927 |
| 53 | 25.011 | Bicyclo[4.4.0]dec-2-ene-4-ol, 2-methyl-9-(prop-1-<br>en-3-ol-2-yl)-                                               | C <sub>15</sub> H <sub>24</sub> O <sub>2</sub>                 | <u>ID#:</u> 3985      | 0,581 |
| 54 | 25.314 | Methyl 5,7-hexadecadiynoate                                                                                       | C <sub>17</sub> H <sub>26</sub> O <sub>2</sub>                 | <u>ID#:</u> 60889     | 0,959 |
| 55 | 25.447 | Limonen-6-Ol, pivalate                                                                                            | C <sub>15</sub> H <sub>24</sub> O <sub>2</sub>                 | <u>ID#:</u> 23390     | 1,523 |
| 56 | 25.835 | 2(3H)-Benzofuranone, 6-ethenylhexahydro-6-<br>methyl-3-methylene-7-(1-methylethenyl)-, [3aS-<br>(3aα 6α 7β 7aB)]- | C <sub>15</sub> H <sub>20</sub> O <sub>2</sub>                 | 28290-35-9            | 1,489 |
| 57 | 26.109 | Cholestan-3-ol, 2-methylene-, $(3\beta,5\alpha)$ -                                                                | C <sub>28</sub> H <sub>48</sub> O                              | 22599-96-8            | 1,084 |
| 58 | 26.153 | 2-[5-(2,2-Dimethyl-6-methylene-cyclohexyl)-3-<br>methyl-pent-2-enyl]-[1,4]benzoquinone                            | C <sub>21</sub> H <sub>28</sub> O <sub>2</sub>                 | #ID 150316            | 1,125 |
| 59 | 26.285 | 2-Methyl-4-(2,6,6-trimethylcyclohex-1-enyl)but-2-<br>en-1-ol                                                      | C <sub>14</sub> H <sub>24</sub> O                              | 62924-17-8            | 1,684 |
| 60 | 26.452 | Cholestan-3-ol, 2-methylene-, (3β,5α)-                                                                            | C <sub>28</sub> H <sub>48</sub> O                              | 22599-96-8            | 2,021 |
| 61 | 26.806 | Murolan-3,9(11) -diene-10-peroxy                                                                                  | $C_{15}H_{24}O_{2}$                                            | #ID 6413              | 2,321 |
| 62 | 26.983 | 6-(3-Isopropenylcycloprop-1-enyl)-6-methylhept-3-<br>en-2-one                                                     | C <sub>14</sub> H <sub>20</sub> O                              | <u>ID#:</u><br>102911 | 1,353 |
| 63 | 27.092 | Cholestan-3-ol, 2-methylene-, $(3\beta,5\alpha)$ -                                                                | C <sub>28</sub> H <sub>48</sub> O                              | 22599-96-8            | 0,914 |
| 64 | 27.205 | α-acorenol                                                                                                        | C <sub>15</sub> H <sub>26</sub> O                              | <u>ID#:</u> 99931     | 1,568 |
| 65 | 27.275 | 1H-Cycloprop[e]azulene, 1a,2,3,5,6,7,7a,7b-<br>octahydro-1,1,4,7-tetramethyl-, [1aR-(1aα                          | C <sub>15</sub> H <sub>24</sub>                                | 21747-46-6            | 1,378 |
| 66 | 27.508 | Bicyclo[4.4.0]dec-2-ene-4-ol, 2-methyl-9-(prop-1-<br>en-3-ol-2-yl)-                                               | C <sub>15</sub> H <sub>24</sub> O <sub>2</sub>                 | <u>ID#:</u> 3985      | 1,665 |
| 67 | 27.777 | Bicyclo[4.4.0]dec-2-ene-4-ol, 2-methyl-9-(prop-1-<br>en-3-ol-2-yl)-                                               | C <sub>15</sub> H <sub>24</sub> O <sub>2</sub>                 | <u>ID#:</u> 3985      | 0,610 |
| 68 | 28.156 | Tetradecane, 2,6,10-trimethyl-                                                                                    | С <sub>17</sub> Н <sub>36</sub>                                | 14905-56-7            | 2,185 |
| 69 | 28.283 | 2-Allylpent-4-enoic acid, benzyl ester                                                                            | $C_{15}H_{18}O_2$                                              | <u>ID#:</u> 60456     | 0,601 |
| 70 | 28.357 | 1-Oxaspiro[2.5]octane, 5,5-dimethyl-4-(3-methyl-<br>1,3-butadienyl)-                                              | C <sub>14</sub> H <sub>22</sub> O                              | <u>ID#:</u> 3796      | 0,970 |
| 71 | 28.478 | Cholestan-3-ol, 2-methylene-, $(3\beta,5\alpha)$ -                                                                | C <sub>28</sub> H <sub>48</sub> O                              | 22599-96-8            | 0,589 |
| 72 | 28.674 | 1-Oxaspiro[2.5]octane, 5,5-dimethyl-4-(3-methyl-<br>1,3-butadienyl)-                                              | C <sub>14</sub> H <sub>22</sub> O                              | <u>ID#:</u> 3796      | 1,129 |
| 73 | 29.324 | 1H-Indole, 4-(3-methyl-2-butenyl) -                                                                               | C <sub>13</sub> H <sub>15</sub> N                              | 32962-25-7            | 0,438 |
| 74 | 30.715 | 7-Methyl-Z-tetradecen-1-ol acetate                                                                                | C <sub>17</sub> H <sub>32</sub> O <sub>2</sub>                 | <u>ID#:</u> 7041      | 0,391 |
| 75 | 33.140 | Tetradecane, 2,6,10-trimethyl-                                                                                    | C <sub>17</sub> H <sub>36</sub>                                | 14905-56-7            | 1,689 |
| 76 | 38.035 | 1-Heptatriacotanol                                                                                                | C <sub>37</sub> H <sub>76</sub> O                              | 105794-58-<br>9       | 0,612 |
| 77 | 41.111 | Diiodoacetylene                                                                                                   | C <sub>2</sub> I <sub>2</sub>                                  | <u>ID#:</u><br>219172 | 0,367 |
| 78 | 54.056 | 4-Methyl-2,4-bis(p-hydroxyphenyl)pent-1-ene,<br>2TMS derivative                                                   | C <sub>24</sub> H <sub>36</sub> O <sub>2</sub> Si <sub>2</sub> | <u>ID#:</u><br>188646 | 0,446 |

**Tabela B.3** - Compostos identificados no espectro de massas do OPP obtido via craqueamento térmico, em escala de bancada, em T=450°C.

| Pico | Tempo de<br>retenção<br>(min) | Composto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fórmula<br>molecular                              | CAS<br>Number         | Área<br>(%) |
|------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------|-------------|
| 1    | 5.186                         | Cyclopentene, 4.4-dimethyl-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C7H12                                             | 19037-72-0            | 0,453       |
| 2    | 5.633                         | 3-Thiazolidinecarboxylic acid, 4-(acetyloxy) -2-(1,1-<br>dimethylethyl)-, phenylmethyl ester, 1-oxide, [1R-<br>(1a.28.48)]-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C <sub>17</sub> H <sub>23</sub> NO <sub>5</sub> S | 126990-62-<br>3       | 0,644       |
| 3    | 7.474                         | Bicyclo [2.2.1]hept-2-en-7-ol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_7H_{10}O$                                      | 53783-87-2            | 1,079       |
| 4    | 8.366                         | Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C <sub>8</sub> H <sub>10</sub>                    | 100-41-4              | 0,521       |
| 5    | 8.642                         | 1,3-Cyclopentadiene, 5-(1-methylethylidene) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_8H_{10}$                                       | 2175-91-9             | 0,700       |
| 6    | 10.386                        | Benzene, (1-methylethyl) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C9H12                                             | 98-82-8               | 0,285       |
| 7    | 11.011                        | 1,5,5-Trimethyl-6-methylene-cyclohexene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $C_{10}H_{16}$                                    | 514-95-4              | 0,950       |
| 8    | 11.430                        | Bicyclo [4.1.0]heptane, 7-(1-methylethylidene)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C <sub>10</sub> H <sub>16</sub>                   | 53282-47-6            | 0,522       |
| 9    | 11.513                        | Cyclohexanol, 1-methyl-4-(1-methylethenyl) -, acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C <sub>12</sub> H <sub>20</sub> O <sub>2</sub>    | 10198-23-9            | 2,005       |
| 10   | 11.689                        | 1-(1-Propynyl) cyclohexanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | С9Н14О                                            | 697-37-0              | 0,716       |
| 11   | 12.364                        | 1,5,5-Trimethyl-6-methylene-cyclohexene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C <sub>10</sub> H <sub>16</sub>                   | 514-95-4              | 0,524       |
| 12   | 12.403                        | (1R,3E,7E,11R) -1,5,5,8-Tetramethyl-12-<br>oxabicyclo[9.1.0]dodeca-3,7-diene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C <sub>15</sub> H <sub>24</sub> O                 | 19888-34-7            | 0,283       |
| 15   | 12.430                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | С10н18                                            | 18908-23-3            | 1,201       |
| 14   | 12.678                        | Cyclohexene, 1,4,6,6-tetramethyl-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | С <sub>10</sub> н <sub>18</sub>                   | 70092-37-4            | 0,833       |
| 15   | 12.932                        | c1s-2,6-Dimethyl-2,6-octadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | С <sub>10</sub> Н <sub>18</sub>                   | 2492-22-0             | 0,661       |
| 16   | 12.975                        | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-α-<br>methylene-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C <sub>10</sub> H <sub>14</sub> O <sub>2</sub>    | 5951-57-5             | 0,365       |
| 1/   | 13.118                        | Cyclonexane, 1-methylene-4-(1-methylethenyl) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | С10Н16                                            | 499-97-8              | 0,393       |
| 18   | 13.418                        | 1,5,5-1 rimethyl-6-methylene-cyclonexene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Стонте                                            | 514-95-4              | 0,538       |
| 19   | 13.373                        | 1,5,5-1 rimethyl-o-methylene-cyclonexene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Стонте                                            | 514-95-4              | 0,509       |
| 20   | 13.728                        | Gradele arrente de la contractional de la cont | Суще                                              | 520-75-8              | 0,403       |
| 21   | 13.789                        | Demons 1 methyl 2 (1 methylethyl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   | 5302-88-5             | 1,/30       |
| 22   | 13.831                        | D Limonomo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ciolina<br>Ciolina                                | 5080 27 5             | 4,991       |
| 2.5  | 14.000                        | Havana 1 ablara 5 mathul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   | 3303-27-3             | 0.742       |
| 24   | 14.998                        | Cycloboyono, 1 mothyl 4 (1 mothylothylidene)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ciollic                                           | 586 62 0              | 0,742       |
| 25   | 16.706                        | Hexane 1 chloro 5 methyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   | 33240 56 1            | 0.653       |
| 20   | 17 782                        | 2 5-Octadecadiynoic acid methyl ester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CioHaoOa                                          | 57156-91-9            | 0,055       |
| 27   | 18.019                        | 1H-Indene 2 3-dihydro-4-methyl-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C10H12                                            | 824-22-6              | 0,717       |
| 20   | 19 273                        | Benzene 1-methyl-3-(1-methyl-2-propenyl) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C11H14                                            | 52161-57-6            | 1 357       |
| 30   | 19.539                        | Benzene, (3-methyl-2-butenyl) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C11H14                                            | 4489-84-3             | 1,281       |
| 31   | 21.590                        | Bicyclo[3.1.1]hept-3-ene-spiro-2,4'-(1',3'-dioxane),<br>7.7-dimethyl-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C <sub>12</sub> H <sub>18</sub> O <sub>2</sub>    | <u>ID#:</u> 433       | 0,890       |
| 32   | 22.785                        | Methyl 4,6-tetradecadiynoate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C <sub>15</sub> H <sub>22</sub> O <sub>2</sub>    | <u>ID#:</u> 60961     | 0,584       |
| 33   | 23.293                        | Falcarinol (. (Z)-(-)-1,9-Heptadecadiene-4,6-diyne-<br>3-ol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C <sub>17</sub> H <sub>24</sub> O                 | 21852-80-2            | 0,743       |
| 34   | 23.487                        | 2,3,4,5,6-Pentamethyl benzyl alcohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C <sub>12</sub> H <sub>18</sub> O                 | <u>ID#:</u><br>149870 | 1,340       |
| 35   | 23.899                        | 2-Methyl-4-(2,6,6-trimethylcyclohex-1-enyl)but-2-<br>en-1-ol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С <sub>14</sub> H <sub>24</sub> O                 | 62924-17-8            | 0,687       |
| 30   | 24.937                        | 5,7-Dodecacityn-1,12-bis(carbamic acid,<br>butyloxymethyl ester)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C15H2402                                          | <u>113919</u>         | 1,204       |
| 38   | 25.451                        | Isoaromadendrene enovide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C15H2402                                          | <u>ID#</u> . 23390    | 1,940       |
| 30   | 25.839                        | Cholestan-3-ol 2-methylene, (38.5a)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                   | 22599_96_8            | 1,750       |
| 40   | 26.155                        | Bicyclo[4.4.0]dec-2-ene-4-ol, 2-methyl-9-(prop-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C <sub>15</sub> H <sub>24</sub> O <sub>2</sub>    | <u>ID#:</u> 3985      | 1,222       |
| 41   | 26.291                        | Tricyclo [6.4.0.0(3,7)]dodeca-1,9,11-triene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C <sub>12</sub> H <sub>14</sub>                   | ID#: 48305            | 2,077       |
| 42   | 26.452                        | 1-Oxaspiro[2.5]octane, 5,5-dimethyl-4-(3-methyl-<br>1,3-butadienyl)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C <sub>14</sub> H <sub>22</sub> O                 | <u>ID#:</u> 3796      | 2,365       |
| 43   | 26.810                        | geranyl-a-terpinene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $C_{20}H_{32}$                                    | <u>ID#:</u> 36167     | 1,459       |
| 44   | 26.852                        | 2-Butenal, 2-methyl-4-(2,6,6-trimethyl-1-<br>cyclohexen-1-yl)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C <sub>14</sub> H <sub>22</sub> O                 | 3155-71-3             | 1,488       |
| 45   | 26.981                        | γ-HIMACHALENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C <sub>15</sub> H <sub>24</sub>                   | <u>ID#:</u><br>100099 | 1,528       |
| 46   | 27.210                        | α-acorenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C <sub>15</sub> H <sub>26</sub> O                 | <u>ID#:</u> 99931     | 1,907       |
| 47   | 27.278                        | α-acorenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C <sub>15</sub> H <sub>26</sub> O                 | <u>ID#:</u> 99931     | 1,506       |
| 48   | 27.501                        | Bicyclo[4.4.0]dec-2-ene-4-ol, 2-methyl-9-(prop-1-<br>en-3-ol-2-yl)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C <sub>15</sub> H <sub>24</sub> O <sub>2</sub>    | <u>ID#:</u> 3985      | 1,887       |
| 49   | 27.781                        | geranyl-α-terpinene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C <sub>20</sub> H <sub>32</sub>                   | <u>ID#:</u> 36167     | 0,557       |

| 50 | 28.156 | Tetradecane, 2,6,10-trimethyl-                                                                      | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7            | 2,047 |
|----|--------|-----------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------|-------|
| 51 | 28.362 | 1-Oxaspiro[2.5]octane, 5,5-dimethyl-4-(3-methyl-<br>1,3-butadienyl)-                                | C <sub>14</sub> H <sub>22</sub> O              | <u>ID#:</u> 3796      | 0,846 |
| 52 | 28.672 | Geranyl isovalerate                                                                                 | $C_{15}H_{26}O_{2}$                            | 109-20-6              | 1,398 |
| 53 | 29.314 | 5,8,11-Eicosatriynoic acid, methyl ester                                                            | C <sub>21</sub> H <sub>30</sub> O <sub>2</sub> | <u>ID#:</u><br>113705 | 2,023 |
| 54 | 30.715 | 5,8,11-Heptadecatriynoic acid, methyl ester                                                         | $C_{18}H_{24}O_2$                              | 56554-57-5            | 0,743 |
| 55 | 33.141 | Tetradecane, 2,6,10-trimethyl-                                                                      | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7            | 3,190 |
| 56 | 35.447 | Ethyl iso-allocholate                                                                               | C <sub>26</sub> H <sub>44</sub> O <sub>5</sub> | <u>ID#:</u> 7020      | 0,449 |
| 57 | 36.550 | 1-Heptatriacotanol                                                                                  | C <sub>37</sub> H <sub>76</sub> O              | 105794-58-<br>9       | 0,481 |
| 58 | 36.766 | 2-[4-methyl-6-(2,6,6-trimethylcyclohex-1-enyl)<br>hexa-1,3,5-trienyl]cyclohex-1-en-1-carboxaldehyde | C <sub>23</sub> H <sub>32</sub> O              | <u>ID#:</u> 5913      | 0,370 |
| 59 | 38.035 | 1-Heptatriacotanol                                                                                  | C <sub>37</sub> H <sub>76</sub> O              | 105794-58-<br>9       | 1,066 |

**Tabela B.4** - Compostos identificados no espectro de massas do OPP obtido via craqueamento térmico, em escala de bancada, em T=475°C.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                                                                                                    | Fórmula<br>molecular                              | CAS<br>Number         | Área<br>(%) |
|------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------|-------------|
| 1    | 5.192                          | Cyclopentene, 4,4-dimethyl-                                                                                                 | C7H12                                             | 19037-72-0            | 0,835       |
| 2    | 5.637                          | 3-Thiazolidinecarboxylic acid, 4-(acetyloxy) -2-(1,1-<br>dimethylethyl)-, phenylmethyl ester, 1-oxide, [1R-<br>(1α,2β,4β)]- | C <sub>17</sub> H <sub>23</sub> NO <sub>5</sub> S | 126990-62-<br>3       | 1,279       |
| 3    | 7.481                          | Bicyclo [2.2.1]hept-2-en-7-ol                                                                                               | $C_7H_{10}O$                                      | 53783-87-2            | 0,765       |
| 4    | 8.378                          | Ethylbenzene                                                                                                                | $C_8H_{10}$                                       | 100-41-4              | 1,149       |
| 5    | 8.628                          | 1,4-Cyclohexadiene-1-methanol, 4-(1-methylethyl) -                                                                          | C <sub>10</sub> H <sub>16</sub> O                 | 22539-72-6            | 0,141       |
| 6    | 11.022                         | Bicyclo [3.1.0]hexane, 6-isopropylidene-1-methyl-                                                                           | $C_{10}H_{16}$                                    | 24524-57-0            | 1,006       |
| 7    | 11.438                         | Bicyclo [4.1.0]heptane, 7-(1-methylethylidene)-                                                                             | $C_{10}H_{16}$                                    | 53282-47-6            | 0,582       |
| 8    | 11.523                         | Cyclohexanol, 1-methyl-4-(1-methylethenyl) -, acetate                                                                       | $C_{12}H_{20}O_2$                                 | 10198-23-9            | 2,266       |
| 9    | 11.696                         | 1-(1-Propynyl) cyclohexanol                                                                                                 | C9H14O                                            | 697-37-0              | 1,368       |
| 10   | 12.374                         | 1,5,5-Trimethyl-6-methylene-cyclohexene                                                                                     | $C_{10}H_{16}$                                    | 514-95-4              | 0,507       |
| 11   | 12.460                         | Bicyclo[4.1.0]heptane, 3,7,7-trimethyl-, (1α,3α,6α)-                                                                        | $C_{10}H_{18}$                                    | 18968-23-5            | 1,018       |
| 12   | 12.684                         | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-α-<br>methylene-                                                                | C <sub>10</sub> H <sub>14</sub> O <sub>2</sub>    | 5951-57-5             | 0,699       |
| 13   | 12.948                         | 6,11-Dimethyl-2,6,10-dodecatrien-1-ol                                                                                       | C <sub>14</sub> H <sub>24</sub> O                 | <u>ID#:</u> 34334     | 0,577       |
| 14   | 12.977                         | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-α-<br>methylene-                                                                | C <sub>10</sub> H <sub>14</sub> O <sub>2</sub>    | 5951-57-5             | 0,717       |
| 15   | 13.584                         | 1,5,5-Trimethyl-6-methylene-cyclohexene                                                                                     | C <sub>10</sub> H <sub>16</sub>                   | 514-95-4              | 0,555       |
| 16   | 13.796                         | Cyclohexene, 1-methyl-4-(1-methylethyl)-                                                                                    | C <sub>10</sub> H <sub>18</sub>                   | 5502-88-5             | 2,534       |
| 17   | 13.842                         | Benzene, 1-methyl-3-(1-methylethyl)-                                                                                        | $C_{10}H_{14}$                                    | 535-77-3              | 4,717       |
| 18   | 14.003                         | D-Limonene                                                                                                                  | C <sub>10</sub> H <sub>16</sub>                   | 5989-27-5             | 36,216      |
| 19   | 15.929                         | Cyclohexene, 1-methyl-4-(1-methylethylidene)-                                                                               | C <sub>10</sub> H <sub>16</sub>                   | 586-62-9              | 2,423       |
| 20   | 18.034                         | 2,4-Dimethylstyrene                                                                                                         | C <sub>10</sub> H <sub>12</sub>                   | 2234-20-0             | 0,563       |
| 21   | 19.284                         | Benzene, (3-methyl-2-butenyl)-                                                                                              | C <sub>11</sub> H <sub>14</sub>                   | 4489-84-3             | 1,743       |
| 22   | 19.550                         | Benzene, (3-methyl-2-butenyl)-                                                                                              | C <sub>11</sub> H <sub>14</sub>                   | 4489-84-3             | 2,335       |
| 23   | 21.607                         | Bicyclo[3.1.1]hept-3-ene-spiro-2,4'-(1',3'-dioxane),<br>7,7-dimethyl-                                                       | C <sub>12</sub> H <sub>18</sub> O <sub>2</sub>    | <u>ID#:</u> 433       | 0,922       |
| 24   | 22.599                         | 2-Oxabicyclo[3.3.0]oct-7-en-3-one, 7-(1-<br>hydroxypentyl)-                                                                 | C <sub>12</sub> H <sub>18</sub> O <sub>3</sub>    | <u>ID#:</u><br>142810 | 0,715       |
| 25   | 23.493                         | 2,3,4,5,6-Pentamethyl benzyl alcohol                                                                                        | C <sub>12</sub> H <sub>18</sub> O                 | <u>ID#:</u><br>149870 | 1,224       |
| 26   | 24.953                         | Dihydrodehydrocostus lactone                                                                                                | C <sub>15</sub> H <sub>20</sub> O <sub>2</sub>    | 4955-03-7             | 1,066       |
| 27   | 25.456                         | Methyl 10,12-pentacosadiynoate                                                                                              | C <sub>26</sub> H <sub>44</sub> O <sub>2</sub>    | <u>ID#:</u> 2527      | 1,997       |
| 28   | 26.122                         | Bicyclo[4.4.0]dec-2-ene-4-ol, 2-methyl-9-(prop-1-<br>en-3-ol-2-yl)-                                                         | C <sub>15</sub> H <sub>24</sub> O <sub>2</sub>    | <u>ID#:</u> 3985      | 1,236       |
| 29   | 26.161                         | 2-[5-(2,2-Dimethyl-6-methylene-cyclohexyl)-3-<br>methyl-pent-2-enyl]-[1,4]benzoquinone                                      | C <sub>21</sub> H <sub>28</sub> O <sub>2</sub>    | <u>ID#:</u><br>150316 | 1,269       |
| 30   | 26.294                         | Tricyclo[6.4.0.0(3,7)]dodeca-1,9,11-triene                                                                                  | $\mathrm{C}_{12}\mathrm{H}_{14}$                  | <u>ID#:</u> 48305     | 2,258       |
| 31   | 26.462                         | Tricyclo[6.4.0.0(3,7)]dodeca-1,9,11-triene                                                                                  | $C_{12}H_{14}$                                    | <u>ID#:</u> 48305     | 2,269       |
| 32   | 26.813                         | geranyl-a-terpinene                                                                                                         | $C_{20}H_{32}$                                    | <u>ID#:</u> 36167     | 1,723       |
| 33   | 26.852                         | 1-Oxaspiro[2.5]octane, 5,5-dimethyl-4-(3-methyl-                                                                            | C <sub>14</sub> H <sub>22</sub> O                 | <u>ID#:</u> 3796      | 1,092       |

| 34  | 27.207 | γ-HIMACHALENE                                                        | C15H24                                         | ID#:                  | 1.777  |
|-----|--------|----------------------------------------------------------------------|------------------------------------------------|-----------------------|--------|
| ••• | 27.207 |                                                                      | 0151124                                        | 100099                | -,,,,, |
| 35  | 27.275 | α-acorenol                                                           | C <sub>15</sub> H <sub>26</sub> O              | <u>ID#:</u> 99931     | 1,616  |
| 36  | 27.511 | Bicyclo[4.4.0]dec-2-ene-4-ol, 2-methyl-9-(prop-1-<br>en-3-ol-2-yl)-  | $\mathrm{C}_{15}\mathrm{H}_{24}\mathrm{O}_2$   | <u>ID#:</u> 3985      | 2,105  |
| 37  | 28.162 | Geranyl isovalerate                                                  | $C_{15}H_{26}O_{2}$                            | 109-20-6              | 3,030  |
| 38  | 28.374 | 1-Oxaspiro[2.5]octane, 5,5-dimethyl-4-(3-methyl-<br>1,3-butadienyl)- | C <sub>14</sub> H <sub>22</sub> O              | <u>ID#:</u> 3796      | 1,160  |
| 39  | 28.556 | 20-Carboethoxy-20-demethylvincadifformine                            | $C_{23}H_{28}N_2O_4$                           | 112496-64-<br>7       | 0,816  |
| 40  | 28.680 | 1-Oxaspiro[2.5]octane, 5,5-dimethyl-4-(3-methyl-<br>1,3-butadienyl)- | C <sub>14</sub> H <sub>22</sub> O              | <u>ID#:</u> 3796      | 1,367  |
| 41  | 29.327 | 5,8,11-Eicosatriynoic acid, methyl ester                             | C <sub>21</sub> H <sub>30</sub> O <sub>2</sub> | <u>ID#:</u><br>113705 | 1,958  |
| 42  | 30.721 | 7-Methyl-Z-tetradecen-1-ol acetate                                   | C <sub>17</sub> H <sub>32</sub> O <sub>2</sub> | <u>ID#:</u> 7041      | 0,965  |
| 43  | 33.146 | Tetradecane, 2,6,10-trimethyl-                                       | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7            | 3,716  |
| 44  | 35.452 | Ethyl iso-allocholate                                                | C <sub>26</sub> H <sub>44</sub> O <sub>5</sub> | <u>ID#:</u> 7020      | 0,754  |
| 45  | 38.039 | 1-Heptatriacotanol                                                   | C <sub>37</sub> H <sub>76</sub> O              | 105794-58-<br>9       | 0,970  |

**Tabela B.5** - Compostos identificados no espectro de massas do OPP obtido via craqueamento térmico, em escala de bancada, em T=500°C.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                                                                                                   | Fórmula<br>molecular                              | CAS<br>Number    | Área<br>(%) |
|------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------|-------------|
| 1    | 5.201                          | Cyclobutane, (1-methylethylidene)-                                                                                         | $C_7H_{12}$                                       | 1528-22-9        | 1,029       |
| 2    | 5.647                          | 3-Thiazolidinecarboxylic acid, 4-(acetyloxy)-2-(1,1-<br>dimethylethyl)-, phenylmethyl ester, 1-oxide, [1R-<br>(1α,2β,4β)]- | C <sub>17</sub> H <sub>23</sub> NO <sub>5</sub> S | 126990-62-<br>3  | 1,432       |
| 3    | 7.492                          | Bicyclo[2.2.1]hept-2-en-7-ol                                                                                               | $C_7H_{10}O$                                      | 53783-87-2       | 1,817       |
| 4    | 8.414                          | Ethylbenzene                                                                                                               | $C_8H_{10}$                                       | 100-41-4         | 1,486       |
| 5    | 11.027                         | Bicyclo[3.1.0]hexane, 6-isopropylidene-1-methyl-                                                                           | $C_{10}H_{16}$                                    | 24524-57-0       | 1,323       |
| 6    | 11.529                         | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-,<br>acetate                                                                    | $C_{12}H_{20}O_2$                                 | 10198-23-9       | 2,789       |
| 7    | 11.701                         | 1-(1-Propynyl)cyclohexanol                                                                                                 | C9H14O                                            | 697-37-0         | 1,239       |
| 8    | 12.378                         | 1,5,5-Trimethyl-6-methylene-cyclohexene                                                                                    | $C_{10}H_{16}$                                    | 514-95-4         | 0,614       |
| 9    | 12.472                         | Bicyclo[4.1.0]heptane, 3,7,7-trimethyl-, [1S-<br>(1α,3β,6α)]-                                                              | C <sub>10</sub> H <sub>18</sub>                   | 2778-68-9        | 1,617       |
| 10   | 12.691                         | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-α-<br>methylene-                                                               | $C_{10}H_{14}O_2$                                 | 5951-57-5        | 1,197       |
| 11   | 12.986                         | 7-Oxabicyclo[4.1.0]heptane, 1-methyl-4-(2-<br>methyloxiranyl)-                                                             | C <sub>10</sub> H <sub>16</sub> O <sub>2</sub>    | 96-08-2          | 1,653       |
| 12   | 13.801                         | Cyclohexene, 1-methyl-4-(1-methylethyl)-                                                                                   | C <sub>10</sub> H <sub>18</sub>                   | 5502-88-5        | 3,257       |
| 13   | 13.847                         | Benzene, 1-methyl-3-(1-methylethyl)-                                                                                       | $C_{10}H_{14}$                                    | 535-77-3         | 6,138       |
| 14   | 14.005                         | D-Limonene                                                                                                                 | C <sub>10</sub> H <sub>16</sub>                   | 5989-27-5        | 48,955      |
| 15   | 15.940                         | Cyclohexene, 1-methyl-4-(1-methylethylidene)-                                                                              | $C_{10}H_{16}$                                    | 586-62-9         | 2,913       |
| 16   | 18.047                         | 2,4-Dimethylstyrene                                                                                                        | $C_{10}H_{12}$                                    | 2234-20-0        | 0,508       |
| 17   | 19.301                         | Benzene, (3-methyl-2-butenyl)-                                                                                             | $C_{11}H_{14}$                                    | 4489-84-3        | 1,268       |
| 18   | 19.568                         | Benzene, (3-methyl-2-butenyl)-                                                                                             | $C_{11}H_{14}$                                    | 4489-84-3        | 1,999       |
| 19   | 23.136                         | 1,3,5,7-Tetroxane                                                                                                          | $C_4H_8O_4$                                       | 293-30-1         | 1,028       |
| 20   | 23.508                         | 9-Methyltricyclo[4.2.1.1(2,5)]deca-3,7-diene-9,10-<br>diol                                                                 | $C_{11}H_{14}O_2$                                 | 78323-73-6       | 1,303       |
| 21   | 25.469                         | Cholestan-3-ol, 2-methylene-, (3β,5α)-                                                                                     | C <sub>28</sub> H <sub>48</sub> O                 | 22599-96-8       | 1,657       |
| 22   | 26.129                         | 1-Oxaspiro[2.5]octane, 5,5-dimethyl-4-(3-methyl-<br>1,3-butadienyl)-                                                       | C <sub>14</sub> H <sub>22</sub> O                 | <u>ID#:</u> 3796 | 0,572       |
| 23   | 26.169                         | Longipinocarveol, trans-                                                                                                   | $C_{15}H_{24}O$                                   | <u>ID#:</u> 2806 | 1,045       |
| 24   | 26.472                         | Diepicedrene-1-oxide                                                                                                       | $C_{15}H_{24}O$                                   | <u>ID#:</u> 2871 | 1,187       |
| 25   | 27.215                         | β-Guaiene                                                                                                                  | $C_{15}H_{24}$                                    | 88-84-6          | 1,620       |
| 26   | 27.519                         | Bicyclo[4.4.0]dec-2-ene-4-ol, 2-methyl-9-(prop-1-en-<br>3-ol-2-yl)-                                                        | $\mathrm{C}_{15}\mathrm{H}_{24}\mathrm{O}_{2}$    | <u>ID#:</u> 3985 | 2,210       |
| 27   | 28.168                         | Geranyl isovalerate                                                                                                        | $C_{15}H_{26}O_{2}$                               | 109-20-6         | 2,149       |
| 28   | 28.691                         | 1-Oxaspiro[2.5]octane, 5,5-dimethyl-4-(3-methyl-<br>1,3-butadienyl)-                                                       | C <sub>14</sub> H <sub>22</sub> O                 | <u>ID#:</u> 3796 | 1,419       |
| 29   | 30.730                         | Geranyl isovalerate (Butanoic acid, 3-methyl-, 3,7-<br>dimethyl-2,6-octadienyl ester, (E)-)                                | C <sub>15</sub> H <sub>26</sub> O <sub>2</sub>    | 109-20-6         | 0,957       |
| 30   | 33.153                         | Tetradecane, 2,6,10-trimethyl-                                                                                             | C <sub>17</sub> H <sub>36</sub>                   | 14905-56-7       | 3,617       |

#### ANEXO C



**Figura C.1** – Cromatogramas dos OPP's obtidos via craqueamento termocatalítico, com catalisadores comerciais, em escala de bancada (grupo 2).

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                                                                                                   | Fórmula<br>molecular                              | CAS<br>Number   | Área<br>(%) |
|------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------|-------------|
| 1    | 5.200                          | Cyclopentene, 4,4-dimethyl-                                                                                                | C7H12                                             | 19037-72-0      | 1,013       |
| 2    | 5.648                          | 3-Thiazolidinecarboxylic acid, 4-(acetyloxy)-2-(1,1-<br>dimethylethyl)-, phenylmethyl ester, 1-oxide, [1R-<br>(1α,2β,4β)]- | C <sub>17</sub> H <sub>23</sub> NO <sub>5</sub> S | 126990-62-<br>3 | 2,145       |
| 3    | 7.490                          | Bicyclo[2.2.1]hept-2-en-7-ol                                                                                               | $C_7H_{10}O$                                      | 53783-87-2      | 1,837       |
| 4    | 8.396                          | Ethylbenzene                                                                                                               | $C_8H_{10}$                                       | 100-41-4        | 1,360       |
| 5    | 11.025                         | Bicyclo[3.1.0]hexane, 6-isopropylidene-1-methyl-                                                                           | C <sub>10</sub> H <sub>16</sub>                   | 24524-57-0      | 1,282       |
| 6    | 11.441                         | Bicyclo[4.1.0]heptane, 7-(1-methylethylidene)-                                                                             | C <sub>10</sub> H <sub>16</sub>                   | 53282-47-6      | 0,636       |
| 7    | 11.528                         | Cyclopentene, 4,4-dimethyl-                                                                                                | $C_7H_{12}$                                       | 19037-72-0      | 3,332       |
| 8    | 11.701                         | 1-(1-Propynyl)cyclohexanol                                                                                                 | C9H14O                                            | 697-37-0        | 1,636       |
| 9    | 12.378                         | 1,5,5-Trimethyl-6-methylene-cyclohexene                                                                                    | C <sub>10</sub> H <sub>16</sub>                   | 514-95-4        | 0,618       |
| 10   | 12.470                         | Bicyclo[4.1.0]heptane, 3,7,7-trimethyl-, [1S-<br>(1α,3β,6α)]-                                                              | $C_{10}H_{18}$                                    | 2778-68-9       | 1,474       |
| 11   | 12.690                         | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-α-<br>methylene-                                                               | $C_{10}H_{14}O_2$                                 | 5951-57-5       | 1,039       |
| 12   | 12.953                         | cis-2,6-Dimethyl-2,6-octadiene                                                                                             | $C_{10}H_{18}$                                    | 2492-22-0       | 0,522       |
| 13   | 12.990                         | 7-Oxabicyclo[4.1.0]heptane, 1-methyl-4-(2-<br>methyloxiranyl)-                                                             | $C_{10}H_{16}O_2$                                 | 96-08-2         | 0,970       |
| 14   | 13.801                         | Cyclohexene, 1-methyl-4-(1-methylethyl)-                                                                                   | $C_{10}H_{18}$                                    | 5502-88-5       | 2,961       |
| 15   | 13.848                         | Benzene, 1-methyl-3-(1-methylethyl)-                                                                                       | $C_{10}H_{14}$                                    | 535-77-3        | 5,295       |
| 16   | 14.008                         | D-Limonene                                                                                                                 | C <sub>10</sub> H <sub>16</sub>                   | 5989-27-5       | 47,907      |
| 17   | 15.941                         | Cyclohexene, 1-methyl-4-(1-methylethylidene)-                                                                              | $C_{10}H_{16}$                                    | 586-62-9        | 2,928       |
| 18   | 19.306                         | Benzene, (3-methyl-2-butenyl)-                                                                                             | C <sub>11</sub> H <sub>14</sub>                   | 4489-84-3       | 0,819       |
| 19   | 19.572                         | Benzene, (3-methyl-2-butenyl)-                                                                                             | $C_{11}H_{14}$                                    | 4489-84-3       | 1,431       |

**Tabela C.1** - Compostos identificados no espectro de massas do OPP obtido viacraqueamento termocatalítico, em escala de bancada, em T= $500^{\circ}$ C e 10% CaCO<sub>3</sub>.

| 20 | 23.508 | 9-Methyltricyclo[4.2.1.1(2,5)]deca-3,7-diene-9,10-<br>diol                                  | $C_{11}H_{14}O_2$                              | 78323-73-6            | 1,059 |
|----|--------|---------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------|-------|
| 21 | 25.468 | Cholestan-3-ol, 2-methylene-, $(3\beta,5\alpha)$ -                                          | C <sub>28</sub> H <sub>48</sub> O              | 22599-96-8            | 1,345 |
| 22 | 26.174 | 2-[5-(2,2-Dimethyl-6-methylene-cyclohexyl)-3-<br>methyl-pent-2-enyl]-[1,4]benzoquinone      | $\mathrm{C}_{21}\mathrm{H}_{28}\mathrm{O}_2$   | <u>ID#:</u><br>150316 | 1,561 |
| 23 | 26.304 | Tricyclo[6.4.0.0(3,7)]dodeca-1,9,11-triene                                                  | $C_{12}H_{14}$                                 | <u>ID#:</u> 48305     | 1,164 |
| 24 | 26.470 | Diepicedrene-1-oxide                                                                        | C <sub>15</sub> H <sub>24</sub> O              | <u>ID#:</u> 2871      | 1,307 |
| 25 | 26.833 | Bicyclo[4.4.0]dec-2-ene-4-ol, 2-methyl-9-(prop-1-en-<br>3-ol-2-yl)-                         | $\mathrm{C}_{15}\mathrm{H}_{24}\mathrm{O}_{2}$ | <u>ID#:</u> 3985      | 1,608 |
| 26 | 27.221 | α-acorenol                                                                                  | C <sub>15</sub> H <sub>26</sub> O              | <u>ID#:</u> 99931     | 1,604 |
| 27 | 27.523 | Bicyclo[4.4.0]dec-2-ene-4-ol, 2-methyl-9-(prop-1-en-<br>3-ol-2-yl)-                         | $\mathrm{C}_{15}\mathrm{H}_{24}\mathrm{O}_{2}$ | <u>ID#:</u> 3985      | 1,915 |
| 28 | 28.171 | Geranyl isovalerate                                                                         | C <sub>15</sub> H <sub>26</sub> O <sub>2</sub> | 109-20-6              | 2,456 |
| 29 | 28.380 | 1-Oxaspiro[2.5]octane, 5,5-dimethyl-4-(3-methyl-<br>1,3-butadienyl)-                        | C <sub>14</sub> H <sub>22</sub> O              | <u>ID#:</u> 3796      | 1,063 |
| 30 | 28.692 | 1-Oxaspiro[2.5]octane, 5,5-dimethyl-4-(3-methyl-<br>1,3-butadienyl)-                        | C <sub>14</sub> H <sub>22</sub> O              | <u>ID#:</u> 3796      | 1,306 |
| 31 | 30.733 | Geranyl isovalerate (Butanoic acid, 3-methyl-, 3,7-<br>dimethyl-2,6-octadienyl ester, (E)-) | C <sub>15</sub> H <sub>26</sub> O <sub>2</sub> | 109-20-6              | 0,904 |
| 32 | 33.154 | Tetradecane, 2,6,10-trimethyl-                                                              | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7            | 2,226 |
| 33 | 38.048 | geranyl-a-terpinene                                                                         | $C_{20}H_{32}$                                 | <u>ID#:</u> 36167     | 1,276 |

**Tabela C.2** - Compostos identificados no espectro de massas do OPP obtido viacraqueamento termocatalítico, em escala de bancada, em T= $500^{\circ}$ C e 10% Na<sub>2</sub>CO<sub>3</sub>.

| Pico | Tempo de          | Comparts                                                                                    | Fórmula                                                       | CAS                   | Área   |
|------|-------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------|--------|
|      | retençao<br>(min) | Composto                                                                                    | molecular                                                     | Number                | (%)    |
| 1    | 5.204             | Cyclopentene, 4,4-dimethyl-                                                                 | C7H12                                                         | 19037-72-0            | 0,888  |
| 2    | 5.655             | Cyano-acetic acid (4-benzyloxy-3-methoxy-<br>benzylidene)-hydrazide                         | C <sub>18</sub> H <sub>17</sub> N <sub>3</sub> O <sub>3</sub> | <u>ID#:</u> 59073     | 0,877  |
| 3    | 11.027            | Bicyclo[3.1.0]hexane, 6-isopropylidene-1-methyl-                                            | $C_{10}H_{16}$                                                | 24524-57-0            | 1,203  |
| 4    | 11.528            | Cyclopentene, 4,4-dimethyl-                                                                 | $C_7H_{12}$                                                   | 19037-72-0            | 3,040  |
| 5    | 11.699            | 1-(1-Propynyl)cyclohexanol                                                                  | C9H14O                                                        | 697-37-0              | 0,339  |
| 6    | 12.379            | 1,5,5-Trimethyl-6-methylene-cyclohexene                                                     | C <sub>10</sub> H <sub>16</sub>                               | 514-95-4              | 0,356  |
| 7    | 12.986            | 7-Oxabicyclo[4.1.0]heptane, 1-methyl-4-(2-<br>methyloxiranyl)-                              | $C_{10}H_{16}O_2$                                             | 96-08-2               | 1,667  |
| 8    | 13.801            | Cyclohexene, 1-methyl-4-(1-methylethyl)-                                                    | $C_{10}H_{18}$                                                | 5502-88-5             | 2,504  |
| 9    | 13.849            | Benzene, 1-methyl-3-(1-methylethyl)-                                                        | $C_{10}H_{14}$                                                | 535-77-3              | 4,340  |
| 10   | 14.006            | D-Limonene                                                                                  | $C_{10}H_{16}$                                                | 5989-27-5             | 54,361 |
| 11   | 15.944            | Cyclohexene, 1-methyl-4-(1-methylethylidene)-                                               | $C_{10}H_{16}$                                                | 586-62-9              | 2,157  |
| 12   | 19.306            | Benzene, (3-methyl-2-butenyl)-                                                              | $C_{11}H_{14}$                                                | 4489-84-3             | 1,358  |
| 13   | 19.575            | Benzene, (3-methyl-2-butenyl)-                                                              | $C_{11}H_{14}$                                                | 4489-84-3             | 1,868  |
| 14   | 22.610            | Limonen-6-ol, pivalate                                                                      | $C_{15}H_{24}O_{2}$                                           | <u>ID#:</u> 23390     | 1,253  |
| 15   | 25.025            | Panaxydol                                                                                   | $C_{17}H_{24}O_2$                                             | 72800-72-7            | 0,637  |
| 16   | 25.466            | Cholestan-3-ol, 2-methylene-, (3β,5α)-                                                      | C <sub>28</sub> H <sub>48</sub> O                             | 22599-96-8            | 1,890  |
| 17   | 26.134            | 2-[5-(2,2-Dimethyl-6-methylene-cyclohexyl)-3-<br>methyl-pent-2-enyl]-[1,4]benzoquinone      | $C_{21}H_{28}O_2$                                             | <u>ID#:</u><br>150316 | 0,894  |
| 18   | 26.166            | Bicyclo[4.4.0]dec-2-ene-4-ol, 2-methyl-9-(prop-1-en-<br>3-ol-2-yl)-                         | $\mathrm{C}_{15}\mathrm{H}_{24}\mathrm{O}_2$                  | <u>ID#:</u> 3985      | 0,982  |
| 19   | 26.468            | Diepicedrene-1-oxide                                                                        | C <sub>15</sub> H <sub>24</sub> O                             | <u>ID#:</u> 2871      | 1,372  |
| 20   | 26.823            | 1-Oxaspiro[2.5]octane, 5,5-dimethyl-4-(3-methyl-<br>1,3-butadienyl)-                        | C <sub>14</sub> H <sub>22</sub> O                             | <u>ID#:</u> 3796      | 1,157  |
| 21   | 27.219            | α-acorenol                                                                                  | C <sub>15</sub> H <sub>26</sub> O                             | <u>ID#:</u> 99931     | 1,967  |
| 22   | 27.519            | Bicyclo[4.4.0]dec-2-ene-4-ol, 2-methyl-9-(prop-1-en-<br>3-ol-2-yl)-                         | $\mathrm{C_{15}H_{24}O_2}$                                    | <u>ID#:</u> 3985      | 2,200  |
| 23   | 28.168            | Geranyl isovalerate                                                                         | $C_{15}H_{26}O_2$                                             | 109-20-6              | 3,645  |
| 24   | 28.377            | Cholestan-3-ol, 2-methylene-, (3β,5α)-                                                      | C <sub>28</sub> H <sub>48</sub> O                             | <u>ID#:</u> 35411     | 1,418  |
| 25   | 28.681            | 1-Oxaspiro[2.5]octane, 5,5-dimethyl-4-(3-methyl-<br>1,3-butadienyl)-                        | C <sub>14</sub> H <sub>22</sub> O                             | <u>ID#:</u> 3796      | 1,648  |
| 26   | 30.730            | Geranyl isovalerate (Butanoic acid, 3-methyl-, 3,7-<br>dimethyl-2,6-octadienyl ester, (E)-) | C <sub>15</sub> H <sub>26</sub> O <sub>2</sub>                | 109-20-6              | 1,045  |
| 27   | 33.154            | Tetradecane, 2,6,10-trimethyl-                                                              | $C_{17}H_{36}$                                                | 14905-56-7            | 3,619  |
| 28   | 38.047            | geranyl-a-terpinene                                                                         | C <sub>20</sub> H <sub>32</sub>                               | <u>ID#:</u> 36167     | 1,315  |

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                                                                    | Fórmula<br>molecular                           | CAS<br>Number         | Área<br>(%) |
|------|--------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------|-------------|
| 1    | 5.199                          | Cyclopentene, 4,4-dimethyl-                                                                 | $C_7H_{12}$                                    | 19037-72-0            | 1,298       |
| 2    | 5.645                          | 1,3,5-Cycloheptatriene                                                                      | $C_7H_8$                                       | 544-25-2              | 1,789       |
| 3    | 7.490                          | Bicyclo[2.2.1]hept-2-en-7-ol                                                                | $C_7H_{10}O$                                   | 53783-87-2            | 1,927       |
| 4    | 8.392                          | Ethylbenzene                                                                                | $C_8H_{10}$                                    | 100-41-4              | 2,098       |
| 5    | 8.673                          | 1,3-Cyclopentadiene, 5-(1-methylethylidene)-                                                | $C_8H_{10}$                                    | 2175-91-9             | 1,052       |
| 6    | 11.027                         | Bicyclo[3.1.0]hexane, 6-isopropylidene-1-methyl-                                            | C <sub>10</sub> H <sub>16</sub>                | 24524-57-0            | 1,456       |
| 7    | 11.442                         | Bicyclo[4.1.0]heptane, 7-(1-methylethylidene)-                                              | $C_{10}H_{16}$                                 | 53282-47-6            | 0,524       |
| 8    | 11.528                         | Cyclopentene, 4,4-dimethyl-                                                                 | C7H12                                          | 19037-72-0            | 2,501       |
| 9    | 11.701                         | 1-(1-Propynyl)cyclohexanol                                                                  | C9H14O                                         | 697-37-0              | 1,161       |
| 10   | 12.378                         | 1,5,5-Trimethyl-6-methylene-cyclohexene                                                     | C <sub>10</sub> H <sub>16</sub>                | 514-95-4              | 0,808       |
| 11   | 12.473                         | Bicyclo[4.1.0]heptane, 3,7,7-trimethyl-, [1S-<br>(1α,3β,6α)]-                               | C <sub>10</sub> H <sub>18</sub>                | 2778-68-9             | 1,659       |
| 12   | 12.690                         | Bicyclo[4.1.0]heptane, 3,7,7-trimethyl-, [1S-<br>(1α,3β,6α)]-                               | $C_{10}H_{18}$                                 | 2778-68-9             | 1,224       |
| 13   | 12.984                         | 7-Oxabicyclo[4.1.0]heptane, 1-methyl-4-(2-<br>methyloxiranyl)-                              | C <sub>10</sub> H <sub>16</sub> O <sub>2</sub> | 96-08-2               | 1,830       |
| 14   | 13.802                         | Cyclohexene, 1-methyl-4-(1-methylethyl)-                                                    | $C_{10}H_{18}$                                 | 5502-88-5             | 2,754       |
| 15   | 13.848                         | Benzene, 1-methyl-3-(1-methylethyl)-                                                        | $C_{10}H_{14}$                                 | 535-77-3              | 5,209       |
| 16   | 14.006                         | D-Limonene                                                                                  | $C_{10}H_{16}$                                 | 5989-27-5             | 52,233      |
| 17   | 15.945                         | Cyclohexene, 1-methyl-4-(1-methylethylidene)-                                               | $C_{10}H_{16}$                                 | 586-62-9              | 2,533       |
| 18   | 19.307                         | Benzene, (3-methyl-2-butenyl)-                                                              | C <sub>11</sub> H <sub>14</sub>                | 4489-84-3             | 2,600       |
| 19   | 19.574                         | Benzene, (3-methyl-2-butenyl)-                                                              | $C_{11}H_{14}$                                 | 4489-84-3             | 2,721       |
| 20   | 25.468                         | Cholestan-3-ol, 2-methylene-, (3β,5α)-                                                      | C <sub>28</sub> H <sub>48</sub> O              | 22599-96-8            | 1,677       |
| 21   | 26.132                         | 2-[5-(2,2-Dimethyl-6-methylene-cyclohexyl)-3-<br>methyl-pent-2-enyl]-[1,4]benzoquinone      | $\mathrm{C}_{21}\mathrm{H}_{28}\mathrm{O}_2$   | <u>ID#:</u><br>150316 | 0,784       |
| 22   | 26.174                         | Longipinocarveol, trans-                                                                    | C <sub>15</sub> H <sub>24</sub> O              | <u>ID#:</u> 2806      | 0,987       |
| 23   | 26.472                         | 1-Oxaspiro[2.5]octane, 5,5-dimethyl-4-(3-methyl-<br>1,3-butadienyl)-                        | C <sub>14</sub> H <sub>22</sub> O              | <u>ID#:</u> 3796      | 1,089       |
| 24   | 27.223                         | α-acorenol                                                                                  | C <sub>15</sub> H <sub>26</sub> O              | <u>ID#:</u> 99931     | 0,544       |
| 25   | 27.526                         | Bicyclo[4.4.0]dec-2-ene-4-ol, 2-methyl-9-(prop-1-en-<br>3-ol-2-yl)-                         | $\mathrm{C}_{15}\mathrm{H}_{24}\mathrm{O}_{2}$ | <u>ID#:</u> 3985      | 1,832       |
| 26   | 28.174                         | Geranyl isovalerate                                                                         | C <sub>15</sub> H <sub>26</sub> O <sub>2</sub> | 109-20-6              | 1,704       |
| 27   | 28.691                         | 1-Oxaspiro[2.5]octane, 5,5-dimethyl-4-(3-methyl-<br>1,3-butadienyl)-                        | C <sub>14</sub> H <sub>22</sub> O              | <u>ID#:</u> 3796      | 1,376       |
| 28   | 30.732                         | Geranyl isovalerate (Butanoic acid, 3-methyl-, 3,7-<br>dimethyl-2,6-octadienyl ester, (E)-) | C <sub>15</sub> H <sub>26</sub> O <sub>2</sub> | 109-20-6              | 0,750       |
| 29   | 33.157                         | Tetradecane, 2,6,10-trimethyl-                                                              | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7            | 1,881       |

**Tabela C.3** - Compostos identificados no espectro de massas do OPP obtido viacraqueamento termocatalítico, em escala de bancada, em T= $500^{\circ}$ C e 10% Ca(OH)<sub>2</sub>.

# ANEXO D



**Figura D.1** – Cromatogramas dos OPP's obtidos via craqueamento termocatalítico, com catalisadores oriundos de rejeitos industriais, em escala de bancada (grupo 3).

| Tabela  | <b>D.1</b> - | Compostos      | identificados   | no    | espectro   | de   | massas   | do  | OPP   | obtido  | via  |
|---------|--------------|----------------|-----------------|-------|------------|------|----------|-----|-------|---------|------|
| craquea | mento        | termocatalític | co, em escala d | le ba | ancada, en | n T= | =500°C e | 109 | % Lan | na verm | elha |

| I M HC |
|--------|
|--------|

| Pico | Tempo de<br>retenção | Composto                                                             | Fórmula<br>molecular                           | CAS<br>Number    | Área<br>(%) |
|------|----------------------|----------------------------------------------------------------------|------------------------------------------------|------------------|-------------|
|      | (min.)               |                                                                      |                                                |                  |             |
| 1    | 5.201                | Cyclopentene, 4,4-dimethyl-                                          | C <sub>7</sub> H <sub>12</sub>                 | 19037-72-0       | 0,975       |
| 2    | 5.651                | Santolina alcohol (1.2,5-Dimethyl-3-vinyl-4-hexen-2-<br>ol)          | C <sub>10</sub> H <sub>18</sub> O              | 21149-19-9       | 1,293       |
| 3    | 7.494                | Bicyclo[2.2.1]hept-2-en-7-ol                                         | $C_7H_{10}O$                                   | 53783-87-2       | 1,607       |
| 4    | 11.028               | Bicyclo[3.1.0]hexane, 6-isopropylidene-1-methyl-                     | C <sub>10</sub> H <sub>16</sub>                | 24524-57-0       | 1,313       |
| 5    | 11.528               | Cyclopentene, 4,4-dimethyl-                                          | $C_7H_{12}$                                    | 19037-72-0       | 2,980       |
| 6    | 11.698               | 1-(1-Propynyl)cyclohexanol                                           | C9H14O                                         | 697-37-0         | 1,344       |
| 7    | 12.378               | 1,5,5-Trimethyl-6-methylene-cyclohexene                              | C <sub>10</sub> H <sub>16</sub>                | 514-95-4         | 0,750       |
| 8    | 12.480               | Bicyclo[4.1.0]heptane, 3,7,7-trimethyl-, [1S-<br>(1α,3β,6α)]-        | $C_{10}H_{18}$                                 | 2778-68-9        | 1,502       |
| 9    | 12.984               | 7-Oxabicyclo[4.1.0]heptane, 1-methyl-4-(2-<br>methyloxiranyl)-       | C <sub>10</sub> H <sub>16</sub> O <sub>2</sub> | 96-08-2          | 1,311       |
| 10   | 13.803               | Cyclohexene, 1-methyl-4-(1-methylethyl)-                             | C <sub>10</sub> H <sub>18</sub>                | 5502-88-5        | 3,265       |
| 11   | 13.850               | Benzene, 1-methyl-3-(1-methylethyl)-                                 | $C_{10}H_{14}$                                 | 535-77-3         | 5,523       |
| 12   | 14.006               | D-Limonene                                                           | C <sub>10</sub> H <sub>16</sub>                | 5989-27-5        | 52,524      |
| 13   | 15.944               | Cyclohexene, 1-methyl-4-(1-methylethylidene)-                        | $C_{10}H_{16}$                                 | 586-62-9         | 2,734       |
| 14   | 19.565               | Benzene, (3-methyl-2-butenyl)-                                       | C <sub>11</sub> H <sub>14</sub>                | 4489-84-3        | 0,645       |
| 15   | 25.464               | Methyl 10,12-pentacosadiynoate                                       | C <sub>26</sub> H <sub>44</sub> O <sub>2</sub> | <u>ID#:</u> 2527 | 1,480       |
| 16   | 26.172               | Longipinocarveol, trans-                                             | C <sub>15</sub> H <sub>24</sub> O              | <u>ID#:</u> 2806 | 1,979       |
| 17   | 26.472               | 1-Oxaspiro[2.5]octane, 5,5-dimethyl-4-(3-methyl-<br>1,3-butadienyl)- | C <sub>14</sub> H <sub>22</sub> O              | <u>ID#:</u> 3796 | 2,003       |

| 18 | 26.827 | Bicyclo[4.4.0]dec-2-ene-4-ol, 2-methyl-9-(prop-1-en-<br>3-ol-2-yl)-  | C <sub>15</sub> H <sub>24</sub> O <sub>2</sub> | <u>ID#:</u> 3985      | 1,352 |
|----|--------|----------------------------------------------------------------------|------------------------------------------------|-----------------------|-------|
| 19 | 27.224 | α-acorenol                                                           | C <sub>15</sub> H <sub>26</sub> O              | <u>ID#:</u> 99931     | 1,906 |
| 20 | 27.523 | Bicyclo[4.4.0]dec-2-ene-4-ol, 2-methyl-9-(prop-1-en-<br>3-ol-2-yl)-  | $\mathrm{C}_{15}\mathrm{H}_{24}\mathrm{O}_2$   | <u>ID#:</u> 3985      | 2,209 |
| 21 | 28.173 | Geranyl isovalerate                                                  | $C_{15}H_{26}O_{2}$                            | 109-20-6              | 2,360 |
| 22 | 28.380 | 1-Oxaspiro[2.5]octane, 5,5-dimethyl-4-(3-methyl-<br>1,3-butadienyl)- | C <sub>14</sub> H <sub>22</sub> O              | <u>ID#:</u> 3796      | 1,321 |
| 23 | 28.689 | 1-Oxaspiro[2.5]octane, 5,5-dimethyl-4-(3-methyl-<br>1,3-butadienyl)- | C <sub>14</sub> H <sub>22</sub> O              | <u>ID#:</u> 3796      | 1,534 |
| 24 | 29.366 | 5,8,11-Eicosatriynoic acid, methyl ester                             | $C_{21}H_{30}O_2$                              | <u>ID#:</u><br>113705 | 2,101 |
| 25 | 33.156 | Tetradecane, 2,6,10-trimethyl-                                       | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7            | 2,828 |
| 26 | 38.050 | Androstan-17-one, 3-ethyl-3-hydroxy-, (5a)-                          | C <sub>21</sub> H <sub>34</sub> O <sub>2</sub> | 57344-99-7            | 1,160 |
|    |        |                                                                      |                                                |                       |       |
|    |        |                                                                      |                                                |                       |       |

**Tabela D.2** - Compostos identificados no espectro de massas do OPP obtido viacraqueamento termocatalítico, em escala de bancada, em T= $500^{\circ}$ C e 10% Lama vermelha2 M HCl

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                                            | Fórmula<br>molecular                           | CAS<br>Number     | Área<br>(%) |
|------|--------------------------------|---------------------------------------------------------------------|------------------------------------------------|-------------------|-------------|
| 1    | 5.200                          | Cyclopentene, 4,4-dimethyl-                                         | $C_7H_{12}$                                    | 19037-72-0        | 1,464       |
| 2    | 5.648                          | Santolina alcohol (1.2,5-Dimethyl-3-vinyl-4-hexen-2-<br>ol)         | C <sub>10</sub> H <sub>18</sub> O              | 21149-19-9        | 2,856       |
| 3    | 7.494                          | Bicyclo[2.2.1]hept-2-en-7-ol                                        | $C_7H_{10}O$                                   | 53783-87-2        | 1,249       |
| 4    | 8.423                          | Benzene, 1,3-dimethyl-                                              | C8H10                                          | <u>ID#:</u> 13332 | 1,571       |
| 5    | 11.027                         | Bicyclo[3.1.0]hexane, 6-isopropylidene-1-methyl-                    | C <sub>10</sub> H <sub>16</sub>                | 24524-57-0        | 1,611       |
| 6    | 11.528                         | Cyclopentene, 4,4-dimethyl-                                         | $C_7H_{12}$                                    | 19037-72-0        | 4,206       |
| 7    | 11.697                         | 1-(1-Propynyl)cyclohexanol                                          | C9H14O                                         | 697-37-0          | 2,034       |
| 8    | 12.380                         | 1,5,5-Trimethyl-6-methylene-cyclohexene                             | C <sub>10</sub> H <sub>16</sub>                | 514-95-4          | 0,931       |
| 9    | 12.989                         | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-α-<br>methylene-        | $C_{10}H_{14}O_2$                              | 5951-57-5         | 1,532       |
| 10   | 13.802                         | Cyclohexene, 1-methyl-4-(1-methylethyl)-                            | C <sub>10</sub> H <sub>18</sub>                | 5502-88-5         | 3,627       |
| 11   | 13.850                         | Benzene, 1-methyl-3-(1-methylethyl)-                                | $C_{10}H_{14}$                                 | 535-77-3          | 6,176       |
| 12   | 14.005                         | D-Limonene                                                          | C <sub>10</sub> H <sub>16</sub>                | 5989-27-5         | 61,212      |
| 13   | 15.950                         | Cyclohexene, 1-methyl-4-(1-methylethylidene)-                       | $C_{10}H_{16}$                                 | 586-62-9          | 2,838       |
| 14   | 25.471                         | 10,12-Tricosadiynoic acid, methyl ester                             | C <sub>24</sub> H <sub>40</sub> O <sub>2</sub> | <u>ID#:</u> 61623 | 1,712       |
| 15   | 27.225                         | α-acorenol                                                          | C <sub>15</sub> H <sub>26</sub> O              | <u>ID#:</u> 99931 | 0,419       |
| 16   | 27.528                         | Bicyclo[4.4.0]dec-2-ene-4-ol, 2-methyl-9-(prop-1-en-<br>3-ol-2-yl)- | C <sub>15</sub> H <sub>24</sub> O <sub>2</sub> | <u>ID#:</u> 3985  | 1,725       |
| 17   | 28.173                         | Geranyl isovalerate                                                 | $C_{15}H_{26}O_{2}$                            | 109-20-6          | 2,103       |
| 18   | 33.157                         | Tetradecane, 2,6,10-trimethyl-                                      | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7        | 2,733       |

**Tabela D.3** - Compostos identificados no espectro de massas do OPP obtido via craqueamento termocatalitico, em escala de bancada, em T= $500^{\circ}$ C e 10% Zeólita de rejeito de caulim.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                 | Fórmula<br>molecular            | CAS<br>Number | Área<br>(%) |
|------|--------------------------------|------------------------------------------|---------------------------------|---------------|-------------|
| 1    | 5.205                          | Cyclobutane, (1-methylethylidene)-       | $C_7H_{12}$                     | 1528-22-9     | 1,026       |
| 2    | 11.033                         | 1,5,5-Trimethyl-6-methylene-cyclohexene  | C <sub>10</sub> H <sub>16</sub> | 514-95-4      | 1,556       |
| 3    | 11.531                         | Cyclopentene, 4,4-dimethyl-              | $C_7H_{12}$                     | 19037-72-0    | 3,401       |
| 4    | 11.697                         | 1-(1-Propynyl)cyclohexanol               | C9H14O                          | 697-37-0      | 1,730       |
| 5    | 13.802                         | Cyclohexene, 1-methyl-4-(1-methylethyl)- | $C_{10}H_{18}$                  | 5502-88-5     | 3,736       |
| 6    | 13.852                         | Benzene, 1-methyl-3-(1-methylethyl)-     | C <sub>10</sub> H <sub>14</sub> | 535-77-3      | 6,815       |
| 7    | 14.003                         | D-Limonene                               | $C_{10}H_{16}$                  | 5989-27-5     | 62,652      |

| 8  | 15.951 | Cyclohexene, 1-methyl-4-(1-methylethylidene)-                        | C <sub>10</sub> H <sub>16</sub>                | 586-62-9          | 3,085 |
|----|--------|----------------------------------------------------------------------|------------------------------------------------|-------------------|-------|
| 9  | 19.582 | Hydrocinnamic acid, o-[(1,2,3,4-tetrahydro-2-<br>naphthyl)methyl]-   | C <sub>20</sub> H <sub>22</sub> O <sub>2</sub> | 23804-21-9        | 3,307 |
| 10 | 26.178 | Retinal                                                              | C <sub>20</sub> H <sub>28</sub> O              | 116-31-4          | 1,638 |
| 11 | 27.225 | α-acorenol                                                           | $C_{15}H_{26}O$                                | <u>ID#:</u> 99931 | 0,637 |
| 12 | 27.524 | Bicyclo[4.4.0]dec-2-ene-4-ol, 2-methyl-9-(prop-1-en-<br>3-ol-2-yl)-  | $\mathrm{C}_{15}\mathrm{H}_{24}\mathrm{O}_{2}$ | <u>ID#:</u> 3985  | 2,483 |
| 13 | 28.176 | Geranyl isovalerate                                                  | $C_{15}H_{26}O_{2}$                            | 109-20-6          | 2,135 |
| 14 | 28.695 | 1-Oxaspiro[2.5]octane, 5,5-dimethyl-4-(3-methyl-<br>1,3-butadienyl)- | C <sub>14</sub> H <sub>22</sub> O              | <u>ID#:</u> 3796  | 1,859 |
| 15 | 33.157 | Tetradecane, 2,6,10-trimethyl-                                       | $C_{17}H_{36}$                                 | 14905-56-7        | 3,941 |

# ANEXO E



**Figura E.1** – Cromatogramas dos OPP's obtidos via craqueamento terrmocatalitico, com pneu impregnado com NaOH, em escala de bancada (grupo 4).

**Tabela E.1** - Compostos identificados no espectro de massas do OPP obtido via craqueamento térmico, em escala de bancada, em T=500°C e pneu impregnado com 0,5M NaOH.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                                                    | Fórmula<br>molecular                           | CAS<br>Number    | Área<br>(%) |
|------|--------------------------------|-----------------------------------------------------------------------------|------------------------------------------------|------------------|-------------|
| 1    | 5.202                          | Cyclopentene, 4,4-dimethyl-                                                 | $C_7H_{12}$                                    | 19037-72-0       | 1,171       |
| 2    | 5.647                          | 1,3,5-Cycloheptatriene                                                      | C7H8                                           | 544-25-2         | 1,914       |
| 3    | 7.493                          | Bicyclo[2.2.1]hept-2-en-7-ol                                                | C7H10O                                         | 53783-87-2       | 1,894       |
| 4    | 8.397                          | Ethylbenzene                                                                | C <sub>8</sub> H <sub>10</sub>                 | 100-41-4         | 2,058       |
| 5    | 8.679                          | 1,3-Cyclopentadiene, 5-(1-methylethylidene)-                                | $C_8H_{10}$                                    | 2175-91-9        | 0,891       |
| 6    | 11.031                         | Cyclopentene, 4,4-dimethyl-                                                 | C <sub>7</sub> H <sub>12</sub>                 | 19037-72-0       | 1,223       |
| 7    | 11.445                         | Bicyclo[4.1.0]heptane, 7-(1-methylethylidene)-                              | $C_{10}H_{16}$                                 | 53282-47-6       | 0,552       |
| 8    | 11.530                         | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, acetate                        | C <sub>12</sub> H <sub>20</sub> O <sub>2</sub> | 10198-23-9       | 3,061       |
| 9    | 11.702                         | 1-(1-Propynyl)cyclohexanol                                                  | C9H14O                                         | 697-37-0         | 1,237       |
| 10   | 12.382                         | 1,5,5-Trimethyl-6-methylene-cyclohexene                                     | C <sub>10</sub> H <sub>16</sub>                | 514-95-4         | 0,671       |
| 11   | 12.477                         | Bicyclo[4.1.0]heptane, 3,7,7-trimethyl-, [1S-<br>(1α,3β,6α)]-               | $C_{10}H_{18}$                                 | 2778-68-9        | 1,490       |
| 12   | 12.694                         | (1R,3E,7E,11R)-1,5,5,8-Tetramethyl-12-<br>oxabicyclo[9.1.0]dodeca-3,7-diene | C <sub>15</sub> H <sub>24</sub> O              | 19888-34-7       | 1,063       |
| 13   | 12.986                         | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-α-<br>methylene-                | C <sub>10</sub> H <sub>14</sub> O <sub>2</sub> | 5951-57-5        | 1,520       |
| 14   | 13.804                         | Cyclohexene, 1-methyl-4-(1-methylethyl)-                                    | $C_{10}H_{18}$                                 | 5502-88-5        | 2,971       |
| 15   | 13.853                         | Benzene, 1-methyl-3-(1-methylethyl)-                                        | $C_{10}H_{14}$                                 | 535-77-3         | 4,251       |
| 16   | 14.009                         | D-Limonene                                                                  | $C_{10}H_{16}$                                 | 5989-27-5        | 45,300      |
| 17   | 15.951                         | Cyclohexene, 1-methyl-4-(1-methylethylidene)-                               | $C_{10}H_{16}$                                 | 586-62-9         | 1,612       |
| 18   | 19.310                         | Hydrocinnamic acid, o-[(1,2,3,4-tetrahydro-2-<br>naphthyl)methyl]-          | $C_{20}H_{22}O_2$                              | 23804-21-9       | 2,316       |
| 19   | 19.574                         | Hydrocinnamic acid, o-[(1,2,3,4-tetrahydro-2-<br>naphthyl)methyl]-          | C <sub>20</sub> H <sub>22</sub> O <sub>2</sub> | 23804-21-9       | 2,256       |
| 20   | 22.613                         | Ethyl iso-allocholate                                                       | C <sub>26</sub> H <sub>44</sub> O <sub>5</sub> | <u>ID#:</u> 7020 | 1,043       |

| 21 | 25.025 | Panaxjapyne A (9-Heptadecene-4,6-diyn-3-ol,<br>(3S,9Z)-)             | C <sub>17</sub> H <sub>26</sub> O              | 1242413-<br>82-6      | 1,184 |
|----|--------|----------------------------------------------------------------------|------------------------------------------------|-----------------------|-------|
| 22 | 25.470 | Limonen-6-ol, pivalate                                               | $C_{15}H_{24}O_{2}$                            | <u>ID#:</u> 23390     | 1,903 |
| 23 | 26.179 | Retinal                                                              | C <sub>20</sub> H <sub>28</sub> O              | 116-31-4              | 1,181 |
| 24 | 26.473 | 1-Oxaspiro[2.5]octane, 5,5-dimethyl-4-(3-methyl-<br>1,3-butadienyl)- | C <sub>14</sub> H <sub>22</sub> O              | <u>ID#:</u> 3796      | 0,695 |
| 25 | 26.829 | Bicyclo[4.4.0]dec-2-ene-4-ol, 2-methyl-9-(prop-1-en-<br>3-ol-2-yl)-  | $\mathrm{C}_{15}\mathrm{H}_{24}\mathrm{O}_{2}$ | <u>ID#:</u> 3985      | 1,478 |
| 26 | 27.224 | α-acorenol                                                           | C <sub>15</sub> H <sub>26</sub> O              | <u>ID#:</u> 99931     | 1,513 |
| 27 | 27.528 | Bicyclo[4.4.0]dec-2-ene-4-ol, 2-methyl-9-(prop-1-en-<br>3-ol-2-yl)-  | C <sub>15</sub> H <sub>24</sub> O <sub>2</sub> | <u>ID#:</u> 3985      | 1,865 |
| 28 | 28.173 | Geranyl isovalerate                                                  | $C_{15}H_{26}O_{2}$                            | 109-20-6              | 2,875 |
| 29 | 28.384 | 1-Oxaspiro[2.5]octane, 5,5-dimethyl-4-(3-methyl-<br>1,3-butadienyl)- | C <sub>14</sub> H <sub>22</sub> O              | <u>ID#:</u> 3796      | 0,631 |
| 30 | 28.690 | 1-Oxaspiro[2.5]octane, 5,5-dimethyl-4-(3-methyl-<br>1,3-butadienyl)- | C <sub>14</sub> H <sub>22</sub> O              | <u>ID#:</u> 3796      | 1,195 |
| 31 | 29.375 | 5,8,11-Eicosatriynoic acid, methyl ester                             | C <sub>21</sub> H <sub>30</sub> O <sub>2</sub> | <u>ID#:</u><br>113705 | 1,601 |
| 32 | 30.737 | Geranyl isovalerate                                                  | $\mathrm{C_{15}H_{26}O_2}$                     | 109-20-6              | 1,454 |
| 33 | 33.158 | Tetradecane, 2,6,10-trimethyl-                                       | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7            | 3,930 |

**Tabela E.2** - Compostos identificados no espectro de massas do OPP obtido via craqueamento térmico, em escala de bancada, em T=500°C e pneu impregnado com 1,0M NaOH.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                                                    | Fórmula<br>molecular                              | CAS<br>Number     | Área<br>(%) |
|------|--------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------|-------------------|-------------|
| 1    | 11.029                         | Cyclopentene, 4,4-dimethyl-                                                 | C7H12                                             | 19037-72-0        | 0,710       |
| 2    | 11.443                         | Bicyclo[4.1.0]heptane, 7-(1-methylethylidene)-                              | C <sub>10</sub> H <sub>16</sub>                   | 53282-47-6        | 0,341       |
| 3    | 11.530                         | Cyclopentene, 4,4-dimethyl-                                                 | $C_7H_{12}$                                       | 19037-72-0        | 2,016       |
| 4    | 11.701                         | 1-(1-Propynyl)cyclohexanol                                                  | C9H14O                                            | 697-37-0          | 1,043       |
| 5    | 12.009                         | 1,5,5-Trimethyl-6-methylene-cyclohexene                                     | $C_{10}H_{16}$                                    | 514-95-4          | 0,753       |
| 6    | 12.380                         | 1,5,5-Trimethyl-6-methylene-cyclohexene                                     | C <sub>10</sub> H <sub>16</sub>                   | 514-95-4          | 0,337       |
| 7    | 12.476                         | Bicyclo[4.1.0]heptane, 3,7,7-trimethyl-, [1S-<br>(1α,3β,6α)]-               | C <sub>10</sub> H <sub>18</sub>                   | 2778-68-9         | 0,778       |
| 8    | 12.692                         | (1R,3E,7E,11R)-1,5,5,8-Tetramethyl-12-<br>oxabicyclo[9.1.0]dodeca-3,7-diene | C <sub>15</sub> H <sub>24</sub> O                 | 19888-34-7        | 0,658       |
| 9    | 12.990                         | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-α-<br>methylene-                | C <sub>10</sub> H <sub>14</sub> O <sub>2</sub>    | 5951-57-5         | 0,952       |
| 10   | 13.803                         | Cyclohexene, 1-methyl-4-(1-methylethyl)-                                    | C <sub>10</sub> H <sub>18</sub>                   | 5502-88-5         | 2,028       |
| 11   | 13.849                         | Benzene, 1-methyl-3-(1-methylethyl)-                                        | $C_{10}H_{14}$                                    | 535-77-3          | 3,716       |
| 12   | 14.010                         | D-Limonene                                                                  | с <sub>10</sub> н <sub>16</sub>                   | 5989-27-5         | 30,762      |
| 13   | 14.089                         | 2,2-Diallylpyrrolidine                                                      | C <sub>10</sub> H <sub>17</sub> N                 | 40162-97-8        | 1,260       |
| 14   | 15.944                         | Cyclohexene, 1-methyl-4-(1-methylethylidene)-                               | C <sub>10</sub> H <sub>16</sub>                   | 586-62-9          | 1,312       |
| 15   | 17.802                         | Methyl 4,6-tetradecadiynoate                                                | C <sub>15</sub> H <sub>22</sub> O <sub>2</sub>    | <u>ID#:</u> 60961 | 0,704       |
| 16   | 18.037                         | 2,4-Dimethylstyrene                                                         | $C_{10}H_{12}$                                    | 2234-20-0         | 0,243       |
| 17   | 19.293                         | Benzene, (3-methyl-2-butenyl)-                                              | $C_{11}H_{14}$                                    | 4489-84-3         | 1,751       |
| 18   | 19.566                         | Hydrocinnamic acid, o-[(1,2,3,4-tetrahydro-2-<br>naphthyl)methyl]-          | $C_{20}H_{22}O_2$                                 | 23804-21-9        | 2,202       |
| 19   | 21.614                         | (S,Z)-Heptadeca-1,9-dien-4,6-diyn-3-ol                                      | C <sub>17</sub> H <sub>24</sub> O                 | 81203-57-8        | 1,071       |
| 20   | 22.180                         | Hydrocinnamic acid, o-[(1,2,3,4-tetrahydro-2-<br>naphthyl)methyl]-          | $C_{20}H_{22}O_2$                                 | 23804-21-9        | 0,874       |
| 21   | 22.507                         | 3-Isopropyltricyclo[4.3.1.1(2,5)]undec-3-en-10-ol                           | C <sub>14</sub> H <sub>22</sub> O                 | <u>ID#:</u> 50410 | 0,833       |
| 22   | 22.605                         | 2-Trimethylsiloxy-6-hexadecenoic acid, methyl ester                         | C <sub>20</sub> H <sub>40</sub> O <sub>3</sub> Si | <u>ID#:</u> 41294 | 1,199       |
| 23   | 23.312                         | Falcarinol (Z)-(-)-1,9-Heptadecadiene-4,6-diyne-3-ol)                       | с <sub>17</sub> н <sub>24</sub> о                 | 21852-80-2        | 0,820       |
| 24   | 23.388                         | Falcarinol (Z)-(-)-1,9-Heptadecadiene-4,6-diyne-3-ol)                       | C <sub>17</sub> H <sub>24</sub> O                 | 21852-80-2        | 0,698       |
| 25   | 23.501                         | 12-Oxatetracyclo[4.3.1.1(2,5).1(4,10)]dodecane, 11-<br>isopropylidene-      | C <sub>14</sub> H <sub>20</sub> O                 | 105191-67-<br>1   | 1,197       |
| 26   | 23.906                         | 2-Methyl-4-(2,6,6-trimethylcyclohex-1-enyl)but-2-<br>en-1-ol                | C <sub>14</sub> H <sub>24</sub> O                 | 62924-17-8        | 0,457       |
| 27   | 24.960                         | Dihydrodehydrocostus lactone                                                | $C_{15}H_{20}O_2$                                 | 4955-03-7         | 0,408       |
| 28   | 25.024                         | Panaxjapyne A (9-Heptadecene-4,6-diyn-3-ol,<br>(3S,9Z)-)                    | C <sub>17</sub> H <sub>26</sub> O                 | 1242413-<br>82-6  | 0,163       |
| 29   | 25.257                         | Cholestan-3-ol, 2-methylene-, (3β,5α)-                                      | C <sub>28</sub> H <sub>48</sub> O                 | 22599-96-8        | 0,451       |

| 30 | 25.464 | Limonen-6-ol, pivalate                                                                 | $C_{15}H_{24}O_{2}$                            | <u>ID#:</u> 23390     | 2,263 |
|----|--------|----------------------------------------------------------------------------------------|------------------------------------------------|-----------------------|-------|
| 31 | 26.126 | Cholestan-3-ol, 2-methylene-, (3β,5α)-                                                 | C <sub>28</sub> H <sub>48</sub> O              | 22599-96-8            | 1,217 |
| 32 | 26.167 | 2-[5-(2,2-Dimethyl-6-methylene-cyclohexyl)-3-<br>methyl-pent-2-enyl]-[1,4]benzoquinone | $\mathrm{C}_{21}\mathrm{H}_{28}\mathrm{O}_2$   | <u>ID#:</u><br>150316 | 1,181 |
| 33 | 26.301 | Tricyclo[6.4.0.0(3,7)]dodeca-1,9,11-triene                                             | $C_{12}H_{14}$                                 | <u>ID#:</u> 48305     | 1,856 |
| 34 | 26.401 | β-Guaiene                                                                              | $C_{15}H_{24}$                                 | 88-84-6               | 0,910 |
| 35 | 26.467 | 1-Oxaspiro[2.5]octane, 5,5-dimethyl-4-(3-methyl-<br>1,3-butadienyl)-                   | C <sub>14</sub> H <sub>22</sub> O              | <u>ID#:</u> 3796      | 2,373 |
| 36 | 26.825 | Bicyclo[4.4.0]dec-2-ene-4-ol, 2-methyl-9-(prop-1-en-<br>3-ol-2-yl)-                    | $\mathrm{C}_{15}\mathrm{H}_{24}\mathrm{O}_{2}$ | <u>ID#:</u> 3985      | 1,757 |
| 37 | 26.865 | Longipinocarveol, trans-                                                               | C <sub>15</sub> H <sub>24</sub> O              | <u>ID#:</u> 2806      | 1,258 |
| 38 | 26.994 | γ-HIMACHALENE                                                                          | $\mathrm{C}_{15}\mathrm{H}_{24}$               | <u>ID#:</u><br>100099 | 1,576 |
| 39 | 27.222 | α-acorenol                                                                             | C <sub>15</sub> H <sub>26</sub> O              | <u>ID#:</u> 99931     | 2,079 |
| 40 | 27.286 | β-Guaiene                                                                              | $C_{15}H_{24}$                                 | 88-84-6               | 1,813 |
| 41 | 27.515 | Bicyclo[4.4.0]dec-2-ene-4-ol, 2-methyl-9-(prop-1-en-<br>3-ol-2-yl)-                    | C <sub>15</sub> H <sub>24</sub> O <sub>2</sub> | <u>ID#:</u> 3985      | 2,478 |
| 42 | 27.976 | Cholestan-3-ol, 2-methylene-, $(3\beta,5\alpha)$ -                                     | C <sub>28</sub> H <sub>48</sub> O              | 22599-96-8            | 0,629 |
| 43 | 28.169 | Tetradecane, 2,6,10-trimethyl-                                                         | $C_{17}H_{36}$                                 | 14905-56-7            | 3,794 |
| 44 | 28.374 | Androstan-17-one, 3-ethyl-3-hydroxy-, (5α)-                                            | C <sub>21</sub> H <sub>34</sub> O <sub>2</sub> | 57344-99-7            | 1,321 |
| 45 | 28.689 | 1-Oxaspiro[2.5]octane, 5,5-dimethyl-4-(3-methyl-<br>1,3-butadienyl)-                   | C <sub>14</sub> H <sub>22</sub> O              | <u>ID#:</u> 3796      | 1,548 |
| 46 | 29.335 | 5,8,11-Eicosatriynoic acid, methyl ester                                               | $C_{21}H_{30}O_2$                              | <u>ID#:</u><br>113705 | 2,135 |
| 47 | 30.556 | Bicyclo[4.4.0]dec-2-ene-4-ol, 2-methyl-9-(prop-1-en-<br>3-ol-2-yl)-                    | C <sub>15</sub> H <sub>24</sub> O <sub>2</sub> | <u>ID#:</u> 3985      | 0,920 |
| 48 | 30.729 | Geranyl isovalerate                                                                    | C <sub>15</sub> H <sub>26</sub> O <sub>2</sub> | 109-20-6              | 1,317 |
| 49 | 32.993 | Retinol, acetate                                                                       | $C_{22}H_{32}O_2$                              | 127-47-9              | 0,654 |
| 50 | 33.154 | Tetradecane, 2,6,10-trimethyl-                                                         | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7            | 4,022 |
| 51 | 35.461 | Ethyl iso-allocholate                                                                  | C <sub>26</sub> H <sub>44</sub> O <sub>5</sub> | <u>ID#:</u> 7020      | 0,600 |
| 52 | 36.560 | 1-Heptatriacotanol                                                                     | C <sub>37</sub> H <sub>76</sub> O              | 105794-58-<br>9       | 0,678 |
| 53 | 36.778 | 1-Heptatriacotanol                                                                     | C <sub>37</sub> H <sub>76</sub> O              | 105794-58-<br>9       | 0,432 |
| 54 | 38.047 | geranyl-a-terpinene                                                                    | $C_{20}H_{32}$                                 | <u>ID#:</u> 36167     | 1,451 |

#### **ANEXO F**



**Figura F.1** – Cromatogramas dos OPP's obtidos durante o processo, via craqueamento térmico em escala piloto, em T=500°C.

**Tabela F.1** - Compostos identificados no espectro de massas do OPP obtido via craqueamento térmico, em escala piloto, em T=500°C no tempo de 45 minutos de processo.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                             | Fórmula<br>molecular            | CAS<br>Number | Área<br>(%) |
|------|--------------------------------|------------------------------------------------------|---------------------------------|---------------|-------------|
| 1    | 2.979                          | Trichloromethane                                     | CHCl3                           | 67-66-3       | 1.694       |
| 2    | 3.446                          | Benzene                                              | C6H6                            | 71-43-2       | 3.229       |
| 3    | 5.191                          | Cyclobutane, (1-methylethylidene)-                   | $C_7H_{12}$                     | 1528-22-9     | 1.738       |
| 4    | 5.568                          | Toluene                                              | $C_7H_8$                        | 108-88-3      | 19.435      |
| 5    | 7.492                          | Bicyclo[2.2.1]hept-2-en-7-ol                         | $C_7H_{10}O$                    | 53783-87-2    | 2.100       |
| 6    | 8.327                          | Ethylbenzene                                         | $C_8H_{10}$                     | 100-41-4      | 8.554       |
| 7    | 8.619                          | p-Xylene                                             | $C_8H_{10}$                     | 106-42-3      | 8.628       |
| 8    | 9.366                          | p-Xylene                                             | $C_8H_{10}$                     | 106-42-3      | 3.053       |
| 9    | 11.544                         | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, acetate | $C_{12}H_{20}O_2$               | 10198-23-9    | 2.970       |
| 10   | 11.714                         | Cyclopentanol, 1-(1-methylene-2-propenyl)-           | C9H14O                          | 78158-11-9    | 1.682       |
| 11   | 13.864                         | Benzene, 1-methyl-3-(1-methylethyl)-                 | $C_{10}H_{14}$                  | 535-77-3      | 11.080      |
| 12   | 14.018                         | D-Limonene                                           | C <sub>10</sub> H <sub>16</sub> | 5989-27-5     | 29.245      |
| 13   | 15.965                         | Cyclohexene, 1-methyl-4-(1-methylethylidene)-        | $C_{10}H_{16}$                  | 586-62-9      | 1.896       |
| 14   | 28.188                         | Octadecane, 6-methyl-                                | C <sub>19</sub> H <sub>40</sub> | 10544-96-4    | 2.453       |
| 15   | 33.168                         | Tetradecane, 2,6,10-trimethyl-                       | $C_{17}H_{36}$                  | 14905-56-7    | 2.244       |

**Tabela F.2** - Compostos identificados no espectro de massas do OPP obtido via craqueamento térmico, em escala piloto, em  $T=500^{\circ}C$  no tempo de 55 minutos de processo.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                             | Fórmula<br>molecular                           | CAS<br>Number         | Área<br>(%) |
|------|--------------------------------|------------------------------------------------------|------------------------------------------------|-----------------------|-------------|
| 1    | 2.999                          | Trichloromethane                                     | CHCl3                                          | 67-66-3               | 1.129       |
| 2    | 3.467                          | Benzene                                              | C6H6                                           | 71-43-2               | 2.614       |
| 3    | 5.217                          | Cyclopropane, trimethylmethylene-                    | $C_7H_{12}$                                    | 34462-28-7            | 1.320       |
| 4    | 5.594                          | Toluene                                              | C <sub>7</sub> H <sub>8</sub>                  | 108-88-3              | 13.730      |
| 5    | 7.511                          | Bicyclo[2.2.1]hept-2-en-7-ol                         | $C_7H_{10}O$                                   | 53783-87-2            | 1.316       |
| 6    | 8.344                          | Benzene, 1,3-dimethyl-                               | C <sub>8</sub> H <sub>10</sub>                 | 108-38-3              | 8.475       |
| 7    | 8.632                          | p-Xylene                                             | $C_8H_{10}$                                    | 106-42-3              | 12.162      |
| 8    | 9.380                          | p-Xylene                                             | C <sub>8</sub> H <sub>10</sub>                 | 106-42-3              | 2.739       |
| 9    | 11.552                         | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, acetate | C <sub>12</sub> H <sub>20</sub> O <sub>2</sub> | 10198-23-9            | 2.111       |
| 10   | 11.721                         | Cyclopentanol, 1-(1-methylene-2-propenyl)-           | C9H14O                                         | 78158-11-9            | 1.959       |
| 11   | 11.812                         | Benzene, 1-ethyl-3-methyl-                           | C9H12                                          | 620-14-4              | 0.785       |
| 12   | 12.844                         | Mesitylene (Benzene, 1,3,5-trimethyl-)               | C9H12                                          | 108-67-8              | 1.520       |
| 13   | 13.762                         | Mesitylene (Benzene, 1,3,5-trimethyl-)               | C9H12                                          | 108-67-8              | 1.683       |
| 14   | 13.867                         | o-Cymene                                             | C <sub>10</sub> H <sub>14</sub>                | 527-84-4              | 13.770      |
| 15   | 14.025                         | D-Limonene                                           | C <sub>10</sub> H <sub>16</sub>                | 5989-27-5             | 28.784      |
| 16   | 15.961                         | 2,4,6-Trimethylbenzyl alcohol                        | C <sub>10</sub> H <sub>14</sub> O              | <u>ID#:</u><br>116527 | 2.566       |
| 17   | 28.189                         | Octadecane, 6-methyl-                                | C <sub>19</sub> H <sub>40</sub>                | 10544-96-4            | 1.846       |
| 18   | 33.169                         | Tetradecane, 2,6,10-trimethyl-                       | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7            | 1.491       |

**Tabela F.3** - Compostos identificados no espectro de massas do OPP obtido viacraqueamento térmico, em escala piloto, em T= $500^{\circ}$ C no tempo de 65 minutos deprocesso.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                             | Fórmula<br>molecular                         | CAS<br>Number         | Área<br>(%) |
|------|--------------------------------|------------------------------------------------------|----------------------------------------------|-----------------------|-------------|
| 1    | 2.986                          | Trichloromethane                                     | CHCl <sub>3</sub>                            | 67-66-3               | 1.213       |
| 2    | 3.457                          | Benzene                                              | C <sub>6</sub> H <sub>6</sub>                | 71-43-2               | 1.599       |
| 3    | 5.585                          | Toluene                                              | $C_7H_8$                                     | 108-88-3              | 8.836       |
| 4    | 8.330                          | Ethylbenzene                                         | $C_8H_{10}$                                  | 100-41-4              | 6.100       |
| 5    | 8.610                          | p-Xylene                                             | $C_8H_{10}$                                  | 106-42-3              | 9.669       |
| 6    | 9.356                          | p-Xylene                                             | $C_8H_{10}$                                  | 106-42-3              | 2.000       |
| 7    | 11.523                         | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, acetate | $C_{12}H_{20}O_2$                            | 10198-23-9            | 2.382       |
| 8    | 11.691                         | Cyclopentanol, 1-(1-methylene-2-propenyl)-           | C9H14O                                       | 78158-11-9            | 1.929       |
| 9    | 11.784                         | Benzene, 1-ethyl-3-methyl-                           | C9H12                                        | 620-14-4              | 0.782       |
| 10   | 12.818                         | Mesitylene (Benzene, 1,3,5-trimethyl-)               | C9H12                                        | 108-67-8              | 1.745       |
| 11   | 13.730                         | Benzene, 1,2,4-trimethyl-                            | C9H12                                        | 95-63-6               | 2.176       |
| 12   | 13.837                         | o-Cymene                                             | C <sub>10</sub> H <sub>14</sub>              | 527-84-4              | 18.078      |
| 13   | 13.996                         | D-Limonene                                           | $C_{10}H_{16}$                               | 5989-27-5             | 29.313      |
| 14   | 15.931                         | 2,4,6-Trimethylbenzyl alcohol                        | C <sub>10</sub> H <sub>14</sub> O            | <u>ID#:</u><br>116527 | 2.850       |
| 15   | 18.021                         | 2,4-Dimethylstyrene                                  | $C_{10}H_{12}$                               | 2234-20-0             | 0.430       |
| 16   | 19.377                         | 2-Naphthalenol, 1,2-dihydro-, acetate                | $\mathrm{C}_{12}\mathrm{H}_{12}\mathrm{O}_2$ | 132316-80-<br>4       | 2.607       |
| 17   | 19.531                         | 1H-Indene, 2,3-dihydro-1,2-dimethyl-                 | $C_{11}H_{14}$                               | 17057-82-8            | 1.875       |
| 18   | 28.161                         | Octadecane, 6-methyl-                                | C <sub>19</sub> H <sub>40</sub>              | 10544-96-4            | 3.387       |
| 19   | 33.143                         | Tetradecane, 2,6,10-trimethyl-                       | C <sub>17</sub> H <sub>36</sub>              | 14905-56-7            | 3.028       |

**Tabela F.4** - Compostos identificados no espectro de massas do OPP obtido via craqueamento térmico, em escala piloto, em T=500°C no tempo de 75 minutos de processo.

| Pico | Tempo de<br>retenção<br>(min.) | Composto         | Fórmula<br>molecular | CAS<br>Number | Área<br>(%) |
|------|--------------------------------|------------------|----------------------|---------------|-------------|
| 1    | 2.986                          | Trichloromethane | CHCl3                | 67-66-3       | 0.931       |

| 2  | 3.448  | Benzene                                                                 | C6H6                                           | 71-43-2               | 2.833  |
|----|--------|-------------------------------------------------------------------------|------------------------------------------------|-----------------------|--------|
| 3  | 5.192  | Cyclobutane, (1-methylethylidene)-                                      | $C_7H_{12}$                                    | 1528-22-9             | 0.781  |
| 4  | 5.564  | Toluene                                                                 | $C_7H_8$                                       | 108-88-3              | 12.245 |
| 5  | 8.310  | Benzene, 1,3-dimethyl-                                                  | $C_8H_{10}$                                    | 108-38-3              | 6.230  |
| 6  | 8.592  | p-Xylene                                                                | C <sub>8</sub> H <sub>10</sub>                 | 106-42-3              | 10.804 |
| 7  | 9.341  | p-Xylene                                                                | $C_8H_{10}$                                    | 106-42-3              | 2.289  |
| 8  | 10.379 | Benzene, (1-methylethyl)-                                               | C9H12                                          | 98-82-8               | 0.760  |
| 9  | 11.520 | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, acetate                    | $C_{12}H_{20}O_2$                              | 10198-23-9            | 1.720  |
| 10 | 11.684 | Benzene, 1-ethyl-3-methyl-                                              | C9H12                                          | 620-14-4              | 2.333  |
| 11 | 11.772 | Benzene, 1-ethyl-3-methyl-                                              | C9H12                                          | 620-14-4              | 2.091  |
| 12 | 12.810 | Mesitylene (Benzene, 1,3,5-trimethyl-)                                  | C9H12                                          | 108-67-8              | 1.581  |
| 13 | 13.723 | Mesitylene (Benzene, 1,3,5-trimethyl-)                                  | C9H12                                          | 108-67-8              | 1.968  |
| 14 | 13.831 | Benzene, 1-methyl-3-(1-methylethyl)-                                    | $C_{10}H_{14}$                                 | 535-77-3              | 16.673 |
| 15 | 13.991 | D-Limonene                                                              | $C_{10}H_{16}$                                 | 5989-27-5             | 19.416 |
| 16 | 15.924 | Cyclohexene, 1-methyl-4-(1-methylethylidene)-                           | C <sub>10</sub> H <sub>16</sub>                | 586-62-9              | 2.307  |
| 17 | 18.015 | 2,4-Dimethylstyrene                                                     | $C_{10}H_{12}$                                 | 2234-20-0             | 0.523  |
| 18 | 19.351 | N-Methyl-9-aza-tricyclo[6.2.2.0(2,7)]dodec-2,4,6,11-<br>tetraene-10-one | C <sub>12</sub> H <sub>11</sub> NO             | 13131-19-6            | 3.220  |
| 19 | 19.531 | 1H-Indene, 2,3-dihydro-1,2-dimethyl-                                    | $C_{11}H_{14}$                                 | 17057-82-8            | 2.007  |
| 20 | 22.786 | Butanoic acid, 3-[(1-phenylethyl-2-propynyl)oxy]                        | C <sub>15</sub> H <sub>18</sub> O <sub>3</sub> | <u>ID#:</u><br>129916 | 1.860  |
| 21 | 23.203 | Benzocycloheptatriene                                                   | $C_{11}H_{10}$                                 | 264-09-5              | 1.758  |
| 22 | 26.285 | Tricyclo[6.4.0.0(3,7)]dodeca-1,9,11-triene                              | $C_{12}H_{14}$                                 | <u>ID#:</u> 48305     | 0.848  |
| 23 | 28.158 | Tetradecane, 2,6,10-trimethyl                                           | $C_{17}H_{36}$                                 | 14905-56-7            | 2.565  |
| 24 | 33.140 | Tetradecane, 2,6,10-trimethyl                                           | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7            | 2.257  |

**Tabela F.5** - Compostos identificados no espectro de massas do OPP obtido via craqueamento térmico, em escala piloto, em T=500°C no tempo de 85 minutos de processo.

| Pico | Tempo de<br>retencão | Composto                                                                                    | Fórmula<br>molecular                           | CAS<br>Number | Área<br>(%) |
|------|----------------------|---------------------------------------------------------------------------------------------|------------------------------------------------|---------------|-------------|
|      | (min.)               | ľ                                                                                           |                                                |               | ( )         |
| 1    | 2.987                | Trichloromethane                                                                            | CHCl3                                          | 67-66-3       | 0.909       |
| 2    | 3.449                | Benzene                                                                                     | C <sub>6</sub> H <sub>6</sub>                  | 71-43-2       | 4.482       |
| 3    | 5.199                | Cyclopentene, 4,4-dimethyl-                                                                 | $C_7H_{12}$                                    | 19037-72-0    | 0.850       |
| 4    | 5.570                | Toluene                                                                                     | C <sub>7</sub> H <sub>8</sub>                  | 108-88-3      | 14.619      |
| 5    | 8.319                | Benzene, 1,3-dimethyl-                                                                      | $C_8H_{10}$                                    | 108-38-3      | 6.669       |
| 6    | 8.600                | p-Xylene                                                                                    | C <sub>8</sub> H <sub>10</sub>                 | 106-42-3      | 12.018      |
| 7    | 9.354                | p-Xylene                                                                                    | $C_8H_{10}$                                    | 106-42-3      | 2.600       |
| 8    | 10.394               | Benzene, (1-methylethyl)-                                                                   | C9H12                                          | 98-82-8       | 0.746       |
| 9    | 11.529               | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, acetate                                        | $C_{12}H_{20}O_2$                              | 10198-23-9    | 1.790       |
| 10   | 11.692               | Benzene, 1-ethyl-3-methyl-                                                                  | C9H12                                          | 620-14-4      | 2.024       |
| 11   | 11.781               | Benzene, 1-ethyl-3-methyl-                                                                  | C9H12                                          | 620-14-4      | 1.201       |
| 12   | 12.817               | Mesitylene (Benzene, 1,3,5-trimethyl-)                                                      | C9H12                                          | 108-67-8      | 1.762       |
| 13   | 13.732               | Mesitylene (Benzene, 1,3,5-trimethyl-)                                                      | C9H12                                          | 108-67-8      | 2.096       |
| 14   | 13.840               | p-Cymene                                                                                    | $C_{10}H_{14}$                                 | 99-87-6       | 18.394      |
| 15   | 14.000               | D-Limonene                                                                                  | $C_{10}H_{16}$                                 | 5989-27-5     | 17.682      |
| 16   | 15.934               | Cyclohexene, 1-methyl-4-(1-methylethylidene)-                                               | C <sub>10</sub> H <sub>16</sub>                | 586-62-9      | 2.168       |
| 17   | 18.028               | 2,4-Dimethylstyrene                                                                         | $C_{10}H_{12}$                                 | 2234-20-0     | 0.134       |
| 18   | 19.364               | N-Methyl-9-aza-tricyclo[6.2.2.0(2,7)]dodec-2,4,6,11-<br>tetraene-10-one                     | C <sub>12</sub> H <sub>11</sub> NO             | 13131-19-6    | 3.423       |
| 19   | 19.535               | 1H-Indene, 2,3-dihydro-1,2-dimethyl-                                                        | $C_{11}H_{14}$                                 | 17057-82-8    | 2.066       |
| 20   | 23.203               | Benzocycloheptatriene                                                                       | C <sub>11</sub> H <sub>10</sub>                | 264-09-5      | 1.574       |
| 21   | 28.168               | Geranyl isovalerate (Butanoic acid, 3-methyl-, 3,7-<br>dimethyl-2,6-octadienyl ester, (E)-) | C <sub>15</sub> H <sub>26</sub> O <sub>2</sub> | 109-20-6      | 1.710       |
| 22   | 33.148               | Tetradecane, 2,6,10-trimethyl                                                               | $C_{17}H_{36}$                                 | 14905-56-7    | 1.083       |

Amostra  $39D - T = 500^{\circ}C$  Piloto 60 min

Pico Tempo de Fórmula CAS Área retenção Composto molecular Number (%) (min.) Trichloromethane CHCl3 0.603 1 2.981 67-66-3 2 3.441 Benzene  $C_6H_6$ 71-43-2 2.891 1528-22-9 0.492 3 5.188 Cyclobutane, (1-methylethylidene)-C<sub>7</sub>H<sub>12</sub> 5.557 10.479 4 Toluene  $C_7H_8$ 108-88-3 5 8.299 4.710 thylbenzene C<sub>8</sub>H<sub>10</sub> 100-41-4 9.929 6 8.581 p-Xylene  $\mathrm{C}_{8}\mathrm{H}_{10}$ 106-42-3 9.333 1.905 7 p-Xylene  $\mathrm{C_8H_{10}}$ 106-42-3 0.619 8 10.375 Benzene, (1-methylethyl)- $C_9H_{12}$ 98-82-8 11.514 1.301 9 Cyclohexar ol, 1-methyl-4-(1-methylethenyl)-, acetate C<sub>12</sub>H<sub>20</sub>O<sub>2</sub> 0198-23-9 10 Benzene, 1-ethyl-3-methyl-2.322 11.669 C<sub>9</sub>H<sub>12</sub> 620-14-4 3.125 11 11.762 Benzene, 1-ethyl-3-methyl-620-14-4 C<sub>9</sub>H<sub>12</sub> C9H12 11.943 Benzene, 1-ethyl-4-methyl-1.494 12 622-96-8 1.293 13 12.456 3-Cyclohexen-1-carboxaldehyde, 3,4-dimethyl-ID#: 8404 C9H14O C9H12 14 12.797 Mesitylene (Benzene, 1,3,5-trimethyl-) 108-67-8 1.901 C9H12 2.037 15 13.714 Mesitylene (Benzene, 1,3,5-trimethyl-) 108-67-8 13.827 o-Cymene C<sub>10</sub>H<sub>14</sub> 527-84-4 14.349 16 12.478 17 13.988 D-Limonene 5989-27-5 C<sub>10</sub>H<sub>16</sub> 1.536 14.952 1,3,8-p-Menthatriene  $C_{10}H_{14}$ 18368-95-1 18 Cyclohexene, 1-methyl-4-(1-methylethylidene)-1.860 19 15.915 586-62-9 C<sub>10</sub>H<sub>16</sub> Benzene, 1-methyl-4-(1-methylethenyl)-1195-32-0 1.997 16.119 20  $C_{10}H_{12}$ 21 17.052 6,7-Dimethyl-3,5,8,8a-tetrahydro-1H-2-benzopyran 110028-10-0.743  $\mathrm{C}_{11}\mathrm{H}_{16}\mathrm{O}$ 22 18.002 1H-Indene, 2,3-dihydro-4-methyl-824-22-6 1.311 C<sub>10</sub>H<sub>12</sub> 23 19.292 Naphthalene 91-20-3 5.887 C<sub>10</sub>H<sub>8</sub> 19.523 1H-Indene, 2,3-dihydro-1,2-dimethyl-17057-82-8 2.380 24  $C_{11}H_{14}$ 21.555 Naphthalene, 1,2-dihydro-3-methyl-2717-44-4 0.954 25  $C_{11}H_{12}$ 22.764 Bicyclo[4.4.1]undeca-1,3,5,7,9-pentaene 2443-46-1 2.866 26  $C_{11}H_{10}$ Bicyclo[4.4.1]undeca-1,3,5,7,9-pentaene 2.312 27 23.186  $\mathrm{C}_{11}\mathrm{H}_{10}$ 2443-46-1 26.276 Naphthalene, 1,3-dimethyl-575-41-7 1.048 28 C<sub>12</sub>H<sub>12</sub> 29 26.409 Naphthalene, 2,6-dimethyl-581-42-0 1.381  $\mathrm{C}_{12}\mathrm{H}_{12}$ 28.156 Tetradecane, 2,6,10-trimethyl--14905-56-7 1.681 30 C17H36 31 29.293 3-(2-Methyl-propenyl)-1H-indene 1.083  $C_{13}H_{14}$ ID# 145358 1.035 32 33.138 Tetradecane, 2,6,10-trimethyl--C<sub>17</sub>H<sub>36</sub> 14905-56-7

**Tabela F.6** - Compostos identificados no espectro de massas do OPP obtido via craqueamento térmico, em escala piloto, em T=500°C no tempo de 95 minutos de processo.

**Tabela F.7** - Compostos identificados no espectro de massas do OPP obtido via craqueamento térmico, em escala piloto, em T=500°C no tempo de 105 minutos de processo.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                             | Fórmula<br>molecular           | CAS<br>Number | Área<br>(%) |
|------|--------------------------------|--------------------------------------|--------------------------------|---------------|-------------|
| 1    | 2.991                          | 2.991                                | 2.991                          | 2.991         | 0.673       |
| 2    | 3.455                          | Benzene                              | $C_6H_6$                       | 71-43-2       | 2.823       |
| 3    | 5.207                          | Cyclopentene, 4,4-dimethyl-          | $C_7H_{12}$                    | 19037-72-0    | 0.480       |
| 4    | 5.577                          | Toluene                              | C7H8                           | 108-88-3      | 11.445      |
| 5    | 8.318                          | Benzene, 1,3-dimethyl-               | $C_8H_{10}$                    | 108-38-3      | 4.768       |
| 6    | 8.604                          | o-Xylene                             | $C_8H_{10}$                    | 95-47-6       | 9.763       |
| 7    | 9.352                          | p-Xylene                             | $C_8H_{10}$                    | 106-42-3      | 2.276       |
| 8    | 10.394                         | Benzene, (1-methylethyl)-            | C9H12                          | 98-82-8       | 0.694       |
| 9    | 11.543                         | Cyclohexene, 4-ethenyl-1,4-dimethyl- | $C_{10}H_{16}$                 | 1743-61-9     | 1.054       |
| 10   | 11.677                         | Benzene, 1-ethyl-3-methyl-           | C <sub>9</sub> H <sub>12</sub> | 620-14-4      | 2.366       |
| 11   | 11.780                         | Benzene, 1-ethyl-3-methyl-           | C9H12                          | 620-14-4      | 3.167       |

| 12 | 11.963 | Mesitylene (Benzene, 1,3,5-trimethyl-)        | C9H12                                                          | 108-67-8              | 1.488  |
|----|--------|-----------------------------------------------|----------------------------------------------------------------|-----------------------|--------|
| 13 | 12.819 | Mesitylene (Benzene, 1,3,5-trimethyl-)        | C9H12                                                          | 108-67-8              | 1.774  |
| 14 | 13.738 | Mesitylene (Benzene, 1,3,5-trimethyl-)        | C9H12                                                          | 108-67-8              | 2.036  |
| 15 | 13.854 | o-Cymene                                      | $C_{10}H_{14}$                                                 | 527-84-4              | 12.289 |
| 16 | 14.016 | D-Limonene                                    | C <sub>10</sub> H <sub>16</sub>                                | 5989-27-5             | 10.231 |
| 17 | 14.223 | Phenprobamate                                 | C <sub>10</sub> H <sub>13</sub> NO <sub>2</sub>                | 673-31-4              | 1.067  |
| 18 | 14.964 | 1,3,8-p-Menthatriene                          | $C_{10}H_{14}$                                                 | 18368-95-1            | 1.713  |
| 19 | 15.934 | Cyclohexene, 1-methyl-4-(1-methylethylidene)- | $C_{10}H_{16}$                                                 | 586-62-9              | 1.486  |
| 20 | 16.123 | Benzene, 1-methyl-4-(1-methylethenyl)-        | $C_{10}H_{12}$                                                 | 1195-32-0             | 2.274  |
| 21 | 17.066 | Benzene, 1,2,4,5-tetramethyl-                 | $C_{10}H_{14}$                                                 | 95-93-2               | 0.756  |
| 22 | 18.028 | 2,4-Dimethylstyrene                           | $C_{10}H_{12}$                                                 | 2234-20-0             | 1.369  |
| 23 | 19.291 | Naphthalene                                   | $C_{10}H_8$                                                    | 91-20-3               | 6.380  |
| 24 | 19.539 | 1H-Indene, 2,3-dihydro-1,2-dimethyl-          | $C_{11}H_{14}$                                                 | 17057-82-8            | 1.722  |
| 25 | 21.563 | Naphthalene, 1,2-dihydro-3-methyl-            | $C_{11}H_{12}$                                                 | 2717-44-4             | 0.908  |
| 26 | 22.609 | Cyclohexasiloxane, dodecamethyl-              | C <sub>12</sub> H <sub>36</sub> O <sub>6</sub> Si <sub>6</sub> | 540-97-6              | 0.840  |
| 27 | 22.753 | Benzocycloheptatriene                         | $C_{11}H_{10}$                                                 | 264-09-5              | 3.564  |
| 28 | 23.186 | Bicyclo[4.4.1]undeca-1,3,5,7,9-pentaene       | $C_{11}H_{10}$                                                 | 2443-46-1             | 2.328  |
| 29 | 26.279 | Naphthalene, 1,3-dimethyl-                    | $C_{12}H_{12}$                                                 | 575-41-7              | 1.211  |
| 30 | 26.405 | Naphthalene, 2,6-dimethyl-                    | $C_{12}H_{12}$                                                 | 581-42-0              | 1.704  |
| 31 | 27.253 | Ergosta-5,22-dien-3-ol, acetate, (3β,22E)-    | $C_{30}H_{48}O_2$                                              | 2458-53-9             | 1.145  |
| 32 | 28.172 | Tetradecane, 2,6,10-trimethyl-                | $C_{17}H_{36}$                                                 | 14905-56-7            | 1.426  |
| 33 | 29.287 | 3-(2-Methyl-propenyl)-1H-indene               | $\mathrm{C}_{13}\mathrm{H}_{14}$                               | <u>ID#:</u><br>145358 | 1.434  |
| 34 | 33.154 | Tetradecane, 2,6,10-trimethyl-                | C <sub>17</sub> H <sub>36</sub>                                | 14905-56-7            | 1.347  |

**Tabela F.8** - Compostos identificados no espectro de massas do OPP obtido via craqueamento térmico, em escala piloto, em T=500°C no tempo de 115 minutos de processo.

| Pico | Tempo de |                                                      | Fórmula                                         | CAS               | Área   |
|------|----------|------------------------------------------------------|-------------------------------------------------|-------------------|--------|
|      | retenção | Composto                                             | molecular                                       | Number            | (%)    |
|      | (min.)   |                                                      |                                                 |                   |        |
| 1    | 2.987    | Trichloromethane                                     | CHCl <sub>3</sub>                               | 67-66-3           | 0.544  |
| 2    | 3.451    | Benzene                                              | с <sub>6</sub> н <sub>6</sub>                   | 71-43-2           | 1.916  |
| 3    | 5.197    | 1,4-Hexadiene, 5-methyl-                             | $C_7H_{12}$                                     | 763-88-2          | 0.377  |
| 4    | 5.563    | Toluene                                              | $C_7H_8$                                        | 108-88-3          | 10.100 |
| 5    | 8.303    | Benzene, 1,3-dimethyl-                               | $C_8H_{10}$                                     | 108-38-3          | 5.237  |
| 6    | 8.586    | o-Xylene                                             | C8H10                                           | 95-47-6           | 10.542 |
| 7    | 9.338    | p-Xylene                                             | $C_8H_{10}$                                     | 106-42-3          | 2.364  |
| 8    | 10.379   | Benzene, (1-methylethyl)-                            | C9H12                                           | 98-82-8           | 0.672  |
| 9    | 11.439   | Tricyclo[7.1.0.0[1,3]]decane-2-carbaldehyde          | C <sub>11</sub> H <sub>16</sub> O               | <u>ID#:</u> 49005 | 0.517  |
| 10   | 11.524   | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, acetate | C <sub>12</sub> H <sub>20</sub> O <sub>2</sub>  | 10198-23-9        | 1.050  |
| 11   | 11.663   | Benzene, 1-ethyl-3-methyl-                           | C9H12                                           | 620-14-4          | 2.393  |
| 12   | 11.763   | Benzene, 1-ethyl-3-methyl-                           | C9H12                                           | 620-14-4          | 3.626  |
| 13   | 11.950   | Benzene, 1-ethyl-3-methyl-                           | C9H12                                           | 620-14-4          | 1.682  |
| 14   | 12.267   | Benzene, 1-ethyl-3-methyl-                           | C9H12                                           | 620-14-4          | 0.676  |
| 15   | 12.460   | 3-Cyclohexen-1-carboxaldehyde, 3,4-dimethyl-         | C9H14O                                          | <u>ID#:</u> 8404  | 0.810  |
| 16   | 12.804   | Mesitylene (Benzene, 1,3,5-trimethyl-)               | C9H12                                           | 108-67-8          | 1.791  |
| 17   | 13.724   | Mesitylene (Benzene, 1,3,5-trimethyl-)               | C9H12                                           | 108-67-8          | 2.219  |
| 18   | 13.837   | Benzene, 1-methyl-3-(1-methylethyl)-                 | C <sub>10</sub> H <sub>14</sub>                 | 535-77-3          | 13.981 |
| 19   | 13.998   | D-Limonene                                           | C <sub>10</sub> H <sub>16</sub>                 | 5989-27-5         | 9.766  |
| 20   | 14.217   | Phenprobamate                                        | C <sub>10</sub> H <sub>13</sub> NO <sub>2</sub> | 673-31-4          | 1.002  |
| 21   | 14.953   | 1,3,8-p-Menthatriene                                 | $C_{10}H_{14}$                                  | 18368-95-1        | 1.519  |
| 22   | 15.923   | Benzene, 1-methyl-4-(2-propenyl)-                    | C <sub>10</sub> H <sub>12</sub>                 | 3333-13-9         | 1.354  |
| 23   | 16.119   | Benzene, 1-methyl-3-(1-methylethenyl)-               | $C_{10}H_{12}$                                  | 1124-20-5         | 2.276  |
| 24   | 17.056   | Benzene, 1,2,3,4-tetramethyl-                        | C <sub>10</sub> H <sub>14</sub>                 | 488-23-3          | 0.852  |
| 25   | 17.754   | 2,4-Dimethylstyrene                                  | $C_{10}H_{12}$                                  | 2234-20-0         | 1.017  |
| 26   | 18.012   | Benzene, 1-methyl-4-(2-propenyl)-                    | C <sub>10</sub> H <sub>12</sub>                 | 3333-13-9         | 1.630  |
| 27   | 18.227   | Benzene, 1-methyl-4-(1-propynyl)-                    | C <sub>10</sub> H <sub>10</sub>                 | 2749-93-1         | 0.210  |
| 28   | 19.297   | Naphthalene                                          | C <sub>10</sub> H <sub>8</sub>                  | 91-20-3           | 5.479  |

| 29 | 19.536 | 1H-Indene, 2,3-dihydro-1,2-dimethyl-                                                         | C <sub>11</sub> H <sub>14</sub>                | 17057-82-8            | 1.764 |
|----|--------|----------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------|-------|
| 30 | 21.566 | Naphthalene, 1,2-dihydro-3-methyl-                                                           | C <sub>11</sub> H <sub>12</sub>                | 2717-44-4             | 0.879 |
| 31 | 22.764 | Benzocycloheptatriene                                                                        | $C_{11}H_{10}$                                 | 264-09-5              | 3.245 |
| 32 | 23.187 | Bicyclo[4.4.1]undeca-1,3,5,7,9-pentaene                                                      | C <sub>11</sub> H <sub>10</sub>                | 2443-46-1             | 2.131 |
| 33 | 26.283 | Naphthalene, 1,3-dimethyl-                                                                   | $C_{12}H_{12}$                                 | 575-41-7              | 1.130 |
| 34 | 26.408 | Naphthalene, 2,6-dimethyl-                                                                   | $C_{12}H_{12}$                                 | 581-42-0              | 1.792 |
| 35 | 28.164 | Geranyl isovalerate (.Butanoic acid, 3-methyl-, 3,7-<br>dimethyl-2,6-octadienyl ester, (E)-) | C <sub>15</sub> H <sub>26</sub> O <sub>2</sub> | 109-20-6              | 1.414 |
| 36 | 29.293 | 3-(2-Methyl-propenyl)-1H-indene                                                              | C <sub>13</sub> H <sub>14</sub>                | <u>ID#:</u><br>145358 | 1.314 |
| 37 | 33.151 | Tetradecane, 2,6,10-trimethyl-                                                               | $C_{17}H_{36}$                                 | 14905-56-7            | 0.731 |





**Figura G.1** – Cromatogramas dos OPP's obtidos durante o processo, via craqueamento térmico em escala piloto, em T=450°C.

**Tabela G.1** - Compostos identificados no espectro de massas do OPP obtido via craqueamento térmico, em escala piloto, em T=450°C no tempo de 45 minutos de processo.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                             | Fórmula<br>molecular                           | CAS<br>Number | Área<br>(%) |
|------|--------------------------------|------------------------------------------------------|------------------------------------------------|---------------|-------------|
| 1    | 3.285                          | 3-Hexen-1-ol, acetate, (Z)-                          | $C_8H_{14}O_2$                                 | 3681-71-8     | 1.158       |
| 2    | 3.454                          | Benzene                                              | C <sub>6</sub> H <sub>6</sub>                  | 71-43-2       | 3.468       |
| 3    | 5.198                          | Cyclobutane, (1-methylethylidene)-                   | $C_7H_{12}$                                    | 1528-22-9     | 2.333       |
| 4    | 5.573                          | Toluene                                              | C7H8                                           | 108-88-3      | 19.884      |
| 5    | 7.491                          | Bicyclo[2.2.1]hept-2-en-7-ol                         | $C_7H_{10}O$                                   | 53783-87-2    | 2.336       |
| 6    | 8.329                          | Ethylbenzene                                         | $C_8H_{10}$                                    | 100-41-4      | 8.964       |
| 7    | 8.620                          | p-Xylene                                             | $C_8H_{10}$                                    | 106-42-3      | 11.536      |
| 8    | 9.380                          | p-Xylene                                             | $C_8H_{10}$                                    | 106-42-3      | 1.976       |
| 9    | 11.533                         | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, acetate | C <sub>12</sub> H <sub>20</sub> O <sub>2</sub> | 10198-23-9    | 2.459       |
| 10   | 11.710                         | Cyclopentanol, 1-(1-methylene-2-propenyl)-           | C9H14O                                         | 78158-11-9    | 1.414       |
| 11   | 13.850                         | p-Cymene                                             | $C_{10}H_{14}$                                 | 99-87-6       | 16.255      |
| 12   | 14.005                         | D-Limonene                                           | $C_{10}H_{16}$                                 | 5989-27-5     | 24.899      |
| 13   | 28.187                         | Octadecane, 6-methyl-                                | C <sub>19</sub> H <sub>40</sub>                | 10544-96-4    | 1.634       |
| 14   | 33.165                         | Tetradecane, 2,6,10-trimethyl-                       | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7    | 1.682       |

**Tabela G.2** - Compostos identificados no espectro de massas do OPP obtido via craqueamento térmico, em escala piloto, em T=450°C no tempo de 55 minutos de processo.

| Pico | Tempo de<br>retenção | Composto                                             | Fórmula<br>molecular                           | CAS<br>Number | Área<br>(%) |
|------|----------------------|------------------------------------------------------|------------------------------------------------|---------------|-------------|
|      | (min.)               |                                                      |                                                |               |             |
| 1    | 3.281                | 3-Hexen-1-ol, acetate, (Z)-                          | $C_8H_{14}O_2$                                 | 3681-71-8     | 1.300       |
| 2    | 3.449                | Benzene                                              | C <sub>6</sub> H <sub>6</sub>                  | 71-43-2       | 3.702       |
| 3    | 5.195                | Cyclobutane, (1-methylethylidene)-                   | $C_7H_{12}$                                    | 1528-22-9     | 1.894       |
| 4    | 5.567                | Toluene                                              | C <sub>7</sub> H <sub>8</sub>                  | 108-88-3      | 16.751      |
| 5    | 7.489                | Bicyclo[2.2.1]hept-2-en-7-ol                         | $C_7H_{10}O$                                   | 53783-87-2    | 1.727       |
| 6    | 8.316                | Benzene, 1,3-dimethyl-                               | C <sub>8</sub> H <sub>10</sub>                 | 108-38-3      | 8.021       |
| 7    | 8.606                | p-Xylene                                             | $C_8H_{10}$                                    | 106-42-3      | 9.187       |
| 8    | 9.360                | p-Xylene                                             | C <sub>8</sub> H <sub>10</sub>                 | 106-42-3      | 3.274       |
| 9    | 10.399               | Benzene, (1-methylethyl)-                            | C9H12                                          | 98-82-8       | 0.853       |
| 10   | 11.531               | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, acetate | C <sub>12</sub> H <sub>20</sub> O <sub>2</sub> | 10198-23-9    | 2.309       |
| 11   | 11.701               | Cyclopentanol, 1-(1-methylene-2-propenyl)-           | C9H14O                                         | 78158-11-9    | 2.503       |
| 12   | 11.797               | Benzene, 1-ethyl-3-methyl-                           | C9H12                                          | 620-14-4      | 2.047       |
| 13   | 12.828               | Mesitylene (Benzene, 1,3,5-trimethyl-)               | C9H12                                          | 108-67-8      | 1.363       |
| 14   | 13.748               | Mesitylene (Benzene, 1,3,5-trimethyl-)               | C9H12                                          | 108-67-8      | 1.567       |
| 15   | 13.849               | p-Cymene                                             | $C_{10}H_{14}$                                 | 99-87-6       | 13.317      |
| 16   | 14.005               | D-Limonene                                           | C <sub>10</sub> H <sub>16</sub>                | 5989-27-5     | 24.868      |
| 17   | 15.948               | Cyclohexene, 1-methyl-4-(1-methylethylidene)-        | $C_{10}H_{16}$                                 | 586-62-9      | 2.130       |
| 18   | 28.183               | Tetradecane, 2,6,10-trimethyl-                       | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7    | 1.607       |
| 19   | 33.161               | Tetradecane, 2,6,10-trimethyl-                       | $C_{17}H_{36}$                                 | 14905-56-7    | 1.578       |

**Tabela G.3** - Compostos identificados no espectro de massas do OPP obtido via craqueamento térmico, em escala piloto, em T=450°C no tempo de 65 minutos de processo.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                             | Fórmula<br>molecular                           | CAS<br>Number | Área<br>(%) |
|------|--------------------------------|------------------------------------------------------|------------------------------------------------|---------------|-------------|
| 1    | 3.453                          | Benzene                                              | C6H6                                           | 71-43-2       | 2.481       |
| 2    | 5.199                          | Cyclobutane, (1-methylethylidene)-                   | $C_7H_{12}$                                    | 1528-22-9     | 1.257       |
| 3    | 5.577                          | Toluene                                              | $C_7H_8$                                       | 108-88-3      | 13.265      |
| 4    | 7.495                          | Bicyclo[2.2.1]hept-2-en-7-ol                         | C7H10O                                         | 53783-87-2    | 1.602       |
| 5    | 8.328                          | Benzene, 1,3-dimethyl-                               | $C_8H_{10}$                                    | 108-38-3      | 7.151       |
| 6    | 8.613                          | p-Xylene                                             | C <sub>8</sub> H <sub>10</sub>                 | 106-42-3      | 11.376      |
| 7    | 9.366                          | p-Xylene                                             | $C_8H_{10}$                                    | 106-42-3      | 2.213       |
| 8    | 11.535                         | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, acetate | C <sub>12</sub> H <sub>20</sub> O <sub>2</sub> | 10198-23-9    | 2.045       |
| 9    | 11.704                         | Cyclopentanol, 1-(1-methylene-2-propenyl)-           | C9H14O                                         | 78158-11-9    | 2.373       |
| 10   | 11.797                         | Benzene, 1-ethyl-3-methyl-                           | C9H12                                          | 620-14-4      | 3.185       |
| 11   | 12.828                         | Mesitylene (Benzene, 1,3,5-trimethyl-)               | C9H12                                          | 108-67-8      | 1.605       |
| 12   | 13.744                         | Benzene, 1,2,4-trimethyl-                            | C9H12                                          | 95-63-6       | 1.887       |
| 13   | 13.849                         | p-Cymene                                             | $C_{10}H_{14}$                                 | 99-87-6       | 15.462      |
| 14   | 14.009                         | D-Limonene                                           | C <sub>10</sub> H <sub>16</sub>                | 5989-27-5     | 26.565      |
| 15   | 15.946                         | Cyclohexene, 1-methyl-4-(1-methylethylidene)-        | $C_{10}H_{16}$                                 | 586-62-9      | 2.707       |
| 16   | 18.040                         | 2,4-Dimethylstyrene                                  | C <sub>10</sub> H <sub>12</sub>                | 2234-20-0     | 0.368       |
| 17   | 28.176                         | Tetradecane, 2,6,10-trimethyl-                       | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7    | 2.156       |
| 18   | 33.158                         | Tetradecane, 2,6,10-trimethyl-                       | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7    | 2.304       |

**Tabela G.4** - Compostos identificados no espectro de massas do OPP obtido via craqueamento térmico, em escala piloto, em T=450°C no tempo de 75 minutos de processo.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                    | Fórmula<br>molecular          | CAS<br>Number | Área<br>(%) |
|------|--------------------------------|-----------------------------|-------------------------------|---------------|-------------|
| 1    | 3.446                          | Benzene                     | C <sub>6</sub> H <sub>6</sub> | 71-43-2       | 2.496       |
| 2    | 5.192                          | Cyclopentene, 4,4-dimethyl- | $C_7H_{12}$                   | 19037-72-0    | 1.058       |

| 3  | 5.569  | Toluene                                          | C7H8                                           | 108-88-3              | 11.142 |
|----|--------|--------------------------------------------------|------------------------------------------------|-----------------------|--------|
| 4  | 8.323  | Benzene, 1,3-dimethyl-                           | C <sub>8</sub> H <sub>10</sub>                 | 108-38-3              | 5.623  |
| 5  | 8.606  | p-Xylene                                         | C <sub>8</sub> H <sub>10</sub>                 | 106-42-3              | 9.679  |
| 6  | 9.360  | p-Xylene                                         | C <sub>8</sub> H <sub>10</sub>                 | 106-42-3              | 1.780  |
| 7  | 11.529 | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-,     | C <sub>12</sub> H <sub>20</sub> O <sub>2</sub> | 10198-23-9            | 1.944  |
|    |        | acetate                                          |                                                |                       |        |
| 8  | 11.699 | Benzene, 1-ethyl-3-methyl-                       | C9H12                                          | 620-14-4              | 2.125  |
| 9  | 11.790 | Benzene, 1-ethyl-3-methyl-                       | C9H12                                          | 620-14-4              | 2.848  |
| 10 | 12.823 | Mesitylene (Benzene, 1,3,5-trimethyl-)           | C9H12                                          | 108-67-8              | 1.532  |
| 11 | 13.737 | Mesitylene (Benzene, 1,3,5-trimethyl-)           | C9H12                                          | 108-67-8              | 1.863  |
| 12 | 13.844 | o-Cymene                                         | C <sub>10</sub> H <sub>14</sub>                | 527-84-4              | 15.754 |
| 13 | 14.005 | D-Limonene                                       | C <sub>10</sub> H <sub>16</sub>                | 5989-27-5             | 21.966 |
| 14 | 15.937 | Cyclohexene, 1-methyl-4-(1-methylethylidene)-    | C <sub>10</sub> H <sub>16</sub>                | 586-62-9              | 2.445  |
| 15 | 18.028 | 2,4-Dimethylstyrene                              | C <sub>10</sub> H <sub>12</sub>                | 2234-20-0             | 0.480  |
| 16 | 19.366 | 2-Naphthalenol, 1,2-dihydro-, acetate            | $C_{12}H_{12}O_2$                              | 132316-80-<br>4       | 3.591  |
| 17 | 19.538 | 1H-Indene, 2,3-dihydro-1,2-dimethyl-             | $C_{11}H_{14}$                                 | 17057-82-8            | 3.364  |
| 18 | 22.806 | Butanoic acid, 3-[(1-phenylethyl-2-propynyl)oxy] | $C_{15}H_{18}O_{3}$                            | <u>ID#:</u><br>129916 | 2.031  |
| 19 | 23.219 | Benzocycloheptatriene                            | $C_{11}H_{10}$                                 | 264-09-5              | 2.678  |
| 20 | 26.296 | 5,8,11-Eicosatriynoic acid, methyl ester         | $C_{21}H_{30}O_2$                              | <u>ID#:</u><br>113705 | 0.988  |
| 21 | 28.170 | Tetradecane, 2,6,10-trimethyl-                   | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7            | 2.357  |
| 22 | 33.153 | Tetradecane, 2,6,10-trimethyl-                   | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7            | 2.255  |
|    |        |                                                  |                                                |                       |        |

**Tabela G.5** - Compostos identificados no espectro de massas do OPP obtido via craqueamento térmico, em escala piloto, em T=450°C no tempo de 85 minutos de processo.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                                                                    | Fórmula<br>molecular                           | CAS<br>Number         | Área<br>(%) |
|------|--------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------|-------------|
| 1    | 3.453                          | Benzene                                                                                     | С6Н6                                           | 71-43-2               | 2,687       |
| 2    | 5.199                          | Cyclopentene, 4,4-dimethyl-                                                                 | $C_7H_{12}$                                    | 19037-72-0            | 0,859       |
| 3    | 5.570                          | Toluene                                                                                     | $C_7H_8$                                       | 108-88-3              | 11,105      |
| 4    | 7.491                          | Bicyclo[2.2.1]hept-2-en-7-ol                                                                | C7H10O                                         | 53783-87-2            | 0,955       |
| 5    | 8.318                          | Benzene, 1,3-dimethyl-                                                                      | $C_8H_{10}$                                    | 108-38-3              | 5,385       |
| 6    | 8.601                          | p-Xylene                                                                                    | $C_8H_{10}$                                    | 106-42-3              | 9,650       |
| 7    | 9.352                          | p-Xylene                                                                                    | $C_8H_{10}$                                    | 106-42-3              | 1,843       |
| 8    | 10.391                         | Benzene, (1-methylethyl)-                                                                   | C <sub>9</sub> H <sub>12</sub>                 | 98-82-8               | 0,709       |
| 9    | 11.448                         | Tricyclo[7.1.0.0[1,3]]decane-2-carbaldehyde                                                 | C <sub>11</sub> H <sub>16</sub> O              | <u>ID#:</u> 49005     | 0,635       |
| 10   | 11.530                         | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, acetate                                        | C <sub>12</sub> H <sub>20</sub> O <sub>2</sub> | 10198-23-9            | 1,744       |
| 11   | 11.692                         | Benzene, 1-ethyl-3-methyl-                                                                  | C9H12                                          | 620-14-4              | 2,236       |
| 12   | 11.782                         | Benzene, 1-ethyl-3-methyl-                                                                  | C9H12                                          | 620-14-4              | 3,020       |
| 13   | 12.472                         | 3-Cyclohexen-1-carboxaldehyde, 3,4-dimethyl-                                                | C9H14O                                         | <u>ID#:</u> 8404      | 1,425       |
| 14   | 12.818                         | Mesitylene (Benzene, 1,3,5-trimethyl-)                                                      | C9H12                                          | 108-67-8              | 1,565       |
| 15   | 13.732                         | Mesitylene (Benzene, 1,3,5-trimethyl-)                                                      | C9H12                                          | 108-67-8              | 1,825       |
| 16   | 13.843                         | o-Cymene                                                                                    | $C_{10}H_{14}$                                 | 527-84-4              | 14,871      |
| 17   | 14.005                         | D-Limonene                                                                                  | C <sub>10</sub> H <sub>16</sub>                | 5989-27-5             | 16,796      |
| 18   | 14.971                         | 1,3,8-p-Menthatriene                                                                        | $C_{10}H_{14}$                                 | 18368-95-1            | 1,217       |
| 19   | 15.931                         | Cyclohexene, 1-methyl-4-(1-methylethylidene)-                                               | C <sub>10</sub> H <sub>16</sub>                | 586-62-9              | 2,151       |
| 20   | 16.151                         | Benzene, 1-methyl-4-(1-methylethenyl)-                                                      | $C_{10}H_{12}$                                 | 1195-32-0             | 1,454       |
| 21   | 18.024                         | 2,4-Dimethylstyrene                                                                         | $C_{10}H_{12}$                                 | 2234-20-0             | 0,328       |
| 22   | 19.336                         | Naphthalene                                                                                 | C <sub>10</sub> H <sub>8</sub>                 | 91-20-3               | 4,968       |
| 23   | 19.534                         | 1H-Indene, 2,3-dihydro-1,2-dimethyl-                                                        | $C_{11}H_{14}$                                 | 17057-82-8            | 2,620       |
| 24   | 22.795                         | Bicyclo[4.4.1]undeca-1,3,5,7,9-pentaene                                                     | C <sub>11</sub> H <sub>10</sub>                | 2443-46-1             | 2,692       |
| 25   | 23.206                         | Bicyclo[4.4.1]undeca-1,3,5,7,9-pentaene                                                     | $C_{11}H_{10}$                                 | 2443-46-1             | 1,870       |
| 26   | 26.292                         | 5,8,11-Eicosatriynoic acid, methyl ester                                                    | $C_{21}H_{30}O_2$                              | <u>ID#:</u><br>113705 | 0,841       |
| 27   | 28.166                         | Geranyl isovalerate (Butanoic acid, 3-methyl-, 3,7-<br>dimethyl-2,6-octadienyl ester, (E)-) | C <sub>15</sub> H <sub>26</sub> O <sub>2</sub> | 109-20-6              | 1,826       |

| 28 | 29.309 | 3-(2-Methyl-propenyl)-1H-indene | C <sub>13</sub> H <sub>14</sub> | <u>ID#:</u><br>145358 | 1,109 |
|----|--------|---------------------------------|---------------------------------|-----------------------|-------|
| 29 | 33.150 | Tetradecane, 2,6,10-trimethyl-  | C <sub>17</sub> H <sub>36</sub> | 14905-56-7            | 1,614 |

**Tabela G.6** - Compostos identificados no espectro de massas do OPP obtido via craqueamento térmico, em escala piloto, em T=450°C no tempo de 95 minutos de processo.

| Pico | Tempo de<br>retenção | Composto                                                                                    | Fórmula<br>molecular                           | CAS<br>Number         | Área<br>(%) |
|------|----------------------|---------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------|-------------|
|      | (min.)               | Composito                                                                                   | morecular                                      | rumber                | (70)        |
| 1    | 3.441                | Benzene                                                                                     | C <sub>6</sub> H <sub>6</sub>                  | 71-43-2               | 4.565       |
| 2    | 5.190                | Cyclobutane, (1-methylethylidene)-                                                          | C7H12                                          | 1528-22-9             | 0.844       |
| 3    | 5.558                | Toluene                                                                                     | C7H8                                           | 108-88-3              | 13.991      |
| 4    | 7.482                | Bicyclo[2.2.1]hept-2-en-7-ol                                                                | C7H10O                                         | 53783-87-2            | 0.852       |
| 5    | 8.304                | Ethylbenzene                                                                                | C <sub>8</sub> H <sub>10</sub>                 | 100-41-4              | 5.505       |
| 6    | 8.587                | p-Xylene                                                                                    | $C_8H_{10}$                                    | 106-42-3              | 10.220      |
| 7    | 9.343                | p-Xylene                                                                                    | C <sub>8</sub> H <sub>10</sub>                 | 106-42-3              | 1.841       |
| 8    | 10.384               | Benzene, (1-methylethyl)-                                                                   | C9H12                                          | 98-82-8               | 0.607       |
| 9    | 11.438               | Tricyclo[7.1.0.0[1,3]]decane-2-carbaldehyde                                                 | C <sub>11</sub> H <sub>16</sub> O              | <u>ID#:</u> 49005     | 0.588       |
| 10   | 11.520               | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-,                                                | C <sub>12</sub> H <sub>20</sub> O <sub>2</sub> | 10198-23-9            | 1.631       |
|      | 11 (01               | acetate                                                                                     | 6 V                                            | (20.14.4              | 2.220       |
| 11   | 11.681               | Benzene, 1-ethyl-3-methyl-                                                                  | C9H12                                          | 620-14-4              | 2.229       |
| 12   | 11.773               | Benzene, 1-ethyl-3-methyl-                                                                  | C9H12                                          | 620-14-4              | 2.982       |
| 13   | 12.462               | 3-Cyclohexen-1-carboxaldehyde, 3,4-dimethyl-                                                | C9H14O                                         | <u>ID#:</u> 8404      | 1.278       |
| 14   | 12.807               | Mesitylene (Benzene, 1,3,5-trimethyl-)                                                      | C <sub>9</sub> H <sub>12</sub>                 | 108-67-8              | 1.644       |
| 15   | 13.726               | Mesitylene (Benzene, 1,3,5-trimethyl-)                                                      | C9H12                                          | 108-67-8              | 1.808       |
| 16   | 13.832               | o-Cymene                                                                                    | C <sub>10</sub> H <sub>14</sub>                | 527-84-4              | 14.377      |
| 17   | 13.993               | D-Limonene                                                                                  | $C_{10}H_{16}$                                 | 5989-27-5             | 13.266      |
| 18   | 14.966               | 1,3,8-p-Menthatriene                                                                        | $C_{10}H_{14}$                                 | 18368-95-1            | 1.168       |
| 19   | 15.925               | Cyclohexene, 1-methyl-4-(1-methylethylidene)-                                               | C <sub>10</sub> H <sub>16</sub>                | 586-62-9              | 1.796       |
| 20   | 16.151               | Benzene, 1-methyl-4-(1-methylethenyl)-                                                      | $C_{10}H_{12}$                                 | 1195-32-0             | 1.428       |
| 21   | 18.017               | 2,4-Dimethylstyrene                                                                         | $C_{10}H_{12}$                                 | 2234-20-0             | 0.322       |
| 22   | 19.321               | Naphthalene                                                                                 | C <sub>10</sub> H <sub>8</sub>                 | 91-20-3               | 5.316       |
| 23   | 19.532               | 1H-Indene, 2,3-dihydro-1,2-dimethyl-                                                        | $C_{11}H_{14}$                                 | 17057-82-8            | 2.586       |
| 24   | 22.788               | Bicyclo[4.4.1]undeca-1,3,5,7,9-pentaene                                                     | $C_{11}H_{10}$                                 | 2443-46-1             | 2.162       |
| 25   | 23.205               | Bicyclo[4.4.1]undeca-1,3,5,7,9-pentaene                                                     | $C_{11}H_{10}$                                 | 2443-46-1             | 1.691       |
| 26   | 26.286               | 5,8,11-Eicosatriynoic acid, methyl ester                                                    | C <sub>21</sub> H <sub>30</sub> O <sub>2</sub> | <u>ID#:</u><br>113705 | 0.842       |
| 27   | 28.161               | Geranyl isovalerate (Butanoic acid, 3-methyl-, 3,7-<br>dimethyl-2,6-octadienyl ester, (E)-) | C <sub>15</sub> H <sub>26</sub> O <sub>2</sub> | 109-20-6              | 1.733       |
| 28   | 29.302               | 3-(2-Methyl-propenyl)-1H-indene                                                             | C <sub>13</sub> H <sub>14</sub>                | <u>ID#:</u><br>145358 | 1.260       |
| 29   | 33.146               | Tetradecane, 2,6,10-trimethyl-                                                              | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7            | 1.468       |

**Tabela G.7** - Compostos identificados no espectro de massas do OPP obtido viacraqueamento térmico, em escala piloto, em T= $450^{\circ}$ C no tempo de 105 minutos deprocesso.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                           | Fórmula<br>molecular           | CAS<br>Number | Área<br>(%) |
|------|--------------------------------|------------------------------------|--------------------------------|---------------|-------------|
| 1    | 2.981                          | Trichloromethane                   | CHCl3                          | 67-66-3       | 0.590       |
| 2    | 3.440                          | Benzene                            | C <sub>6</sub> H <sub>6</sub>  | 71-43-2       | 3.118       |
| 3    | 5.187                          | Cyclobutane, (1-methylethylidene)- | $C_7H_{12}$                    | 1528-22-9     | 0.705       |
| 4    | 5.555                          | Toluene                            | $C_7H_8$                       | 108-88-3      | 12.626      |
| 5    | 7.477                          | Bicyclo[2.2.1]hept-2-en-7-ol       | $C_7H_{10}O$                   | 53783-87-2    | 0.651       |
| 6    | 8.298                          | Benzene, 1,3-dimethyl-             | $C_8H_{10}$                    | 108-38-3      | 5.964       |
| 7    | 8.581                          | p-Xylene                           | $C_8H_{10}$                    | 106-42-3      | 11.268      |
| 8    | 9.334                          | p-Xylene                           | C <sub>8</sub> H <sub>10</sub> | 106-42-3      | 2.465       |

| 9  | 10.373 | Benzene, (1-methylethyl)-                                                                   | C9H12                                          | 98-82-8               | 0.678  |
|----|--------|---------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------|--------|
| 10 | 11.432 | Tricyclo[7.1.0.0[1,3]]decane-2-carbaldehyde                                                 | C <sub>11</sub> H <sub>16</sub> O              | <u>ID#:</u> 49005     | 0.514  |
| 11 | 11.515 | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, acetate                                        | $C_{12}H_{20}O_2$                              | 10198-23-9            | 1.326  |
| 12 | 11.676 | Benzene, 1-ethyl-3-methyl-                                                                  | C9H12                                          | 620-14-4              | 1.930  |
| 13 | 11.764 | Benzene, 1-ethyl-3-methyl-                                                                  | C9H12                                          | 620-14-4              | 2.033  |
| 14 | 12.457 | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-α-<br>methylene-                                | $C_{10}H_{14}O_2$                              | 5951-57-5             | 1.305  |
| 15 | 12.802 | Mesitylene (Benzene, 1,3,5-trimethyl-)                                                      | C9H12                                          | 108-67-8              | 1.664  |
| 16 | 13.719 | Mesitylene (Benzene, 1,3,5-trimethyl-)                                                      | C9H12                                          | 108-67-8              | 1.886  |
| 17 | 13.829 | p-Cymene                                                                                    | $C_8H_{10}$                                    | 106-42-3              | 13.886 |
| 18 | 13.990 | D-Limonene                                                                                  | C <sub>10</sub> H <sub>16</sub>                | 5989-27-5             | 11.729 |
| 19 | 14.958 | 1,3,8-p-Menthatriene                                                                        | $C_{10}H_{14}$                                 | 18368-95-1            | 1.247  |
| 20 | 15.921 | Cyclohexene, 1-methyl-4-(1-methylethylidene)-                                               | C <sub>10</sub> H <sub>16</sub>                | 586-62-9              | 1.605  |
| 21 | 16.138 | 2,4-Dimethylstyrene                                                                         | C <sub>10</sub> H <sub>12</sub>                | 2234-20-0             | 1.528  |
| 22 | 18.012 | 2,4-Dimethylstyrene                                                                         | C <sub>10</sub> H <sub>12</sub>                | 2234-20-0             | 1.275  |
| 23 | 19.300 | Naphthalene                                                                                 | $C_{10}H_8$                                    | 91-20-3               | 5.896  |
| 24 | 19.524 | 1H-Indene, 2,3-dihydro-1,2-dimethyl-                                                        | C <sub>11</sub> H <sub>14</sub>                | 17057-82-8            | 2.051  |
| 25 | 22.773 | Bicyclo[4.4.1]undeca-1,3,5,7,9-pentaene                                                     | $C_{11}H_{10}$                                 | 2443-46-1             | 2.928  |
| 26 | 23.194 | Bicyclo[4.4.1]undeca-1,3,5,7,9-pentaene                                                     | $C_{11}H_{10}$                                 | 2443-46-1             | 1.941  |
| 27 | 26.283 | 5,8,11-Eicosatriynoic acid, methyl ester                                                    | C <sub>21</sub> H <sub>30</sub> O <sub>2</sub> | <u>ID#:</u><br>113705 | 1.148  |
| 28 | 26.414 | Naphthalene, 1,3-dimethyl-                                                                  | C <sub>12</sub> H <sub>12</sub>                | 575-41-7              | 1.478  |
| 29 | 28.157 | Geranyl isovalerate (Butanoic acid, 3-methyl-, 3,7-<br>dimethyl-2,6-octadienyl ester, (E)-) | C <sub>15</sub> H <sub>26</sub> O <sub>2</sub> | 109-20-6              | 1.684  |
| 30 | 29.298 | 3-(2-Methyl-propenyl)-1H-indene                                                             | C <sub>13</sub> H <sub>14</sub>                | <u>ID#:</u><br>145358 | 1.653  |
| 31 | 33.142 | Tetradecane, 2,6,10-trimethyl-                                                              | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7            | 1.230  |

**Tabela G.8** - Compostos identificados no espectro de massas do OPP obtido via craqueamento térmico, em escala piloto, em T=450°C no tempo de 115 minutos de processo.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                             | Fórmula<br>molecular              | CAS<br>Number         | Área<br>(%) |
|------|--------------------------------|------------------------------------------------------|-----------------------------------|-----------------------|-------------|
| 1    | 2.984                          | Trichloromethane                                     | CHCl <sub>3</sub>                 | 67-66-3               | 1.025       |
| 2    | 3.448                          | Benzene                                              | C <sub>6</sub> H <sub>6</sub>     | 71-43-2               | 2.748       |
| 3    | 5.192                          | Cyclobutane, (1-methylethylidene)-                   | $C_7H_{12}$                       | 1528-22-9             | 1.427       |
| 4    | 5.564                          | Toluene                                              | $C_7H_8$                          | 108-88-3              | 15.344      |
| 5    | 7.484                          | Bicyclo[2.2.1]hept-2-en-7-ol                         | $C_7H_{10}O$                      | 53783-87-2            | 2.208       |
| 6    | 8.308                          | Benzene, 1,3-dimethyl-                               | C8H10                             | 108-38-3              | 9.741       |
| 7    | 8.598                          | p-Xylene                                             | $C_8H_{10}$                       | 106-42-3              | 12.960      |
| 8    | 9.348                          | p-Xylene                                             | C <sub>8</sub> H <sub>10</sub>    | 106-42-3              | 3.388       |
| 9    | 10.391                         | Benzene, (1-methylethyl)-                            | C9H12                             | 98-82-8               | 0.914       |
| 10   | 11.526                         | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, acetate | $C_{12}H_{20}O_2$                 | 10198-23-9            | 2.336       |
| 11   | 11.693                         | Benzene, 1-ethyl-3-methyl-                           | C9H12                             | 620-14-4              | 1.904       |
| 12   | 11.782                         | Benzene, 1-ethyl-3-methyl-                           | C9H12                             | 620-14-4              | 0.860       |
| 13   | 12.820                         | Mesitylene (Benzene, 1,3,5-trimethyl-)               | C9H12                             | 108-67-8              | 1.434       |
| 14   | 13.737                         | Mesitylene (Benzene, 1,3,5-trimethyl-)               | C9H12                             | 108-67-8              | 1.532       |
| 15   | 13.842                         | o-Cymene                                             | $C_{10}H_{14}$                    | 527-84-4              | 12.874      |
| 16   | 14.000                         | D-Limonene                                           | C <sub>10</sub> H <sub>16</sub>   | 5989-27-5             | 24.075      |
| 17   | 15.940                         | 2,4,6-Trimethylbenzyl alcohol                        | C <sub>10</sub> H <sub>14</sub> O | <u>ID#:</u><br>116527 | 2.020       |
| 18   | 28.171                         | Tetradecane, 2,6,10-trimethyl-                       | C <sub>17</sub> H <sub>36</sub>   | 14905-56-7            | 1.691       |
| 19   | 33.151                         | Tetradecane, 2,6,10-trimethyl-                       | C <sub>17</sub> H <sub>36</sub>   | 14905-56-7            | 1.520       |

**Tabela G.9** - Compostos identificados no espectro de massas do OPP obtido via craqueamento térmico, em escala piloto, em T=450°C após 115 minutos de processo.

| Pico | Tempo de | Composto                                                                       | Fórmula                                        | CAS<br>Number         | Área   |
|------|----------|--------------------------------------------------------------------------------|------------------------------------------------|-----------------------|--------|
|      | (min.)   | Composto                                                                       | molecular                                      | Number                | (70)   |
| 1    | 2.979    | Trichloromethane                                                               | CHCl3                                          | 67-66-3               | 0.432  |
| 2    | 3.446    | Benzene                                                                        | С6Н6                                           | 71-43-2               | 0.802  |
| 3    | 5.190    | Cyclobutane, (1-methylethylidene)-                                             | $C_7H_{12}$                                    | 1528-22-9             | 0.608  |
| 4    | 5.562    | Toluene                                                                        | $C_7H_8$                                       | 108-88-3              | 6.315  |
| 5    | 7.487    | Bicyclo[2.2.1]hept-2-en-7-ol                                                   | C7H10O                                         | 53783-87-2            | 0.605  |
| 6    | 8.228    | 1,2,4,4-Tetramethylcyclopentene                                                | C9H16                                          | 65378-76-9            | 0.233  |
| 7    | 8.303    | Benzene, 1,3-dimethyl-                                                         | $C_8H_{10}$                                    | 108-38-3              | 4.849  |
| 8    | 8.594    | p-Xylene                                                                       | $C_8H_{10}$                                    | 106-42-3              | 6.275  |
| 9    | 9.346    | p-Xylene                                                                       | $C_8H_{10}$                                    | 106-42-3              | 1.555  |
| 10   | 10.383   | Benzene, (1-methylethyl)-                                                      | C9H12                                          | 98-82-8               | 0.986  |
| 11   | 11.034   | Bicyclo[3.1.0]hexane, 6-isopropylidene-1-methyl-                               | C <sub>10</sub> H <sub>16</sub>                | 24524-57-0            | 0.600  |
| 12   | 11.236   | Bicyclo[4.1.0]heptane, 3,7,7-trimethyl-, [1S-<br>(1α,3β,6α)]-                  | C <sub>10</sub> H <sub>18</sub>                | 2778-68-9             | 0.528  |
| 13   | 11.448   | Cyclohexene, 1-(2-nitro-2-propenyl)-                                           | C <sub>9</sub> H <sub>13</sub> NO <sub>2</sub> | 80255-20-5            | 0.841  |
| 14   | 11.537   | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-,<br>acetate                        | С <sub>12</sub> Н <sub>20</sub> О <sub>2</sub> | 10198-23-9            | 1.204  |
| 15   | 11.672   | Benzene, 1-ethyl-3-methyl-                                                     | C <sub>9</sub> H <sub>12</sub>                 | 620-14-4              | 1.505  |
| 16   | 11.706   | Cyclopentanol, 1-(1-methylene-2-propenyl)-                                     | C <sub>9</sub> H <sub>14</sub> O               | 78158-11-9            | 1.019  |
| 17   | 11.772   | Benzene, I-ethyl-3-methyl-                                                     | C9H12                                          | 620-14-4              | 2.727  |
| 18   | 11.963   | Benzene, I-ethyl-3-methyl-                                                     | C9H12                                          | 620-14-4              | 1.211  |
| 19   | 12.268   | Benzene, I-ethyl-3-methyl-                                                     | С9Н12                                          | 620-14-4              | 1.100  |
| 20   | 12.390   | Discule [4,1,0] hartense 2,7,7 toine that [15]                                 | Стонте                                         | 514-95-4              | 0.290  |
| 21   | 12.478   | Bicyclo[4.1.0]neptane, $3,7,7$ -trimethyl-, [15-(1 $\alpha,3\beta,6\alpha$ )]- | С10п18                                         | 2778-08-9             | 1.855  |
| 22   | 12.710   | Cyclohexene, 1,4,6,6-tetramethyl-                                              | С10Н18                                         | 70092-37-4            | 0.866  |
| 23   | 12.818   | Mesitylene (Benzene, 1,3,5-trimethyl-)                                         | C <sub>9</sub> H <sub>12</sub>                 | 108-67-8              | 1.474  |
| 24   | 12.998   | 1,5,5-1 rimethyl-6-methylene-cyclonexene                                       | С10Н16                                         | 514-95-4              | 0.656  |
| 25   | 13.733   | Mesitylene (Benzene, 1,5,5-trimetilyi-)                                        | Ссонго                                         | 527.84.4              | 2.317  |
| 20   | 14.018   | D Limonene                                                                     | C10H16                                         | 5080 27 5             | 10 301 |
| 27   | 14.018   | D-Ennohene                                                                     | CioHiaNOa                                      | 673-31-4              | 1 338  |
| 29   | 14.965   | 1 3 8-n-Menthatriene                                                           | C10H14                                         | 18368-95-1            | 1.866  |
| 30   | 15 695   | n-Cymene                                                                       | C10H14                                         | 99-87-6               | 0.440  |
| 31   | 15.936   | Cyclohexene. 1-methyl-4-(1-methylethylidene)-                                  | C10H16                                         | 586-62-9              | 1.207  |
| 32   | 16.137   | 2.4-Dimethylstyrene                                                            | C10H12                                         | 2234-20-0             | 1.481  |
| 33   | 16.720   | Benzene, 1-methyl-4-(1-methylpropyl)-                                          | C <sub>11</sub> H <sub>16</sub>                | 1595-16-0             | 0.742  |
| 34   | 17.070   | Benzene, 1-ethyl-2,3-dimethyl-                                                 | C <sub>10</sub> H <sub>14</sub>                | 933-98-2              | 0.779  |
| 35   | 17.764   | 2,4-Dimethylstyrene                                                            | C <sub>10</sub> H <sub>12</sub>                | 2234-20-0             | 0.953  |
| 36   | 18.025   | 2,4-Dimethylstyrene                                                            | C <sub>10</sub> H <sub>12</sub>                | 2234-20-0             | 1.175  |
| 37   | 19.281   | 1H-Indene, 2,3-dihydro-1,2-dimethyl-                                           | $C_{11}H_{14}$                                 | 17057-82-8            | 0.847  |
| 38   | 19.358   | 2-Naphthalenol, 1,2-dihydro-, acetate                                          | $C_{12}H_{12}O_2$                              | 132316-80-<br>4       | 1.566  |
| 39   | 19.544   | 1H-Indene, 2,3-dihydro-1,2-dimethyl-                                           | C <sub>11</sub> H <sub>14</sub>                | 17057-82-8            | 1.717  |
| 40   | 21.580   | Naphthalene, 1,2-dihydro-3-methyl-                                             | с <sub>11</sub> н <sub>12</sub>                | 2717-44-4             | 0.817  |
| 41   | 22.797   | Butanoic acid, 3-[(1-phenylethyl-2-propynyl)oxy]                               | C <sub>15</sub> H <sub>18</sub> O <sub>3</sub> | <u>ID#:</u><br>129916 | 1.362  |
| 42   | 23.214   | Bicyclo[4.4.1]undeca-1,3,5,7,9-pentaene                                        | C <sub>11</sub> H <sub>10</sub>                | 2443-46-1             | 0.905  |
| 43   | 26.298   | Naphthalene, 1,3-dimethyl-                                                     | C <sub>12</sub> H <sub>12</sub>                | 575-41-7              | 0.651  |
| 44   | 26.427   | Naphthalene, 1,7-dimethyl-                                                     | C <sub>12</sub> H <sub>12</sub>                | 575-37-1              | 1.061  |
| 45   | 28.175   | Tetradecane, 2,6,10-trimethyl-                                                 | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7            | 0.978  |
| 46   | 29.312   | 3-(2-Methyl-propenyl)-1H-indene                                                | С13Н14                                         | <u>ID#:</u><br>145358 | 1.017  |
| 47   | 33.161   | Tetradecane, 2,6,10-trimethyl-                                                 | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7            | 0.575  |





**Figura H.1** – Cromatogramas dos OPP's obtidos durante o processo, via craqueamento térmico em escala piloto, em T=400°C.

**Tabela H.1** - Compostos identificados no espectro de massas do OPP obtido via craqueamento térmico, em escala piloto, em  $T=400C^{\circ}$  no tempo de 45 minutos de processo.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                                      | Fórmula<br>molecular            | CAS<br>Number | Área<br>(%) |
|------|--------------------------------|---------------------------------------------------------------|---------------------------------|---------------|-------------|
| 1    | 3.281                          | 4-Methyl-2-pentyne                                            | C <sub>6</sub> H <sub>10</sub>  | 21020-27-9    | 0,661       |
| 2    | 3.452                          | Benzene                                                       | С6Н6                            | 71-43-2       | 2,493       |
| 3    | 4.317                          | Cyclopentene, 4,4-dimethyl-                                   | $C_7H_{12}$                     | 19037-72-0    | 0,791       |
| 4    | 5.194                          | Cyclobutane, (1-methylethylidene)-                            | $C_7H_{12}$                     | 1528-22-9     | 1,904       |
| 5    | 5.570                          | Toluene                                                       | $C_7H_8$                        | 108-88-3      | 16,631      |
| 6    | 5.895                          | 2-Pentenal, 2-ethyl-                                          | C7H12O                          | 3491-57-4     | 0,850       |
| 7    | 6.668                          | 1,4-Hexadiene, 2,3-dimethyl-                                  | $C_8H_{14}$                     | 18669-52-8    | 0,657       |
| 8    | 7.158                          | 1,3-Dimethyl-1-cyclohexene                                    | C8H14                           | 2808-76-6     | 0,262       |
| 9    | 7.488                          | Bicyclo[2.2.1]hept-2-en-7-ol                                  | C7H10O                          | 53783-87-2    | 2,340       |
| 10   | 8.322                          | Ethylbenzene                                                  | C8H10                           | 100-41-4      | 6,205       |
| 11   | 8.613                          | o-Xylene                                                      | $C_8H_{10}$                     | 95-47-6       | 6,651       |
| 12   | 9.373                          | p-Xylene                                                      | C <sub>8</sub> H <sub>10</sub>  | 106-42-3      | 2,628       |
| 13   | 10.407                         | Benzene, (1-methylethyl)-                                     | C9H12                           | 98-82-8       | 0,622       |
| 14   | 11.032                         | 1,5,5-Trimethyl-6-methylene-cyclohexene                       | C <sub>10</sub> H <sub>16</sub> | 514-95-4      | 1,140       |
| 15   | 11.450                         | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-α-<br>methylene-  | $C_{10}H_{14}O_2$               | 5951-57-5     | 0,784       |
| 16   | 11.533                         | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, acetate          | $C_{12}H_{20}O_2$               | 10198-23-9    | 2,792       |
| 17   | 11.706                         | Cyclopentanol, 1-(1-methylene-2-propenyl)-                    | C9H14O                          | 78158-11-9    | 1,963       |
| 18   | 11.807                         | Benzene, 1-ethyl-3-methyl-                                    | C9H12                           | 620-14-4      | 0,896       |
| 19   | 11.862                         | Benzene, 1-ethyl-3-methyl-                                    | C9H12                           | 620-14-4      | 0,933       |
| 20   | 12.385                         | 1,5,5-Trimethyl-6-methylene-cyclohexene                       | C <sub>10</sub> H <sub>16</sub> | 514-95-4      | 1,141       |
| 21   | 12.475                         | Bicyclo[4.1.0]heptane, 3,7,7-trimethyl-, [1S-<br>(1α,3β,6α)]- | $C_{10}H_{18}$                  | 2778-68-9     | 1,555       |

| 22 | 12.702 | Cyclohexene, 6-(2-butenyl)-1,5,5-trimethyl-, (E)-            | C <sub>13</sub> H <sub>22</sub> | 53941-16-5 | 1,197  |
|----|--------|--------------------------------------------------------------|---------------------------------|------------|--------|
| 23 | 12.845 | Mesitylene (Benzene, 1,3,5-trimethyl-)                       | C9H12                           | 108-67-8   | 1,305  |
| 24 | 12.994 | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-α-<br>methylene- | $C_{10}H_{14}O_2$               | 5951-57-5  | 1,198  |
| 25 | 13.753 | Mesitylene (Benzene, 1,3,5-trimethyl-)                       | C9H12                           | 108-67-8   | 0,687  |
| 26 | 13.848 | p-Cymene                                                     | C <sub>10</sub> H <sub>14</sub> | 99-87-6    | 14,996 |
| 27 | 14.007 | D-Limonene                                                   | $C_{10}H_{16}$                  | 5989-27-5  | 23,062 |
| 28 | 15.962 | Cyclohexene, 1-methyl-4-(1-methylethylidene)-                | C <sub>10</sub> H <sub>16</sub> | 586-62-9   | 1,614  |
| 29 | 28.191 | Tetradecane, 2,6,10-trimethyl-                               | C <sub>17</sub> H <sub>36</sub> | 14905-56-7 | 0,830  |
| 30 | 33.171 | Tetradecane, 2,6,10-trimethyl-                               | C <sub>17</sub> H <sub>36</sub> | 14905-56-7 | 1,210  |

**Tabela H.2** - Compostos identificados no espectro de massas do OPP obtido via craqueamento térmico, em escala piloto, em T=400°C no tempo de 55 minutos de processo.

| Pico | Tempo de           |                                                              | Fórmula                                        | CAS                   | Área   |
|------|--------------------|--------------------------------------------------------------|------------------------------------------------|-----------------------|--------|
|      | retenção<br>(min.) | Composto                                                     | molecular                                      | Number                | (%)    |
| 1    | 3.452              | Benzene                                                      | C <sub>6</sub> H <sub>6</sub>                  | 71-43-2               | 2,251  |
| 2    | 5.196              | Cyclobutane, (1-methylethylidene)-                           | C <sub>7</sub> H <sub>12</sub>                 | 1528-22-9             | 1,255  |
| 3    | 5.575              | Toluene                                                      | C7H8                                           | 108-88-3              | 11,707 |
| 4    | 7.492              | Bicyclo[2.2.1]hept-2-en-7-ol                                 | C7H10O                                         | 53783-87-2            | 1,529  |
| 5    | 8.328              | Benzene, 1,3-dimethyl-                                       | C8H10                                          | 108-38-3              | 6,728  |
| 6    | 8.615              | o-Xylene                                                     | C <sub>8</sub> H <sub>10</sub>                 | 95-47-6               | 9,925  |
| 7    | 9.375              | p-Xylene                                                     | $C_8H_{10}$                                    | 106-42-3              | 1,582  |
| 8    | 10.407             | Benzene, (1-methylethyl)-                                    | C9H12                                          | 98-82-8               | 0,631  |
| 9    | 11.031             | 1,5,5-Trimethyl-6-methylene-cyclohexene                      | $C_{10}H_{16}$                                 | 514-95-4              | 1,046  |
| 10   | 11.453             | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-a-<br>methylene- | $C_{10}H_{14}O_2$                              | 5951-57-5             | 0,861  |
| 11   | 11.534             | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, acetate         | C <sub>12</sub> H <sub>20</sub> O <sub>2</sub> | 10198-23-9            | 2,624  |
| 12   | 11.704             | Cyclopentanol, 1-(1-methylene-2-propenyl)-                   | C9H14O                                         | 78158-11-9            | 2,703  |
| 13   | 11.800             | Benzene, 1-ethyl-3-methyl-                                   | C9H12                                          | 620-14-4              | 3,619  |
| 14   | 12.384             | 1,5,5-Trimethyl-6-methylene-cyclohexene                      | C <sub>10</sub> H <sub>16</sub>                | 514-95-4              | 0,911  |
| 15   | 12.702             | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-α-<br>methylene- | $C_{10}H_{14}O_2$                              | 5951-57-5             | 1,580  |
| 16   | 12.832             | Mesitylene (Benzene, 1,3,5-trimethyl-)                       | C9H12                                          | 108-67-8              | 2,332  |
| 17   | 13.748             | Mesitylene (Benzene, 1,3,5-trimethyl-)                       | C9H12                                          | 108-67-8              | 1,696  |
| 18   | 13.850             | Benzene, 1-methyl-3-(1-methylethyl)-                         | C <sub>10</sub> H <sub>14</sub>                | 535-77-3              | 13,323 |
| 19   | 14.009             | D-Limonene                                                   | C <sub>10</sub> H <sub>16</sub>                | 5989-27-5             | 24,331 |
| 20   | 15.949             | Cyclohexene, 1-methyl-4-(1-methylethylidene)-                | $C_{10}H_{16}$                                 | 586-62-9              | 2,479  |
| 21   | 18.049             | Benzene, 4-ethenyl-1,2-dimethyl-                             | $C_{10}H_{12}$                                 | 27831-13-6            | 0,529  |
| 22   | 19.563             | 1H-Indene, 2,3-dihydro-1,2-dimethyl-                         | с <sub>11</sub> н <sub>14</sub>                | 17057-82-8            | 2,616  |
| 23   | 28.182             | Tetradecane, 2,6,10-trimethyl-                               | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7            | 1,189  |
| 24   | 33.163             | Tetradecane, 2,6,10-trimethyl-                               | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7            | 1,619  |
| 25   | 38.400             | 1-Triethylsilyloxyheptadecane                                | C <sub>23</sub> H <sub>50</sub> OSi            | <u>ID#:</u><br>232634 | 0,934  |

**Tabela H.3** - Compostos identificados no espectro de massas do OPP obtido via craqueamento térmico, em escala piloto, em T=400°C no tempo de 65 minutos de processo.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                    | Fórmula<br>molecular                          | CAS<br>Number | Área<br>(%) |
|------|--------------------------------|-----------------------------|-----------------------------------------------|---------------|-------------|
| 1    | 3.279                          | 3-Hexen-1-ol, acetate, (Z)- | C <sub>8</sub> H <sub>14</sub> O <sub>2</sub> | 3681-71-8     | 0,897       |
| 2    | 3.451                          | Benzene                     | C <sub>6</sub> H <sub>6</sub>                 | 71-43-2       | 2,353       |

| 3  | 5.193  | Cyclobutane, (1-methylethylidene)-                           | $C_7H_{12}$                                    | 1528-22-9         | 1,646  |
|----|--------|--------------------------------------------------------------|------------------------------------------------|-------------------|--------|
| 4  | 5.569  | Toluene                                                      | C <sub>7</sub> H <sub>8</sub>                  | 108-88-3          | 11,889 |
| 5  | 7.487  | Bicyclo[2.2.1]hept-2-en-7-ol                                 | $C_7H_{10}O$                                   | 53783-87-2        | 1,272  |
| 6  | 8.318  | Benzene, 1,3-dimethyl-                                       | C <sub>8</sub> H <sub>10</sub>                 | 108-38-3          | 7,350  |
| 7  | 8.607  | o-Xylene                                                     | $C_8H_{10}$                                    | 95-47-6           | 10,984 |
| 8  | 9.367  | p-Xylene                                                     | C8H10                                          | 106-42-3          | 1,476  |
| 9  | 10.400 | Benzene, (1-methylethyl)-                                    | C9H12                                          | 98-82-8           | 0,747  |
| 10 | 11.030 | 1,5,5-Trimethyl-6-methylene-cyclohexene                      | C <sub>10</sub> H <sub>16</sub>                | 514-95-4          | 0,981  |
| 11 | 11.448 | Tricyclo[7.1.0.0[1,3]]decane-2-carbaldehyde                  | C <sub>11</sub> H <sub>16</sub> O              | <u>ID#:</u> 49005 | 0,793  |
| 12 | 11.531 | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, acetate         | C <sub>12</sub> H <sub>20</sub> O <sub>2</sub> | 10198-23-9        | 2,257  |
| 13 | 11.699 | Benzene, 1-ethyl-3-methyl-                                   | C9H12                                          | 620-14-4          | 2,290  |
| 14 | 11.790 | Benzene, 1-ethyl-3-methyl-                                   | C9H12                                          | 620-14-4          | 2,628  |
| 15 | 12.700 | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-α-<br>methylene- | $C_{10}H_{14}O_2$                              | 5951-57-5         | 0,957  |
| 16 | 12.827 | Mesitylene (Benzene, 1,3,5-trimethyl-)                       | C9H12                                          | 108-67-8          | 1,529  |
| 17 | 13.740 | Mesitylene (Benzene, 1,3,5-trimethyl-)                       | C9H12                                          | 108-67-8          | 2,009  |
| 18 | 13.846 | o-Cymene                                                     | C <sub>10</sub> H <sub>14</sub>                | 527-84-4          | 16,669 |
| 19 | 14.006 | D-Limonene                                                   | C <sub>10</sub> H <sub>16</sub>                | 5989-27-5         | 21,039 |
| 20 | 15.945 | Cyclohexene, 1-methyl-4-(1-methylethylidene)-                | C <sub>10</sub> H <sub>16</sub>                | 586-62-9          | 2,695  |
| 21 | 18.043 | 2,4-Dimethylstyrene                                          | $C_{10}H_{12}$                                 | 2234-20-0         | 0,518  |
| 22 | 19.304 | 1H-Indene, 2,3-dihydro-1,2-dimethyl-                         | C <sub>11</sub> H <sub>14</sub>                | 17057-82-8        | 1,285  |
| 23 | 19.567 | 1H-Indene, 2,3-dihydro-1,2-dimethyl-                         | $C_{11}H_{14}$                                 | 17057-82-8        | 2,278  |
| 24 | 28.176 | Tetradecane, 2,6,10-trimethyl-                               | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7        | 1,783  |
| 25 | 33.158 | Tetradecane, 2,6,10-trimethyl-                               | $C_{17}H_{36}$                                 | 14905-56-7        | 1,674  |

**Tabela H.4** - Compostos identificados no espectro de massas do OPP obtido via craqueamento térmico, em escala piloto, em T=400°C no tempo de 75 minutos de processo.

| Pico | Tempo de |                                                               | Fórmula                           | CAS               | Área   |
|------|----------|---------------------------------------------------------------|-----------------------------------|-------------------|--------|
|      | retenção | Composto                                                      | molecular                         | Number            | (%)    |
|      | (min.)   |                                                               |                                   |                   |        |
| 1    | 3.284    |                                                               |                                   |                   | 0,298  |
| 2    | 3.456    | Benzene                                                       | с <sub>6</sub> н <sub>6</sub>     | 71-43-2           | 0,942  |
| 3    | 5.196    | Cyclobutane, (1-methylethylidene)-                            | $C_7H_{12}$                       | 1528-22-9         | 0,855  |
| 4    | 5.572    | Toluene                                                       | $C_7H_8$                          | 108-88-3          | 7,141  |
| 5    | 7.488    | Bicyclo[2.2.1]hept-2-en-7-ol                                  | C7H10O                            | 53783-87-2        | 0,923  |
| 6    | 8.315    | Benzene, 1,3-dimethyl-                                        | $C_8H_{10}$                       | 108-38-3          | 4,862  |
| 7    | 8.601    | p-Xylene                                                      | $C_8H_{10}$                       | 106-42-3          | 7,502  |
| 8    | 9.356    | o-Xylene                                                      | C <sub>8</sub> H <sub>10</sub>    | 95-47-6           | 1,524  |
| 9    | 10.390   | Benzene, (1-methylethyl)-                                     | C9H12                             | 98-82-8           | 0,682  |
| 10   | 11.029   | Bicyclo[3.1.0]hexane, 6-isopropylidene-1-methyl-              | C <sub>10</sub> H <sub>16</sub>   | 24524-57-0        | 0,567  |
| 11   | 11.448   | Tricyclo[7.1.0.0[1,3]]decane-2-carbaldehyde                   | C <sub>11</sub> H <sub>16</sub> O | <u>ID#:</u> 49005 | 0,607  |
| 12   | 11.530   | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-,                  | $C_{12}H_{20}O_2$                 | 10198-23-9        | 1,271  |
|      |          | acetate                                                       |                                   |                   |        |
| 13   | 11.694   | Benzene, 1-ethyl-3-methyl-                                    | C9H12                             | 620-14-4          | 2,044  |
| 14   | 11.777   | Benzene, 1-ethyl-3-methyl-                                    | C <sub>9</sub> H <sub>12</sub>    | 620-14-4          | 2,974  |
| 15   | 11.978   | Benzene, 1-ethyl-3-methyl-                                    | C9H12                             | 620-14-4          | 1,058  |
| 16   | 12.274   | Benzene, 1-ethyl-3-methyl-                                    | C9H12                             | 620-14-4          | 0,773  |
| 17   | 12.474   | Bicyclo[4.1.0]heptane, 3,7,7-trimethyl-, [1S-<br>(1α,3β,6α)]- | C <sub>10</sub> H <sub>18</sub>   | 2778-68-9         | 1,040  |
| 18   | 12.702   | Cyclopropane, tetramethylpropylidene-                         | C <sub>10</sub> H <sub>18</sub>   | 24519-04-8        | 0,723  |
| 19   | 12.819   | Mesitylene (Benzene, 1,3,5-trimethyl-)                        | C9H12                             | 108-67-8          | 1,579  |
| 20   | 12.992   | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-α-<br>methylene-  | $C_{10}H_{14}O_2$                 | 5951-57-5         | 0,730  |
| 21   | 13.691   | Benzene, 1-methyl-3-(1-methylethyl)-                          | $C_{10}H_{14}$                    | 535-77-3          | 0,331  |
| 22   | 13.735   | Mesitylene (Benzene, 1,3,5-trimethyl-)                        | C9H12                             | 108-67-8          | 1,583  |
| 23   | 13.846   | Benzene, 1-methyl-3-(1-methylethyl)-                          | $C_{10}H_{14}$                    | 535-77-3          | 15,720 |
| 24   | 14.009   | D-Limonene                                                    | C <sub>10</sub> H <sub>16</sub>   | 5989-27-5         | 12,991 |
| 25   | 14.230   | Phenprobamate                                                 | $C_{10}H_{13}NO_2$                | 673-31-4          | 1,335  |
| 26   | 14.973   | 1,3,8-p-Menthatriene                                          | $C_{10}H_{14}$                    | 18368-95-1        | 1,570  |

| 27 | 15.699 | Benzene, 1-ethyl-2,3-dimethyl-                                                              | C <sub>10</sub> H <sub>14</sub>                | <u>ID#:</u> 18716     | 0,444 |
|----|--------|---------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------|-------|
| 28 | 15.933 | Cyclohexene, 1-methyl-4-(1-methylethylidene)-                                               | C <sub>10</sub> H <sub>16</sub>                | 586-62-9              | 1,980 |
| 29 | 16.169 | 2,4-Dimethylstyrene                                                                         | C <sub>10</sub> H <sub>12</sub>                | 2234-20-0             | 0,979 |
| 30 | 17.076 | 6,7-Dimethyl-3,5,8,8a-tetrahydro-1H-2-benzopyran                                            | C <sub>11</sub> H <sub>16</sub> O              | 110028-10-<br>9       | 0,650 |
| 31 | 17.770 | 2,4-Dimethylstyrene                                                                         | C <sub>10</sub> H <sub>12</sub>                | 2234-20-0             | 1,167 |
| 32 | 18.024 | 2,4-Dimethylstyrene                                                                         | C <sub>10</sub> H <sub>12</sub>                | 2234-20-0             | 0,879 |
| 33 | 18.077 | 4,7-Methano-1H-inden-1-ol, 3a,4,7,7a-tetrahydro-, acetate                                   | $C_{12}H_{14}O_2$                              | 16327-40-5            | 0,515 |
| 34 | 19.278 | Benzene, 2-ethenyl-1,3,5-trimethyl-                                                         | C <sub>11</sub> H <sub>14</sub>                | 769-25-5              | 1,314 |
| 35 | 19.380 | 2-Naphthalenol, 1,2-dihydro-, acetate                                                       | C <sub>12</sub> H <sub>12</sub> O <sub>2</sub> | 132316-80-<br>4       | 1,679 |
| 36 | 19.541 | 1H-Indene, 2,3-dihydro-1,2-dimethyl-                                                        | C <sub>11</sub> H <sub>14</sub>                | 17057-82-8            | 2,313 |
| 37 | 21.578 | Naphthalene, 1,2-dihydro-3-methyl-                                                          | $C_{11}H_{12}$                                 | 2717-44-4             | 1,091 |
| 38 | 22.797 | Butanoic acid, 3-[(1-phenylethyl-2-propynyl)oxy]                                            | $C_{15}H_{18}O_{3}$                            | <u>ID#:</u><br>129916 | 2,169 |
| 39 | 23.217 | Benzocycloheptatriene                                                                       | $C_{11}H_{10}$                                 | 264-09-5              | 1,845 |
| 40 | 24.943 | (1-Methylpenta-1,3-dienyl)benzene                                                           | $C_{12}H_{14}$                                 | 116669-49-<br>9       | 0,880 |
| 41 | 25.467 | Geranyl isovalerate (Butanoic acid, 3-methyl-, 3,7-<br>dimethyl-2,6-octadienyl ester, (E)-) | $C_{15}H_{26}O_{2}$                            | 109-20-6              | 0,527 |
| 42 | 26.298 | 5,8,11-Eicosatriynoic acid, methyl ester                                                    | $C_{21}H_{30}O_2$                              | <u>ID#:</u><br>113705 | 1,157 |
| 43 | 26.423 | Naphthalene, 1,7-dimethyl-                                                                  | $C_{12}H_{12}$                                 | 575-37-1              | 1,701 |
| 44 | 26.831 | Bicyclo[4.1.0]heptan-2-ol, 1β-(3-methyl-1,3-<br>butadienyl)-2α,6β-dimethyl-3β-acetoxy-      | C <sub>16</sub> H <sub>24</sub> O <sub>3</sub> | <u>ID#:</u> 10916     | 0,747 |
| 45 | 28.170 | Tetradecane, 2,6,10-trimethyl-                                                              | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7            | 1,810 |
| 46 | 29.302 | 3-(2-Methyl-propenyl)-1H-indene                                                             | C <sub>13</sub> H <sub>14</sub>                | <u>ID#:</u><br>145358 | 1,911 |
| 47 | 30.732 | 7-Methyl-Z-tetradecen-1-ol acetate                                                          | $C_{17}H_{32}O_2$                              | <u>ID#:</u> 7041      | 0,411 |
| 48 | 33.153 | Tetradecane, 2,6,10-trimethyl-                                                              | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7            | 2,206 |

**Tabela H.5** - Compostos identificados no espectro de massas do OPP obtido via craqueamento térmico, em escala piloto, em T=400°C no tempo de 85 minutos de processo.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                             | Fórmula<br>molecular                           | CAS<br>Number   | Área<br>(%) |
|------|--------------------------------|------------------------------------------------------|------------------------------------------------|-----------------|-------------|
| 1    | 3.451                          | Benzene                                              | С6Н6                                           | 71-43-2         | 2.778       |
| 2    | 5.196                          | Cyclobutane, (1-methylethylidene)-                   | $C_7H_{12}$                                    | 1528-22-9       | 1.330       |
| 3    | 5.574                          | Toluene                                              | $C_7H_8$                                       | 108-88-3        | 12.073      |
| 4    | 7.492                          | Bicyclo[2.2.1]hept-2-en-7-ol                         | C7H10O                                         | 53783-87-2      | 1.342       |
| 5    | 8.327                          | Ethylbenzene                                         | $C_8H_{10}$                                    | 100-41-4        | 5.763       |
| 6    | 8.611                          | p-Xylene                                             | C <sub>8</sub> H <sub>10</sub>                 | 106-42-3        | 10.294      |
| 7    | 9.373                          | p-Xylene                                             | $C_8H_{10}$                                    | 106-42-3        | 1.890       |
| 8    | 10.403                         | Benzene, (1-methylethyl)-                            | C9H12                                          | 98-82-8         | 0.664       |
| 9    | 11.533                         | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, acetate | C <sub>12</sub> H <sub>20</sub> O <sub>2</sub> | 10198-23-9      | 1.706       |
| 10   | 11.700                         | Benzene, 1-ethyl-3-methyl-                           | C9H12                                          | 620-14-4        | 1.948       |
| 11   | 11.797                         | Benzene, 1-ethyl-3-methyl-                           | C9H12                                          | 620-14-4        | 2.202       |
| 12   | 12.830                         | Mesitylene (Benzene, 1,3,5-trimethyl-)               | C9H12                                          | 108-67-8        | 1.398       |
| 13   | 13.742                         | Mesitylene (Benzene, 1,3,5-trimethyl-)               | C9H12                                          | 108-67-8        | 1.972       |
| 14   | 13.847                         | Benzene, 1-methyl-3-(1-methylethyl)-                 | $C_{10}H_{14}$                                 | 535-77-3        | 17.288      |
| 15   | 14.006                         | D-Limonene                                           | C <sub>10</sub> H <sub>16</sub>                | 5989-27-5       | 18.032      |
| 16   | 15.946                         | Cyclohexene, 1-methyl-4-(1-methylethylidene)-        | $C_{10}H_{16}$                                 | 586-62-9        | 2.379       |
| 17   | 18.041                         | 1H-Indene, 2,3-dihydro-4-methyl-                     | $C_{10}H_{12}$                                 | 824-22-6        | 0.268       |
| 18   | 19.296                         | 2,2-Dimethylindene, 2,3-dihydro                      | $C_{11}H_{14}$                                 | 20836-11-7      | 1.545       |
| 19   | 19.402                         | 2-Naphthalenol, 1,2-dihydro-, acetate                | $C_{12}H_{12}O_2$                              | 132316-80-<br>4 | 2.461       |
| 20   | 19.551                         | 1H-Indene, 2,3-dihydro-1,2-dimethyl-                 | C <sub>11</sub> H <sub>14</sub>                | 17057-82-8      | 3.213       |
| 21   | 21.603                         | Naphthalene, 1,2-dihydro-3-methyl-                   | $C_{11}H_{12}$                                 | 2717-44-4       | 1.379       |
| 22   | 23.246                         | Benzocycloheptatriene                                | $C_{11}H_{10}$                                 | 264-09-5        | 1.644       |

| 23 | 26.322 | 5,8,11-Eicosatriynoic acid, methyl ester | C <sub>21</sub> H <sub>30</sub> O <sub>2</sub> | <u>ID#:</u><br>113705 | 0.794 |
|----|--------|------------------------------------------|------------------------------------------------|-----------------------|-------|
| 24 | 28.177 | Tetradecane, 2,6,10-trimethyl            | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7            | 1.796 |
| 25 | 29.344 | 3-(2-Methyl-propenyl)-1H-indene          | $\mathrm{C}_{13}\mathrm{H}_{14}$               | <u>ID#:</u><br>145358 | 2.215 |
| 26 | 33.158 | Tetradecane, 2,6,10-trimethyl-           | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7            | 1.626 |

**Tabela H.6** - Compostos identificados no espectro de massas do OPP obtido via craqueamento térmico, em escala piloto, em T=400°C no tempo de 95 minutos de processo.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                                | Fórmula<br>molecular                           | CAS<br>Number         | Área<br>(%) |
|------|--------------------------------|---------------------------------------------------------|------------------------------------------------|-----------------------|-------------|
| 1    | 3.453                          | Benzene                                                 | С6Н6                                           | 71-43-2               | 2.766       |
| 2    | 5.199                          | Cyclobutane, (1-methylethylidene)-                      | C7H12                                          | 1528-22-9             | 1.058       |
| 3    | 5.571                          | Toluene                                                 | C7H8                                           | 108-88-3              | 12.908      |
| 4    | 7.493                          | Bicyclo[2.2.1]hept-2-en-7-ol                            | C7H10O                                         | 53783-87-2            | 1.158       |
| 5    | 8.322                          | Ethylbenzene                                            | $C_8H_{10}$                                    | 100-41-4              | 5.867       |
| 6    | 8.605                          | p-Xylene                                                | $C_8H_{10}$                                    | 106-42-3              | 10.359      |
| 7    | 9.366                          | p-Xylene                                                | $C_8H_{10}$                                    | 106-42-3              | 2.101       |
| 8    | 10.398                         | Benzene, (1-methylethyl)-                               | C9H12                                          | 98-82-8               | 0.671       |
| 9    | 11.449                         | Tricyclo[7.1.0.0[1,3]]decane-2-carbaldehyde             | C <sub>11</sub> H <sub>16</sub> O              | <u>ID#:</u> 49005     | 0.608       |
| 10   | 11.531                         | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-,<br>acetate | C <sub>12</sub> H <sub>20</sub> O <sub>2</sub> | 10198-23-9            | 1.760       |
| 11   | 11.699                         | Benzene, 1-ethyl-3-methyl-                              | C9H12                                          | 620-14-4              | 2.232       |
| 12   | 11.790                         | Benzene, 1-ethyl-3-methyl-                              | C9H12                                          | 620-14-4              | 3.206       |
| 13   | 12.825                         | Mesitylene (Benzene, 1,3,5-trimethyl-)                  | C9H12                                          | 108-67-8              | 1.442       |
| 14   | 13.737                         | Mesitylene (Benzene, 1,3,5-trimethyl-)                  | C9H12                                          | 108-67-8              | 1.870       |
| 15   | 13.845                         | Benzene, 1-methyl-3-(1-methylethyl)-                    | $C_{10}H_{14}$                                 | 535-77-3              | 14.848      |
| 16   | 14.004                         | D-Limonene                                              | $C_{10}H_{16}$                                 | 5989-27-5             | 15.903      |
| 17   | 14.984                         | 1,3,8-p-Menthatriene                                    | $C_{10}H_{14}$                                 | 18368-95-1            | 1.119       |
| 18   | 15.939                         | Cyclohexene, 1-methyl-4-(1-methylethylidene)-           | $C_{10}H_{16}$                                 | 586-62-9              | 2.151       |
| 19   | 18.034                         | 2,4-Dimethylstyrene                                     | $C_{10}H_{12}$                                 | 2234-20-0             | 0.287       |
| 20   | 19.283                         | 1H-Indene, 2,3-dihydro-1,2-dimethyl-                    | $C_{11}H_{14}$                                 | 17057-82-8            | 0.971       |
| 21   | 19.383                         | 2-Naphthalenol, 1,2-dihydro-, acetate                   | C <sub>12</sub> H <sub>12</sub> O <sub>2</sub> | 132316-80-<br>4       | 3.139       |
| 22   | 19.543                         | 1H-Indene, 2,3-dihydro-1,2-dimethyl-                    | $C_{11}H_{14}$                                 | 17057-82-8            | 2.813       |
| 23   | 21.598                         | Naphthalene, 1,2-dihydro-3-methyl-                      | $C_{11}H_{12}$                                 | 2717-44-4             | 1.120       |
| 24   | 22.834                         | Bicyclo[4.4.1]undeca-1,3,5,7,9-pentaene                 | $C_{11}H_{10}$                                 | 2443-46-1             | 2.367       |
| 25   | 23.234                         | Benzocycloheptatriene                                   | $C_{11}H_{10}$                                 | 264-09-5              | 2.159       |
| 26   | 26.313                         | Naphthalene, 1,3-dimethyl-                              | $C_{12}H_{12}$                                 | 575-41-7              | 0.795       |
| 27   | 28.172                         | Tetradecane, 2,6,10-trimethyl                           | $C_{17}H_{36}$                                 | 14905-56-7            | 1.506       |
| 28   | 29.327                         | 3-(2-Methyl-propenyl)-1H-indene                         | C <sub>13</sub> H <sub>14</sub>                | <u>ID#:</u><br>145358 | 1.734       |
| 29   | 33.156                         | Tetradecane, 2,6,10-trimethyl-                          | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7            | 1.085       |

**Tabela H.7** - Compostos identificados no espectro de massas do OPP obtido via craqueamento térmico, em escala piloto, em T=400°C no tempo de 105 minutos de processo.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                           | Fórmula<br>molecular             | CAS<br>Number | Área<br>(%) |
|------|--------------------------------|------------------------------------|----------------------------------|---------------|-------------|
| 1    | 3.456                          | Benzene                            | C <sub>6</sub> H <sub>6</sub>    | 71-43-2       | 1,209       |
| 2    | 5.198                          | Cyclobutane, (1-methylethylidene)- | $C_7H_{12}$                      | 1528-22-9     | 0,667       |
| 3    | 5.572                          | Toluene                            | $C_7H_8$                         | 108-88-3      | 7,749       |
| 4    | 7.492                          | Bicyclo[2.2.1]hept-2-en-7-ol       | C <sub>7</sub> H <sub>10</sub> O | 53783-87-2    | 0,514       |
| 5    | 8.313                          | Benzene, 1,3-dimethyl-             | $C_8H_{10}$                      | 108-38-3      | 4,705       |
| 6    | 8.597                          | p-Xylene                           | C <sub>8</sub> H <sub>10</sub>   | 106-42-3      | 8,690       |

| 7  | 9.351  | p-Xylene                                                                | C <sub>8</sub> H <sub>10</sub>     | 106-42-3              | 1,451  |
|----|--------|-------------------------------------------------------------------------|------------------------------------|-----------------------|--------|
| 8  | 10.388 | Benzene, (1-methylethyl)-                                               | C9H12                              | 98-82-8               | 0,718  |
| 9  | 11.446 | 10-Hydroxytricyclo[4.2.1.1(2,5)]dec-3-en-9-one                          | $C_{10}H_{12}O_2$                  | <u>ID#:</u><br>101250 | 0,582  |
| 10 | 11.528 | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, acetate                    | $C_{12}H_{20}O_2$                  | 10198-23-9            | 1,182  |
| 11 | 11.676 | Benzene, 1-ethyl-3-methyl-                                              | C9H12                              | 620-14-4              | 2,363  |
| 12 | 11.774 | Benzene, 1-ethyl-3-methyl-                                              | C9H12                              | 620-14-4              | 3,641  |
| 13 | 11.960 | Benzene, 1,2,4-trimethyl-                                               | C9H12                              | 95-63-6               | 1,855  |
| 14 | 12.273 | Benzene, 1-ethyl-3-methyl-                                              | C9H12                              | 620-14-4              | 0,863  |
| 15 | 12.469 | Bicyclo[4.1.0]heptane, 3,7,7-trimethyl-, [1S-<br>(1α,3β,6α)]-           | C <sub>10</sub> H <sub>18</sub>    | 2778-68-9             | 1,069  |
| 16 | 12.816 | Mesitylene (Benzene, 1,3,5-trimethyl-)                                  | C9H12                              | 108-67-8              | 1,623  |
| 17 | 13.729 | Mesitylene (Benzene, 1,3,5-trimethyl-)                                  | C9H12                              | 108-67-8              | 2,275  |
| 18 | 13.842 | Benzene, 1-methyl-3-(1-methylethyl)-                                    | $C_{10}H_{14}$                     | 535-77-3              | 16,657 |
| 19 | 14.003 | D-Limonene                                                              | $C_{10}H_{16}$                     | 5989-27-5             | 11,356 |
| 20 | 14.232 | Phenprobamate                                                           | $C_{10}H_{13}NO_2$                 | 673-31-4              | 1,315  |
| 21 | 14.966 | 1,3,8-p-Menthatriene                                                    | $C_{10}H_{14}$                     | 18368-95-1            | 2,006  |
| 22 | 15.930 | Cyclohexene, 1-methyl-4-(1-methylethylidene)-                           | $C_{10}H_{16}$                     | 586-62-9              | 1,867  |
| 23 | 16.143 | 2,4-Dimethylstyrene                                                     | $C_{10}H_{12}$                     | 2234-20-0             | 1,879  |
| 24 | 17.069 | 2,4-Dimethylstyrene                                                     | $C_{10}H_{12}$                     | 2234-20-0             | 0,865  |
| 25 | 17.762 | 2,4-Dimethylstyrene                                                     | $C_{10}H_{12}$                     | 2234-20-0             | 1,043  |
| 26 | 18.022 | 2,4-Dimethylstyrene                                                     | $C_{10}H_{12}$                     | 2234-20-0             | 0,912  |
| 27 | 18.065 | Tetracyclo[5.3.0.0<2,6>.0<3,10>]deca-4,8-diene                          | $C_{10}H_{10}$                     | 34324-40-8            | 0,614  |
| 28 | 19.271 | Benzene, 2-ethenyl-1,3,5-trimethyl-                                     | $C_{11}H_{14}$                     | 769-25-5              | 0,824  |
| 29 | 19.345 | N-Methyl-9-aza-tricyclo[6.2.2.0(2,7)]dodec-<br>2,4,6,11-tetraene-10-one | C <sub>12</sub> H <sub>11</sub> NO | 13131-19-6            | 3,106  |
| 30 | 19.536 | 1H-Indene, 2,3-dihydro-1,2-dimethyl-                                    | $C_{11}H_{14}$                     | 17057-82-8            | 2,304  |
| 31 | 21.573 | Naphthalene, 1,2-dihydro-3-methyl-                                      | $C_{11}H_{12}$                     | 2717-44-4             | 0,747  |
| 32 | 22.785 | Benzocycloheptatriene                                                   | $C_{11}H_{10}$                     | 264-09-5              | 3,033  |
| 33 | 23.202 | Bicyclo[4.4.1]undeca-1,3,5,7,9-pentaene                                 | $C_{11}H_{10}$                     | 2443-46-1             | 2,100  |
| 34 | 24.940 | (1-Methylpenta-1,3-dienyl)benzene                                       | $C_{12}H_{14}$                     | 116669-49-<br>9       | 0,597  |
| 35 | 26.288 | Naphthalene, 1,3-dimethyl-                                              | $C_{12}H_{12}$                     | 575-41-7              | 1,265  |
| 36 | 26.421 | Naphthalene, 1,7-dimethyl-                                              | $C_{12}H_{12}$                     | 575-37-1              | 1,813  |
| 37 | 28.169 | Tetradecane, 2,6,10-trimethyl                                           | $C_{17}H_{36}$                     | 14905-56-7            | 1,337  |
| 38 | 29.304 | 3-(2-Methyl-propenyl)-1H-indene                                         | C <sub>13</sub> H <sub>14</sub>    | <u>ID#:</u><br>145358 | 2,022  |
| 39 | 33.154 | Tetradecane, 2,6,10-trimethyl-                                          | C <sub>17</sub> H <sub>36</sub>    | 14905-56-7            | 1,180  |

| Tabela H.8 - Compostos identificados no espectro de massas do OPP obtido via  |
|-------------------------------------------------------------------------------|
| craqueamento térmico, em escala piloto, em T=400°C no tempo de 115 minutos de |
| processo.                                                                     |

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                             | Fórmula<br>molecular                           | CAS<br>Number         | Área<br>(%) |
|------|--------------------------------|------------------------------------------------------|------------------------------------------------|-----------------------|-------------|
| 1    | 3.458                          | Benzene                                              | C <sub>6</sub> H <sub>6</sub>                  | 71-43-2               | 0,897       |
| 2    | 5.196                          | Cyclobutane, (1-methylethylidene)-                   | C7H12                                          | 1528-22-9             | 0,748       |
| 3    | 5.573                          | Toluene                                              | $C_7H_8$                                       | 108-88-3              | 7,083       |
| 4    | 7.489                          | Bicyclo[2.2.1]hept-2-en-7-ol                         | C7H10O                                         | 53783-87-2            | 0,838       |
| 5    | 8.313                          | Benzene, 1,3-dimethyl-                               | $C_8H_{10}$                                    | 108-38-3              | 5,036       |
| 6    | 8.598                          | p-Xylene                                             | $C_8H_{10}$                                    | 106-42-3              | 8,528       |
| 7    | 9.358                          | p-Xylene                                             | $C_8H_{10}$                                    | 106-42-3              | 1,579       |
| 8    | 10.388                         | Benzene, (1-methylethyl)-                            | C9H12                                          | 98-82-8               | 0,869       |
| 9    | 11.446                         | 10-Hydroxytricyclo[4.2.1.1(2,5)]dec-3-en-9-one       | C <sub>10</sub> H <sub>12</sub> O <sub>2</sub> | <u>ID#:</u><br>101250 | 0,660       |
| 10   | 11.528                         | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, acetate | $C_{12}H_{20}O_2$                              | 10198-23-9            | 1,162       |
| 11   | 11.674                         | Benzene, 1-ethyl-3-methyl-                           | C9H12                                          | 620-14-4              | 2,650       |
| 12   | 11.772                         | Benzene, 1-ethyl-3-methyl-                           | C9H12                                          | 620-14-4              | 4,104       |
| 13   | 11.971                         | Benzene, 1-ethyl-3-methyl-                           | C9H12                                          | 620-14-4              | 2,090       |
| 14   | 12.272                         | Benzene, 1-ethyl-3-methyl-                           | C9H12                                          | 620-14-4              | 1,130       |

| 15 | 12.471 | Bicyclo[4.1.0]heptane, 3,7,7-trimethyl-, [1S-<br>(1α,3β,6α)]- | C <sub>10</sub> H <sub>18</sub>                | 2778-68-9             | 1,019  |
|----|--------|---------------------------------------------------------------|------------------------------------------------|-----------------------|--------|
| 16 | 12.816 | Mesitylene (Benzene, 1,3,5-trimethyl-)                        | C9H12                                          | 108-67-8              | 1,520  |
| 17 | 13.729 | Mesitylene (Benzene, 1,3,5-trimethyl-)                        | C9H12                                          | 108-67-8              | 2,608  |
| 18 | 13.843 | Benzene, 1-methyl-3-(1-methylethyl)-                          | $C_{10}H_{14}$                                 | 535-77-3              | 24,158 |
| 19 | 14.004 | D-Limonene                                                    | $C_{10}H_{16}$                                 | 5989-27-5             | 9,851  |
| 20 | 14.964 | 1,3,8-p-Menthatriene                                          | $C_{10}H_{14}$                                 | 18368-95-1            | 2,183  |
| 21 | 15.696 | Benzene, 1-methyl-3-(1-methylethyl)-                          | $C_{10}H_{14}$                                 | 535-77-3              | 0,755  |
| 22 | 15.932 | Cyclohexene, 1-methyl-4-(1-methylethylidene)-                 | C <sub>10</sub> H <sub>16</sub>                | 586-62-9              | 1,878  |
| 23 | 16.156 | Benzene, 1-methyl-4-(1-methylethenyl)-                        | $C_{10}H_{12}$                                 | 1195-32-0             | 1,677  |
| 24 | 17.070 | Benzene, 1,2,4,5-tetramethyl-                                 | C <sub>10</sub> H <sub>14</sub>                | 95-93-2               | 1,017  |
| 25 | 17.774 | 2,4-Dimethylstyrene                                           | C <sub>10</sub> H <sub>12</sub>                | 2234-20-0             | 1,246  |
| 26 | 18.022 | 2,4-Dimethylstyrene                                           | C <sub>10</sub> H <sub>12</sub>                | 2234-20-0             | 0,988  |
| 27 | 18.091 | Tetracyclo[5.3.0.0<2,6>.0<3,10>]deca-4,8-diene                | C <sub>10</sub> H <sub>10</sub>                | 34324-40-8            | 0,761  |
| 28 | 19.282 | 2,2-Dimethylindene, 2,3-dihydro-                              | $C_{11}H_{14}$                                 | 20836-11-7            | 1,138  |
| 29 | 19.390 | 2-Naphthalenol, 1,2-dihydro-, acetate                         | C <sub>12</sub> H <sub>12</sub> O <sub>2</sub> | 132316-80-<br>4       | 1,368  |
| 30 | 19.547 | 1H-Indene, 2,3-dihydro-1,2-dimethyl-                          | C <sub>11</sub> H <sub>14</sub>                | 17057-82-8            | 2,178  |
| 31 | 21.584 | Naphthalene, 1,2-dihydro-3-methyl-                            | $C_{11}H_{12}$                                 | 2717-44-4             | 1,055  |
| 32 | 23.238 | Bicyclo[4.4.1]undeca-1,3,5,7,9-pentaene                       | $C_{11}H_{10}$                                 | 2443-46-1             | 1,564  |
| 33 | 26.301 | Benzene, 2,5-cyclohexadien-1-yl-                              | $C_{12}H_{12}$                                 | 4794-05-2             | 0,929  |
| 34 | 26.440 | Naphthalene, 1,3-dimethyl-                                    | C <sub>12</sub> H <sub>12</sub>                | 575-41-7              | 1,505  |
| 35 | 28.176 | Geranyl isovalerate                                           | C <sub>15</sub> H <sub>26</sub> O <sub>2</sub> | 109-20-6              | 0,793  |
| 36 | 29.325 | 3-(2-Methyl-propenyl)-1H-indene                               | C <sub>13</sub> H <sub>14</sub>                | <u>ID#:</u><br>145358 | 1,525  |
| 37 | 33.157 | Tetradecane, 2,6,10-trimethyl-                                | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7            | 0,907  |

**Tabela H.9** - Compostos identificados no espectro de massas do OPP obtido viacraqueamento térmico, em escala piloto, em T=400°C após 115 minutos de processo.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                                      | Fórmula<br>molecular             | CAS<br>Number    | Área (%) |
|------|--------------------------------|---------------------------------------------------------------|----------------------------------|------------------|----------|
| 1    | 5.198                          | Cyclobutane, (1-methylethylidene)-                            | $C_7H_{12}$                      | 1528-22-9        | 0,590    |
| 2    | 5.583                          | Toluene                                                       | C7H8                             | 108-88-3         | 2,503    |
| 3    | 7.159                          | 1,3-Dimethyl-1-cyclohexene                                    | $C_8H_{14}$                      | 2808-76-6        | 0,130    |
| 4    | 7.486                          | Bicyclo[2.2.1]hept-2-en-7-ol                                  | C <sub>7</sub> H <sub>10</sub> O | 53783-87-2       | 0,710    |
| 5    | 8.229                          | 1,2,4,4-Tetramethylcyclopentene                               | C9H16                            | 65378-76-9       | 0,311    |
| 6    | 8.314                          | Benzene, 1,3-dimethyl-                                        | $C_8H_{10}$                      | 108-38-3         | 3,624    |
| 7    | 8.603                          | Benzene, 1,3-dimethyl-                                        | $C_8H_{10}$                      | 108-38-3         | 3,760    |
| 8    | 9.355                          | o-Xylene                                                      | $C_8H_{10}$                      | 95-47-6          | 0,989    |
| 9    | 10.382                         | Benzene, (1-methylethyl)-                                     | C9H12                            | 98-82-8          | 1,224    |
| 10   | 10.503                         | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-α-<br>methylene   | $C_{10}H_{14}O_2$                | 5951-57-5        | 0,533    |
| 11   | 11.026                         | Bicyclo[3.1.0]hexane, 6-isopropylidene-1-methyl-              | C <sub>10</sub> H <sub>16</sub>  | 24524-57-0       | 0,871    |
| 12   | 11.229                         | Bicyclo[4.1.0]heptane, 3,7,7-trimethyl-, [1S-<br>(1α,3β,6α)]- | $C_{10}H_{18}$                   | 2778-68-9        | 0,481    |
| 13   | 11.444                         | 3-Cyclohexen-1-carboxaldehyde, 3,4-dimethyl-                  | C9H14O                           | <u>ID#:</u> 8404 | 0,884    |
| 14   | 11.530                         | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, acetate          | $C_{12}H_{20}O_2$                | 10198-23-9       | 1,589    |
| 15   | 11.703                         | 1-(1-Propynyl)cyclohexanol                                    | C9H14O                           | 697-37-0         | 2,339    |
| 16   | 11.772                         | Benzene, 1-ethyl-3-methyl-                                    | C9H12                            | 620-14-4         | 1,921    |
| 17   | 11.866                         | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-α-<br>methylene-  | $C_{10}H_{14}O_2$                | 5951-57-5        | 1,127    |
| 18   | 11.989                         | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-α-<br>methylene-  | $C_{10}H_{14}O_2$                | 5951-57-5        | 1,122    |
| 19   | 12.261                         | Cyclohexene, 1-(2-nitro-2-propenyl)-                          | $C_9H_{13}NO_2$                  | 80255-20-5       | 1,233    |
| 20   | 12.381                         | 1,5,5-Trimethyl-6-methylene-cyclohexene                       | C <sub>10</sub> H <sub>16</sub>  | 514-95-4         | 0,393    |
| 21   | 12.422                         | Cyclohexene, 1-methyl-4-(1-methylethyl)-, (R)-                | $C_{10}H_{18}$                   | 1195-31-9        | 0,457    |
| 22   | 12.470                         | Bicyclo[4.1.0]heptane, 3,7,7-trimethyl-, (1α,3α,6α)-          | C <sub>10</sub> H <sub>18</sub>  | 18968-23-5       | 1,599    |
| 23   | 12.703                         | Cyclohexene, 1,4,6,6-tetramethyl-                             | $C_{10}H_{18}$                   | 70092-37-4       | 1,209    |
| 24   | 12.817                         | Mesitylene (Benzene, 1,3,5-trimethyl-)                        | C9H12                            | 108-67-8         | 1,202    |
| 25   | 12.992                         | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-α-<br>methylene-  | $C_{10}H_{14}O_2$                | 5951-57-5        | 0,756    |

| 26 | 13.686 | Benzene, 1-methyl-3-(1-methylethyl)-                                                   | C <sub>10</sub> H <sub>14</sub>                 | 535-77-3              | 0,473  |
|----|--------|----------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------|--------|
| 27 | 13.731 | Mesitylene (Benzene, 1,3,5-trimethyl-)                                                 | C9H12                                           | 108-67-8              | 1,731  |
| 28 | 13.856 | o-Cymene                                                                               | $C_{10}H_{14}$                                  | 527-84-4              | 32,926 |
| 29 | 14.013 | D-Limonene                                                                             | C <sub>10</sub> H <sub>16</sub>                 | 5989-27-5             | 13,073 |
| 30 | 14.223 | Phenprobamate                                                                          | C <sub>10</sub> H <sub>13</sub> NO <sub>2</sub> | 673-31-4              | 1,043  |
| 31 | 14.964 | 1,3,8-p-Menthatriene                                                                   | C <sub>10</sub> H <sub>14</sub>                 | 18368-95-1            | 1,641  |
| 32 | 15.692 | Benzene, 1-methyl-3-(1-methylethyl)-                                                   | C <sub>10</sub> H <sub>14</sub>                 | 535-77-3              | 0,626  |
| 33 | 15.931 | Cyclohexene, 1-methyl-4-(1-methylethylidene)-                                          | C <sub>10</sub> H <sub>16</sub>                 | 586-62-9              | 2,050  |
| 34 | 16.153 | Benzene, 1-methyl-4-(1-methylethenyl)-                                                 | C <sub>10</sub> H <sub>12</sub>                 | 1195-32-0             | 1,284  |
| 35 | 16.713 | Benzene, 1-methyl-4-(1-methylpropyl)-                                                  | $C_{10}H_{12}$                                  | 1195-32-0             | 1,078  |
| 36 | 17.069 | Benzene, 1,2,4,5-tetramethyl-                                                          | C <sub>10</sub> H <sub>14</sub>                 | 95-93-2               | 0,744  |
| 37 | 17.769 | 2,4-Dimethylstyrene                                                                    | $C_{10}H_{12}$                                  | 2234-20-0             | 0,872  |
| 38 | 18.022 | 2,4-Dimethylstyrene                                                                    | C <sub>10</sub> H <sub>12</sub>                 | 2234-20-0             | 0,915  |
| 39 | 18.086 | 4-Methyl-β-methyl-β-nitrostyrene                                                       | C <sub>10</sub> H <sub>11</sub> NO <sub>2</sub> | 52287-56-6            | 0,487  |
| 40 | 19.283 | Benzene, 2-ethenyl-1,3,5-trimethyl-                                                    | C <sub>11</sub> H <sub>14</sub>                 | 769-25-5              | 1,115  |
| 41 | 19.543 | 1H-Indene, 2,3-dihydro-1,2-dimethyl-                                                   | $C_{11}H_{14}$                                  | 17057-82-8            | 1,981  |
| 42 | 21.582 | Naphthalene, 1,2-dihydro-3-methyl-                                                     | C <sub>11</sub> H <sub>12</sub>                 | 2717-44-4             | 0,817  |
| 43 | 23.253 | Bicyclo[4.4.1]undeca-1,3,5,7,9-pentaene                                                | $C_{11}H_{10}$                                  | 2443-46-1             | 0,617  |
| 44 | 24.955 | 1,3,5-Trimethyl-2-(2-nitroallyl)benzene                                                | C <sub>12</sub> H <sub>15</sub> NO <sub>2</sub> | 80255-26-1            | 0,426  |
| 45 | 25.472 | 2,9-Heptadecadiene-4,6-diyn-8-ol, (Z,E)-                                               | C <sub>17</sub> H <sub>24</sub> O               | 50816-77-8            | 0,307  |
| 46 | 26.305 | 5,8,11-Eicosatriynoic acid, methyl ester                                               | $C_{21}H_{30}O_2$                               | <u>ID#:</u><br>113705 | 0,512  |
| 47 | 26.441 | Naphthalene, 1,4-dimethyl-                                                             | C <sub>12</sub> H <sub>12</sub>                 | 571-58-4              | 0,812  |
| 48 | 26.833 | Bicyclo[4.1.0]heptan-2-ol, 1β-(3-methyl-1,3-<br>butadienyl)-2α,6β-dimethyl-3β-acetoxy- | C <sub>16</sub> H <sub>24</sub> O <sub>3</sub>  | <u>ID#:</u> 10916     | 0,368  |
| 49 | 28.172 | Tetradecane, 2,6,10-trimethyl-                                                         | C <sub>17</sub> H <sub>36</sub>                 | 14905-56-7            | 0,848  |
| 50 | 29.320 | 3-(2-Methyl-propenyl)-1H-indene                                                        | C <sub>13</sub> H <sub>14</sub>                 | <u>ID#:</u><br>145358 | 1,021  |
| 51 | 33.160 | Tetradecane, 2,6,10-trimethyl-                                                         | C <sub>17</sub> H <sub>36</sub>                 | 14905-56-7            | 0,674  |





**Figura I.1** – Cromatogramas dos destilados dos OPP's, na faixa da gasolina, obtidos durante o processo, via craqueamento térmico em escala piloto, em T= $500^{\circ}$ C.

**Tabela I.1** - Compostos identificados no espectro de massas do destilado, faixa da gasolina, do OPP obtido via craqueamento térmico, em escala piloto, em T=500°C no tempo de 55 minutos de processo.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                                         | Fórmula<br>molecular                           | CAS<br>Number | Área<br>(%) |
|------|--------------------------------|------------------------------------------------------------------|------------------------------------------------|---------------|-------------|
| 1    | 3.187                          | 1-Ethyl-5-methylcyclopentene                                     | $C_8H_{14}$                                    | 97797-57-4    | 1,389       |
| 2    | 3.233                          | Cyclohexene, 4-ethenyl-                                          | C <sub>8</sub> H <sub>12</sub>                 | 100-40-3      | 2,712       |
| 3    | 3.430                          | 1,2,3,1',2',3'-Hexamethyl-bicyclopentyl-2,2'-diene               | C <sub>16</sub> H <sub>26</sub>                | 51999-35-0    | 1,799       |
| 4    | 3.487                          | Benzene, 1,3-dimethyl-                                           | C <sub>8</sub> H <sub>10</sub>                 | 108-38-3      | 20,241      |
| 5    | 3.581                          | p-Xylene                                                         | $C_8H_{10}$                                    | 106-42-3      | 27,423      |
| 6    | 3.690                          | Ethinamate (Cyclohexanol, 1-ethynyl-, carbamate)                 | C9H13NO2                                       | 126-52-3      | 1,638       |
| 7    | 3.864                          | p-Xylene                                                         | $C_8H_{10}$                                    | 106-42-3      | 9,228       |
| 8    | 4.234                          | Benzene, (1-methylethyl)-                                        | C9H12                                          | 98-82-8       | 3,591       |
| 9    | 4.450                          | 1,5,5-Trimethyl-6-methylene-cyclohexene                          | C <sub>10</sub> H <sub>16</sub>                | 514-95-4      | 2,000       |
| 10   | 4.672                          | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, acetate             | $C_{12}H_{20}O_2$                              | 10198-23-9    | 3,297       |
| 11   | 4.755                          | Benzene, 1-ethyl-3-methyl-                                       | C9H12                                          | 620-14-4      | 2,504       |
| 12   | 4.801                          | Benzene, 1-ethyl-3-methyl-                                       | C9H12                                          | 620-14-4      | 5,577       |
| 13   | 5.655                          | Benzene, 1-methyl-3-(1-methylethyl)-                             | $C_{10}H_{14}$                                 | 535-77-3      | 3,269       |
| 14   | 5.714                          | D-Limonene                                                       | C <sub>10</sub> H <sub>16</sub>                | 5989-27-5     | 13,002      |
| 15   | 7.892                          | Cyclobutane, 1,2-bis(1,3-butadienyl)-                            | C <sub>12</sub> H <sub>16</sub>                | 80344-53-2    | 1,440       |
| 16   | 8.832                          | 1,7-Dimethyl-4-oxa-tricyclo[5.2.1.0(2,6)]decane-<br>3,5,8-trione | C <sub>11</sub> H <sub>12</sub> O <sub>4</sub> | 91143-65-6    | 0,891       |
| 1    |                                | 1                                                            |                                                |                   |             |
|------|--------------------------------|--------------------------------------------------------------|------------------------------------------------|-------------------|-------------|
| Pico | Tempo de<br>retenção<br>(min.) | Composto                                                     | Fórmula<br>molecular                           | CAS<br>Number     | Área<br>(%) |
| 1    | 3.192                          | 1-Ethyl-5-methylcyclopentene                                 | $C_8H_{14}$                                    | 97797-57-4        | 0,679       |
| 2    | 3.240                          | 3-Cyclohexene-1-ethanol                                      | C <sub>8</sub> H <sub>14</sub> O               | 18240-10-3        | 1,191       |
| 3    | 3.312                          | Camphenol, 6-                                                | C <sub>10</sub> H <sub>16</sub> O              | 3570-04-5         | 1,068       |
| 4    | 3.435                          | Camphenol, 6-                                                | C <sub>10</sub> H <sub>16</sub> O              | 3570-04-5         | 1,021       |
| 5    | 3.493                          | Benzene, 1,3-dimethyl-                                       | $C_8H_{10}$                                    | 108-38-3          | 12,362      |
| 6    | 3.584                          | p-Xylene                                                     | C8H10                                          | 106-42-3          | 19,526      |
| 7    | 3.693                          | Ethinamate (Cyclohexanol, 1-ethynyl-, carbamate)             | C9H13NO2                                       | 126-52-3          | 1,200       |
| 8    | 3.728                          | Ethinamate                                                   | C9H13NO2                                       | 126-52-3          | 1,651       |
| 9    | 3.868                          | p-Xylene                                                     | $C_8H_{10}$                                    | 106-42-3          | 6,714       |
| 10   | 3.980                          | Pentaleno[1,2-b]oxirene, octahydro-,<br>(1aα,1bα,4aβ,5aα)-   | C <sub>8</sub> H <sub>12</sub> O               | 55449-71-3        | 1,572       |
| 11   | 4.117                          | 1,5,5-Trimethyl-6-methylene-cyclohexene                      | $C_{10}H_{16}$                                 | 514-95-4          | 0,676       |
| 12   | 4.238                          | Benzene, (1-methylethyl)-                                    | C9H12                                          | 98-82-8           | 3,019       |
| 13   | 4.314                          | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-α-<br>methylene- | $C_{10}H_{14}O_2$                              | 5951-57-5         | 1,239       |
| 14   | 4.453                          | 1,5,5-Trimethyl-6-methylene-cyclohexene                      | $C_{10}H_{16}$                                 | 514-95-4          | 1,671       |
| 15   | 4.594                          | 2-Cyclohexen-1-ol, 4-ethyl-1,4-dimethyl-                     | $C_{10}H_{18}O$                                | 55162-55-5        | 1,080       |
| 16   | 4.673                          | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, acetate         | C <sub>12</sub> H <sub>20</sub> O <sub>2</sub> | 10198-23-9        | 3,511       |
| 17   | 4.740                          | Benzene, 1-ethyl-3-methyl-                                   | C9H12                                          | 620-14-4          | 3,093       |
| 18   | 4.798                          | Benzene, 1-ethyl-3-methyl-                                   | C9H12                                          | 620-14-4          | 4,672       |
| 19   | 4.853                          | Benzene, 1-ethyl-3-methyl-                                   | C9H12                                          | 620-14-4          | 2,804       |
| 20   | 5.015                          | Cyclopropane, trimethyl(2-methyl-1-<br>propenylidene)-       | C <sub>10</sub> H <sub>16</sub>                | 14803-30-6        | 1,096       |
| 21   | 5.040                          | 3-Cyclohexen-1-carboxaldehyde, 3,4-dimethyl-                 | C9H14O                                         | <u>ID#:</u> 8404  | 1,903       |
| 22   | 5.261                          | Mesitylene (Benzene, 1,3,5-trimethyl-)                       | C9H12                                          | 108-67-8          | 1,289       |
| 23   | 5.643                          | Benzene, 1-methyl-3-(1-methylethyl)-                         | $C_{10}H_{14}$                                 | 535-77-3          | 8,740       |
| 24   | 5.711                          | D-Limonene                                                   | C <sub>10</sub> H <sub>16</sub>                | 5989-27-5         | 17,709      |
| 25   | 7.901                          | 9,10-Dimethylenetricyclo[4.2.1.1(2,5)]decane                 | C <sub>12</sub> H <sub>16</sub>                | <u>ID#:</u> 49558 | 0,514       |

**Tabela I.2** - Compostos identificados no espectro de massas do destilado, faixa da gasolina, do OPP obtido via craqueamento térmico, em escala piloto, em T=500°C no tempo de 65 minutos de processo.

**Tabela I.3** - Compostos identificados no espectro de massas do destilado, faixa da gasolina, do OPP obtido via craqueamento térmico, em escala piloto, em T=500°C no tempo de 75 minutos de processo.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                                     | Fórmula<br>molecular                           | CAS<br>Number | Área<br>(%) |
|------|--------------------------------|--------------------------------------------------------------|------------------------------------------------|---------------|-------------|
| 1    | 3.192                          | 1-Ethyl-5-methylcyclopentene                                 | $C_8H_{14}$                                    | 97797-57-4    | 0,379       |
| 2    | 3.243                          | 3-Cyclohexene-1-ethanol                                      | C <sub>8</sub> H <sub>14</sub> O               | 18240-10-3    | 0,689       |
| 3    | 3.432                          | Camphenol, 6-                                                | C <sub>10</sub> H <sub>16</sub> O              | 3570-04-5     | 0,601       |
| 4    | 3.491                          | Benzene, 1,3-dimethyl-                                       | $C_8H_{10}$                                    | 108-38-3      | 9,641       |
| 5    | 3.581                          | p-Xylene                                                     | $C_8H_{10}$                                    | 106-42-3      | 18,788      |
| 6    | 3.723                          | Ethinamate                                                   | $C_9H_{13}NO_2$                                | 126-52-3      | 1,385       |
| 7    | 3.865                          | p-Xylene                                                     | $C_8H_{10}$                                    | 106-42-3      | 5,905       |
| 8    | 3.977                          | Ethinamate                                                   | C9H13NO2                                       | 126-52-3      | 1,314       |
| 9    | 4.113                          | Cyclopropane, trimethyl(2-methyl-1-<br>propenylidene)-       | C <sub>10</sub> H <sub>16</sub>                | 14803-30-6    | 0,672       |
| 10   | 4.232                          | Benzene, (1-methylethyl)-                                    | C9H12                                          | 98-82-8       | 3,032       |
| 11   | 4.308                          | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-α-<br>methylene- | C <sub>10</sub> H <sub>14</sub> O <sub>2</sub> | 5951-57-5     | 1,257       |
| 12   | 4.449                          | 1,5,5-Trimethyl-6-methylene-cyclohexene                      | C <sub>10</sub> H <sub>16</sub>                | 514-95-4      | 1,626       |
| 13   | 4.587                          | 2-Cyclohexen-1-ol, 4-ethyl-1,4-dimethyl-                     | C <sub>10</sub> H <sub>18</sub> O              | 55162-55-5    | 1,190       |
| 14   | 4.667                          | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, acetate         | C <sub>12</sub> H <sub>20</sub> O <sub>2</sub> | 10198-23-9    | 3,834       |

| 15 | 4.730 | Benzene, 1-ethyl-3-methyl-                                       | C9H12                           | 620-14-4         | 3,620  |
|----|-------|------------------------------------------------------------------|---------------------------------|------------------|--------|
| 16 | 4.780 | Benzene, 1-ethyl-3-methyl-                                       | C9H12                           | 620-14-4         | 5,538  |
| 17 | 4.847 | Benzene, 1-ethyl-3-methyl-                                       | C9H12                           | 620-14-4         | 3,917  |
| 18 | 5.008 | Cyclopropane, trimethyl(2-methyl-1-<br>propenylidene)-           | C <sub>10</sub> H <sub>16</sub> | 14803-30-6       | 1,620  |
| 19 | 5.033 | 3-Cyclohexen-1-carboxaldehyde, 3,4-dimethyl-                     | C9H14O                          | <u>ID#:</u> 8404 | 2,798  |
| 20 | 5.243 | Mesitylene (Benzene, 1,3,5-trimethyl-)                           | C9H12                           | 108-67-8         | 2,875  |
| 21 | 5.574 | Benzene, 1-methyl-3-(1-methylethyl)-                             | $C_{10}H_{14}$                  | 535-77-3         | 0,321  |
| 22 | 5.635 | o-Cymene                                                         | C <sub>10</sub> H <sub>14</sub> | 527-84-4         | 11,290 |
| 23 | 5.705 | D-Limonene                                                       | C <sub>10</sub> H <sub>16</sub> | 5989-27-5        | 16,407 |
| 24 | 7.424 | 1,2-Bis(3-cyclohexenyl)ethylene                                  | C <sub>14</sub> H <sub>20</sub> | 17527-28-5       | 0,341  |
| 25 | 7.894 | Cyclobutane, 1,2-bis(1,3-butadienyl)-                            | C <sub>12</sub> H <sub>16</sub> | 80344-53-2       | 0,598  |
| 26 | 8.835 | 1,7-Dimethyl-4-oxa-tricyclo[5.2.1.0(2,6)]decane-<br>3,5,8-trione | $C_{11}H_{12}O_4$               | 91143-65-6       | 0,361  |

**Tabela I.4** - Compostos identificados no espectro de massas do destilado, faixa da gasolina, do OPP obtido via craqueamento térmico, em escala piloto, em T=500°C no tempo de 85 minutos de processo.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                                              | Fórmula<br>molecular                           | CAS<br>Number    | Área<br>(%) |
|------|--------------------------------|-----------------------------------------------------------------------|------------------------------------------------|------------------|-------------|
| 1    | 3.247                          | 3-Cyclohexene-1-ethanol                                               | C <sub>8</sub> H <sub>14</sub> O               | 18240-10-3       | 0,364       |
| 2    | 3.497                          | Benzene, 1,3-dimethyl-                                                | C <sub>8</sub> H <sub>10</sub>                 | 108-38-3         | 7,459       |
| 3    | 3.587                          | p-Xylene                                                              | $C_8H_{10}$                                    | 106-42-3         | 15,586      |
| 4    | 3.874                          | p-Xylene                                                              | C <sub>8</sub> H <sub>10</sub>                 | 106-42-3         | 3,966       |
| 5    | 3.977                          | Ethinamate                                                            | C9H13NO2                                       | 126-52-3         | 1,386       |
| 6    | 4.238                          | Benzene, (1-methylethyl)-                                             | C9H12                                          | 98-82-8          | 2,181       |
| 7    | 4.308                          | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-α-<br>methylene-          | $C_{10}H_{14}O_2$                              | 5951-57-5        | 1,026       |
| 8    | 4.450                          | 1,5,5-Trimethyl-6-methylene-cyclohexene                               | $C_{10}H_{16}$                                 | 514-95-4         | 0,978       |
| 9    | 4.590                          | 2-Cyclohexen-1-ol, 4-ethyl-1,4-dimethyl-                              | $C_{10}H_{18}O$                                | 55162-55-5       | 0,791       |
| 10   | 4.670                          | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, acetate                  | $C_{12}H_{20}O_2$                              | 10198-23-9       | 2,744       |
| 11   | 4.741                          | Benzene, 1-ethyl-3-methyl-                                            | C9H12                                          | 620-14-4         | 2,894       |
| 12   | 4.794                          | Benzene, 1-ethyl-3-methyl-                                            | C9H12                                          | 620-14-4         | 4,191       |
| 13   | 4.851                          | Benzene, 1-ethyl-3-methyl-                                            | C9H12                                          | 620-14-4         | 3,043       |
| 14   | 5.010                          | Cyclopropane, trimethyl(2-methyl-1-<br>propenylidene)-                | C <sub>10</sub> H <sub>16</sub>                | 14803-30-6       | 0,996       |
| 15   | 5.035                          | 3-Cyclohexen-1-carboxaldehyde, 3,4-dimethyl-                          | C9H14O                                         | <u>ID#:</u> 8404 | 1,749       |
| 16   | 5.240                          | Mesitylene (Benzene, 1,3,5-trimethyl-)                                | C9H12                                          | 108-67-8         | 1,894       |
| 17   | 5.569                          | Benzene, 1-methyl-3-(1-methylethyl)-                                  | $C_{10}H_{14}$                                 | 535-77-3         | 0,437       |
| 18   | 5.631                          | o-Cymene                                                              | $C_{10}H_{14}$                                 | 527-84-4         | 19,821      |
| 19   | 5.704                          | D-Limonene                                                            | $C_{10}H_{16}$                                 | 5989-27-5        | 19,531      |
| 20   | 6.169                          | 6,7-Dimethyl-3,5,8,8a-tetrahydro-1H-2-benzopyran                      | C <sub>11</sub> H <sub>16</sub> O              | 110028-10-<br>9  | 2,924       |
| 21   | 6.675                          | Carveol                                                               | C <sub>10</sub> H <sub>16</sub> O              | 99-48-9          | 3,182       |
| 22   | 6.904                          | Bicyclo[3.1.1]hept-3-ene-spiro-2,4'-(1',3'-dioxane),<br>7,7-dimethyl- | C <sub>12</sub> H <sub>18</sub> O <sub>2</sub> | <u>ID#:</u> 433  | 1,339       |
| 23   | 7.020                          | 7-Methoxymethyl-2,7-dimethylcyclohepta-1,3,5-<br>triene               | C <sub>11</sub> H <sub>16</sub> O              | 73992-48-0       | 1,518       |

**Tabela I.5** - Compostos identificados no espectro de massas do destilado, faixa da gasolina, do OPP obtido via craqueamento térmico, em escala piloto, em T=500°C no tempo de 95 minutos de processo.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                     | Fórmula<br>molecular           | CAS<br>Number | Área<br>(%) |
|------|--------------------------------|------------------------------|--------------------------------|---------------|-------------|
| 1    | 3.194                          | 1-Ethyl-5-methylcyclopentene | C <sub>8</sub> H <sub>14</sub> | 97797-57-4    | 0,325       |

| 2  | 3.247 | 3-Cyclohexene-1-ethanol                                      | C8H14O                                         | 18240-10-3        | 0,531  |
|----|-------|--------------------------------------------------------------|------------------------------------------------|-------------------|--------|
| 3  | 3.435 | Camphenol, 6-                                                | C <sub>10</sub> H <sub>16</sub> O              | 3570-04-5         | 0,566  |
| 4  | 3.492 | Benzene, 1,3-dimethyl-                                       | $C_8H_{10}$                                    | 108-38-3          | 10,450 |
| 5  | 3.582 | p-Xylene                                                     | $C_8H_{10}$                                    | 106-42-3          | 22,548 |
| 6  | 3.867 | p-Xylene                                                     | $C_8H_{10}$                                    | 106-42-3          | 6,479  |
| 7  | 3.976 | Ethinamate                                                   | C9H13NO2                                       | 126-52-3          | 1,399  |
| 8  | 4.113 | Cyclopropane, trimethyl(2-methyl-1-<br>propenylidene)-       | C <sub>10</sub> H <sub>16</sub>                | 14803-30-6        | 0,703  |
| 9  | 4.235 | Benzene, (1-methylethyl)-                                    | C9H12                                          | 98-82-8           | 2,979  |
| 10 | 4.309 | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-a-<br>methylene- | $C_{10}H_{14}O_2$                              | 5951-57-5         | 1,235  |
| 11 | 4.448 | 1,5,5-Trimethyl-6-methylene-cyclohexene                      | C <sub>10</sub> H <sub>16</sub>                | 514-95-4          | 1,376  |
| 12 | 4.589 | 2-Cyclohexen-1-ol, 4-ethyl-1,4-dimethyl-                     | C <sub>10</sub> H <sub>18</sub> O              | 55162-55-5        | 1,048  |
| 13 | 4.670 | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, acetate         | C <sub>12</sub> H <sub>20</sub> O <sub>2</sub> | 10198-23-9        | 3,439  |
| 14 | 4.737 | Benzene, 1-ethyl-3-methyl-                                   | C9H12                                          | 620-14-4          | 3,766  |
| 15 | 4.793 | Benzene, 1-ethyl-3-methyl-                                   | C9H12                                          | 620-14-4          | 5,388  |
| 16 | 4.850 | Benzene, 1-ethyl-3-methyl-                                   | C9H12                                          | 620-14-4          | 4,301  |
| 17 | 5.009 | Cyclopropane, trimethyl(2-methyl-1-<br>propenylidene)-       | C <sub>10</sub> H <sub>16</sub>                | 14803-30-6        | 1,698  |
| 18 | 5.034 | 3-Cyclohexen-1-carboxaldehyde, 3,4-dimethyl-                 | C9H14O                                         | <u>ID#:</u> 8404  | 1,441  |
| 19 | 5.247 | Mesitylene (Benzene, 1,3,5-trimethyl-)                       | C9H12                                          | 108-67-8          | 3,142  |
| 20 | 5.577 | trans-3-Caren-2-ol                                           | C <sub>10</sub> H <sub>16</sub> O              | <u>ID#:</u> 99540 | 0,331  |
| 21 | 5.639 | Benzene, 1-methyl-3-(1-methylethyl)-                         | $C_{10}H_{14}$                                 | 535-77-3          | 11,256 |
| 22 | 5.707 | D-Limonene                                                   | C <sub>10</sub> H <sub>16</sub>                | 5989-27-5         | 15,179 |
| 23 | 7.898 | 9,10-Dimethylenetricyclo[4.2.1.1(2,5)]decane                 | C <sub>12</sub> H <sub>16</sub>                | <u>ID#:</u> 49558 | 0,419  |

**Tabela I.6** - Compostos identificados no espectro de massas do destilado, faixa da gasolina, do OPP obtido via craqueamento térmico, em escala piloto, em T=500°C no tempo de 105 minutos de processo.

| Pico | Tempo de<br>retenção | Composto                                                     | Fórmula<br>molecular            | CAS<br>Number    | Área<br>(%) |
|------|----------------------|--------------------------------------------------------------|---------------------------------|------------------|-------------|
| 1    | (min.)               | 2 Cristahavana 1 athanal                                     | Callero                         | 19240 10 2       | 0.412       |
| 1    | 3.247                | 3-Cyclonexene-1-ethanol                                      | Cgiij40                         | 10240-10-3       | 0,415       |
| 2    | 3.492                | Benzene, 1,3-dimethyl-                                       | С8Н10                           | 108-38-3         | 11,647      |
| 3    | 3.581                | p-Xylene                                                     | $C_8H_{10}$                     | 106-42-3         | 26,871      |
| 4    | 3.867                | p-Xylene                                                     | C <sub>8</sub> H <sub>10</sub>  | 106-42-3         | 9,026       |
| 5    | 4.238                | Benzene, (1-methylethyl)-                                    | C9H12                           | 98-82-8          | 2,677       |
| 6    | 4.308                | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-α-<br>methylene- | $C_{10}H_{14}O_2$               | 5951-57-5        | 1,183       |
| 7    | 4.451                | 1,5,5-Trimethyl-6-methylene-cyclohexene                      | C <sub>10</sub> H <sub>16</sub> | 514-95-4         | 1,142       |
| 8    | 4.593                | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-α-<br>methylene- | $C_{10}H_{14}O_2$               | 5951-57-5        | 0,809       |
| 9    | 4.673                | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, acetate         | $C_{12}H_{20}O_2$               | 10198-23-9       | 2,733       |
| 10   | 4.743                | Benzene, 1-ethyl-3-methyl-                                   | C9H12                           | 620-14-4         | 3,464       |
| 11   | 4.795                | Benzene, 1-ethyl-3-methyl-                                   | C9H12                           | 620-14-4         | 5,124       |
| 12   | 4.852                | Benzene, 1-ethyl-3-methyl-                                   | C9H12                           | 620-14-4         | 4,482       |
| 13   | 5.014                | Benzene, 1-ethyl-3-methyl-                                   | C9H12                           | 620-14-4         | 1,150       |
| 14   | 5.036                | 3-Cyclohexen-1-carboxaldehyde, 3,4-dimethyl-                 | C9H14O                          | <u>ID#:</u> 8404 | 1,320       |
| 15   | 5.254                | Mesitylene (Benzene, 1,3,5-trimethyl-)                       | C9H12                           | 108-67-8         | 2,798       |
| 16   | 5.643                | Benzene, 1-methyl-3-(1-methylethyl)-                         | C <sub>10</sub> H <sub>14</sub> | 535-77-3         | 10,464      |
| 17   | 5.710                | D-Limonene                                                   | $C_{10}H_{16}$                  | 5989-27-5        | 14,698      |

**Tabela I.7** - Compostos identificados no espectro de massas do destilado, faixa da gasolina, do OPP obtido via craqueamento térmico, em escala piloto, em T=500°C no tempo de 115 minutos de processo.

| Pico | Tempo de<br>retenção | Composto                                                     | Fórmula<br>molecular              | CAS<br>Number     | Área<br>(%) |
|------|----------------------|--------------------------------------------------------------|-----------------------------------|-------------------|-------------|
|      | (min.)               | <b>F</b>                                                     |                                   |                   | (,,,)       |
| 1    | 3.193                | 1-Ethyl-5-methylcyclopentene                                 | $C_8H_{14}$                       | 97797-57-4        | 0,399       |
| 2    | 3.247                | 3-Cyclohexene-1-ethanol                                      | C <sub>8</sub> H <sub>14</sub> O  | 18240-10-3        | 0,776       |
| 3    | 3.424                | Cyclohexene, 3,3,5-trimethyl-                                | C9H16                             | 503-45-7          | 0,506       |
| 4    | 3.498                | Benzene, 1,3-dimethyl-                                       | $C_8H_{10}$                       | 108-38-3          | 8,430       |
| 5    | 3.590                | p-Xylene                                                     | $C_8H_{10}$                       | 106-42-3          | 14,399      |
| 6    | 3.876                | p-Xylene                                                     | $C_8H_{10}$                       | 106-42-3          | 3,951       |
| 7    | 3.981                | Pentaleno[1,2-b]oxirene, octahydro-,<br>(1aα,1bα,4aβ,5aα)-   | C <sub>8</sub> H <sub>12</sub> O  | 55449-71-3        | 1,179       |
| 8    | 4.239                | Benzene, (1-methylethyl)-                                    | C9H12                             | 98-82-8           | 2,366       |
| 9    | 4.309                | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-α-<br>methylene- | $C_{10}H_{14}O_2$                 | 5951-57-5         | 1,194       |
| 10   | 4.451                | 1,5,5-Trimethyl-6-methylene-cyclohexene                      | $C_{10}H_{16}$                    | 514-95-4          | 1,503       |
| 11   | 4.593                | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-α-<br>methylene- | $C_{10}H_{14}O_2$                 | 5951-57-5         | 0,920       |
| 12   | 4.671                | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, acetate         | $C_{12}H_{20}O_2$                 | 10198-23-9        | 3,253       |
| 13   | 4.750                | Benzene, 1-ethyl-3-methyl-                                   | C9H12                             | 620-14-4          | 3,096       |
| 14   | 4.796                | Benzene, 1-ethyl-3-methyl-                                   | C9H12                             | 620-14-4          | 8,173       |
| 15   | 5.036                | 3-Cyclohexen-1-carboxaldehyde, 3,4-dimethyl-                 | C9H14O                            | <u>ID#:</u> 8404  | 4,353       |
| 16   | 5.145                | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-α-<br>methylene- | $C_{10}H_{14}O_2$                 | 5951-57-5         | 1,156       |
| 17   | 5.255                | Mesitylene (Benzene, 1,3,5-trimethyl-)                       | C9H12                             | 108-67-8          | 2,769       |
| 18   | 5.576                | trans-3-Caren-2-ol                                           | C <sub>10</sub> H <sub>16</sub> O | <u>ID#:</u> 99540 | 0,736       |
| 19   | 5.634                | o-Cymene                                                     | $C_{10}H_{14}$                    | 527-84-4          | 14,622      |
| 20   | 5.705                | D-Limonene                                                   | $C_{10}H_{16}$                    | 5989-27-5         | 23,241      |
| 21   | 6.198                | 6,7-Dimethyl-3,5,8,8a-tetrahydro-1H-2-benzopyran             | C <sub>11</sub> H <sub>16</sub> O | 110028-10-<br>9   | 0,201       |
| 22   | 6.637                | Hexane, 1-chloro-5-methyl-                                   | C7H15Cl                           | 33240-56-1        | 0,751       |
| 23   | 6.699                | Carveol                                                      | $C_{10}H_{16}O$                   | 99-48-9           | 1,528       |
| 24   | 7.891                | Cyclobutane, 1,2-bis(1,3-butadienyl)-                        | $C_{12}H_{16}$                    | 80344-53-2        | 0,498       |

**Tabela I.8** - Compostos identificados no espectro de massas do destilado, faixa da gasolina, do OPP obtido via craqueamento térmico, em escala piloto, em T=500°C após 115 minutos de processo.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                                                   | Fórmula<br>molecular                           | CAS<br>Number     | Área<br>(%) |
|------|--------------------------------|----------------------------------------------------------------------------|------------------------------------------------|-------------------|-------------|
| 1    | 3.428                          | Cyclohexene, 3,3,5-trimethyl-                                              | C9H16                                          | 503-45-7          | 0,644       |
| 2    | 3.476                          | Cyclopentane, (2-methylpropylidene)-                                       | C9H16                                          | 53366-58-8        | 0,958       |
| 3    | 3.568                          | Ethinamate                                                                 | C9H13NO2                                       | 126-52-3          | 0,910       |
| 4    | 3.728                          | Ethinamate                                                                 | C9H13NO2                                       | 126-52-3          | 2,420       |
| 5    | 3.982                          | Pentaleno[1,2-b]oxirene, octahydro-,<br>(1aα,1bα,4aβ,5aα)-                 | C <sub>8</sub> H <sub>12</sub> O               | 55449-71-3        | 0,740       |
| 6    | 4.065                          | 5-Octen-2-yn-4-ol                                                          | C <sub>8</sub> H <sub>12</sub> O               | <u>ID#:</u> 67994 | 0,995       |
| 7    | 4.115                          | Cyclopropane, trimethyl(2-methyl-1-<br>propenylidene)-                     | $C_{10}H_{16}$                                 | 14803-30-6        | 0,581       |
| 8    | 4.241                          | Benzene, (1-methylethyl)-                                                  | C9H12                                          | 98-82-8           | 2,488       |
| 9    | 4.308                          | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-α-<br>methylene-               | $C_{10}H_{14}O_2$                              | 5951-57-5         | 2,154       |
| 10   | 4.402                          | Bicyclo[4.1.0]heptane, 3,7,7-trimethyl-, [1S-<br>(1α,3β,6α)]-              | $C_{10}H_{18}$                                 | 2778-68-9         | 0,678       |
| 11   | 4.450                          | 1,5,5-Trimethyl-6-methylene-cyclohexene                                    | $C_{10}H_{16}$                                 | 514-95-4          | 2,957       |
| 12   | 4.544                          | Bicyclo[2.2.1]heptane-2,5-diol, 1,7,7-trimethyl-,<br>(2-endo,5-exo)-       | C <sub>10</sub> H <sub>18</sub> O <sub>2</sub> | 10359-41-8        | 1,009       |
| 13   | 4.599                          | Bicyclo[4.1.0]heptane, 3,7,7-trimethyl-, [1S-<br>(1α,3β,6α)]-              | $C_{10}H_{18}$                                 | 2778-68-9         | 1,824       |
| 14   | 4.668                          | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, acetate                       | $C_{12}H_{20}O_2$                              | 10198-23-9        | 4,830       |
| 15   | 4.720                          | 7-Oxabicyclo[4.1.0]heptane, 1-methyl-4-(2-<br>methyloxiranyl)-             | $C_{10}H_{16}O_2$                              | 96-08-2           | 1,302       |
| 16   | 4.759                          | Cyclopropane, 1-methyl-2-(1-methylethyl)-3-(1-<br>methylethylidene)-, cis- | C <sub>10</sub> H <sub>18</sub>                | 24524-52-5        | 1,853       |

| 17 | 4.797 | Benzene, 1-ethyl-3-methyl-                                    | C9H12                                          | 620-14-4          | 2,574  |
|----|-------|---------------------------------------------------------------|------------------------------------------------|-------------------|--------|
| 18 | 4.833 | 2,4-Heptadienal, 2,4-dimethyl-                                | C9H14O                                         | 42452-48-2        | 3,311  |
| 19 | 4.972 | m-Menthane, (1S,3R)-(+)-                                      | C <sub>10</sub> H <sub>20</sub>                | 13837-66-6        | 0,949  |
| 20 | 5.034 | 3-Cyclohexen-1-carboxaldehyde, 3,4-dimethyl-                  | C9H14O                                         | <u>ID#:</u> 8404  | 5,029  |
| 21 | 5.077 | Bicyclo[4.1.0]heptane, 3,7,7-trimethyl-, [1S-<br>(1α,3β,6α)]- | $C_{10}H_{18}$                                 | 2778-68-9         | 1,141  |
| 22 | 5.144 | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-a-<br>methylene-  | $C_{10}H_{14}O_2$                              | 5951-57-5         | 2,879  |
| 23 | 5.292 | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-α-<br>methylene-  | $C_{10}H_{14}O_2$                              | 5951-57-5         | 0,866  |
| 24 | 5.363 | Bicyclo[4.1.0]heptane, 3,7,7-trimethyl-, [1S-<br>(1α,3β,6α)]- | $C_{10}H_{18}$                                 | 2778-68-9         | 1,343  |
| 25 | 5.567 | Bicyclo[3.1.1]hept-2-en-4-ol, 2,6,6-trimethyl-, acetate       | $C_{12}H_{18}O_2$                              | <u>ID#:</u> 98797 | 0,839  |
| 26 | 5.629 | Benzene, 1-methyl-3-(1-methylethyl)-                          | C <sub>10</sub> H <sub>14</sub>                | 535-77-3          | 33,558 |
| 27 | 5.705 | D-Limonene                                                    | C <sub>10</sub> H <sub>16</sub>                | 5989-27-5         | 18,564 |
| 28 | 6.710 | Carveol                                                       | C <sub>10</sub> H <sub>16</sub> O              | 99-48-9           | 1,392  |
| 29 | 7.041 | 10,12-Octadecadiynoic acid                                    | $\mathrm{C}_{18}\mathrm{H}_{28}\mathrm{O}_{2}$ | 7333-25-7         | 1,215  |





**Figura J.1** – Cromatogramas dos destilados dos OPP's, na faixa do querosene, obtidos durante o processo, via craqueamento térmico em escala piloto, em T= $500^{\circ}$ C.

**Tabela J.1** - Compostos identificados no espectro de massas do destilado, faixa do querosene, do OPP obtido via craqueamento térmico, em escala piloto, em T= $500^{\circ}$ C no tempo de 55 minutos de processo.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                             | Fórmula<br>molecular                            | CAS<br>Number    | Área<br>(%) |
|------|--------------------------------|------------------------------------------------------|-------------------------------------------------|------------------|-------------|
| 1    | 3.518                          | Benzene, 1,3-dimethyl-                               | $C_8H_{10}$                                     | 108-38-3         | 2,382       |
| 2    | 3.608                          | o-Xylene                                             | C8H10                                           | 95-47-6          | 4,897       |
| 3    | 3.885                          | o-Xylene                                             | $C_8H_{10}$                                     | 95-47-6          | 1,127       |
| 4    | 4.240                          | Benzene, (1-methylethyl)-                            | C9H12                                           | 98-82-8          | 1,734       |
| 5    | 4.671                          | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, acetate | C <sub>12</sub> H <sub>20</sub> O <sub>2</sub>  | 10198-23-9       | 3,685       |
| 6    | 4.738                          | Benzene, 1-ethyl-3-methyl-                           | C9H12                                           | 620-14-4         | 3,109       |
| 7    | 4.797                          | Benzene, 1-ethyl-4-methyl-                           | C9H12                                           | 622-96-8         | 4,781       |
| 8    | 4.850                          | Benzene, 1-ethyl-3-methyl-                           | C9H12                                           | 620-14-4         | 3,932       |
| 9    | 5.010                          | 1,3-Cyclohexadiene, 1,2,6,6-tetramethyl-             | C <sub>10</sub> H <sub>16</sub>                 | 514-96-5         | 2,103       |
| 10   | 5.037                          | 3-Cyclohexen-1-carboxaldehyde, 3,4-dimethyl-         | C9H14O                                          | <u>ID#:</u> 8404 | 3,867       |
| 11   | 5.234                          | Mesitylene (Benzene, 1,3,5-trimethyl-)               | C9H12                                           | 108-67-8         | 4,762       |
| 12   | 5.632                          | Benzene, 1-methyl-3-(1-methylethyl)-                 | C <sub>10</sub> H <sub>14</sub>                 | 535-77-3         | 17,686      |
| 13   | 5.706                          | D-Limonene                                           | C <sub>10</sub> H <sub>16</sub>                 | 5989-27-5        | 31,248      |
| 14   | 5.902                          | Phenprobamate                                        | C <sub>10</sub> H <sub>13</sub> NO <sub>2</sub> | 673-31-4         | 2,461       |
| 15   | 6.159                          | 6,7-Dimethyl-3,5,8,8a-tetrahydro-1H-2-benzopyran     | C <sub>11</sub> H <sub>16</sub> O               | 110028-10-<br>9  | 6,054       |
| 16   | 6.614                          | Hexane, 1-chloro-5-methyl-                           | C7H15Cl                                         | 33240-56-1       | 1,724       |
| 17   | 6.654                          | 1-Phenyl-1-butene                                    | $C_{10}H_{12}$                                  | 824-90-8         | 3,408       |
| 18   | 7.689                          | 2,4-Dimethylstyrene                                  | C <sub>10</sub> H <sub>12</sub>                 | 2234-20-0        | 1,041       |

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                                                     | Fórmula<br>molecular                            | CAS<br>Number         | Área<br>(%) |
|------|--------------------------------|------------------------------------------------------------------------------|-------------------------------------------------|-----------------------|-------------|
| 1    | 4.677                          | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, acetate                         | C <sub>12</sub> H <sub>20</sub> O <sub>2</sub>  | 10198-23-9            | 0,657       |
| 2    | 4.797                          | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-α-<br>methylene-                 | $C_{10}H_{14}O_2$                               | 5951-57-5             | 0,918       |
| 3    | 4.867                          | Benzene, 1-ethyl-3-methyl-                                                   | C9H12                                           | 620-14-4              | 2,410       |
| 4    | 5.039                          | 3-Cyclohexen-1-carboxaldehyde, 3,4-dimethyl-                                 | C9H14O                                          | <u>ID#:</u> 8404      | 1,151       |
| 5    | 5.252                          | Mesitylene (Benzene, 1,3,5-trimethyl-)                                       | C9H12                                           | 108-67-8              | 1,187       |
| 6    | 5.568                          | Bicyclo[3.1.1]hept-2-en-6-ol, 2,7,7-trimethyl-,<br>acetate, [1S-(1α,5α,6β)]- | $C_{12}H_{18}O_2$                               | 50764-55-1            | 0,440       |
| 7    | 5.630                          | Benzene, 1-methyl-3-(1-methylethyl)-                                         | $C_{10}H_{14}$                                  | 535-77-3              | 20,616      |
| 8    | 5.704                          | D-Limonene                                                                   | $C_{10}H_{16}$                                  | 5989-27-5             | 22,721      |
| 9    | 5.916                          | Phenprobamate                                                                | C <sub>10</sub> H <sub>13</sub> NO <sub>2</sub> | 673-31-4              | 1,137       |
| 10   | 6.148                          | 6,7-Dimethyl-3,5,8,8a-tetrahydro-1H-2-benzopyran                             | C <sub>11</sub> H <sub>16</sub> O               | 110028-10-<br>9       | 5,189       |
| 11   | 6.517                          | Benzene, 1-methyl-3-(1-methylethyl)-                                         | $C_{10}H_{14}$                                  | 535-77-3              | 1,093       |
| 12   | 6.610                          | Hexane, 1-chloro-5-methyl-                                                   | C7H15Cl                                         | 33240-56-1            | 2,213       |
| 13   | 6.648                          | 2,4-Dimethylstyrene                                                          | $C_{10}H_{12}$                                  | 2234-20-0             | 3,318       |
| 14   | 6.740                          | Benzene, 1-methyl-4-(1-methylethenyl)-                                       | $C_{10}H_{12}$                                  | 1195-32-0             | 2,599       |
| 15   | 6.981                          | 7-Methoxymethyl-2,7-dimethylcyclohepta-1,3,5-<br>triene                      | C <sub>11</sub> H <sub>16</sub> O               | 73992-48-0            | 2,074       |
| 16   | 7.180                          | Benzene, 1,2,4,5-tetramethyl-                                                | $C_{10}H_{14}$                                  | 95-93-2               | 1,665       |
| 17   | 7.547                          | 2,4-Dimethylstyrene                                                          | $C_{10}H_{12}$                                  | 2234-20-0             | 1,917       |
| 18   | 7.674                          | 2,4-Dimethylstyrene                                                          | C <sub>10</sub> H <sub>12</sub>                 | 2234-20-0             | 3,174       |
| 19   | 7.727                          | 4,7-Methano-1H-inden-1-ol, 3a,4,7,7a-tetrahydro-, acetate                    | $\mathrm{C}_{12}\mathrm{H}_{14}\mathrm{O}_{2}$  | 16327-40-5            | 3,163       |
| 20   | 7.834                          | Tetracyclo[5.3.0.0<2,6>.0<3,10>]deca-4,8-diene                               | $C_{10}H_{10}$                                  | 34324-40-8            | 3,213       |
| 21   | 7.895                          | Cyclobutane, 1,2-bis(1,3-butadienyl)-                                        | $C_{12}H_{16}$                                  | 80344-53-2            | 2,392       |
| 22   | 8.174                          | Hydrocinnamic acid, o-[(1,2,3,4-tetrahydro-2-<br>naphthyl)methyl]-           | $C_{20}H_{22}O_2$                               | 23804-21-9            | 1,230       |
| 23   | 8.272                          | Benzene, 2-ethenyl-1,3,5-trimethyl-                                          | $C_{11}H_{14}$                                  | 769-25-5              | 4,229       |
| 24   | 8.401                          | Benzene, 1-methyl-3-(1-methyl-2-propenyl)-                                   | $C_{11}H_{14}$                                  | 52161-57-6            | 3,130       |
| 25   | 8.454                          | 2-Naphthalenol, 1,2-dihydro-, acetate                                        | C <sub>12</sub> H <sub>12</sub> O <sub>2</sub>  | 132316-80-<br>4       | 2,533       |
| 26   | 9.014                          | 1,2,4-Metheno-1H-cyclobuta[cd]pentalene-3,5-<br>diol, octahydro-             | $C_{10}H_{12}O_2$                               | 54211-08-4            | 0,785       |
| 27   | 9.510                          | 1,3,5-Trimethyl-2-(2-nitrovinyl)benzene                                      | C <sub>11</sub> H <sub>13</sub> NO <sub>2</sub> | <u>ID#:</u><br>132481 | 1,796       |
| 28   | 9.663                          | Oct-3-ene-1,5-diyne, 3-t-butyl-7,7-dimethyl-                                 | $C_{14}H_{20}$                                  | <u>ID#:</u> 3102      | 0,212       |
| 29   | 9.768                          | (S,Z)-Heptadeca-1,9-dien-4,6-diyn-3-ol                                       | $C_{17}H_{24}O$                                 | 81203-57-8            | 0,528       |
| 30   | 10.582                         | 5,8,11-Heptadecatriynoic acid, methyl ester                                  | C <sub>18</sub> H <sub>24</sub> O <sub>2</sub>  | 56554-57-5            | 2,309       |

**Tabela J.2** - Compostos identificados no espectro de massas do destilado, faixa do querosene, do OPP obtido via craqueamento térmico, em escala piloto, em T=500°C no tempo de 75 minutos de processo.

**Tabela J.3** - Compostos identificados no espectro de massas do destilado, faixa do querosene, do OPP obtido via craqueamento térmico, em escala piloto, em T= $500^{\circ}$ C no tempo de 85 minutos de processo.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                                           | Fórmula<br>molecular                           | CAS<br>Number     | Área (%) |
|------|--------------------------------|--------------------------------------------------------------------|------------------------------------------------|-------------------|----------|
| 1    | 7.716                          | 2,4-Dimethylstyrene                                                | C <sub>10</sub> H <sub>12</sub>                | 2234-20-0         | 0,744    |
| 2    | 7.887                          | Tetracyclo[5.3.0.0<2,6>.0<3,10>]deca-4,8-diene                     | $C_{10}H_{10}$                                 | 34324-40-8        | 0,644    |
| 3    | 8.265                          | Benzene, 2-ethenyl-1,3,5-trimethyl-                                | $C_{11}H_{14}$                                 | 769-25-5          | 1,384    |
| 4    | 8.339                          | Hydrocinnamic acid, o-[(1,2,3,4-tetrahydro-2-<br>naphthyl)methyl]- | C <sub>20</sub> H <sub>22</sub> O <sub>2</sub> | 23804-21-9        | 0,508    |
| 5    | 8.388                          | 1H-Indene, 2,3-dihydro-1,2-dimethyl-                               | $C_{11}H_{14}$                                 | 17057-82-8        | 6,469    |
| 6    | 8.889                          | Methyl 5,7-hexadecadiynoate                                        | $C_{17}H_{26}O_2$                              | <u>ID#:</u> 60889 | 0,805    |
| 7    | 8.991                          | 10-Methoxytricyclo[4.2.1.1(2,5)]deca-3,7-dien-9-ol                 | $C_{11}H_{14}O_2$                              | 70220-91-6        | 1,243    |

| 8  | 9.068  | Benzene, (1,3-dimethyl-2-butenyl)-                                                     | C <sub>12</sub> H <sub>16</sub>                 | 50704-01-3                 | 1,445 |
|----|--------|----------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------|-------|
| 9  | 9.249  | Benzene, 2-ethenyl-1,3,5-trimethyl-                                                    | $C_{11}H_{14}$                                  | 769-25-5                   | 1,645 |
| 10 | 9.385  | Dec-5-ene-3,7-diyne, 2,9-dimethyl-                                                     | $C_{12}H_{16}$                                  | <u>ID#:</u><br>149611      | 1,446 |
| 11 | 9.439  | 1,3,5-Trimethyl-2-(2-nitrovinyl)benzene                                                | C <sub>11</sub> H <sub>13</sub> NO <sub>2</sub> | <u>ID#:</u><br>132481      | 2,371 |
| 12 | 9.543  | 9-Methyltricyclo[4.2.1.1(2,5)]deca-3,7-diene-9,10-<br>diol                             | $\mathrm{C}_{11}\mathrm{H}_{14}\mathrm{O}_2$    | <u>CAS#:</u><br>78323-73-6 | 1,475 |
| 13 | 9.613  | Dec-5-ene-3,7-diyne, 2,9-dimethyl-                                                     | C <sub>12</sub> H <sub>16</sub>                 | <u>ID#:</u><br>149611      | 3,108 |
| 14 | 9.683  | Falcarinol                                                                             | C <sub>17</sub> H <sub>24</sub> O               | 21852-80-2                 | 1,276 |
| 15 | 9.724  | 1H-Indene, 2,3-dihydro-1,2-dimethyl-                                                   | $C_{11}H_{14}$                                  | 17057-82-8                 | 1,647 |
| 16 | 9.786  | (S,Z)-Heptadeca-1,9-dien-4,6-diyn-3-ol                                                 | C <sub>17</sub> H <sub>24</sub> O               | 81203-57-8                 | 0,966 |
| 17 | 9.847  | Benzene, 1-(2-butenyl)-2,3-dimethyl-                                                   | C <sub>12</sub> H <sub>16</sub>                 | 54340-85-1                 | 1,896 |
| 18 | 10.015 | Falcarinol                                                                             | C <sub>17</sub> H <sub>24</sub> O               | 21852-80-2                 | 2,279 |
| 19 | 10.087 | Benzocycloheptatriene                                                                  | $C_{11}H_{10}$                                  | 264-09-5                   | 6,703 |
| 20 | 10.249 | Falcarinol                                                                             | C <sub>17</sub> H <sub>24</sub> O               | 21852-80-2                 | 1,385 |
| 21 | 10.299 | Benzocycloheptatriene                                                                  | $C_{11}H_{10}$                                  | 264-09-5                   | 5,054 |
| 22 | 10.364 | 1-Phthalanol, 1,3,3-trimethyl-                                                         | $C_{11}H_{14}O_2$                               | 1521-94-4                  | 5,899 |
| 23 | 10.558 | Falcarinol                                                                             | C <sub>17</sub> H <sub>24</sub> O               | 21852-80-2                 | 2,067 |
| 24 | 10.656 | Falcarinol                                                                             | C <sub>17</sub> H <sub>24</sub> O               | 21852-80-2                 | 2,855 |
| 25 | 10.878 | Falcarinol                                                                             | C <sub>17</sub> H <sub>24</sub> O               | 21852-80-2                 | 2,444 |
| 26 | 10.947 | 4,4-Dimethyl-3-(3-methylbut-3-enylidene)-2-<br>methylenebicyclo[4.1.0]heptane          | $\mathrm{C}_{15}\mathrm{H}_{22}$                | 79718-83-5                 | 2,373 |
| 27 | 11.030 | Verrucarol                                                                             | C <sub>15</sub> H <sub>22</sub> O <sub>4</sub>  | 2198-92-7                  | 2,528 |
| 28 | 11.154 | (1-Methylpenta-1,3-dienyl)benzene                                                      | $\mathrm{C}_{12}\mathrm{H}_{14}$                | 116669-49-<br>9            | 3,813 |
| 29 | 11.241 | Oct-3-ene-1,5-diyne, 3-t-butyl-7,7-dimethyl-                                           | $C_{14}H_{20}$                                  | <u>ID#:</u> 3102           | 3,644 |
| 30 | 11.369 | 2,9-Heptadecadiene-4,6-diyn-8-ol, (Z,E)-                                               | $C_{17}H_{24}O$                                 | 50816-77-8                 | 2,538 |
| 31 | 11.554 | 5,8,11-Eicosatriynoic acid, methyl ester                                               | C <sub>21</sub> H <sub>30</sub> O <sub>2</sub>  | <u>ID#:</u><br>113705      | 5,938 |
| 32 | 11.664 | 2,9-Heptadecadiene-4,6-diyn-8-ol, (Z,E)-                                               | C <sub>17</sub> H <sub>24</sub> O               | 50816-77-8                 | 1,090 |
| 33 | 11.782 | 5,8,11-Eicosatriynoic acid, methyl ester                                               | C <sub>21</sub> H <sub>30</sub> O <sub>2</sub>  | <u>ID#:</u><br>113705      | 2,934 |
| 34 | 11.849 | 5,8,11-Heptadecatriynoic acid, methyl ester                                            | C <sub>17</sub> H <sub>24</sub> O               | 50816-77-8                 | 1,646 |
| 35 | 11.907 | 5,8,11-Eicosatriynoic acid, methyl ester                                               | $C_{21}H_{30}O_2$                               | <u>ID#:</u><br>113705      | 2,891 |
| 36 | 12.008 | Benzene, 2,5-cyclohexadien-1-yl-                                                       | $C_{12}H_{12}$                                  | 4794-05-2                  | 4,439 |
| 37 | 12.253 | Bicyclo[4.1.0]heptan-2-ol, 1β-(3-methyl-1,3-<br>butadienyl)-2α,6β-dimethyl-3β-acetoxy- | C <sub>16</sub> H <sub>24</sub> O <sub>3</sub>  | <u>ID#:</u> 10916          | 3,413 |
| 38 | 12.454 | 1-Naphthalenol, 1,2,3,4-tetrahydro-2,5,8-trimethyl-                                    | C <sub>13</sub> H <sub>18</sub> O               | 55591-08-7                 | 1,965 |
| 39 | 12.637 | Tetradecane, 2,6,10-trimethyl-                                                         | C <sub>17</sub> H <sub>36</sub>                 | 14905-56-7                 | 2,025 |
| 40 | 12.994 | 4,14-Retro-retinol                                                                     | C <sub>20</sub> H <sub>30</sub> O               | 16729-22-9                 | 1,005 |

**Tabela J.4** - Compostos identificados no espectro de massas do destilado, faixa do querosene, do OPP obtido via craqueamento térmico, em escala piloto, em T=500°C no tempo de 95 minutos de processo.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                                                     | Fórmula<br>molecular                            | CAS<br>Number    | Área<br>(%) |
|------|--------------------------------|------------------------------------------------------------------------------|-------------------------------------------------|------------------|-------------|
| 1    | 4.679                          | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-,<br>acetate                      | C <sub>12</sub> H <sub>20</sub> O <sub>2</sub>  | 10198-23-9       | 0,418       |
| 2    | 4.800                          | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-α-<br>methylene-                 | $C_{10}H_{14}O_2$                               | 5951-57-5        | 0,910       |
| 3    | 4.833                          | Benzene, 1-ethyl-3-methyl-                                                   | C9H12                                           | 620-14-4         | 0,718       |
| 4    | 4.869                          | Benzene, 1-ethyl-3-methyl-                                                   | C9H12                                           | 620-14-4         | 1,519       |
| 5    | 5.040                          | 3-Cyclohexen-1-carboxaldehyde, 3,4-dimethyl-                                 | C9H14O                                          | <u>ID#:</u> 8404 | 0,880       |
| 6    | 5.244                          | Benzene, 1,2,3-trimethyl-                                                    | C9H12                                           | 526-73-8         | 1,432       |
| 7    | 5.569                          | Bicyclo[3.1.1]hept-2-en-6-ol, 2,7,7-trimethyl-,<br>acetate, [1S-(1α,5α,6β)]- | $C_{12}H_{18}O_2$                               | 50764-55-1       | 0,801       |
| 8    | 5.631                          | Benzene, 1-methyl-3-(1-methylethyl)-                                         | C <sub>10</sub> H <sub>14</sub>                 | 535-77-3         | 20,645      |
| 9    | 5.705                          | D-Limonene                                                                   | C <sub>10</sub> H <sub>16</sub>                 | 5989-27-5        | 17,212      |
| 10   | 5.907                          | Phenprobamate                                                                | C <sub>10</sub> H <sub>13</sub> NO <sub>2</sub> | 673-31-4         | 1,477       |
| 11   | 6.028                          | Hexane, 1-chloro-5-methyl-                                                   | C7H15Cl                                         | 33240-56-1       | 0,459       |

| 12 | 6.092  | 3-Chloropropanoic acid, 3-phenyl-2-propenyl ester                            | C <sub>12</sub> H <sub>13</sub> ClO <sub>2</sub> | <u>ID#:</u> 93747     | 1,343 |
|----|--------|------------------------------------------------------------------------------|--------------------------------------------------|-----------------------|-------|
| 13 | 6.141  | Benzene, 1-methyl-3-(1-methylethyl)-                                         | $C_{10}H_{14}$                                   | 535-77-3              | 5,264 |
| 14 | 6.469  | Bicyclo[3.1.1]hept-2-en-6-ol, 2,7,7-trimethyl-,<br>acetate, [1S-(1α,5α,6β)]- | $C_{12}H_{18}O_2$                                | 50764-55-1            | 0,412 |
| 15 | 6.511  | Benzene, 1-methyl-3-(1-methylethyl)-                                         | $C_{10}H_{14}$                                   | 535-77-3              | 1,624 |
| 16 | 6.604  | Hexane, 1-chloro-5-methyl-                                                   | C <sub>7</sub> H <sub>15</sub> Cl                | 33240-56-1            | 2,768 |
| 17 | 6.645  | 2,4-Dimethylstyrene                                                          | $C_{10}H_{12}$                                   | 2234-20-0             | 2,697 |
| 18 | 6.714  | Benzene, 1-methyl-4-(1-methylethenyl)-                                       | C <sub>10</sub> H <sub>12</sub>                  | 1195-32-0             | 5,427 |
| 19 | 6.824  | 2,4,6-Trimethylbenzyl alcohol                                                | C <sub>10</sub> H <sub>14</sub> O                | <u>ID#:</u><br>116527 | 2,713 |
| 20 | 6.980  | 7-Methoxymethyl-2,7-dimethylcyclohepta-1,3,5-<br>triene                      | C <sub>11</sub> H <sub>16</sub> O                | 73992-48-0            | 2,516 |
| 21 | 7.174  | Benzene, 1,2,4,5-tetramethyl-                                                | $C_{10}H_{14}$                                   | 95-93-2               | 2,476 |
| 22 | 7.483  | Benzaldehyde, 4-(1-methylethyl)-                                             | C <sub>10</sub> H <sub>12</sub> O                | 122-03-2              | 0,367 |
| 23 | 7.544  | 2,4-Dimethylstyrene                                                          | $C_{10}H_{12}$                                   | 2234-20-0             | 2,142 |
| 24 | 7.672  | 2,4-Dimethylstyrene                                                          | C <sub>10</sub> H <sub>12</sub>                  | 2234-20-0             | 2,976 |
| 25 | 7.718  | 4,7-Methano-1H-inden-1-ol, 3a,4,7,7a-tetrahydro-, acetate                    | $\mathrm{C}_{12}\mathrm{H}_{14}\mathrm{O}_{2}$   | 16327-40-5            | 3,641 |
| 26 | 7.833  | Tetracyclo[5.3.0.0<2,6>.0<3,10>]deca-4,8-diene                               | $C_{10}H_{10}$                                   | 34324-40-8            | 3,688 |
| 27 | 7.892  | Cyclobutane, 1,2-bis(1,3-butadienyl)-                                        | C <sub>12</sub> H <sub>16</sub>                  | 80344-53-2            | 2,439 |
| 28 | 8.170  | Hydrocinnamic acid, o-[(1,2,3,4-tetrahydro-2-<br>naphthyl)methyl]-           | C <sub>20</sub> H <sub>22</sub> O <sub>2</sub>   | 23804-21-9            | 0,922 |
| 29 | 8.273  | Benzene, 2-ethenyl-1,3,5-trimethyl-                                          | $C_{11}H_{14}$                                   | 769-25-5              | 2,828 |
| 30 | 8.415  | 1H-Indene, 2,3-dihydro-1,2-dimethyl-                                         | C <sub>11</sub> H <sub>14</sub>                  | 17057-82-8            | 5,100 |
| 31 | 8.535  | 2-Naphthalenol, 1,2-dihydro-, acetate                                        | $\mathrm{C}_{12}\mathrm{H}_{12}\mathrm{O}_2$     | 132316-80-<br>4       | 1,541 |
| 32 | 10.645 | 5,8,11-Eicosatriynoic acid, methyl ester                                     | $C_{21}H_{30}O_2$                                | <u>ID#:</u><br>113705 | 0,645 |

**Tabela J.5** - Compostos identificados no espectro de massas do destilado, faixa do querosene, do OPP obtido via craqueamento térmico, em escala piloto, em T= $500^{\circ}$ C no tempo de 105 minutos de processo.

| Pico | Tempo de<br>retenção | Composto                                                                     | Fórmula<br>molecular                            | CAS<br>Number         | Área<br>(%) |
|------|----------------------|------------------------------------------------------------------------------|-------------------------------------------------|-----------------------|-------------|
|      | (min.)               | •                                                                            |                                                 |                       | ~ /         |
| 1    | 3.554                | Benzene, 1,3-dimethyl-                                                       | $C_8H_{10}$                                     | 108-38-3              | 0,868       |
| 2    | 3.634                | p-Xylene                                                                     | C <sub>8</sub> H <sub>10</sub>                  | 106-42-3              | 3,217       |
| 3    | 3.916                | p-Xylene                                                                     | $C_8H_{10}$                                     | 106-42-3              | 0,716       |
| 4    | 4.679                | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, acetate                         | $C_{12}H_{20}O_2$                               | 10198-23-9            | 0,690       |
| 5    | 4.767                | Benzene, 1-ethyl-3-methyl-                                                   | C9H12                                           | 620-14-4              | 1,011       |
| 6    | 4.810                | Benzene, 1-ethyl-3-methyl-                                                   | C9H12                                           | 620-14-4              | 2,156       |
| 7    | 4.862                | Benzene, 1-ethyl-3-methyl-                                                   | C9H12                                           | 620-14-4              | 2,384       |
| 8    | 5.039                | 3-Cyclohexen-1-carboxaldehyde, 3,4-dimethyl-                                 | C9H14O                                          | <u>ID#:</u> 8404      | 0,830       |
| 9    | 5.244                | Benzene, 1,2,3-trimethyl-                                                    | C9H12                                           | 526-73-8              | 2,345       |
| 10   | 5.572                | Bicyclo[3.1.1]hept-2-en-6-ol, 2,7,7-trimethyl-,<br>acetate, [1S-(1α,5α,6β)]- | $C_{12}H_{18}O_2$                               | 50764-55-1            | 0,603       |
| 11   | 5.633                | Benzene, 1-methyl-3-(1-methylethyl)-                                         | $C_{10}H_{14}$                                  | 535-77-3              | 19,103      |
| 12   | 5.706                | D-Limonene                                                                   | C <sub>10</sub> H <sub>16</sub>                 | 5989-27-5             | 15,821      |
| 13   | 5.923                | Phenprobamate                                                                | C <sub>10</sub> H <sub>13</sub> NO <sub>2</sub> | 673-31-4              | 1,025       |
| 14   | 6.148                | 6,7-Dimethyl-3,5,8,8a-tetrahydro-1H-2-benzopyran                             | C <sub>11</sub> H <sub>16</sub> O               | 110028-10-<br>9       | 5,738       |
| 15   | 6.527                | p-Cymene                                                                     | $C_{10}H_{14}$                                  | 99-87-6               | 1,022       |
| 16   | 6.621                | Hexane, 1-chloro-5-methyl-                                                   | C7H15Cl                                         | 33240-56-1            | 1,694       |
| 17   | 6.654                | 1-Phenyl-1-butene                                                            | $C_{10}H_{12}$                                  | 824-90-8              | 2,155       |
| 18   | 6.736                | Benzene, 1-methyl-4-(1-methylethenyl)-                                       | $C_{10}H_{12}$                                  | 1195-32-0             | 4,558       |
| 19   | 6.826                | 2,4,6-Trimethylbenzyl alcohol                                                | C <sub>10</sub> H <sub>14</sub> O               | <u>ID#:</u><br>116527 | 2,299       |
| 20   | 6.987                | 7-Methoxymethyl-2,7-dimethylcyclohepta-1,3,5-<br>triene                      | C <sub>11</sub> H <sub>16</sub> O               | 73992-48-0            | 1,705       |
| 21   | 7.183                | Benzene, 1,2,4,5-tetramethyl-                                                | $C_{10}H_{14}$                                  | 95-93-2               | 2,068       |
| 22   | 7.560                | 2,4-Dimethylstyrene                                                          | C <sub>10</sub> H <sub>12</sub>                 | 2234-20-0             | 1,233       |
| 23   | 7.686                | 2,4-Dimethylstyrene                                                          | $C_{10}H_{12}$                                  | 2234-20-0             | 2,243       |

| 24 | 7.737  | 4,7-Methano-1H-inden-1-ol, 3a,4,7,7a-tetrahydro-,<br>acetate       | $C_{12}H_{14}O_2$                               | 16327-40-5            | 2,566 |
|----|--------|--------------------------------------------------------------------|-------------------------------------------------|-----------------------|-------|
| 25 | 7.845  | Tetracyclo[5.3.0.0<2,6>.0<3,10>]deca-4,8-diene                     | $C_{10}H_{10}$                                  | 34324-40-8            | 5,973 |
| 26 | 8.189  | Hydrocinnamic acid, o-[(1,2,3,4-tetrahydro-2-<br>naphthyl)methyl]- | C <sub>20</sub> H <sub>22</sub> O <sub>2</sub>  | 23804-21-9            | 0,675 |
| 27 | 8.283  | Benzene, 2-ethenyl-1,3,5-trimethyl-                                | $C_{11}H_{14}$                                  | 769-25-5              | 2,360 |
| 28 | 8.435  | 2-Naphthalenol, 1,2-dihydro-, acetate                              | $C_{12}H_{12}O_2$                               | 132316-80-<br>4       | 5,730 |
| 29 | 8.547  | 2-Naphthalenol, 1,2-dihydro-, acetate                              | $C_{12}H_{12}O_2$                               | 132316-80-<br>4       | 2,653 |
| 30 | 9.545  | 1,3,5-Trimethyl-2-(2-nitrovinyl)benzene                            | C <sub>11</sub> H <sub>13</sub> NO <sub>2</sub> | <u>ID#:</u><br>132481 | 1,523 |
| 31 | 9.793  | 1,3,5-Trimethyl-2-(2-nitrovinyl)benzene                            | C <sub>11</sub> H <sub>13</sub> NO <sub>2</sub> | <u>ID#:</u><br>132481 | 0,341 |
| 32 | 10.589 | Butanoic acid, 3-[(1-phenylethyl-2-propynyl)oxy]                   | C <sub>15</sub> H <sub>18</sub> O <sub>3</sub>  | <u>ID#:</u><br>129916 | 2,694 |

**Tabela J.6** - Compostos identificados no espectro de massas do destilado, faixa do querosene, do OPP obtido via craqueamento térmico, em escala piloto, em T= $500^{\circ}$ C no tempo de 115 minutos de processo.

| Pico | Tempo de<br>retenção | Composto                                                                     | Fórmula<br>molecular                              | CAS<br>Number    | Área<br>(%) |
|------|----------------------|------------------------------------------------------------------------------|---------------------------------------------------|------------------|-------------|
|      | (min.)               | Composito                                                                    | morecular                                         | rumber           | (70)        |
| 1    | 3.567                | Benzene, 1,3-dimethyl-                                                       | C <sub>8</sub> H <sub>10</sub>                    | 108-38-3         | 0,844       |
| 2    | 3.655                | p-Xylene                                                                     | C <sub>8</sub> H <sub>10</sub>                    | 106-42-3         | 2,883       |
| 3    | 3.913                | p-Xylene                                                                     | $C_8H_{10}$                                       | 106-42-3         | 1,088       |
| 4    | 4.256                | Benzene, (1-nitroethyl)-                                                     | C <sub>8</sub> H <sub>9</sub> NO <sub>2</sub>     | 7214-61-1        | 0,721       |
| 5    | 4.453                | Bicyclo[6.1.0]nonane, 9-(1-methylethylidene)-                                | C <sub>12</sub> H <sub>20</sub>                   | 56666-90-1       | 0,585       |
| 6    | 4.674                | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, acetate                         | C <sub>12</sub> H <sub>20</sub> O <sub>2</sub>    | 10198-23-9       | 1,688       |
| 7    | 4.725                | 2H-Indeno[1,2-b]oxirene, octahydro-,<br>(1aα,1bβ,5aα,6aα)-                   | C9H14O                                            | 55402-31-8       | 0,380       |
| 8    | 4.762                | Benzene, 1-ethyl-3-methyl-                                                   | C9H12                                             | 620-14-4         | 1,342       |
| 9    | 4.803                | Cyclopentaneacetaldehyde, 2-formyl-3-methyl-α-<br>methylene-                 | $C_{10}H_{14}O_{2}$                               | 5951-57-5        | 2,882       |
| 10   | 4.857                | Benzene, 1-ethyl-3-methyl-                                                   | C9H12                                             | 620-14-4         | 2,739       |
| 11   | 5.014                | 1,3-Cyclohexadiene, 1,2,6,6-tetramethyl-                                     | $C_{10}H_{16}$                                    | 514-96-5         | 1,172       |
| 12   | 5.036                | 3-Cyclohexen-1-carboxaldehyde, 3,4-dimethyl-                                 | C9H14O                                            | <u>ID#:</u> 8404 | 1,342       |
| 13   | 5.244                | Benzene, 1,2,3-trimethyl-                                                    | C <sub>9</sub> H <sub>12</sub>                    | 526-73-8         | 3,565       |
| 14   | 5.570                | Bicyclo[3.1.1]hept-2-en-6-ol, 2,7,7-trimethyl-,<br>acetate, [1S-(1α,5α,6β)]- | $\mathrm{C}_{12}\mathrm{H}_{18}\mathrm{O}_{2}$    | 50764-55-1       | 1,065       |
| 15   | 5.631                | Benzene, 1-methyl-3-(1-methylethyl)-                                         | $C_{10}H_{14}$                                    | 535-77-3         | 17,173      |
| 16   | 5.704                | D-Limonene                                                                   | $C_{10}H_{16}$                                    | 5989-27-5        | 25,783      |
| 17   | 5.917                | Phenprobamate                                                                | C <sub>10</sub> H <sub>13</sub> NO <sub>2</sub>   | 673-31-4         | 2,321       |
| 18   | 6.156                | 6,7-Dimethyl-3,5,8,8a-tetrahydro-1H-2-benzopyran                             | C <sub>11</sub> H <sub>16</sub> O                 | 110028-10-<br>9  | 6,269       |
| 19   | 6.530                | p-Cymene                                                                     | $C_{10}H_{14}$                                    | 99-87-6          | 1,242       |
| 20   | 6.615                | Hexane, 1-chloro-5-methyl-                                                   | C <sub>7</sub> H <sub>15</sub> Cl                 | 33240-56-1       | 1,844       |
| 21   | 6.654                | 1-Phenyl-1-butene                                                            | $C_{10}H_{12}$                                    | 824-90-8         | 3,880       |
| 22   | 6.988                | 7-Methoxymethyl-2,7-dimethylcyclohepta-1,3,5-<br>triene                      | C <sub>11</sub> H <sub>16</sub> O                 | 73992-48-0       | 2,418       |
| 23   | 7.193                | 6,7-Dimethyl-3,5,8,8a-tetrahydro-1H-2-benzopyran                             | с <sub>11</sub> н <sub>16</sub> о                 | 110028-10-<br>9  | 1,211       |
| 24   | 7.559                | 2,4-Dimethylstyrene                                                          | $C_{10}H_{12}$                                    | 2234-20-0        | 1,525       |
| 25   | 7.683                | 2,4-Dimethylstyrene                                                          | $C_{10}H_{12}$                                    | 2234-20-0        | 2,509       |
| 26   | 7.746                | Hydrocinnamic acid, o-[(1,2,3,4-tetrahydro-2-<br>naphthyl)methyl]-           | C <sub>20</sub> H <sub>22</sub> O <sub>2</sub>    | 23804-21-9       | 2,323       |
| 27   | 7.861                | 4,7-Methano-1H-inden-1-ol, 3a,4,7,7a-tetrahydro-, acetate                    | $\mathrm{C}_{12}\mathrm{H}_{14}\mathrm{O}_{2}$    | 16327-40-5       | 3,452       |
| 28   | 8.195                | Panaxydol                                                                    | $\mathrm{C}_{17}\mathrm{H}_{24}\mathrm{O}_{2}$    | 72800-72-7       | 0,566       |
| 29   | 8.282                | Benzene, 2-ethenyl-1,3,5-trimethyl-                                          | $C_{11}H_{14}$                                    | 769-25-5         | 2,507       |
| 30   | 8.409                | Pentamethylbenzenesulphonamide                                               | C <sub>11</sub> H <sub>17</sub> NO <sub>2</sub> S | 208173-25-<br>5  | 1,332       |
| 31   | 8.557                | Panaxydol                                                                    | C <sub>17</sub> H <sub>24</sub> O <sub>2</sub>    | 72800-72-7       | 1,137       |

| <b>32</b> 9.792 1,3,5-Trimethyl-2-(2-nitrovinyl)benzene C <sub>11</sub> H <sub>13</sub> NO <sub>2</sub> <u>ID#:</u> 0,213<br>132481 |    |       |                                         |                                                 |                       |       |
|-------------------------------------------------------------------------------------------------------------------------------------|----|-------|-----------------------------------------|-------------------------------------------------|-----------------------|-------|
|                                                                                                                                     | 32 | 9.792 | 1,3,5-Trimethyl-2-(2-nitrovinyl)benzene | C <sub>11</sub> H <sub>13</sub> NO <sub>2</sub> | <u>ID#:</u><br>132481 | 0,213 |

**Tabela J.7** - Compostos identificados no espectro de massas do destilado, faixa do querosene, do OPP obtido via craqueamento térmico, em escala piloto, em T=500°C após 115 minutos de processo.

| Pico | Tempo de           |                                                                                           | Fórmula                                           | CAS                        | Área (%) |
|------|--------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------|----------|
|      | retençao<br>(min.) | Composto                                                                                  | molecular                                         | Number                     |          |
| 1    | 4.604              | Camphene                                                                                  | C <sub>10</sub> H <sub>16</sub>                   | 79-92-5                    | 0,086    |
| 2    | 5.781              | Hexane, 1-chloro-5-methyl-                                                                | C7H15Cl                                           | 33240-56-1                 | 1,077    |
| 3    | 7.045              | 6-(p-Tolyl)-2-methyl-2-heptenol, trans-                                                   | C <sub>15</sub> H <sub>22</sub> O                 | 39599-18-3                 | 0,547    |
| 4    | 7.729              | 2,4-Dimethylstyrene                                                                       | C <sub>10</sub> H <sub>12</sub>                   | 2234-20-0                  | 0,487    |
| 5    | 7.944              | Hydrocinnamic acid, o-[(1,2,3,4-tetrahydro-2-<br>naphthyl)methyl]-                        | C <sub>20</sub> H <sub>22</sub> O <sub>2</sub>    | 23804-21-9                 | 0,825    |
| 6    | 8.210              | Panaxydol                                                                                 | $C_{17}H_{24}O_2$                                 | 72800-72-7                 | 0,420    |
| 7    | 8.291              | Benzene, 2-ethenyl-1,3,5-trimethyl-                                                       | $C_{11}H_{14}$                                    | 769-25-5                   | 1,409    |
| 8    | 8.409              | Pentamethylbenzenesulphonamide                                                            | C <sub>11</sub> H <sub>17</sub> NO <sub>2</sub> S | 208173-25-<br>5            | 1,660    |
| 9    | 8.556              | Panaxydol                                                                                 | $C_{17}H_{24}O_2$                                 | 72800-72-7                 | 1,259    |
| 10   | 8.793              | Panaxjapyne A                                                                             | C <sub>17</sub> H <sub>26</sub> O                 | 1242413-<br>82-6           | 0,451    |
| 11   | 8.904              | Bicyclo[3.1.1]hept-3-ene-spiro-2,4'-(1',3'-dioxane),<br>7,7-dimethyl-                     | C <sub>12</sub> H <sub>18</sub> O <sub>2</sub>    | <u>ID#:</u> 433            | 0,562    |
| 12   | 9.003              | 1,2,4-Metheno-1H-cyclobuta[cd]pentalene-3,5-diol,<br>octahydro-                           | C <sub>10</sub> H <sub>12</sub> O <sub>2</sub>    | 54211-08-4                 | 1,006    |
| 13   | 9.073              | 9-Methyltricyclo[4.2.1.1(2,5)]deca-3,7-diene-9,10-<br>diol                                | C <sub>11</sub> H <sub>14</sub> O <sub>2</sub>    | 78323-73-6                 | 1,364    |
| 14   | 9.214              | Methyl 4,6-tetradecadiynoate                                                              | C <sub>15</sub> H <sub>22</sub> O <sub>2</sub>    | <u>ID#:</u> 60961          | 0,440    |
| 15   | 9.262              | Falcarinol                                                                                | с <sub>17</sub> н <sub>24</sub> о                 | 21852-80-2                 | 1,091    |
| 16   | 9.357              | 10,12-Tricosadiynoic acid, methyl ester                                                   | $C_{24}H_{40}O_2$                                 | <u>ID#:</u> 61623          | 0,725    |
| 17   | 9.469              | 1,3,5-Trimethyl-2-(2-nitrovinyl)benzene                                                   | C <sub>11</sub> H <sub>13</sub> NO <sub>2</sub>   | <u>ID#:</u><br>132481      | 2,955    |
| 18   | 9.542              | 9-Methyltricyclo[4.2.1.1(2,5)]deca-3,7-diene-9,10-<br>diol                                | C <sub>11</sub> H <sub>14</sub> O <sub>2</sub>    | <u>CAS#:</u><br>78323-73-6 | 0,611    |
| 19   | 9.622              | Dec-5-ene-3,7-diyne, 2,9-dimethyl-                                                        | C <sub>12</sub> H <sub>16</sub>                   | <u>ID#:</u><br>149611      | 2,309    |
| 20   | 9.691              | 5,8,11-Eicosatriynoic acid, methyl ester                                                  | C <sub>21</sub> H <sub>30</sub> O <sub>2</sub>    | <u>ID#:</u><br>113705      | 1,278    |
| 21   | 9.736              | 9-Methyltricyclo[4.2.1.1(2,5)]deca-3,7-diene-9,10-<br>diol                                | C <sub>11</sub> H <sub>14</sub> O <sub>2</sub>    | 78323-73-6                 | 1,433    |
| 22   | 9.792              | Falcarinol                                                                                | C <sub>17</sub> H <sub>24</sub> O                 | 21852-80-2                 | 1,227    |
| 23   | 9.854              | Dec-5-ene-3,7-diyne, 2,9-dimethyl-                                                        | C <sub>12</sub> H <sub>16</sub>                   | <u>ID#:</u><br>149611      | 1,535    |
| 24   | 10.029             | Falcarinol                                                                                | C <sub>17</sub> H <sub>24</sub> O                 | 21852-80-2                 | 1,822    |
| 25   | 10.097             | Bicyclo[4.4.0]dec-2-ene-4-ol, 2-methyl-9-(prop-1-<br>en-3-ol-2-yl)-                       | C <sub>15</sub> H <sub>24</sub> O <sub>2</sub>    | <u>ID#:</u> 3985           | 1,109    |
| 26   | 10.172             | Falcarinol                                                                                | C <sub>17</sub> H <sub>24</sub> O                 | 21852-80-2                 | 0,982    |
| 27   | 10.211             | Oct-3-ene-1,5-diyne, 3-t-butyl-7,7-dimethyl-                                              | $C_{14}H_{20}$                                    | <u>ID#:</u> 3102           | 0,922    |
| 28   | 10.271             | Falcarinol                                                                                | C <sub>17</sub> H <sub>24</sub> O                 | 21852-80-2                 | 1,564    |
| 29   | 10.375             | 9-Methyltricyclo[4.2.1.1(2,5)]deca-3,7-diene-9,10-<br>diol                                | C <sub>11</sub> H <sub>14</sub> O <sub>2</sub>    | 78323-73-6                 | 4,382    |
| 30   | 10.470             | Falcarinol                                                                                | C <sub>17</sub> H <sub>24</sub> O                 | 21852-80-2                 | 1,187    |
| 31   | 10.562             | Falcarinol                                                                                | C <sub>17</sub> H <sub>24</sub> O                 | 21852-80-2                 | 1,704    |
| 32   | 10.626             | 2,5-Octadecadiynoic acid, methyl ester                                                    | C <sub>19</sub> H <sub>30</sub> O <sub>2</sub>    | 57156-91-9                 | 0,639    |
| 33   | 10.669             | Falcarinol                                                                                | C <sub>17</sub> H <sub>24</sub> O                 | 21852-80-2                 | 1,588    |
| 34   | 10.883             | Falcarinol                                                                                | C <sub>17</sub> H <sub>24</sub> O                 | 21852-80-2                 | 1,692    |
| 35   | 10.966             | Bicyclo[4.4.0]dec-2-ene-4-ol, 2-methyl-9-(prop-1-<br>en-3-ol-2-yl)-                       | C <sub>15</sub> H <sub>24</sub> O <sub>2</sub>    | <u>ID#:</u> 3985           | 2,104    |
| 36   | 11.029             | Verrucarol                                                                                | C <sub>15</sub> H <sub>22</sub> O <sub>4</sub>    | 2198-92-7                  | 2,653    |
| 37   | 11.163             | Murolan-3,9(11)-diene-10-peroxy                                                           | C <sub>15</sub> H <sub>24</sub> O <sub>2</sub>    | <u>ID#:</u> 6413           | 3,443    |
| 38   | 11.243             | Oct-3-ene-1,5-diyne, 3-t-butyl-7,7-dimethyl-                                              | C <sub>14</sub> H <sub>20</sub>                   | <u>ID#:</u> 3102           | 3,736    |
| 39   | 11.452             | 7-(1,3-Dimethylbuta-1,3-dienyl)-1,6,6-trimethyl-<br>3,8-dioxatricyclo[5,1,0,0(2,4)loctane | C <sub>15</sub> H <sub>22</sub> O <sub>2</sub>    | ID#: 11050                 | 1,194    |

| 40 | 11.557 | 5,8,11-Eicosatriynoic acid, methyl ester                                                          | C <sub>21</sub> H <sub>30</sub> O <sub>2</sub> | <u>ID#:</u><br>113705 | 3,390 |
|----|--------|---------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------|-------|
| 41 | 11.601 | 5,8,11-Heptadecatriynoic acid, methyl ester                                                       | $C_{18}H_{24}O_2$                              | 56554-57-5            | 1,297 |
| 42 | 11.665 | Spiro[tricyclo[4.4.0.0(5,9)]decane-10,2'-oxirane], 1-<br>methyl-4-isopropyl-7,8-dihydroxy-, (8S)- | $\mathrm{C}_{15}\mathrm{H}_{24}\mathrm{O}_{3}$ | <u>ID#:</u><br>161502 | 0,987 |
| 43 | 11.700 | Phenacetic acid, 2,3,5,α,α-pentamethyl-6-carboxy-                                                 | $C_{14}H_{18}O_4$                              | 84944-43-4            | 1,917 |
| 44 | 11.785 | Falcarinol                                                                                        | C <sub>17</sub> H <sub>24</sub> O              | 21852-80-2            | 2,415 |
| 45 | 11.849 | 5,8,11-Heptadecatriynoic acid, methyl ester                                                       | $C_{18}H_{24}O_2$                              | 56554-57-5            | 1,800 |
| 46 | 11.921 | 5,8,11-Heptadecatriynoic acid, methyl ester                                                       | C <sub>18</sub> H <sub>24</sub> O <sub>2</sub> | 56554-57-5            | 2,341 |
| 47 | 12.004 | Bicyclo[4.1.0]heptan-2-ol, 1β-(3-methyl-1,3-<br>butadienyl)-2α,6β-dimethyl-3β-acetoxy-            | C <sub>16</sub> H <sub>24</sub> O <sub>3</sub> | <u>ID#:</u> 10916     | 7,110 |
| 48 | 12.251 | Bicyclo[4.1.0]heptan-2-ol, 1β-(3-methyl-1,3-<br>butadienyl)-2α,6β-dimethyl-3β-acetoxy-            | C <sub>16</sub> H <sub>24</sub> O <sub>3</sub> | <u>ID#:</u> 10916     | 2,623 |
| 49 | 12.361 | Bicyclo[4.4.0]dec-2-ene-4-ol, 2-methyl-9-(prop-1-<br>en-3-ol-2-yl)-                               | $\mathrm{C}_{15}\mathrm{H}_{24}\mathrm{O}_{2}$ | <u>ID#:</u> 3985      | 1,178 |
| 50 | 12.548 | Isolongifolene, 4,5,9,10-dehydro-                                                                 | $C_{15}H_{20}$                                 | 156747-45-<br>4       | 4,144 |
| 51 | 12.629 | Tetradecane, 2,6,10-trimethyl-                                                                    | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7            | 4,284 |
| 52 | 12.781 | 4,4-Dimethyl-3-(3-methylbut-3-enylidene)-2-<br>methylenebicyclo[4.1.0]heptane                     | $C_{15}H_{22}$                                 | 79718-83-5            | 0,638 |
| 53 | 12.818 | 4,14-Retro-retinol                                                                                | C <sub>20</sub> H <sub>30</sub> O              | 16729-22-9            | 0,959 |
| 54 | 12.931 | 5,8,11,14-Eicosatetraynoic acid                                                                   | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub> | 1191-85-1             | 1,001 |
| 55 | 12.983 | 5,8,11-Heptadecatriynoic acid, methyl ester                                                       | $C_{18}H_{24}O_{2}$                            | 56554-57-5            | 1,717 |
| 56 | 13.170 | 5,8,11-Heptadecatriynoic acid, methyl ester                                                       | $C_{18}H_{24}O_{2}$                            | 56554-57-5            | 2,027 |
| 57 | 13.489 | 3-(2-Methyl-propenyl)-1H-indene                                                                   | C <sub>13</sub> H <sub>14</sub>                | <u>ID#:</u><br>145358 | 1,735 |
| 58 | 13.906 | 5,8,11-Eicosatriynoic acid, methyl ester                                                          | $C_{21}H_{30}O_2$                              | <u>ID#:</u><br>113705 | 0,259 |
| 59 | 13.965 | Geranyl isovalerate                                                                               | $C_{15}H_{26}O_2$                              | 109-20-6              | 0,675 |
| 60 | 14.602 | 5,8,11,14-Eicosatetraynoic acid                                                                   | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub> | 1191-85-1             | 0,930 |
| 61 | 15.226 | Tetradecane, 2,6,10-trimethyl-                                                                    | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7            | 1,097 |

## ANEXO K



**Figura K.1** – Cromatogramas dos destilados dos OPP's, na faixa do diesel leve, obtidos durante o processo, via craqueamento térmico em escala piloto, em T= $500^{\circ}$ C.

**Tabela K.1** - Compostos identificados no espectro de massas do destilado, faixa do diesel leve, do OPP obtido via craqueamento térmico, em escala piloto, em T=500°C no tempo de 55 minutos de processo.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                                              | Fórmula<br>molecular                           | CAS<br>Number         | Área(%) |
|------|--------------------------------|-----------------------------------------------------------------------|------------------------------------------------|-----------------------|---------|
| 1    | 8.387                          | Hydrocinnamic acid, o-[(1,2,3,4-tetrahydro-2-<br>naphthyl)methyl]-    | C <sub>20</sub> H <sub>22</sub> O <sub>2</sub> | 23804-21-9            | 0,828   |
| 2    | 8.482                          | Hydrocinnamic acid, o-[(1,2,3,4-tetrahydro-2-<br>naphthyl)methyl]-    | $C_{20}H_{22}O_2$                              | 23804-21-9            | 0,972   |
| 3    | 9.507                          | Bicyclo[3.1.1]hept-3-ene-spiro-2,4'-(1',3'-dioxane),<br>7,7-dimethyl- | $C_{12}H_{18}O_2$                              | <u>ID#:</u> 433       | 0,899   |
| 4    | 9.671                          | (S,Z)-Heptadeca-1,9-dien-4,6-diyn-3-ol                                | C <sub>17</sub> H <sub>24</sub> O              | 81203-57-8            | 0,891   |
| 5    | 9.788                          | (S,Z)-Heptadeca-1,9-dien-4,6-diyn-3-ol                                | C <sub>17</sub> H <sub>24</sub> O              | 81203-57-8            | 1,950   |
| 6    | 9.826                          | 9-Methyltricyclo[4.2.1.1(2,5)]deca-3,7-diene-9,10-<br>diol            | $C_{11}H_{14}O_2$                              | 78323-73-6            | 0,898   |
| 7    | 10.335                         | Falcarinol                                                            | C <sub>17</sub> H <sub>24</sub> O              | 21852-80-2            | 0,427   |
| 8    | 10.433                         | Falcarinol                                                            | C <sub>17</sub> H <sub>24</sub> O              | 21852-80-2            | 3,289   |
| 9    | 10.581                         | Falcarinol                                                            | C <sub>17</sub> H <sub>24</sub> O              | 21852-80-2            | 0,443   |
| 10   | 10.998                         | Falcarinol                                                            | C <sub>17</sub> H <sub>24</sub> O              | 21852-80-2            | 0,575   |
| 11   | 11.052                         | Falcarinol                                                            | C <sub>17</sub> H <sub>24</sub> O              | 21852-80-2            | 1,077   |
| 12   | 11.265                         | 5,8,11-Heptadecatriynoic acid, methyl ester                           | $C_{18}H_{24}O_{2}$                            | 56554-57-5            | 4,735   |
| 13   | 11.388                         | Bicyclo[4.4.0]dec-2-ene-4-ol, 2-methyl-9-(prop-1-<br>en-3-ol-2-yl)-   | C <sub>15</sub> H <sub>24</sub> O <sub>2</sub> | <u>ID#:</u> 3985      | 1,127   |
| 14   | 11.569                         | 5,8,11-Eicosatriynoic acid, methyl ester                              | $C_{21}H_{30}O_2$                              | <u>ID#:</u><br>113705 | 1,268   |
| 15   | 11.683                         | 5,8,11-Eicosatriynoic acid, methyl ester                              | $C_{21}H_{30}O_2$                              | <u>ID#:</u><br>113705 | 2,516   |
| 16   | 11.791                         | 2,9-Heptadecadiene-4,6-diyn-8-ol, (Z,E)-                              | C <sub>17</sub> H <sub>24</sub> O              | 50816-77-8            | 1,854   |
| 17   | 11.889                         | 5,8,11-Heptadecatriynoic acid, methyl ester                           | $\mathrm{C}_{18}\mathrm{H}_{24}\mathrm{O}_{2}$ | 56554-57-5            | 2,404   |
| 18   | 11.975                         | 5,8,11-Heptadecatriynoic acid, methyl ester                           | $C_{18}H_{24}O_2$                              | 56554-57-5            | 2,494   |

| 19 | 12.057 | 5,8,11-Heptadecatriynoic acid, methyl ester                                      | C <sub>18</sub> H <sub>24</sub> O <sub>2</sub>  | 56554-57-5            | 3,959 |
|----|--------|----------------------------------------------------------------------------------|-------------------------------------------------|-----------------------|-------|
| 20 | 12.132 | 5,8,11-Heptadecatriynoic acid, methyl ester                                      | C <sub>18</sub> H <sub>24</sub> O <sub>2</sub>  | 56554-57-5            | 2,780 |
| 21 | 12.261 | 5,8,11-Heptadecatriynoic acid, methyl ester                                      | $C_{18}H_{24}O_{2}$                             | 56554-57-5            | 2,967 |
| 22 | 12.468 | 1-Naphthalenol, 1,2,3,4-tetrahydro-2,5,8-trimethyl-                              | C <sub>13</sub> H <sub>18</sub> O               | 55591-08-7            | 3,261 |
| 23 | 12.555 | 5,8,11-Heptadecatriynoic acid, methyl ester                                      | C <sub>18</sub> H <sub>24</sub> O <sub>2</sub>  | 56554-57-5            | 1,637 |
| 24 | 12.637 | Tetradecane, 2,6,10-trimethyl-                                                   | C <sub>17</sub> H <sub>36</sub>                 | 14905-56-7            | 4,845 |
| 25 | 12.822 | 4,14-Retro-retinol                                                               | C <sub>20</sub> H <sub>30</sub> O               | 16729-22-9            | 1,228 |
| 26 | 12.945 | 5,8,11,14-Eicosatetraynoic acid                                                  | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub>  | 1191-85-1             | 1,052 |
| 27 | 12.983 | 4,14-Retro-retinol                                                               | C <sub>20</sub> H <sub>30</sub> O               | 16729-22-9            | 2,009 |
| 28 | 13.190 | Naphthalene, 1,4-dihydro-2,5,8-trimethyl-                                        | C <sub>13</sub> H <sub>16</sub>                 | 30316-19-9            | 1,744 |
| 29 | 13.489 | 3-(2-Methyl-propenyl)-1H-indene                                                  | C <sub>13</sub> H <sub>14</sub>                 | <u>ID#:</u><br>145358 | 2,188 |
| 30 | 13.902 | Bicyclo[4.4.0]dec-2-ene-4-ol, 2-methyl-9-(prop-1-<br>en-3-ol-2-yl)-              | $\mathrm{C}_{15}\mathrm{H}_{24}\mathrm{O}_2$    | <u>ID#:</u> 3985      | 1,342 |
| 31 | 13.956 | 5,8,11-Eicosatriynoic acid, methyl ester                                         | C <sub>21</sub> H <sub>30</sub> O <sub>2</sub>  | <u>ID#:</u><br>113705 | 2,425 |
| 32 | 14.107 | 1-(2-Nitro-1-phenylethyl)-2-<br>oxocyclopentanecarboxylic acid, methyl ester     | C <sub>15</sub> H <sub>17</sub> NO <sub>5</sub> | <u>ID#:</u><br>113686 | 1,482 |
| 33 | 14.437 | 5,8,11,14-Eicosatetraynoic acid                                                  | $C_{20}H_{24}O_{2}$                             | 1191-85-1             | 4,609 |
| 34 | 14.556 | 5,8,11,14-Eicosatetraynoic acid                                                  | $C_{20}H_{24}O_2$                               | 1191-85-1             | 4,140 |
| 35 | 14.663 | 5,8,11,14-Eicosatetraynoic acid                                                  | $C_{20}H_{24}O_{2}$                             | 1191-85-1             | 1,981 |
| 36 | 14.766 | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-<br>1,2,3,4,4a,9,10,10a-octahydro- | C <sub>15</sub> H <sub>17</sub> BrO             | <u>ID#:</u><br>170810 | 2,323 |
| 37 | 14.966 | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-<br>1,2,3,4,4a,9,10,10a-octahydro- | C <sub>15</sub> H <sub>17</sub> BrO             | <u>ID#:</u><br>170810 | 1,186 |
| 38 | 15.034 | Benzene, 1-(4'-pentyl[1,1'-bicyclohexyl]-4-yl)-4-<br>(4-propylcyclohexyl)-       | C <sub>32</sub> H <sub>52</sub>                 | <u>ID#:</u> 34996     | 2,297 |
| 39 | 15.209 | Tetradecane, 2,6,10-trimethyl-                                                   | C <sub>17</sub> H <sub>36</sub>                 | 14905-56-7            | 7,311 |
| 40 | 15.893 | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-<br>1,2,3,4,4a,9,10,10a-octahydro- | C <sub>15</sub> H <sub>17</sub> BrO             | <u>ID#:</u><br>170810 | 6,316 |
| 41 | 16.015 | 1,7-Dimethyl-3-phenyltricyclo[4.1.0.0(2,7)]hept-3-<br>ene                        | C <sub>15</sub> H <sub>16</sub>                 | <u>ID#:</u><br>168512 | 1,879 |
| 42 | 16.060 | 5,8,11,14-Eicosatetraynoic acid                                                  | $C_{20}H_{24}O_2$                               | 1191-85-1             | 1,543 |
| 43 | 16.092 | 5,8,11,14-Eicosatetraynoic acid                                                  | $C_{20}H_{24}O_2$                               | 1191-85-1             | 1,859 |
| 44 | 16.434 | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-<br>1,2,3,4,4a,9,10,10a-octahydro- | C <sub>15</sub> H <sub>17</sub> BrO             | <u>ID#:</u><br>170810 | 2,218 |
| 45 | 17.230 | 5,8,11,14-Eicosatetraynoic acid, methyl ester                                    | C <sub>21</sub> H <sub>26</sub> O <sub>2</sub>  | <u>ID#:</u><br>154486 | 0,351 |
| 46 | 17.391 | 1,1'-Biphenyl, 3,4-diethyl-                                                      | C <sub>16</sub> H <sub>18</sub>                 | 61141-66-0            | 0,422 |

| Tabela K.2 - Compostos identificados no espectro de massas do destilado, faixa do diesel |
|------------------------------------------------------------------------------------------|
| leve, do OPP obtido via craqueamento térmico, em escala piloto, em T=500°C no tempo      |
| de 65 minutos de processo.                                                               |

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                                           | Fórmula<br>molecular                           | CAS<br>Number         | Área<br>(%) |
|------|--------------------------------|--------------------------------------------------------------------|------------------------------------------------|-----------------------|-------------|
| 1    | 5.811                          | Hexane, 1-chloro-5-methyl-                                         | $C_7H_{15}Cl$                                  | 33240-56-1            | 0,418       |
| 2    | 7.753                          | 2,4-Dimethylstyrene                                                | $C_{10}H_{12}$                                 | 2234-20-0             | 0,224       |
| 3    | 8.301                          | 1H-Indene, 2,3-dihydro-1,2-dimethyl-                               | $C_{11}H_{14}$                                 | 17057-82-8            | 0,708       |
| 4    | 8.420                          | 1H-Indene, 2,3-dihydro-1,2-dimethyl-                               | C <sub>11</sub> H <sub>14</sub>                | 17057-82-8            | 0,731       |
| 5    | 8.571                          | Panaxydol                                                          | $C_{17}H_{24}O_2$                              | 72800-72-7            | 1,105       |
| 6    | 9.015                          | 9-Methyltricyclo[4.2.1.1(2,5)]deca-3,7-diene-9,10-<br>diol         | $\mathrm{C}_{11}\mathrm{H}_{14}\mathrm{O}_2$   | 78323-73-6            | 0,391       |
| 7    | 9.085                          | Benzene, (1,3-dimethyl-2-butenyl)-                                 | $C_{12}H_{16}$                                 | 50704-01-3            | 0,667       |
| 8    | 9.278                          | Hydrocinnamic acid, o-[(1,2,3,4-tetrahydro-2-<br>naphthyl)methyl]- | $C_{20}H_{22}O_2$                              | 23804-21-9            | 0,436       |
| 9    | 9.473                          | Hydrocinnamic acid, o-[(1,2,3,4-tetrahydro-2-<br>naphthyl)methyl]- | C <sub>20</sub> H <sub>22</sub> O <sub>2</sub> | 23804-21-9            | 1,573       |
| 10   | 9.550                          | Dec-5-ene-3,7-diyne, 2,9-dimethyl-                                 | C <sub>12</sub> H <sub>16</sub>                | <u>ID#:</u><br>149611 | 0,435       |
| 11   | 9.633                          | Dec-5-ene-3,7-diyne, 2,9-dimethyl-                                 | C <sub>12</sub> H <sub>16</sub>                | <u>ID#:</u><br>149611 | 1,451       |
| 12   | 9.703                          | (S,Z)-Heptadeca-1,9-dien-4,6-diyn-3-ol                             | C <sub>17</sub> H <sub>24</sub> O              | 81203-57-8            | 0,623       |
| 13   | 9.744                          | 1H-Indene, 2,3-dihydro-1,2-dimethyl-                               | $C_{11}H_{14}$                                 | 17057-82-8            | 0,898       |
| 14   | 9.797                          | Oct-3-ene-1,5-diyne, 3-t-butyl-7,7-dimethyl-                       | C <sub>14</sub> H <sub>20</sub>                | <u>ID#:</u> 3102      | 0,518       |

| 15 | 9.859   | Dec-5-ene-3,7-diyne, 2,9-dimethyl-                                                     | C <sub>12</sub> H <sub>16</sub>                 | <u>ID#:</u><br>149611 | 1,473 |
|----|---------|----------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------|-------|
| 16 | 10.039  | Falcarinol                                                                             | C17H24O                                         | 21852-80-2            | 0.962 |
| 17 | 10.099  | 5.7-Dodecadiyn-1.12-bis(carbamic acid                                                  | C24H40N2O6                                      | ID#:                  | 0.600 |
|    |         | butyloxymethyl ester)                                                                  | 24 40 2 0                                       | 113919                | .,    |
| 18 | 10.161  | Butanoic acid, 3-[(1-phenylethyl-2-propynyl)oxy]                                       | $C_{15}H_{18}O_{3}$                             | <u>ID#:</u><br>129916 | 1,603 |
| 19 | 10.269  | Falcarinol                                                                             | C <sub>17</sub> H <sub>24</sub> O               | 21852-80-2            | 1,266 |
| 20 | 10.374  | 1-Phthalanol, 1,3,3-trimethyl-                                                         | C <sub>11</sub> H <sub>14</sub> O <sub>2</sub>  | 1521-94-4             | 5,280 |
| 21 | 10.564  | Falcarinol                                                                             | C17H24O                                         | 21852-80-2            | 1,187 |
| 22 | 10.667  | Falcarinol                                                                             | C <sub>17</sub> H <sub>24</sub> O               | 21852-80-2            | 1.600 |
| 23 | 10.881  | Falcarinol                                                                             | C <sub>17</sub> H <sub>24</sub> O               | 21852-80-2            | 0,889 |
| 24 | 10.957  | Falcarinol                                                                             | C17H24                                          | 21852-80-2            | 1,590 |
| 25 | 11.034  | 2.9-Heptadecadiene-4.6-divn-8-ol. (Z.E)-                                               | C17H24O                                         | 50816-77-             | 1.852 |
| 26 | 11.167  | 1.3.5-Trimethyl-2-(2-nitroallyl)benzene                                                | C12H15NO2                                       | 80255-26-1            | 2.680 |
| 27 | 11.246  | Oct-3-ene-1.5-divne. 3-t-butyl-7.7-dimethyl-                                           | C14H20                                          | <b>ID#</b> : 3102     | 2,676 |
| 28 | 11.2.10 | 2 9-Hentadecadiene-4 6-divn-8-ol (Z.E)-                                                | C17H24O                                         | 50816-77-             | 1.955 |
| 29 | 11.578  | 5.8.11-Ficosatrivnoic acid methyl ester                                                | Ca1H20O2                                        | ID#·                  | 4 120 |
| 2) | 11.556  |                                                                                        | C_1113002                                       | 113705                | 0.015 |
| 30 | 11.003  | l-methyl-4-isopropyl-7,8-dihydroxy-, (8S)-                                             | С15Н24О3                                        | <u>10#:</u><br>161502 | 0,915 |
| 31 | 11.773  | 5,8,11-Eicosatriynoic acid, methyl ester                                               | C <sub>21</sub> H <sub>30</sub> O <sub>2</sub>  | <u>ID#:</u>           | 3,941 |
| 32 | 11 888  | 5.8.11-Ficosatrivnoic acid methyl ester                                                | CatHaoOa                                        | 113/05<br>ID#:        | 3 937 |
| 52 | 11.000  | 5,6,11-Licosatilynoic acid, incuryr ester                                              | 021113002                                       | 113705                | 5,757 |
| 33 | 12.004  | Cyclopentanecarboxylic acid, 4-methylene-2-<br>phenyl-, methyl ester, trans-           | С <sub>14</sub> н <sub>16</sub> О <sub>2</sub>  | /2047-98-4            | 4,915 |
| 34 | 12.090  | 5,8,11-Heptadecatriynoic acid, methyl ester                                            | $C_{18}H_{24}O_{2}$                             | 56554-57-5            | 1,151 |
| 35 | 12.191  | 5,8,11-Heptadecatriynoic acid, methyl ester                                            | $C_{18}H_{24}O_{2}$                             | 56554-57-5            | 1,532 |
| 36 | 12.253  | Bicyclo[4.1.0]heptan-2-ol, 1β-(3-methyl-1,3-<br>butadienyl)-2α,6β-dimethyl-3β-acetoxy- | C <sub>16</sub> H <sub>24</sub> O <sub>3</sub>  | <u>ID#:</u> 10916     | 2,676 |
| 37 | 12.353  | Bicyclo[4.4.0]dec-2-ene-4-ol, 2-methyl-9-(prop-1-<br>en-3-ol-2-yl)-                    | C <sub>15</sub> H <sub>24</sub> O <sub>2</sub>  | <u>ID#:</u> 3985      | 1,341 |
| 38 | 12.449  | 1-Naphthalenol, 1,2,3,4-tetrahydro-2,5,8-<br>trimethyl-                                | C <sub>13</sub> H <sub>18</sub> O               | 55591-08-7            | 3,287 |
| 39 | 12.544  | Murolan-3,9(11)-diene-10-peroxy                                                        | C15H24O2                                        | <b>ID#</b> : 6413     | 1,499 |
| 40 | 12.627  | Tetradecane, 2,6,10-trimethyl-                                                         | C17H36                                          | 14905-56-7            | 3,590 |
| 41 | 12.808  | 4,14-Retro-retinol                                                                     | C <sub>20</sub> H <sub>30</sub> O               | 16729-22-9            | 1,735 |
| 42 | 12.871  | 5,8,11,14-Eicosatetraynoic acid                                                        | C20H24O2                                        | 1191-85-1             | 1,228 |
| 43 | 12.914  | 5,8,11,14-Eicosatetraynoic acid                                                        | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub>  | 1191-85-1             | 1,458 |
| 44 | 12.971  | 4,14-Retro-retinol                                                                     | C <sub>20</sub> H <sub>30</sub> O               | 16729-22-9            | 1,397 |
| 45 | 13.124  | 5,8,11-Heptadecatriynoic acid, methyl ester                                            | C <sub>18</sub> H <sub>24</sub> O <sub>2</sub>  | 56554-57-5            | 1,040 |
| 46 | 13.147  | 5.8.11-Heptadecatrivnoic acid, methyl ester                                            | C18H24O2                                        | 56554-57-5            | 2,594 |
| 47 | 13.349  | 1H-Indole, 4-(3-methyl-2-butenyl)-                                                     | C13H15N                                         | 32962-25-7            | 1.663 |
| 48 | 13.447  | 3-(2-Methyl-propenyl)-1H-indene                                                        | C12H14                                          | ID#:                  | 3.639 |
|    | 101117  | e (2 meanifi propendi) mi meane                                                        | 013-14                                          | 145358                | 5,005 |
| 49 | 13.626  | 5,8,11-Heptadecatriynoic acid, methyl ester                                            | C <sub>18</sub> H <sub>24</sub> O <sub>2</sub>  | 56554-57-5            | 1,771 |
| 50 | 13.893  | 5,8,11-Heptadecatriynoic acid, methyl ester                                            | C <sub>18</sub> H <sub>24</sub> O <sub>2</sub>  | 56554-57-5            | 1,330 |
| 51 | 13.951  | cis-9,10-Epoxyoctadecanamide                                                           | C <sub>18</sub> H <sub>35</sub> NO <sub>2</sub> | 172995-07-<br>2       | 1,456 |
| 52 | 14.099  | 5,8,11-Heptadecatriynoic acid, methyl ester                                            | C <sub>18</sub> H <sub>24</sub> O <sub>2</sub>  | 56554-57-5            | 1,220 |
| 53 | 14.418  | 5,8,11,14-Eicosatetraynoic acid                                                        | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub>  | 1191-85-1             | 1,383 |
| 54 | 14.471  | 5,8,11,14-Eicosatetraynoic acid                                                        | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub>  | 1191-85-1             | 0,927 |
| 55 | 14.543  | 5,8,11,14-Eicosatetraynoic acid                                                        | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub>  | 1191-85-1             | 1,616 |
| 56 | 14.756  | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-<br>1.2.3.4.4a,9.10.10a-octahydro-       | C <sub>15</sub> H <sub>17</sub> BrO             | <u>ID#:</u><br>170810 | 0,932 |
| 57 | 14.958  | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-                                         | C <sub>15</sub> H <sub>17</sub> BrO             | <u>ID#:</u><br>170810 | 0,370 |
| 58 | 15.028  | 4a,10a-Methanophenanthren-9 $\beta$ -ol, 11-syn-bromo-                                 | C <sub>15</sub> H <sub>17</sub> BrO             | <u>ID#:</u><br>170810 | 0,428 |
| 59 | 15,208  | Tetradecane 2.6.10-trimethyl-                                                          | C17H26                                          | 14905-56-7            | 2,755 |
| 60 | 15 958  | 4a.10a-Methanophenanthren-98-ol 11-syn-bromo-                                          | $C_{15}H_{17}BrO$                               | ID#·                  | 0.918 |
|    | 10.750  | 1,2,3,4,4a,9,10,10a-octahydro-                                                         |                                                 | 170810                | 0,502 |
| 61 | 16.076  | 5,8,11,14-Eicosatetraynoic acid                                                        | С20Н24О2                                        | 1191-85-1             | 0,583 |
| 62 | 16.121  | 5,8,11,14-Eicosatetraynoic acid                                                        | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub>  | 1191-85-1             | 0,526 |
| 63 | 16.447  | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-                                         | C <sub>15</sub> H <sub>17</sub> BrO             | <u>1D#:</u><br>170810 | 0,339 |

| Pico | Tempo de |                                                                                                  | Fórmula                                         | CAS                   | Área  |
|------|----------|--------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------|-------|
|      | retenção | Composto                                                                                         | molecular                                       | Number                | (%)   |
|      | (min.)   |                                                                                                  | C II                                            | 7(0.05.5              | 0.040 |
| 1    | 8.370    | Benzene, 2-ethenyl-1,3,5-trimethyl-                                                              | С <sub>11</sub> н <sub>14</sub>                 | 769-25-5              | 0,242 |
| 2    | 8.455    | Benzene, 2-ethenyl-1,3,5-trimethyl-                                                              | С11Н14                                          | 769-25-5              | 0,299 |
| 3    | 8.627    | 2-Naphthalenol, 1,2-dihydro-, acetate                                                            | С <sub>12</sub> н <sub>12</sub> О <sub>2</sub>  | 132316-80-            | 0,175 |
| 4    | 9.313    | Bicyclo[3.1.1]hept-3-ene-spiro-2,4'-(1',3'-dioxane),                                             | $C_{12}H_{18}O_2$                               | <u>ID#:</u> 433       | 0,190 |
| 5    | 9.491    | 1,3,5-Trimethyl-2-(2-nitrovinyl)benzene                                                          | C <sub>11</sub> H <sub>13</sub> NO <sub>2</sub> | <u>ID#:</u><br>132481 | 1,006 |
| 6    | 9.555    | Dec-5-ene-3,7-diyne, 2,9-dimethyl-                                                               | C <sub>12</sub> H <sub>16</sub>                 | <u>ID#:</u><br>149611 | 0,336 |
| 7    | 9.655    | 1,3,5-Trimethyl-2-(2-nitrovinyl)benzene                                                          | C12H18O2                                        | ID#: 433              | 1,015 |
| 8    | 9.717    | (S,Z)-Heptadeca-1,9-dien-4,6-diyn-3-ol                                                           | C <sub>17</sub> H <sub>24</sub> O               | 81203-57-8            | 0,407 |
| 9    | 9.755    | 1,3,5-Trimethyl-2-(2-nitrovinyl)benzene                                                          | C <sub>12</sub> H <sub>18</sub> O <sub>2</sub>  | <u>ID#:</u> 433       | 0,694 |
| 10   | 9.870    | 9-Methyltricyclo[4.2.1.1(2,5)]deca-3,7-diene-9,10-                                               | C <sub>11</sub> H <sub>14</sub> O <sub>2</sub>  | 78323-73-6            | 0,611 |
| 11   | 10.045   | (S,Z)-Heptadeca-1,9-dien-4,6-diyn-3-ol                                                           | C <sub>17</sub> H <sub>24</sub> O               | 81203-57-8            | 0,676 |
| 12   | 10.120   | (S,Z)-Heptadeca-1,9-dien-4,6-diyn-3-ol                                                           | C <sub>17</sub> H <sub>24</sub> O               | 81203-57-8            | 0,588 |
| 13   | 10.219   | 5,8,11-Eicosatriynoic acid, methyl ester                                                         | C <sub>21</sub> H <sub>30</sub> O <sub>2</sub>  | <u>ID#:</u><br>113705 | 1,178 |
| 14   | 10.281   | Falcarinol                                                                                       | C <sub>17</sub> H <sub>24</sub> O               | 21852-80-2            | 1,033 |
| 15   | 10.380   | 1-Phthalanol, 1,3,3-trimethyl-                                                                   | C <sub>11</sub> H <sub>14</sub> O <sub>2</sub>  | 1521-94-4             | 4,428 |
| 16   | 10.573   | Falcarinol                                                                                       | C <sub>17</sub> H <sub>24</sub> O               | 21852-80-2            | 1,144 |
| 17   | 10.629   | Falcarinol                                                                                       | C <sub>17</sub> H <sub>24</sub> O               | 21852-80-2            | 0,450 |
| 18   | 10.674   | Falcarinol                                                                                       | C <sub>17</sub> H <sub>24</sub> O               | 21852-80-2            | 0,957 |
| 19   | 10.885   | Falcarinol                                                                                       | C <sub>17</sub> H <sub>24</sub> O               | 21852-80-2            | 0,720 |
| 20   | 10.972   | Oct-3-ene-1,5-diyne, 3-t-butyl-7,7-dimethyl-                                                     | C <sub>14</sub> H <sub>20</sub>                 | ID#: 3102             | 1,516 |
| 21   | 11.038   | 2,9-Heptadecadiene-4,6-diyn-8-ol, (Z,E)-                                                         | C <sub>17</sub> H <sub>24</sub> O               | 50816-77-             | 1,688 |
| 22   | 11.178   | 1,3,5-Trimethyl-2-(2-nitroallyl)benzene                                                          | C <sub>12</sub> H <sub>18</sub> O <sub>2</sub>  | <u>ID#:</u> 433       | 2,278 |
| 23   | 11.249   | Oct-3-ene-1,5-diyne, 3-t-butyl-7,7-dimethyl-                                                     | C <sub>14</sub> H <sub>20</sub>                 | <u>ID#:</u> 3102      | 2,795 |
| 24   | 11.450   | 2,9-Heptadecadiene-4,6-diyn-8-ol, (Z,E)-                                                         | C <sub>17</sub> H <sub>24</sub> O               | 50816-77-             | 1,141 |
| 25   | 11.562   | 5,8,11-Eicosatriynoic acid, methyl ester                                                         | C <sub>21</sub> H <sub>30</sub> O <sub>2</sub>  | <u>ID#:</u><br>113705 | 4,001 |
| 26   | 11.665   | Spiro[tricyclo[4.4.0.0(5,9)]decane-10,2'-oxirane],<br>1-methyl-4-isopropyl-7,8-dihydroxy-, (8S)- | $\mathrm{C}_{15}\mathrm{H}_{24}\mathrm{O}_{3}$  | <u>ID#:</u><br>161502 | 0,970 |
| 27   | 11.782   | 5,8,11-Eicosatriynoic acid, methyl ester                                                         | $C_{21}H_{30}O_2$                               | <u>ID#:</u><br>113705 | 3,578 |
| 28   | 11.850   | Tricyclo[6.4.0.0(3,7)]dodeca-1,9,11-triene                                                       | с <sub>12</sub> н <sub>14</sub>                 | ID#: 48305            | 1,456 |
| 29   | 11.903   | 5,8,11-Eicosatriynoic acid, methyl ester                                                         | $C_{21}H_{30}O_2$                               | <u>ID#:</u><br>113705 | 2,744 |
| 30   | 12.006   | Cyclopentanecarboxylic acid, 4-methylene-2-                                                      | $C_{14}H_{16}O_2$                               | 72047-98-4            | 4,805 |
| 31   | 12.095   | 5,8,11-Heptadecatriynoic acid, methyl ester                                                      | C <sub>18</sub> H <sub>24</sub> O <sub>2</sub>  | 56554-57-5            | 1,186 |
| 32   | 12.204   | 5,8,11-Eicosatriynoic acid, methyl ester                                                         | C <sub>21</sub> H <sub>30</sub> O <sub>2</sub>  | <u>ID#:</u><br>113705 | 1,469 |
| 33   | 12.255   | Bicyclo[4.1.0]heptan-2-ol, 1β-(3-methyl-1,3-<br>butadienyl)-2α 6β-dimethyl-3β-acetoxy-           | C <sub>13</sub> H <sub>18</sub> O               | 55591-08-7            | 3,128 |
| 34   | 12.452   | 1-Naphthalenol, 1,2,3,4-tetrahydro-2,5,8-trimethyl-                                              | C <sub>13</sub> H <sub>18</sub> O               | 55591-08-7            | 3,291 |
| 35   | 12.545   | Murolan-3,9(11)-diene-10-peroxy                                                                  | C <sub>15</sub> H <sub>24</sub> O <sub>2</sub>  | <u>ID#:</u> 6413      | 2,058 |
| 36   | 12.628   | Tetradecane, 2,6,10-trimethyl-                                                                   | C <sub>17</sub> H <sub>36</sub>                 | 14905-56-7            | 4,351 |
| 37   | 12.777   | Falcarinol                                                                                       | C <sub>17</sub> H <sub>24</sub> O               | 21852-80-2            | 0,775 |
| 38   | 12.812   | 4,14-Retro-retinol                                                                               | C <sub>20</sub> H <sub>30</sub> O               | 16729-22-9            | 1,165 |
| 39   | 12.878   | 5,8,11,14-Eicosatetraynoic acid                                                                  | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub>  | 1191-85-1             | 1,170 |
| 40   | 12.918   | 5,8,11,14-Eicosatetraynoic acid                                                                  | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub>  | 1191-85-1             | 1,683 |
| 41   | 12.972   | 4,14-Retro-retinol                                                                               | C <sub>20</sub> H <sub>30</sub> O               | 16729-22-9            | 2,875 |
| 42   | 13.146   | 5,8,11-Heptadecatriynoic acid, methyl ester                                                      | C <sub>18</sub> H <sub>24</sub> O <sub>2</sub>  | 56554-57-5            | 4,311 |
| 43   | 13.350   | 1H-Indole, 4-(3-methyl-2-butenyl)-                                                               | $C_{13}H_{15}N$                                 | 32962-25-7            | 2,180 |
| 44   | 13.446   | 3-(2-Methyl-propenyl)-1H-indene                                                                  | C <sub>13</sub> H <sub>14</sub>                 | <u>ID#:</u><br>145358 | 4,233 |
| 45   | 13.636   | 5.8.11-Heptadecatrivnoic acid, methyl ester                                                      | C18H24O2                                        | 56554-57-5            | 2,574 |

| 46 | 13.893 | 5,8,11-Heptadecatriynoic acid, methyl ester                                      | C <sub>18</sub> H <sub>24</sub> O <sub>2</sub>  | 56554-57-5            | 1,760 |
|----|--------|----------------------------------------------------------------------------------|-------------------------------------------------|-----------------------|-------|
| 47 | 13.954 | cis-9,10-Epoxyoctadecanamide                                                     | C <sub>18</sub> H <sub>35</sub> NO <sub>2</sub> | 172995-07-<br>2       | 1,589 |
| 48 | 14.101 | 5,8,11-Heptadecatriynoic acid, methyl ester                                      | C <sub>18</sub> H <sub>24</sub> O <sub>2</sub>  | 56554-57-5            | 1,839 |
| 49 | 14.415 | 5,8,11,14-Eicosatetraynoic acid                                                  | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub>  | 1191-85-1             | 2,157 |
| 50 | 14.470 | 5,8,11,14-Eicosatetraynoic acid                                                  | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub>  | 1191-85-1             | 1,005 |
| 51 | 14.541 | 5,8,11,14-Eicosatetraynoic acid                                                  | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub>  | 1191-85-1             | 2,357 |
| 52 | 14.758 | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-<br>1,2,3,4,4a,9,10,10a-octahydro- | C <sub>15</sub> H <sub>17</sub> BrO             | <u>ID#:</u><br>170810 | 1,731 |
| 53 | 14.965 | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-<br>1,2,3,4,4a,9,10,10a-octahydro- | C <sub>15</sub> H <sub>17</sub> BrO             | <u>ID#:</u><br>170810 | 0,850 |
| 54 | 15.031 | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-<br>1,2,3,4,4a,9,10,10a-octahydro- | C <sub>15</sub> H <sub>17</sub> BrO             | <u>ID#:</u><br>170810 | 0,718 |
| 55 | 15.209 | Tetradecane, 2,6,10-trimethyl-                                                   | C <sub>17</sub> H <sub>36</sub>                 | 14905-56-7            | 3,268 |
| 56 | 15.956 | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-<br>1,2,3,4,4a,9,10,10a-octahydro- | C <sub>15</sub> H <sub>17</sub> BrO             | <u>ID#:</u><br>170810 | 1,255 |
| 57 | 16.073 | 5,8,11,14-Eicosatetraynoic acid                                                  | $C_{20}H_{24}O_{2}$                             | 1191-85-1             | 0,869 |
| 58 | 16.124 | 5,8,11,14-Eicosatetraynoic acid                                                  | $C_{20}H_{24}O_2$                               | 1191-85-1             | 0,741 |
| 59 | 16.448 | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-<br>1,2,3,4,4a,9,10,10a-octahydro- | C <sub>15</sub> H <sub>17</sub> BrO             | <u>ID#:</u><br>170810 | 0,289 |

**Tabela K.4** - Compostos identificados no espectro de massas do destilado, faixa do diesel leve, do OPP obtido via craqueamento térmico, em escala piloto, em T=500°C no tempo de 85 minutos de processo.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                                                               | Fórmula<br>molecular                           | CAS<br>Number         | Area(%) |
|------|--------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------|-----------------------|---------|
| 1    | 11.087                         | Falcarinol                                                                             | C <sub>17</sub> H <sub>24</sub> O              | 21852-80-2            | 0,280   |
| 2    | 11.308                         | Bicyclo[4.4.0]dec-2-ene-4-ol, 2-methyl-9-(prop-1-<br>en-3-ol-2-yl)-                    | C <sub>15</sub> H <sub>24</sub> O <sub>2</sub> | <u>ID#:</u> 3985      | 0,754   |
| 3    | 11.408                         | Oct-3-ene-1,5-diyne, 3-t-butyl-7,7-dimethyl-                                           | $C_{14}H_{20}$                                 | <u>ID#:</u> 3102      | 0,482   |
| 4    | 11.593                         | 5,8,11-Eicosatriynoic acid, methyl ester                                               | $C_{21}H_{30}O_2$                              | <u>ID#:</u><br>113705 | 0,653   |
| 5    | 11.714                         | Oct-3-ene-1,5-diyne, 3-t-butyl-7,7-dimethyl-                                           | $C_{14}H_{20}$                                 | <u>ID#:</u> 3102      | 1,053   |
| 6    | 11.778                         | 5,8,11-Eicosatriynoic acid, methyl ester                                               | $C_{21}H_{30}O_2$                              | <u>ID#:</u><br>113705 | 0,831   |
| 7    | 11.893                         | 5,8,11-Eicosatriynoic acid, methyl ester                                               | C <sub>21</sub> H <sub>30</sub> O <sub>2</sub> | <u>ID#:</u><br>113705 | 1,057   |
| 8    | 11.941                         | 5,8,11-Eicosatriynoic acid, methyl ester                                               | $C_{21}H_{30}O_2$                              | <u>ID#:</u><br>113705 | 1,647   |
| 9    | 12.025                         | Naphthalene, 1,7-dimethyl-                                                             | $C_{12}H_{12}$                                 | 575-37-1              | 2,617   |
| 10   | 12.098                         | 5,8,11-Heptadecatriynoic acid, methyl ester                                            | $C_{18}H_{24}O_2$                              | 56554-57-5            | 1,570   |
| 11   | 12.212                         | 5,8,11-Eicosatriynoic acid, methyl ester                                               | C <sub>21</sub> H <sub>30</sub> O <sub>2</sub> | <u>ID#:</u><br>113705 | 0,887   |
| 12   | 12.241                         | 5,8,11-Eicosatriynoic acid, methyl ester                                               | $C_{21}H_{30}O_2$                              | <u>ID#:</u><br>113705 | 0,451   |
| 13   | 12.257                         | Bicyclo[4.1.0]heptan-2-ol, 1β-(3-methyl-1,3-<br>butadienyl)-2α,6β-dimethyl-3β-acetoxy- | C <sub>13</sub> H <sub>18</sub> O              | 55591-08-7            | 0,662   |
| 14   | 12.465                         | 1-Naphthalenol, 1,2,3,4-tetrahydro-2,5,8-trimethyl-                                    | C <sub>13</sub> H <sub>18</sub> O              | 55591-08-7            | 2,644   |
| 15   | 12.555                         | Isolongifolene, 4,5,9,10-dehydro-                                                      | C <sub>15</sub> H <sub>20</sub>                | 156747-45-<br>4       | 1,199   |
| 16   | 12.637                         | Tetradecane, 2,6,10-trimethyl-                                                         | $C_{17}H_{36}$                                 | 14905-56-7            | 3,074   |
| 17   | 12.779                         | Falcarinol                                                                             | C <sub>17</sub> H <sub>24</sub> O              | 21852-80-2            | 0,737   |
| 18   | 12.818                         | 5,8,11-Heptadecatriynoic acid, methyl ester                                            | $C_{18}H_{24}O_2$                              | 56554-57-5            | 0,916   |
| 19   | 12.882                         | 5,8,11,14-Eicosatetraynoic acid                                                        | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub> | 1191-85-1             | 1,297   |
| 20   | 12.919                         | 5,8,11,14-Eicosatetraynoic acid                                                        | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub> | 1191-85-1             | 1,741   |
| 21   | 12.976                         | 4,14-Retro-retinol                                                                     | C <sub>20</sub> H <sub>30</sub> O              | 16729-22-9            | 2,496   |
| 22   | 13.166                         | 1H-Indole, 4-(3-methyl-2-butenyl)-                                                     | $C_{13}H_{15}N$                                | 32962-25-7            | 4,114   |
| 23   | 13.343                         | 3-(2-Methyl-propenyl)-1H-indene                                                        | $C_{13}H_{14}$                                 | <u>ID#:</u><br>145358 | 2,365   |
| 24   | 13.430                         | 3-(2-Methyl-propenyl)-1H-indene                                                        | C <sub>13</sub> H <sub>14</sub>                | <u>ID#:</u><br>145358 | 5,786   |
| 25   | 13.615                         | 3-(2-Methyl-propenyl)-1H-indene                                                        | C <sub>13</sub> H <sub>14</sub>                | <u>ID#:</u><br>145358 | 2,729   |
| 26   | 13.760                         | 2-(2-Methyl-propenyl)-indan-1-thiol                                                    | C <sub>13</sub> H <sub>16</sub> S              | <u>ID#:</u><br>113759 | 2,835   |

| 27 | 13.883 | Indan, 1-(2-methylpropenyl)-2-thiocyanato-                                       | C <sub>14</sub> H <sub>15</sub> NS                            | <u>ID#:</u><br>113890 | 2,506 |
|----|--------|----------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------|-------|
| 28 | 13.950 | cis-9,10-Epoxyoctadecanamide                                                     | C <sub>18</sub> H <sub>35</sub> NO <sub>2</sub>               | 172995-07-<br>2       | 2,665 |
| 29 | 14.093 | 1H-Indole, 4-(3-methyl-2-butenyl)-                                               | $C_{13}H_{15}N$                                               | 32962-25-7            | 2,157 |
| 30 | 14.217 | 1H-Indole, 4-(3-methyl-2-butenyl)-                                               | C <sub>13</sub> H <sub>15</sub> N                             | 32962-25-7            | 2,240 |
| 31 | 14.303 | 5,8,11,14-Eicosatetraynoic acid                                                  | $C_{20}H_{24}O_{2}$                                           | 1191-85-1             | 1,216 |
| 32 | 14.387 | 5,8,11,14-Eicosatetraynoic acid                                                  | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub>                | 1191-85-1             | 3,524 |
| 33 | 14.433 | 5,8,11,14-Eicosatetraynoic acid                                                  | $C_{20}H_{24}O_{2}$                                           | 1191-85-1             | 3,089 |
| 34 | 14.531 | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-<br>1,2,3,4,4a,9,10,10a-octahydro- | C <sub>15</sub> H <sub>17</sub> BrO                           | <u>ID#:</u><br>170810 | 3,356 |
| 35 | 14.638 | 1,2-Bis-[2-(4-cyclohepta-2,4,6-trienyl-phenoxy)-<br>ethoxy]-ethane               | C <sub>32</sub> H <sub>34</sub> O <sub>4</sub>                | 216307-13-<br>0       | 2,047 |
| 36 | 14.742 | 5,8,11,14-Eicosatetraynoic acid                                                  | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub>                | 1191-85-1             | 3,415 |
| 37 | 15.019 | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-<br>1,2,3,4,4a,9,10,10a-octahydro- | C <sub>15</sub> H <sub>17</sub> BrO                           | <u>ID#:</u><br>170810 | 3,570 |
| 38 | 15.203 | Tetradecane, 2,6,10-trimethyl-                                                   | $C_{17}H_{36}$                                                | 14905-56-7            | 6,534 |
| 39 | 15.429 | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-<br>1,2,3,4,4a,9,10,10a-octahydro- | C <sub>15</sub> H <sub>17</sub> BrO                           | <u>ID#:</u><br>170810 | 1,068 |
| 40 | 15.596 | 5,8,11,14-Eicosatetraynoic acid                                                  | $C_{20}H_{24}O_{2}$                                           | 1191-85-1             | 3,308 |
| 41 | 15.855 | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-<br>1,2,3,4,4a,9,10,10a-octahydro- | C <sub>15</sub> H <sub>17</sub> BrO                           | <u>ID#:</u><br>170810 | 6,449 |
| 42 | 15.976 | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-<br>1,2,3,4,4a,9,10,10a-octahydro- | C <sub>15</sub> H <sub>17</sub> BrO                           | <u>ID#:</u><br>170810 | 1,216 |
| 43 | 16.036 | 5,8,11,14-Eicosatetraynoic acid                                                  | $C_{20}H_{24}O_{2}$                                           | 1191-85-1             | 1,247 |
| 44 | 16.082 | 1,7-Dimethyl-3-phenyltricyclo[4.1.0.0(2,7)]hept-3-<br>ene                        | $C_{15}H_{16}$                                                | <u>ID#:</u><br>168512 | 1,693 |
| 45 | 16.429 | Tricyclo[3.3.1.1(3,7)]decane-2,6-diol, 2,6-<br>bis(aminomethyl)-                 | C <sub>12</sub> H <sub>22</sub> N <sub>2</sub> O <sub>2</sub> | 39751-02-5            | 1,851 |
| 46 | 16.950 | 5,8,11,14-Eicosatetraynoic acid, methyl ester                                    | $C_{21}H_{26}O_2$                                             | <u>ID#:</u><br>154486 | 0,359 |
| 47 | 17.141 | 5,8,11,14-Eicosatetraynoic acid                                                  | $C_{20}H_{24}O_2$                                             | 1191-85-1             | 0,426 |
| 48 | 17.223 | Tricyclo[4.2.1.0(2,5)]nona-3,7-diene, 9-methoxy-1-<br>phenyl-                    | C <sub>16</sub> H <sub>16</sub> O                             | 56771-52-9            | 0,474 |
| 49 | 17.372 | 5,8,11,14-Eicosatetraynoic acid, methyl ester                                    | C <sub>21</sub> H <sub>26</sub> O <sub>2</sub>                | <u>ID#:</u><br>154486 | 0,714 |

**Tabela K.5** - Compostos identificados no espectro de massas do destilado, faixa do diesel leve, do OPP obtido via craqueamento térmico, em escala piloto, em T=500°C no tempo de 95 minutos de processo.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                                              | Fórmula<br>molecular                                          | CAS<br>Number         | Area(%) |
|------|--------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|-----------------------|---------|
| 1    | 7.795                          | 2,4-Dimethylstyrene                                                   | C <sub>10</sub> H <sub>12</sub>                               | 2234-20-0             | 0,126   |
| 2    | 8.364                          | Benzene, 2-ethenyl-1,3,5-trimethyl-                                   | C <sub>11</sub> H <sub>14</sub>                               | 769-25-5              | 0,504   |
| 3    | 8.447                          | 1H-Indene, 2,3-dihydro-1,2-dimethyl-                                  | $C_{11}H_{14}$                                                | 17057-82-8            | 0,605   |
| 4    | 8.578                          | 2-Naphthalenol, 1,2-dihydro-, acetate                                 | C <sub>12</sub> H <sub>12</sub> O <sub>2</sub>                | 132316-80-<br>4       | 1,251   |
| 5    | 8.720                          | 2-Naphthalenol, 1,2-dihydro-, acetate                                 | C <sub>12</sub> H <sub>12</sub> O <sub>2</sub>                | 132316-80-<br>4       | 0,275   |
| 6    | 9.050                          | 10-Methoxytricyclo[4.2.1.1(2,5)]deca-3,7-dien-9-ol                    | $\mathrm{C}_{11}\mathrm{H}_{14}\mathrm{O}_2$                  | 70220-91-6            | 0,326   |
| 7    | 9.106                          | 9-Methyltricyclo[4.2.1.1(2,5)]deca-3,7-diene-9,10-<br>diol            | $\mathrm{C}_{11}\mathrm{H}_{14}\mathrm{O}_2$                  | 78323-73-6            | 0,610   |
| 8    | 9.313                          | Bicyclo[3.1.1]hept-3-ene-spiro-2,4'-(1',3'-dioxane),<br>7,7-dimethyl- | $C_{12}H_{18}O_2$                                             | <u>ID#:</u> 433       | 0,555   |
| 9    | 9.503                          | 1,3,5-Trimethyl-2-(2-nitrovinyl)benzene                               | C <sub>11</sub> H <sub>13</sub> NO <sub>2</sub>               | <u>ID#:</u><br>132481 | 2,018   |
| 10   | 9.659                          | 1,3,5-Trimethyl-2-(2-nitrovinyl)benzene                               | $\mathrm{C_{12}H_{18}O_2}$                                    | <u>ID#:</u> 433       | 1,368   |
| 11   | 9.729                          | (S,Z)-Heptadeca-1,9-dien-4,6-diyn-3-ol                                | C <sub>17</sub> H <sub>24</sub> O                             | 81203-57-8            | 0,623   |
| 12   | 9.757                          | (S,Z)-Heptadeca-1,9-dien-4,6-diyn-3-ol                                | C <sub>17</sub> H <sub>24</sub> O                             | 81203-57-8            | 0,950   |
| 13   | 9.872                          | Benzene, 1-(2-butenyl)-2,3-dimethyl-                                  | C <sub>12</sub> H <sub>16</sub>                               | 54340-85-1            | 1,434   |
| 14   | 10.053                         | Falcarinol                                                            | C <sub>17</sub> H <sub>24</sub> O                             | 21852-80-2            | 0,575   |
| 15   | 10.130                         | 5,7-Dodecadiyn-1,12-bis(carbamic acid,<br>butyloxymethyl ester)       | C <sub>24</sub> H <sub>40</sub> N <sub>2</sub> O <sub>6</sub> | <u>ID#:</u><br>113919 | 0,715   |
| 16   | 10.228                         | Bicyclo[4.4.1]undeca-1,3,5,7,9-pentaene                               | C <sub>11</sub> H <sub>10</sub>                               | 2443-46-1             | 1,625   |

| 17 | 10.288 | 5,8,11-Eicosatriynoic acid, methyl ester                                               | C <sub>21</sub> H <sub>30</sub> O <sub>2</sub> | <u>ID#:</u><br>113705 | 1,180 |
|----|--------|----------------------------------------------------------------------------------------|------------------------------------------------|-----------------------|-------|
| 18 | 10.384 | Benzocycloheptatriene                                                                  | C <sub>11</sub> H <sub>10</sub>                | 264-09-5              | 5,550 |
| 19 | 10.574 | Falcarinol                                                                             | C <sub>17</sub> H <sub>24</sub> O              | 21852-80-2            | 1,344 |
| 20 | 10.680 | Falcarinol                                                                             | C <sub>17</sub> H <sub>24</sub> O              | 21852-80-2            | 1,085 |
| 21 | 10.983 | Oct-3-ene-1,5-divne, 3-t-butyl-7,7-dimethyl-                                           | C14H20                                         | <b>ID#:</b> 3102      | 1.045 |
| 22 | 11.048 | Naphthalene, 1,2,3,4-tetrahydro-1,5,7-trimethyl-                                       | C13H18                                         | 21693-55-0            | 1,759 |
| 23 | 11,197 | 1.3.5-Trimethyl-2-(2-nitroallyl)benzene                                                | C12H10O2                                       | <b>ID#:</b> 433       | 1.942 |
| 24 | 11.259 | 2.2.9.9-Tetramethyldec-5-ene-3.7-divne                                                 | C14H20                                         | 102745-35-            | 2.520 |
|    |        |                                                                                        | 14 20                                          | 7                     | ,     |
| 25 | 11.468 | 2,9-Heptadecadiene-4,6-diyn-8-ol, (Z,E)-                                               | C <sub>17</sub> H <sub>24</sub> O              | 50816-77-8            | 0,903 |
| 26 | 11.485 | 2,9-Heptadecadiene-4,6-diyn-8-ol, (Z,E)-                                               | C <sub>17</sub> H <sub>24</sub> O              | 50816-77-8            | 0,298 |
| 27 | 11.560 | 5,8,11-Eicosatriynoic acid, methyl ester                                               | C <sub>21</sub> H <sub>30</sub> O <sub>2</sub> | <u>ID#:</u><br>113705 | 2,130 |
| 28 | 11.610 | 5,8,11-Heptadecatriynoic acid, methyl ester                                            | $C_{18}H_{24}O_{2}$                            | 56554-57-5            | 1,456 |
| 29 | 11.670 | 5,8,11-Heptadecatriynoic acid, methyl ester                                            | C <sub>18</sub> H <sub>24</sub> O <sub>2</sub> | 56554-57-5            | 1,635 |
| 30 | 11.797 | 5,8,11-Eicosatriynoic acid, methyl ester                                               | C <sub>21</sub> H <sub>30</sub> O <sub>2</sub> | <u>ID#:</u><br>113705 | 2,209 |
| 31 | 11.866 | 5,8,11-Eicosatriynoic acid, methyl ester                                               | C <sub>21</sub> H <sub>30</sub> O <sub>2</sub> | <u>ID#:</u><br>113705 | 1,580 |
| 32 | 11.917 | Naphthalene, 1,3-dimethyl-                                                             | $C_{12}H_{12}$                                 | 575-41-7              | 2,819 |
| 33 | 12.019 | Naphthalene, 1,3-dimethyl-                                                             | C <sub>12</sub> H <sub>12</sub>                | 575-41-7              | 6,412 |
| 34 | 12.208 | 5,8,11-Eicosatriynoic acid, methyl ester                                               | C <sub>21</sub> H <sub>30</sub> O <sub>2</sub> | <u>ID#:</u><br>113705 | 1,074 |
| 35 | 12.258 | Bicyclo[4.1.0]heptan-2-ol, 1β-(3-methyl-1,3-<br>butadienyl)-2α,6β-dimethyl-3β-acetoxy- | C <sub>13</sub> H <sub>18</sub> O              | 55591-08-7            | 2,855 |
| 36 | 12.460 | 1-Naphthalenol, 1,2,3,4-tetrahydro-2,5,8-trimethyl-                                    | C <sub>13</sub> H <sub>18</sub> O              | 55591-08-7            | 3,207 |
| 37 | 12.554 | Isolongifolene, 4,5,9,10-dehydro-                                                      | C <sub>15</sub> H <sub>20</sub>                | 156747-45-<br>4       | 1,467 |
| 38 | 12.638 | Tetradecane, 2,6,10-trimethyl-                                                         | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7            | 2,547 |
| 39 | 12.824 | 1-tert-Butyl-3-(3-methoxyphenyl)-<br>bicyclo[1.1.1]pentan                              | C <sub>16</sub> H <sub>22</sub> O              | 245508-07-<br>0       | 0,984 |
| 40 | 12.931 | 5,8,11,14-Eicosatetraynoic acid                                                        | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub> | 1191-85-1             | 2,583 |
| 41 | 12.983 | 10,12,14-Nonacosatriynoic acid                                                         | C <sub>29</sub> H <sub>46</sub> O <sub>2</sub> | <u>ID#:</u><br>115845 | 2,795 |
| 42 | 13.155 | 5,8,11-Heptadecatriynoic acid, methyl ester                                            | C <sub>18</sub> H <sub>24</sub> O <sub>2</sub> | 56554-57-5            | 1,311 |
| 43 | 13.185 | Naphthalene, 1,4-dihydro-2,5,8-trimethyl-                                              | C <sub>13</sub> H <sub>16</sub>                | 30316-19-9            | 2,565 |
| 44 | 13.367 | 2-(2-Methyl-propenyl)-indan-1-thiol                                                    | C <sub>13</sub> H <sub>16</sub> S              | <u>ID#:</u><br>113759 | 2,046 |
| 45 | 13.463 | 3-(2-Methyl-propenyl)-1H-indene                                                        | C <sub>13</sub> H <sub>14</sub>                | <u>ID#:</u><br>145358 | 3,799 |
| 46 | 13.637 | 5,8,11-Eicosatriynoic acid, methyl ester                                               | C <sub>21</sub> H <sub>30</sub> O <sub>2</sub> | <u>ID#:</u><br>113705 | 1,666 |
| 47 | 13.907 | 1H-Indole, 4-(3-methyl-2-butenyl)-                                                     | C <sub>13</sub> H <sub>15</sub> N              | 32962-25-7            | 1,425 |
| 48 | 13.958 | 1H-Indole, 4-(3-methyl-2-butenyl)-                                                     | C <sub>13</sub> H <sub>15</sub> N              | 32962-25-7            | 1,502 |
| 49 | 14.105 | 1H-Indole, 4-(3-methyl-2-butenyl)-                                                     | C <sub>13</sub> H <sub>15</sub> N              | 32962-25-7            | 1,579 |
| 50 | 14.425 | 5,8,11,14-Eicosatetraynoic acid                                                        | с <sub>20</sub> н <sub>24</sub> о <sub>2</sub> | 1191-85-1             | 2,208 |
| 51 | 14.472 | 5,8,11,14-Eicosatetraynoic acid                                                        | с <sub>20</sub> н <sub>24</sub> о <sub>2</sub> | 1191-85-1             | 1,352 |
| 52 | 14.535 | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-<br>1,2,3,4,4a,9,10,10a-octahydro-       | C <sub>15</sub> H <sub>17</sub> BrO            | <u>ID#:</u><br>170810 | 2,436 |
| 53 | 14.763 | 5,8,11,14-Eicosatetraynoic acid                                                        | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub> | 1191-85-1             | 1,642 |
| 54 | 15.039 | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-<br>1,2,3,4,4a,9,10,10a-octahydro-       | С <sub>15</sub> Н <sub>17</sub> ВrО            | <u>ID#:</u><br>170810 | 0,883 |
| 55 | 15.213 | Tetradecane, 2,6,10-trimethyl-                                                         | C <sub>17</sub> H <sub>36</sub>                | 14905-56-7            | 2,609 |
| 56 | 15.953 | 4a,10a-Methanophenanthren-9 $\beta$ -ol, 11-syn-bromo-                                 | C <sub>15</sub> H <sub>17</sub> BrO            | <u>ID#:</u><br>170910 | 2,228 |
| 57 | 16.060 | 1,2,5,4,4a,9,10,10a-octanydro-<br>5 8 11 14-Ficosatetraynoic acid                      | CooHodOo                                       | 1/0810                | 1 427 |
| 58 | 16 115 | 5.8.11.14-Ficosatetraynoic acid                                                        | C20H24O2                                       | 1191-85-1             | 1 438 |
| 59 | 16.450 | 1.7-Dimethyl-3-phenyltrievelo[4.1.0.0(2.7)]hent-3-                                     | C15H16                                         | ID#·                  | 0.949 |
| 57 | 10.450 | ene                                                                                    | 0151116                                        | 168512                | 0,749 |

## ANEXO L



**Figura L.1** – Cromatogramas dos destilados dos OPP's, na faixa do diesel pesado, obtidos durante o processo, via craqueamento térmico em escala piloto, em T= $500^{\circ}$ C.

**Tabela L.1** - Compostos identificados no espectro de massas do destilado, faixa do diesel pesado, do OPP obtido via craqueamento térmico, em escala piloto, em T=500°C no tempo de 65 minutos de processo.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                                                                                | Fórmula<br>molecular                                          | CAS<br>Number         | Área<br>(%) |
|------|--------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------|-------------|
| 1    | 9.969                          | 9-Methyltricyclo[4.2.1.1(2,5)]deca-3,7-diene-9,10-<br>diol                                              | C <sub>11</sub> H <sub>14</sub> O <sub>2</sub>                | 78323-73-6            | 0,083       |
| 2    | 11.339                         | 2,9-Heptadecadiene-4,6-diyn-8-ol, (Z,E)-                                                                | C <sub>17</sub> H <sub>24</sub> O                             | 50816-77-             | 0,456       |
| 3    | 12.680                         | Geranyl isovalerate                                                                                     | $C_{15}H_{26}O_{2}$                                           | 109-20-6              | 1,288       |
| 4    | 13.977                         | 7-Methyl-Z-tetradecen-1-ol acetate                                                                      | C <sub>17</sub> H <sub>32</sub> O <sub>2</sub>                | <u>ID#:</u> 7041      | 1,726       |
| 5    | 14.548                         | 5,8,11,14-Eicosatetraynoic acid                                                                         | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub>                | 1191-85-1             | 1,334       |
| 6    | 14.595                         | 5,8,11,14-Eicosatetraynoic acid                                                                         | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub>                | 1191-85-1             | 1,238       |
| 7    | 14.622                         | 5,8,11,14-Eicosatetraynoic acid                                                                         | $C_{20}H_{24}O_{2}$                                           | 1191-85-1             | 1,465       |
| 8    | 15.059                         | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-<br>1,2,3,4,4a,9,10,10a-octahydro-                        | C <sub>15</sub> H <sub>17</sub> BrO                           | <u>ID#:</u><br>170810 | 1,448       |
| 9    | 15.152                         | 2-[4-methyl-6-(2,6,6-trimethylcyclohex-1-<br>enyl)hexa-1,3,5-trienyl]cyclohex-1-en-1-<br>carboxaldehyde | C <sub>23</sub> H <sub>32</sub> O                             | <u>ID#:</u> 5913      | 0,889       |
| 10   | 15.218                         | Tetradecane, 2,6,10-trimethyl-                                                                          | C <sub>17</sub> H <sub>36</sub>                               | 14905-56-7            | 4,702       |
| 11   | 15.557                         | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-<br>1,2,3,4,4a,9,10,10a-octahydro-                        | C <sub>15</sub> H <sub>17</sub> BrO                           | <u>ID#:</u><br>170810 | 0,770       |
| 12   | 15.630                         | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-<br>1,2,3,4,4a,9,10,10a-octahydro                         | C <sub>15</sub> H <sub>17</sub> BrO                           | <u>ID#:</u><br>170810 | 0,689       |
| 13   | 15.899                         | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-<br>1,2,3,4,4a,9,10,10a-octahydro-                        | C <sub>15</sub> H <sub>17</sub> BrO                           | <u>ID#:</u><br>170810 | 8,339       |
| 14   | 16.011                         | 5,8,11,14-Eicosatetraynoic acid                                                                         | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub>                | 1191-85-1             | 2,458       |
| 15   | 16.102                         | 5,8,11,14-Eicosatetraynoic acid                                                                         | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub>                | 1191-85-1             | 4,680       |
| 16   | 16.392                         | Cyclohexane, hexaethylidene-                                                                            | C <sub>18</sub> H <sub>24</sub>                               | 1482-93-5             | 1,600       |
| 17   | 16.435                         | Tricyclo[3.3.1.1(3,7)]decane-2,6-diol, 2,6-<br>bis(aminomethyl)-                                        | C <sub>12</sub> H <sub>22</sub> N <sub>2</sub> O <sub>2</sub> | 39751-02-5            | 2,901       |
| 18   | 16.486                         | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-<br>1,2,3,4,4a,9,10,10a-octahydro-                        | C <sub>15</sub> H <sub>17</sub> BrO                           | <u>ID#:</u><br>170810 | 1,636       |

| 19 | 16.936 | 5,8,11,14-Eicosatetraynoic acid, methyl ester                                                                                                                                                                  | C <sub>21</sub> H <sub>26</sub> O <sub>2</sub>                | <u>ID#:</u><br>154486 | 3,052 |
|----|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------|-------|
| 20 | 16.955 | 5,8,11,14-Eicosatetraynoic acid, methyl ester                                                                                                                                                                  | $\mathrm{C}_{21}\mathrm{H}_{26}\mathrm{O}_2$                  | <u>ID#:</u><br>154486 | 0,739 |
| 21 | 17.024 | 5,8,11,14-Eicosatetraynoic acid                                                                                                                                                                                | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub>                | 1191-85-1             | 4,407 |
| 22 | 17.125 | 5,8,11,14-Eicosatetraynoic acid, methyl ester                                                                                                                                                                  | C <sub>21</sub> H <sub>26</sub> O <sub>2</sub>                | <u>ID#:</u><br>154486 | 3,224 |
| 23 | 17.188 | 5,8,11,14-Eicosatetraynoic acid, methyl ester                                                                                                                                                                  | C <sub>21</sub> H <sub>26</sub> O <sub>2</sub>                | <u>ID#:</u><br>154486 | 3,390 |
| 24 | 17.320 | 5,8,11,14-Eicosatetraynoic acid, methyl ester                                                                                                                                                                  | C <sub>21</sub> H <sub>26</sub> O <sub>2</sub>                | <u>ID#:</u><br>154486 | 4,030 |
| 25 | 17.365 | 1,1'-Biphenyl, 3,4-diethyl-                                                                                                                                                                                    | $C_{16}H_{18}$                                                | 61141-66-0            | 5,402 |
| 26 | 17.634 | 1,1'-Biphenyl, 3,4-diethyl-                                                                                                                                                                                    | $C_{16}H_{18}$                                                | 61141-66-0            | 4,576 |
| 27 | 17.737 | 5,8,11,14-Eicosatetraynoic acid, methyl ester                                                                                                                                                                  | C <sub>21</sub> H <sub>26</sub> O <sub>2</sub>                | <u>ID#:</u><br>154486 | 4,336 |
| 28 | 18.151 | α-N-Normethadol                                                                                                                                                                                                | C <sub>20</sub> H <sub>27</sub> NO                            | 38455-85-5            | 3,960 |
| 29 | 18.261 | Tricyclo[4.2.1.0(2,5)]nona-3,7-diene, 9-methoxy-1-<br>phenyl-                                                                                                                                                  | C <sub>16</sub> H <sub>16</sub> O                             | 56771-52-9            | 2,868 |
| 30 | 18.363 | Tricyclo[4.2.1.0(2,5)]nona-3,7-diene, 9-methoxy-1-<br>phenyl-                                                                                                                                                  | C <sub>16</sub> H <sub>16</sub> O                             | 56771-52-9            | 2,465 |
| 31 | 18.417 | Tricyclo[4.2.1.0(2,5)]nona-3,7-diene, 9-methoxy-1-<br>phenyl-                                                                                                                                                  | C <sub>16</sub> H <sub>16</sub> O                             | 56771-52-9            | 2,609 |
| 32 | 18.509 | Naphtho[3,4:2,3]bornene                                                                                                                                                                                        | C <sub>18</sub> H <sub>20</sub>                               | <u>ID#:</u><br>179916 | 2,962 |
| 33 | 18.581 | Cyclobuta[a]dibenzo[c,f]cycloheptadiene, 1-<br>methyl-                                                                                                                                                         | $C_{18}H_{18}$                                                | <u>ID#:</u><br>179091 | 0,866 |
| 34 | 18.598 | Cyclobuta[a]dibenzo[c,f]cycloheptadiene, 1-<br>methyl-                                                                                                                                                         | $C_{18}H_{18}$                                                | <u>ID#:</u><br>179091 | 2,409 |
| 35 | 18.842 | [2-(5-Hydroxypent-2-ynyl)-3-<br>oxocyclopentyl]thioacetic acid, S-t-butyl ester                                                                                                                                | C <sub>16</sub> H <sub>24</sub> O <sub>3</sub> S              | 68931-47-5            | 4,081 |
| 36 | 19.152 | α-N-Normethadol                                                                                                                                                                                                | C <sub>20</sub> H <sub>27</sub> NO                            | 38455-85-5            | 0,104 |
| 37 | 19.272 | α-N-Normethadol                                                                                                                                                                                                | C <sub>20</sub> H <sub>27</sub> NO                            | 38455-85-5            | 0,653 |
| 38 | 19.510 | Dihydroxanthin                                                                                                                                                                                                 | $C_{17}H_{24}O_5$                                             | <u>ID#:</u> 7022      | 0,147 |
| 39 | 19.782 | 1,4-Bis(nitratomethyl)anthracene                                                                                                                                                                               | $C_{16}H_{12}N_2O_6$                                          | <u>ID#:</u><br>166160 | 0,967 |
| 40 | 19.911 | Spiro[2.3]hexane-5-carboxylic acid, 1,1-diphenyl-,<br>methyl ester                                                                                                                                             | $C_{20}H_{20}O_2$                                             | <u>ID#:</u><br>188110 | 1,354 |
| 41 | 20.344 | 1H-Cyclopropa[3,4]benz[1,2-e]azulene-<br>4a,5,7b,9,9a(1aH)-pentol, 3-[(acetyloxy)methyl]-<br>1b,4,5,7a,8,9-hexahydro-1,1,6,8-tetramethyl-,<br>5,9,9a-triacetate, [1aR-<br>(1aα,1bβ,4aβ,5β,7aα,7bα,8α,9β,9aα)]- | C <sub>28</sub> H <sub>38</sub> O <sub>10</sub>               | 77698-37-4            | 1,200 |
| 42 | 20.945 | 1,4-Bis(nitratomethyl)anthracene                                                                                                                                                                               | C <sub>16</sub> H <sub>12</sub> N <sub>2</sub> O <sub>6</sub> | <u>ID#:</u><br>166160 | 0,589 |
| 43 | 21.944 | Spiro[cyclopropane-1,2'-(1',3',4'H)-naphthalen-3'-<br>one, 4'-cyclopropylmethyl-4'-phenyl                                                                                                                      | C <sub>22</sub> H <sub>22</sub> O                             | <u>ID#:</u> 58947     | 1,906 |

**Tabela L.2** - Compostos identificados no espectro de massas do destilado, faixa do diesel pesado, do OPP obtido via craqueamento térmico, em escala piloto, em T= $500^{\circ}$ C no tempo de 75 minutos de processo.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                                         | Fórmula<br>molecular                           | CAS<br>Number         | Área<br>(%) |
|------|--------------------------------|------------------------------------------------------------------|------------------------------------------------|-----------------------|-------------|
| 1    | 9.966                          | 9-Methyltricyclo[4.2.1.1(2,5)]deca-3,7-diene-9,10-<br>diol       | $C_{11}H_{14}O_2$                              | 78323-73-6            | 0,294       |
| 2    | 12.673                         | Geranyl isovalerate                                              | $C_{15}H_{26}O_{2}$                            | 109-20-6              | 0,614       |
| 3    | 13.491                         | 5,8,11-Heptadecatriynoic acid, methyl ester                      | $C_{18}H_{24}O_2$                              | 56554-57-5            | 0,179       |
| 4    | 13.566                         | Indan, 1-(2-methylpropenyl)-2-thiocyanato-                       | C <sub>14</sub> H <sub>15</sub> NS             | <u>ID#:</u><br>113890 | 0,427       |
| 5    | 13.661                         | 5,8,11-Heptadecatriynoic acid, methyl ester                      | $C_{18}H_{24}O_2$                              | 56554-57-5            | 0,143       |
| 6    | 13.919                         | 5,8,11-Heptadecatriynoic acid, methyl ester                      | $C_{18}H_{24}O_2$                              | 56554-57-5            | 0,336       |
| 7    | 13.968                         | Geranyl isovalerate                                              | $C_{15}H_{26}O_2$                              | 109-20-6              | 0,903       |
| 8    | 14.124                         | 2(3H)-Naphthalenone, 4,4a,5,6,7,8-hexahydro-4a-<br>phenyl-, (R)- | C <sub>16</sub> H <sub>18</sub> O              | 56053-04-4            | 0,594       |
| 9    | 14.448                         | 5,8,11,14-Eicosatetraynoic acid                                  | $C_{20}H_{24}O_{2}$                            | 1191-85-1             | 1,430       |
| 10   | 14.548                         | 5,8,11,14-Eicosatetraynoic acid                                  | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub> | 1191-85-1             | 2,566       |

| 11 | 14.663 | 2-(2-Methoxynaphthalen-1-yl)-2-<br>methylpropionaldehyde                         | $C_{15}H_{16}O_2$                                 | 32454-20-9            | 1,273  |
|----|--------|----------------------------------------------------------------------------------|---------------------------------------------------|-----------------------|--------|
| 12 | 14.772 | 5,8,11,14-Eicosatetraynoic acid                                                  | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub>    | 1191-85-1             | 2,235  |
| 13 | 14.976 | 5,8,11,14-Eicosatetraynoic acid                                                  | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub>    | 1191-85-1             | 1,057  |
| 14 | 15.031 | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-<br>1,2,3,4,4a,9,10,10a-octahydro- | C <sub>15</sub> H <sub>17</sub> BrO               | <u>ID#:</u><br>170810 | 2,033  |
| 15 | 15.207 | Tetradecane, 2,6,10-trimethyl-                                                   | C <sub>17</sub> H <sub>36</sub>                   | 14905-56-7            | 5,687  |
| 16 | 15.368 | Androstan-17-one, 3-ethyl-3-hydroxy-, (5α)-                                      | $C_{21}H_{34}O_2$                                 | 57344-99-7            | 0,493  |
| 17 | 15.433 | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-<br>1,2,3,4,4a,9,10,10a-octahydro- | C <sub>15</sub> H <sub>17</sub> BrO               | <u>ID#:</u><br>170810 | 1,445  |
| 18 | 15.527 | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-<br>1,2,3,4,4a,9,10,10a-octahydro  | C <sub>15</sub> H <sub>17</sub> BrO               | <u>ID#:</u><br>170810 | 1,474  |
| 19 | 15.590 | 5,8,11,14-Eicosatetraynoic acid                                                  | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub>    | 1191-85-1             | 3,008  |
| 20 | 15.840 | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-<br>1,2,3,4,4a,9,10,10a-octahydro- | C <sub>15</sub> H <sub>17</sub> BrO               | <u>ID#:</u><br>170810 | 10,000 |
| 21 | 15.964 | 1,7-Dimethyl-3-phenyltricyclo[4.1.0.0(2,7)]hept-3-<br>ene                        | $\mathrm{C}_{15}\mathrm{H}_{16}$                  | <u>ID#:</u><br>168512 | 2,254  |
| 22 | 16.031 | 5,8,11,14-Eicosatetraynoic acid                                                  | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub>    | 1191-85-1             | 2,035  |
| 23 | 16.081 | 1,7-Dimethyl-3-phenyltricyclo[4.1.0.0(2,7)]hept-3-<br>ene                        | C <sub>15</sub> H <sub>16</sub>                   | <u>ID#:</u><br>168512 | 3,014  |
| 24 | 16.172 | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-<br>1,2,3,4,4a,9,10,10a-octahydro- | C <sub>15</sub> H <sub>17</sub> BrO               | <u>ID#:</u><br>170810 | 2,285  |
| 25 | 16.250 | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-<br>1,2,3,4,4a,9,10,10a-octahydro- | C <sub>15</sub> H <sub>17</sub> BrO               | <u>ID#:</u><br>170810 | 2,358  |
| 26 | 16.380 | 1,7-Dimethyl-3-phenyltricyclo[4.1.0.0(2,7)]hept-3-<br>ene                        | C <sub>15</sub> H <sub>16</sub>                   | <u>ID#:</u><br>168512 | 3,214  |
| 27 | 16.428 | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-<br>1,2,3,4,4a,9,10,10a-octahydro  | C <sub>15</sub> H <sub>17</sub> BrO               | <u>ID#:</u><br>170810 | 2,099  |
| 28 | 16.787 | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-<br>1,2,3,4,4a,9,10,10a-octahydro- | C <sub>15</sub> H <sub>17</sub> BrO               | <u>ID#:</u><br>170810 | 1,801  |
| 29 | 16.867 | 1,1'-Biphenyl, 3,4-diethyl-                                                      | C <sub>16</sub> H <sub>18</sub>                   | 61141-66-0            | 2,382  |
| 30 | 16.930 | 5,8,11,14-Eicosatetraynoic acid, methyl ester                                    | C <sub>21</sub> H <sub>26</sub> O <sub>2</sub>    | <u>ID#:</u><br>154486 | 7,142  |
| 31 | 17.106 | 5,8,11,14-Eicosatetraynoic acid, methyl ester                                    | C <sub>21</sub> H <sub>26</sub> O <sub>2</sub>    | <u>ID#:</u><br>154486 | 3,552  |
| 32 | 17.177 | Tricyclo[8.4.1.1(3,8)]hexadeca-3,5,7,10,12,14-<br>hexaen-2-one, anti-            | C <sub>16</sub> H <sub>14</sub> O                 | 7068-20-4             | 2,918  |
| 33 | 17.261 | Tricyclo[4.2.1.0(2,5)]nona-3,7-diene, 9-methoxy-1-<br>phenyl-                    | C <sub>16</sub> H <sub>16</sub> O                 | 56771-52-9            | 2,466  |
| 34 | 17.306 | 5,8,11,14-Eicosatetraynoic acid, methyl ester                                    | C <sub>21</sub> H <sub>26</sub> O <sub>2</sub>    | <u>ID#:</u><br>154486 | 1,555  |
| 35 | 17.347 | 1,1'-Biphenyl, 3,4-diethyl-                                                      | C <sub>16</sub> H <sub>18</sub>                   | 61141-66-0            | 4,050  |
| 36 | 17.629 | α-N-Normethadol                                                                  | С <sub>20</sub> Н <sub>27</sub> NO                | 38455-85-5            | 3,280  |
| 37 | 17.721 | Morphinan-4,5-diol-6-one, 1-bromo-                                               | $C_{16}H_{18}BrNO_3$                              | <u>ID#:</u> 51398     | 3,839  |
| 38 | 17.836 | 1-Heptatriacotanol                                                               | C <sub>37</sub> H <sub>76</sub> O                 | 105794-58-<br>9       | 3,697  |
| 39 | 18.138 | Morphinan-4,5-diol-6-one, 1-bromo-                                               | C <sub>16</sub> H <sub>18</sub> BrNO <sub>3</sub> | <u>ID#:</u> 51398     | 2,984  |
| 40 | 18.269 | α-N-Normethadol                                                                  | C <sub>20</sub> H <sub>27</sub> NO                | 38455-85-5            | 1,545  |
| 41 | 18.336 | 5,8,11,14-Eicosatetraynoic acid, methyl ester                                    | C <sub>21</sub> H <sub>26</sub> O <sub>2</sub>    | <u>ID#:</u><br>154486 | 1,915  |
| 42 | 18.405 | α-N-Normethadol                                                                  | C <sub>20</sub> H <sub>27</sub> NO                | 38455-85-5            | 0,487  |
| 43 | 18.828 | α-N-Normethadol                                                                  | C <sub>20</sub> H <sub>27</sub> NO                | 38455-85-5            | 2,791  |
| 44 | 19.272 | $\alpha$ -N-Normethadol                                                          | C <sub>20</sub> H <sub>27</sub> NO                | 38455-85-5            | 0,151  |

**Tabela L.3** - Compostos identificados no espectro de massas do destilado, faixa do diesel pesado, do OPP obtido via craqueamento térmico, em escala piloto, em T=500°C no tempo de 95 minutos de processo.

| Pico | Tempo de<br>retenção<br>(min.) | Composto                                                           | Fórmula<br>molecular                           | CAS<br>Number     | Área (%) |
|------|--------------------------------|--------------------------------------------------------------------|------------------------------------------------|-------------------|----------|
| 1    | 3.622                          | Bicyclo[2.1.1]hexan-2-ol, 2-ethenyl-                               | C <sub>8</sub> H <sub>12</sub> O               | <u>ID#:</u> 58936 | 0,230    |
| 2    | 3.694                          | Bicyclo[2.1.1]hexan-2-ol, 2-ethenyl-                               | C <sub>8</sub> H <sub>12</sub> O               | <u>ID#:</u> 58936 | 0,095    |
| 3    | 3.737                          | Ethinamate                                                         | C9H13NO2                                       | 126-52-3          | 0,204    |
| 4    | 5.824                          | Hexane, 1-chloro-5-methyl-                                         | C7H15Cl                                        | 33240-56-1        | 0,478    |
| 5    | 8.428                          | Hydrocinnamic acid, o-[(1,2,3,4-tetrahydro-2-<br>naphthyl)methyl]- | C <sub>20</sub> H <sub>22</sub> O <sub>2</sub> | 23804-21-9        | 0,365    |

| 6  | 8.512  | Hydrocinnamic acid, o-[(1,2,3,4-tetrahydro-2-                                     | C <sub>20</sub> H <sub>22</sub> O <sub>2</sub>    | 23804-21-9            | 0,539 |
|----|--------|-----------------------------------------------------------------------------------|---------------------------------------------------|-----------------------|-------|
| 7  | 9.177  | 9-Methyltricyclo[4.2.1.1(2,5)]deca-3,7-diene-9,10-                                | $C_{11}H_{14}O_2$                                 | 78323-73-6            | 0,061 |
| 8  | 9.739  | 9-Methyltricyclo[4.2.1.1(2,5)]deca-3,7-diene-9,10-                                | C <sub>11</sub> H <sub>14</sub> O <sub>2</sub>    | 78323-73-6            | 0,330 |
| 9  | 9.870  | Benzene, 1-(2-butenyl)-2.3-dimethyl-                                              | C12H16                                            | 54340-85-1            | 0.640 |
| 10 | 9.895  | 9-Methyltricyclo[4.2.1.1(2,5)]deca-3,7-diene-9,10-<br>dial                        | C <sub>11</sub> H <sub>14</sub> O <sub>2</sub>    | 78323-73-6            | 0,221 |
| 11 | 9.932  | 9-Methyltricyclo[4.2.1.1(2,5)]deca-3,7-diene-9,10-<br>diol                        | $C_{11}H_{14}O_2$                                 | 78323-73-6            | 0,811 |
| 12 | 10.497 | 9-Methyltricyclo[4.2.1.1(2,5)]deca-3,7-diene-9,10-<br>diol                        | $C_{11}H_{14}O_2$                                 | 78323-73-6            | 0,328 |
| 13 | 11.105 | Falcarinol                                                                        | C <sub>17</sub> H <sub>24</sub> O                 | 21852-80-2            | 0,170 |
| 14 | 11.295 | 2,9-Heptadecadiene-4,6-diyn-8-ol, (Z,E)-                                          | C <sub>17</sub> H <sub>24</sub> O                 | 50816-77-8            | 0,988 |
| 15 | 11.444 | Oct-3-ene-1,5-diyne, 3-t-butyl-7,7-dimethyl-                                      | $C_{14}H_{20}$                                    | <u>ID#:</u> 3102      | 0,381 |
| 16 | 12.513 | 5,8,11-Heptadecatriynoic acid, methyl ester                                       | C <sub>18</sub> H <sub>24</sub> O <sub>2</sub>    | 56554-57-5            | 0,383 |
| 17 | 12.591 | Oxiraneoctanoic acid, 3-octyl-, cis-                                              | C <sub>18</sub> H <sub>34</sub> O <sub>3</sub>    | 24560-98-3            | 0,391 |
| 18 | 12.660 | Tetradecane, 2,6,10-trimethyl-                                                    | C <sub>17</sub> H <sub>36</sub>                   | 14905-56-7            | 1,654 |
| 19 | 13.294 | 5,8,11-Heptadecatriynoic acid, methyl ester                                       | C <sub>18</sub> H <sub>24</sub> O <sub>2</sub>    | 56554-57-5            | 0,262 |
| 20 | 13.506 | 5,8,11-Heptadecatriynoic acid, methyl ester                                       | C <sub>18</sub> H <sub>24</sub> O <sub>2</sub>    | 56554-57-5            | 0,557 |
| 21 | 13.601 | 5,8,11-Heptadecatriynoic acid, methyl ester                                       | C <sub>18</sub> H <sub>24</sub> O <sub>2</sub>    | 56554-57-5            | 0,355 |
| 22 | 13.901 | Oxiraneoctanoic acid, 3-octyl-, cis-                                              | C <sub>18</sub> H <sub>34</sub> O <sub>3</sub>    | 24560-98-3            | 0,617 |
| 23 | 13.966 | Geranyl isovalerate                                                               | C <sub>15</sub> H <sub>26</sub> O <sub>2</sub>    | 109-20-6              | 1,526 |
| 24 | 14.542 | 5,8,11,14-Eicosatetraynoic acid                                                   | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub>    | 1191-85-1             | 1,339 |
| 25 | 14.573 | 5,8,11,14-Eicosatetraynoic acid                                                   | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub>    | 1191-85-1             | 1,501 |
| 26 | 14.698 | 2-(2-Methoxynaphthalen-1-yl)-2-<br>methylpropionaldehyde                          | C <sub>15</sub> H <sub>16</sub> O <sub>2</sub>    | 32454-20-9            | 0,398 |
| 27 | 14.790 | Acetic acid, 4-(1H-indol-4-yl)-2-methyl-but-2-enyl<br>ester                       | C <sub>15</sub> H <sub>17</sub> NO <sub>2</sub>   | <u>ID#:</u><br>157017 | 0,585 |
| 28 | 14.813 | 5,8,11,14-Eicosatetraynoic acid                                                   | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub>    | 1191-85-1             | 0,480 |
| 29 | 15.049 | 5,8,11,14-Eicosatetraynoic acid                                                   | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub>    | 1191-85-1             | 0,709 |
| 30 | 15.145 | Benzene, 1-(4'-pentyl[1,1'-bicyclohexyl]-4-yl)-4-(4-<br>propylcyclohexyl)-        | C <sub>32</sub> H <sub>52</sub>                   | <u>ID#:</u> 34996     | 0,606 |
| 31 | 15.213 | Tetradecane, 2,6,10-trimethyl-                                                    | C <sub>17</sub> H <sub>36</sub>                   | 14905-56-7            | 3,325 |
| 32 | 15.543 | 5,8,11,14-Eicosatetraynoic acid                                                   | С <sub>20</sub> н <sub>24</sub> О <sub>2</sub>    | 1191-85-1             | 0,837 |
| 33 | 15.610 | $\operatorname{Irrcyclo}[3.3.1.1(3,7)]$ decane-2,6-diol, 2,6-<br>his(aminomethyl) | $C_{12}H_{22}N_2O_2$                              | 39/51-02-5            | 0,705 |
| 34 | 15.651 | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-                                    | C <sub>15</sub> H <sub>17</sub> BrO               | ID#:                  | 0,582 |
|    |        | 1,2,3,4,4a,9,10,10a-octahydro-                                                    | 10 17                                             | 170810                |       |
| 35 | 15.864 | 4a,10a-Methanophenanthren-9β-ol, 11-syn-bromo-<br>1,2,3,4,4a,9,10,10a-octahydro-  | C <sub>15</sub> H <sub>17</sub> BrO               | <u>ID#:</u><br>170810 | 6,550 |
| 36 | 15.985 | 5,8,11,14-Eicosatetraynoic acid                                                   | С <sub>20</sub> Н <sub>24</sub> О <sub>2</sub>    | 1191-85-1             | 1,136 |
| 37 | 16.004 | 5,8,11,14-Eicosatetraynoic acid                                                   | с <sub>20</sub> н <sub>24</sub> о <sub>2</sub>    | 1191-85-1             | 0,455 |
| 38 | 16.044 | 5,8,11,14-Eicosatetraynoic acid                                                   | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub>    | 1191-85-1             | 1,369 |
| 39 | 16.090 | 1,7-Dimethyl-3-phenyltricyclo[4.1.0.0(2,7)]hept-3-<br>ene                         | C <sub>15</sub> H <sub>16</sub>                   | <u>ID#:</u><br>168512 | 2,413 |
| 40 | 16.425 | 4a,10a-Methanophenanthren-9p-ol, 11-syn-bromo-<br>1,2,3,4,4a,9,10,10a-octahydro   | С15Н17ВЮ                                          | 170810                | 4,027 |
| 41 | 16.4/3 | 1,7-Dimethyl-3-phenyltricyclo[4.1.0.0(2,7)]hept-3-<br>ene                         | C <sub>15</sub> H <sub>16</sub>                   | 168512                | 0,837 |
| 42 | 16.012 | 1,7-Dimetry1-3-pnenytrrcyclo[4.1.0.0(2,7)]nept-3-<br>ene                          |                                                   | 168512                | 0.055 |
| 43 | 17 101 | 1 1'-Binhenvil 3 4 disthul                                                        | C16H10                                            | 611/1 66 0            | 3 551 |
| 45 | 17.172 | Tricyclo[8.4.1.1(3,8)]hexadeca-3,5,7,10,12,14-                                    | C <sub>16</sub> H <sub>14</sub> O                 | 7068-20-4             | 2,647 |
| 46 | 17.249 | Tricyclo[8.4.1.1(3,8)]hexadeca-3,5,7,10,12,14-<br>hexaen-2-one. anti-             | C <sub>16</sub> H <sub>14</sub> O                 | 7068-20-4             | 3,112 |
| 47 | 17.298 | 5,8,11,14-Eicosatetraynoic acid, methyl ester                                     | C <sub>21</sub> H <sub>26</sub> O <sub>2</sub>    | <u>ID#:</u><br>154486 | 0,909 |
| 48 | 17.347 | 1,1'-Biphenyl, 3,4-diethyl-                                                       | C <sub>16</sub> H <sub>18</sub>                   | 61141-66-0            | 3,964 |
| 49 | 17.565 | 5,8,11,14-Eicosatetraynoic acid                                                   | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub>    | 1191-85-1             | 2,082 |
| 50 | 17.617 | Morphinan-4,5-diol-6-one, 1-bromo-                                                | C <sub>16</sub> H <sub>18</sub> BrNO <sub>3</sub> | <u>ID#:</u> 51398     | 2,888 |
| 51 | 17.667 | 5,8,11,14-Eicosatetraynoic acid                                                   | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub>    | 1191-85-1             | 0,595 |
| 52 | 17.718 | 5,8,11,14-Eicosatetraynoic acid, methyl ester                                     | C <sub>21</sub> H <sub>26</sub> O <sub>2</sub>    | <u>ID#:</u><br>154486 | 4,154 |
| 53 | 17.965 | 5,8,11,14-Eicosatetraynoic acid                                                   | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub>    | 1191-85-1             | 2,147 |

| 54 | 18.128 | 5,8,11,14-Eicosatetraynoic acid, methyl ester                                                  | C <sub>21</sub> H <sub>26</sub> O <sub>2</sub>                | <u>ID#:</u><br>154486 | 2,828 |
|----|--------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------|-------|
| 55 | 18.237 | Tricyclo[4.2.1.0(2,5)]nona-3,7-diene, 9-methoxy-1-<br>phenyl-                                  | C <sub>16</sub> H <sub>16</sub> O                             | 56771-52-9            | 3,098 |
| 56 | 18.402 | α-N-Normethadol                                                                                | C <sub>20</sub> H <sub>27</sub> NO                            | 38455-85-5            | 4,663 |
| 57 | 18.485 | Naphtho[3,4:2,3]bornene                                                                        | C <sub>18</sub> H <sub>20</sub>                               | <u>ID#:</u><br>179916 | 2,956 |
| 58 | 18.584 | Cyclobuta[a]dibenzo[c,f]cycloheptadiene, 1-methyl-                                             | $\mathrm{C}_{18}\mathrm{H}_{18}$                              | <u>ID#:</u><br>179091 | 3,127 |
| 59 | 18.819 | Tricyclo[4.2.1.0(2,5)]nona-3,7-diene, 9-methoxy-1-<br>phenyl-                                  | C <sub>16</sub> H <sub>16</sub> O                             | 56771-52-9            | 3,737 |
| 60 | 19.103 | N-[5-(3-Hydroxy-2-methylpropenyl)-1,3,4,5-<br>tetrahydrobenzo[cd]indol-3-yl]-N-methylacetamide | C <sub>18</sub> H <sub>22</sub> N <sub>2</sub> O <sub>2</sub> | <u>ID#:</u><br>189026 | 0,580 |
| 61 | 19.267 | 5,8,11,14-Eicosatetraynoic acid, methyl ester                                                  | $C_{21}H_{26}O_2$                                             | <u>ID#:</u><br>154486 | 0,513 |
| 62 | 20.092 | Dibenzo[a,d]bicyclo[3,2,1]-8-azaoctane, N-<br>[diethoxy-cyanomethyl]-                          | C <sub>23</sub> H <sub>24</sub> N <sub>2</sub> O <sub>4</sub> | <u>ID#:</u><br>188339 | 0,438 |
| 63 | 20.137 | Carnegine                                                                                      | $C_{13}H_{19}NO_2$                                            | 490-53-9              | 1,041 |