

PPGEC

Eng. Civil Ma. Natasha Cristina da Silva Costa

Influência do fator de escala, diâmetro máximo e tipo de agregado graúdo na resistência ao cisalhamento de vigas de concreto armado sem armadura de cisalhamento.

TESE DE DOUTORADO

Instituto de Tecnologia

Programa de Pós-Graduação em Engenharia Civil

Tese orientada pelo Professor: Dr. Dênio Ramam Carvalho de Oliveira

Belém – Pará – Brasil 2022

UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL

INFLUÊNCIA DO FATOR DE ESCALA, DIÂMETRO MÁXIMO E TIPO DE AGREGADO GRAÚDO NA RESISTÊNCIA AO CISALHAMENTO DE VIGAS DE CONCRETO ARMADO SEM ARMADURA DE CISALHAMENTO.

ENG. CIVIL Ma. NATASHA CRISTINA DA SILVA COSTA

ORIENTADOR: PROFESSOR Dr. DÊNIO RAMAM C. DE OLIVEIRA

TESE DE DOUTORADO

Belém – Pará – Brasil 2022

Dados Internacionais de Catalogação na Publicação (CIP) de acordo com ISBD Sistema de Bibliotecas da Universidade Federal do Pará Gerada automaticamente pelo módulo Ficat, mediante os dados fornecidos pelo(a) autor(a)

C837i COSTA, NATASHA.

Influência do fator de escala, diâmetro máximo e tipo de agregado graúdo na resistência ao cisalhamento de vigas de concreto armado sem armadura de cisalhamento. / NATASHA COSTA. — 2022. XXV,180 f. : il.

Orientador(a): Prof. Dr. Dênio Ramam Carvalho de Oliveira Tese (Doutorado) - Universidade Federal do Pará, Instituto de Tecnologia, Programa de Pós-Graduação em Engenharia Civil, Belém, 2022.

1. Cisalhamento. 2. Concreto Armado. 3. Fator de Escala. 4. Agregado Graúdo. I. Título.

CDD 620.137

SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL

INFLUÊNCIA DO FATOR DE ESCALA, DIÂMETRO MÁXIMO E TIPO DE AGREGADO GRAÚDO NA RESISTÊNCIA AO CISALHAMENTO DE VIGAS DE CONCRETO ARMADO

AUTORA:

NATASHA CRISTINA DA SILVA COSTA

TESE SUBMETIDA À BANCA EXAMINADORA APROVADA PELO COLEGIADO DO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL DO INSTITUTO DE TECNOLOGIA DA UNIVERSIDADE FEDERAL DO PARÁ, COMO REQUISITO PARA OBTENÇÃO DO GRAU DE DOUTORA EM ENGENHARIA CIVIL NA ÁREA DE ESTRUTURAS E CONSTRUÇÃO CIVIL.

APROVADO EM: 18/08/2022.

BANCA EXAMINADORA:

Prof. Dr. Dênio Ramam Carvalho de Oliveira Orientador (UFPA) Documento assinado digitalmente JOSE NERES DA SILVA FILHO Data: 22/08/2022 09:27:47-0300 Verifique em https://verificador.iti.br

> Prof. Dr. José Neres da Silva Filho Membro Externo (UFRN)

Prof. Dr. Alcebiades Negrão Macedo Membro Interno (UFPA)

Visto:

Prof. Dr. Marcelo de Souza Picanço Coordenador do PPGEC / ITEC / UFPA

Aos meus pais, João e Maria

AGRADECIMENTOS

Ao professor Dênio Ramam Carvalho de Oliveira, não apenas pela orientação desde a iniciação científica finalizando nesta tese, e sim por ter me educado profissionalmente e ter sido um exemplo que almejei seguir.

Ao professor Bernardo Borges Pompeu Neto por ter sido o meu grande incentivador a seguir a vida acadêmica, cujos conselhos foram fundamentais para minhas escolhas profissionais. Ao Professor Claudio José Cavalcante Blanco por todo o apoio e incentivo que me foram dados ao longo da minha trajetória no Programa de Pós-Graduação. A todos os professores do PPGEC, em especial ao Professor Marcelo de Souza Picanço por todo o suporte necessário para a condução de algumas importantes etapas do trabalho. Aos funcionários, em especial Sany Assis na condução dos processos administrativos e pelas palavras de apoio e incentivo sempre tão acolhedoras e ao técnico Joel Martins no auxílio dos ensaios de laboratório.

Ao amigo Renan Ribeiro que me auxiliou e acompanhou durante toda a etapa experimental deste trabalho. Ao amigo Paulo Motta que me deu suporte para o aprendizado da análise computacional. Ao colega do grupo de pesquisa GAEMA Vander Melo, e ao técnico Ruan Ferreira, que foram fundamentais para a condução dos ensaios experimentais. Ao amigo Vitor Branco pela amizade desde os tempos de graduação. Ao amigo Rodrigo Cunha, pela doação de materiais utilizados na concretagem das vigas e por ter cedido espaço na empresa Total Mix Controle Tecnológico em Concreto e Argamassa, para que fossem feitos os ensaios de controle tecnológico do concreto. Sem vocês são seria possível.

Aos meus pais João Carlos da Costa e Maria Barbosa da Silva que sempre me incentivaram pela busca do conhecimento. Ao meu esposo João Morais que me apoiou ao longo destes anos longe do seu convívio. Aos meus avós maternos e paternos que tanto contribuíram com minha educação e foram minha base familiar.

E pôr fim à Deus, Criador maior de todos nós.

RESUMO

INFLUÊNCIA DO FATOR DE ESCALA, DIÂMETRO MÁXIMO E TIPO DE AGREGADO GRAÚDO NA RESISTÊNCIA AO CISALHAMENTO DE VIGAS DE CONCRETO ARMADO SEM ARMADURA DE CISALHAMENTO

Autor: Natasha Cristina da Silva Costa Orientador: Dênio Ramam Carvalho de Oliveira Programa de Pós-Graduação em Engenharia Civil Belém, 18 de agosto de 2022

O presente estudo avalia a influência de diferentes tipos e formas de agregado graúdo no comportamento estrutural de vigas de concreto com diferentes alturas úteis (d) e mesmo comprimento de base (b_w) , além de mesmas taxas de armadura longitudinal (ρ_l) e dosagens. Para este fim realizou-se testes experimentais e análises que discutiram a performance de alguns códigos de projetos e de modelos teóricos na estimativa da resistência última ao cisalhamento de vigas de concreto armado, sem armadura transversal. Quanto ao estudo experimental foram realizados 11 testes experimentais tipo stuttgart até a ruína das peças. As dimensões das peças foram: (150 x 150 x 1400) mm, (150 x 250 x 1900) mm, (150 x 350 x 2400) mm e (150 x 450 x 2900) mm. As variáveis avaliadas foram, além das dimensões geométricas, o tipo e a dimensão do agregado graúdo empregados nas dosagens dos concretos. Quanto ao tipo foram utilizados o seixo rolado e a pedra britada. Quanto as dimensões utilizaram-se seixo rolado com diâmetro máximo (d_{max}) igual a 12,5 mm, brita com dois d_{max} : 9,5 mm e 12,5 mm. Quanto ao teor de agregado graúdo, neste trabalho, foi reduzido em 30% a quantidade definida na dosagem piloto, e para mante-se as proporções volumétricas da dosagem inseriu-se mais agregado miúdo, na mesma proporção à mistura, aumentando assim o teor de argamassa da dosagem. Nesta pesquisa foram suprimidas as armaduras transversais em todas as vigas, exceto nos apoios e nos pontos de aplicação da carga, onde manteve-se os estribos para evitar possíveis falhas nestes pontos devido ao acúmulo de tensão. Nas análises dos códigos de projetos, foram avaliadas as prescrições do ACI 318 (2019), do EC2 (2004) e NBR 6118 (2014). No que se refere aos modelos teóricos, avaliou-se as propostas de MUTTONI (2019) e de HUBER (2019). As referidas análises além de avaliarem a dispersão e o conservadorismo dos resultados encontrados, também os classificam segundo os critérios de COLLINS (2001), o Demerit Points Classification -DPC. Objetivando contribuir com as propostas de dimensionamento de vigas de concreto armado sujeitas ao esforço cortante. O presente trabalho apresenta uma proposta de modificação para cada código normativo analisado levando em consideração os parâmetros avaliados na tese, com o intuito de diminuir o coeficiente de variação dos resultados das estimativas, com base nas formulações analisadas. Para a sugestão das propostas de modificação ao ACI 318 (2019), EC2 (2004) e NBR 6118 (2014), foram utilizados dois bancos de dados compostos por vigas ensaiadas até a ruptura por cisalhamento. Utilizou-se o primeiro banco de dados para fazer interações entre os parâmetros avaliados, buscando resultados que melhorassem as previsões normativas no que tange a segurança estrutural e a dispersão dos dados. E um segundo banco de dados foi utilizado para validar estas propostas de modificação. As vigas foram modeladas utilizando um software computacional de análise não linear em elementos finitos. A calibração dos modelos computacionais foi feita a partir dos resultados experimentais das vigas de concreto armado, ensaiadas no programa experimental desta tese. Esta calibração permite que as análises sejam extrapoladas e utilizadas para a avaliação de concretos com as características ensaiadas. Pela análise dos modelos, observou-se que o modelo computacional conseguiu prever, de forma satisfatória, o comportamento experimental das vigas.

Palavras-chave: Cisalhamento; Concreto Armado; Fator de Escala; Agregado Graúdo

ABSTRACT

INFLUENCE OF THE SCALE FACTOR, MAXIMUM DIAMETER AND TYPE OF COARSE AGGREGATE ON THE SHEAR STRENGTH OF REINFORCED CONCRETE BEAMS WITHOUT SHEAR REINFORCEMENT

Author: Natasha Cristina da Silva Costa Supervisor: Dênio Ramam Carvalho de Oliveira Graduate Program in Civil Engineering Belem, 18 August of 2022

The present study evaluated the influence of different types and forms of coarse aggregates on the structural behavior of concrete beams with different useful heights (d) and the same base length (b_w) , in addition to the same longitudinal reinforcement rates (ρ_l) and dosages of concrete. For this test, it is necessary to carry out tests and tests that analyze the performance of some design codes and theoretical models in prescribing the most recent shear strength of reinforced concrete beams, without transversal reinforcement. Regarding the experimental study, 11 experimental tests of the stuttgart type were carried out until the pieces collapsed. The dimensions of the pieces were: (150 x 150 x 1400) mm, (150 x 250 x 1900) mm, (150 x 350 x 2400) mm and (150 x 450 x 2900) mm. The evaluated variables were, in addition to the geometric dimensions, the type, the dimension and the content of coarse aggregates used in the concrete dosages. When using the type of rolled pebble and a crushed stone. As for the dimensions used, pebble with maximum diameter (d_{max}) equal to 12.5 mm and gravel with two d_{max} : 9.5 mm and 12.5 mm were used. As for the content, in this work, the amount of engraved aggregate, indicated in the dosage, was reduced by 30%. In this research, transverse arms on all beams were removed, which were placed only on the supports and at the load application points to avoid damage caused by tension. In the analysis of the project codes, the requirements of ACI 318 (2019), EC2 (2004) and NBR 6118 (2014) were evaluated. It does not refer to theoretical models, discussed as proposals by MUTTONI (2019) and HUBER (2019). How to analyze besides evaluating the dispersion and conservatism of the results found, it also ranks the seconds according to COLLINS (2001) records, or the classification of demerit points -DPC. Finally, with a contribution proposal with a proposal for dimensioning reinforced concrete beams subject to shear stress, the present work presents a proposal for a correction factor, which considers the analyzed criteria, to decrease or variation coefficient calculation results based on the formulations analyzed. To suggest the proposed changes to ACI 318 (2019), EC2 (2004) and NBR 6118 (2014), two databases composed of beams tested to failure by shear were used. The first database was used to make interactions

between the parameters evaluated, seeking results that would improve the normative predictions, regarding structural safety and data dispersion. And a second database was used to validate these modification proposals. The beams were numerically modeled in a computational software for non-linear finite element analysis. The calibration of the numerical models was made from the experimental results of the reinforced concrete beams tested in the experimental program of this thesis. Analyzing the models, it is observed that the numerical model was able to satisfactorily predict the experimental behavior of the beams.

Keywords: Shear; Reinforced Concrete; Size Effect; Coarse Aggregate

SUMÁRIO

1.	INTRODUÇÃO1
1.1	Considerações Iniciais1
1.2	Justificativa
1.3	Objetivos
1.3.1	Objetivo Geral
1.3.2	Objetivos Específicos5
1.4	Metodologia 6
1.5	Descrição da Tese7
2.	REVISÃO BIBLIOGRÁFICA9
2.1	Considerações Gerais
2.2	Tensao de Cisalhamento em Vigas11
2.3	Mecanismos de Resistência ao Cisalhamento12
2.3.1	Efeito de Arco
2.3.2	Efeito de Pino14
2.3.3	Engrenamento dos Agregados15
2.3.4 Cisalh	Análise do Desenvolvimento de Fissura e Mecanismos de Transferência de amento
2.4 Cisalh	Trabalhos Recentes que Avaliam a Interferencia do Agregado na Resistência ao namento
2.4.1	DENG et al (2017)
2.4.2	SAVARIS (2017)
2.4.3	HUBER el at (2019)
2.5	Trabalhos que Avaliam a Resistência ao Cisalhamento em Vigas de Concreto Armado. 30
2.5.1	KIM E PARK (1996)
2.5.2	MUTTONI (2019)
2.6	Recomendações Normativa para o Calcúlo da Resistência ao Cisalhamento em Vigas 33

2.6.1	ACI 318 (ACI, 2019)	33
2.6.2	EUROCODE 2 (EC2, 2004)	34
2.6.3	NBR 6118 (ABNT, 2014)	35
3.	PROGRAMA EXPERIMENTAL	37
3.1	Introdução	37
3.2	Características Gerais das Vigas	37
3.3	Características Geometricas das Vigas	39
3.4	Detalhamento das Armaduras	42
3.5	Sistema de Monitoramento das Vigas	44
3.5.1	Sistema de Ensaio	44
3.5.2	Instrumentação das vigas	47
3.6	Características da Dosagem Utilizada	48
3.6.1	Estudo de Dosagem	49
3.6.2	Caracterização dos Materiais	51
	5	51
4.	APRESENTAÇÃO DOS RESULTADOS EXPERIMENTAIS	54
4. 4.1	APRESENTAÇÃO DOS RESULTADOS EXPERIMENTAIS Materiais	54 54
4. 4.1 4.1.1	APRESENTAÇÃO DOS RESULTADOS EXPERIMENTAIS Materiais Aço	54 54 54
4. 4.1 4.1.1 4.1.2	APRESENTAÇÃO DOS RESULTADOS EXPERIMENTAIS Materiais Aço Concreto	54 54 54 55
 4.1 4.1.1 4.1.2 4.2 	APRESENTAÇÃO DOS RESULTADOS EXPERIMENTAIS Materiais Aço Concreto Relação Carga - Deslocamento	54 54 54 55 57
 4.1 4.1.1 4.1.2 4.2 4.3 	APRESENTAÇÃO DOS RESULTADOS EXPERIMENTAIS Materiais Aço Concreto Relação Carga - Deslocamento Tenacidade	54 54 55 55 57 59
 4.1 4.1.1 4.1.2 4.2 4.3 4.4 	APRESENTAÇÃO DOS RESULTADOS EXPERIMENTAIS Materiais Aço Concreto Relação Carga - Deslocamento Tenacidade Deformações na Superfície de Concreto	 54 54 54 55 57 59 63
 4.1 4.1.1 4.1.2 4.2 4.3 4.4 4.5 	APRESENTAÇÃO DOS RESULTADOS EXPERIMENTAIS Materiais Aço Concreto Relação Carga - Deslocamento Tenacidade Deformações na Superfície de Concreto Deformações na Armadura de Flexão	54 54 55 57 59 63 64
 4.1 4.1.1 4.1.2 4.2 4.3 4.4 4.5 4.6 	APRESENTAÇÃO DOS RESULTADOS EXPERIMENTAIS Materiais Aço Concreto Relação Carga - Deslocamento Tenacidade Deformações na Superfície de Concreto Deformações na Armadura de Flexão Relação Momento-Curvatura	54 54 55 57 59 63 64 65
 4.1 4.1.1 4.1.2 4.2 4.3 4.4 4.5 4.6 4.7 	APRESENTAÇÃO DOS RESULTADOS EXPERIMENTAIS Materiais Aço Concreto Relação Carga - Deslocamento Tenacidade Deformações na Superfície de Concreto Deformações na Armadura de Flexão Relação Momento-Curvatura Padrão de Fissuração e Cargas de Ruína e Ruptura	54 54 55 57 59 63 64 65 67
 4.1 4.1.1 4.1.2 4.2 4.3 4.4 4.5 4.6 4.7 4.7.1 	APRESENTAÇÃO DOS RESULTADOS EXPERIMENTAIS Materiais Aço Concreto Relação Carga - Deslocamento Tenacidade Deformações na Superfície de Concreto Deformações na Armadura de Flexão Relação Momento-Curvatura Padrão de Fissuração e Cargas de Ruína e Ruptura Taxa de armadura x altura da viga	54 54 55 57 59 63 64 65 67 74

5. AVALIAÇÃO DOS CÓDIGOS NORMATIVOS E PROPOSTAS DA LITERATURA DE ACORDO COM A CARGA ÚLTIMA OBTIDA NAS VIGAS...... 76

5.1 Analis	Resistência ao Cisalhamento de acordo com os Códigos Normativos e as Propostas sadas
5.1.1	Resistência ao Cisalhamento de Acordo com a ACI 318 (2019)77
5.1.2	Resistência ao cisalhamento de acordo com EC2 (2004)77
5.1.3	Resistência ao Cisalhamento de Acordo com a NBR 6118 (2014)79
5.1.4	Resistência ao cisalhamento de acordo com HUBER (2019)
5.1.5	Resistência ao cisalhamento de acordo com MUTTONI (2019)81
5.1.6	Análise das resistências estimadas comparadas com as resistências experimentais . 82
6. CON	CONTRIBUIÇÃO PARA O ESTUDO DO CISALHAMENTO EM VIGAS DE CRETO ARMADO SEM ESTRIBO
6.1	Características e Origem dos Bancos de Dados
6.2	Análise do Banco de Dados
6.2.1	Proposta de Modificação para o EUROCODE-2
6.2.2	Análise da segurança pelos critérios de Collins (2001)92
6.2.3	Proposta de Modificação para o ACI-31894
6.2.4 modif	Análise da segurança pelos critérios de Collins (2001) para a proposta de cação do ACI -318
6.2.5	Proposta de Modificação para a NBR 6118 (2014)100
6.2.6 modif	Análise da segurança pelos critérios de Collins (2001) para a proposta de icação da NBR 6118 (2014)104
6.2.7	Resumo dos dados estatísticos105
6.2.8 do pro	Análise das normas e códigos com as propostas de modificação: Avaliação das vigas ograma experimental
6.2.9	Análise das vigas do Banco de dados por faixa de ρ 108
7.	MODELAGEM COMPUTACIONAL115
7.1	Descrição dos Elementos Utilizados no Modelo Computacional da Tese 115
7.1.1	Elementos utilizados no modelo115
7.1.2	Condições de contorno e carregamento117
7.1.3	Contato Armadura – Concreto
7.2	Classificação dos materiais empregados

7.2.1	Modelo constitutivo para o concreto119
7.2.2	Modelo Constitutivo para o Aço
7.3	Parametros do Modelos Constitutivo Concrete Damaged Plasticity 124
7.3.1	Parâmetros para o concreto com seixo127
7.4	Discretização dos Modelos130
7.5	Análise dos Modelos computacionais 133
7.5.1	Curva x Deslocamento
7.5.2	Padrão de fissuração136
8.	CONCLUSÕES E RECOMENDAÇÕES PARA TRABALHOS FUTUROS 142
8.1	Ensaio Experimental
8.2	Variação do Tipo de Agregado Graúdo143
8.3	Variação das Dimensões das Vigas
84	
modif	Cargas últimas pelas cargas estimadas pelos códigos normativos e propostas de icação das normas
modif 8.5	Cargas últimas pelas cargas estimadas pelos códigos normativos e propostas de icação das normas
modif 8.5 9.	Cargas últimas pelas cargas estimadas pelos códigos normativos e propostas de icação das normas
modif 8.5 9. 10.	Cargas últimas pelas cargas estimadas pelos códigos normativos e propostas de icação das normas

LISTA DE FIGURAS

Figura 1.1: Projeção da produção de cimento no Mundo. Fonte: Global Cement Magazine 3th
(2020)
Figura 1.2: Elemento fissurado - Exemplificação de transferência de esforços entre as faces .
Fonte: Adaptado de VECCHIO; COLLINS (1986)
Figura 2.1: Analogia da Treliça. Adaptado de FUSCO (2008)9
Figura 2.2: Trajetória das bielas em uma região B próximas a uma região de descontinuidade
D. Fonte: Adaptado de SCHLAICH (1987)10
Figura 2.3: Relação entre vão de cisalhamento(a) e a altura efetiva de uma viga (d). Fonte:
Adaptado de WIGHT E MACGREGOR (2009)13
Figura 2.4: Comportamento estrutural da relação entre momento fletor e relação a/d em vigas
sem estribo. Fonte: Adaptado MACGREGOR (1988)14
Figura 2.5: Comportamento estrutural da relação entre força cortante e relação a/d em vigas
sem estribo. Fonte: Adaptado MACGREGOR (1988)14
Figura 2.6: Relação entre Vu e a/d para vigas com variação da taxa de armadura longitudinal.
Fonte: Adaptado de KANI (1966)15
Figura 2.7: Padrão de fissuração e Cinemática da fissura em peças de concreto sem armadura
transversal. Fonte: Adaptado de TIRASSA (2020)16
Figura 2.8: Dimensões das vigas ensaiadas: Serie (a) $a/d = 2,2$; Serie (b) $a/d = 3,0$. Fonte:
DENG et al (2017)
Figura 2.9: Layout dos LVDTs. Fonte: DENG et al (2017)19
Figura 2.10: Efeito do tamanho do agregado na resistência à tração do concreto. Fonte: DENG
et al (2017)
Figura 2.11: Efeito do tamanho do agregado na tensão de cisalhamento final nominal. Fonte:
DENG et al (2017)
Figura 2.12: Interação entre fissura de cisalhamento e agregado Graúdo em concretos de
resistência convencional e não convencional. Fonte: DENG et al (2017)21
Figura 2.13: Deslocamentos medidos na face das vigas através de trincas de cisalhamento.
Fonte: DENG et al (2017)
Figura 2.14: Comparação da resistência ao cisalhamento experimental com a análise pelo
método dos elementos finitos. DENG et al (2017)
Figura 2.15: Detalhamento das armaduras da viga. Adaptado de SAVARIS (2017)

Figura 2.16: Esquema de ensaio de Flexão a quatro pontos. Fonte: Adaptado de SAVARIS
(2017)
Figura 2.17: Instrumentação das vigas. Fonte: SAVARIS (2017)
Figura 2.18: Valores médios para a força cortante das series de viga com variação do diâmetro
máximo do Agregado Graúdo. Adaptado SAVARIS (2017)27
Figura 2.19: Relação entre Rs e fc obtida a partir dos ensaios de HUBER (2017) e PERERA e
MUTSUYOSHI (2013). Fonte: Adaptado de HUBER (2017)
Figura 2.20: Mecanismos que compõem a resistência ao cisalhamento em vigas com a/d entre
2 e 3. Fonte: Adaptado de KIM E PARK (1996)
Figura 2.21: Potenciais ações de transferência de cisalhamento em peças de concreto sem
armadura transversal. Fonte: MUTTONI E RUIZ (2019)
Figura 3.1: Detalhamento das vigas e configuração do ensaio. Fonte: Autora40
Figura 3.2: Viga posicionada no pórtico antes do ensaio. Fonte: Autora
Figura 3.3: Detalhamento das armaduras das vigas com seção (150 x 150) mm
Figura 3.4: Detalhamento das armaduras das vigas com seção (150 x 250) mm43
Figura 3.5: Detalhamento das armaduras das vigas com seção (150 x 350) mm43
Figura 3.6: Detalhamento das armaduras das vigas com seção (150 x 450) mm43
Figura 3.7: Corte AA' mostrando o detalhamento das seções. Fonte: Autora
Figura 3.8: Esquema do Sistema de Ensaio. Fonte: Autora
Figura 3.9: Configuração geométrica e pontos de aplicação de carga em todas as vigas46
Figura 3.10: Sistema de aquisição de dados. Fonte: Autora
Figura 3.11: Posição dos EERs em todas as vigas. Fonte: Autora
Figura 3.12: (A) EER-A tipo PA-06-125AA-120L; (B) EER-C tipo PA-06-800BA-120L.
Fonte: Autora
Figura 3.13: (A) Preparação da barra de aço longitudinal. (B) EER aderido na barra de aço
longitudinal. Fonte: Autora
Figura 3.14: EER para monitoramento do concreto aderido a viga. Fonte: Autora
Figura 3.15: ferragens posicionadas antes da concretagem. Fonte: Autora
Figura 3.16: Ensaio do abatimento do tronco de cone. Fonte: Autora
Figura 3.17: Quarteamento do agregado miúdo. Fonte: Autora51
Figura 3.18: Quarteamento da amostra de brita 0. Fonte: Autora
Figura 3.19: Curvas Granulométricas dos agregados. Fonte: Autora
Figura 3.20: Seixo, brita 0 e brita 1 utilizados na pesquisa. Fonte: Autora

Figura 4.1: Curva Tensão-deformação média da barra de aço de 5 mm. Fonte: Autora 5	4
Figura 4.2: Curva Tensão-deformação média da barra de aço de 10 mm. Fonte: Autora 5	5
Figura 4.3: Curva Tensão-deformação média da barra de aço de 20 mm. Fonte: Autora 5	5
Figura 4.4: Relação carga - deslocamento para o grupo de vigas com h igual a 150 mm 5	8
Figura 4.5: Relação carga - deslocamento para o grupo de vigas com h igual a 250 mm 5	8
Figura 4.6: Relação carga - deslocamento para o grupo de vigas com h igual a 350 mm 5	8
Figura 4.7: Relação carga - deslocamento para o grupo de vigas com h igual a 450 mm 5	8
Figura 4.8: Gráficos de tensão x deslocamento para todas as vigas	0
Figura 4.9: Tenacidade calculada para todos os grupos de viga. Fonte: autora	1
Figura 4.10: Comparação dos valores de tenacidade das vigas para cada tipo de agregado 6	2
Figura 4.11: Deformações na superfície das vigas 150H. Fonte: Autora	3
Figura 4.12: Deformações na superfície das vigas 250H. Fonte: Autora	3
Figura 4.13: Deformações na superfície das vigas 350H. Fonte: Autora	4
Figura 4.14: Deformações na superfície das vigas 450H. Fonte: Autora	4
Figura 4.15: Deformações na armadura longitudinal das vigas H150. Fonte: Autora	4
Figura 4.16: Deformações na armadura longitudinal das vigas H250. Fonte: Autora	4
Figura 4.17: Deformações na armadura longitudinal das vigas H350. Fonte: Autora	5
Figura 4.18: Deformações na armadura longitudinal das vigas H450. Fonte: Autora	5
Figura 4.19: Relação Momento-curvatura para vigas do grupo 150H6	6
Figura 4.20: Relação Momento-curvatura para vigas do grupo 250H6	6
Figura 4.21: Relação Momento-curvatura para vigas do grupo 350H6	6
Figura 4.22: Relação Momento-curvatura para vigas do grupo 450H6	6
Figura 4.23: Padrão de fissuração da viga V150S. Fonte: Autora	8
Figura 4.24: Padrão de fissuração da viga V150B0. Fonte: Autora	8
Figura 4.25: Padrão de fissuração da viga V150B1. Fonte: Autora	8
Figura 4.26: Padrão de fissuração da viga V250S. Fonte: Autora	8
Figura 4.27: Padrão de fissuração da viga V250B0. Fonte: Autora	8
Figura 4.28: Padrão de fissuração da viga V250B1. Fonte: Autora	9
Figura 4.29: Padrão de fissuração da viga V350S. Fonte: Autora	9
Figura 4.30: Padrão de fissuração da viga V350B0. Fonte: Autora	9
Figura 4.31: Padrão de fissuração da viga V450S. Fonte: Autora	9
Figura 4.32: Padrão de fissuração da viga V450B0. Fonte: Autora	9
Figura 4.33: Padrão de fissuração da viga V450B1. Fonte: Autora	0

Figura 4.34: 4.9: Aspecto das vigas V150S, V150B0 e V150B1 após os ensaios. Fonte:
Autora71
Figura 4.35: Aspecto das vigas V250S, V250B0 e V250B1 após os ensaios. Fonte: Autora .72
Figura 4.36: Aspecto das vigas V350S e V350B0 após os ensaios. Fonte: Autora73
Figura 4.37: Aspecto das vigas V450S, V450B0 e V450B1 após os ensaios. Fonte: Autora .74
Figura 4.38: Relação entre Vu e a/d para vigas75
Figura 5.1: Relação V _u x V _{ACI} 77
Figura 5.2: Relação $V_u x V_{EC}$
Figura 5.3: Relação V _u x V _{NBR}
Figura 5.4: Relação V _u x V _{HUBER}
Figura 5.5: Relação V _u x V _{MUTTONI}
Figura 5.6: Gráfico box plot comparativo para todas as estimativas
Figura 6.1: Influência da resistência a compressão do concreto na resistência ao esforço
cortante
Figura 6.2: Influência da taxa de armadura da viga na resistência ao esforço cortante
Figura 6.3: Influência da altura útil da viga na resistência ao esforço cortante
Figura 6.4: Influência da largura da seção transversal da viga na resistência ao esforço
cortante
Figura 6.5: Interações realizadas na metodologia para a proposta de modificação do EC2.
Fonte: Autoria Própria90
Figura 6.6: Dispersão entre os resultados da norma avaliada e da proposta. Fonte: Autoria
Própria
Figura 6.7: Correlação entre os dados experimentais e normativo
Figura 6.8: Correlação entre os dados experimentais e a proposta de modificação94
Figura 6.9: Resumo do banco de dados 2 adaptado para as análises da proposta de
modificação para o ACI 31896
Figura 6.10: Influência da taxa de armadura da viga na resistência ao esforço cortante96
Figura 6.11: Influência da altura útil da viga na resistência ao esforço cortante
Figura 6.12: Influência da largura da seção transversal da viga na resistência ao esforço
cortante
Figura 6.13: Interações utilizadas na metodologia para a proposta de modificação do ACI 318.
Fonte: Autoria Própria

Figura 6.14: Dispersão entre os resultados da norma avaliada e da proposta de Modificação.
Fonte: Autoria Própria
Figura 6.15: Correlação entre os dados experimentais e normativo ACI 100
Figura 6.16: Correlação entre os dados experimentais e a proposta de modificação para o ACI
Figura 6.17: Influência da resistência a compressão do concreto na resistência ao esforço
cortante
Figura 6.18: Influência da taxa de armadura da viga na resistência ao esforço cortante 101
Figura 6.19: Influência da altura útil da viga na resistência ao esforço cortante
Figura 6.20: Influência da largura da seção transversal da viga na resistência ao esforço
cortante
Figura 6.21: Interações realizadas na metodologia para a proposta de modificação da NBR
6118. Fonte: Autoria Própria
Figura 6.22: Dispersão entre os resultados da NBR e da proposta de modificação. Fonte:
Autoria Própria
Figura 6.23: Correlação entre os dados experimentais e normativo105
Figura 6.24: Correlação entre os dados experimentais e proposta de modificação105
Figura 7.1: Grupo de elementos finitos modelados. Fonte: Abaqus
Figura 7.2: Elementos modelados. Fonte: Abaqus117
Figura 7.3: Configuração dos apoios e pontos de aplicação do deslocamento. Fonte: Abaqus
Figura 7.4: Detalhe da interação entre o ponto de aplicação do deslocamento e a viga. Fonte:
Abaqus
Figura 7.5: Simulação da interação Aço - Concreto. Fonte: Autora
Figura 7.6: Diagrama do concreto a compressão. Fonte: Adaptado de BIRTEL e MARK
(2006)
Figura 7.7: Comparação do comportamento dos concretos submetidos a compressão uniaxial.
Fonte: Autora
Figura 7.8: Comportamento do concreto. Fonte: Autora
Figura 7.9: Curva Tensão x Deformação para o aço. Fonte: Autora
Figura 7.10: Estados de tensão em relação a superfície de falha. Fonte: MARQUES E
ARAUJO (2016)

Figura 7.11: Resistência do concreto sob tensão biaxial no CDP. Fonte: Adaptado Manual
ABAQUS
Figura 7.12: Representação gráfica do parâmetro K_c. Fonte: Manual ABAQUS 126
Figura 7.13: Investigação do parâmetro µ para calibração do modelo numérico do concreto
com seixo. Fonte: Autora
Figura 7.14: Investigação do parâmetro ψ para calibração do modelo numérico do concreto
com seixo. Fonte: Autora
Figura 7.15: Investigação do parâmetro Kc para calibração do modelo numérico. Fonte:
Autora
Figura 7.16: Curva do modelo calibrado em comparação com os resultados experimentais. 129
Figura 7.17: Modelo computacional utilizado para simular as vigas com h=150 mm. Fonte:
Autora
Figura 7.18: Modelo computacional utilizado para simular as vigas com h=250 mm. Fonte:
Autora
Figura 7.19: Modelo computacional utilizado para simular as vigas com h=350 mm. Fonte:
Autora
Figura 7.20: Modelo computacional utilizado para simular as vigas com h=450 mm. Fonte:
Autora
Figura 7.21: Comparação das cargas e deslocamento experimentais com os resultados obtidos
pela modelagem numérica (Concreto com seixo). Fonte: Autora134
Figura 7.22: Comparação das cargas e deslocamento experimentais com os resultados obtidos
pela modelagem numérica (Concreto com Brita 0). Fonte: Autora
Figura 7.23: Comparação das cargas e deslocamento experimentais com os resultados obtidos
pela modelagem computacional (Concreto com Brita 1). Fonte: Autora
Figura 7.24: Tendência entre os padrões de fissuração do modelo e o experimental da viga
V150S
Figura 7.25: Tendência entre os padrões de fissuração do modelo e o experimental da viga
V150B0:
Figura 7.26: Tendência entre os padrões de fissuração do modelo e o experimental da viga
V150B1
Figura 7.27: Tendência entre os padrões de fissuração do modelo e o experimental da viga
V250S

Figura 7.28: Tendência entre os padrões de fissuração do modelo e o experimental da viga
V250B0
Figura 7.29: Tendência entre os padrões de fissuração do modelo e o experimental da viga
V250B1
Figura 7.30: Tendência entre os padrões de fissuração do modelo e o experimental da viga
V350S
Figura 7.31: Tendência entre os padrões de fissuração do modelo e o experimental da viga
V350B0
Figura 7.32: Tendência entre os padrões de fissuração do modelo e o experimental da viga
V350B1
Figura 7.33: Tendência entre os padrões de fissuração do modelo e o experimental da viga
V450S
Figura 7.34: Tendência entre os padrões de fissuração do modelo e o experimental da viga
V450B0
Figura 7.35: Tendência entre os padrões de fissuração do modelo e o experimental da viga
V450B1

LISTA DE TABELAS

Tabela 2.1: resumo das características das vigas e dos resultados experimentais 1	8
Tabela 2.2: Força cortante última e ângulo de inclinação da fissura de cisalhamento2	26
Tabela 2.3: Força cortante última obtida experimentalmente, estimativa das normas e relaçã	ίο
entre estes valores. Adaptado de SAVARIS (2017)2	27
Tabela 2.4: Características dos concretos dosados pelo autor. 2	28
Tabela 2.5: Resultados Experimentais. 2	29
Tabela 3.1 – Características das Vigas	8
Tabela 3.2: Nomenclatura das Vigas4	1
Tabela 3.3: Resumo das características das vigas	2
Tabela 3.4: Característica do traço inicial para a produção de 1m ³ de concreto5	0
Tabela 3.5 - Característica dos traços finais para a produção de 1m ³ de concreto5	0
Tabela 3.6: Características químicas do cimento CP II E 5	51
Tabela 3.7: Limites Granulométricos de agregado Graúdo. 5	;3
Tabela 4.1: Resumo das propriedades mecânicas dos aços	5
Tabela 4.2: Resultados para o ensaio de compressão dos concretos	6
Tabela 4.3: Resultados para o ensaio de resistência a tração por compressão diametral 5	7
Tabela 4.4: Resultado para o módulo de elasticidade	7
Tabela 4.5: Carga-deslocamento para todas as vigas ensaiadas	8
Tabela 4.6: Funções de integração e valores de tenacidade para todas as vigas ensaiadas6	50
Tabela 4.7: Resumo dos valores a em todos os grupos de vigas6	6
Tabela 4.8: Síntese das relações entre cargas últimas de ruptura e cargas de surgimento d	la
primeira fissura7	0'
Tabela 5.1: Relação entre as cargas experimentais e as cargas estimadas pela Norma ACI 313	8.
	'7
Tabela 5.2: Relação entre as cargas últimas e as cargas estimadas pela Norma EC27	'8
Tabela 5.3: Relação entre as cargas últimas e as cargas estimadas pela Norma NBR 61187	'9
Tabela 5.4: Relação entre as cargas últimas e as cargas estimadas pela proposta de HUBE	R
(2019)	30
Tabela 5.5: Relação entre as cargas últimas e as cargas estimadas pela proposta de MUTTON	1I
(2019)	31

Tabela 5.6: Resumo da Comparação entre as cargas últimas e as cargas previstas pela
literatura analisada
Tabela 6.1: Resumo do Banco de dados 185
Tabela 6.1: Resumo do Banco de dados 1 (continuação)
Tabela 6.2: Resumo do banco de dados 2 86
Tabela 6.2: Resumo do banco de dados 2 (continuação)87
Tabela 6.3: Resumo estatístico do BD1 87
Tabela 6.4: Resumo estatístico do BD2 87
Tabela 6.5: Resumo estatístico comparando o EC2 com a Proposta de Modificação92
Tabela 6.6: Classificação quanto aos critérios de segurança segundo o sistema DPC93
Tabela 6.7: Classificação das vigas com previsão de carga pela norma EC2 e proposta de
modificação93
Tabela 6.8: Resumo do banco de dados 2 adaptado para as análises da proposta de
modificação para o ACI 31894
Tabela 6.8: Resumo do banco de dados 2 adaptado para as análises da proposta de
modificação para o ACI 318 (continuação)95
Tabela 6.9: Resumo estatístico comparando o ACI 318 com a Proposta de Modificação98
Tabela 6.10: Classificação quanto aos critérios de segurança segundo o sistema DPC99
Tabela 6.11: Classificação das vigas com previsão de carga pelo ACI 318 e proposta de
modificação
Tabela 6.12: Resumo estatístico comparando a NBR com a Proposta de Modificação 103
Tabela 6.13: Classificação das vigas com previsão de carga pelo ACI 318 e proposta de
modificação
Tabela 6.14: Resumo das penalidades entre as normas e as propostas de modificações 105
Tabela 6.15: Avaliação das vigas do programa experimental pelas normas e propostas de
modificação107
Tabela 6.16: Resumo estatístico para a análise do BD2 filtrado com ρ (%) entre [0;1] 108
Tabela 6.17: Penalidades das vigas do BD2 filtrado ρ (%) entre [0;1]108
Tabela 6.18: Resumo estatístico para a análise do BD2 filtrado com ρ (%) entre [1,01; 2]. 108
Tabela 6.19: Penalidades das vigas do BD2 filtrado ρ (%) entre [1,01;2]109
Tabela 6.20: Resumo estatístico para a análise do BD2 filtrado com ρ (%) > 2 109
Tabela 6.21: Penalidades das vigas do BD2 filtrado ρ (%) >2
Tabela 6.22: Resumo estatístico para a análise do BD2 filtrado com ρ (%) entre [0;1]110

Tabela 6.23: Penalidades das vigas do BD2 filtrado ρ (%) entre [0;1]110
Tabela 6.24: Resumo estatístico para a análise do BD2 filtrado com ρ (%) entre [1,01; 2]110
Tabela 6.25: Penalidades das vigas do BD2 filtrado ρ (%) entre [1,01 ;2]110
Tabela 6.26: Resumo estatístico para a análise do BD2 filtrado com ρ (%) > 2 111
Tabela 6.27: Penalidades das vigas do BD2 filtrado ρ (%) >2 111
Tabela 6.28: Resumo estatístico para a análise do BD2 filtrado com ρ (%) entre [0,1] 112
Tabela 6.29: Penalidades das vigas do BD2 filtrado ρ (%) entre [0;1]112
Tabela 6.30: Resumo estatístico para a análise do BD2 filtrado com ρ (%) entre [1,01; 2]. 113
Tabela 6.31: Penalidades das vigas do BD2 filtrado ρ (%) entre [1,01 ;2]113
Tabela 6.32: Resumo estatístico para a análise do BD2 filtrado com ρ (%) > 2 113
Tabela 6.33: Penalidades das vigas do BD2 filtrado ρ (%) >2
Tabela 7.1: Resistência a compressão dos concretos fabricados com mesma dosagem e
diferentes agregados graúdos122
Tabela 7.2: Parâmetros necessários no modelo CDP. 127
Tabela 7.3: Resumo dos parâmetros considerados no trabalho de Navarro, Ivorra e Varona
(2018)
Tabela 7.4: Resumo dos parâmetros do modelo CDP para o concreto
Tabela 7.5: Propriedades mecânicas do concreto utilizados no modelo numérico 129
Tabela 7.6: Propriedades mecânicas do aço ¢5mm utilizado nos estribos
Tabela 7.7: Propriedades mecânicas do aço \u00f310mm utilizado na armadura130
Tabela 7.8: Propriedades mecânicas do aço ¢20mm utilizado na armadura
Tabela 7.9: Síntese entre os resultados experimentais e computacionais para a carga de ruína
das vigas
Tabela 7.10: Comparação entre os resultados dos deslocamentos máximos entre o modelo
MEF e os resultados experimentais. Fonte: Autora

LISTA DE SIMBOLOS E ABREVEATURAS

São apresentados alguns símbolos utilizados nesta tese, os que não estão apresentados aqui tem seus significados explicados ao longo do texto.

- A_s : Área da seção de aço da armadura de flexão;
- a: Distância entre o apoio e o ponto de aplicação de carga
- b_w : Dimensão da largura da viga;
- d: Altura útil da viga;
- *d_{max}*: Diâmetro máximo do agregado graúdo;
- *E_c*: Módulo de Elasticidade do Concreto;
- E_S : Módulo de Elasticidade do aço;
- ε_c : Deformação nas fibras do concreto;
- ε_{vs} : Deformação de escoamento nas armaduras de aço;
- f_{vs} : Tensão de escoamento do aço;
- G_f : Energia de Fratura;
- GRNT: Granito;
- *h*: Altura efetiva da viga;
- *l*: comprimento total da viga;
- (norma)_mod: Refere-se à equação proposta, baseada na equação da norma analisada;
- p: fator matemático, a expressão correspondente é citada no texto;
- P_{cr} : Carga referente ao surgimento da primeira fissura de cisalhamento nas vigas;
- P_u : Carga de Ruína das vigas, corresponde ao V_u ;
- ρ_l : Taxa de armadura longitudinal;
- τ_p : Razão entre a carga de ruína e o artificio p;
- QRTZT: Quartzito;
- V_{uExp} : Carga experimental de ruína das vigas;
- V_x : Carga estimada por um código normativo para a resistência ao esforço cortante referente à parcela do concreto;
- $V_{u,x}$: Carga de ruína da viga, prevista pelo código normativo;
- w: abertura de fissura;
- w_c : abertura da fissura crítica.

1. INTRODUÇÃO

1.1 CONSIDERAÇÕES INICIAIS

A título de conhecimento o cimento é um dos produtos mais consumidos no mundo. De acordo com a revista Inglesa GLOBAL CEMENT MAGAZINE 3TH (2020), a produção de cimento mundial tende a manter-se em torno de 3970 Mt em 2025. Na Figura 1.1 apresenta-se uma projeção quanto a produção deste material nos últimos anos. Historicamente o concreto simples teve suas primeiras utilizações em rodovias e pavimentos do Império Romano, porém seu uso mais espetacular foi na cúpula de maior vão livre da antiguidade, o *Panteão de Roma*, cujo vão livre só veio a ser superado em 1912.

Figura 1.1: Projeção da produção de cimento no Mundo. Fonte: Global Cement Magazine 3th (2020) Quanto a cronologia de publicação dos códigos normativos, dando aos projetistas as primeiras orientações de projeto e execução de estruturas de concreto armado foram publicadas pela Suíça e Alemanha em 1903. Em 1906 a França faz sua publicação seguida da Inglaterra e Estados unidos 1907 e 1910, respectivamente. No Brasil o primeiro código normativo foi publicado em 1931. Alguns fatores contribuem para que o concreto seja um material empregado em grande escala na construção civil, sendo eles: alta possibilidade de moldagem, baixo custo de produção e manutenção da peça após moldadas, possibilita ligações monolíticas entre os elementos concretados, alta durabilidade.

Neste contexto, as estruturas de concreto são solicitadas por variados esforços, que necessitam ser compreendidos e estudados aumentando a confiabilidade e segurança destas peças estruturais quando colocadas em serviço. Os estudos sobre dimensionamento ao esforço cortante em vigas de concreto armado tem sido objeto de intensa pesquisa por mais de 100

anos e apesar de um (1) século de estudos e publicações ainda observa-se a falta de consenso quando se compara os diferentes modelos prescritos pelas normas americana ACI 318 (2019), europeia EUROCODE 2 (2004), e brasileira NBR 6118 (2014). STANICK (1998) complementa que mesmo que milhares de testes ao cisalhamento tenham sido conduzidos em todo o mundo, ainda não existe um método unificado que tem sido geralmente adotado pela maioria dos comitês normativos mundiais. Pelo contrário, os procedimentos de dimensionamento ao cisalhamento adotados variam radicalmente de uma norma para outra. A maioria dos códigos de projeto adotou métodos semiempíricos com várias equações diferentes que expressam a resistência ao cisalhamento para diferentes arranjos de carregamento e diferentes variáveis.

Os primeiros estudos que possibilitaram o dimensionamento ao cisalhamento, para vigas de concreto armado, foi o modelo clássico de treliça idealizado por Ritter e Morsch, no início do século XX. Neste modelo após a fissuração da viga de concreto os esforços cortantes são resistidos apenas através de tensões de compressão nas bielas de concreto e de tração na armadura transversal. O ângulo de inclinação das bielas é igual a 45° em relação ao eixo da viga. RIBEIRO (2012) comenta que a verificação de que o modelo de treliça clássica conduz a uma armadura transversal maior que a necessária, indica que nas regiões mais solicitadas pela força cortante, a inclinação das bielas é menor que os 45° admitidos no modelo. Surge assim um modelo de treliça com variação do ângulo θ de inclinação da biela.

A NBR 6118 (2014) e o EUROCODE (2004) admitem modelos com variação do ângulo θ da biela, ambos modelos atribuem ao projetista a escolha de θ , ambos de formas distintas. A norma brasileira admite a adoção da angulação, em seu método de cálculo II, ficando compreendida entre 30° e 45°, já a norma europeia varia a angulação entre 21,8° e 45°. A norma Brasileira insere em seu cálculo da tensão resistente da diagonal tracionada a parcela referente aos mecanismos adicionais ao da treliça clássica no cálculo, este fato não é observado quando se analisa a norma europeia. Para o ACI (2019), o dimensionamento é baseado na analogia de treliça modificada e o ângulo θ é considerado a 45°, a contribuição do concreto se dá por meio da zona de compressão do concreto e engrenamento dos agregados.

VECCHIO E COLLINS (1986) testaram 30 painéis de concreto armado sob uma variedade de tensões biaxial uniforme. Este modelo permite a obtenção da resposta carga deformação de elementos de concreto armado fissurado, submetidos a esforços cortantes, eles observaram

que a tensão na biela de concreto se dá tanto em função da deformação de compressão quanto de tração. Este modelo trata o concreto fissurado como um novo material que mesmo após a abertura da fissura diagonal, característica do cisalhamento, o concreto ainda tem capacidade de resistir ao cisalhamento. Atualmente a única norma baseada nesta teoria é a norma Canadense CSA A23.3 (2003).

O concreto como material estrutural é composto basicamente por: aglomerante, agregados graúdo e miúdo e água. Sabe-se que o tamanho máximo do agregado graúdo, bem como seu tipo, irá influenciar a resistência ao cisalhamento de vigas de concreto, uma vez, que estes agregados são responsáveis pelo fenômeno do engrenamento, onde mesmo após a sessão fissurada continua-se observando resistência entre as faces, e, portanto, são capazes de proporcionar a manutenção da resistência mesmo após o início do processo de fissuração. Ressalta-se que o engrenamento dos agregados não é a única contribuição, uma vez que existem outros fatores como: efeito de pino, resistência a tração residual e efeito de arco que serão comentados posteriormente.

Neste contexto observa-se a importância do agregado graúdo na resistência a abertura de fissuras em elementos de concreto submetidos a esforços de tração ou combinação deles. SAVARIS (2016) comenta que a transmissão de forças oblíquas após a fissuração ocorre em virtude do atrito gerado pela rugosidade da região de interface do concreto fissurado, estando diretamente relacionada à dimensão, resistência mecânica e volume de agregado graúdo utilizado na produção do concreto. Na Figura 1.2 mostra-se a transferência de tensões cisalhantes em um elemento fissurado.

Figura 1.2: Elemento fissurado - Exemplificação de transferência de esforços entre as faces . Fonte: Adaptado de VECCHIO; COLLINS (1986)

Estudos demonstram que características deste material influenciam de sobremaneira na resistência ao cisalhamento de peças de concreto armado. SAVARIS (2017) observa após ensaios experimentais, que ao reduzir o diâmetro máximo do agregado graúdo reduziu-se também a força cortante última normalizada nos concretos convencionais. O autor observa isso a partir de ensaios em séries de concreto armado onde variou-se a Brita de 0 para 1. Nos concretos misturados com brita 1 observou-se que a força cortante última foi 12,8% superior em relação aos concretos com brita 0. Segundo SAGASETA (2008) a contribuição do engrenamento do agregado como parcela contribuinte à resistência ao cisalhamento é incerta e depende de uma combinação de parâmetros. POMPEU (2004) avaliou experimentalmente amostras de concreto variando o tipo entre basalto e granito, para mesmo diâmetro máximo, e observou que o módulo de deformação é fortemente influenciado pelo tipo de agregado, apresentando bons resultados para o tipo com origem basáltica.

1.2 JUSTIFICATIVA

Este trabalho refere-se ao estudo de vigas de concreto armado submetidas ao esforço cortante até a ruína. Estudos como este são importante para peças de concreto que não possuem armadura transversal, onde podem existir situações que levarão a soluções inseguras quando as armaduras transversais não estão previstas. Neste trabalho um dos parâmetros analisados é a altura das vigas, uma vez que observa-se o aparecimento do fenômeno *size effect* (efeito de tamanho) quando se aumenta a altura efetiva de peças de concreto. Este fenômeno refere-se a queda da tensão de cisalhamento para dimensões crescentes de viga onde as peças de concreto apresentam resistência inferior à resistência esperada.

JEONG (2017) resume que diversos estudos experimentais como os de KANI (1966), BAZANTE e KIM (1984), WALRAVEN e LEHWALTER (1994), COLLINS e KUCHMA (1999), MUTTONI e RUIZ (2008) mostraram a diminuição da resistência ao cisalhamento com o aumento da altura efetiva das peças de concreto, porém todos são trabalhos limitados as variáveis que os autores propuseram-se a pesquisar, e em média a taxa de armadura longitudinal fica abaixo de 3%. Outro ponto importante a se observar é que a influência do diâmetro máximo do agregado graúdo ainda é uma incógnita, bem como se há influência desta quando aumenta-se a altura efetiva das vigas.

Propõe-se também à avaliação da variação do diâmetro máximo do agregado graúdo, e seu tipo de acordo com a composição mineralógica, na influência da capacidade resistente das

vigas, uma vez que sabe-se que grandes dimensões de vigas podem levar as mesmas a falhas frágeis e os maiores diâmetros de agregados graúdos tendem a aumentar a capacidade de engrenamento entre os mesmos o que pode manter a capacidade resistente de vigas quando submetidas a esforços cortantes mesmo após os estágios iniciais de fissuração. E a justificativa para a continuidade desta pesquisa, se dá pelo fato de que as normas tratam este assunto de forma simplificada não levando em consideração ou simplificando as variáveis referentes a altura útil da viga e agregados.

1.3 OBJETIVOS

1.3.1 Objetivo Geral

A realização desta pesquisa intitulada " Influência do fator de escala, diâmetro máximo e tipo de agregado graúdo na resistência ao cisalhamento de vigas de concreto armado sem armadura de cisalhamento" tem como objetivo avaliar a resistência ao cisalhamento em vigas de concreto armado onde suprimiu-se as armaduras de cisalhamento, considerando a influência do diâmetro máximo do agregado graúdo e seu tipo avaliado nos diferentes tamanhos de altura das vigas. Visa-se uma proposta de modificação dos códigos normativos, que preveja o efeito *size effect* e contribua para o dimensionamento seguro destas peças quando verificadas ao cisalhamento. Tem-se ainda como objetivo a confecção de um programa experimental que vise comprovar o que está sendo dito teoricamente e a modelagem numérica destas vigas no software ABAQUS (2014) buscando parâmetros que auxiliem o entendimento do que está sendo proposto.

1.3.2 Objetivos Específicos

- 1. Analisar o comportamento estrutural de vigas de concreto armado, (sem armadura transversal), quando submetidas ao ensaio experimental visando falha por cisalhamento;
- Avaliar a influência do diâmetro máximo do agregado graúdo e seu tipo, na resistência ao cisalhamento das vigas de concreto armado onde será fixado um valor de *b* (largura a viga) e será variado o valor de *d* (altura da viga);
- Analisar equações propostas para a previsão do efeito *size effect* encontradas na literatura e propor equações (baseadas nas equações normativas), para a previsão de carga da parcela resistente do concreto. Para isso serão utilizados dois bancos de dados;
- 4. Avaliar as estimativas de carga previstas pelas equações de dimensionamento do manual de projeto ACI 318-19, das normas Eurocode 2 e NBR 6118:2014, e propostas de

dimensionamento de HUBER (2019) e MUTTONI (2019) comparando-as com as cargas obtidas experimentalmente;

- 5. Montar e Analisar dois bancos de dados composto por vigas de concreto sem armadura transversal, onde as vigas possuem diferentes dimensões de d, diferentes tamanhos de agregados graúdos d_{max} e comprimento máximo das vigas, neste banco de dados será avaliado a relação matemática proposta a partir o banco de dados citado no item 3 destes objetivos.
- 6. Modelar numericamente as vigas que serão ensaiadas experimentalmente visando prever estimativas de carga, avaliar ductilidade e comportamento pós fissuração.

1.4 METODOLOGIA

Disciplinas da Pós-Graduação

Parte obrigatória e de fundamental importância para o embasamento teórico que será ampliado e aplicado no desenvolvimento do plano de trabalho do doutorado.

• Revisão Bibliográfica

A revisão bibliográfica iniciada durante o curso das disciplinas de doutorado, será aprofundado e voltado para as etapas deste trabalho. Serão revistos os conceitos fundamentais de engenharia estrutural voltados para a aplicação aos estudos sobre cisalhamento em peças de concreto armado. Serão analisados trabalhos publicados na literatura internacional, além de normas técnicas para projeto de estruturas de concreto armado, dentre elas: ACI 318 (2019), EUROCODE 2 (2004) e NBR 6118 (2014). Será utilizado o software ABAQUS para análise das tensões e obtenção das cargas x deslocamento no que tange a etapa de análise computacional e que muito enriquecerão os resultados experimentais, conduzindo ao que se acredita ser uma revisão bibliográfica satisfatória.

• Programa Experimental

Para colaborar e acrescentar conhecimento aos estudos sobre cisalhamento em vigas de concreto armado e analisar a influência do tipo, diâmetro máximo e proporção do agregado graúdo (d_{max}) foram ensaiadas 11 vigas de concreto armado variando o d_{max} entre 12,5 mm e 19,0 mm; variando h entre 150 mm e 450 mm, mantendo fixo b_w igual a 150 mm. Estas vigas foram divididas em 4 grupos. No primeiro grupo as peças serão confeccionadas com

o *h* igual a 150 mm. No segundo grupo o *h* será igual a 250 mm, no terceiro grupo *h* será igual a 350 mm, finalizando o quarto grupo as peças serão confeccionadas com *h* igual a 450 mm. Todas estas series terão 3 vigas confeccionadas com seixo (quartzito) e brita (granito), exceto um dos grupos que será composto apenas por 2 vigas.

A resistência a compressão do concreto será de aproximadamente 20 MPa. As barras da armadura de flexão serão devidamente monitoradas com extensômetros elétricos de resistência (EER). As vigas serão submetidas a ensaio tipo Stuttgart até suas rupturas. As cargas de ruptura serão avaliadas e os resultados comparados com estimativas normativas e trabalhos de outros pesquisadores além de compor o banco de dados onde irão contribuir para os resultados propostos neste projeto de tese.

1.5 DESCRIÇÃO DA TESE

O trabalho está estruturado com a apresentação de conteúdo teórico, experimental e computacional, que tem como objetivo geral adicionar conhecimento referente ao estudo sobre comportamento estrutural de vigas ensaiadas ao cisalhamento.

No *segundo capítulo* é apresentada a Revisão bibliográfica onde tem-se uma coletânea de referências que embasam as discussões e análises apresentadas nesta tese.

No *Terceiro capítulo* é apresentada a metodologia para o programa experimental desta tese. Neste capítulo são descritas as configurações dos ensaios e proporção de materiais utilizadas na confecção das vigas.

No *Quarto capítulo* são apresentados os resultados experimentais para o material e o conjunto de vigas componentes do programa experimental.

No *Quinto capítulo* descreve-se os modelos de dimensionamento ao cisalhamento em vigas de concreto armado segundo o ACI 318 (2019), o EUROCODE (2004) e a NBR 6118 (2014), e os modelos de HUBER (2019) e MUTTONI (2019), discutindo suas semelhanças e diferenças conceituais. Neste capítulo também são apresentadas as formulações para o dimensionamento da tensão de cisalhamento calculada, segundo os modelos citados.

No *sexto capítulo* é dada a contribuição da tese para o estudos do cisalhamento em vigas de concreto armado, apresentando as propostas de equações modificadas para a estimativa a resistência ao cisalhamento em vigas de concreto armado sem armadura transversal.

No *sétimo capítulo* é apresentada a modelagem computacional no software ABAQUS utilizada para as vigas do programa experimental desta tese, com o objetivo de propor um modelo calibrado capaz de reproduzir o comportamento experimental.

No oitavo capítulo são apresentadas as conclusões e sugestões para trabalhos futuros.

2. REVISÃO BIBLIOGRÁFICA

2.1 CONSIDERAÇÕES GERAIS

Uma viga de concreto armado, quando submetida à flexão, deverá suportar simultaneamente momentos fletores e esforços cortantes. Deste modo as armaduras longitudinal e transversal serão utilizadas com o fim de combater estes esforços. Neste contexto os estribos irão contribuir na resistência aos esforços de tração que tenderão a separar as seções da viga pós fissuração. FUSCO (2008) informa que no estado fissurado a viga de concreto armado tem um funcionamento que lembra o das treliças. As bielas diagonais delimitadas pelas fissuras formam as diagonais comprimidas e as armaduras transversais formam os tirantes que ligam os banzos das treliças. Ao ser estudado o cisalhamento em vigas de concreto armado, o modelo de treliça será interessante, pois é ele que explica a resistência ao cisalhamento das peças nas proximidades dos estados limites últimos de solicitações normais. Na Figura 2.1 tem-se a analogia de treliça onde:

- Banzo Superior: zona de concreto comprimido;
- Banzo Inferior: armadura longitudinal (de Flexão);
- Diagonais Comprimidas: bielas de concreto entre as fissuras;
- Diagonais Tracionadas: armadura transversal (de cisalhamento).

Figura 2.1: Analogia da Treliça. Adaptado de FUSCO (2008)

A analogia da treliça clássica considera que as fissuras terão inclinação de 45°, os banzos serão paralelos, a treliça é isostática e as armaduras transversais terão inclinação entre 45° e 90°. Porém quando confrontado com resultados de ensaios experimentais observa-se que o modelo não se aproximava dos modelos reais, tratando-se apenas de uma forma de aproximação destes modelos. O modelo de treliça clássica foi revisado por SCHLAICH (1987) sendo chamado de modelo de treliça generalizado, esta revisão se fez necessário pois o

modelo de treliça clássico não atendia a descontinuidades estáticas ou geométricas que se dão perto de cargas concentradas, cantos, curvas ou aberturas, onde surgem as regiões de descontinuidade ou perturbação. Os autores mostraram que enquanto as peças não estão fissuradas pode-se tratar o caso linearmente. Na Figura 2.2 mostra-se um ponto de descontinuidade a partir da aplicação da carga e evidencia-se a variação do angulo das bielas.

Figura 2.2: Trajetória das bielas em uma região B próximas a uma região de descontinuidade D. Fonte: Adaptado de SCHLAICH (1987)

SAMORA (2015) resume os principais motivos que levam a viga a ter uma tensão atuante na armadura menor do que a tensão obtida pelo modelo de treliça clássico.

- A treliça é hiperestática, pelo fato de que os nós não podem ser considerados articulações perfeitas;
- Nas regiões mais solicitadas pela força cortante, a inclinação das fissuras e, portanto, das bielas, é menor que os 45° admitidos por Mörsch;
- Parte do esforço cortante é absorvida na zona de concreto comprimido devido à flexão;
- Os banzos não são paralelos e o banzo superior comprimido é inclinado;
- As bielas de concreto estão parcialmente engastadas na ligação com o banzo comprimido e, assim, é submetida à flexo-compressão, aliviando os momentos ou diagonais tracionadas;
- As bielas mais rígidas que os montantes ou diagonais tracionados absorvem uma parcela maior do esforço cortante que aquela determinada pela treliça clássica;
- A quantidade ou a taxa de armadura longitudinal influi no esforço da armadura transversal.

2.2 TENSAO DE CISALHAMENTO EM VIGAS

Quando vigas de concreto armadas são submetidas a um carregamento transversal qualquer, ela irá apresentar em sua seção transversal tensões normais, ocasionadas pelo momento fletor e tensões tangenciais, devido a força cortante. Desta forma teremos a formação do estado biaxial de tensões onde estarão presentes tensões de tração e compressão. Assim o comportamento da viga será caracterizado em três fases distintas de distribuição de tensões: Estágio I, Estágio II e Estágio III.

No estágio I há pequena intensidade de carregamento e o elemento não apresenta fissuras, pois a tensão de tração não ultrapassa a resistência a tração do concreto. Pode-se considerar que o material é homogêneo e desta forma as tensões atuantes são determinadas utilizando os conceitos de mecânica dos sólidos. Para uma viga de seção constante as tensões normais (σ) e tangenciais (τ) podem ser calculadas pelas Equações 2.1 e 2.2.

$$\sigma = \frac{M}{I} \cdot y$$
 Equação 2-1

$$\tau = \frac{V \cdot S_y}{b_w \cdot I}$$

Onde:

 σ : é a tensão normal na seção transversal atuando a distância y do centro de gravidade;

M: é Momento fletor atuante na seção;

y: é a distância do ponto considerado até o centro de gravidade da peça;

I: é o momento de inercia da seção;

 τ : é a tensão cisalhante na seção transversal;

V: é a força cortante atuante na seção;

 S_y : momento estático da área da seção homogênea situada acima da fibra de ordenada y em relação à linha neutra;

 b_w : largura da seção transversal.

O estado biaxial de tensões se estabelece quando ocorre a atuação variável do momento fletor e das forças cortantes. Neste estado as tensões principais e as direções dos planos principais podem ser determinadas empregando os princípios da teoria da elasticidade definidos por TIMOSHENKO e GOODIER (1951) conforme Equações 2.3, 2.4 e 2.5, sendo definidas como $\sigma_1 e \sigma_2$ as tenções de tração e compressão respectivamente.
$$\sigma_1 = \frac{1}{2} \left(\sigma_x + \sigma_y \right) + \sqrt{\left(\frac{\sigma_x - \sigma_y}{2} \right)^2 + \tau_{xy}^2}$$
 Equação 2-3

$$\sigma_{2} = \frac{1}{2} \left(\sigma_{x} + \sigma_{y} \right) - \sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2} \right)^{2} + \tau_{xy}^{2}}$$
Equação 2-4
$$tg(2\phi_{I}) = \frac{2\tau_{xy}}{\sigma_{x} - \sigma_{y}}$$
Equação 2-5

Onde:

 $\sigma_{1,2}$: tensões principais de tração e compressão;

 σ_x : tensão normal atuante na direção x;

 σ_y : tensão normal atuante na direção y;

 τ_{xy} : tensão cisalhante no plano xy;

 ϕ_I : ângulo de inclinação da tensão principal.

O estágio II se dá quando as tensões de tração são superiores a resistência a tração do concreto, originando assim as primeiras fissuras. Neste momento as armaduras absorvem as tensões de tração enquanto o concreto na zona comprimida continua na sua fase elástica. No estágio II no primeiro momento as fissuras se formam à medida que o carregamento aumenta e em seguida elas se estabilizam e se inicia a fase em que as extensões e a abertura das fissuras aumentam. As fissuras de cisalhamento surgem quando as tensões principais de tração ultrapassam a resistência a tração do concreto, neste momento surgem fissuras de cisalhamento na direção das trajetórias de compressão. Na Figura 2.2 esta situação é exemplificada. CLÍMACO (2008) contribui que com o aumento das cargas, e a seção fissurada em qualquer ponto entre a linha neutra e a armadura tracionada, na obtenção da tensão tangencial só se considera o momento estático da armadura, tomando como uma área de concreto equivalente, por meio dos módulos de elasticidade $(E_S/E_c)A_s$.

Admitindo constante a largura da seção transversal, a tensão tangencial expressa nas equações 2.1 e 2.2 é também constante entre a linha neutra e a armadura, sem considerar a região tracionada de concreto.

2.3 MECANISMOS DE RESISTÊNCIA AO CISALHAMENTO

Para a manutenção da segurança estrutural, em casos de eventual colapso é um princípio fundamental que a estrutura não dependa da resistência à tração do concreto, para que assim

elimine-se a possibilidade de um colapso brusco. Acreditava-se que apenas as armaduras transversais poderiam ser capazes de resistir aos esforços de cisalhamento, porém a transferência das tensões cisalhantes se dá por vários modos e dentre eles:

2.3.1 Efeito de Arco

Este mecanismo pode aumentar a resistência ao cisalhamento das vigas, segundo WIGHT e MACGREGOR (2009), vigas com a relação *a/d* menor do que 1, desenvolvem fissuras que vão desde o ponto de aplicação do carregamento até o apoio. Estas fissuras impedem o fluxo de cisalhamento da armadura longitudinal para a zona comprimida fazendo com que o elemento comece a comportar-se como um arco e não mais como uma viga. Acrescentam que as fissuras inclinadas quebram o fluxo de tensões da armadura longitudinal para a zona comprimida de forma que a ruptura destas vigas pode ocorrer por falha na ancoragem da armadura longitudinal ou pelo esmagamento do concreto da alma numa zona próxima dos apoios.

Vigas que apresentam relação a/d entre 1 e 2,5, desenvolvem fissuras inclinadas e, depois de uma redistribuição interna de forças, são capazes de ainda suportar acréscimos de carregamento. Nestas vigas, a ruptura pode ocorrer por falha na ancoragem, ruptura da armadura longitudinal ou esmagamento da zona comprimida. Para vigas com a/d entre 2,5 e 6,0, a ruptura ocorre pela ação combinada do momento fletor e da força cortante, a fissura inclinada que surgirá causa um desequilíbrio na região e a ruptura ocorrerá, uma vez que está se propagará até a região da zona comprimida. E para vigas muito esbeltas com a/d acima de 6,0 predomina a ruptura por flexão. Na Figura 2.3 representa-se como se dá a relação entre o vão cisalhante, compreendido entre o ponto de aplicação da carga até o apoio e a altura efetiva da viga.

Figura 2.3: Relação entre vão de cisalhamento(a) e a altura efetiva de uma viga (d). Fonte: Adaptado de WIGHT E MACGREGOR (2009)

As Figuras 2.4 e 2.5 mostram o comportamento estrutural de vigas retangulares com variação da relação a/d em relação ao momento fletor e força cortante, respectivamente, onde o valor do momento máximo suportado pela viga é representado pela linha da capacidade à flexão e a área sombreada representa a redução da resistência devido ao cisalhamento

Figura 2.4: Comportamento estrutural da relação entre momento fletor e relação a/d em vigas sem estribo. Fonte: Adaptado MACGREGOR (1988).

Figura 2.5: Comportamento estrutural da relação entre força cortante e relação a/d em vigas sem estribo. Fonte: Adaptado MACGREGOR (1988).

2.3.2 Efeito de Pino

Este fenômeno ocorre quando a armadura longitudinal resiste a uma parcela do deslocamento causado pela força cortante devido ao efeito de pino na barra. A força de pino na barra da armadura longitudinal depende da rigidez da barra na interseção com a fissura. KANI (1967) conduziu ensaios experimentais com extensa faixa de relação a/d e taxas de armadura. O programa experimental visava ensaiar quarto séries de vigas com diferentes alturas e taxa de armadura longitudinal. Na Figura 2.6 apresenta-se os resultados obtidos pelo autor. Observa-

se acréscimos na resistência ao cisalhamento com o aumento da ρ de 0,5 % para 2,8 % quando mantida constante a relação a/d.

Figura 2.6: Relação entre Vu e a/d para vigas com variação da taxa de armadura longitudinal. Fonte: Adaptado de KANI (1967).

2.3.3 Engrenamento dos Agregados

Este mecanismo ocorre entre as duas superfícies originadas por uma fissura. A contribuição do engrenamento dos agregados para a resistência ao cisalhamento depende da abertura da fissura e da rugosidade das superfícies. WIGHT e MACGREGOR (2009) ressalta que um dos fatores limitantes na parcela de engrenamento dos agregados é a abertura das fissuras, desta forma a altura da peça passa a influenciar no controle da abertura das fissuras de flexão. À medida que a altura da viga aumenta, o espaçamento entre as fissuras e suas aberturas tendem a aumentar, diminuindo assim o atrito entre as faces das fissuras e reduzindo consideravelmente a tensão cisalhante nominal última.

De acordo com SAVARIS (2016), o emprego de agregados de maior diâmetro, desde que o agregado possua maior resistência que a argamassa, acarreta maior engrenamento entre as faces das fissuras. A resistência mecânica dos agregados torna-se um fator preponderante no plano de ruptura do concreto, já que a utilização de agregados mais resistentes que a argamassa acarreta a ruptura na interface entre a pasta e o agregado, melhorando o engrenamento. SAGASETA (2011) observa que a literatura é divergente quanto ao real efeito do agregado na resistência ao cisalhamento em vigas com e sem estribos e observa nos

estudos de REGAN (2005) que ao ensaiar uma série de vigas sem estribos observou a redução da resistência ao cisalhamento à medida que o agregado graúdo era fraturado.

TIRASSA (2020) nos remete que em muitas situações de projeto a resistência da estrutura é controlada pela capacidade de transferência de tensão em estruturas de concreto sem armadura, como o caso de lajes sem armadura transversal submetidas ao cisalhamento. Para estas peças, normalmente se desenvolve uma fissura crítica de cisalhamento, Figura 2.7 a. Outro ponto que pode influenciar é a cinemática da abertura da fissura que é influenciada pela abertura da fissura e deslizamento entre as faces da fissura, Figura 2.7 b. Por fim pode acontecer a união entre uma fissura secundária de flexão, que devido a rotação da viga pode mudar a direção e se unir a uma fissura crítica de cisalhamento, Figura 2.7 c.

Figura 2.7: Padrão de fissuração e Cinemática da fissura em peças de concreto sem armadura transversal. Fonte: Adaptado de TIRASSA (2020)

2.3.4 Análise do Desenvolvimento de Fissura e Mecanismos de Transferência de Cisalhamento.

No pico de carga ou imediatamente antes as microfissuras se originam/começam a crescer devido ao descolamento do agregado graúdo da matriz ou até pela ruptura deste agregado. À medida que a carga é aplicada e a deformação no concreto aumenta as microfissuras se agrupam até que resultam em uma única fissura crítica. Para esta deformação crescente, a capacidade de transferência de tenção entre as faces da fissura muda. A máxima resistente se

dará pela resistência a rigidez dos agregados e pela capacidade de aderências destes na matriz cimentícia (argamassa). HORDIJK (1992) explica que, para deformações intermediárias onde a peça ainda não atingiu o pico do carregamento, a contribuição do engrenamento dos agregados primeiro aumenta e com o aumento da deformação do concreto, esta começa a diminuir. No entanto, o engrenamento, por sua vez depende da resistência e da rigidez das faces fissuradas e do concreto como um todo.

Pelo exposto o autor HORDIJK (1992) deduz que a resistência a tração (f_{ct}) e a energia de fratura (G_f) são baseadas em diferentes características do concreto. A resistência a tração depende do concreto não fissurado, enquanto a energia de fratura depende do engrenamento entre os agregados. No entanto o engrenamento depende da resistência e rigidez das superfícies da fissura. Pelo exposto pode-se esperar que a contribuição do engrenamento dos agregados para a energia de fratura aumente para o caso de superfícies mais rugosas.

2.4 TRABALHOS RECENTES QUE AVALIAM A INTERFERENCIA DO AGREGADO NA RESISTÊNCIA AO CISALHAMENTO

2.4.1 DENG et al (2017)

Neste trabalho DENG (2017) avalia experimentalmente o efeito do diâmetro máximo do agregado graúdo na resistência ao cisalhamento de vigas de concreto armado, sem estribo. Os diâmetros máximos do agregado graúdo utilizados foram: 10, 20, 31,5 e 40 mm, os autores avaliaram duas relações de profundidade para o cisalhamento. a/d. Sendo obtidos os valores 2,2 e 3,0. Foi desenvolvida a análise numérica dos experimentos utilizando o método dos elementos finitos visando simular o processo de falha das vigas por cisalhamento.

Os autores optaram por esta investigação pelo fato de que o engrenamento do agregado desempenha um papel importante na resistência ao cisalhamento de vigas sem estribo, e as respostas sobre o efeito do diâmetro do agregado graúdo na resistência ao cisalhamento é limitada para pequenas relações de a/d.

2.4.1.1 Procedimento experimental Deng et al (2017)

Os autores dividiram as vigas em duas séries de ensaio conforme Figura 2.8. Na Série (a) a/d é igual à 2,2 e na Série (b) a/d é igual à 3. O resumo das características é apresentado na Tabela 2.1.

Figura 2.8: Dimensões das vigas ensaiadas: Serie (a) a/d = 2,2; Serie (b) a/d = 3,0. Fonte: DENG *et al* (2017) Tabela 2.1: resumo das características das vigas e dos resultados experimentais.

	D	oimensõ	es	Prop	riedades (Concreto	Taxas	de Ar	madura	Experimental	Teórico
Espécime	b (mm)	h (mm)	d (mm)	f _c (MPa)	f _{ctd} (MPa)	Agregado (mm)	A _s (mm ²)	ρL %	f _{ys} (MPa)	Vu (kN)	Vu (kN)
B2.2-10-1				39,3	3,04	10				199,0	101,5
B2.2-20-1		Dimensõ h (mm) 400		40,8	3,08	20				199,0	101,5
B2.2-30-1				39,6	3,12	30	-			212,0	108,0
B2.2-40-1				43,2	3,33	40				242,3	123,2
B2.2-10-2				39,3	3,04	10				160,8	82,4
B2.2-10-2				40,8	3,08	20				201,3	102,7
B2.2-10-2				39,6	3,12	30	1140			190,1	97,1
B2.2-10-2	200	400	360	43,2	3,33	40		$140 \begin{array}{c} 1,5 \\ 8 \end{array}$	(00	209,7	106,9
B3.0-10-1	200			39,3	3,04	10	1140		609	152,9 609	79,0
B3.0-20-1				360	3,08	20					81,5
B3.0-30-1				39,6	3,12	30				179,7	92,4
B3.0-40-1				43,2	3,33	40				192,9	99,0
B3.0-10-2				39,3	3,04	10				150,6	77,8
B3.0-10-2			•	40,8	3,08	20				177,5	91,3
B3.0-10-2				39,6	3,12	30				172,9	89,0
B3.0-10-2				43,2	3,33	40	- 			190,1	97,6

Para registrar o deslocamento nas duas faces, através das trincas de cisalhamento os autores desenharam uma grade com espaçamento de 50 mm na face frontal das vigas. Foram utilizados nove extensômetros elétricos de Resistência (LVDTs) de acordo com a

configuração da Figura 2.9. Estes LVDTs foram utilizados, pois quando há deslocamento relativo entre duas faces através de fissuras, os deslocamentos verticais e tangenciais podem ser calculados com base nos alongamentos registrados nos LVDTs.

Figura 2.9: Layout dos LVDTs. Fonte: DENG et al (2017)

De modo geral os autores observaram que à medida que o diâmetro máximo do agregado aumentou a resistência ao cisalhamento aumentou, este fato deve-se ao melhor engrenamento dos agregados. A relação *a/d* tem influência sobre a resistência ao cisalhamento final, visto que para as vigas com o mesmo tamanho de agregado graúdo as cargas finais obtidas para a relação *a/d* igual a 3 são inferiores em relação as cargas obtidas para as vigas com relação a/d igual à 2,2, o que pode ser atribuído ao efeito de pino (*bending effect*).

2.4.1.2 Influência do diâmetro máximo do agregado graúdo

A dosagem do concreto utilizado na pesquisa objetivava alcançar o mesmo valor de resistência final f_c para todas as vigas, portanto o diâmetro do agregado graúdo não pode ser levado em consideração para esta análise. Os autores, então, verificaram a influência na resistência à tração do concreto e não observaram nenhuma tendência obvia entre ambas as variáveis. Isto pode ser verificado na Figura 2.10. Os autores concluíram que o aumento do diâmetro máximo do agregado graúdo tem pouca influência na resistência à tração deles. Na Figura 2.11 tem-se os resultados de resistência ao cisalhamento calculados pela norma ACI 318-14 e CSA 23.

Figura 2.10: Efeito do tamanho do agregado na resistência à tração do concreto. Fonte: DENG et al (2017)

Figura 2.11: Efeito do tamanho do agregado na tensão de cisalhamento final nominal. Fonte: DENG et al (2017). Nas Equações de 2.6 a 2.9, a primeira não considera o tamanho do agregado como variável para este cálculo. Os autores observaram que o aumento do agregado influenciou no aumento da resistência e ambas as normas se apresentaram conservadoras quanto à resistência ao cisalhamento. Outra observação dos autores foi que a resistência calculada pela norma ACI 318-14, para a série de vigas com a/d igual à 3, aproximou-se mais dos resultados experimentais do que a série com a/d igual à 2,2.

$$V_c = \left(0,16 \cdot \sqrt{f_c'} + 17\rho \frac{Vd}{M}\right) b_w \cdot d \le 0,29\sqrt{f_c'} b_w \cdot d$$
 Equação 2-6

$$V_c = \beta \sqrt{f_c'} b_w \cdot d_v$$
 Equação 2-7

$$\beta = \frac{0.4}{(1+1500\varepsilon_x)} \cdot \frac{1300}{(1000+S_{ze})}$$
 Equação 2-8

$$\varepsilon_x = \frac{M/d_v + V}{2E_s A_s}$$
 Equação 2-9

Dependendo da força e localização dos agregados, a fissura de cisalhamento poderá passar contornando o agregado ou poderá romper o mesmo. Uma vez iniciada a fissuração por cisalhamento, os deslocamentos normal e tangencial ocorreram na interface das fissuras. Como os agregados são mais resistentes que a pasta de concreto, em concretos de resistência normal, a abertura da fissura irá separar o agregado da pasta de cimento, como mostra a Figura 2.12 (a), neste caso o engrenamento do agregado irá dificultar o deslocamento tangencial. Para concretos não convencionais a ligação pasta agregado é alta, e durante a formação da fissura de cisalhamento o agregado será quebrado e a fissura passará por elas sem encontrar o travamento proposto pela rugosidade encontrado na situação 2.11 (b) da referida figura.

Figura 2.12: Interação entre fissura de cisalhamento e agregado Graúdo em concretos de resistência convencional e não convencional. Fonte: DENG et al (2017).

A Figura 2.13 mostra os deslocamentos medidos na face das vigas de ambos os grupos ensaiados. Quando o deslocamento vertical $\omega < \sqrt{a_g \cdot \Delta}$ ocorre o engrenamento do agregado e este irá interagir com a pasta criando rugosidade superficial. Quando $\omega > \sqrt{a_g \cdot \Delta}$ não ocorre engrenamento nem interação entre o agregado e a pasta. Observa-se que para a relação a/d igual à 2,2 os deslocamentos diminuem à medida que aumenta-se o tamanho do agregado.

Figura 2.13: Deslocamentos medidos na face das vigas através de trincas de cisalhamento. Fonte: DENG et al (2017).

2.4.1.3 Iniciação e Propagação das Fissuras

Para as amostras com a mesma relação a/d não foram observados diferentes padrões de propagação da fissura. Porém para a série e vigas com a/d igual à 2,2, observou-se que a falha se deu pela união das fissuras de cisalhamento que se formaram, fato que não foi notado na série de vigas com a/d igual à 3, uma vez que a falha se deu de forma frágil com formação e abertura da fissura de cisalhamento. Os autores também observaram que as fissuras de cisalhamento não ultrapassaram as barras longitudinais.

2.4.1.4 Resultados Numéricos

A análise numérica objetivou simular os efeitos da dimensão máxima do agregado graúdo na resistência ao cisalhamento. São comparados os resultados numéricos com os resultados experimentais, Figura 2.14, e observa-se que os resultados numéricos para a resistência ao cisalhamento foram muito superiores aos resultados experimentais, fato que deve-se ao modelo implementado.

Figura 2.14: Comparação da resistência ao cisalhamento experimental com a análise pelo método dos elementos finitos. DENG *et al* (2017).

Segundo COLLINS E MITCHELL (1990) ao se formular a relação tensão deformação para a alma de uma viga de concreto fissurada, sujeita a um esforço cortante, deve-se considerar que as condições de deformação são diferentes das verificadas quando testadas no cilindro de concreto de acordo com o ensaio de resistência dos materiais. A teoria do campo de compressão negligencia a contribuição das tensões de tração e superestima a deformação, produzindo assim resultados teóricos de resistência conservadoras.

2.4.2 SAVARIS (2017)

SAVARIS (2017) avaliou experimentalmente a influência da redução do volume e granulometria do agregado graúdo na resistência ao cisalhamento em vigas de concreto autoadensável e concretos convencionais, uma vez que a redução do volume e granulometria pode acarretar redução do engrenamento entre os agregados. Os autores utilizaram seis dosagens, sendo quatro para concreto autoadensável e duas para concreto convencional. Pra tanto foram moldadas 18 vigas com armadura de flexão e sem armadura transversal.

O programa experimental do autor foi idealizado para comparar a resistência ao cisalhamento de vigas de concreto convencional vibrado e autoadensável através de ensaios de flexão em quatro pontos.

2.4.2.1 Características das vigas

Todas as vigas possuíram seção transversal retangular de 100 x 250 mm e comprimento total de 1500 mm. Todas as vigas apresentaram armadura longitudinal composta por duas barras de aço CA-50, com 16 mm de diâmetro correspondendo a uma taxa de armadura longitudinal igual a 1,61%. Nas Figuras 2.15 e 2.16 mostra-se o detalhamento da armadura das vigas e o esquema de ensaio de flexão a quatro pontos.

Figura 2.15: Detalhamento das armaduras da viga. Adaptado de SAVARIS (2017).

Figura 2.16: Esquema de ensaio de Flexão a quatro pontos. Fonte: Adaptado de SAVARIS (2017)

Os estudos foram pautados no fato de que a dosagem de concretos autoadensáveis irá requerer em sua dosagem uma menor quantidade de agregado graúdo e menor diâmetro destes agregados, sendo assim, a resistência ao cisalhamento destes concretos poderia ser prejudicada em relação aos concretos convencionais, fato este que não é consenso entre os pesquisadores. Constata-se que, apesar do concreto autoadensável existir a quase três décadas, existem divergências entre os pesquisadores quanto ao comportamento e ao dimensionamento de estruturas de concreto armado empregando este material. Portanto, existe a necessidade de se avaliar a influência das particularidades da dosagem do concreto autoadensável, tais como a utilização de agregados graúdos de menores diâmetros e em volume reduzido, na resistência ao cisalhamento de vigas de concreto armado e verificar, se os atuais modelos de dimensionamento ao cisalhamento são seguros e adequados para sua utilização.

2.4.2.2 Dosagem, instrumentação e nomenclatura dos Concretos

SAVARIS (2017) avalia vigas moldadas com concretos autoadensáveis e concretos convencionais, a seguir apresenta-se as características e resultados obtidos pelo autor para as vigas fabricadas com concreto convencional. Na nomenclatura das vigas (CC) corresponde a concreto convencional, (0) e (1) correspondem ao diâmetro máximo do agregado graúdo, 9,5 mm e 19,00 mm respectivamente. A instrumentação utilizada nas vigas é apresentada na Figura 2.17. Para medir o deslocamento vertical no centro da viga foram instalados dois transdutores de deslocamento (LVDTs) com capacidade de medição de 10 mm, um em cada lado da viga, fixado sem barras de alumínio apoiadas em roldanas parafusadas nas extremidades das vigas. Como base de medição do deslocamento para os LVDTs foram utilizadas cantoneiras de aço parafusadas no centro do vão da viga, na altura da linha neutra.

Figura 2.17: Instrumentação das vigas. Fonte: SAVARIS (2017)

2.4.2.3 Resultados e Discussões

• Resistência ao cisalhamento

Na Tabela 2.2 são apresentados os valores da força cortante última das vigas, força cortante última normalizada, a média dos valores de força cortante última para os exemplares de cada dosagem de concreto, e o ângulo de inclinação da fissura de cisalhamento. Comparando os valores médios de força cortante normalizada última e inclinação da fissura de cisalhamento

verifica-se que as vigas com fissura mais inclinada apresentaram maior resistência ao cisalhamento, indicando a ocorrência de uma maior parcela vertical de transferência de força através da fissura.

Concreto	V_u (kN)	Vu,m	Ângulo da Fissura (°)	Ângulo médio (°)					
CC1 - V1	38,03		40,3						
CC1 - V2	40,01	40,4	34,7	38,7					
CC1 - V3	43,16		41,2						
CC0 - V1	38,77		38,5						
CC0 - V2	38,56	38,6	42,6	38,4					
CC0 - V3	38,41		34,1	—					
	Fonte: Adaptado de SAVARIS (2017)								

Tabela 2.2: Força cortante última e ângulo de inclinação da fissura de cisalhamento.

Na Tabela 2.2 são apresentados os valores de força cortante última obtidos experimentalmente e calculados pelas Equações 2.10 e 2.11, que estimam a resistência última ao cisalhamento para peças sem armadura transversal por meio das normas analisadas pelos autores, sendo elas: ACI 318 (2014) e EC2 (2004).

$$V_R = \left(\sqrt{f_c} + 120.\,\rho_1.\frac{V_u \cdot d}{M_u}\right) \frac{b_w \cdot d}{7} \le 0.3\sqrt{f_c} \cdot b_w \cdot d$$
Equação 2-10
$$V_R = 0.18 \cdot \left(1 + \sqrt{\frac{200}{d}}\right) \cdot (100 \cdot \rho_l \cdot f_c)^{1/3} \cdot b_w \cdot d$$
Equação 2-11

onde:

 f_c : Resistência a compressão do concreto (MPa);

 ρ_l : Taxa de armadura longitudinal;

 V_u : Força cortante última na seção (kN);

 M_u : Momento fletor último na seção (kN.m);

 b_w : Largura da seção transversal (m);

d : Altura efetiva da seção transversal;

Observa-se na comparação dos resultados que a Norma ACI-318 apresenta-se mais conservadora que a norma EC-2, sendo esta última a que mais se aproxima dos valores experimentais, Tabela 2.3. Observa-se que a redução no tamanho do agregado graúdo também interfere nestes resultados, uma vez que a redução do d_{max} afeta o engrenamento dos mesmos

e reduz a capacidade resistente ao cisalhamento das peças como observado. Na Figura 2.18 são apresentados os valores médios da força cortante última normalizada dos concretos estudados, onde observa-se que a força cortante última, dos concretos fabricados com agregado de d_{max} igual a 19 mm, é superior aos mesmos concretos fabricados com agregado de d_{max} igual a 9 mm. Este dado corrobora com a interpretação de que o diâmetro máximo do agregado graúdo interfere na resistência última dos concretos submetidos a esforços de cisalhamento devido a redução do engrenamento destes.

Tabela 2.3: Força cortante última obtida experimentalmente, estimativa das normas e relação entre estes valores. Adaptado de SAVARIS (2017).

Concreto	Experi	imental	Estimativas	das normas	Comparação		
Concreto -	V_u	$V_{u,m}$	$V_{u,ACI}$	$V_{u, EC}$	$V_{u, ACI}/V_{u,m}$	$V_{u, EC}/V_{u,m}$	
CC1 - V1	38,03						
CC1 - V2	40,01	40,4	22,12	31,31	0,55	0,78	
CC1 - V3	43,16	-					
CC0 - V1	38,77						
CC0 - V2	38,56	38,6	23,60	32,92	0,61	0,85	
CC0 - V3	38,41	-					

Figura 2.18: Valores médios para a força cortante das series de viga com variação do diâmetro máximo do Agregado Graúdo. Adaptado SAVARIS (2017)

2.4.3 HUBER el at (2019)

Os autores avaliaram a influência do engrenamento dos agregados na resistência ao cisalhamento em vigas de concreto armado. Segundo os autores o engrenamento dos agregados descreve a possível transferência das tensões de cisalhamento entre duas superfícies de trinca opostas, um dos fatores responsáveis é a rugosidade superficial desta trinca. Os autores conduziram ensaios experimentais em vigas preparadas a partir de seis dosagens distintas de concreto e observaram diferentes níveis de rugosidade superficial variando o volume de agregados graúdo e a quantidade de cimento em misturas com f_c entre

40 MPa a 60 MPa. Com estes resultados os pesquisadores avaliaram o impacto do engrenamento dos agregados na resistência ao cisalhamento em vigas de concreto armado.

Os autores supõem, a partir de resultados experimentais da literatura, que a rugosidade da superfície da fissura é influenciada pela resistência do concreto, sendo este atributo muito importante para a avaliação da resistência ao cisalhamento de vigas de concreto sem armadura transversal. A rugosidade superfícial da superfície da fissura diminui com o aumento da resistência à compressão do concreto, porém simultaneamente a diminuição da rugosidade diminui a resistência da fissura diagonal de cisalhamento. A porcentagem em volume de agregado graúdo em uma dosagem de concreto pode influenciar a resistência ao cisalhamento em vigas de concreto armado sem armadura transversal. YANG *et al* (2011) mostraram que o agregado graúdo é a principal razão para o desenvolvimento do engrenamento dos agregados, sendo assim vigas de concreto autoadensáveis sem armadura transversal podem apresentar redução na capacidade resistente ao cisalhamento, uma vez que a quantidade de agregado graúdo é reduzida neste tipo de concreto.

2.4.3.1 Investigação experimental

Visando contribuir com o tema sobre o engrenamento dos agregados graúdos, os autores ensaiaram experimentalmente seis diferentes misturas de concreto variando f_c entre 40 e 60 MPa. Na Tabela 2.4 descreveu-se as características dos concretos fabricados. As letras iniciais indicam a porcentagem por volume de agregado graúdo e o número subsequente especifica a quantidade de cimento.

Tipo de Agregado	[-]	Dolomita	Quartzo	Quartzo	Dolomita	Dolomita	Quartzo
Pó de pedra	[kg]	0	0	140	177.5	171.6	128.4
Agregado Miúdo	[kg]	989.7	981.2	926.1	938.5	911.2	885
Agregado Graúdo	[kg]	914.3	936.1	815.3	847.4	811.6	803.8
Cimento	[kg]	305.5	302.6	301.4	269.23	344.9	382.4
Água	[kg]	181.1	196.5	189.6	200.1	196.5	184.8
Aditivo (Superplast.)	[kg]	1.2	1.3	2.4	0.8	1.7	4.1
Total	[kg]	2391.8	2417.7	2374.8	2433.5	2437.6	2388.4

Tabela 2.4: Características dos concretos dosados pelo autor.

Fonte: Adaptado de HUBER (2019)

A partir da Equação 2.12 introduzida por CAVAGNIS (2017) que introduz o fator d_{dg} referente a rugosidade na fissura e leva em consideração a dosagem e a resistência do concreto o autor fez as derivações que o levaram a Equação 2.13. A relação entre a

rugosidade, definida conforme a Equação 2.14 e a resistência do concreto é apresentada na Figura 2.19. Os resultados experimentais são apresentados na Tabela 2.5

$$V_{Rc} = \kappa \cdot \left(100 \cdot \rho_l \cdot f_c \cdot \frac{d_{dg}}{a_{cs}}\right)^{1/3} \cdot b_w \cdot d$$
Equação 2-12
$$V_c = 2,20 \cdot \left(100 \cdot \rho_l \cdot \frac{f_c}{a_{cs}}\right)^{1/3} \cdot R_s \cdot b_w \cdot d$$
Equação 2-13
$$R_s = \frac{2}{f_c^{1/8}}$$
Equação 2-14

Onde:

$$a_{cs} = \frac{Me}{Ve}$$

 R_s : Índice de rugosidade

 $b_w \cdot d$: índices geométricos da viga, largura e altura efetiva.

Figura 2.19: Relação entre Rs e fc obtida a partir dos ensaios de HUBER (2017) e PERERA e MUTSUYOSHI (2013). Fonte: Adaptado de HUBER (2017)

Tabela	2.5:	Resultados	Experimentais.
--------	------	------------	----------------

Dosagem tipo	СР	V _{max} (kN)	f _c [MPa]	b _w [mm]	d(h) [mm]	ρ _l [%]	a/d	Rs	VRc [kN] Eq. 2.12	Vmax/VRc Eq. 2.12	VRc [kN] Eq. 2.2	Vmax/VRc Eq. 2.12
NC300-52.5	B1	83.01	47.5		460		3.04	1.24	74.39	1.12	73.59	1.13
NC300-42.5	B1	76.35	39.4					1.26	69.9	1.09	69.09	1.11
SCC200 52 5	B1	71.39	56.7	150		1.16		1.21	78.94	0.9	76.21	0.94
SCC300-52.5	B2	82.84	56.7					1.21	78.94	1.05	76.21	1.09
SCC270-52.5	B1	81.78	42.5	•				1.23	71.69	1.14	70.41	1.16

Dosagem tipo	СР	V _{max} (kN)	f _c [MPa]	b _w [mm]	d(h) [mm]	ρ _l [%]	a/d	Rs	VRc [kN] Eq. 2.12	Vmax/VRc Eq. 2.12	VRc [kN] Eq. 2.2	Vmax/VRc Eq. 2.12
	B2	71.12	42.5	_		1.16	3.04	1.23	71.69	0.99	70.41	1.01
800240 52 5	B1	75.56	51					1.21	76.18	0.99	73.42	1.03
500340-52.5	B2	56.87	51	150	460			1.21	76.18	0.75	73.42	0.77
SCC380-52.5	B1	72.61	63.9	-				1.18	80.5	0.9	77.47	0.94
	B2	85.87	63.9					1.18	80.5	1.07	77.47	1.11

Fonte: Adaptado de HUBER (2019)

Os autores observaram que a variação da quantidade de agregado entre as séries NC e SCC, não tiveram influência nos resultados do teste de rugosidade. E as misturas com menor resistência do concreto apresentaram valores de efetividade agregado C_f acima dos demais. Estes dados foram obtidos a partir de ensaios *Push off*.

2.4.3.2 Resultados da investigação experimental

Todas as vigas tiveram ruptura por cisalhamento. Para a previsão as cargas máximas os autores utilizaram modelos baseados em diferentes teorias e todos, exceto o EC2, apresentaram bom nível de aproximação. Para os autores a ativação do engrenamento do agregado é altamente dependente do padrão de fissuração. Os ensaios experimentais mostraram que vigas com fissuras de cisalhamento iniciadas perto do ponto de aplicação da carga apresentam maior resistência ao cisalhamento acompanhadas por maiores contribuições do engrenamento dos agregados do que vigas que tem fissuras de cisalhamento iniciadas apenas no meio do vão de cisalhamento. O conceito introduzido pelos autores para calcular a resistência ao cisalhamento de vigas de concreto sem armadura transversal permite a medição de índices de rugosidade e, portanto, o tipo de mistura de concreto a ser levado em consideração.

2.5 TRABALHOS QUE AVALIAM A RESISTÊNCIA AO CISALHAMENTO EM VIGAS DE CONCRETO ARMADO.

2.5.1 KIM E PARK (1996)

Neste trabalho os autores fazem uma análise dos fatores que influenciam a resistência ao cisalhamento em vigas de concreto armado. KIM e PARK (1996) observaram por meio dos resultados que a resistência ao cisalhamento de vigas de concreto armado dependerá principalmente de fatores como: resistência do concreto, taxa de armadura longitudinal, vão de cisalhamento e altura útil da viga. Os autores concluem ainda que o diâmetro máximo do agregado e diâmetro das barras longitudinais também contribuem para a resistência. Para

vigas onde a/d fique entre 2 e 3 a resistência ao cisalhamento, em uma seção não fissurada de concreto armado, será resistida pelos mecanismos identificados na Figura 2.20, sendo eles: resistência ao cisalhamento na zona de compressão, engrenamento dos agregados e resistência relacionada as barras longitudinais.

Figura 2.20: Mecanismos que compõem a resistência ao cisalhamento em vigas com a/d entre 2 e 3. Fonte: Adaptado de KIM E PARK (1996).

Os autores propõem o desenvolvimento de uma equação para o cálculo da força cortante em vigas de concreto armado sem armadura transversal. Esta proposta é uma modificação da equação proposta por BAZANT (1984). A Equação 2.15 que prevê a resistência ao cisalhamento de vigas de concreto sem estribos levando em consideração os parâmetros citados pelo autor que com base em resultados experimentais se mostraram

$$V_{u,d} = 15.5 \cdot f_c^{\alpha/3} \cdot \rho^{3/8} (0.4 + d/4) \left(\frac{1}{\sqrt{d}} + 0.07\right)$$
 Equação 2-15

2.5.2 MUTTONI (2019)

Nesta pesquisa os autores enfatizam que muitos esforços de pesquisa vêm sendo dedicados ao dimensionamento do cisalhamento de estruturas sem armadura transversal. Estas pesquisas permitiram uma série de avanços significativos na compreensão do fenômeno, que atualmente é reconhecido como dependente de uma série de mecanismos como o engrenamento dos agregados, resistência residual do concreto à tração no pós fissuração, efeito de pino e inclinação da fissura crítica, dentre outros. Os autores observam que nos últimos anos, as pesquisas científicas confirmaram essas informações por meio de ensaios experimentais correlacionado com as leis constitutivas que regem a transferência de esforços no cisalhamento. E a partir deste fato teorias foram desenvolvidas.

Uma destas teorias é a teoria da fissura crítica de cisalhamento (TFCC), tradução de *Critical Shear Crack Theory (CSCT)*. Neste trabalho o autor revisa os fundamentos da TFCC e os relaciona com ensaios experimentais de vigas ao cisalhamento, com o objetivo de apresentar expressões simples de dimensionamento que possam ser aplicadas na prática. Os autores atentam ao fato de que o modelo permite a reprodução dos fenômenos físicos, que podem ser avaliadas de uma maneira precisa, considerando a resposta não linear potencialmente fissurada da peça de concreto.

Este tópico é importante, pois está relacionado a grande variedade de casos práticos onde a resistência ao cisalhamento do concreto sem armadura transversal, pode governar o dimensionamento da estrutura de concreto. Além de estruturas simples, que recaem nestes casos, temos ainda lajes e vigas contínuas, cascas, lajes lisas com carga concentrada próximo ao apoio, entre outras. Para o autor, entre os mecanismos existentes, os que mais tem influência em peças de concreto delgadas, são:

 V_a : Engrenamento dos agregados. Atrito devido ao deslizamento das seções no concreto fissurado.

 V_t : Resistência residual à tração na pós fissuração do concreto

 V_d : Efeito de Pino. Quando a fissura de cisalhamento passa pela armadura de flexão e sofre resistência dela.

 V_c : Efeito de arco. Este efeito é governado pela inclinação da fissura crítica de cisalhamento. Na Figura 2.21 ilustra essas ações de transferência de cisalhamento.

Figura 2.21: Potenciais ações de transferência de cisalhamento em peças de concreto sem armadura transversal. Fonte: MUTTONI E RUIZ (2019)

As principais pressuposições da TFCC são simples e podem ser resumidas da seguinte forma:

- (a) A resistência ao cisalhamento é governada pelo desenvolvimento de uma fissura crítica de cisalhamento.
- (b) A abertura da fissura e o deslizamento entre as faces é variável ao longo da altura fissura e regido pela cinemática da fissura.
- (c) As várias ações de transferência de cisalhamento podem governar as forças de cisalhamento
- (d) A tensão de cisalhamento transferida por cada ação de cisalhamento pode ser calculada com base no equilíbrio, cinemática e leis constitutivas fundamentais dos materiais.
- (e) A falha de cisalhamento ocorre pelo somatório de todas as ações de cisalhamento, ou seja: $V_u = V_a + V_t + V_d + V_c$

Buscando simplificação à proposta, uma vez que se faz necessário simplificar as equações de dimensionamento, MUTTONI e RUIZ (2008) adotaram as seguintes simplificações ao modelo geral de TFCC: A resistência ao cisalhamento é considerada dependente, no parâmetro referente ao concreto, as propriedades dos materiais serão expressas em raiz quadrada da resistência a compressão do concreto; A abertura e deslizamento se desenvolvem localmente ao longo da fissura crítica de cisalhamento. Estes parâmetros são variáveis ao longo da profundidade da viga. A resistência ao cisalhamento pode ser expressa pela Equação 2-16:

$$\frac{V_u}{b \cdot d} = 0.6 \times \left(100 \cdot \rho \cdot f_{ck} \cdot \frac{d_{dg}}{\sqrt{a \cdot d/4}}\right)$$
 Equação 2-16

Onde,

 f_{ck} : Resistência a compressão do concreto a: Região de cisalhamento. $d_{dg} = 16mm + d_g \le 40 \text{ mm}$

2.6 RECOMENDAÇÕES NORMATIVA PARA O CALCÚLO DA RESISTÊNCIA AO CISALHAMENTO EM VIGAS

2.6.1 ACI 318 (ACI, 2019)

A norma americana ACI 319 em sua versão atualizada de 2019, traz em sua formulação um fator considerando o efeito de tamanho, representado por λ_s . No item 22.5.5.1 da referida norma é comentado que para estruturas de concreto não protendido sem armadura transversal, a resistência ao cisalhamento, atribuída ao concreto, não aumenta em proporção direta com a altura efetiva da estrutura, e a norma atribui este fato ao efeito de tamanho, denominado *size effect*. Estudos de SNEED e RAMIREZ (2010) apontam que dobrando a altura útil de uma viga, o esforço cortante que levará a mesma ao colapso pode ser menor do que o dobro da resistência ao cisalhamento em vigas baixas. A norma comenta ainda da influência da taxa de armadura relacionada à altura útil das estruturas. A proposta para a estimativa do esforço cortante em vigas sem armadura transversal ($A_v < A_{vmin}$) é apresentada na Equação 2-17.

$$V_c = 0.66 \cdot \lambda_s \cdot (\rho)^{\frac{1}{3}} \cdot \sqrt{f_c} \cdot b_w \cdot d$$
 Equação 2-17

Onde:

$$\lambda_{s} = \sqrt{\frac{2}{1+0,004 \cdot d}} \le 1$$

$$\rho = \text{Taxa de armadura longitudinal} = \frac{A_{s}}{b_{w} \cdot d};$$

$$f_{c} = \text{Resistência a compressão do concreto;}$$

$$b_{w} = \text{largura da seção transversal da viga}$$

$$d = \text{altura efetiva da viga;}$$
2.6.2 EUROCODE 2 (EC2, 2004)

Para o dimensionamento utilizando a norma Europeia considera-se as bielas com inclinação entre 26,5° e 45°. A resistência do concreto admitida deverá ser inferior a 90 MPa. A força cortante máxima resistida pela seção é dada pela resistência da biela de acordo com a Equação 2.18.

$$V_C = \left[C_{Rd,c} k (100 \cdot \rho_l \cdot f_{ck})^{1/3} + k_1 \cdot \sigma_{cp} \right] \cdot b_w \cdot d \qquad \text{Equação 2-18}$$

Onde:

$$C_{Rd,c} = 0,18/\gamma_c$$
$$k = 1 + \sqrt{\frac{200}{d}} \text{ com d em mm}$$

$$\rho_l = \frac{A_{sl}}{b_w \cdot d}$$
$$\sigma_{cp} = \frac{N_{Ed}}{A_c}$$

A influência das deformações impostas por N_{Ed} que é a força axial na seção transversal devido ao carregamento, pode ser ignorada. Logo a parcela $k_1 \cdot \sigma_{cp}$ será zerada. Substituindo os termos na Equação 2.19, a fórmula para o cálculo da resistência ao cisalhamento pela norma europeia fica conforme que segue na Equação 2.19:

$$V_{C} = \left[0,18 \cdot k \left(100 \cdot \frac{A_{sl}}{b_{w} \cdot d} \cdot f_{ck}\right)^{1/3}\right] \cdot b_{w} \cdot d \qquad \text{Equação 2-19}$$

Onde:

k: fator relacionado ao size effect;

 A_{sl} : Área de aço da armadura longitudinal;

 b_w : Largura da seção transversal;

d : Altura útil da seção

 f_{ck} : Resistência a compressão do concreto.

2.6.3 NBR 6118 (ABNT, 2014)

A norma brasileira NBR 6118 (ABNT, 2014), é aplicada aos concretos com resistência a compressão entre 20 MPa e 90 MPa, possui 2 modelos de cálculos que diferenciam entre si: o angulo de inclinação das bielas, no modelo I este angulo será igual à 45° e no modelo II o angulo varia entre 30° e 45°; diferenciam-se também quanto à consideração da resistência nominal ao cisalhamento provida pelo concreto. No modelo I o valor desta parcela é constante independente da força cortante atuante na seção. Já no modelo II considera-se que esta parcela irá diminuir à medida que a força cortante atuante na seção aumente. Nas Equações 2.20 a 2.25 apresentam-se o modelo de cálculo I e II.

Para assegurar a integridade das bielas comprimidas a força cortante atuante é limitada à:

$$V_{SD} \le 0,54. \,\alpha_{V2}. f_{cd}. \,bw. \,d. \,sen^2\theta. \,(cot\alpha + cot\theta)$$
 Equação 2-20

com:

$$\alpha_{V2} = \left(1 - \frac{f_{ck}}{250}\right)$$
 Equação 2-21

A armadura transversal deve resistir à força cortante excedente à parcela complementar Vc_{\downarrow} definida por:

• Modelo I

$$V_c = V_{c0} = 0,6. f_{ctd}. b. d$$
 Equação 2-22
 $f_{ctd} = 0,21. f_c^{2/3}$ Equação 2-23

• Modelo II

$$\begin{split} V_c &= V_{co} \text{ quando } V_{sd} \leq V_{C0} \\ V_c &= 0 \text{ quando } V_{Sd} = V_{Rd2} \\ V_{Rd2} &= 0.54. \left(1 - \frac{fck}{250}\right). fck. b_w. d. sen^2 \theta. cotg \theta \\ V_c &= V_{co}. \frac{V_{Rd2} - V_{sd}}{V_{Rd2} - V_{co}} \end{split}$$
 Equação 2-25

onde:

b: é a menor largura compreendida ao longo da altura útil d;

d: altura útil da seção igual a distância da borda comprimida até o centro de gravidade da armadura longitudinal.

3. PROGRAMA EXPERIMENTAL

3.1 INTRODUÇÃO

Neste capítulo será apresentada a metodologia empregada para avaliar o comportamento de vigas de concreto armado, sem armadura transversal, produzidas em laboratório. Serão apresentadas detalhadamente as características das vigas utilizadas, os procedimentos de confecção e instrumentação bem como as técnicas experimentais empregadas na condução do programa experimental desta tese.

3.2 CARACTERÍSTICAS GERAIS DAS VIGAS

O programa experimental realizado visou a obtenção de dados sobre a resistência ao cisalhamento de vigas de concreto, sem armadura transversal, com mesmas dosagens e diferentes proporções e tipos de agregado graúdo avaliado em relação à altura máxima destas vigas, que era variável. O objetivo geral deste programa experimental foi avaliar o potencial de influência da granulometria e tipo dos agregados graúdos na resistência ao cisalhamento das vigas, onde variou-se as alturas das vigas e a relação a/d visando-se observar e avaliar o efeito *size effect.* O programa experimental foi realizado no laboratório de Estruturas e Materiais da Universidade Federal do Pará, onde foram confeccionadas onze (11) vigas de concreto. Estas vigas foram divididas em quatro (4) grupos, agrupados de acordo com a altura (*h*) das vigas. Foram utilizados três (3) tipos de agregados graúdos, sendo eles: seixo rolado e brita com diâmetro máximo entre 12,5 mm e 19,0 mm. Pela classificação mineralógica o seixo rolado comercializado na região metropolitana de Belém é um quartzito e as britas são granitos. Neste trabalho ora denomina-se os materiais pelo nome comercial, ora pelo nome do mineral.

O grupo de vigas ficou assim configurado: O grupo 1 compreende as vigas com *h* igual a 150 mm. O grupo 2 compreende as vigas com *h* igual a 250 mm. O grupo de viga 3 possui vigas com *h* igual a 350 mm e o grupo 4 compreende as vigas com *h* igual a 450 mm. Em todas as vigas o b_w é igual a 150 mm. Quanto as seções transversais as vigas estão assim configuradas: as vigas de comprimento igual a 1.400 mm, foram confeccionadas com seção quadrada de (150 x 150) mm. As vigas com 1.900 mm foram confeccionadas com seção retangular de (150 x 250) mm. As vigas com comprimento de 2.400 mm foram confeccionadas com seção retangular de (150 x 350) mm e as vigas com comprimento total de

2.900 mm foram confeccionadas com seção retangular de (150 x 450) mm. Mantendo-se todas as vigas com mesmo b_w de 150 mm, variando o *h* das vigas em [150, 450] mm como foi explicado.

As onze vigas do programa experimental foram biapoiadas e possuem seção conforme descrito na Tabela 3.1. A armadura longitudinal das vigas foi calculada de modo que todas rompessem ao cisalhamento, uma vez que qualquer outro tipo de ruptura, que não estivesse previsto para esse programa experimental, poderia dificultar as análises dos fenômenos que se destinava a ser analisado.

Grupo	Vigas	h (mm)	b _w (mm)	Comprimento (mm)		
	V150 S			× /		
1	V150 B0	150	150	1400		
	V150 B1	-				
	V250 S	_				
2	V250 B0	250	150	1900		
2	V250 B1					
3	V350 S	- 350	150	2400		
5	V350 B0		150			
	V450 S	_				
4	V450 B0	450	150	2900		
	V450 B1					

Tabela 3.1 - Características das Vigas.

Todos os 4 grupos de viga possuem 3 vigas que se diferenciam pelo tipo de agregado sendo: uma com seixo de d_{max} igual a 19,0 mm, outra com brita de d_{max} igual a 12,5 mm e outra com brita de d_{max} igual a 19,0 mm exceto o grupo 3 correspondente à seção igual a 150 x 350 mm com comprimento igual a 2.400 mm. Neste grupo, por problemas experimentais, não obtevese os resultados da viga com brita de d_{max} igual a 19,0 mm. Sendo assim toda a análise e programa experimental será feito e analisado para 11 vigas.

Foi desenvolvido um traço piloto de concreto, descrito no item 3.6, onde a partir do qual reduziu-se em 30% a quantidade de agregado graúdo e estes 30% foram adicionados à quantidade de agregado miúdo. Para que as proporções do traço fossem mantidas, após a retirada de 30% de agregado graúdo, calculou-se um fator de compensação (FC) para efetuar as compensações no traço. Sendo assim em todos os grupos de vigas a quantidade de agregado graúdo ficou reduzida em 30%. O objetivo foi tentar reduzir a capacidade de engrenamento entre os agregados para avaliar a influência das diferentes formas e granulometrias na resistência ao esforço cortante.

Suprimiu-se as armaduras transversais em todas as vigas, os únicos pontos onde foram adicionados estribos foram nos apoios e pontos de aplicação de carga. Resolveu-se suprimir os estribos para zerar mais uma variável resistente que influencia diretamente no cálculo da resistência ao cisalhamento, uma vez que a resistência ao cisalhamento em vigas de concreto armado é dada pela parcela resistente do concreto somada à parcela resistente do aço da armadura transversal. Neste estudo visa-se avaliar apenas a parcela resistente do concreto.

3.3 CARACTERÍSTICAS GEOMETRICAS DAS VIGAS

A quantidade e geometria do conjunto de vigas foi definido a partir do conjunto de análises que objetiva-se fazer relacionando o aumento da altura h das vigas com o efeito de tamanho das vigas (*size effect*), observando a influência que os agregados irão impor devido seus formatos e tamanhos diferente. As variáveis mantidas constantes em todas as vigas foram: b_w , a/d, $\rho(\%)$. As variáveis que foram alteradas entre os conjuntos de vigas, com a finalidade de contribuir ao estudo proposto foram: h, d, a, l, A_s .

Na Figura 3.1 mostra-se o detalhamento das vigas e a configuração do ensaio para as vigas com h igual a 150, 250, 350 e 450 mm respectivamente. Na Figura 3.2 mostra-se uma das vigas posicionada no pórtico de ensaio antes do início dos ensaios. As vigas foram confeccionadas e posicionadas para o ensaio conforme representação esquemática abaixo.

Figura 3.1: Detalhamento das vigas e configuração do ensaio. Fonte: Autora

Figura 3.2: Viga posicionada no pórtico antes do ensaio. Fonte: Autora

A nomenclatura das vigas ressalta a dimensão de h, o diâmetro máximo do agregado graúdo utilizado na respectiva viga. Em todos os grupos foram confeccionadas vigas com: seixo rolado de d_{max} igual a 19,0 mm, brita com d_{max} igual a 12,5 mm, e brita com d_{max} igual a 19,0 mm, exceto no grupo 3 onde confeccionou-se uma viga com seixo rolado e outra com brita de d_{max} igual a 12,5 mm. Nesta tese as britas com d_{max} igual a 12,5 mm serão representadas pelo número zero (0) e as britas com d_{max} igual a 19,0 mm serão representadas pelo número um (1). Na Tabela 3.2 resume-se as nomenclaturas e principais características das vigas e na Tabela 3.3 resume-se as demais características das vigas.

				ε
Grupo	Vigas	h	d_{max}	Tipo de Agregado
Orupo	vigas	(mm)	(mm)	Graúdo/Mineral
	V150 S		19,0	Seixo Rolado/Quartzito
1	V150 B0	150	12,5	Brita /Granito
	V150 B1	_	19,0	Brita /Granito
	V250 S		19,0	Seixo Rolado/Quartzito
2	V250 B0	250	12,5	Brita /Granito
	V250 B1	_	19,0	Brita /Granito
2	V350 S	250	19,0	Seixo Rolado/Quartzito
3	V350 B0	330	12,5	Brita /Granito
	V450 S		19,0	Seixo Rolado/Quartzito
4	V450 B0	450	12,5	Brita /Granito
	V450 B1	_	19,0	Brita /Granito

Tabela 3.2: Nomenclatura das Vigas

Grupo	Vigas	b	h	d	а	a/d	f_c	d_{max}	A_s	ρ
Orupo	vigas	(mm)	(mm)	(mm)	(mm)	u/u	(MPa)	(mm)	(mm²)	(%)
	V150 S						21	19,0		
1	V150 B0	150	150	115	312,5	2,7	22	12,5	628	3,6
	V150 B1	_					25	19,0		
	V250 S						21	19,0		
2	V250 B0	150	250	180	562,5	3,1	22	12,5	1021	3,8
	V250 B1	_					25	19,0		
2	V350 S	150	250	275	912.5	2.0	21	19,0	1570	20
3	V350 B0	- 130	550	213	012,3	2,9	22	12,5	1370	5,0
	V450 S						21	19,0		
4	V450 B0	150	450	375	1062,5	2,8	22	12,5	1885	3,4
	V450 B1	_					25	19,0		

Tabela 3.3: Resumo das características das vigas

3.4 DETALHAMENTO DAS ARMADURAS

As onze (11) vigas que compõem o programa experimental foram dimensionadas de forma que sua ruptura se desse por cisalhamento. O dimensionamento das vigas foi feito para que a carga de flexão fosse 2 vezes maior que a carga de cisalhamento. O cobrimento de concreto usado nas vigas para as faces inferior e superior foi igual a 20 mm e nas faces laterais igual à 25 mm. Nas Figuras 3.3 (a) e (b), mostra-se o detalhamento das armaduras da série de vigas com seção (150 x 150) mm; Nas Figuras 3.4 (a) e (b) , mostra-se o detalhamento das armaduras da série de vigas com seção (150 x 250) mm; Nas Figuras 3.5 (a) e (b), mostra-se o detalhamento das armaduras da série de vigas com seção (150 x 350) mm; E nas Figuras 3.6 (a) e (b), mostra-se o detalhamento das armaduras da série de vigas com seção (150 x 450) mm; Nas Figuras 3.6 mostra-se o detalhamento das armaduras da série de vigas com seção (150 x 450) mm; E nas Figuras 3.6 (a) e (b), mostra-se o detalhamento das armaduras da série de vigas com seção (150 x 450) mm;

(a) (b) Figura 3.3: Detalhamento das armaduras das vigas com seção (150 x 150) mm

Figura 3.4: Detalhamento das armaduras das vigas com seção (150 x 250) mm

Figura 3.5: Detalhamento das armaduras das vigas com seção (150 x 350) mm

Figura 3.6: Detalhamento das armaduras das vigas com seção (150 x 450) mm

Na Figura 3.7 mostra-se o detalhamento do corte indicado na seção transversal A'A. Como citado anteriormente, as vigas propostas não possuem armadura transversal, o estribo que consta nos desenhos é ilustrativo.

Figura 3.7: Corte AA' mostrando o detalhamento das seções. Fonte: Autora

3.5 SISTEMA DE MONITORAMENTO DAS VIGAS

3.5.1 Sistema de Ensaio

Todas as vigas foram ensaiadas no Laboratório de engenharia civil da Universidade Federal do Pará. Estas foram ensaiadas sob um pórtico metálico fixado à laje de reação do laboratório como mostrado na Figura 3.8. Elas estavam posicionadas sobre dois aparelhos de simulação de apoio, sendo um do 1º gênero e outro do 2º gênero, que por sua vez estavam apoiados sobre dois blocos de concreto que estavam sobre a laje de reação.

A sequência de montagem do sistema de ensaio iniciava-se com a movimentação das vigas até o pórtico, com o auxílio de uma empilhadeira, em seguida as vigas eram posicionadas sobre os blocos de concreto que já estavam devidamente posicionados de acordo com o vão a ser ensaiado, posicionou-se os blocos de forma que movimentássemos o mínimo possível o bloco, uma vez que o vão de ensaio variou conforme geometria das vigas. Após o posicionamento da viga no pórtico, dava-se início a colagem do extensômetros elétricos de resistência (EER) que iriam medir as deformações no concreto. Conectavam-se os fios dos extensômetros que iriam medir as deformações nas armaduras, nesta etapa posicionava-se também o LVDT que iria medir o deslocamento vertical (flecha) das vigas. Na Figura 3.9 ilustra-se a configuração de todas as dimensões das vigas ensaiadas, com distancias de pontos de aplicação de carga.

Figura 3.8: Esquema do Sistema de Ensaio. Fonte: Autora

Figura 3.9: Configuração geométrica e pontos de aplicação de carga em todas as vigas.

Finalizada a montagem do sistema de reação e apoio, os dispositivos responsáveis pela aplicação da carga eram posicionados. Esse conjunto foi composto por um cilindro hidráulico com capacidade de 2.000 kN, o qual era alimentado por uma bomba hidráulica e cuja capacidade do carregamento era medido através de uma célula de carga com capacidade para 1.000 kN e precisão de 0,5 kN. Finalizada as etapas de montagem do sistema de ensaio, iniciou-se o processo de carregamento, no sentido de cima para baixo, adotando-se um incremento contínuo de carga até ruptura da viga. Em média demorava-se entre 15 e 30 minutos para concluir um ensaio. Para cada incremento de carga foram medidos os deslocamentos verticais, as deformações nas armaduras, no concreto utilizando EER, e as fissuras foram apenas mapeadas, com o objetivo de verificar a angulação da fissura crítica de cisalhamento. A Figura 3.10 ilustra o sistema de aquisição de dados que era composto por um notebook e o equipamento ALMEMO®.

Figura 3.10: Sistema de aquisição de dados. Fonte: Autora

3.5.2 Instrumentação das vigas

Foram utilizados extensômetros elétricos de resistência (EER) para monitorar as deformações específicas nas armaduras longitudinais e concreto na zona comprimida. A Figura 3.11 ilustra o posicionamento dos extensômetros nas vigas . Estes EERs foram colados diretamente ao material de interesse. Em cada viga foi instrumentada uma barra de aço da armadura longitudinal com EER tipo PA-06-125AA-120L (nomenclatura adotada EER-A), e foi utilizado um extensômetro tipo PA-06-800BA-120L para monitoramento do concreto (nomenclatura adotada EER-C), Figuras 3.12 A e B. Para garantir aderência, as barras de aço foram previamente lixadas com uma lima, e após esta preparação da superfície os extensômetro foram aderidos e envolvidos com resina flexível da marca Araldite, conforme mostra a Figura 3.13 A e B. Após o término da colagem esperava-se até que o Araldite atingisse seu ponto de cura para envolver o sistema com fita adesiva de auto fusão, esta ação é feita para evitar que os extensômetros fossem danificados no ato da concretagem. No concreto o EER era aderido à superfície de concreto com resina flexível e conectado ao sistema de aquisição de dados. Aderiu-se o extensômetro na interseção do centro da face superior da viga, coincidindo o centro de b_w com o vão da viga. A Figura 3.14 A e B mostra o extensômetro aderido na face superior da viga.

Figura 3.11: Posição dos EERs em todas as vigas. Fonte: Autora

(A) (B) Figura 3.12: (A) EER-A tipo PA-06-125AA-120L; (B) EER-C tipo PA-06-800BA-120L. Fonte: Autora.

(A) (B) Figura 3.13: (A) Preparação da barra de aço longitudinal. (B) EER aderido na barra de aço longitudinal. Fonte: Autora

(A)

(B)

Figura 3.14: EER para monitoramento do concreto aderido a viga. Fonte: Autora

3.6 CARACTERÍSTICAS DA DOSAGEM UTILIZADA.

Dentre o vasto universo de variáveis que poderiam ser analisadas dentro deste tema, estabeleceu-se que as variáveis: consumo de cimento, consumo de areia, fator água cimento e f_c seriam mantidos constantes. Para o caso de f_c sabe-se que nem todas as peças mantiveram a resistência, pois muitos fatores podem afetar a resistência pois, segundo MEHTA e MONTEIRO (2014) muitos fatores podem afetar a resistência final, dentre eles, fatores como adensamento e condições de cura, mineralogia e dimensão do agregado, tipos de aditivos, adições, condições de umidade e geometria do corpo de prova, podem ter efeito importante na resistência. Porém por ter se tratado de um concreto moldado e lançado em ambiente de laboratório o intervalo entre elas não foi superior a 5 MPa. Na Figura 3.15 mostra-se as armaduras posicionadas na forma, evidenciando os espaçadores e os fios elétricos dos extensômetros e na Figura 3.16 mostra-se o ensaio do abatimento do tronco de cone (ou *Slump*), que foi de 13±2 cm para todas as vigas. Este resultado de *slump* atendeu quanto as características das vigas e em nenhuma houve a formação de brocas. Nesta pesquisa a fixação de um valor de *slump* tinha a finalidade de garantir, o não aparecimento de brocas nas vigas, quando estas fossem desformadas, uma vez que a densidade de armaduras em algumas vigas foi alto.

Figura 3.15: ferragens posicionadas antes da concretagem. Fonte: Autora

Figura 3.16: Ensaio do abatimento do tronco de cone. Fonte: Autora

As variáveis referentes ao concreto que foram alteradas, visando obter dados para o estudo proposto, foram todas relacionadas ao agregado graúdo, sendo elas: granulometria, tipo e volume. Para este estudo foi desenvolvido um traço de concreto convencional sobre o qual, e sem alterar a resistência aos 28 dias, foram feitas alterações nas varáveis já citadas anteriormente. As propriedades físicas no estado fresco e no estado endurecido foram avaliadas para cada conjunto de vigas.

3.6.1 Estudo de Dosagem

A dosagem dos concretos teve um traço de 1:4 (1:m), sendo m a relação agregados secos/ massa de cimento, adotando-se uma relação água/cimento igual a 0,55. Adotou-se o teor de argamassa igual a 54% para o traço inicial e obteve-se o traço 1: 1,7: 2,3: 0,55. Este traço gerou a quantidade apresentada na Tabela 3.4, com quantidade de agregado graúdo em torno de 1000 kg por m³. Tentou-se aproximar as quantidades de material da dosagem desta tese aos encontrados por HUBER (2019), o qual introduziu em sua proposta o fator referente a rugosidade do concreto. O traço piloto foi modificado para se aproximar dos valores utilizados na dosagem do autor (entre 800 kg/m³ e 900 kg/m³).

rabela 3.4. Caracteristica do traço iniciar para a produção de fini-de concreto.					
Mistura	Cimento	Areia Natural	Brita 0	Água	
	(kg)	(kg)	(kg)	(kg)	
REFERÊNCIA	423,68	720,25	974,46	233,02	
Fonte: Autora					

Tabela 3.4: Característica do traço inicial para a produção de 1m³ de concreto.

Optou-se por reduzir e fixar a quantidade de agregado graúdo em torno de 700 kg/m³, mantendo a quantidade de cimento e fator água/cimento. Para que a proporção entre os componentes do concreto fosse mantida, conforme o traço piloto, calculou-se um fator de compensação para esta redução de agregado graúdo, adicionando uma quantidade proporcional na quantidade de agregado miúdo de forma o teor de argamassa subiu para 67%. As nomenclaturas dos concretos ficaram assim divididas: concreto convencional com seixo rolado (CCS), concreto convencional brita 0 (CCB0), concreto convencional brita 1 (CCB1). Na Tabela 3.5 são apresentadas as características dos traços finais para a produção de 1m³ de cada respectivo concreto.

Ressalta-se que este estudo tem como um dos objetivos avaliar a influência do agregado graúdo na região do cortante, para isso pensou-se em dosar um concreto com cerca de 67% de teor de argamassa. No projeto de tese pretendia-se dosar um concreto que alcançasse em torno de 40 MPa ao 28° dia, porém com a dosagem dos traços pilotos onde reduziu-se a proporção de agregado graúdo em 30%, observou-se que a resistência não alcançaria a resistência pretendida. A resistência final alcançada ficou em torno de 20 MPa, sendo esta dosagem mantida e realizada no programa experimental.

Tabela 3.5 - Característica dos traços finais para a produção de 1m³ de concreto.

Mistura	Cimento (kg)	Areia Natural (kg)	Seixo Rolado	Brita 0 (kg)	Brita 1	Água (kg)
CCS	418,1	994,8	673,0	-	-	229,9
CCB0	423,7	998,0	-	682,12		233,0
CCB1	423,7	998,0	-	_	674,46	233,0

Fonte: Autora

3.6.2 Caracterização dos Materiais

3.6.2.1 Cimento

A produção dos concretos utilizou o cimento Portland composto com escória granulada de alto forno classe de resistência de 32 MPa (CP II E 32) da marca Poty, disponível na região metropolitana de Belém. Na Tabela 3.6 apresenta-se algumas características químicas do cimento CP II E.

Designação Normalizada	Sigla	Classe de Resistência	Sufixo	Clínquer + Sulfatos de Calcio	Escória Granulada de Alto Forno	Materi al Pozolâ nico	Material Carbonático
Cimento Portland composto com escória	CP II-E	25, 32 ou 40	RS ou BC	51-94	6-34	0	0-15

Fonte: Adaptado da Norma NBR 16697 (ABNT, 2018)

3.6.2.2 Agregados

Como agregado miúdo foi utilizada areia natural de rio de granulometria fina comercializada na cidade de Belém-Pa. Os agregados graúdos foram provenientes de rio e da britagem de rochas graníticas, com diâmetro máximo entre 9,5 (Brita 0) e 12,5 mm (Brita 1 e Seixo), sendo as britas denominadas pela NBR 7211 (2022) como brita 0 e brita 1 respectivamente. Antes dos ensaios característicos dos agregados miúdo e graúdo fez-se a redução das amostras de campo para ensaios de laboratório conforme NBR NM 27 (2000). Na Figura 3.17 A apresenta-se a divisão do disco e na Figura 3.17 B a diagonal escolhida para o quarteamento do agregado miúdo.

Figura 3.17: Quarteamento do agregado miúdo. Fonte: Autora

Para ilustração do quarteamento feito com o agregado graúdo, apresentar-se-á o quarteamento realizado com uma amostra de brita 0. Na Figura 3.18 A mostra-se o cone de agregado, na Figura 3.18 B apresenta-se o cone já achatado, na Figura 3.18 C mostra-se a divisão em 4 partes, e na Figura 3.18 D apresenta-se as duas diagonais escolhidas da qual foi realizado os ensaios.

Figura 3.18: Quarteamento da amostra de brita 0. Fonte: Autora

Como caracterização destes agregados fez-se a distribuição granulométrica, conforme a NBR NM 248 (2001). Na Tabela 3.7 são apresentados os limites granulométricos utilizados para classificar os agregados graúdos quanto ao diâmetro máximo (d_{max}). Na Figura 3.19 apresenta-se as curvas granulométricas dos agregados graúdos e na Figura 3.20 apresenta-se o aspecto dos agregados graúdos, seixo, brita 0 e brita 1 nesta ordem, utilizados na pesquisa.

Craduação		Porce	entagen	n retida	acumula	da, em p	beso, nas	s peneira	as de aber	tura nor	mal, em	mm, de	
Graduaçao	152	76	64	50	38	32	25	19	12,5	9,5	6,3	4,8	2,4
0	-	-	-	-	-	-	-	-	0	0-10	-	80- 100	95- 100
1	-	-	-	-	-	-	0	0-10	-	80- 100	92- 100	95- 100	-
2	-	-	-	-	-	0	0-25	75- 100	90-100	95- 100	-	-	-
3	-	-	-	0	0-30	75- 100	87- 100	95- 100	-	-	-	-	-
4	-	0	0-30	75- 100	90- 100	95- 100	-	-	-	-	-	-	-
5	-	-	-	-	-	-	-	-	-	-	-	-	-

Tabela 3.7: Limites Granulométricos de agregado Graúdo.

Fonte: Adaptado da Norma NBR 7211 (ABNT, 2022)

Figura 3.19: Curvas Granulométricas dos agregados. Fonte: Autora

Figura 3.20: Seixo, brita 0 e brita 1 utilizados na pesquisa. Fonte: Autora

4. APRESENTAÇÃO DOS RESULTADOS EXPERIMENTAIS

Neste capítulo serão apresentados os resultados dos ensaios experimentais referentes a caracterização do material utilizado na confecção das vigas, bem como os resultados experimentais obtidos a partir dos ensaios de ruptura dos conjuntos de vigas desta tese. Nos ensaios experimentais das vigas foram obtidos: o modo e a força cortante de ruptura, a deflexão no centro do vão ensaiado, o padrão de fissuração e as deformações medidas na armadura longitudinal e no concreto. Todos estes resultados possibilitaram a análise do conjunto visando cumprir os objetivos deste trabalho. Os resultados experimentais também deram suporte para as implementações da modelagem computacional, uma vez que o software computacional utilizado (ABAQUS), utiliza as curvas experimentais dos materiais para calibração do modelo computacional.

4.1 MATERIAIS

4.1.1 Aço

Para caracterizar mecanicamente as armaduras de flexão usadas nas vigas, foram retirados nove corpos-de-prova, sendo que destes, três para as barras de 5mm utilizada nos estribos colocados nos pontos de aplicação da carga, três para as barras de 10 mm utilizada em uma das camadas das armaduras longitudinais das vigas com altura igual a 250 mm e três para as barras de 20 mm utilizadas nas armaduras longitudinais em todas as vigas. O procedimento para realização do ensaio foi de acordo com as recomendações descritas na NBR 6892 (ABNT, 2018). Todas as amostras foram ensaiadas no Laboratório de Engenharia Civil da UFPA. Nas Figuras 4.1, 4.2 e 4.3 apresenta-se os gráficos com as curvas tensão-deformação doa aços 5,0 mm, 10 mm e 20 mm, respectivamente. Na Tabela 4.1 é apresentada de forma resumida as propriedades mecânicas dos aços

Figura 4.1: Curva Tensão-deformação média da barra de aço de 5 mm. Fonte: Autora

Figura 4.2: Curva Tensão-deformação média da barra de aço de 10 mm. Fonte: Autora

Figura 4.3: Curva Tensão-deformação média da barra de aço de 20 mm. Fonte: Autora

φ (mm)	f _{ys} (Mpa)	ε _{ys} (‰)	<i>E</i> _s (GPa)
5,0	684	4,8	244,2
10,0	570	2,4	237,5
20,0	600	2,6	230,7

Tabela 4.1: Resumo das propriedades mecânicas dos aços

4.1.2 Concreto

O concreto utilizado para a concretagem das vigas foi fabricado no laboratório de engenharia civil da UFPA. A dosagem se deu conforme descrito no item 3.6 desta tese. A concretagem foi executada de acordo com tipo de agregado. Primeiro concretou-se as vigas com seixo da região, a concretagem se deu em um único dia. Em seguida concretou-se as vigas com brita 0 e por fim concretou-se as vigas com brita 1. Cada grupo de concretagem com quatro vigas, incluindo os corpos-de-prova para caracterização do concreto, consumiu em média 0,5 m³ de concreto.

Terminadas as concretagens e após o final do tempo de pega iniciava-se o processo de cura do concreto para garantir que o calor de hidratação não fissurasse as peças de concreto. Como a superfície das vigas era pequena (150 mm x o comprimento da viga) este processo se deu com

a molhagem das peças com posterior cobertura utilizando sacos de aniagem mantendo assim a umidade necessária para esta etapa.

4.1.2.1 Resistência a Compressão

A resistência a compressão (f_c), foi obtida por meio de ensaios de compressão feitos em corpos-de-prova cilíndricos de concreto medindo (100 x 200) mm, onde foram moldados 3 para cada concretagem com diferentes tipos de agregado graúdo, uma vez que esta era a única variável entre os concretos dosados nesta tese.

Os ensaios de compressão nos corpo-de-prova foram realizados no Laboratório da empresa Total Mix Controle Tecnológico em Concreto e Argamassa por técnicos especializados. Estes ensaios eram realizados à medida que se ensaiava as vigas, para assim monitorar a resistência da viga no dia do seu ensaio experimental. O ensaio a compressão seguiu as recomendações da NBR 5739 (ABNT,2018). A Tabela 4.2, apresenta os valores obtidos nos ensaios.

Dosagem	Corpo de Prova	Massa (kg)	f _c (MPa)	f_c (MPa) Adotado
	CP1	3,24	19,1	
CCS	CP2	3,22	22,7	21,0
	CP3	3,33	21,3	-
	CP1	3,30	20,9	_
CCB0	CP2	3,27	22,7	22,0
	CP3	3,28	22,9	
	CP1	3,46	26,7	
CCB1	CP2	3,40	25,1	25,0
	CP3	3,38	23,6	-

Tabela 4.2: Resultados para o ensaio de compressão dos concretos.

4.1.2.2 Resistência a Tração

O ensaio de resistência a tração por compressão diametral, dos corpos de prova cilíndricos de concreto, foi feito de acordo com a NBR 7222 (ABNT, 2011), os corpos de prova mediam (100 x 200) mm e foram moldados 3 espécimes para cada dosagem de concreto. Na Tabela 4.3 apresenta-se os resultados deste ensaio.

Dosagem	Corpo de Prova	Massa (kg)	f _{ct} (MPa)	f _{ct} (MPa) Adotado
	CP1	3,00	1,44	_
CCS	CP2	3,25	2,08	1,6
	CP3	3,23	1,43	
	CP1	2,90	1,84	_
CCB0	CP2	3,21	1,75	1,8
	CP3	3,30	1,75	
	CP1	3,38	2,28	_
CCB1	CP2	3,00	1,91	2,0
	CP3	3,06	1,91	_

Tabela 4.3: Resultados para o ensaio de resistência a tração por compressão diametral.

4.1.2.3 Módulo de Elasticidade dos concretos

O ensaio para determinação do módulo de elasticidade do concreto, foi feito de acordo com a NBR 8522 (ABNT, 2017). Foram utilizados corpos de prova cilíndricos com dimensão (150 x 300) mm. Utilizou-se também as equações propostas pelos códigos normativos NBR 6118 (2014), EUROCODE 2 (2004) e Model code (2011) para estimativa do módulo de elasticidade dos concretos dosados, a partir das equações propostas por estes códigos. Com exceção da NBR 6118 (2014), todos os demais códigos levam em consideração o tipo de agregado na equação de estimativa do módulo de elasticidade do concreto. Na Tabela 4.4 apresenta-se os resultados obtidos experimentalmente e a partir do cálculo do módulo de elasticidade dos concretos dosados nesta tese, apresenta-se também os valores para o desvio padrão entre o resultado experimental e as estimativas para uma mesma amostra de concreto.

Dosagem	Corpo de Prova	Ec Experimental (GPa)	Média	E _c NBR (GPa)	Ec Eurocode (GPa)	Ec Model Code (GPa)	Desvio Padrão
	CP1	25,6				27,59	2,27
CCS	CP2	23,7	24,3	23,10	28,86		
	CP3	23,6					
	CP1	27,94				31,00	2,26
CCB0	CP2	26,21	26,6	26,27	29,26		
	CP3	25,61					
CCB1	CP1	29,21					
	CP2	27,40	27,8	28,0	30,41	32,00	2,02
	CP3	26,77					

Tabela 4.4: Resultado para o módulo de elasticidade

4.2 RELAÇÃO CARGA - DESLOCAMENTO

Neste trabalho experimental registrou-se o deslocamento no centro das vigas com alinhamento no meio do vão de ensaio (L/2). Desta forma, adotou-se como parâmetro de

análise a relação carga x deslocamento ($V_u - \delta$) representada nas Figuras 4.4 para o grupo de vigas com altura (h) igual a 150 mm, Figura 4.5, para o grupo de vigas com h igual a 250 mm, Figura 4.6 para o grupo de vigas com altura igual a 350 mm e Figura 4.7 para o grupo de vigas com h igual a 450 mm. Na Tabela 4.5 resume-se as cargas e deslocamentos máximos registrados em todas as vigas ensaiadas experimentalmente neste trabalho.

Figura 4.4: Relação carga - deslocamento para o grupo de vigas com h igual a 150 mm.

Figura 4.6: Relação carga - deslocamento para o grupo de vigas com h igual a 350 mm.

Figura 4.5: Relação carga - deslocamento para o grupo de vigas com h igual a 250 mm.

Figura 4.7: Relação carga - deslocamento para o grupo de vigas com h igual a 450 mm.

Vigas	V_u (kN)	δ_u (mm)
V150S	61,6	4,1
V150B0	64,6	4,3
V150B1	57,0	4,3
V250S	86,4	2,2
V250B0	90,4	3,0
V250B1	86,1	1,9

Tabela 4.5: Carga-deslocamento para todas as vigas ensaiadas.

Vigas	V_u (kN)	δ_u (mm)
V350S	93,0	2,0
V350B0	120,3	2,4
V450S	143,7	2,7
V450B0	148,6	2,3
V450B1	177,8	2,8
	Fonte: Autora	

Observou-se um comportamento semelhante em termos de rigidez entre as vigas com seixo e brita 0. Observou-se, que as vigas dosadas com Brita 1 apresentaram diferenças significativas para a série 450H. Para este grupo de vigas, verificou-se uma maior energia liberada para ser capaz de levar a viga até a ruína, fato este que pode ser observado pelos gráficos, para o mesmo nível de deslocamento. Observa-se que as vigas dosadas com Brita 1 deste grupo citado apresentam valores superiores de energia às demais vigas dos outros grupos.

4.3 TENACIDADE

A partir do gráfico de carga-deslocamento, traçou-se o gráfico tensão-deslocamento com o objetivo de avaliar a tenacidade das vigas e verificar se houve variação de energia no momento da ruína. Para os valores de tensão dividiu-se a carga de ruptura das vigas pela área da seção. Já para a obtenção dos valores de tenacidade, utilizou-se as equações das curvas dos gráficos apresentados nas Figuras 4.8 (A), (B), (C) e (D), das quais calculou-se a integral pelo método de Simpson. O intervalo de integração corresponde do início da curva (valor 0) até o deslocamento igual a 3 mm que foi a média de deslocamento máximo para todas as vigas. Apenas a viga com seixo teve este cálculo com intervalo entre 0-2, pois não atingiu deslocamento máximo igual a 3mm. Na Tabela 4.6 apresenta-se as funções, intervalo de integração e valores de tenacidade para todas as vigas ensaiadas.

Figura 4.8: Gráficos de tensão x deslocamento para todas as vigas.

Viga	Função	Intervalo Integração	Tenacidade MPa.mm (Pelo método de Simpson)
V150S	$y = -0.1716x^2 + 1.6232x - 0.1968$	0-3	5,17
V150B0	$y = -0.2066x^2 + 1.7417x + 0.2523$	0-3	6,73
V150B1	$y = -0.3074x^2 + 2.0297x + 0.1156$	0-3	6,71
V250S	$y = -0.4097x^2 + 2.1647x + 0.2401$	0-3	6,77
V250B0	$y = -0.2796x^2 + 1.9273x + 0.1416$	0-3	6,58
V250B1	$y = -0.4993x^2 + 2.4905x + 0.0975$	0-3	4,03
V350S	$y = -0.4359x^2 + 1.8568x + 0.0313$	0-2	4,52
V350B0	$y = -0.5284x^2 + 2.4552x - 0.4318$	0-3	4,99
V450S	$y = -0.2838x^2 + 1.6352x - 0.0330$	0-3	4,70
V450B0	$y = -0.3735x^2 + 1.8718x + 0.0014$	0-3	5,06
V450B1	y = -0.358x2 + 1.968x + 0.0619	0-3	5,82

Tabela 4.6: Funções de integração e valores de tenacidade para todas as vigas ensaiadas.

POMPEU (2004), após uma série de ensaios, constatou que a tenacidade à fratura das misturas aumentava entre 4,5% e 24,5% com o aumento da fração volumétrica do agregado.

O autor atribuiu a isto o maior intertravamento entre as partículas. Porém embora o aumento da tenacidade signifique que a resistência ao fissuramento está aumentando, o comportamento a fratura da peça pode ficar mais frágil. Nos ensaios feitos nesta tese, observou-se a maior resistência ao fissuramento, uma vez que não observou-se fissuras durante os ensaios nos grupos de vigas com altura 250mm, 350mm e 450mm e os valores de tenacidade entre estes grupos de viga tenderam a aumentar com o aumento da altura. Observou-se o aparecimento de fissuras apenas no grupo de vigas com altura igual a 150 mm. Ressalta-se que a elevada taxa de armadura e o aumento da altura das vigas configuram elementos que dificultam o aparecimento de fissuras em ensaios desta natureza.

Na Figura 4.9 ilustra-se o gráfico comparativo entre todas as vigas, para auxiliar a interpretação. Nos rótulos de cada barra apresenta-se a informação do nome da viga e do valor da tenacidade em MPa.mm. Pelos ensaios observou-se a influência do tipo de agregado para todos os grupos de vigas, exceto o grupo com altura de 250mm, onde a viga com seixo apresentou valor de tenacidade superior a viga concretada com brita 0. Nos demais grupos observou-se que as vigas concretadas com brita (granito), independente do diâmetro máximo, apresentaram tenacidade superior as vigas com seixo (quartzito). Para as vigas dos grupos com altura igual a 350 mm e 450 mm ficou evidente que as vigas concretadas com brita apresentaram maior tenacidade.

Figura 4.9: Tenacidade calculada para todos os grupos de viga. Fonte: autora

Outro ponto observado a partir do cálculo da tenacidade, é que os níveis diminuem à medida que se aumenta a altura das vigas, porém apenas nas vigas com altura superior a 250 mm. Para as vigas com altura igual a 150 mm e 250 mm observou-se um comportamento muito semelhante, não variando os níveis de tenacidade entre as 6 vigas componentes do grupo 150H e 250 H. Nas Figuras 4.10 (A), (B), (C) e (D), apresenta-se as vigas separadas por altura evidenciando os valores de tenacidade par cada grupo de viga.

Pela observação dos gráficos fica nítida a tendência crescente da tenacidade de acordo com o tipo de agregado. Para a viga V150S o valor da tenacidade foi 5,17 MPa.mm, enquanto para as vigas V150B0 e V150B1 os valores foram 6,7 Mpa.mm, o que corresponde um ganho de 29,5% quando comparada com a viga que utilizam o seixo como agregado graúdo. No grupo de vigas com altura igual a 250H, a viga concretada com seixo (V250S) apresentou tenacidade igual a 6,7 MPa.mm que representa 7% a mais que a tenacidade observada para a viga concretada com brita 0 V250B0 que foi igual a 6,46 Mpa.mm. Neste grupo a viga

concretada com seixo, foi a única que apresentou tenacidade superior às vigas concretadas com brita.

O grupo de vigas com 350 mm de altura a viga V35B0, concretada com brita 0, apresentou tenacidade 10% superior que a viga concretada com seixo. Para o grupo de viga 450H, a viga concretada com brita 0 apresentou tenacidade 7% superior à viga concretada com seixo e a viga concretada com brita 1. Ademais a mesma também apresentou tenacidade com valor 24% superior à viga concretada com seixo.

Pode-se concluir que a tenacidade variou nas vigas de acordo com a mudança do tipo de agregado. A brita 1 e brita 0 se mostraram eficientes quando comparadas com o seixo, porém estas observações se tornam evidentes nos grupos de viga com altura superior a 250 mm de altura. Para vigas abaixo deste valor não pode-se afirmar que o tipo de agregado é capaz de influenciar nos valores de tenacidade, uma vez que os valores variam pouco entre si e não há uma tendência de rendimento onde as britas ou seixo sejam mais eficientes quando comparadas entre si.

4.4 DEFORMAÇÕES NA SUPERFÍCIE DE CONCRETO

As deformações referentes aos esforços de compressão foram medidas a partir de EER, que foram posicionados conforme item 3.5 desta tese. Pelas Figuras 4.11 até 4.14, observa-se que nenhuma viga excedeu os limites de 3,5 ‰ fixados pela NBR 6118 (2014), mantendo integra esta região elásticas nas vigas.

Figura 4.11: Deformações na superfície das vigas 150H. Fonte: Autora

Figura 4.12: Deformações na superfície das vigas 250H. Fonte: Autora

4.5 DEFORMAÇÕES NA ARMADURA DE FLEXÃO

As deformações referentes à armadura longitudinal das vigas foram medidas a partir de um extensômetro elétrico de resistência e seu posicionamento encontra-se ilustrado na imagem 4.13. Nenhuma leitura dos sensores excedeu os limites de escoamento das barras de flexão (ε_{ys}) , fixado em 2,3 ‰. Este fato corrobora para o entendimento de que a ruína se deu por cisalhamento, pois as deformações registradas nas armaduras não excederam os limites de escoamento das barras. Nas Figuras 4.15 a 4.18 observa-se os gráficos de deformação na armadura longitudinal para todas as vigas do programa experimental.

Figura 4.15: Deformações na armadura longitudinal das vigas H150. Fonte: Autora

Figura 4.16: Deformações na armadura longitudinal das vigas H250. Fonte: Autora

Figura 4.17: Deformações na armadura longitudinal das vigas H350. Fonte: Autora

4.6 RELAÇÃO MOMENTO-CURVATURA

Segundo BUCHAIN (2001), o diagrama momento-curvatura reflete as leis tensão-deformação não lineares do aço e do concreto, e pode ser admitido, não fosse a ação da fissura coesiva, como uma propriedade da seção transversal. Retém-se aqui a hipótese de Bernoulli. Com isso a curvatura é igual ao gradiente das deformações na seção transversal, e igual à variação da rotação por unidade de comprimento da barra.

Neste trabalho a relação momento curvatura $(m - \Phi)$ das vigas visa investigar, entre outros aspectos, a influência do diâmetro máximo do agregado graúdo sobre a rigidez na fase fissurada da viga. Para esta discussão, calculou-se o momento segundo a expressão que segue: $m = 0.5 \cdot V_u \cdot a$, sendo "a" a distância entre o ponto de aplicação da carga e o apoio, este valor variou para cada grupo de viga. Na Tabela 4.7 resume-se o valor de a para cada grupo de viga. A curvatura das vigas calculou-se conforme a expressão que segue: $\Phi = \varepsilon_t + \varepsilon_c/(d - d')$, sendo ε_t a deformação registrada na armadura de tração, d é a altura útil da viga. Como para cada grupo de viga este parâmetro varia, ele também está resumido na Tabela 4.7. Como utilizou-se a deformação no concreto, considerou-se a parcela d' igual a 0. A relação $m - \Phi$ das vigas do grupo 150H é apresentada na Figura 4.19. Para o grupo 250H a relação é apresentada na Figura 4.21 e para o grupo 450H a relação é apresentada na Figura 4.22.

Grupo de Viga	a (m)	d mm
150H	0,312	115
250H	0,562	180
350H	0,812	275
450H	1,062	375

Tabela 4.7: Resumo dos valores a em todos os grupos de vigas.

Figura 4.19: Relação Momento-curvatura para vigas do grupo 150H

Figura 4.20: Relação Momento-curvatura para vigas do grupo 250H

Figura 4.21: Relação Momento-curvatura para vigas do grupo 350H

Figura 4.22: Relação Momento-curvatura para vigas do grupo 450H

Analisando os gráficos, observa-se que as vigas dosadas com seixo apresentaram curvatura superior as vigas dosadas com brita 0 e brita 1. As vigas com menores curvaturas foram as vigas dosadas com brita 1, sendo este mais um indício da influência do tipo de agregado para o comportamento de vigas sem estribo submetidas a esforço cortante.

4.7 PADRÃO DE FISSURAÇÃO E CARGAS DE RUÍNA E RUPTURA

Durante a realização dos ensaios não foram observadas fissuras de flexão em nenhuma das vigas. Nos grupo de vigas com altura igual a 150 mm e 250 mm, observou-se a formação de fissuras de cisalhamento além da fissura crítica. Nos demais grupos de vigas com alturas (350 e 450) mm observou-se apenas a fissura de cisalhamento que se formava de forma frágil. Após a formação da fissura principal a viga começava a deformar sem que a carga alcançasse níveis superiores ao pico de carga. Este tipo de ruptura é característica de materiais quase – frágeis, uma vez que após a abertura da fissura crítica e queda dos níveis de carga ainda observava-se resistência na peça, governada pela tensão residual do material.

A aplicação da carga durante os ensaios se deu de forma contínua. Acredita-se que desta forma pode-se simular melhor o comportamento da viga quando em situações reais de ruína. Para analisar os padrões de fissuração na superfície das vigas verificou-se o surgimento das primeiras fissuras (P_{cr}) em relação as cargas de ruína das vigas (P_u) e observou-se que apenas 4 vigas apresentaram P_{cr} diferente de P_u sendo elas: V150S, V150 B0, V150B1 e V250B0. Nas demais vigas a carga de surgimento da fissura crítica foi igual a carga de ruína da viga.

O padrão de fissuração das vigas V150S, V150B0 e V150B1 é mostrado nas Figuras 4.23, 4.24 e 4.25, respectivamente. O padrão de fissuração das vigas V250S, V250B0 e V250B1 é mostrado nas Figuras 4.26, 4.27 e 4.28. O padrão de fissuração das vigas V350S e V350B0 é mostrado nas Figuras 4.29 e 4.30. O padrão de fissuração das vigas V450S, V450B0 e V450B1 é mostrado nas Figuras 4.31, 4.32 e 4.33.

Figura 4.23: Padrão de fissuração da viga V150S. Fonte: Autora

V150B0

Figura 4.24: Padrão de fissuração da viga V150B0. Fonte: Autora

V150B1

Figura 4.25: Padrão de fissuração da viga V150B1. Fonte: Autora

Figura 4.27: Padrão de fissuração da viga V250B0. Fonte: Autora

Figura 4.28: Padrão de fissuração da viga V250B1. Fonte: Autora

Figura 4.29: Padrão de fissuração da viga V350S. Fonte: Autora

Figura 4.30: Padrão de fissuração da viga V350B0. Fonte: Autora

Figura 4.31: Padrão de fissuração da viga V450S. Fonte: Autora

Figura 4.32: Padrão de fissuração da viga V450B0. Fonte: Autora

Figura 4.33: Padrão de fissuração da viga V450B1. Fonte: Autora

A carga de ruína e ruptura por cisalhamento, para todas as vigas do programa experimental, é apresentada na Tabela 4.8. Nesta tabela apresenta-se a carga P_u que corresponde a capacidade máxima resistida pela viga, ponto em que houve o surgimento da fissura crítica de cisalhamento e após o surgimento desta fissura a viga não mais consegue ultrapassar a carga P_u . Ao continuar aplicando carga, observou-se o aumento da abertura da fissura. Neste ponto o ensaio foi interrompido. Sendo registrado a maior carga do ensaio (P_u).

Quatro vigas do programa experimental, sendo elas: V150S, V150B0, V50B1 e V250B0 apresentaram fissura, antes da fissura crítica. Quando estas fissuras surgiram, foi registrada uma queda na carga, sendo registrada a carga P_{cr} . Com o prosseguimento do ensaio foi observado o aumento da carga chegando até a carga P_u . A explicação para este fato se dá, pois após a formação de microfissuras, estas se uniram e formam uma macro fissura, porém a capacidade da viga ainda não havia sido alcançada. Esta carga de formação de fissuras (P_{cr}) é capaz de aumentar a rotação porém não leva a peça à ruptura. Nas Figuras 4.34, 4.35, 4.36 e 4.37 ilustra-se o aspecto das vigas após os ensaios destrutivos.

Viga	P _{cr} (kN)	P_u (kN)	b _w (mm)	d (mm)	Seção (mm²)	Tipo de Ruptura	Lado Ruptura
V150S	61	61,6	_	115	17250	Cisalhamento	Esquerda
V150B0	59	64,6		115	17250	Cisalhamento	Esquerda
V150B1	52	57,0		115	17250	Cisalhamento	Esquerda
V250S	86	86,4	150	180	27000	Cisalhamento	Direita
V250B0	87	90,4	150	180	27000	Cisalhamento	Esquerda
V250B1	86	86,1		180	27000	Cisalhamento	Direita
V350S	93	93,0		275	41250	Cisalhamento	Esquerda
V350B0	120	120,3		275	41250	Cisalhamento	Direita

Tabela 4.8: Síntese das relações entre cargas últimas de ruptura e cargas de surgimento da primeira fissura.

Viga	P _{cr} (kN)	P_u (kN)	b _w (mm)	d (mm)	Seção (mm²)	Tipo de Ruptura	Lado Ruptura
V450S	144	143,7	_	375	56250	Cisalhamento	Esquerda
V450B0	149	148,6		375	56250	Cisalhamento	Esquerda
V450B1	178	177,8	-	375	56250	Cisalhamento	Esquerda

Figura 4.34: 4.9: Aspecto das vigas V150S, V150B0 e V150B1 após os ensaios. Fonte: Autora

Figura 4.35: Aspecto das vigas V250S, V250B0 e V250B1 após os ensaios. Fonte: Autora

Figura 4.36: Aspecto das vigas V350S e V350B0 após os ensaios. Fonte: Autora

Figura 4.37: Aspecto das vigas V450S, V450B0 e V450B1 após os ensaios. Fonte: Autora 4.7.1 Taxa de armadura x altura da viga

Com o objetivo de comprar a relação carga x relação a/d traçou-se o gráfico, para as vigas com 250 mm, 350mm e 450 mm de altura, que consta na Figura 4.38. Em todas as vigas do programa experimental a taxa de armadura, representada pela razão entre a área de aço e seção transversal da viga, foi mantida constante em média igual a 3,6. Retirou-se a média para a análise, pois a taxa variou entre 3,4; 3,6 e 3,8. Logo, 3,6% é um valor representativo da amostra. Pela correlação do gráfico observa-se que a/d é um parâmetro que governa o comportamento sendo capaz de influenciar de sobremaneira o padrão descendente da carga.

Figura 4.38: Relação entre Vu e a/d para vigas

5. AVALIAÇÃO DOS CÓDIGOS NORMATIVOS E PROPOSTAS DA LITERATURA DE ACORDO COM A CARGA ÚLTIMA OBTIDA NAS VIGAS.

Neste capítulo são apresentados os cálculos das estimativas das cargas para as rupturas das vigas de acordo com as formulações das normas citadas na revisão bibliográfica, além da proposta do autor HUBER (2019) e MUTTONI (2019). Este tipo de análise é importante, pois relacionam as cargas estimadas pelas normas com as cargas de ruptura observadas no programa experimental. Para tanto, foram utilizados nos cálculos das resistências, as propriedades mecânicas dos concretos de cada grupo de vigas, além das características geométricas das vigas. Estes dados são apresentados no capítulo 3 desta tese.

Todas as normas avaliadas neste capítulo utilizam o valor da resistência a compressão do concreto como parâmetro de avaliação do material. A proposta para verificação da resistência ao cisalhamento de HUBER (2019) é uma modificação da proposta de CAVAGNIS (2017) que calcula a resistência a partir da teoria da fissura crítica de cisalhamento que leva em consideração outros mecanismos de resistência. A proposta de MUTTONI (2019) é uma proposta simplificada da formulação desenvolvida pelo mesmo autor em MUTTONI (2008). Esta proposta também é baseada na fissura crítica de cisalhamento e seu desenvolvimento está descrito no item 2.5.2 desta tese.

Nas tabelas onde apresenta-se as cargas experimentais para o grupo de vigas ensaiadas, as cargas estimadas pelos códigos normativos e proposta de dimensionamento, a parcela V_x (sendo x substituído pelo nome do código normativo ou proposta de dimensionamento) representa o cálculo de projeto. Nesta tese representa a resistência ao cisalhamento pela parcela do concreto. Ainda sobre esta análise, a previsão da resistência V_{ux} é dada pela expressão $V_{ux} = 2 \times V_{teo,x}$ uma vez que a configuração do ensaio, detalhada no item 3.5.1 foi feita com 2 pontos de aplicação de carga. A Parcela V_u corresponde à carga máxima registrada nos ensaios experimentais.

5.1 RESISTÊNCIA AO CISALHAMENTO DE ACORDO COM OS CÓDIGOS NORMATIVOS E AS PROPOSTAS ANALISADAS.

5.1.1 Resistência ao Cisalhamento de Acordo com a ACI 318 (2019)

A Tabela 5.1 apresenta as estimativas das cargas ao esforço cortante para as vigas pelas recomendações do manual de projeto ACI 318 (2019). Observou-se, para as vigas ensaiadas, que este código demonstrou-se conservador, subestimando a carga de ruptura como pode ser observado na coluna $V_u/V_{ACI} \ge 1$, independentemente do tipo de agregado e altura útil da vida (d). A Figura 5.1 ilustra a relação da carga experimental pela carga teórica.

	Dimensões		Propriedades Concreto		Taxa	de Arm	adura	Carga Experimental	ACI- 318	
Vigas	b	d	f_c	f_{ct}	As	$ ho_L$	f_{ys}	V _u	V _{ACI}	V_u/V_{ACI}
	(mm)	(mm)	(MPa)	(Mpa)	(mm²)	%	MPa	kN	kN	
V150S	150	115	21	2.1	628	3.6	570	61,6	40.5	1.5
V150B0	150	115	22	2.0	628	3.6	570	64,6	41.4	1.6
V150B1	150	115	25	2.3	628	3.6	570	57,0	44.2	1.3
V250S	150	212	21	2.1	1021	3.2	570	86,4	63.6	1.4
V250B0	150	212	22	2.0	1021	3.2	570	90,4	65.1	1.4
V250B1	150	212	25	2.3	1021	3.2	570	86,1	69.4	1.2
V350S	150	299	21	2.1	1570	3.5	570	93,0	84.7	1.1
V350B0	150	299	22	2.0	1570	3.5	570	120,3	86.7	1.4
V450S	150	395	21	2.1	1885	3.2	570	143,7	100.0	1.4
V450B0	150	395	22	2	1885	3.2	570	148,6	102.3	1.5
V450B1	150	395	25	2.3	1885	3.2	570	177,8	109.1	1.6
									Média	1.40
									DP	0.15
									COV	10.8

Tabela 5.1: Relação entre as cargas experimentais e as cargas estimadas pela Norma ACI 318.

5.1.2 Resistência ao cisalhamento de acordo com EC2 (2004)

O modelo EUROCODE2 (2004), entre os códigos de projetos analisadas, é a que mostrou o melhor desempenho. Esta norma apresentou a menor dispersão dentre os códigos avaliados. Ressalta-se que na sua formulação, além de levar em consideração a resistência do concreto e parâmetros geométricos, leva em consideração uma parcela referente ao fator de escala e considera a armadura longitudinal como parâmetro de influência para a resistência ao esforço cortante. Na Tabela 5.2 apresenta-se as estimativas de cargas ao esforço cortante previstas pela norma europeia e na Figura 5.2 a relação V_u x V_{EC}.

	Dimensões		Propriedades Concreto		Taxa	de Arma	adura	Carga Experimental	EC2	
Vigas	b	d	f_c	f_{ct}	As	$ ho_L$	f_{ys}	V_u	$V_{u,EC}$	V_u/V_{EC2}
	(mm)	(mm)	(MPa)	(Mpa)	(mm²)	%	MPa	kN	kN	
V150S	150	115	21	2.1	628	3.6	570	61.6	61.1	1.0
V150B0	150	115	22	2.0	628	3.6	570	64.6	62.1	1.0
V150B1	150	115	25	2.3	628	3.6	570	56.9	64.8	0.9
V250S	150	212	21	2.1	1021	3.2	570	86.4	91.9	0.9
V250B0	150	212	22	2.0	1021	3.2	2 570 90.4		93.3	1.0
V250B1	150	212	25	2.3	1021	3.2	570	86.0	97.4	0.9
V350S	150	299	21	2.1	1570	3.5	570	93.0	123.0	0.8
V350B0	150	299	22	2.0	1570	3.5	570	120.3	124.9	1.0
V450S	150	395	21	2.1	1885	3.2	570	143.7	148.1	1.0
V450B0	150	395	22	2	1885	3.2	570	148.6	150.5	1.0
V450B1	150	395	25	2.3	1885	3.2	570	177.8	157.0	1.1
									Média	0.96
									DP	0.10
									COV	10.1

Tabela 5.2: Relação entre as cargas últimas e as cargas estimadas pela Norma EC2

5.1.3 Resistência ao Cisalhamento de Acordo com a NBR 6118 (2014).

A norma brasileira atribui à resistência de tração do concreto a integridade da diagonal tracionada. A mesma apresenta valores conservadores na previsão da tensão de ruptura por cisalhamento em peças de concreto sem armadura transversal. É uma norma que subestimou em média a previsão da carga em 43%, e apresentou média entre experimental/previsão igual a 1,43. Dentre as normas analisadas é a que apresentou o coeficiente de variação mais elevado, sendo igual a 17,5%. Na Tabela 5.3 apresenta-se o resumo das análises e na Figura 5.3 apresenta-se a relação V_u x V_{NBR}.

	Dimensões		Propriedades Concreto		Taxa	de Arm	adura	Carga Experimental	NBR 6118	
Vigas	b	d	f_c	f_{ct}	As	$ ho_L$	f_{ys}	V _u	V _{NBR}	V_u/V_{NBR}
	(mm)	(mm)	(MPa)	(Mpa)	(mm²)	%	MPa	kN	kN	
V150S	150	115	21	2.1	628	3.6	570	61.6	33.1	1.9
V150B0	150	115	22	2.0	628	3.6	570	64.6	34.1	1.9
V150B1	150	115	25	2.3	628	3.6	570	56.9	37.2	1.5
V250S	150	212	21	2.1	1021	3.2	570	86.4	61.1	1.4
V250B0	150	212	22	2.0	1021	3.2	570	90.4	63.0	1.4
V250B1	150	212	25	2.3	1021	3.2	570	86.0	68.6	1.3
V350S	150	299	21	2.1	1570	3.5	570	93.0	86.0	1.1
V350B0	150	299	22	2.0	1570	3.5	570	120.3	88.7	1.4
V450S	150	395	21	2.1	1885	3.2	570	143.7	113.6	1.3
V450B0	150	395	22	2	1885	3.2	570	148.6	117.2	1.3
V450B1	150	395	25	2.3	1885	3.2	570	177.8	127.7	1.4
									Média	1.43
									DP	0.25
									COV	17.5

Tabela 5.3: Relação entre as cargas últimas e as cargas estimadas pela Norma NBR 6118

79

5.1.4 Resistência ao cisalhamento de acordo com HUBER (2019).

A proposta do autor introduz um fator denominado índice de rugosidade relacionado a resistência a compressão do concreto. Esta proposta tende a superestimar a carga para as vigas com altura abaixo de 450 e subestimar a carga para as vigas com altura acima de 450. De modo geral a média foi igual a 0,97 e o coeficiente de variação foi igual a 12%. Na Tabela 5.4 apresenta-se as cargas experimentais e previsão de acordo com a proposta do autor e na Figura 5.4 apresenta-se a relação V_u x V_{HUBER}.

Vigas	Dimensões		Propriedades Concreto		Taxa	a de Arm	adura	Carga Experimental	HUBER	
Vigas	b	d	f_c	f_{ct}	As	$ ho_L$	f_{ys}	V_u	V _{HUBER}	V_u/V_{HUBER}
	(mm)	(mm)	(MPa)	(Mpa)	(mm²)	%	MPa	kN		
V150S	150	115	21	2.1	628	3.6	570	61.6	64.9	0.9
V150B0	150	115	22	2.0	628	3.6	570	64.6	65.5	1.0
V150B1	150	115	25	2.3	628	3.6	570	56.9	67.3	0.8
V250S	150	212	21	2.1	1021	3.2	570	86.4	94.4	0.9
V250B0	150	212	22	2.0	1021	3.2	570	90.4	95.3	0.9
V250B1	150	212	25	2.3	1021	3.2	570	86.0	97.9	0.9
V350S	150	299	21	2.1	1570	3.5	570	93.0	121.1	0.8
V350B0	150	299	22	2.0	1570	3.5	570	120.3	122.3	1.0
V450S	150	395	21	2.1	1885	3.2	570	143.7	141.7	1.0
V450B0	150	395	22	2	1885	3.2	570	148.6	143.1	1.0
V450B1	150	395	25	2.3	1885	3.2	570	177.8	147.0	1.2
									Média	0.96
									DP	0.11
									COV	12.0

Tabela 5.4: Relação entre as cargas últimas e as cargas estimadas pela proposta de HUBER (2019)

80

5.1.5 Resistência ao cisalhamento de acordo com MUTTONI (2019)

A proposta do autor mantém a média entre carga experimental pela proposta próximo ao valor 1. Porém para as vigas com altura igual a 450 mm a proposta se apresenta subestimada, reduzindo a previsão de carga entre 10% e 30%. Para o conjunto de vigas abaixo de 450 mm de altura a previsão tende a superestimar a carga. Observando a análise estatística apresentou média igual a 1,06 e coeficiente de variação de 12%, na Tabela 5.5 apresenta-se as cargas experimentais, a previsão e a análise estatística. Na Figura 5.5 apresenta-se o gráfico com a relação V_u x V_{MUTTONI.}

	Dimensões		Propriedades Concreto		Taxa d	le Arma	dura	Carga Experimental	MUTTONI	V _u /V _{MUTTONI}
Vigas	b	d	f_c	f _{ct}	As	$ ho_L$	f_{ys}	V _u	V _{U,MUTTONI}	_
	(mm)	(mm)	(Mpa)	(Mpa)	(mm²)	%	Mpa	kN	kN	
V150S	150	115	21	2.1	628	3.6	570	61.6	58.9	1.0
V150B0	150	115	22	2.0	628	3.6	570	64.6	57.6	1.1
V150B1	150	115	25	2.3	628	3.6 570 5		56.9	62.4	0.9
V250S	150	212	21	2.1	1021	3.2	2 570 86.4		85.3	1.0
V250B0	150	212	22	2.0	1021	3.2	570 90.4		83.4	1.1
V250B1	150	212	25	2.3	1021	3.2	570	86.0	90.4	1.0
V350S	150	299	21	2.1	1570	3.5	570	93.0	109.8	0.8
V350B0	150	299	22	2.0	1570	3.5	570	120.3	107.5	1.1
V450S	150	395	21	2.1	1885	3.2	570	143.7	128.3	1.1
V450B0	150	395	22	2	1885	3.2	570	148.6	125.6	1.2
V450B1	150	395	25	2.3	1885	3.2	570	177.8	136.0	1.3
									Média	1.06
									DP	0.13
									COV	12.2

Tabela 5.5: Relação entre as cargas últimas e as cargas estimadas pela proposta de MUTTONI (2019)

Figura 5.5: Relação V_u x V_{MUTTONI}

12.2

5.1.6 Análise das resistências estimadas comparadas com as resistências experimentais

Em relação as cargas e comportamentos, observou-se que a viga V150B0 registrou carga 13% acima da carga de ruína da viga V150B1 e 5% acima da carga de ruína da viga V150S. Para o grupo de vigas com altura igual a 250 mm, também observou-se que a viga dosada com granito 0 (V250B1) registrou carga 5% acima das demais vigas do grupo. Esta faixa de diferença entre as cargas cai em uma faixa muito próxima, não demostrando um padrão significativo de queda ou aumento da resistência ao esforço cortante a partir da mudança de agregado graúdo da dosagem. Para o grupo com 350 mm de altura a viga V350B0 registrou carga 29% acima da carga registrada para a viga V350S e para o grupo com 450 mm de altura a viga V450B1 registrou carga superior em 24% em relação a carga da viga V450S e 19% superior em relação a viga V450B0. O que já indica um comportamento superior das vigas moldadas com granito em relação as vigas onde utilizou-se quartzito na dosagem. Na Tabela 5.6 apresenta-se as cargas registradas nos ensaios e compara-se estas cargas com as cargas estimadas pelos 3 códigos normativos e as 2 propostas da literatura.

Vigas	V _u (kN)	V _{uACI} (kN)	V _{uEC2} (kN)	V _{uNBR} (kN)	V _{uHUBEF} (kN)	V _{uMUTT} (kN)	$\frac{V_u}{V_{uACI}}$	$\frac{V_u}{V_{uEC2}}$	$\frac{V_u}{V_{uNBR}}$	V _u V _{uhuber}	V _u V _{umuttoni}
V150S	61.6	40.5	61.1	33.1	64.9	58.9	1.5	1.0	1.9	0.9	1.0
V150B0	64.6	41.4	62.1	34.1	65.5	57.6	1.6	1.0	1.9	1.0	1.1
V150B1	56.9	44.2	64.8	37.2	67.3	62.4	1.3	0.9	1.5	0.8	0.9
V250S	86.4	63.6	91.9	61.1	94.4	85.3	1.4	0.9	1.4	0.9	1.0
V250B0	90.4	65.1	93.3	63.0	95.3	83.4	1.4	1.0	1.4	0.9	1.1
V250B1	86.0	69.4	97.4	68.6	97.9	90.4	1.2	0.9	1.3	0.9	1.0
V350S	93.0	84.7	123.0	86.0	121.1	109.8	1.1	0.8	1.1	0.8	0.8
V350B0	120.3	86.7	124.9	88.7	122.3	107.5	1.4	1.0	1.4	1.0	1.1
V450S	143.7	100.0	148.1	113.6	141.7	128.3	1.4	1.0	1.3	1.0	1.1
V450B0	148.6	102.3	150.5	117.2	143.1	125.6	1.5	1.0	1.3	1.0	1.2
V450B1	177.8	109.1	157.0	127.7	147.0	136.0	1.6	1.1	1.4	1.2	1.3
					_	Média	1.40	0.96	1.43	0.96	1.06
					_	SD	0.15	0.10	0.25	0.11	0.13
						COV(%)	10.8	10.1	17.5	12.0	12.2

Tabela 5.6: Resumo da Comparação entre as cargas últimas e as cargas previstas pela literatura analisada.

Observou-se que o ACI (2019) subestimou a contribuição do concreto na resistência ao esforço cortante para todas as vigas. A NBR 6118 (2014) seguiu o mesmo comportamento do ACI. O EC2 (2004) foi a única norma que conseguiu prever a carga média de todas as vigas, próximo a 1, apresentando média igual a 0.96. A proposta de MUTTONI (2019) e HUBER (2019) se aproximam da média igual a 1, com Huber tendendo a subestimar somente o conjunto de vigas de maior altura e Muttoni tende a subestimar todo o conjunto de vigas. Quando observa-se o coeficiente de variação percebe-se que o EC2 (2004) é o código que

apresenta melhor regressão linear dos dados, mantendo-os próximos a média igual a 1 com desvio padrão igual a 0,10, indicando que não possui valores extremos na sua previsão de carga. ACI 318 (2019) e NBR 6118 (2014) apresentam comportamento próximo, com coeficiente de variação igual a 10.8 e 17.5, respectivamente.

Na Figura 5.6 apresenta-se também o gráfico box plot para todas as relações carga experimental x previsão teórica de acordo com os códigos normativos e as propostas da literatura. O objetivo deste tipo de gráfico é verificar a distribuição de dados. A dispersão das amostras é representada pela amplitude do gráfico e quanto maior a amplitude maior a variação dos dados.

O ACI (2019) apresenta todas as relações experimental x previsão de carga acima da relação 1, mostrando tendência conservadora. A norma brasileira NBR 6118 (2014), segue a tendência conservadora. O EC2 (2004) dentre os códigos é o que apresenta menor amplitude e mantem os 3 quartis próximos da relação 1, indicando boa previsão de carga para as vigas analisadas.

Figura 5.6: Gráfico box plot comparativo para todas as estimativas

Observou-se que não há um consenso quanto a previsão para a resistência ao cisalhamento. As propostas tendem a apresenta-se conservadoras para não apresentar-se contra a segurança estrutural. Neste sentido no capítulo seguinte será feita uma proposta de modificação para os códigos normativos visando a redução do coeficiente de variação observado.
6. CONTRIBUIÇÃO PARA O ESTUDO DO CISALHAMENTO EM VIGAS DE CONCRETO ARMADO SEM ESTRIBO

De acordo com as observações feitas no capítulo anterior, nos itens referentes as estimativas para a resistência ao cisalhamento em vigas de concreto armado sem armadura transversal feitas pelos códigos normativos, constatou-se que ACI (2019) e NBR 6118 (2014) superestimam as cargas de ruptura, apresentando média entre as cargas experimentais e previstas iguais a 1,40 e 1,43, respectivamente. O código Europeu manteve média entre a relação teórica e experimental igual a 0,96 além disso a menor dispersão. Neste capítulo propõe-se modificações aos código normativos, analisados nesta tese, visando melhorar o desempenho no que tange a segurança estrutural.

Serão apresentados gráficos de dispersão para os parâmetros e relações que observou-se ter influência sobre a resistência do concreto ao esforço cortante, com vistas ao que já existe na literatura sobre o assunto. Em seguida será apresentada uma metodologia para revisão dos parâmetros utilizados nas propostas de modificação dos códigos normativos. Esta revisão propõe novos coeficientes e potências às fórmulas matemáticas utilizadas para o cálculo da previsão de carga ao esforço cortante. Esta revisão será feita utilizando um banco de dados, denominado banco de dados 1 (BD1), e é nele que será aplicada esta metodologia.

Observa-se que as fórmulas matemáticas dos códigos normativos, apresentam-se de forma simples, levando em consideração a resistência do concreto e geometria das peças como é o caso da NBR 6118 (2014). Os códigos normativos ACI (2019) e Eurocode 2 (2004) levam em consideração outros fatores como efeito *size effect* e taxa de armadura das peças. Outro banco de dados, denominado, banco de dados 2 (BD2), será utilizado para verificar a eficiência da metodologia proposta. Isto se faz necessário uma vez que neste banco serão utilizadas vigas de outros autores que não constam no banco de dados 1. Este capítulo será finalizado com a apresentação de uma proposta de modificação para as normas ACI-318, EC2 e NBR 6118, sendo utilizada para fazer novas previsões para as vigas do programa experimental.

O capítulo será finalizado classificando as vigas do BD2 de acordo com a taxa de armadura, buscando apresentar as faixas onde as propostas apresentam melhor regressão linear para os resultados.

6.1 CARACTERÍSTICAS E ORIGEM DOS BANCOS DE DADOS

Levando em consideração a importância em avaliar a capacidade resistente ao cisalhamento de peças de concreto, REINECK *et. al* (2003) montou um banco de dados (BD) que foi utilizado para avaliar a equação empírica do código alemão DIN 1045-1 (2011). Este banco de dados integrou outros bancos de dados para formar o que os autores chamaram de Banco de Dados de Coleta de Cisalhamento (CSDB).

O banco de dados 1 foi adaptado do banco de dados proposto por REINECK *et al.* (2003) e abrangeu uma ampla variedades de ensaios. Ressalta-se que as peças apresentaram propriedades que variaram em $f_c \in [21;111]$ MPa, $d \in [133;1890]$ mm, $a/d \in [2,5; 8]$, d_{max} agregado graúdo $\in [10;30]$. Todas as vigas que compõem o banco de dados não possuem armadura transversal, possuindo apenas armadura longitudinal nas quais $\rho_l \in [0,5; 6,6]$. A previsão normativa foi calculada de acordo com os códigos ACI 318 (2019), EC2 (2004) e NBR 6118 (2014) (Modelo I). O universo de vigas analisadas no banco de dados 1 (BD1) foi de 165 vigas. Além deste banco de dados, selecionou-se aleatoriamente 372 vigas dentre as 1600 vigas que constam no trabalho de COLLINS (2008) para compor um banco de dados são apresentados nas Tabelas 6.1 e 6.2. Nas Tabelas 6.3 e 6.4 apresenta-se o resumo estatístico destes banco de dados onde a previsão de carga foi feita pelos códigos ACI 318 (2019), EC2 (2004) e (2004) e NBR 6118 (2014).

Autor	n° de Espécimes	b _w (mm)	d (mm)	a/d	f _c (MPa)	d _{max} (mm)	$ ho_l$ (%)
1	6	290 - 360	178-278	2,9 - 4,5	46 - 59	19,0	1,0 - 3,0
2	16	127	184-208	2,7 - 4,0	62 - 69	12,7	2,2 - 6,6
3	7	300	925	2,9	21 - 80	10,0	0,5 - 2,0
4	8	240	600 - 1200	3,0	23 - 30	30,0	0,6 - 1,3
5	3	203	356	3,0	33 - 39	10,0 - 20,0	1,7
6	6	300	925	2,9	36 - 98	10,0	1,0
7	11	178	267 - 273	4,0	21 - 79	12,7	0,9 - 3,2
8	12	300	146 - 746	3,5 - 3,9	90 - 111	16,0	0,8 - 4,2
9	19	150 - 163	191 - 196	3,6 - 3,7	31 - 86	18,0	2,2 - 4,1
10	17	150	203 - 207	2,9 - 4,0	26 - 83	10,0	2,0 - 3,2
11	30	151 - 156	133 - 1097	2,4 - 8	25 - 30	19,0	2,6 - 2,8
12	3	102	152	3,5 - 5,0	41 - 44	9,5	1,4
13	3	500	225 - 226	2,5 - 3,5	25 - 26	16,0	0,8 - 1,4

Tabela 6.1: Resumo do Banco de dados 1

Autor	n° de Espécimes	b _w (mm)	d (mm)	a/d	f _c (MPa)	d _{max} (mm)	$ ho_l$ (%)
14	4	150	160 - 165	3,0 - 4,0	85	16,0	1,9 - 4,1
15	3	200	362 - 372	3,0 - 4,0	81 - 97	16,0	0,8 - 1,9
16	16	150 - 300	207 - 442	3,0 - 4,0	54 - 98	16,0	1,8 - 3,2
17	1	300	1890	3,0	34	10,0	0,7

Tabela 6.2: Resumo do Banco de dados 1 (continuação)

Fonte: Autoria Própria.

Tabela 6.3: Resumo do banco de dados 2

Autor	n° de	b _w	d	a/d	f _c	d_{max}	$ ho_l$
Tutor	Espécimes	(mm)	(mm)	u/u	(MPa)	(mm)	(%)
1	12	1524 - 1829	254 - 406	1,69 - 3,00	22,7 - 26,3	25	0,54 - 1,77
2	26	152 - 178	254 - 274	2,92 - 6,00	6,1-41,2	25	0,8 - 1,89
3	19	152	21,2-30,0	1,49 - 4,17	21,2 - 30,0	6 - 25	1,59
4	77	149 - 502	183 - 1091	1,50 - 5,39	13,7 – 38,3	12 - 30	0,48 – 1,87
5	9	151 - 761	262 - 269	3,83 - 4,16	23,7 - 33,1	13	0,25 – 1,73
6	8	240	297 - 1200	3,00	23,2 - 29,6	30	0,63 - 1,26
7	7	203	370	2,47 - 3,02	28,9-33,2	10	1,03 – 1,55
8	5	152	197 - 254	2,50-5,40	17,1 – 46,9	19	1,03 – 2,07
9	5	152	272	3,36	24,8-30,3	19	0,98 – 1,46
10	3	150	200	3,05 - 4,58	28,0-36,2	35	2,01
11	11	100 - 400	233 - 930	3,00	$18,\! 5-28,\! 7$	2 - 38	1,35
12	9	1000	250 - 750	3,65 - 5,50	19,9 – 31,1	30	0,42 – 0,91
13	2	135	234	2,56 - 3,42	27,0-31,5	19	1,07 – 1,08
14	3	100	370 - 372	3,37 - 5,90	22,0-30,3	20	1,08 - 7,00
15	3	500	226	2,50 - 3,50	24,6-25,8	16	0,79 – 1,39
16	17	150	270	1,50 - 4,00	20,0-38,6	19	0,53 – 1,91
17	6	203	256	3,00	41,6-49,3	10 - 20	1,69
18	1	152	226	3,03	46,6	19	0,17
19	8	914	184 - 191	2,01 - 3,25	48,3 - 49,0	19	0,60 - 1,24
20	7	178	268 - 273	2,00-6,00	20,7 - 79,3	13	0,60 - 1,63
21	5	140	200	2,50	18,9 - 20,1	30	0,56 - 1,82
22	2	200	250	2,50	47,1 – 51,0	19	1,55
23	3	150	200	2,00 - 4,40	24,2	20	1,34
24	1	600	2000	3,00	27,1	25	0,28
25	5	150	221	2,30 - 3,00	54,0-97,7	16	1,82
26	2	200	262 - 272	3,00 - 4,00	80,6 - 96,8	16	0,81 – 1,94
27	11	170 - 300	270 - 915	3,00 - 6,00	53,7	25	1,01 – 1,88
28	3	262 - 337	208 - 211	2,61 - 2,64	85,0-92,4	18	0,57 - 1,05
29	2	300	348	3,53	91,3 - 93,7	16	0,94 - 1,88
30	7	105 - 600	300 - 2000	3,00	20,6-27,3	20	1,20 - 1,36

Autor	n° de Espécimes	b _w (mm)	d (mm)	a/d	f _c (MPa)	d _{max} (mm)	$ ho_l$ (%)
31	3	300	225 - 925	2,88 - 2,95	37,0	10	0,76 – 0,89
32	8	400	190 - 889	2,50	34,2	20	1,20 - 2,00
33	5	150	207	2,90 - 3,86	26,6 - 50,8	10	2,02
34	20	169 - 500	191 - 1000	1,82 – 4,0	18,4 - 53,0	10 - 20	0,60 - 1,75
35	3	300	925	2,92	21,0-32,0	10	0,50 - 1,01
36	1	300	1925	2,81	30,8	10	0,36
37	3	457	360	3,39	40,9 - 43,7	19	0,36 - 1,92
38	6	160	325 - 346	2,75 - 3,54	34,1-43,2	20	0,72 – 1,54
39	1	356	1151	2,91	31,8	19	0,74
40	12	101 - 3000	305 - 440	2,96 - 3,41	34,0-40,6	10	0,90 - 1,61
41	4	250	326	3,07	43,6-60,0	19	0,86 - 1,72
42	7	249 - 1170	287 - 507	3,00 - 3,66	36,9 - 41,0	10	0,33 – 1,73
43	2	150	223	2,24 - 336	43,0	20	1,35
44	15	122 - 300	280 - 1400	2,89	28,1 - 77,3	10 - 50	0,83
45	3	460	850	1,93 - 2,74	32,0-51,0	19	0,44-0,72

Tabela 6.4: Resumo do banco de dados 2 (continuação)

Fonte: Autoria Própria.

Tabela 6.5: Resumo estatístico do BD1

Dado Estatístico	ACI-318	EC2	NBR		
Média	1,30	1,00	1,00		
Desvio Padrão	0,31	0,24	0,38		
Coeficiente de variação (%)	23,4	23,5	38,2		
Fonte: Autoria Própria.					

Tabela 6.6: Resumo estatístico do BD2

Dado Estatístico	ACI-318	EC2	NBR	
Média	1,47	1,05	0,90	
Desvio Padrão	0,30	0,20	0,28	
Coeficiente de variação (%)	20,6	19,2	31,1	

Fonte: Autoria Própria.

6.2 ANÁLISE DO BANCO DE DADOS

A equações simplificadas do código americano e da norma brasileira, para a estimativa da parcela do concreto resistente ao esforço cortante, levam em conta as variável referente ao

concreto não fissurado. Diversos autores como CAVAGNIS (2015), CAVAGNIS (2020), HUBER (2019), PEREIRA & MUTSUYOSHI (2013), MUTTONI (2008), ao longo dos anos, vem propondo formulações com estimativa mais seguras ao cortante para vigas sem armadura transversal, utilizando parâmetros que melhorem os resultados e que os tornem mais próximos de situações reais.

6.2.1 Proposta de Modificação para o EUROCODE-2

Foram correlacionados os parâmetros de resistência a compressão do concreto f_c , a geometria da viga por meio da largura da seção transversal b_w , e altura da seção d e a taxa de armadura longitudinal ρ_l . A equação da relação fatorada, que representa a tensão de cisalhamento, é apresentada na Equação 6.1. Nesta equação β é o dividendo onde a cada interação modificam-se os parâmetros buscando melhorar a correlação entre esses e τ_p . Na Tabela 6.3 faz-se o resumo estatístico do BD 1.

Nas Figuras 6.1, 6.2, 6.3 e 6.4 apresenta-se a relação entre a razão da carga última das vigas do banco de dados 1 pelo termo τ_p , descrito na Equação 6.1, com os fatores mencionados. Ressalta-se que nos gráficos a relação tensão x parâmetros encontra-se fatorada pelo parâmetro analisado, para a fatoração dos parâmetros e traçado dos gráficos. Na Figura 6.5 apresenta-se a sequência de interações para definição da Equação 6.2, na qual apresenta-se a proposta de modificação para o código EC2 (2004). Para regressão linear dos resultados dividiu-se a taxa de armadura pelo quociente a/d. Ressalta-se que este procedimento foi realizado em todas as propostas de modificação das normas analisadas. Na Equação 6.3 apresenta-se a equação fatorada final.

$$\tau_p = \frac{v_u}{\beta_n},$$
 Equação 6-1

Onde
$$\beta_n = \beta_1, \beta_2, \beta_3, \beta_4$$

 $\beta_1 = \left(100 \cdot \rho^{\frac{1}{3}}\right) \cdot b_w \cdot d$
 $\beta_2 = 0,24 \cdot f_c^{0,42} \cdot b_w \cdot d$
 $\beta_3 = 0,19 \cdot f_c^{0,42} \cdot \rho^{0,59} \cdot b_w$
 $\beta_4 = 0,66 \cdot f_c^{0,42} \cdot \rho^{0,59} \cdot d^{0,78}$

Figura 6.1: Influência da resistência a compressão do concreto na resistência ao esforço cortante

Figura 6.2: Influência da taxa de armadura da viga na resistência ao esforço cortante

Figura 6.3: Influência da altura útil da viga na resistência ao esforço cortante

Figura 6.4: Influência da largura da seção transversal da viga na resistência ao esforço cortante

la Interação (Avaliação do parâmetro f_c)

$$y = \tau_p = \frac{V_u}{\beta_1}$$
$$\beta_1 = (100 \cdot \rho^{\frac{1}{3}}) \cdot b_w \cdot d$$
$$x = \sqrt[3]{f_c}$$
Equação da Curva = 0,25 \cdot x^{1,21}
$$R^2 = 0,31$$

 2^{a} Interação (Avaliação do parâmetro ρ)

$$y = \tau_p = \frac{V_u}{\beta_2}$$
$$\beta_2 = 0.25 \cdot f_c^{0.4} \cdot b_w \cdot d$$
$$x = \sqrt{\rho}$$
$$Equação \ da \ Curva = 0.83 \cdot x^{1.19}$$
$$R^2 = 0.48$$

3ª Interação (Avaliação do parâmetro d)

$$y = \tau_p = \frac{V_u}{\beta_3}$$
$$\beta_3 = 0.21 \cdot f_c^{0.4} \cdot \rho^{0.6} \cdot b_w$$
$$x = d$$
Equação da Curva = 3.28 \cdot x^{0.79}
$$R^2 = 0.86$$

4ª Interação (Avaliação do parâmetro b_w)

$$y = \tau_p = \frac{V_u}{\beta_4}$$
$$\beta_4 = 0.69 \cdot f_c^{0.4} \cdot \rho^{0.6} \cdot d^{0.79}$$
$$x = b_w$$
Equação da Curva = 3.28 \cdot x^{0.79}
$$R^2 = 0.86$$

Figura 6.5: Interações realizadas na metodologia para a proposta de modificação do EC2. Fonte: Autoria Própria.

$$V_{EC_mod} = 1,0 \cdot \sqrt{f_c} \cdot \left(\frac{\rho}{\alpha}\right)^{1/2} \cdot d^{0,8} \cdot b_w$$
 Equação 6-2

$$V_{EC_mod} = \left(f_c \cdot \left(\frac{\rho}{a}\right)\right)^{\frac{1}{2}} \cdot d^{1,3} \cdot b_w$$
 Equação 6-3

Onde :

 f_c = Resistência a compressão do concreto;

 ρ = Taxa de armadura longitudinal (%);

d = altura efetiva da viga;

 $b_w =$ largura da seção transversal da viga;

 $\alpha = a/d$ Quociente entre a distância do ponto de aplicação da carga e o apoio pela altura efetiva da viga;

a = distância do ponto de aplicação da carga e o apoio (vão de cisalhamento).

Segundo BITTENCOURT (1999) a região de ocorrência de tensões de tração é uma zona com potencial para o aparecimento de fissuras, mesmo estando a viga submetida a uma carga que limita a tensão de escoamento. CEB -FIP (2010) no item 5.1.5 comenta que o modo de fratura do concreto submetido à tração permite a aplicação de conceitos da mecânica da fratura, ou seja, considerações de energia. Nestes conceitos a energia de fratura do concreto é frequentemente usada como uma característica dos materiais para descrever a resistência do concreto submetido a tensões de tração.

Considerando que a região fissurada, em vigas de concreto sujeitas ao esforço cortante, corresponde a uma área de cisalhamento, entre o apoio e o ponto de aplicação de carga, e sendo nesta área onde surgem as primeiras fissuras, admitiu-se ser este um fator limitador para o crescimento da carga de acordo com os parâmetros de influência do material e geométricos. Sendo assim a influência da taxa de armadura é limitada por $\alpha = a/d$. Na Tabela 6.5 apresenta-se o resumo estatístico e a comparação entre o Eurocode e a proposta de modificação, analisadas utilizando o banco de dados 1 e 2. Na Figura 6.6 apresenta-se um diagrama de caixa, denominado bloxplot no qual é apresentado a distribuição do conjunto de dados composto pelo quociente entre a resistência última das vigas do BD2 e a resistência prevista pelo código Europeu e a proposta de modificação. Observa-se que a proposta mantém a média igual a 1, porém reduz o desvio padrão de 0,20 para 0,15 fazendo com que o coeficiente de variação reduzisse de 19,2% para 15%.

Tabela 6.7: Resumo estatístico comparando o EC2 com a Proposta de Modificação.

Figura 6.6: Dispersão entre os resultados da norma avaliada e da proposta. Fonte: Autoria Própria.

6.2.2 Análise da segurança pelos critérios de Collins (2001)

Para a avaliação da segurança da proposta de modificação ao EC2 (2004), utilizou-se os critérios propostos por COLLINS (2001) no qual se tem um método para classificação das estimativas de previsão de carga, a partir do tratamento estatístico com uma escala de demérito, avaliando a média entre a razão da carga experimental pela carga prevista pelo código ou proposta analisada (V_u/V_{EC_Mod}). O Demerit Points Classification -DPC prevê, para cada valor desta razão penalidades conforme Tabela 6.6. Os critérios foram modificados e para esta análise serão considerados os seguintes valores: (a) Vigas extremamente perigosas - as vigas com quociente < 0,5; (b) Vigas perigosas - as vigas com quociente entre [0,8~1,1]; (d) Vigas

conservadoras – as vigas com quociente entre $[1,1\sim2,0[$ e, (e) Vigas extremamente conservadoras – as vigas com quociente ≥ 2.0 .

Na Tabela de 6.7 apresenta-se as penalidades para o EUROCODE 2 (2004) e a proposta de modificação para essa norma. Ressalta-se que essas penalidades foram calculadas para as vigas do banco de dados de contraprova (BD2). Observa-se que o total de penalidade que o EC2 somou 238 pontos, já a proposta de modificação para esta norma somou 189 pontos. Isto indica que a proposta de modificação além de reduzir a dispersão dos dados favorece a segurança estrutural para previsões ao esforço cortante. Ressalta-se que a proposta de modificação ao EC2 (2014), reduziu em 36% o número de vigas classificadas como perigosa conforme o sistema DPC.

$V_u \!\!/ V_{Teo}$	Classificação	Penalidade
< 0.50	Extremamente perigoso	10
[0,50~0,8]	Perigoso	5
[0,8~1,1]	Segurança Apropriada	0
[1,1~2,0[Conservador	1
≥ 2.0	Extremamente Conservador	2
	Fonte: Autoria Própria.	

Tabela 6.8: Classificação quanto aos critérios de segurança segundo o sistema DPC

Tabela 6.9: Classificação das vigas com previsão de carga pela norma EC2 e proposta de modificação.

Modelo	EUROCO	EUROCODE 2		ificação ao EC2				
$V_u \! / V_{Teo}$	N° de vigas	Penalidades	N° de vigas	Penalidades				
< 0.50	0	0	0	0				
[0,50~0,8]	25	125	16	80				
[0,8~1,1]	234	0	247	0				
[1,1~2,0[113	113	109	109				
≥ 2.0	0	0	0	0				
Total	372	238	372	189				

Fonte: Autoria Própria.

Nas Figuras 6.7 e 6.8 apresenta-se os gráficos de correlação entre os dados das vigas do BD2 e a previsão do esforço cortante, pelo código normativo EC2 (2004) e entre as vigas do BD2 e a previsão do esforço cortante, calculados a partir da proposta de modificação, respectivamente.

Figura 6.7: Correlação entre os dados experimentais e Figura 6.8: Correlação entre os dados experimentais e a proposta de modificação

6.2.3 Proposta de Modificação para o ACI-318

A mesma metodologia aplicada no item 6.2.1 foi aplicada para a proposta de modificação da norma americana. Ressalta-se que o Banco de dados 1 foi o mesmo utilizado no item 6.2.1, uma vez que todas as vigas atenderam os requisitos normativos. O BD2 foi adaptado e as vigas número 163, 169 a 171, 224 a 231, 239 a 243, 246 a 248, 283, 287, 304 e 305 foram retiradas, pois não atendem ao requisito abaixo:

$$\lambda_s = \sqrt{\frac{2}{1 + 0.004 \cdot d}} \le 1$$

Sendo assim, essas vigas citadas apresentaram $\lambda_s > 1$, e como a previsão de carga foi feita de acordo com as recomendações do ACI 318 (2019), elas tiveram que ser retiradas das análise. Na Tabela 6.8 apresenta-se o resumo do banco de dados 2 com 348 vigas que foram utilizadas para as análises deste item.

Tabela 6.10: Resumo d	do banco de dados 2	l adaptado para as	s análises da proposta o	de modificação para	o ACI 318

Autor	n° de Espécimes	b _w (mm)	d (mm)	a/d	f _c (MPa)	d _{max} (mm)	$egin{aligned} & ho_l \ (\%) \end{aligned}$
1	12	1524 - 1829	254 - 406	1,69 - 3,00	22,7 - 26,3	25	0,54 – 1,77
2	26	152 - 178	254 - 274	2,92 - 6,00	6,1-41,2	25	0,8 - 1,89
3	19	152	21,2 - 30,0	1,49 - 4,17	21,2 - 30,0	6 - 25	1,59
4	77	149 - 502	183 - 1091	1,50 - 5,39	13,7 – 38,3	12 - 30	0,48 – 1,87
5	9	151 - 761	262 - 269	3,83 - 4,16	23,7 - 33,1	13	0,25 – 1,73
6	8	240	297 - 1200	3,00	23,2 - 29,6	30	0,63 – 1,26
7	7	203	370	2,47 - 3,02	28,9 - 33,2	10	1,03 – 1,55

Autor	n° de Espécimes	b _w (mm)	d (mm)	a/d	<i>f_c</i> (MPa)	d _{max} (mm)	$ ho_l$ (%)
8	4	152	197 - 254	2,50 - 5,40	17,1 – 46,9	19	1,03 - 2,07
9	5	152	272	3,36	24,8-30,3	19	0,98 – 1,46
11	11	100 - 400	233 - 930	3,00	18,5 - 28,7	2 - 38	1,35
12	9	1000	250 - 750	3,65 - 5,50	19,9 – 31,1	30	0,42 - 0,91
13	2	135	234	2,56 - 3,42	27,0-31,5	19	1,07 – 1,08
14	3	100	370 - 372	3,37 - 5,90	22,0-30,3	20	1,08 - 7,00
15	3	500	226	2,50 - 3,50	24,6-25,8	16	0,79 – 1,39
16	17	150	270	1,50 - 4,00	20,0-38,6	19	0,53 – 1,91
17	6	203	256	3,00	41,6 - 49,3	10 - 20	1,69
18	1	152	226	3,03	46,6	19	0,17
20	7	178	268 - 273	2,00 - 6,00	20,7 - 79,3	13	0,60 - 1,63
22	2	200	250	2,50	47,1-51,0	19	1,55
24	1	600	2000	3,00	27,1	25	0,28
25	5	150	221	2,30 - 3,00	54,0-97,7	16	1,82
26	2	200	262 - 272	3,00 - 4,00	80,6 - 96,8	16	0,81 - 1,94
27	11	170 - 300	270 - 915	3,00 - 6,00	53,7	25	1,01 – 1,88
28	3	262 - 337	208 - 211	2,61 - 2,64	85,0-92,4	18	0,57 - 1,05
29	2	300	348	3,53	91,3 - 93,7	16	0,94 - 1,88
30	7	105 - 600	300 - 2000	3,00	20,6-27,3	20	1,20 - 1,36
31	3	300	225 - 925	2,88 - 2,95	37,0	10	0,76 – 0,89
32	6	400	190 - 889	2,50	34,2	20	1,20 - 2,00
33	5	150	207	2,90 - 3,86	26,6-50,8	10	2,02
34	18	169 - 500	191 - 1000	1,82 – 4,0	18,4 - 53,0	10 - 20	0,60 - 1,75
35	3	300	925	2,92	21,0-32,0	10	0,50 - 1,01
36	1	300	1925	2,81	30,8	10	0,36
37	3	457	360	3,39	40,9 - 43,7	19	0,36 - 1,92
38	6	160	325 - 346	2,75 - 3,54	34,1-43,2	20	0,72 - 1,54
39	1	356	1151	2,91	31,8	19	0,74
40	12	101 - 3000	305 - 440	2,96 - 3,41	34,0-40,6	10	0,90 - 1,61
41	4	250	326	3,07	43,6-60,0	19	0,86 - 1,72
42	7	249 - 1170	287 - 507	3,00 - 3,66	36,9 - 41,0	10	0,33 – 1,73
43	2	150	223	2,24 - 336	43,0	20	1,35
44	15	122 - 300	280 - 1400	2,89	28,1 - 77,3	10 - 50	0,83
45	3	460	850	1,93 - 2,74	32,0-51,0	19	0,44 - 0,72

Tabela 6.11: Resumo do banco de dados 2 adaptado para as análises da proposta de modificação para o ACI 318 (continuação)

Fonte: Autoria Própria.

Nas Figuras 6.9, 6.10, 6.11 e 6.12 apresenta-se a relação entre a razão da carga última das vigas do banco de dados 1 pelo termo τ_p , descrito na Equação 6.2, com os fatores analisados.

Sendo eles: resistência a compressão do concreto f_c , a geometria da viga por meio da largura da seção transversal b_w , e altura da seção d e a taxa de armadura longitudinal ρ_l . Na Figura 6.13 apresenta-se a sequência de interações para definição da Equação 6.4, na qual apresenta-se a proposta de modificação para o código ACI 318 e na Equação 6.5 apresenta-se a equação fatorada.

Figura 6.9: Resumo do banco de dados 2 adaptado para as análises da proposta de modificação para o ACI 318

Figura 6.11: Influência da altura útil da viga na resistência ao esforço cortante

Figura 6.10: Influência da taxa de armadura da viga na resistência ao esforço cortante

Figura 6.12: Influência da largura da seção transversal da viga na resistência ao esforço cortante

1ª Interação (Avaliação do parâmetro f_c)

$$y = \tau_p = \frac{V_u}{\beta_1}$$
$$\beta_1 = (\rho^{\frac{1}{3}}) \cdot b_w \cdot d$$
$$x = \sqrt[3]{f_c}$$
Equação da Curva = 1,18 · x^{1,21}
$$R^2 = 0,31$$

 2^{a} Interação (Avaliação do parâmetro ρ)

$$y = \tau_p = \frac{V_u}{\beta_2}$$
$$\beta_2 = 1,18 \cdot f_c^{0,4} \cdot b_w \cdot d$$
$$x = \sqrt{\rho}$$
Equação da Curva = 2,69 \cdot x^{1,19}
$$R^2 = 0,48$$

3ª Interação (Avaliação do parâmetro d)

$$y = \tau_p = \frac{V_u}{\beta_3}$$
$$\beta_3 = 3,17 \cdot f_c^{0,4} \cdot \rho^{0,59} \cdot b_w$$
$$x = d$$
Equação da Curva = 0,22 \cdot x^{0,78}
$$R^2 = 0,86$$

4ª Interação (Avaliação do parâmetro b_w)

$$y = \tau_p = \frac{V_u}{\beta_4}$$
$$\beta_4 = 0.70 \cdot f_c^{0.4} \cdot \rho^{0.59} \cdot d^{0.78}$$
$$x = b_w$$
Equação da Curva = 16,99 \cdot x^{0.98}
$$R^2 = 0.74$$

Figura 6.13: Interações utilizadas na metodologia para a proposta de modificação do ACI 318. Fonte: Autoria Própria

$$V_{ACI_Mod} = 9 \cdot \sqrt{f_c} \cdot \left(\frac{\rho}{\alpha}\right)^{\frac{1}{2}} \cdot d^{0,78} \cdot b_w$$
 Equação 6-4

$$V_{ACI_Mod} = 9 \cdot \left(f_c \cdot \left(\frac{\rho}{a} \right) \right)^{\frac{1}{2}} \cdot d^{1,28} \cdot b_w$$
 Equação 6-5

Onde :

 f_c = Resistência a compressão do concreto;

 ρ = Taxa de armadura longitudinal (%);

d = altura efetiva da viga;

 $b_w =$ largura da seção transversal da viga;

 $\alpha = a/d$ Quociente entre a distância do ponto de aplicação da carga e o apoio pela altura efetiva da viga;

a = distância do ponto de aplicação da carga e o apoio (vão de cisalhamento).

Na Tabela 6.9 apresenta-se o resumo estatístico e a comparação entre o ACI 318 e a proposta de modificação analisada utilizando o banco de dados 1 e 2. Na Figura 6.14 apresenta-se um diagrama de caixa, denominado bloxplot no qual é apresentado a distribuição do conjunto de dados composto pelo quociente entre a resistência última das vigas do BD2 e a resistência prevista pelo código americano e a proposta de modificação. Observa-se que a proposta reduz a média de 1,47 para 1,28. Quanto ao desvio padrão reduziu-se de 0,30 para 0,18, fazendo com que o coeficiente de variação suavizasse de 20,6% para 14,3%. Este fato se deu, pois na proposta não observa-se valores extremos máximos e mínimos, os dados da amostra ficam torno da média.

Dado Estatístico	ACI	ACI_Mod				
Média	1,47	1,28				
Desvio Padrão	0,30	0,18				
Coeficiente de variação (%)	20,6	14,3				

Tabela 6.12: Resumo estatístico comparando o ACI 318 com a Proposta de Modificação.

Fonte: Autoria Própria.

Figura 6.14: Dispersão entre os resultados da norma avaliada e da proposta de Modificação. Fonte: Autoria Própria.

6.2.4 Análise da segurança pelos critérios de Collins (2001) para a proposta de modificação do ACI -318

Utilizou-se a mesma classificação quanto aos critérios de segurança segundo o sistema DPC, que foram utilizados para avaliação da proposta apresentada no item 6.2.2. A classificação com as respectivas penalidades é representada na Tabela 6.10. Na Tabela de 6.11 apresenta-se as penalidades para o ACI 318 (2019) e a proposta de modificação para essa norma. Ressalta-se que essas penalidades foram calculadas para as vigas do banco de dados de contraprova (BD2). Observa-se que o total de penalidade para o código americano somava 350 pontos, já a proposta de modificação para esta norma reduziu a penalidade para 288 pontos. Nas Figuras 6.15 e 6.16 apresentam-se os gráficos de correlação entre os dados das vigas do BD2 e a previsão do esforço cortante, pelo código normativo ACI 319 e entre as vigas do BD2 e a previsão do esforço cortante, calculados a partir da proposta de modificação, respectivamente.

$V_u/_{V_{ACI_Mod}}$	Classificação	Penalidade
< 0.50	Extremamente perigoso	10
[0,50~0,8]	Perigoso	5
[0,8~1,1]	Segurança Apropriada	0
[1,1~2,0[Conservador	1
≥ 2.0	Extremamente Conservador	2
	Fonte: Autoria Própria.	

Tabela 6.13: Classificação quanto aos critérios de segurança segundo o sistema DPC

Modelo	ACI 318 (ACI 318 (2019)		icação ao ACI 318		
Vu/ V _{Teo}	N° de vigas	Penalidades	N° de vigas	Penalidades		
< 0.50	0	0	0	0		
[0,50~0,8]	1	5	0	0		
[0,8~1,1]	25	0	60	0		
[1,1~2,0[299	299	288	288		
≥ 2.0	23	46	0	0		
Total	348	350	348	288		

Tabela 6.14: Classificação das vigas com previsão de carga pelo ACI 318 e proposta de modificação

Fonte: Autoria Própria.

Figura 6.15: Correlação entre os dados experimentais e normativo ACI

Figura 6.16: Correlação entre os dados experimentais e a proposta de modificação para o ACI

6.2.5 Proposta de Modificação para a NBR 6118 (2014)

Para as análises da formulação e contraprova foram utilizados os bancos de dados resumidos no item 6.1 e nas Tabelas 6.1 e 6.2. A NBR 6118 (2014) em sua proposta para o cálculo da resistência ao esforço cortante leva em consideração a resistência a compressão do concreto f_c , por meio da sua relação com a resistência a tração do concreto f_{ct} e relaciona este parâmetro com as características geométricas da seção transversal. Pelo que já foi exposto, observou-se que a taxa de armadura longitudinal influência de sobremaneira na estimativa da resistência ao esforço cortante e sua influência é limitada por a/d. Desta forma, aplicou-se a metodologia de interação entre as variáveis e aplicou-se o fator ($\sqrt{\frac{\rho}{a}}$) na estimativa final para a norma brasileira.

Nas Figuras 6.17 a 6.20 apresentam-se a relação entre a razão da carga última das vigas do banco de dados 1 pelo termo τ_p , descrito na Equação 6.1, com os fatores mencionados. Na

Figura 6.21 apresenta-se as interações entre os parâmetros para a formulação da proposta de modificação. Na Equação 6-6 apresenta-se a proposta de modificação para a norma brasileira NBR 6118 (2014) e na Equação 6-7 apresenta-se a proposta fatorada.

concreto na resistência ao esforço cortante

100

80

60

40

20

0

Figura 6.19: Influência da altura útil da viga na resistência ao esforço cortante

Figura 6.18: Influência da taxa de armadura da viga na resistência ao esforço cortante

Figura 6.20: Influência da largura da seção transversal da viga na resistência ao esforço cortante

1ª Interação (Avaliação do parâmetro f_c)

$$y = \tau_p = \frac{V_u}{\beta_1}$$
$$\beta_1 = (\rho^{\frac{1}{3}}) \cdot b_w \cdot d$$
$$x = \sqrt[3]{f_c}$$
Equação da Curva = 0,25 \cdot x^{1,21}
R^2 = 0,31

 2^{a} Interação (Avaliação do parâmetro ρ)

$$y = \tau_p = \frac{V_u}{\beta_2}$$
$$\beta_2 = 0.25 \cdot f_c^{0.4} \cdot b_w \cdot d$$
$$x = \sqrt[3]{\rho}$$
Equação da Curva = 12,67 \cdot x^{1,77}
$$R^2 = 0.48$$

 3^{a} Interação (Avaliação do parâmetro d)

$$y = \tau_p = \frac{V_u}{\beta_3}$$
$$\beta_3 = 3,17 \cdot f_c^{0,4} \cdot \rho^{0,59} \cdot b_w$$
$$x = d$$
$$Equação da Curva = 0,22 \cdot x^{0,78}$$
$$R^2 = 0,86$$

4ª Interação (Avaliação do parâmetro b_w)

$$y = \tau_p = \frac{V_u}{\beta_4}$$
$$\beta_4 = 0.7 \cdot f_c^{0.4} \cdot \rho^{0.59} \cdot d^{0.78}$$
$$x = b_w$$
Equação da Curva = 1,12 \cdot x^{0.98}
$$R^2 = 0.74$$

Figura 6.21: Interações realizadas na metodologia para a proposta de modificação da NBR 6118. Fonte: Autoria Própria.

$$V_{NBR_Mod} = 1.4 \cdot f_c^{0,40} \cdot \sqrt{\frac{\rho}{\alpha}} \cdot d^{0,8} \cdot b_w$$
 Equação 6-6

$$V_{NBR_Mod} = 1.4 \cdot f_c^{0.40} \cdot \left(\frac{\rho}{a}\right)^{\frac{1}{2}} \cdot d^{1.3} \cdot b_w$$
 Equação 6-7

Onde :

 f_c = Resistência a compressão do concreto;

 ρ = Taxa de armadura longitudinal (%);

d = altura efetiva da viga;

 $b_w =$ largura da seção transversal da viga;

 $\alpha = a/d$ Quociente entre a distância do ponto de aplicação da carga e o apoio pela altura efetiva da viga;

a = distância do ponto de aplicação da carga e o apoio (vão de cisalhamento).

Na Tabela 6.12 apresenta-se o resumo estatístico e a comparação entre a NBR 6118 (2014) e a proposta de modificação para esta norma. Na Figura 6.22 apresenta-se um diagrama de caixa, denominado bloxplot no qual é apresentado a distribuição do conjunto de dados composto pelo quociente entre a resistência última das vigas do BD2 e a resistência prevista pela norma brasileira e a proposta de modificação.

Observa-se que a proposta aumentou em 10% a segurança quando analisadas as vigas do BD2 em relação à média. Reduziu-se o desvio padrão de 0,28 para 0,14, fazendo com que o coeficiente de variação reduzisse de 31,1% para 13,6%. Este fato se deu, pois na proposta de modificação à NBR 6118 (2014), não observa-se valores extremos máximos e mínimos, os dados da amostra ficam em torno da média. Esta foi a norma analisada onde obteve-se os melhores resultados, pois a média foi igual a 1 e o coeficiente de variação foi reduzido em mais de 50%.

Tabela 6.15: Resumo estatístico comparando a NBR com a Proposta de Modificação.

_				
	Dado Estatístico	NBR	NBR_Mod	
	Média	0,90	1,03	
	Desvio Padrão	0,28	0,14	
	Coeficiente de variação (%)	31,1	13,6	
_	Média Desvio Padrão Coeficiente de variação (%)	0,90 0,28 31,1	1,03 0,14 13,6	

Fonte: Autoria Própria.

Figura 6.22: Dispersão entre os resultados da NBR e da proposta de modificação. Fonte: Autoria Própria.

6.2.6 Análise da segurança pelos critérios de Collins (2001) para a proposta de modificação da NBR 6118 (2014)

Analisando os critérios de segurança segundo o sistema DPC, na Tabela de 6.13 apresenta-se as penalidades para a NBR 6118 (2014) e a proposta de modificação para essa norma. Ressalta-se que essas penalidades foram calculadas para as vigas do banco de dados de contraprova (BD2). Observa-se que o total de penalidade para a norma brasileira apresentou soma igual a 877 pontos, já a proposta de modificação para esta norma reduziu a penalidade para 157 pontos. Nas Figuras 6.23 e 6.24 apresentam-se os gráficos de correlação entre os dados das vigas do BD2 e a previsão do esforço cortante, pelo norma NBR 6118 (2014) e entre as vigas do BD2 e a previsão do esforço cortante, calculados a partir da proposta de modificação, respectivamente.

Modelo	NBR 61	NBR 6118		lificação para a 6118
V_u / V_{Teo}	N° de vigas	Penalidades	N° de vigas	Penalidades
< 0.50	18	180	0	0
[0,50~0,8]	123	615	15	75
[0,8~1,1]	150	0	275	0
[1,1~2,0[80	80	82	82
≥ 2.0	1	2	0	0
Total	372	877	372	157

Tabela 6.16: Classificação das vigas com previsão de carga pela NBR 6118 (2014) e proposta de modificação

Fonte: Autoria Própria.

Figura 6.23: Correlação entre os dados experimentais e Figura normativo

Figura 6.24: Correlação entre os dados experimentais e proposta de modificação

6.2.7 Resumo dos dados estatísticos

Na Tabela 6.14 apresenta-se o resumo das penalidades segundo os critérios de Collins (2001) para todas as propostas de modificações das normas.

Modelo	EUROCO	DE 2	Proposta de Modifi	icação para o EC2
V_u / V_{Teo}	N° de vigas	Penalidades	N° de vigas	Penalidades
< 0.50	0	0	0	0
[0,50~0,8]	25	125	16	80
[0,8~1,1]	234	0	247	0
[1,1~2,0[113	113	109	109
≥ 2.0	0	0	0	0
Total	372	238	372	189
Modelo	ACI 31	18	Proposta de Modifica	ção para o ACI 318
V _u / V _{Teo}	N° de vigas	Penalidades	N° de vigas	Penalidades
< 0.50	0	0	0	0
[0,50~0,8]	1	5	0	0
[0,8~1,1]	25	0	60	0
[1,1~2,0[299	299	288	288
≥ 2.0	23	46	0	0
Total	348	350	348	288
Modelo	NBR 61	.18	Proposta de Modificaç	ão para a NBR 6118
$V_u \! / V_{Teo}$	N° de vigas	Penalidades	N° de vigas	Penalidades
< 0.50	18	180	0	0
[0,50~0,8]	123	615	15	75
[0,8~1,1]	150	0	275	0
[1,1~2,0[80	80	82	82
≥ 2.0	1	2	0	0
Total	372	877	372	157

Tabela 6.17: Resumo das penalidades entre as normas e as propostas de modificações

Em relação a análise dos critérios de segurança pelo sistema DPC, observa-se que das propostas de modificação a que mais se mostrou eficiente foi a proposta para a NBR 6118 (2014). Isto se dá, pois esta norma não leva em consideração a taxa de armadura no cálculo da estimativa ao esforço cortante pela parcela do concreto. Para o código americano, e norma europeia a contribuição da metodologia se deu à medida que reduziu a dispersão dos dados, excluindo vigas consideradas perigosas. Ressalta-se que inserção do fator α e ajuste das potências dos parâmetros utilizados nas formulações influenciou de sobremaneira nestes resultados.

6.2.8 Análise das normas e códigos com as propostas de modificação: Avaliação das vigas do programa experimental.

Na Tabela 6.15 apresenta-se a avaliação das vigas do programa experimental de acordo com as propostas de modificações. A média entre a carga experimental das vigas e a carga estivada pelas propostas de modificações ficou em 0,98 para o ACI (2019), 0,79 para o EC2 (2004) e 0,75 para a NBR 6118 (2014), antes das propostas estas médias eram iguais a 1,40 para o ACI, 0,96 para o EC e 1,43 para a NBR 6118 (2014). Quanto ao coeficiente de variação observou-se que para todas as propostas ele foi igual a 10,4%, ao passo que, analisando as vigas pelos códigos observou-as que os coeficientes são: 10,8% (ACI), 10,1% (EC) e 17,5% (NBR 6118). Ressalta-se que quando analisa-se as vigas do BD2 pelas propostas de modificações, tem-se como resposta para a média da carga experimental pela estimativa das vigas valores abaixo de 1, porém todas estas análises são feitas sem levar em consideração o coeficiente de segurança estrutural das normas que varia entre 1,4 e 1,5. Ao analisar as vigas do programa experimental, onde todas as vigas apresentam ρ acima de 3%, as vigas não apresentam-se conservadoras, tendendo a ficar com os resultados em torno de 1.

Vigas	Vu (kN)	ACI 314 (kN)	EC2 (kN)	NBR (kN)	ACI_ Mod (kN)	EC2_ Mod (kN)	NBR_ Mod (kN)	$rac{V_u}{V_{ACI}}$	$rac{V_u}{V_{EC}}$	$rac{V_u}{V_{NBR}}$	$rac{V_u}{V_{ACI_Mod}}$	$\frac{V_u}{V_{EC_Mod}}$	$\frac{V_u}{V_{NBR_Mod}}$
V150S	61,6	40,5	61,1	33,1	58,0	70,8	75,4	1,5	1,0	1,9	1,1	0,9	0,8
V150B0	64,6	41,4	62,1	34,1	59,4	72,5	76,9	1,6	1,0	1,9	1,1	0,9	0,8
V150B1	56,9	44,2	64,8	37,2	63,3	77,3	81,0	1,3	0,9	1,5	0,9	0,7	0,7
V250S	86,4	63,6	91,9	61,1	88,9	110,0	117,0	1,4	0,9	1,4	1,0	0,8	0,7
V250B0	90,4	65,1	93,3	63,0	91,0	112,5	119,3	1,4	1,0	1,4	1,0	0,8	0,8
V250B1	86,0	69,4	97,4	68,6	97,0	120,0	125,7	1,2	0,9	1,3	0,9	0,7	0,7
V350S	93,0	84,7	123,0	86,0	119,8	149,2	158,8	1,1	0,8	1,1	0,8	0,6	0,6
V350B0	120,3	86,7	124,9	88,7	122,6	152,7	161,9	1,4	1,0	1,4	1,0	0,8	0,7
V450S	143,7	100,0	148,1	113,6	142,6	178,6	190,1	1,4	1,0	1,3	1,0	0,8	0,8
V450B0	148,6	102,3	150,5	117,2	146,0	182,8	193,8	1,5	1,0	1,3	1,0	0,8	0,8
V450B1	177,8	109,1	157,0	127,7	155,6	194,9	204,2	1,6	1,1	1,4	1,1	0,9	0,9
							Média	1,40	0,96	1,43	0,98	0,79	0,75
							Desvio Padrão	0,15	0,10	0,25	0,10	0,08	0,08
							COV (%)	10,8	10,1	17,5	10,4	10,4	10,4

Tabela 6.18: Avaliação das vigas do programa experimental pelas normas e propostas de modificação.

Fonte: Autora (2022)

6.2.9 Análise das vigas do Banco de dados por faixa de ρ

6.2.9.1 Análise para o Eurocode 2

Filtrou-se o BD2 utilizado para análise da eficiência da proposta de modificação, considerando vigas com ρ (%) na faixa compreendida entre [0;1], [1,01; 2] e ρ (%) > 2,01. Após a filtragem observou-se os dados estatísticos apresentados na Tabela 6.16 e os critérios de segurança apresentados na Tabela 6.17 para a faixa [0;1]. Nas Tabelas 6.18 e 6.19 apresenta-se o resumo estatístico e análise de penalidades para a faixa [1,01; 2]. E nas Tabelas 6.20 e 6.21 apresenta-se o resumo estatístico e a análise de penalidades para ρ (%) > 2,01.

Dado Estatístico	EC	EC_MOD			
Média	1,03	1,08			
Desvio Padrão	0,23	0,16			
Coeficiente de variação (%)	22,2	14,5			
Easter Arteur (2022)					

Tabela 6.19: Resumo estatístico para a análise do BD2 filtrado com ρ (%) entre [0;1].

Fonte: Autora (2	2022)
------------------	-------

Tabela 6.20: Penalidades das vigas do BD2 filtrado ρ (%) entre [0,1].

Modelo	EUROCO	EUROCODE 2		lificação para o 22	
V_u / V_{Teo}	N° de vigas	Penalidades	N° de vigas	Penalidades	
< 0.50	0	0	0	0	
[0,50~0,8]	20	100	3	15	
[0,8~1,1]	88	0	85	0	
[1,1~2,0[45	45	65	65	
≥ 2.0	0	0	0	0	
Total	153	145	153	80	
Fonte: Autora (2022)					

Tabela 6.21: Resumo estatístico para a análise do BD2 filtrado com ρ (%) entre [1,01; 2].

Dado Estatístico	EC	EC_MOD
Média	1,06	0,99
Desvio Padrão	0,17	0,14
Coeficiente de variação (%)	16,4	14,1

Fonte: Autora (2022)

Modelo	EUROCC	EUROCODE 2		lificação para o 2	
V_u / V_{Teo}	N° de vigas	Penalidades	N° de vigas	Penalidades	
< 0.50	0	0	0	0	
[0,50~0,8]	5	25	13	65	
[0,8~1,1]	141	0	158	0	
[1,1~2,0[64	64	39	39	
≥ 2.0	0	0	0	0	
Total	210	89	210	104	
Fonte: Autora (2022)					

Tabela 6.22: Penalidades das vigas do BD2 filtrado ρ (%) entre [1,01;2].

Tabela 6.23: Resumo estatístico para a análise do BD2 filtrado com ρ (%) > 2.

Dado Estatístico	EC	EC_MOD
Média	1,13	1,10
Desvio Padrão	0,29	0,18
Coeficiente de variação (%)	25,9	16,5
	(2.2.2.2.)	

Fonte: Autora (2022)

Tabela 6.24: Penalidades das vigas do BD2 filtrado ρ (%) >2

Modelo	EUROCO	EUROCODE 2		dificação para o C2
V_u / V_{Teo}	N° de vigas	Penalidades	N° de vigas	Penalidades
< 0.50	0	0	0	0
[0,50~0,8]	0	0	0	0
[0,8~1,1]	5	0	4	0
[1,1~2,0[4	4	5	5
≥ 2.0	0	0	0	0
Total	9	4	9	5

Fonte: Autora (2022)

Filtrando o banco de dados 2 observou-se o desempenho da proposta de modificação para cada faixa de ρ (%). Pois observou-se a influência deste parâmetro para a análise dos dados estatísticos. A faixa de ρ (%) entre [0;1] apresentou média igual a 1,08 pela proposta de modificação, ficando próximo a média pelo EC2 (2004), que foi igual a 1,03. Além da redução do desvio padrão de 22,2 para 14,5, observou-se que a penalidade pelos critérios de de segurança de Collins (2001) apresentou bom desempenho, um vez que a penalidade para o EC2 (2004) foi igual a 145 pontos, enquanto para a proposta de modificação a pontuação foi igual a 80 pontos. Esta faixa de ρ (%) governou os resultados de desempenho apresentados no item 6.2.2. Para as demais faixas de ρ (%) analisadas, observou-se que a média se manteve em torno de 1 e para as penalidades observou-se que o EC2 (2004) apresentou penalidades

levemente inferiores, sendo elas: faixa de ρ (%) [1,01; 2] com penalidade do EC2 (2004) igual a 89, enquanto o EC2_Mod apresentou penalidade igual a 104; faixa de ρ (%) > 2,01 com penalidade do EC2 (2004) igual a 4, enquanto o EC2_Mod apresentou penalidade igual a 5.

6.2.9.2 Análise para o ACI 318 (2019)

Utilizando a mesma metodologia explicada no item 6.2.9.1, após a filtragem observou-se os dados estatísticos apresentados na Tabela 6.22 e os critérios de segurança apresentados na Tabela 6.23 para a faixa [0,1]. Nas Tabelas 6.24 e 6.25 apresenta-se o resumo estatístico e análise de penalidades para a faixa [1,01, 2]. Já nas Tabelas 6.26 e 6.27 apresentam-se o resumo estatístico e a análise de penalidades para ρ (%) > 2,01.

Tabela 6.25: Resumo estatístico para a análise do BD2 filtrado com ρ (%) entre [0;1].

Dado Estatístico	ACI	ACI_MOD		
Média	1,49	1,36		
Desvio Padrão	0,37	0,19		
Coeficiente de variação (%)	24,6	14,0		
Fonte: Autora (2022)				

Modelo	ACI		Proposta de Moo AC	lificação para o CI
V _u / V _{Teo}	N° de vigas	Penalidades	N° de vigas	Penalidades
< 0.50	0	0	0	0
[0,50~0,8]	0	0	0	0
[0,8~1,1]	19	0	10	0
[1,1~2,0[107	107	134	134
≥ 2.0	18	36	0	0
Total	144	143	144	134

Tabela 6.26: Penalidades das vigas do BD2 filtrado ρ (%) entre [0;1].

Fonte: Autora (2022)

Tabela 6.27: Resumo estatístico para a análise do BD2 filtrado com ρ (%) entre [1,01; 2].

Dado Estatístico	ACI	ACI_MOD		
Média	1,45	1,22		
Desvio Padrão	0,24	0,15		
Coeficiente de variação (%)	16,6	12,4		

Fonte: Autora (2022)

Tabela 6.28: Penalidades das vigas do BD2 filtrado ρ (%) entre [1,01 ;2].

Modelo	ACI		Proposta de Modificação para o ACI	
V_u / V_{Teo}	N° de vigas	N° de vigas Penalidades		Penalidades
< 0.50	0	0	0	0
[0,50~0,8]	1	5	0	0
[0,8~1,1]	5	5 0		0
[1,1~2,0[188	188 188		149
Tabela 6.29: Penalidades das vigas do BD2 filtrado ρ (%) entre [1,01 ;2]. Continuação.				
Modelo	ACI		Proposta de Moo AG	dificação para o CI
$V_u \!\!\!/ V_{Teo}$	N° de vigas	Penalidades	N° de vigas	Penalidades
≥2.0	4	8	0	0
Total	198 201		198	149
Fonte: Autora (2022)				

Tabela 6.30: Resumo estatístico para a análise do BD2 filtrado com ρ (%) > 2.

Dado Estatístico	ACI	ACI_MOD		
Média	1,54	1,38		
Desvio Padrão	0,44	0,28		
Coeficiente de variação (%)	28,8	20,0		
Easter Astrony (2022)				

Fonte: Autora (2022)

Tabela 6.31: Penalidades das vigas do BD2 filtrado ρ (%) >2

Modelo	ACI	ACI		lificação para o CI
V_u / V_{Teo}	N° de vigas	Penalidades	N° de vigas	Penalidades
< 0.50	0	0	0	0
[0,50~0,8]	0	0	0	0
[0,8~1,1]	1	0	1	0
[1,1~2,0[4	4	5	5
≥ 2.0	1	2	0	0
Total	6	6	6	5
Fonte: Autora (2022)				

Filtrando o banco de dados 2 observou-se o desempenho da proposta de modificação para cada faixa de ρ (%). Para todas as faixas verificou-se que a proposta apresentou-se conservadora, sendo que o código ACI (2019) apresentou-se mais conservadora que a proposta de modificação. Para a faixa entre 0 e 1% a média entre a carga experimental e a prevista pela proposta de modificação foi 1,36 ao passo que o ACI (2019) apresentou média superior igual a 1,49. Para a faixa entre 1,01% e 2% a média da proposta de modificação foi 1,22, já o ACI (2019) apresentou média igual a 1,45. Para ρ (%) acima de 2% a média da proposta de modificação foi igual a 1,38 enquanto o ACI (2019) mostrou-se extremamente conservador resultando média igual a 1,54. Todos os coeficientes de variação da proposta de

modificação se apresentaram abaixo dos coeficientes do ACI (2019), afirmando a eficiência e regressão linear da proposta. Ressalta-se que para valores de ρ (%) entre 3,2 e 3,6 % a proposta de modificação mantém média igual a 1 e o ACI (2019) mantem sua tendencia conservadora apresentando média igual a 1,4. Para valores da taxa de armadura acima de 3,6 seriam necessários estudos complementares, porém até esta faixa a proposta de modificação atende na previsão segura para estimativa do esforço cortante.

6.2.9.3 Análise para a NBR 6118 (2014)

Filtrou-se o Banco de dados 2 para realização das análises estatísticas para a norma brasileira e a modificação proposta para essa norma. Após a filtragem observou-se os dados estatísticos apresentados na Tabela 6.28 e os critérios de segurança apresentados na Tabela 6.29 para a faixa [0,1]. Nas Tabelas 6.30 e 6.31 apresenta-se o resumo estatístico e análise de penalidades para a faixa [1,01, 2]. E nas Tabelas 6.32 e 6.33 apresenta-se o resumo estatístico e a análise de penalidades para p (%) > 2,01.

Tabela 6.32: Resumo estatístico para a análise do BD2 filtrado com ρ (%) entre [0,1].

Dado Estatístico	NBR	NBR_MOD
Média	0,75	1,04
Desvio Padrão	0,23	0,14
Coeficiente de variação (%)	30,1	13,0

Fonte: Autora (2022)

Tabela 6.33: Penalidades das vigas do BD2 filtrado ρ (%) entre [0;1].

Modelo	NBR	NBR		dificação para a 8 (2014)
V_u / V_{Teo}	N° de vigas	Penalidades	N° de vigas	Penalidades
< 0.50	17	170	0	0
[0,50~0,8]	81	405	0	0
[0,8~1,1]	43	0	101	0
[1,1~2,0[12	12	52	52
≥ 2.0	0	0	0	0
Total	153	587	153	52

Fonte: Autora (2022)

Dado Estatístico	NBR	NBR_MOD		
Média	1,00	0,96		
Desvio Padrão	0,26	0,12		
Coeficiente de variação (%)	25,9	12,9		
Fonte: Autora (2022)				

Tabela 6.34: Resumo estatístico para a análise do BD2 filtrado com ρ (%) entre [1,01; 2].

Tabela 6.35: Penalidades das vigas do BD2 filtrado ρ (%) entre [1,01 ;2].

Modelo	NBR	NBR		lificação para o 2019)
V_u / V_{Teo}	N° de vigas	Penalidades	N° de vigas	Penalidades
< 0.50	1	10	0	0
[0,50~0,8]	42	210	15	75
[0,8~1,1]	103	0	169	0
[1,1~2,0[63	63	26	26
≥ 2.0	1	2	0	0
Total	210	285	210	101

Fonte: Autora (2022)

Tabela 6.36: Resumo estatístico para a análise do BD2 filtrado com ρ (%) > 2.

Dado Estatístico	NBR	NBR_MOD
Média	1,25	1,08
Desvio Padrão	0,30	0,18
Coeficiente de variação (%)	24,0	16,9

Fonte: Autora (2022)

Tabela 6.37: Penalidades das vigas do BD2 filtrado ρ (%)>2

Modelo	NBR		Proposta de Modificação para o ACI		
V_u / V_{Teo}	N° de vigas	Penalidades	N° de vigas	Penalidades	
< 0.50	0	0	0	0	
[0,50~0,8]	0	0	0	0	
[0,8~1,1]	4	0	5	0	
[1,1~2,0[5	5	4	4	
≥ 2.0	0	0	0	0	
Total	9	5	9	4	
Fonte: Autora (2022)					

Para esta última análise normativa observou-se que a NBR 6118 (2014) modificada na faixa de ρ (%) entre [0,1], apresentou média igual a 1,04, enquanto para a mesma faixa de ρ (%) a NBR 6118 (2014) apresentou média igual a 0,75. Logo a modificação desta norma, para esta faixa, faz previsões com média em torno de 1. Quando se analisa as penalidades pelos

critérios CDP, a NBR 6118 (2014) apresentou pontuação igual a 582, enquanto a proposta de modificação apresentou pontuação igual a 52. Na faixa de ρ (%) entre [1,01,2] na NBR 6118 (2014) apresenta média igual a 1, enquanto a NBR_MOD apresenta média igual a 0,96. Nesta faixa observou-se a redução do coeficiente de variação de 25,9 para 12,9 com a NBR_MOD. Quanto a pontuação de penalidades a NBR 6118 (2014) ficou em 285 pontos e a proposta de modificação ficou em 101 pontos. Para ρ (%) >2 a NBR 6118 (2014) apresenta média 1,25, enquanto a NBR_MOD apresenta média igual a 1,08. Para esta última faixa de análise, as penalidades pelos critérios CDP ficam próximas com a NBR 6118 (2014) pontuando 5, enquanto a proposta de modificação pontuou 4.

Observou-se que todas as propostas de modificação das normas analisadas, diminuem a dispersão dos dados e deixam a média em torno de 1. A utilização da classificação de penalidades dos critérios de COLLINS (2001) foram fundamentais na classificação e explicitação do desempenho das vigas conforme a faixa de ρ (%). Com as previsões, segundo as propostas de modificações, não observou-se vigas com a classificação "extremamente perigoso" ou "perigoso", o que é indesejado na segurança estrutural e este fato fez com que se melhorasse a dispersão dos dados e o desempenho a favor da segurança.

7. MODELAGEM COMPUTACIONAL

Este capítulo contém a descrição das características da modelagem numérica utilizando o método dos elementos finitos (MEF) para a análise e comparação dos comportamentos das vigas experimentais. A ferramenta computacional utilizada, foi o software ABAQUS (2014) que permitiu analisar as vigas nas três dimensões, tendo em conta o comportamento não linear dos materiais: aço e concreto. Dentre os parâmetros de simulação, destacam-se as malhas, as condições de contorno, os contatos admitidos entre os materiais e os modelos constitutivos dos materiais. O modelo constitutivo utilizado foi o *CDP – Concrete Damaged Plascity* onde foram utilizados elementos tipo sólido (*Solid*) C3D8R, na malha de elementos finitos, simulando o concreto, e elementos tridimensionais de treliça (*Truss*) tipo T3D2.

7.1 DESCRIÇÃO DOS ELEMENTOS UTILIZADOS NO MODELO COMPUTACIONAL DA TESE

7.1.1 Elementos utilizados no modelo

Para reproduzir a geometria e os componentes da estrutura investigada experimentalmente, foram modelados: a viga de concreto, armadura longitudinal, armadura transversal (estribos apenas nos pontos de aplicação da carga) e porta estribos, conforme a geometria apresentada no capítulo 4, além das chapas que receberam a aplicação da carga e chapas que simularam os apoios. A Figura 7.1(a), (b), (c), (d), (e) e (f) apresenta o grupo de elementos modelados, respectivamente, conforme a sequência citada. O quadro 7.1 apresenta os elementos adotados contidos na biblioteca do software ABAQUS, para a representação dos materiais desta tese. A escolha destes elementos leva em consideração fatores como: comportamento do elemento, gasto computacional, número de graus de liberdade e estudos presentes na literatura como os estudos de SARTURI (2014), SOUZA e SILVA (2019), SANTOS (2019) e AGUIAR (2019).

Figura 7.1: Grupo de elementos finitos modelados. Fonte: Abaqus

Quadro 7.1: Elementos finitos selecionados para representação das vigas. Fonte: Adaptado SOUZA e SILVA	r
(2018)	

Elemento	Figura	Dados do Elemento	
Solido C3D8R	2 6 6 3 1 2 3 1 2 3 3 3 3 3 3 3 3	Possui 8 nós com 3 graus de liberdade por nós (translações nas direções x, y e z). Suporta análise plástica com grandes deformações, deslocamentos e fissuração. Permite também a inserção de barras de armadura em seu interior.	
Truss T3D2	1 • • • • ²	Possui 2 nós com 3 graus de liberdade por nós (translações nas direções x, y e z). É apropriado para representar barras, treliças ou cabos sujeitos a esforços uniaxiais. Este elemento permite deformações iniciais e foi utilizado para representar as armaduras passiva e ativa.	

A viga de concreto armado e as chapas de apoio de aplicação da carga foram modeladas utilizando elemento tipo C3D8R, os estribos e os porta estribos foram modelados utilizando elemento tipo T3D2. A Figura 7.2 mostra o conjunto modelado em elementos finitos. A viga apresentada nesta figura é a viga com altura 150 mm, as demais vigas modeladas serão mostradas no decorrer deste capítulo.

Figura 7.2: Elementos modelados. Fonte: Abaqus

7.1.2 Condições de contorno e carregamento

Esta análise numérica adotou as mesmas condições de apoio das vigas do programa experimental, sendo estes apoios do primeiro e segundo gênero. Os apoios e as chapas de contato para aplicação da carga foram modelados em elementos *Solid* homogêneo e atribui-se a estes características de chapas metálicas. A simulação do contato entre as chapas de apoio e carga e a transferência da força aplicada para a viga foram modeladas com dois tipos de *constraint* que estão integrados à biblioteca do *ABAQUS*, sendo eles: *Tie* e *coupling*. O *software* permite além da aplicação de uma carga, a aplicação de deslocamento na viga. Neste trabalho optou-se por aplicar o deslocamento de 15 mm em todas as vigas, uma vez que pelos ensaios experimentais as vigas romperam com deslocamentos inferiores a este valor. A Figura 7.3 ilustra o esquema geral de apoio e os pontos $RP_1 e RP_2$, nos quais foram aplicados os deslocamentos. A Figura 7.4 ilustra o detalhe da aplicação do deslocamento. Esta configuração assemelha-se a configuração do ensaio *Stuttgart*.

Figura 7.3: Configuração dos apoios e pontos de aplicação do deslocamento. Fonte: Abaqus

Figura 7.4: Detalhe da interação entre o ponto de aplicação do deslocamento e a viga. Fonte: Abaqus

7.1.3 Contato Armadura – Concreto

Em estruturas de concreto armado a boa aderência entre o aço e o concreto é um dos principais fatores que permitem o cumprimento das leis que regem este sistema. Logo, ao modelar estruturas de concreto armado, deve-se simular este contato perfeito entre estes materiais. O objetivo das simulações de contato é identificar as áreas dos materiais que estão em contato uma com as outras e calcular as pressões de contato que serão geradas.

Neste trabalho, para simular o contato entre as barras de aço e o concreto foi utilizada a técnica *embedded region* (nesta tese este termo foi traduzido como região embebida) que é usada para especificar um elemento ou um grupo de elementos que estão imersos em um grupo de elementos hospedeiros, cuja resposta será usada para restringir os graus de liberdade dos nós embutidos. Sendo assim na modelagem deverão ser identificados os elementos que estão embutidos nos elementos hospedeiros. O *ABAQUS* procura as relações geométricas entre os nós dos elementos incorporados (embebidos) e os elementos hospedeiros. O programa utiliza um algoritmo de contato apropriado de forma que os nós da superfície embebida não penetrem nos nós da superfície hospedeira. Quanto a malha, segundo OLIVEIRA FILHO (2005), a superfície embebida deve ter malha mais refinada e se a malha de ambos os materiais for igual, a superfície embebida deve ser a que possui menor rigidez. A Figura 7.5 ilustra o modelo após esta etapa da modelagem numérica.

Figura 7.5: Simulação da interação Aço - Concreto. Fonte: Autora

7.2 CLASSIFICAÇÃO DOS MATERIAIS EMPREGADOS

Para a simulação dos materiais empregados neste trabalho, parâmetros de linearidade e não linearidade foram inseridos na rotina do software. Estes parâmetros foram obtidos a partir de dados experimentais, das curvas de tensão-deformação dos materiais utilizados nas vigas. A partir disso, o comportamento das vigas ao longo do carregamento pôde ser avaliado tendo-se o controle dos deslocamentos à medida que os incrementos de carga eram aplicados, impondo assim níveis de tensões ao elemento.

7.2.1 Modelo constitutivo para o concreto

Buscando expressar o comportamento não linear do concreto, incluindo sua falha tanto na compressão quanto na tração foi utilizado o modelo dano com plasticidade (*Concrete Damage Plasticity*), presente na biblioteca do ABAQUS. Este modelo é capaz de registrar a degradação da rigidez (dano) à medida que o elemento começa a romper e aumentar a rotação e mede também as deformações permanentes (plasticidade) característicos do concreto, nos permitindo avaliar a tensão residual após a abertura de fissura do concreto.

Este modelo é baseado no modelo proposto por LUBLINER *et al* (1989) que demonstraram que a teoria clássica da plasticidade é uma ferramenta útil na análise inelástica de materiais como o concreto, que de forma alguma podem ser considerados como material elástico plástico. Além disso este modelo pode ser usado para fornecer informações sobre a abertura de fissuras uma vez que decididamente este não é um fenômeno geralmente associado a plasticidade. Para os autores a teoria da plasticidade é um modelo simples quando comparado com os modelos baseados na mecânica da fratura ou mecânica do dano contínuo. De acordo
com SARTURI (2014), as duas principais formas de dano neste modelo são: as fissuras devido à tração e o esmagamento devido a compressão. Para utilizar este modelo no ABAQUS é necessário definir parâmetros essenciais para a calibração, estes parâmetros serão definidos nas seções que seguem.

7.2.1.1 Comportamento do concreto submetido a compressão uniaxial

Para entrada no ABAQUS deve-se adotar uma curva de tensão x deformação que admita análise não linear do material. O diagrama tensão deformação é representado conforme adaptação de BIRTEL e MARK (2006) conforme a Figura 7.6. Observa-se que a resposta do concreto é linear (trecho 1), a partir daí entra no regime plástico onde a resposta típica é caracterizada por um aumento da tensão até ser atingida a tensão última (trecho 2), seguida por um amolecimento (diminuição do módulo a deformação) caracterizado pela diminuição da tensão com o aumento da deformação.

Figura 7.6: Diagrama do concreto a compressão. Fonte: Adaptado de BIRTEL e MARK (2006)

Nesta tese admitiu-se a curva proposta por CEB-FIP (1990), para concretos com valores de $f_c \leq 80Mpa$. Essa proposta admite tensão máxima $\varepsilon_{c1} = 0,0022$ independente da resistência a compressão média do concreto. A Equação 7.1 representa o ramo ascendente da curva e parte do trecho descendente até o valor correspondente a $\sigma_c = 0,5 \cdot f_c$ e a Equação 7.2 representa a deformação correspondente a tensão ε_{clim} .

$$\sigma_{c} = \frac{\frac{E_{ci}}{E_{c1}} \cdot \frac{\varepsilon_{c}}{\varepsilon_{c1}} - \left(\frac{\varepsilon_{c}}{\varepsilon_{c1}}\right)^{2}}{1 + \left(\frac{E_{c}}{E_{c1}} - 2\right) \cdot \frac{\varepsilon_{c}}{\varepsilon_{c1}}} \cdot f_{cm} para \varepsilon_{c} < \varepsilon_{c,lim}$$
Equação 7-1

120

$$\frac{\varepsilon_{c,lim}}{\varepsilon_{c1}} = \frac{1}{2} \cdot \left(0.5 \cdot \frac{E_{ci}}{E_{c1}} + 1\right) + \left[\frac{1}{4} \cdot \left(\frac{1}{2} \cdot \frac{E_{ci}}{E_{c1}} + 1\right)^2 - \frac{1}{2}\right]^{1/2}$$
 Equação 7-2

Onde:

$$\begin{split} E_{ci} &= E_{c0} (f_{cm}/f_{cm0})^{1/3} \text{ é o módulo tangente com } E_{c0} = 21500 \text{ Mpa e } f_{cm0} = 10 \text{ Mpa}; \\ \sigma_c \text{ é a tensão de compressão no concreto;} \\ \varepsilon_{c1} &= 0,0022; \\ E_{ci} &= f_{cm}/\varepsilon_{c1} \text{ é o módulo secante da origem até a tensão máxima } f_{cm}; \\ \varepsilon_c \text{ é a deformação total do concreto comprimido;} \\ \varepsilon_c^{in} &= \varepsilon_c - \sigma_c \cdot E_{ci}^{-1} \text{ é a deformação inelastica do concreto comprimido;} \\ b_c \text{ é uma constante } (0 < b_c \leq 1); \\ \varepsilon_c^{pl} &= b_c \cdot \varepsilon_c^{in} \text{ é a deformação plástica do concreto tracionado;} \end{split}$$

Para o ramo descendente da curva a partir de $\sigma_c = 0.5 \cdot f_{cm}$ a Equação 7.3 representa a relação entre σ_c e ε_c

$$\sigma_{c} = \left[\left(\frac{1}{\varepsilon_{c,lim}/\varepsilon_{c1}} \cdot \xi - \frac{2}{\left(\varepsilon_{c,lim}/\varepsilon_{c1}\right)^{2}} \right) \cdot \left(\frac{\varepsilon_{c}}{\varepsilon_{c1}} \right)^{2} + \left(\frac{4}{\varepsilon_{c,lim}/\varepsilon_{c1}} - \xi \right) \frac{\varepsilon_{c}}{\varepsilon_{c1}} \right]^{-1} \cdot f_{cm}$$
 Equação 7-3

Onde:

$$\xi = \frac{4 \cdot \left[\left(\frac{\varepsilon_{c,lim}}{\varepsilon_{c1}} \right)^2 \cdot \left(\frac{E_{ci}}{E_{c1}} - 2 \right) + 2 \cdot \frac{\varepsilon_{c,lim}}{\varepsilon_{c1}} - \frac{E_{ci}}{E_{c1}} \right]}{\left[\frac{\varepsilon_{c,lim}}{\varepsilon_{c1}} \cdot \left(\frac{E_{ci}}{E_{c1}} - 2 \right) + 1 \right]}$$

Na Figura 7.7 é mostrada as curvas dadas pela equação de representação inelástica para os valores de resistência a compressão dos concretos fabricados para o trabalho experimental. Os valores de resistência a compressão são apresentados na Tabela 7.1. Pela Figura 7.7 observase que a resposta é linear até a tensão de escoamento. No regime plástico, a resposta típica é caracterizada por um aumento de tensão última, seguida pelo amolecimento caracterizada pela diminuição da tensão à medida que a deformação aumenta.

Tabela 7.1: Resistência a compressão dos concretos fabricados com mesma dosagem e diferentes agregados graúdos

Figura 7.7: Comparação do comportamento dos concretos submetidos a compressão uniaxial. Fonte: Autora 7.2.1.2 *Comportamento do concreto submetido a tração uniaxial*

O ABAQUS é um software que aceita a inserção tanto da curva tensão x abertura de fissura quanto a relação tensão x deformação para simulação do comportamento do concreto à tração. Neste estudo foi utilizada a curva apresentada por HORDIJK (1992) que utiliza o critério da curva tensão x abertura de fissura, conforme a Equação 7.4. Como não foram feitos ensaios específicos para determinação da carga x abertura de fissura e a abertura de fissura (*w*) é uma variável da equação, foram adotados valores muito pequenos para w, partindo da ordem de 0,005mm formando uma tabela correspondendo os valores de tensão para os valores de abertura de fissura. Desta forma conseguiu-se calcular os valores de tensão que foram utilizados como dados de entrada para caracterização do material no ABAQUS.

$$\sigma_{ct} = f_{ct} \cdot \left\{ \left[1 + \left(c1 \cdot \frac{w}{w_c} \right)^3 \right] exp\left(-c2 \cdot \frac{w}{w_c} \right) - \frac{w}{w_c} \cdot (1 + c_1^3) exp(-c2) \right\}$$
 Equação 7-4

Em que,

$$w_c = 5,14 \cdot \frac{G_f}{f_{ct}}$$

Nesta equação c1 e c2 são constantes iguais a 3 e 6,93, respectivamente. w_c corresponde ao valor da fissura crítica é o valor que corresponde a abertura de fissura que fará com que o concreto entre em colapso e zere o valor correspondente a tensão. Na Figura 7.8 observa-se que o comportamento do concreto é linear até o valor de tensão de falha na tração ser atingida. Esta falha corresponde ao início da fissuração no concreto. Após esta tensão, o surgimento de fissuras no concreto é representado pelo amolecimento da curva, o que induz a falha localizada na estrutura de concreto.

Figura 7.8: Comportamento do concreto. Fonte: Autora

7.2.2 Modelo Constitutivo para o Aço

O comportamento mecânico do aço foi simulado utilizando o modelo elasto-plástico perfeito. No trecho elástico linear a tensão equivalente é menor que a tensão de escoamento (f_y) e o comportamento do material terá resposta correspondente ao trecho linear da relação tensão x deformação. Quando as tensões no material forem superiores a f_y), o material será submetido a deformações plásticas. Na Figura 7.9 é apresentada uma imagem que ilustra este comportamento.

Figura 7.9: Curva Tensão x Deformação para o aço. Fonte: Autora

7.3 PARAMETROS DO MODELOS CONSTITUTIVO CONCRETE DAMAGED PLASTICITY

KMIECIK e KAMINSKI (2011) explicam que os dois mecanismos de falha do concreto são: fissuras sob tensão e esmagamento sob compressão. Porém a resistência do concreto determinada em estados simples de tensão difere da determinada em estados complexos. Para descrever a resistência com a equação da tensão triaxial, seu plano deve ser representado em um espaço tridimensional de tensões (o concreto é um material isotrópico). Caso as tensões principais representem um ponto interno na superfície de falha, tem-se um comportamento elástico. Quando o ponto ficar na superfície, tem-se o início do escoamento, caso a tensão de escoamento seja ultrapassada o ponto irá para fira da superfície de falha, neste caso pode acontecer o aumento da deformação sem mudança de tensão e ruptura do material. Na Figura 7.10 é representado os estados de tensão em relação a superfície de falha.

Figura 7.10: Estados de tensão em relação a superfície de falha. Fonte: MARQUES e ARAUJO (2016)

Além dos parâmetros para o concreto submetido a tração e compressão, no modelo CDP, é necessário fornecer ao *ABAQUS* outros cinco (5) parâmetros, além dos já apresentados. São estes parâmetros que permitirão a expansão do comportamento dos materiais em estado uniaxial para o estado multiaxial. Sendo eles:

- Ângulo de dilatação (ψ): Segundo o manual do *ABAQUS*, ψ é o ângulo de dilatação medido no plano p-q em alta pressão de confinamento. MEDEIROS (2018) comenta que fisicamente o ângulo de dilatação é interpretado como um ângulo de atrito interno do concreto.
- Excentricidade (ε): No modelo CDP, a superfície de potencial plástico no plano meridional assume a forma de uma hipérbole. A forma é ajustada por meio da excentricidade. MEDEIROS (2018) comenta que excentricidade é o comprimento, medido ao longo do eixo hidrostático, do seguimento entre o vértice da hipérbole e o centro da hipérbole. O *default* do software recomenda o valor de 0,1.
- *f_{b0}/f_{c0}*: É o ponto em que o concreto é submetido a falhas sob compressão biaxial. É a proporção da força no estado biaxial para a força no estado uniaxial. Os estados de tensão uniaxial e biaxial podem ser observados na Figura 7.11. O *default* do software recomenda o valor de 1.16.

Figura 7.11: Resistência do concreto sob tensão biaxial no CDP. Fonte: Adaptado Manual ABAQUS

K_c: No campo de tensões a superfície de falha na seção transversal não é necessariamente um círculo e as distancias são governadas pelo parâmetro *K_c*. Fisicamente, este parâmetro é interpretado como uma proporção das distâncias entre o

eixo hidrostático e o meridiano de compressão e tração na seção transversal. Na Figura 7.12 ilustra-se a representação gráfica para os valores de Kc. O *ABAQUS* recomenda o valor de 2/3 (0,667).

Figura 7.12: Representação gráfica do parâmetro K_c. Fonte: Manual ABAQUS

Viscosidade (μ): Este parâmetro é utilizado para superar eventuais dificuldades de convergência em análises de materiais que apresentam o comportamento de "amolecimento". PETRAUSKI (2016) comenta que quando o valor do parâmetro de viscosidade é unitário o material comporta-se como elástico-linear. Por isso, a escolha de valores para este parâmetro deve ser cuidadosa. A adoção de valores pequenos permite uma melhoria na taxa de convergência e no tempo de processamento sem comprometer os resultados. Todavia, a adoção de valores mais elevados para o parâmetro de viscosidade pode alterar os resultados de forma considerável. Ainda segundo o autor, valores do parâmetro de viscosidade entre 0 e 10⁻⁴, os resultados obtidos convergiram para um valor comum. O *default* do *ABAQUS* o valor padrão deste parâmetro é zero, ou seja, nenhuma regularização viscoplastica é feita. Para concreto pesquisas apontam valores entre 1.10⁻² e 1.10⁻⁵

SOARES (2016), comenta que dentre os cinco parâmetros, o ângulo de dilatação e a viscosidade devem ser calibrados, e os demais podem assumir os valores *default* da biblioteca do *ABAQUS*. Na Tabela 7.2 resume-se os parâmetros necessários no modelo CDP.

Parâmetro	Definição	Valor
Ψ	Ângulo de Dilatação	Calibrar
ϵ	Excentricidade	0,1
f_{b0}/f_{c0}	É a proporção da força no estado biaxial para a força no estado uniaxial	1,16
K_c	É comprimento, medido ao longo do eixo hidrostático	0,667
μ	Viscosidade	Calibrar
	Fonte: Adaptado de SOARES(2016)	

Tabela 7.2: Parâmetros necessários no modelo CDP.

7.3.1 Parâmetros para o concreto com seixo

Buscando parâmetros representativos para os concretos que serão analisados neste capítulo, partiu-se dos estudos de NAVARRO, IVORRA, VARONA (2018), e utilizou-se os mesmos parâmetros que os autores utilizaram em sua pesquisa. Na Tabela 7.3, apresentam-se os valores dos parâmetros. Inicialmente variou-se os valores de viscosidade e utilizou-se o resultado experimental da carga x deslocamento da viga V150S. Os resultados obtidos são apresentados na Figura 7.13

Tabela 7.3: Resumo dos parâmetros considerados no trabalho de Navarro, Ivorra e Varona (2018).

Figura 7.13: Investigação do parâmetro µ para calibração do modelo numérico do concreto com seixo. Fonte: Autora

O ângulo de dilatação é um fator que influenciam o potencial plástico no modelo CDP. MALM (2006) fez um estudo paramétrico em vigas de concreto e observou que os resultados convergiam bem entre 20° e 40°, sendo que ângulos de dilatação entre 30° e 40° apresentaram as melhores respostas. Para o ângulo de dilatação que seria adotado neste trabalho, avaliou-se os valores apresentados na Figura 7.14.

Figura 7.14: Investigação do parâmetro ψ para calibração do modelo numérico do concreto com seixo. Fonte: Autora

Para os valores de excentricidade (ϵ) e relação entre a resistência a compressão biaxial e uniaxial (f_{b0}/f_{c0}), utilizou-se o valor *default* recomendado pelo *ABAQUS*, igual a 0,1 e 1,16 respectivamente. A fim de avaliar o fator de forma K_c, variou-se seus valores entre 0,5 e 1. Na Figura 7.15 apresenta-se os valores comparados com o resultado experimental.

Figura 7.15: Investigação do parâmetro Kc para calibração do modelo numérico. Fonte: Autora

Este parâmetro está relacionado com a forma da superfície de falha do concreto, porém não foram observados diferença significativas para nenhum dos valores estudados, optando-se por adotar o valor igual a 0,667 recomendado pelo *ABAQUS*. Na Figura 7.16 apresenta-se o modelo numérico calibrado pelos resultados de curva carga x deslocamento, em comparação com os resultados experimentais referentes a carga x deslocamento da viga V150S. Ressalta-se que utilizou-se o concreto com seixo para fazer a calibração de todas as dosagens utilizadas neste trabalho. Optou-se por esta ação, pois nenhum parâmetro da modelagem numérica aponta para a diferença de agregado.

Na Tabela 7.4 apresenta-se o resumo do parâmetros utilizados na modelagem dos tipos de concretos. As Tabelas 7.5, 7.6, 7.7 e 7.8, apresentam as principais propriedades consideradas na definição dos materiais utilizados neste trabalho.

Figura 7.16: Curva do modelo calibrado em comparação com os resultados experimentais.

Tabela 7.4: Resumo dos	parâmetros do	modelo CDF	para o concreto.
------------------------	---------------	------------	------------------

ψ	ε	f_{b0}/f_{c0}	Kc	μ
30°	0,1	1,16	0,667	0,001
		Fonte: Autora		

Concreto			
21 (Seixo)			
22 (Brita 0)	Resistência a compressão característica		
25 (Brita 1)			
24,3 (Seixo)			
26,6 (Brita 0)	Módulo de Elasticidade		
27,8 (Brita 1)			
0,2	Coeficiente de Poisson		
30°	Ângulo de Dilatação		
0,1	Parâmetro de Excentricidade		
1,16	Razão entre as tensões biaxial e uniaxial		
0.667	Razão entre o segundo variante do tensor		
Kc 0,007	desviador no plano meridiano de tração		
1.10-3	Parâmetro de Viscosidade		
	C 21 (Seixo) 22 (Brita 0) 25 (Brita 1) 24,3 (Seixo) 26,6 (Brita 0) 27,8 (Brita 1) 0,2 30° 0,1 1,16 0,667 1.10 ⁻³		

	Tabela 7.5: Prop	riedades mecânicas	do concreto	utilizados no	modelo numé	érico
--	------------------	--------------------	-------------	---------------	-------------	-------

	Aço CA-5	Aço CA-50 ¢5 mm	
F _{ys} (MPa)	680	Tensão de Escoamento	
E_s (GPa)	210	Módulo de Elasticidade	
υ	0,3	Coeficiente de Poisson	

Tabela 7.6: Propriedades mecânicas do aço \$\$mm utilizado nos estribos.

Tabela 7.7: Propriedades mecânicas do aço \u00f610mm utilizado na armadura.

Aço CA-50 φ10 mm			
F_{ys} (MPa)	580	Tensão de Escoamento	
E_s (GPa)	210	Módulo de Elasticidade	
υ	0,3	Coeficiente de Poisson	

Tabela 7.8: Propriedades mecânicas do aço \$20mm utilizado na armadura.

Aço CA-50 φ20 mm			
F_{ys} (MPa)	570	Tensão de Escoamento	
E_s (GPa)	210	Módulo de Elasticidade	
υ	0,3	Coeficiente de Poisson	

7.4 DISCRETIZAÇÃO DOS MODELOS

O modelo numérico para as vigas foi elaborado com as mesmas características geométricas descritas no item 3.3 desta tese. As condições de apoio e aplicação de carga também foram mantidas. Para a viga de concreto armado, barras de aço e elementos de apoio foi gerada uma malha estruturada de elementos finitos. Na malha da viga e elementos de apoio, cada elemento ficou com dimensão média de 50mm. Para a malha das barras de aço, que deve ter elementos menores que a malha da viga de concreto, foram adotados elementos com dimensão média igual a 25mm. A interação entre os elementos se deu conforme o contato descrito no item 7.1.3. Ressalta-se que os grupos têm vigas com mesma geometria , o que vai variar para cada grupo é a dosagem e, portanto, características do concreto. Estas características, correspondentes a caracterização do material, são inseridas na calibragem do modelo e está apresentada no item 7.3.

Nas Figuras, 7.17, 7.18, 7.19 e 7.20 apresenta-se o modelo para cada grupo de viga sendo elas classificadas pela altura, daí vem 150 mm, 250 mm, 350 mm e 450 mm. As imagens também

são compostas pela armadura com o detalhamento da armadura de aço correspondente de acordo com a configuração geométrica de cada viga.

Figura 7.17: Modelo computacional utilizado para simular as vigas com h=150 mm. Fonte: Autora

Figura 7.18: Modelo computacional utilizado para simular as vigas com h=250 mm. Fonte: Autora

Figura 7.19: Modelo computacional utilizado para simular as vigas com h=350 mm. Fonte: Autora

Figura 7.20: Modelo computacional utilizado para simular as vigas com h=450 mm. Fonte: Autora.

7.5 ANÁLISE DOS MODELOS COMPUTACIONAIS

7.5.1 Curva x Deslocamento

Com base nas descrições das malhas e implementação das características dos materiais, os modelos computacionais das vigas foram calculados com a finalidade de verificar se poderiam servir como base para descrever os comportamentos observados experimentalmente.

Os resultados da análise carga x deslocamento para o grupo de vigas concretadas com seixo, como agregado graúdo, são mostrados nas Figuras 7.21 a, b, c e d, que correspondem respectivamente as vigas com altura igual a 150 mm, 250 mm, 350 mm e 450 mm. São comparadas as cargas e deslocamentos registrados experimentalmente com as cargas e deslocamentos obtidos por meio da modelagem numérica pelo software *ABAQUS*. Nas Figuras 7.22 a, b, c e d, comparam-se os resultados experimentais com os resultados da modelagem numérica para as vigas com altura igual a 150 mm, 250 mm, 350 mm e 450 mm para as vigas concretadas com brita 0. E por fim, nas Figuras 7.23 a, b, c e d, comparam-se os resultados experimentais com altura igual a 150 mm, 250 mm, 350 mm e 450 mm para as vigas com secultados numéricos para as vigas com altura igual a 150 mm, 250 mm, 350 mm e 450 mm que tiveram em suas dosagens a utilização de brita 1, como agregado graúdo.

Ressalta-se que os gráficos apresentam 2 curvas, uma correspondente as respostas experimentais (Exp) e outra correspondente ao modelo numérico processado no *ABAQUS* (Num). Os resultados dos gráficos apontam que para as estimativas de cargas de ruína, os modelos mantiveram resultado satisfatório, uma vez que ao se calcular a relação entre as cargas coletadas nos ensaios experimentais (V_u) e as cargas coletadas nos modelos (V) ficou evidente a correspondência entre ambos. Apenas as vigas V350S, V250B0, V450B0, V250B1 apresentaram em torno de 20% de diferença quando calculada a relação V_u/V . As demais vigas apresentaram diferença de no máximo 10%.

Ressalta-se que a modelagem numérica efetuada neste trabalho, não leva em consideração o tipo de agregado utilizado, pois o modelo MEF considera o material homogêneo, não levando em consideração a distribuição aleatória dos agregados na malha implementada. O modelo *Concrete Damaged Plasticity* utiliza as características dos materiais e aplica o dano após o início da fissuração, sendo embasado nas teorias da mecânica da fratura para conversão dos resultados.

Figura 7.21: Comparação das cargas e deslocamento experimentais com os resultados obtidos pela modelagem numérica (Concreto com seixo). Fonte: Autora

Figura 7.22: Comparação das cargas e deslocamento experimentais com os resultados obtidos pela modelagem numérica (Concreto com Brita 0). Fonte: Autora

Figura 7.23: Comparação das cargas e deslocamento experimentais com os resultados obtidos pela modelagem computacional (Concreto com Brita 1). Fonte: Autora.

Na Tabela 7.9 apresenta-se uma síntese dos resultados entre as cargas de ruína observadas experimentalmente e as cargas últimas do modelo computacional. A média observada entre a carga experimental V_u e a carga observada no modelo computacional $V_{comp.}$ apresentou média igual a 0,1 com coeficiente de variação igual a 10,7% . Estes resultados indicam elevada correspondência entre os dados experimentais e computacionais.

Grupo	Vigas	V_u	V _{comp.}	$V_u/V_{comp.}$
	V150S	61	57	1.1
150H	V150B0	65	62	1.0
	V150B1	57	65	0.9
	V250S	86	92	0.9
250H	V250B0	90	105	0.9
	V250B1	86	110	0.8
25011	V350S	93	121	0.8
330H -	V350B0	120	135	0.9
	V450S	144	157	0.9
450H	V450B0	149	180	0.8
	V450B1	178	200	0.9
			Média	0.9
			SD	0.1
			COV %	10.7

Tabela 7.9: Síntese entre os resultados experimentais e computacionais para a carga de ruína das vigas

Em relação aos deslocamentos máximos, ressalta-se que o modelo numérico tende a ser mais rígido por conta das considerações das interações nos pontos, onde presume-se condições de contorno perfeitas, e experimentalmente, sabe-se que a reprodução das condições de contorno tem falhas. Na Tabela 7.10 resume-se as comparações entre os dados numéricos e experimentais, observa-se que os grupos de vigas com 150 mm e 250 mm de altura apresentam deslocamentos teóricos discrepante do deslocamento experimental em até 87%, este valor tende a diminuir para as vigas a partir de 350 mm, onde observa-se que a média da relação cai para 0,7, ou seja, 30% de diferença entre ambos.

Flecha M Vigas amo		ma antes do imento	d/d
, igus	d_{exp} (mm)	d_{num} (mm)	alexp [,] whum
V150S	4.3	2.3	1.87
V150B0	3.4	2.6	1.31
V150B1	3.8	2.7	1.41
V250S	3.1	2.1	1.48
V250B0	3.0	2.5	1.20
V250B1	2.9	2.5	1.16
V350S	2.0	2.6	0.77
V350B0	2.4	2.6	0.92
V350B1	-	2.9	-
V450S	2.7	2.8	0.96
V450B0	2.3	3.2	0.72
V450B1	2.8	3.8	0.74
		Média	1.14
		SD	0.34
		COV (%)	30

Tabela 7.10: Comparação entre os resultados dos deslocamentos máximos entre o modelo MEF e os resultados experimentais. Fonte: Autora

7.5.2 Padrão de fissuração

Nas Figuras 7.24, 7.25 e 7.26 mostra-se as regiões com maiores deformações plásticas (PEMAG) nas vigas com 150 mm de altura. Nas Figuras 7.27, 7.28 e 7.29 apresenta-se as maiores deformações plásticas no concreto das vigas com 250 mm de altura. Nas vigas 7.30, 7.31 e 7.32, apresenta-se as regiões de maior plastificação nas vigas com 350 mm de altura. Nas Figuras 7.33, 7.34 e 7.35 apresenta-se as regiões de maior plastificação nas vigas com 450 mm de altura.

Plotou-se nestas imagens o ângulo de inclinação da fissura de cisalhamento e o padrão de fissuração experimental. Os resultados ficaram dentro do esperado, uma vez que a região de maior plastificação foi a região de falha esperada em ensaios desta natureza.

Figura 7.24: Tendência entre os padrões de fissuração do modelo e o experimental da viga V150S

Figura 7.25: Tendência entre os padrões de fissuração do modelo e o experimental da viga V150B0:

Figura 7.26: Tendência entre os padrões de fissuração do modelo e o experimental da viga V150B1

PEMAG	V250S
(Avg: 75%)	
+2.8396	9-02 9-02
+2.3666	9-02 9-02
+1.8926	9-02 9-02
+1.4196 ± 1.1836	9-02 -02
+9.4626	-03
+4.7316	-03
+0.0006	9-03 9+00

Figura 7.27: Tendência entre os padrões de fissuração do modelo e o experimental da viga V250S

Figura 7.28: Tendência entre os padrões de fissuração do modelo e o experimental da viga V250B0

Figura 7.29: Tendência entre os padrões de fissuração do modelo e o experimental da viga V250B1

V3505 PEMAG V3505 (Avg: 75%) +2.360e-02 +2.163e-02 +1.966e-02 +1.970e-02 +1.573e-02 +1.573e-02		
+1.180e-02 +9.822e-03 +7.866e-03 +5.899e-03 +3.933e-03 +1.966e-03 +0.000e+00		
	The second se	

Figura 7.30: Tendência entre os padrões de fissuração do modelo e o experimental da viga V350S

Figura 7.31: Tendência entre os padrões de fissuração do modelo e o experimental da viga V350B0

Figura 7.32: Tendência entre os padrões de fissuração do modelo e o experimental da viga V350B1

PEMAG V450S		
(Avg: 75%)		
+1722-02 +1.435-02 +1.435-02 +1.435-02 +1.148-02 +1.148-02 +1.148-02 +1.148-02 +1.148-02 +1.1430-03 +5.740-03 +1.435-03 +1.435-03 +1.435-03 +0.0008+00		0

Figura 7.33: Tendência entre os padrões de fissuração do modelo e o experimental da viga V450S

Figura 7.34: Tendência entre os padrões de fissuração do modelo e o experimental da viga V450B0

Figura 7.35: Tendência entre os padrões de fissuração do modelo e o experimental da viga V450B1

8. CONCLUSÕES E RECOMENDAÇÕES PARA TRABALHOS FUTUROS

8.1 ENSAIO EXPERIMENTAL

Neste trabalho, uma das propostas de análise foi a variação da altura das vigas de concreto com o objetivo de verificar a influência do aumento da altura na resistência ao cisalhamento. Ressalta-se que a relação l/h ficou entre 8 e 6. Nas vigas com seção (150 mm x 150 mm) a relação foi 8, nas vigas com seção (150 mm x 250 mm) a relação foi 6,8, nas vigas com seção (150 mm x 350 mm) a relação foi 6,3 e nas vigas com seção (150 mm x 450 mm) a relação foi igual a 6. Por definição, e dependendo da norma estrutural, o valor da relação l/h para que uma viga seja considerada alta, pode variar, na NBR 6118 (2014), por exemplo este valor deve ser \leq 3. Pesquisas como a e PAIVA e SIES (1965), apontam que vigas com l/h pertencentes a faixa entre $2 \leq 1/h \leq 6$ estão em uma classificação como transição para serem classificadas como vigas altas. Nesta pesquisa uma viga ficou com l/h igual a 6 estando no limiar para ser considerada como viga moderadamente alta.

Neste item, em relação aos ensaios experimentais observou-se que nas vigas com menor seção transversal (150 mm x 150 mm e 150 mm x 250 mm), que a fissuração na região de cisalhamento, compreendida entre o apoio e o ponto de aplicação da carga, ocupou todo o volume, este fato pode influenciar a distribuição de energia entre as regiões sem fissuras (dano) e a viga entra em colapso posteriormente a isso. Observou-se também que após o pico de carga e apesar da perda de rigidez, a carga se manteve e ocorreu o aumento do deslocamento e somente após a rotação excessiva foi que a viga entrou em colapso final.

Estas observações não foram constatadas nos demais grupos de vigas e principalmente nas vigas com altura igual a 450 mm. Não observou-se fissuração na região de cisalhamento. Nestas vigas ocorreu o acúmulo de tensões que resultou em uma única fissura de cisalhamento e posterior queda abrupta da carga. Não foi observado o comportamento de amolecimento, que é caracterizado pelo início da fissuração, pico de carga e decréscimo da carga com aumento do deslocamento vertical. Sendo assim ressalta-se que para os níveis de variação de l/h que foram efetuados nesta tese, já pôde ser observado mudanças de comportamento das vigas "no momento da ruptura, entre os grupos ensaiados experimentalmente.

8.2 VARIAÇÃO DO TIPO DE AGREGADO GRAÚDO

Quanto a variação do tipo de agregado graúdo observou-se, pelos gráficos de momento curvatura(Figura 4.20 a 4.23) uma maior movimentação das vigas dosadas com quartzito. Observou-se que apenas no grupo de vigas com 450 mm de altura a viga com maior curvatura foi a viga dosada com brita com diâmetro máximo de 12,5 mm, este pode ser um indicativo que para vigas com 1/h igual a 6 o diâmetro máximo do agregado aliado ao tipo governa o comportamento.

Outro indicativo de desempenho foi a comparação da tenacidade das vigas (Figura 4.8), onde observou-se que todas as vigas dosadas com granito absorveram níveis de energia superiores, quando comparado com vigas de mesma dimensão. Ressalta-se o desempenho do granito com diâmetro máximo igual a 19,0 mm em comparação com o quartzito de mesmo d_{max} . Observou-se que o granito com diâmetro máximo igual a 12,5 mm ficou sempre na posição intermediária.

No trabalho desenvolvido nesta tese o maior indicativo de desempenho foi observado pela variação do tipo de agregado. Quanto a proporção de redução de 30% que foi efetuada, observou-se que não foi suficiente para afetar a resistência ou dar indicativos de comportamentos diferentes do esperado, e isto pode ser afirmado pelos resultados da modelagem numérica, onde as cargas observadas pelo MEF, ficaram dentro de faixas toleráveis de erro, em torno de 10%. Ressalta-se que o modelo numérico efetuado não admite variação da quantidade de agregado graúdo, uma vez que o software trata o material como homogêneo, sendo levado em consideração apenas a resistência a compressão do concreto assim como nas estimativas de carga, onde o f_c é o principal parâmetro relacionado ao material. Ressalta-se que uma pesquisa mais detalhada variando a proporção de agregado graúdo poderia dar indicativos de desempenho mais concisos. Porém ressalta-se que em pesquisas com concreto autoadensável como a pesquisa de SAVARIS (2016) mostram que a redução da proporção efetuada que também foi de 30% não afetou a resistência das estimativas averiguadas pelo autor.

8.3 VARIAÇÃO DAS DIMENSÕES DAS VIGAS

Observou-se que mantida a taxa de armadura constante em cerca de 3,6%, a variação da altura efetiva da viga em torno de 200 mm demostra a tendencia decrescente entre carga e relação a/d. Outro ponto que pode contribuir com a conclusão é a resistência do concreto ter se

mantido muito próxima entre os grupos de vigas. Estas são indicativos que permitiram avaliar o desempenho das vigas, mesmo com poucas variáveis, uma vez que a única diferença entre as dosagens foi variação do tipo de agregado que ocasionou a sutil variação da resistência a compressão do concreto. SAMORA *et al* (2017) observou na sua série de ensaios que com o aumento da resistência característica do concreto e mesma taxa de armadura longitudinal, os resultados experimentais demostraram o aumento da resistência aos esforços cortantes, estes resultados corroboram com os resultados encontrados nesta tese.

8.4 CARGAS ÚLTIMAS PELAS CARGAS ESTIMADAS PELOS CÓDIGOS NORMATIVOS E PROPOSTAS DE MODIFICAÇÃO DAS NORMAS.

Analisando a média da razão entre carga registrada nos ensaios experimentais desta tese e estimativas de cargas dos códigos normativos e proposta da literatura, observou-se as seguintes medias: ACI-1,40; EC2-0,96; NBR 6118-1,43; HUBER-0,96 e MUTTONI-1,06. Destas EC2 (2014) e HUBER (2019), além de apresentarem médias próximas a 1, possuem o menor coeficiente de variação, 9,8 e 11,7, respectivamente. O manual de projeto ACI, reformulado recentemente, foi conservador quanto as suas estimativas apresentando média igual a 1,4 e coeficiente de variação igual a 10,3. Porém esta reformulação já melhorou os resultados encontrados em sua versão anterior do ano de 2014, onde as análises para as vigas experimentais indicavam média igual a 1,78 e coeficiente de variação igual a 16,6%. A norma brasileira mostrou-se levemente conservadora com média igual a 1,43 e desvio padrão igual a 16,7%, sendo, portanto, o código normativo mais conservador e com maior coeficiente de variação.

Com a metodologia proposta no capítulo 6, aplicou-se os passos no Banco de dados 1, com a finalidade de propor modificações nas fórmulas para as estimativas de carga ao esforço cortante pelos códigos: ACI (2019), EC2 (2004) e NBR 6118 (2014). Outro banco de dados, denominado Banco de dados 2 foi utilizado para validar as propostas e assim recalculou-se as estimativas para as vigas do programa experimental. Observou-se que para os três códigos normativos as estimativas tornaram-se conservadoras e apresentaram redução do coeficiente de variação, mostrando o bom desempenho das propostas de modificações.

Quanto ao desempenho das propostas modificadoras aos códigos normativos, todas apresentaram previsões na faixa denominada conservadora pelos critérios de Collins (2001). Para o ACI 318 (2019) a média observada, entre a carga das vigas avaliadas no BD2 e a

previsão da norma, foi 1,47 com coeficiente de variação igual a 20,6. Com a proposta de modificação reduziu-se a média para 1,28, mantendo a segurança estrutural, e reduziu-se o coeficiente de variação para 14,3%. Para o Eurocode a média observada, entre as cargas das vigas avaliadas no BD2 e a previsão do código normativo, foi 1,05 com coeficiente de variação igual a 19,2 com a proposta de modificação elevou-se a média para 1,32 e reduziu-se o coeficiente de variação para 15,0. Observou-se que o desempenho da NBR_{Modificada} foi o melhor, reduzindo o coeficiente de variação de 31,1% para 13,6% com média entre carga e previsão igual a 1,4, ao passo que a média da carga pela NBR 6118 (2014) estava em 0,90, ou seja, aumentou-se a segurança estrutural com bons indicativos de regressão linear das previsões.

8.5 SUGESTÕES PARA TRABALHOS FUTUROS

Como forma de agregar conhecimento as observações e conclusões alcançadas nesta tese, e como forma de dar continuidade aos estudos sobre cisalhamento em vigas de concreto armado sem armadura transversal recomenda-se:

- Realizar ensaios com altura de viga superiores a 450 mm fixando o valor de a. Nestas vigas variar a dimensão do agregado graúdo, utilizando agregados com d_{max} superior a 12,5 mm.
- Variar a resistência a compressão em estudos a partir da classe C30 até classe C60.
- Investigar a adição de agregado graúdo acima do recomendado pela dosagem.
- Investigar taxas de armadura longitudinal superior a 3,6%.
- A partir das variações acima, calibrar um modelo numérico de vigas pelo método dos elementos finitos, com o objetivo de aumentar os conhecimentos sobre o tema e refinar as modelagens numéricas para ensaios desta natureza.

9. REFERÊNCIAS BIBLIOGRÁFICAS

- 1. American Concrete Institute, Building Code Requirements for Structural Concrete and Commentary, ACI 318M-14, 2014
- EUROCODE 2: Design of Concrete Structures. Part 1-1, General rules and rules for buildings, BS EN 1992-1-1: 2004, British Standards Institution, London, Dec 2004.
- 3. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6118: Projeto de estruturas de concreto. Rio de Janeiro, 2014.
- STANICK, B. A. P., The influence of concrete strength distribution of longitudinal reinforcement, amount of transverse reinforcement and menber size on shear strength of reinforced concrete members. Tese de Doutorado, University of Toronto, Toronto – Canada, 1998. 369p.
- RIBEIRO, A. B., Projeto semi-probabilístico de vigas de concreto armado com modo de falha por cisalhamento. Tese de Doutorado, Universidade Federal de Minas Gerais, Belo Horizonte – Minas Gerais, 2012. 234p
- 6. VECCHIO, Frank J.; COLLINS, Michael P. **The modified compression-field theory for** reinforced concrete elements subjected to shear. ACI J., v. 83, n. 2, p. 219-231, 1986.
- SAVARIS, G., Estudo da resistência ao cisalhamento de vigas de concreto autoadensável. Tese de Doutorado em Engenharia. Universidade Federal de Santa Catarina. Florianópolis, 2016, 207 p.
- SAVARIS, G.; PINTO, R. C. A. Influence of coarse aggregate on shear resistance of self-consolidating concrete beams. *Ibracon Structures and Materials Journal*, [s.l.], v. 10, nº 1, p. 30–52, 2017. ISBN: 1983419520170.
- SAGASETA, J. The influence of aggregate fracture on the shear strength of reinforced concrete beams. Tese de PhD, Imperial College London, Londres – Inglaterra, 2008.
- POMPEU, B. B., Efeitos do tipo, tamanho e teor de agregado graúdo na Resistência e Energia de Fratura do Concreto. Tese de Doutorado, Universidade Estadual de Campinas, São Paulo, 2004. 230 p.
- JEONG, Chan-Yu et al. Size effect on shear strength of reinforced concrete beams with tension reinforcement ratio. Advances in Structural Engineering, v. 20, n. 4, p. 582-594, 2017.

- MUTTONI, Aurelio; FERNÁNDEZ RUIZ, Miguel. Shear strength of members without transverse reinforcement as function of critical shear crack width. ACI Structural Journal, v. 105, n. ARTICLE, p. 163-172, 2008.
- ABAQUS, V. 6.14 documentation. Dassault Systemes Simulia Corporation, v. 651, 2014.
- 14. HUBER, Tobias; HUBER, Patrick; KOLLEGGER, Johann. Influence of aggregate interlock on the shear resistance of reinforced concrete beams without stirrups. Engineering Structures, v. 186, p. 26-42, 2019.
- 15. MUTTONI, Aurelio; FERNÁNDEZ RUIZ, Miguel. From experimental evidence to mechanical modeling and design expressions: The Critical Shear Crack Theory for shear design. Structural Concrete, v. 20, n. 4, p. 1464-1480, 2019.
- FUSCO, Péricles Brasiliense. Estruturas de concreto: Solicitações Tangenciais. São Paulo: Editora Pini Ltda., 2008.
- SCHLAICH, J.; SCHAFER, K.; AND JENNEWEIN, M. Toward a Consistent Design of Structural Concrete. PCI Journal, V.32, No.3, 1987, p.74-150.
- 18. SAMORA, M. S. et al. Experimental analysis of the concrete contribution to shear strength beams without shear reinforcement. Revista IBRACON de Estruturas e Materiais, v. 10, p. 160-172, 2017.
- Timoshenko, S., and Goodier, J. N., 1951, Theory of elasticity: McGraw-Hill Book Co., Inc., New York, 506 p.
- 20. CLÍMACO, J. C. T. D. S. Estruturas de concreto armado: fundamentos de projeto, dimensionamento e verificação. 2ª. ed. Brasília: UnB, 2008. v. 1.
- 21. WIGHT, J. K.; MACGREGOR, J. G. Reinforced concrete: mechanics and design. 6th ed. New Jersey: Pearson, 2009.
- 22. KANI, G_N_J_. How safe are our large reinforced concrete beams?. In: Journal Proceedings. 1967. p. 128-141.
- 23. SAGASETA, Juan; VOLLUM, R. L. Influence of beam cross-section, loading arrangement and aggregate type on shear strength. Magazine of Concrete Research, v. 63, n. 2, p. 139-155, 2011.
- 24. REGAN P. et al. The influence of aggregate type on the shear resistance of reinforced concrete. The Structural Engineer 8(23/24): 27–32. 2005.

- 25. TIRASSA, Max; RUIZ, Miguel Fernández; MUTTONI, Aurelio. Influence of cracking and rough surface properties on the transfer of forces in cracked concrete. Engineering Structures, v. 225, p. 111138, 2020.
- 26. HORDIJK, Dirk A. Tensile and tensile fatigue behaviour of concrete; experiments, modelling and analyses. Heron, v. 37, n. 1, 1992.
- 27. DENG, Qing; YI, Wei-Jian; TANG, Fu-Jian. Effect of coarse aggregate size on shear behavior of beams without shear reinforcement. ACI Structural Journal, v. 114, n. 5, p. 1131, 2017.
- COLLINS, M.P.; MITCHELL, D. (1990). "Prestressed concrete structures". Publication, New Jersey, USA, 754 pp.
- 29. YANG, Keun-Hyeok et al. Effect of aggregate size on shear behavior of lightweight concrete continuous slender beams. ACI Materials Journal, v. 108, n. 5, p. 501, 2011.
- 30. CAVAGNIS, Francesco. Shear in reinforced concrete without transverse reinforcement: from refined experimental measurements to mechanical models. 2017. Tese de Doutorado. Ecole Polytechnique Fédérale de Lausanne.
- 31. KIM, Jin-Keun; PARK, Yon-Dong. **Prediction of shear strength of reinforced concrete beams without web reinforcement**. ACI, 1996
- 32. BAZANT, Zdenek P.; KIM, Jin-Keun. Size effect in shear failure of longitudinally reinforced beams. ACI, 1984
- 33. SNEED, Lesley H.; RAMIREZ, Julio A. Influence of Effective Depth on Shear Strength of Concrete Beams--Experimental Study. ACI Structural Journal, v. 107, n. 5, 2010.
- 34. MEHTA, P. Kumar; MONTEIRO, Paulo JM. Concrete: microstructure, properties, and materials. McGraw-Hill Education, 2014.
- 35. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 16915/2021 -Agregados - Amostragem. Rio de Janeiro, 2021.
- 36. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7211/2022 Agregados para concreto – Requisítos . Rio de Janeiro, 2022.
- 37. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR NM 27/2000 -Agregados – Redução da amostra de campo para ensaios de laboratório . Rio de Janeiro, 2000.
- 38. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR NM 248/2001 Agregados Determinação da Composição Granulométrica . Rio de Janeiro, 2001.

- 39. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6892-1: Materiais Metálicos – Ensaio de Tração à temperatura Ambiente. Rio de Janeiro, 2018.
- 40. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 5739/2018 Concreto -Ensaio de compressão de corpos de prova cilíndricos. Rio de Janeiro, 2018.
- 41. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7222/2011 Concreto e argamassa – Determinação da resistência à traçãopor compressão diametral de corpos de prova cilindricos. Rio de Janeiro, 2011.
- 42. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 8522-1/2021 –
 Concreto endurecido Determinação dos módulos de elasticidade e de deformação
 Parte 1: Módulos estáticos à compressão. Rio de Janeiro, 2021.
- 43. CEB-FIP. **Model Code 2010: Final Draft**. Model Code Prepared By Special Activity Group 5.Lausanne, 2011
- 44. BUCHAIM, R. A influência da não-linearidade física do concreto armado na rigidez à flexão e na capacidade de rotação plástica. Tese de Doutorado, Universidade de São Paulo, São Paulo, 2001, 260 p.
- 45. REINECK, K. H. et al. Shear database for reinforced concrete members without shear reinforcement. *ACI Structural Journal*, [s.l.], v. 100, n° 2, p. 240–249, 2003. ISSN: 08893241, DOI: 10.14359/12488.
- 46. REINECK, Karl-Heinz et al. Shear database for reinforced concrete members without shear reinforcement. Structural Journal, v. 100, n. 2, p. 240-249, 2003.
- 47. COLLINS, Michael P.; BENTZ, Evan C.; SHERWOOD, Edward G. Where is shear reinforcement required? Review of research results and design procedures. Structural Journal, v. 105, n. 5, p. 590-600, 2008.
- 48. CAVAGNIS, Francesco; RUIZ, Miguel Fernández; MUTTONI, Aurelio. Shear failures in reinforced concrete members without transverse reinforcement: An analysis of the critical shear crack development on the basis of test results. Engineering structures, v. 103, p. 157-173, 2015.
- 49. CAVAGNIS, Francesco et al. Shear Strength of Members without Transverse Reinforcement Based on Development of Critical Shear Crack. ACI Structural Journal, v. 117, n. 1, 2020.
- 50. PERERA, S. V. T.; MUTSUYOSHI, Hiroshi. Shear Behavior of Reinforced High-Strength Concrete Beams. ACI Structural Journal, v. 110, n. 1, 2013.

- 51. SARTURI, F., D., M. Simulação computacional de estruturas de concreto Reforçadas com aço e compósito de fibra de carbono. Dissertação de Mestrado. Universidade Federal do Paraná, Curitiba, 2014. 234 p
- 52. BITTENCOURT, Túlio Nogueira. Fraturamento do concreto estrutural: aspectos teóricos, computacionais e experimentais, e suas aplicações. 1999.
- 53. COLLINS, M.P. (2001). Evaluation of shear design procedures for concrete structures. A Report prepared for the CSA technical committee on reinforced concrete design.
- 54. SILVA, Elder Nogueira; DE SOUZA, Alex Sander Clemente. Simulação numérica do comportamento de vigas mistas de aço e concreto protendidas [Numerical behavior analysis of prestressed steel-concrete composite beams]. REEC-Revista Eletrônica de Engenharia Civil, v. 15, n. 1, 2019.
- 55. SANTOS, P., S., M. Análise computacional do puncionamento em lajes Lisas de concreto armado submetidas as ações verticais e horizontais. Dissertação de Mestrado. Universidade Estadual de Campinas. Campisnas, 2019, 161 p.
- 56. AGUIAR, A., J., L. Lajes lisas nervuradas bidirecionais de concreto armado com furos adjacentes ao pilar. Tese de Doutorado, Universidade Federal do Pará, Pará, 2019, 277 p.
- 57. LUBLINER, Jacob et al. A plastic-damage model for concrete. International Journal of solids and structures, v. 25, n. 3, p. 299-326, 1989.
- 58. SARTURI, F., D., M. Simulação computacional de estruturas de concreto Reforçadas com aço e compósito de fibra de carbono. Dissertação de Mestrado. Universidade Federal do Paraná, Curitiba, 2014. 234 p
- 59. BIRTEL, V.; MARK, P. Parametrised Finite Element Modelling of RC Beam Shear Failure. Abaqus Users Conference. 2006.
- HORDIJK, D. Tensile And Tensile Fatigue Behavior Of Concrete; Experiments, Modeling And Analyses, Heron. N. 37, 1992. Pp. 3–79.
- 61. KMIECIK, P., KAMINSKI M., 2011. Modelling of Reinforced Concrete Structures and Composite Structures with Concrete Strength Degradation Taken into Consideration. Archives of Civil and Mechanical Engineering.
- 62. MARQUES, E. A. de F., & de Araújo, T. D. P. (2016). Modelagem Numérica do Comportamento de Pilares de Concreto Armado Reforçados com PRFC usando o

Modelo Constitutivo Concrete Damaged Plasticity. XXXVII Iberian Latin-American Congress on Computational Methods in Engineering, November.

- 63. MEDEIROS, W. A., Porticos em concreto Pré-moldado preenchidos com alvenaria participante. Dissertação de Mestrado. Universidade Federal de São Carlos, São Paulo, 2018. 164 p
- 64. PETRAUSK, M. C., Simulação numérica do comportamento de vigas mistas de aço e concreto com conectores crestbond. Dissertação de Mestrado. Universidade Federal de Viçosa, Minas Gerais, 2016. 214 p
- 65. SOARES, Leide Manuel dos Santos. Análise numérica não linear de ligações pilares laje fungiforme. 2016. Tese de Doutorado.
- NAVARRO, M., IVORRA, S., VARONA, F. B. Parametric Computational Analysis For Punching Shear In RC Slabs. Engineering Structures. Vol. 165. 2018. Pp 254-263.
- 67. MALM, R. Shear cracks in concrete structures subjected to in-plane stresses. Tese (Doutorado) KTH, 2006.
- 68. PAIVA, H. A. R. e Siess, C. P. (1965) "**Strength and behavior of deep beams in shear**", Journal of the Structural Division, ASCE, vol. 91, n° ST5, October 1965, pp. 19-4

10. ANEXOS

	Banco de Dados 1 Autor	Vigas	b _w (mm)	d (mm)	f _c (Mpa)	ρ (%)	a/d	a (mm)	<i>h</i> (mm)	f _{ct} (MPA)	f _{ct} (MPa)	dg (mm)	As (mm²)	fys (Mpa)	V _u /2 (kN)
1		ST1	360	278	52.50	1.57	2.88	801	310	2.94	4.02	19.0	1570	536	127.53
2		ST2	360	278	52.50	1.57	2.88	801	310	2.94	4.02	19.0	1570	536	118.67
3	Adebar, Collins	ST3	290	278	49.30	1.95	2.88	801	310	2.82	3.83	19.0	1570	536	107.72
4	(1996)	ST8	290	278	46.20	1.95	2.88	801	310	2.70	3.66	19.0	1570	536	80.61
5		ST16	290	178	51.50	3.04	4.49	799	310	2.91	3.96	19.0	1570	536	75.11
6		ST23	290	278	58.90	0.99	2.88	801	310	3.18	4.23	19.0	800	536	89.89
7		A1	127	203	62.40	3.93	4.00	812	254	3.30	4.33	12.7	1013	414	57.82
8		A2	127	203	62.40	3.93	3.00	609	254	3.30	4.33	12.7	1013	414	68.94
9		A3	127	203	62.40	3.93	2.70	548	254	3.30	4.33	12.7	1013	414	68.94
10		A8	127	208	62.40	1.77	3.00	624	254	3.30	4.33	12.7	467	414	48.93
11		B1	127	202	68.70	5.02	4.00	808	254	3.52	4.48	12.7	1289	414	51.21
12		B2	127	202	68.70	5.02	3.00	606	254	3.52	4.48	12.7	1289	414	68.94
13		B3	127	202	68.70	5.02	2.70	545	254	3.52	4.48	12.7	1289	414	100.08
14	Ahmad, Kahloo (1986)	B7	127	208	68.70	2.25	4.00	832	254	3.52	4.48	12.7	594	414	44.48
15	(1900)	B8	127	208	68.70	2.25	3.00	624	254	3.52	4.48	12.7	594	414	46.70
16		B9	127	208	68.70	2.25	2.70	562	254	3.52	4.48	12.7	594	414	80.06
17		C1	127	184	66.00	6.64	4.00	736	254	3.43	4.41	12.7	1552	414	54.27
18		C2	127	184	66.00	6.64	3.00	552	254	3.43	4.41	12.7	1552	414	75.62
19		C3	127	184	66.00	6.64	2.70	497	254	3.43	4.41	12.7	1552	414	68.94
20		C7	127	207	66.00	3.25	4.00	828	254	3.43	4.41	12.7	855	414	45.37
21		C8	127	207	66.00	3.25	3.00	621	254	3.43	4.41	12.7	855	414	44.48
22		C9	127	207	66.00	3.25	2.70	559	254	3.43	4.41	12.7	855	414	45.37
23	Angelakos, Bentz,	DB120	300	925	21.00	1.01	2.92	2701	1000	1.60	2.00	10.0	2800	550	179.00
24	Collins (2001)	DB130	300	925	32.00	1.01	2.92	2701	1000	2.12	2.79	10.0	2800	550	185.00

Tabela 10.1 - Banco de dados 1

	Autor	Vigas	b_w (mm)	d (mm)	fc (Mpa)	ρ (%)	a/d	a (mm)	<i>h</i> (mm)	f _{ct} (MPA)	f _{ct} (MPa)	dg (mm)	As (mm²)	f _{ys} (Mpa)	V _u /2 (kN)
25		DB140	300	925	38.00	1.01	2.92	2701	1000	2.37	3.17	10.0	2800	550	180.00
26		DB165	300	925	65.00	1.01	2.92	2701	1000	3.39	4.39	10.0	2800	550	185.00
27		DB180	300	925	80.00	1.01	2.92	2701	1000	3.90	4.72	10.0	2800	550	172.00
28		DB230	300	925	32.00	2.02	2.92	2701	1000	2.12	2.79	10.0	5600	550	257.00
29		DBO530	300	925	32.00	0.50	2.92	2701	1000	2.12	2.79	10.0	1400	550	165.00
30		B1	240	300	23.20	1.26	3.00	900	350	1.71	2.16	30.0	904	434	70.14
31		B2	240	600	29.60	1.26	3.00	1800	650	2.01	2.62	30.0	1808	434	117.23
32		B3	240	900	27.50	1.26	3.00	2700	950	1.91	2.48	30.0	2712	434	161.87
33	Rhal (1968)	B4	240	1200	25.20	1.26	3.00	3600	1250	1.81	2.31	30.0	3616	434	176.58
34	Dia (1700)	B5	240	600	26.60	0.63	3.00	1800	650	1.87	2.41	30.0	904	434	103.99
35		B6	240	600	24.70	0.63	3.00	1800	650	1.78	2.28	30.0	904	430	111.83
36		B7	240	900	27.20	0.63	3.00	2700	950	1.90	2.46	30.0	1356	434	134.89
37		B8	240	900	27.70	0.63	3.00	2700	950	1.92	2.49	30.0	1356	430	122.63
38		37623	203	356	38.90	1.74	3.00	1068	406	2.41	3.23	20.0	1257	478	96.00
39	Chana (1981)	37654	203	356	32.80	1.74	3.00	1068	406	2.15	2.84	10.0	1257	478	87.40
40		37682	203	356	35.70	1.74	3.00	1068	406	2.28	3.02	20.0	1257	478	99.40
41		B100	300	925	36.00	1.01	2.92	2701	1000	2.29	3.04	10.0	2800	550	225.00
42		B100H	300	925	98.00	1.01	2.92	2701	1000	4.46	5.07	10.0	2800	550	193.00
43	Collins, Kuchma	B100B	300	925	39.00	1.01	2.92	2701	1000	2.42	3.23	10.0	2800	550	204.00
44	(1999)	B100L	300	925	39.00	1.01	2.92	2701	1000	2.42	3.23	10.0	2800	483	223.00
45		B100-R	300	925	36.00	1.01	2.92	2701	1000	2.29	3.04	10.0	2800	550	249.00
46		B100L-R	300	925	39.00	1.01	2.92	2701	1000	2.42	3.23	10.0	2800	483	235.00
47		F1	178	270	65.50	1.19	4.0	1080	305	3.41	4.40	12.7	570	434	57.38
48		F2	178	268	65.50	2.44	4.0	1072	305	3.41	4.40	12.7	1164	434	65.61
49	Elzanaty, Nilson, Slate (1986)	F10	178	267	65.50	3.20	4.0	1068	305	3.41	4.40	12.7	1520	434	74.86
50	51400 (1900)	F9	178	268	79.30	1.63	4.0	1072	305	3.88	4.71	12.7	776	434	62.27
51		F15	178	268	79.30	2.44	4.0	1072	305	3.88	4.71	12.7	1164	434	66.23

Tabela 10.1 - Banco de dados 1. Continuação

	Autor	Vigas	b_w (mm)	d (mm)	f _c (Mpa)	ρ (%)	a/d	a (mm)	<i>h</i> (mm)	f_{ct} (MPA)	f _{ct} (MPa)	dg (mm)	As (mm²)	f _{ys} (Mpa)	V _u /2 (kN)
52		F6	178	268	63.40	2.44	6.0	1608	305	3.34	4.35	12.7	1164	434	60.05
53		F11	178	270	20.70	1.19	4.0	1080	305	1.58	1.97	12.7	570	434	43.72
54		F12	178	268	20.70	2.44	4.0	1072	305	1.58	1.97	12.7	1164	434	53.15
55		F8	178	273	40.00	0.93	4.0	1092	305	2.46	3.29	12.7	451	434	44.70
56		F13	178	270	40.00	1.19	4.0	1080	305	2.46	3.29	12.7	570	434	47.59
57		F14	178	268	40.00	2.44	4.0	1072	305	2.46	3.29	12.7	1164	434	63.38
58		S1.1	300	153	90.10	1.34	3.73	571	200	4.22	4.92	16.0	616	660	70.10
59		S1.2	300	152	90.20	2.21	3.75	570	200	4.22	4.94	16.0	1010	517	75.80
60		S1.3	300	146	93.70	4.22	3.90	569	200	4.33	4.99	16.0	1850	487	98.60
61		S2.2	300	348	91.30	1.88	3.53	1228	400	4.26	4.95	16.0	1960	469	187.10
62		S2.3	300	348	93.70	0.94	3.53	1228	400	4.33	4.99	16.0	982	469	123.10
63	Grimm (1997)	S2.4	300	328	94.10	3.76	3.75	1230	400	4.34	5.00	16.0	3700	487	229.80
64	Grimm (1997)	S3.2	300	718	93.70	1.72	3.66	2628	800	4.33	4.99	16.0	3700	487	259.1
65		S3.3	300	746	94.40	0.83	3.53	2633	800	4.35	5.00	16.0	1850	487	192.80
66		S3.4	300	690	94.40	3.57	3.81	2629	800	4.35	5.00	16.0	7390	487	379.00
67		S4.1	300	153	110.90	1.34	3.73	571	200	4.85	5.29	16.0	616	660	74.20
68		S4.2	300	152	110.90	2.21	3.75	570	200	4.85	5.29	16.0	1010	517	90.30
69		S4.3	300	146	110.90	4.22	3.90	569	200	4.85	5.29	16.0	1850	487	122.30
70		B90SB13- 2-86	163	192	86.20	2.17	3.65	701	233	4.10	4.85	18.0	678	630	82.50
71	Hallgren (1994)	B90SB14- 2-86	158	194	86.20	2.21	3.61	700	235	4.10	4.85	18.0	678	630	76.50
72		B90SB22- 2-85	158	193	84.60	2.22	3.63	701	234	4.05	4.82	18.0	678	630	75.50
73		B91SC2-2- 62	155	196	61.80	2.23	3.57	700	237	3.28	4.31	18.0	678	443	69.50
74		B91SC4-2- 69	156	195	69.10	2.23	3.59	700	236	3.54	4.49	18.0	678	443	74.00

Tabela 10.1 - Banco de dados 1. Continuação

-		Tabela 10.1 - Banco de dados 1. Continuação													
	Autor	Vigas	b _w (mm)	d (mm)	<i>f_c</i> (Mpa)	ρ (%)	a/d	a (mm)	<i>h</i> (mm)	f_{ct} (MPA)	f _{ct} (MPa)	d _g (mm)	<i>As</i> (mm²)	f_{ys} (Mpa)	V _u /2 (kN)
75		B90SB17- 2-45	157	191	44.90	2.26	3.66	699	232	2.65	3.59	18.0	678	630	59.00
76		B90SB18- 2-45	155	194	44.90	2.25	3.61	700	235	2.65	3.59	18.0	678	630	63.00
77		B90SB21- 2-85	155	194	84.60	2.25	3.61	700	235	4.05	4.82	18.0	678	630	69.00
78		B91SC1-2- 62	156	193	61.80	2.25	3.63	701	234	3.28	4.31	18.0	678	443	71.00
79		B91SD1-4- 61	156	194	60.80	3.98	3.61	700	247	3.25	4.29	18.0	1206	494	88.50
80		B91SD2-4- 61	156	195	60.80	3.96	3.59	700	248	3.25	4.29	18.0	1206	494	90.00
81		B91SD3-4- 66	156	195	65.70	3.96	3.59	700	248	3.42	4.41	18.0	1206	494	81.50
82		B91SD4-4- 66	155	195	65.70	3.99	3.59	700	248	3.42	4.41	18.0	1206	494	79.00
83		B91SD5-4- 58	156	196	58.30	3.94	3.57	700	249	3.16	4.22	18.0	1206	494	78.00
84		B91SD6-4- 58	150	196	58.3	4.10	3.57	700	249	3.16	4.22	18.0	1206	494	82.50
85		B90SB5-2- 33	156	191	32.8	2.28	3.66	699	232	2.15	2.84	18.0	678	651	56.00
86		B90SB6-2- 33	156	194	32.8	2.24	3.61	700	235	2.15	2.84	18.0	678	651	53.50
87		B90SB9-2- 31	156	192	31.1	2.26	3.65	701	233	2.08	2.73	18.0	678	651	49.00
88		B90SB10- 2-31	157	193	31.1	2.20	3.63	701	234	2.08	2.73	18.0	667	651	53.50
89		M100-S0	150	203	83.3	3.22	3.94	800	250	4.01	4.79	10.0	982	532	65.00
90	Islam, Pam, Kwan	M100-S1	150	203	83.3	3.22	2.96	601	250	4.01	4.79	10.0	982	532	107.70
91	(1998)	M100-S3	150	203	83.3	3.22	2.96	601	250	4.01	4.79	10.0	982	532	96.90
92		M100-S4	150	203	83.3	3.22	3.94	800	250	4.01	4.79	10.0	982	532	80.70

Tabala 10.1 D da dadas 1. Continuação
	Autor	Vigas	b_w (mm)	d (mm)	f _c (Mpa)	ρ (%)	a/d	a (mm)	<i>h</i> (mm)	f _{ct} (MPA)	f _{ct} (MPa)	d _g (mm)	As (mm²)	f _{ys} (Mpa)	V _u /2 (kN)
93		M80-S0	150	203	72.2	3.22	3.94	800	250	3.64	4.56	10.0	982	532	58.00
94		M80-S1	150	203	72.2	3.22	2.96	601	250	3.64	4.56	10.0	982	532	117.30
95		M80-S3	150	203	72.2	3.22	2.96	601	250	3.64	4.56	10.0	982	532	115.40
96		M80-S4	150	203	72.2	3.22	3.94	800	250	3.64	4.56	10.0	982	532	72.10
97		M60-S0	150	207	50.8	2.02	3.86	799	250	2.88	3.92	10.0	628	554	45.50
98		M60-S1	150	207	50.8	2.02	2.90	600	250	2.88	3.92	10.0	628	554	92.30
99		M60-S3	150	207	50.8	2.02	2.90	600	250	2.88	3.92	10.0	628	554	90.40
100		M60-S4	150	207	50.8	2.02	3.86	799	250	2.88	3.92	10.0	628	554	51.90
101		M40-S0	150	205	34.4	3.19	3.90	800	250	2.22	2.94	10.0	982	320	55.00
102		M40-S1	150	205	34.4	3.19	2.93	601	250	2.22	2.94	10.0	982	320	84.60
103		M40-S3	150	205	34.4	3.19	2.93	601	250	2.22	2.94	10.0	982	320	80.70
104		M25-S0	150	207	26.6	2.02	3.86	799	250	1.87	2.41	10.0	628	350	47.50
105		M25-S3	150	207	26.6	2.02	2.90	600	250	1.87	2.41	10.0	628	350	56.50
106		3044	152	1097	29.5	2.73	3.98	4366	1219	2.00	2.62	19.0	4555	376	159.02
107		3045	155	1092	28.3	2.70	5.00	5460	1219	1.95	2.53	19.0	4568	381	152.34
108		3046	155	1097	26.7	2.70	7.00	7679	1219	1.88	2.42	19.0	4594	360	154.12
109		3047	155	1095	26.7	2.68	8.00	8760	1219	1.88	2.42	19.0	4555	376	147.01
110		63	154	543	26.2	2.78	4.00	2172	610	1.85	2.39	19.0	2323	352	93.19
111		64	156	541	25.7	2.75	8.03	4344	610	1.83	2.35	19.0	2323	352	78.95
112	Kani (1967)	66	156	541	26.4	2.75	6.01	3251	610	1.86	2.40	19.0	2323	352	90.74
113		79	153	556	26.1	2.72	6.84	3803	610	1.85	2.38	19.0	2316	381	83.62
114		1	152	524	27.3	2.84	3.11	1630	610	1.90	2.46	19.0	2265	367	107.86
115		71	155	544	27.4	2.66	2.99	1627	610	1.91	2.47	19.0	2245	373	102.08
116		52	152	138	24.8	2.71	3.93	542	152	1.79	2.29	19.0	568	392	28.89
117		48	151	133	24.8	2.83	5.09	677	152	1.79	2.28	19.0	568	392	27.11
118		81	153	274	27.5	2.77	5.93	1625	305	1.91	2.48	19.0	1161	343	51.15

Tabela 10.1 - Banco de dados 1. Continuação

						Tabel	a 10.1 - I	Banco de	dados 1. C	continuação)				
	Autor	Vigas	b _w (mm)	d (mm)	f _c (Mpa)	ρ (%)	a/d	a (mm)	<i>h</i> (mm)	f _{ct} (MPA)	f _{ct} (MPa)	d _g (mm)	As (mm²)	f _{ys} (Mpa)	V _u /2 (kN)
119		84	151	271	27.4	2.84	4.00	1084	305	1.91	2.47	19.0	1161	342	55.39
120		96	153	275	25.3	2.76	3.94	1084	305	1.81	2.32	19.0	1161	335	56.27
121		83	156	271	27.4	2.75	3.00	813	305	1.91	2.47	19.0	1161	343	64.94
122		97	152	276	27.2	2.69	2.95	814	305	1.90	2.46	19.0	1129	366	62.49
123		3043	154	1092	27.0	2.71	3.00	3276	1219	1.89	2.44	19.0	4555	376	165.02
124		56	153	137	27.2	2.68	3.46	474	152	1.90	2.46	19.0	561	403	28.00
125		58	152	138	27.2	2.67	3.44	475	152	1.90	2.46	19.0	561	417	28.91
126		60	155	139	26.8	2.64	2.93	407	152	1.88	2.43	19.0	568	392	39.30
127		91	154	269	27.4	2.71	6.06	1630	305	1.91	2.47	19.0	1123	364	50.95
128		92	152	270	27.4	2.74	7.03	1898	305	1.91	2.47	19.0	1123	369	45.84
129		41	152	141	27.2	2.62	2.41	340	152	1.90	2.46	19.0	561	381	51.44
130		59	154	140	26.6	2.63	2.67	374	152	1.87	2.42	19.0	568	392	50.15
131		65	150	552	27.0	2.81	2.46	1358	610	1.89	2.44	19.0	2329	374	112.31
132		95	153	275	25.3	2.76	2.47	679	305	1.81	2.32	19.0	1161	338	72.73
133		98	153	275	26.2	2.68	2.47	679	305	1.85	2.39	19.0	1129	366	76.28
134		99	152	272	26.2	2.73	2.50	680	305	1.85	2.39	19.0	1129	366	77.17
135		3042	154	1095	26.4	2.70	2.50	2738	1219	1.86	2.40	19.0	4555	375	236.86
136		B4JL20-S	102	152	40.6	1.38	5.00	760	178	2.48	3.33	9.5	214	518	19.52
137	Kulkami, Shah (1998)	B3NO15-S	102	152	41.6	1.38	4.00	608	178	2.52	3.39	9.5	214	518	22.66
138	(1))0)	B3N030-S	102	152	43.6	1.38	3.50	532	178	2.60	3.51	9.5	214	518	24.24
139		N8	500	226	25.8	0.78	3.50	791	250	1.83	2.36	16.0	887	501	101.50
140	Reineck, Koch, Schlaich (1978)	N6	500	226	25.8	0.78	2.50	565	250	1.83	2.36	16.0	887	501	117.50
141	Sematen (1976)	N7	500	225	24.6	1.39	2.50	563	250	1.78	2.27	16.0	1569	441	139.50
142		SL-1	150	165	85.1	1.87	4.00	660	200	4.06	4.83	16.0	462	523	46.28
143	Renmel (1991)	SL-2	150	165	85.1	1.87	3.06	505	200	4.06	4.83	16.0	462	523	48.02
144		SL-4	150	160	84.5	4.09	4.00	640	200	4.04	4.81	16.0	982	474	57.60

						Tabel	a 10.1 - I	Banco de	dados 1. C	ontinuação)				
	Autor	Vigas	b _w (mm)	d (mm)	f _c (Mpa)	ρ (%)	a/d	a (mm)	<i>h</i> (mm)	f _{ct} (MPA)	f _{ct} (MPa)	d _g (mm)	As (mm²)	f _{ys} (Mpa)	V _u /2 (kN)
145		SL-5	150	160	84.5	4.09	3.06	490	200	4.04	4.81	16.0	982	474	60.24
146		A-2	200	372	80.6	0.81	3.00	1116	400	3.92	4.74	16.0	603	500	83.00
147	Scholz (1994)	D-2	200	362	96.8	1.94	3.00	1086	400	4.43	5.05	16.0	1407	500	121.00
148		D-3	200	362	96.8	1.94	4.00	1448	400	4.43	5.05	16.0	1407	500	121.00
149		B11	150	221	54.0	1.82	3.00	663	250	3.00	4.10	16.0	603	500	58.12
150		B13	150	207	54.0	3.24	4.00	828	250	3.00	4.10	16.0	1005	500	70.46
151		B14	150	207	54.0	3.24	3.00	621	250	3.00	4.10	16.0	1005	500	82.63
152		B21	150	221	77.8	1.82	3.00	663	250	3.83	4.68	16.0	603	500	67.93
153		B23	150	207	77.8	3.24	4.00	828	250	3.83	4.68	16.0	1005	500	77.82
154		B24	150	207	77.8	3.24	3.00	621	250	3.83	4.68	16.0	1005	500	82.63
155		B33	150	207	58.0	3.24	4.00	828	250	3.15	4.22	16.0	1005	500	68.01
156	Thorenfeldt,	B34	150	207	58.0	3.24	3.00	621	250	3.15	4.22	16.0	1005	500	82.63
157	Drangshold (1990)	B43	150	207	86.4	3.24	4.00	828	250	4.10	4.85	16.0	1005	500	86.16
158		B44	150	207	86.4	3.24	3.00	621	250	4.10	4.85	16.0	1005	500	107.15
159		B51	150	221	97.7	1.82	3.00	663	250	4.45	5.06	16.0	603	500	56.16
160		B53	150	207	97.7	3.24	4.00	828	250	4.45	5.06	16.0	1005	500	76.84
161		B54	150	207	97.7	3.24	3.00	621	250	4.45	5.06	16.0	1005	500	77.72
162		B61	300	442	77.8	1.82	3.00	1326	500	3.83	4.68	16.0	2413	500	180.29
163		B63	300	414	77.8	3.24	4.00	1656	500	3.83	4.68	16.0	4021	500	229.43
164		B64	300	414	77.8	3.24	3.00	1242	500	3.83	4.68	16.0	4021	500	280.68
165	Yoshida, Bentz, Collins (2000)	YB2000/0	300	1890	33.6	0.74	2.86	5405	2000	2.19	2.89	10.0	4200	455	255.00

Banco V_{μ} b_w d f_c As fys h а d_{max} d_{dg} ρ_l de Vigas a/d Autores ρ_l (MPa) (mm^2) (%)(kN)(mm)(mm)(mm)(mm)(mm)(mm)(mm)Dados 2 1 501a 1829 254 25.40.0138 305 2.7 685.8 25 41 6411 1.38 425 600.1 2 501b 1829 254 25.7 0.0138 305 2.7 685.8 25 41 6411 1.38 425 578.5 3 25 502a 1829 406 24.30.0054 457 1.69 686.14 41 4010 0.54 420 706.8 4 1829 22.7 25 0.54 502b 406 0.0054 457 1.69 686.14 41 4010 420 737.5 25 5 503a 1829 406 24.4 0.0054 457 1.69 686.14 41 4010 0.54 420 747.8 503b 1829 406 24 0.0054 457 1.69 686.14 25 41 4010 0.54 420 701.7 6 Richart (1948) 7 504a 1524 254 24.9 0.0177 305 3 762 25 41 6852 1.77 510 518.1 8 504b 1524 254 25.8 0.0177 305 3 762 25 41 6852 1.77 510 557.8 9 505a 1524 406 25.4 0.0068 457 1.88 763.28 25 41 4207 0.68 425 751.9 10 505b 1524 406 25.7 0.0068 457 1.88 763.28 25 41 4207 0.68 425 720.1 11 506a 1524 406 23.1 0.0068 457 1.88 763.28 25 41 4207 0.68 425 685.9 12 506b 1524 406 26.3 0.0068 457 1.88 763.28 25 41 4207 0.68 425 685.9 13 T2-Ma 152 269 29.8 0.0139 305 3.4 914.6 25 41 568 1.39 331 42.3 14 T2-Mb 152 269 27.7 0.0139 305 3.5 941.5 25 41 568 1.39 331 44.5 15 3 25 A-B1 178 267 21.2 0.0162 305 801 41 770 1.62 483 56.9 25 16 A-B2 178 268 21.6 0.0163 305 2.99 801.32 41 778 1.63 483 60.7 17 19.2 25 41 A-B3 178 270 0.016 305 2.96 799.2 769 1.6 483 56.3 18 178 272 2.95 802.4 25 1.66 A-B4 16.8 0.0166 305 41 804 483 56.3 19 Laupa & Seiss A-C2 178 272 6.1 0.0083 305 2.94 799.68 25 41 402 0.83 483 25.1 (1953) 25 20 A-C3 178 273 6.9 0.008 305 2.93 799.89 41 389 0.8 483 26 274 2.92 25 0.82 25.8 21 A-C4 178 6.8 0.0082 305 800.08 41 400 483 22 152 0.0189 913.88 B-B1 268 36.7 305 3.41 25 41 770 1.89 483 58.5 23 **B-B3** 152 0.0189 913.88 25 41 770 1.89 53 268 25.8 305 3.41 483 25 24 152 268 15.4 0.0189 305 3.41 913.88 41 770 1.89 483 41.2 **B-B4** 25 B-B5 152 268 30.7 0.0189 305 3.41 913.88 25 41 770 1.89 483 52.7 26 B-B7 152 268 30.9 0.0189 305 3.41 913.88 25 41 770 1.89 483 51.9

Tabela 10.2: Banco de Dados 2

Banco	Autorea	Vices	b_w	d	f_c		h	a/d	а	d_{max}	d_{dg}	As	$ ho_l$	f_{ys}	V_u
Dados 2	Autores	vigas	(mm)	(mm)	(MPa)	$ ho_l$	(mm)	a/a	(mm)	(mm)	(mm)	(mm²)	(%)	(mm)	(kN)
27		B-B9	152	268	41.2	0.0189	305	3.41	913.88	25	41	770	1.89	483	54.1
28		B-B10	152	268	24	0.0189	305	3.41	913.88	25	41	770	1.89	483	49.6
29		B-B11	152	268	38.1	0.0189	305	3.41	913.88	25	41	770	1.89	483	60.8
30		B-B12	152	268	20.2	0.0189	305	3.41	913.88	25	41	770	1.89	483	47.9
31		B-B13	152	268	37.8	0.0189	305	3.41	913.88	25	41	770	1.89	483	56.3
32		B-B14	152	268	22.6	0.0189	305	3.41	913.88	25	41	770	1.89	483	43.9
33		B-B15	152	268	37.4	0.0189	305	3.41	913.88	25	41	770	1.89	483	51.9
34		B-B16	152	268	16.3	0.0189	305	3.41	913.88	25	41	770	1.89	483	38.5
35		A-2	152	254	31.5	0.0098	305	3	762	25	41	378	0.98	469	41.8
36		A-3	152	254	19.4	0.0098	305	4	1016	25	41	378	0.98	452	34.2
37		A-4	152	254	26.8	0.0098	305	5	1270	25	41	378	0.98	459	35.1
38		A-5	152	254	30.7	0.0098	305	6	1524	25	41	378	0.98	462	32.7
39		IA-1a	152	306	22.8	0.0159	356	2.49	761.94	6	22	740	1.59	324	59.2
40		IA-1b	152	314	30	0.0159	356	2.42	759.88	6	22	759	1.59	323	76.9
41		IA-2a	152	311	24.8	0.0159	356	2.45	761.95	25	41	752	1.59	308	73.1
42		IA-3a	152	311	27.7	0.0159	356	2.45	761.95	25	41	752	1.59	326	52
43		IA-3b	152	305	24.5	0.0159	356	2.5	762.5	25	41	737	1.59	323	60.5
44		IA-4a	152	305	22.8	0.0159	356	2.5	762.5	25	41	737	1.59	321	51
45	Bower, Viest	IA-4b	152	311	21.9	0.0159	356	2.45	761.95	25	41	752	1.59	319	46
46	(1960)	IA-5b	152	308	21.5	0.0159	356	2.48	763.84	25	41	744	1.59	323	49.4
47		IA-6b	152	305	24.3	0.0159	356	2.5	762.5	25	41	737	1.59	323	66
48		IA-7b	152	305	22.6	0.0159	356	2.5	762.5	25	41	737	1.59	317	57
49		IA-8a	152	311	24.1	0.0159	356	2.45	761.95	25	41	752	1.59	307	49.4
50		IA-8b	152	305	21.5	0.0159	356	2.5	762.5	25	41	737	1.59	319	57.1
51		IB-1	152	305	22.2	0.0159	356	2	610	25	41	737	1.59	326	56.7
52		IB-2	152	305	21.2	0.0159	356	2	610	25	41	737	1.59	330	65.2

Tabela 10.2: Banco de dados 2. Continuação

Banco de	Autores	Vigas	b_w	d	f_c	ρ_l	h	a/d	a	d_{max}	d_{dg}	As (mm ²)	ρ_l	f_{ys}	V_u
Dados 2		-	(mm)	(mm)	(MPa)	,	(mm)		(mm)	(mm)	(mm)	(mm²)	(%)	(mm)	(KIN)
53		IB-3	152	305	22.8	0.0159	356	2	610	25	41	737	1.59	319	60.2
54		IIa-1a	152	308	22.8	0.0159	356	1.49	458.92	25	41	744	1.59	319	61.7
55		IIa-2	152	312	21.6	0.0159	356	1.95	608.4	25	41	754	1.59	319	67.3
56		IIA-3	152	312	21.7	0.0159	356	2.44	761.28	25	41	754	1.59	320	51.5
57		IIA-9	152	292	21.2	0.0159	356	4.17	1217.64	25	41	706	1.59	328	42.3
58		8A4	152	267	20.9	0.0125	305	4.95	1321.65	19	35	507	1.25	611	33.8
59		8B3	152	267	30.1	0.0125	305	2.48	661.63	19	35	507	1.25	334	46
60		D3/1	150	210	33.8	0.0162	240	3	630	15	31	510	1.62	413	46.4
61		D3/21	150	210	33.8	0.0162	240	3	630	15	31	510	1.62	413	42.9
62		D3/2r	150	210	33.8	0.0162	240	3	630	15	31	510	1.62	413	42.9
63		D4/1	200	280	34.6	0.0168	320	3	840	15	31	941	1.68	439	74.1
64		D4/21	200	280	34.6	0.0168	320	3	840	15	31	941	1.68	439	71.3
65		D4/2r	200	280	34.6	0.0168	320	3	840	15	31	941	1.68	439	71.3
66		C2	150	300	38.3	0.0128	330	3	900	30	46	576	1.28	425	64.7
67		C3	200	450	38.3	0.0128	500	3	1350	30	46	1152	1.28	425	101.5
68	Hanson (1961)	C4	225	600	38.3	0.0128	670	3	1800	30	46	1728	1.28	425	152.1
69		EA1	190	270	22.2	0.0182	320	2.78	750.6	30	46	934	1.82	439	58.4
70		EA2	190	270	22.2	0.0178	320	2.78	750.6	30	46	913	1.78	490	74.6
71		A50-25A	501	253	34.5	0.0181	305	2.67	675.51	12	28	2294	1.81	399	188.7
72		A50-25B	502	252	34.1	0.0185	305	2.67	672.84	12	28	2340	1.85	394	171.2
73		#REF!	152	271	27.1	0.0187	305	2	542	19	35	770	1.87	396	78.1
74	1	#REF!	152	271	29.8	0.0187	305	2.5	677.5	19	35	770	1.87	396	51.4
75		#REF!	152	271	29.2	0.0187	305	2.5	677.5	19	35	770	1.87	396	54.3
76	1	#REF!	153	263	26.1	0.0182	305	3.49	917.87	19	35	732	1.82	491	51.6
77		102	153	269	25.3	0.0076	305	2.02	543.38	19	35	313	0.76	423	48.8
78	1	103	155	274	29.4	0.0074	305	2.97	813.78	19	35	314	0.74	423	38.8

Tabela 10.2: Banco de dados 2. Continuação

Banco			h	d	f.		h		a	d	d.	As	0	f	V.
de Dadas 2	Autores	Vigas	(mm)	(mm)	(MPa)	$ ho_l$	(mm)	a/d	(mm)	(mm)	(mm)	(mm ²)	$(\%)^{\mu_l}$	(mm)	(kN)
79		104	154	269	25.3	0.0076	305	3.98	1070.62	19	35	315	0.76	423	33.6
80		104	157	20)	25.5	0.0077	305	2.5	680	19	35	318	0.70	383	41.5
00 01		105	154	272	20.2	0.0076	205	2.5	678.04	10	25	214	0.77	422	41.5
01		100 #DEE!	152	208	20.0	0.0070	205	2.55	406.5	19	25	215	0.70	422	71.0
82		#REF!	155	2/1	25	0.0076	305	1.5	406.5	19	35	315	0.76	457	/1.9
83		#REF!	159	269	27.4	0.0073	305	5.05	1358.45	19	35	312	0.73	407	27.9
84		#REF!	154	272	27	0.0076	305	2.49	677.28	19	35	318	0.76	368	43.3
85		#REF!	153	273	27	0.0076	305	2.48	677.04	19	35	317	0.76	368	39.4
86		#REF!	152	272	26.2	0.0077	305	2.5	680	19	35	318	0.77	383	45.3
87		#REF!	152	271	26.4	0.0078	305	3.01	815.71	19	35	321	0.78	384	39.3
88		#REF!	152	275	26.4	0.0077	305	3.96	1089	19	35	322	0.77	384	32.6
89		121	152	272	20.3	0.0185	305	2.99	813.28	19	35	765	1.85	330	49
90		#REF!	155	271	15.4	0.0179	305	4	1084	19	35	752	1.79	346	37.8
91		126	155	272	16.3	0.0178	305	2.99	813.28	19	35	750	1.78	346	42.7
92		#REF!	153	276	18	0.0179	305	5.32	1468.32	19	35	756	1.79	346	40.1
93		#REF!	151	274	18.1	0.0185	305	2.48	679.52	19	35	765	1.85	401	49.6
94		#REF!	154	271	18.6	0.0181	305	2.51	680.21	19	35	755	1.81	417	49.8
95		#REF!	154	273	17.4	0.0181	305	1.99	543.27	19	35	761	1.81	419	59.9
96		141	151	270	19.3	0.0081	305	2.01	542.7	19	35	330	0.81	382	48.7
97		#REF!	154	274	17.7	0.0074	305	3.96	1085.04	19	35	312	0.74	428	30.2
98		#REF!	154	270	17.7	0.0076	305	5.03	1358.1	19	35	316	0.76	429	27.3
99		#REF!	152	287	16.8	0.007	305	2.36	677.32	19	35	305	0.7	417	42.3
100		#REF!	153	272	18	0.0078	305	2.5	680	19	35	325	0.78	380	43.7
101		#REF!	154	273	19.3	0.0078	305	2.49	679.77	19	35	328	0.78	382	35.6
102		#REF!	149	270	19.7	0.0079	305	3.02	815.4	19	35	318	0.79	384	32.5
103		#REF!	152	273	19.7	0.0076	305	2.99	816.27	19	35	315	0.76	384	32.8
104		162	153	272	34.3	0.0077	305	1.99	541.28	19	35	320	0.77	377	59

Tabela 10.2: Banco de dados 2. Continuação

Banco de	Autores	Vigas	b_w (mm)	<i>d</i> (mm)	f _c (MPa)	$ ho_l$	h (mm)	a/d	<i>a</i> (mm)	d_{max} (mm)	d_{dg} (mm)	As (mm ²)	ρ_l (%)	f_{ys} (mm)	V_u (kN)
105		163	156	273	35.4	0.0076	305	2 / 9	679 77	19	35	324	0.76	378	40.5
105		164	156	273	33.8	0.0073	305	2.4) 4	1084	19	35	309	0.70	412	35.8
107		165	150	271	33.0	0.0073	305	1 80	1350 / 2	10	35	306	0.73	412	20.7
107		165	151	270	35.7	0.0073	305	3.01	815 71	19	35	321	0.73	377	40.3
100		#REF!	154	271	34.6	0.0078	305	1 35	1218	19	35	310	0.78	A12	32.6
109		#REF!	154	285	33.0	0.0072	305	4.33	1210	19	35	325	0.72	306	31.0
110		#REF!	152	265	33.7	0.0074	305	4.20	678.48	19	35	214	0.74	400	33.6
111		#REF!	153	204	34.5	0.0053	305	2.57	0/0.40	19	35	214	0.55	400	24.0
112		#REF!	153	209	34.5	0.0032	303	3.33	549.57	19	35	750	1.70	200	24.9 65.2
115		#REF!	154	272	22.0	0.0179	205	2 5.05	344 1252 4	19	33 25	730	1.79	390	49.9
114		#KEF!	155	208	25.9	0.018	305	5.05	1005.00	19	35	748	1.8	380	48.8
115		186	155	272	35.1	0.0178	305	3.99	1085.28	19	35	/50	1./8	394	55.4
116		191	154	275	34	0.018	305	2.96	814	19	35	/62	1.8	497	53.1
117		192	154	272	35.8	0.0183	305	5.39	1466.08	19	35	767	1.83	347	47.7
118		193	153	278	34.6	0.018	305	2.44	678.32	19	35	766	1.8	352	56.7
119		194	154	278	34.6	0.018	305	2.93	814.54	19	35	771	1.8	352	51.2
120		195	153	275	34.6	0.0182	305	3.94	1083.5	19	35	766	1.82	352	47.3
121		196	154	269	36.2	0.0185	305	5.05	1358.45	19	35	766	1.85	380	51.2
122		197	150	274	36	0.0184	305	2.48	679.52	19	35	756	1.84	376	60.1
123		199	152	273	36	0.0183	305	1.99	543.27	19	35	759	1.83	410	76.8
124		246	153	274	27.6	0.0051	305	3.47	950.78	19	35	214	0.51	400	25.4
125		248	153	282	27.6	0.0049	305	2.41	679.62	19	35	211	0.49	400	37.2
126		251	154	276	26.2	0.0048	305	1.97	543.72	19	35	204	0.48	391	41.9
127		266	153	272	18.1	0.005	305	2.48	674.56	19	35	208	0.5	396	32.5
128		267	153	269	20.7	0.0052	305	3.53	949.57	19	35	214	0.52	400	24.5
129		268	153	275	20.1	0.0049	305	2.96	814	19	35	206	0.49	396	27.2
130		270	152	273	20.1	0.005	305	1.99	543.27	19	35	207	0.5	396	41.4

Tabela 10.2: Banco de dados 2. Continuação

Banco de	Autores	Vigas	b_w (mm)	d (mm)	f_c (MPa)	ρι	h (mm)	a/d	a (mm)	d_{max}	d_{dg}	As (mm ²)	ρ_l (%)	f_{ys} (mm)	V_u (kN)
Dados 2		2061	154	1001	27.4	0.000	1202	2.1	2292.1	10	25	1244	0.0	245	07.5
131		3061	154	1091	27.4	0.008	1202	3.1	3382.1	19	35	1344	0.8	345	97.5
132		162'	154	267	34.3	0.0076	305	2.03	542.01	19	35	312	0.76	379	62.1
133		163'	152	272	35.4	0.0078	305	2.5	680	19	35	322	0.78	378	38
134		166'	154	274	35.4	0.0076	305	2.97	813.78	19	35	321	0.76	379	38.3
135		S-2	154	265	33.1	0.0098	311	3.83	1014.95	13	29	400	0.98	655	37.4
136		S-3	152	267	29	0.0081	311	4.19	1118.73	13	29	329	0.81	524	31.1
137		S-4	152	268	33.1	0.0063	311	4.17	1117.56	13	29	257	0.63	524	28
138		S-5	152	262	27.9	0.0053	311	4.27	1118.74	13	29	211	0.53	1779	33.6
139	Rajagopalan &	S-6	151	267	31	0.0035	311	4.18	1116.06	13	29	141	0.35	1779	27.4
140	Tergoson (1900)	S-9	152	262	25.1	0.0053	311	4.27	1118.74	13	29	211	0.53	1779	24.5
141		S-13	152	265	23.7	0.0173	311	4.22	1118.3	13	29	697	1.73	655	40
142		S-14	151	269	29.8	0.0063	349	4.16	1119.04	13	29	256	0.63	524	25
143		S-15	761	269	33	0.0063	311	4.16	1119.04	13	29	1290	0.63	524	150.8
144		B1	240	297	23.2	0.0126	350	3.03	899.91	30	46	898	1.26	434	70.7
145		B2	240	600	29.6	0.0126	650	3	1800	30	46	1814	1.26	434	119.5
146		B3	240	900	27.5	0.0126	950	3	2700	30	46	2722	1.26	434	166.8
147		B4	240	1200	25.2	0.0126	1250	3	3600	30	46	3629	1.26	434	185.2
148	Bhal (1968)	B5	240	600	26.6	0.0063	650	3	1800	30	46	907	0.63	434	106.2
149		B6	240	600	24.7	0.0063	650	3	1800	30	46	907	0.63	430	114.1
150		B7	240	900	27.2	0.0063	950	3	2700	30	46	1361	0.63	434	139.8
151		B8	240	900	27.7	0.0063	950	3	2700	30	46	1361	0.63	430	127.5
152		1A	203	370	28.9	0.0103	406	3.02	1117.4	10	26	774	1.03	350	61.8
153		2A	203	370	33.2	0.0155	406	3.02	1117.4	10	26	1164	1.55	350	91.6
154	Taylor (1968)	1B	203	370	28.9	0.0103	406	3.02	1117.4	10	26	774	1.03	350	75.6
155		2B	203	370	33.2	0.0155	406	3.02	1117.4	10	26	1164	1.55	350	100.5
156		3B	203	370	31.6	0.0103	406	3.02	1117.4	10	26	774	1.03	350	76.1

Tabela 10.2: Banco de dados 2. Continuação

Banco de	Autores	Vigas	b_w (mm)	d (mm)	f_c (MPa)	ρ_l	h (mm)	a/d	a (mm)	d_{max}	d_{dg} (mm)	As (mm ²)	ρ_l (%)	f_{ys} (mm)	V_u (kN)
Dados 2		5 1	202	270	20.0	0.0102	406	2.47	012.0	10	26	774	1.02	250	90.5
157		5A 5D	203	370	29.9	0.0103	406	2.47	913.9	10	20	774	1.03	350	80.5
158		58	203	370	29.9	0.0103	406	2.47	913.9	10	26	774	1.03	350	80.5
159		1	152	254	17.1	0.0103	305	3	762	19	35	398	1.03	400	36.5
160		3	152	254	46.9	0.0103	305	3	762	19	35	398	1.03	400	54.7
161	Mattock (1969)	15	152	254	25.9	0.0103	305	5.4	1371.6	19	35	398	1.03	400	31.1
162		18	152	254	18.1	0.0207	305	5.4	1371.6	19	35	799	2.07	400	35.6
163		3	152	197	26.8	0.017	229	2.5	492.5	19	35	509	1.7	483	54.7
164		R1	152	272	26.2	0.0098	305	3.36	913.92	19	35	405	0.98	621	44.9
165		R2	152	272	26.2	0.0146	305	3.36	913.92	19	35	604	1.46	621	47.1
166	Placas and Pagam (1071)	R3	152	272	24.8	0.0146	305	3.36	913.92	19	35	604	1.46	621	44.9
167	Regain (1971)	R7	152	272	28.1	0.0146	305	3.36	913.92	19	35	604	1.46	621	54.3
168		D2	152	272	30.3	0.0146	305	3.36	913.92	19	35	604	1.46	621	52.5
169		8/0	150	200	28	0.0201	230	3.05	610	19	35	603	2.01	500	49.4
170	Smith (1970)	10/0	150	200	34.5	0.0201	230	3.81	762	19	35	603	2.01	500	43.9
171		12/0	150	200	36.2	0.0201	230	4.58	916	19	35	603	2.01	500	46.3
172		A1	400	930	28.7	0.0135	1000	3.01	2799.3	38	54	5022	1.35	420	358.4
173		A2	400	930	25.1	0.0135	1000	3.01	2799.3	19	35	5022	1.35	420	328.4
174		B1	200	465	24.2	0.0135	500	3.01	1399.65	38	54	1256	1.35	420	104.3
175		B2	200	465	22	0.0135	500	3.01	1399.65	19	35	1256	1.35	420	87.3
176		B3	200	465	28.4	0.0135	500	3.01	1399.65	9	25	1256	1.35	420	85.3
177	Taylor (1972)	C1	100	233	22.7	0.0135	250	3	699	19	35	315	1.35	420	22.5
178		C2	100	233	22.7	0.0135	250	3	699	9	25	315	1.35	420	24
179		C3	100	233	24.4	0.0135	250	3	699	9	25	315	1.35	420	27.5
180		C4	100	233	18.5	0.0135	250	3	699	9	25	315	1.35	420	22.5
181		C5	100	233	19.9	0.0135	250	3	699	9	25	315	1.35	420	27
182		C6	100	233	25.6	0.0135	250	3	699	2	18	315	1.35	420	27.5

Tabela 10.2: Banco de dados 2. Continuação

Banco de Dados 2	Autores	Vigas	b_w (mm)	<i>d</i> (mm)	f _c (MPa)	$ ho_l$	h (mm)	a/d	a (mm)	d _{max} (mm)	d_{dg} (mm)	As (mm²)	$ ho_l$ (%)	f_{ys} (mm)	V _u (kN)
183		11	1000	500	24.6	0.0046	539	3.65	1825	30	46	2300	0.46	535	267.4
184		16	1000	750	30.4	0.0042	794	3.67	2752.5	30	46	3150	0.42	536	406.7
185		2	1000	250	26.9	0.0064	281	3.68	920	30	46	1600	0.64	554	218
186		12	1000	500	27.3	0.0065	540	3.65	1825	30	46	3250	0.65	535	330.2
187	Aster & Koch (1974)	3	1000	250	27.3	0.0091	289	3.68	920	30	46	2275	0.91	535	222.5
188	(1)(4)	8	1000	500	31.1	0.0063	544	5.5	2750	30	46	3150	0.63	535	287.1
189		9	1000	500	19.9	0.0063	544	5.5	2750	30	46	3150	0.63	535	260.6
190		10	1000	500	20	0.0063	544	5.5	2750	30	46	3150	0.63	535	261.6
191		17	1000	750	28.7	0.0042	794	3.67	2752.5	30	46	3150	0.42	535	363.5
192	Cederwall K.	734-34	135	234	31.5	0.0107	260	3.42	800.28	19	35	338	1.07	483	41.4
193	Hedn (1974)	734-40	135	234	27	0.0108	260	2.56	599.04	19	35	341	1.08	483	40.9
194		G1	100	370	30.3	0.017	400	3.39	1254.3	20	36	629	1.7	400	44.5
195	Hamadi and Regan (1980)	G2	100	372	23.5	0.0108	400	3.37	1253.64	20	36	402	1.08	460	41
196	Regan (1900)	G4	100	372	22	0.0108	400	5.9	2194.8	20	36	402	1.08	800	30.3
197		N8	500	226	25.8	0.0079	250	3.5	791	16	32	893	0.79	501	101.5
198	Keineck, Koch (1978)	N6	500	226	25.8	0.0079	250	2.5	565	16	32	893	0.79	501	117.5
199	(1)/0)	N7	500	225	24.6	0.0139	250	2.5	562.5	16	32	1564	1.39	441	139.5
200		2	150	270	26.2	0.0053	300	1.5	405	19	35	215	0.53	319	51.5
201		3	150	270	23	0.0053	300	2	540	19	35	215	0.53	319	34.1
202		4	150	270	22.5	0.0053	300	2.5	675	19	35	215	0.53	319	25.8
203	Nakazawa	5	150	270	27.8	0.0053	300	3	810	19	35	215	0.53	319	24.5
204	(1980)	6	150	270	27.9	0.0053	300	3.5	945	19	35	215	0.53	319	24.5
205		11	150	270	20.3	0.007	300	2.5	675	19	35	284	0.7	319	40.5
206		12	150	270	21	0.007	300	3	810	19	35	284	0.7	319	29.7
207		13	150	270	20	0.007	300	3.5	945	19	35	284	0.7	319	29.4

Tabela 10.2: Banco de dados 2. Continuação

Banco de Dados 2	Autores	Vigas	b _w (mm)	<i>d</i> (mm)	fc (MPa)	$ ho_l$	<i>h</i> (mm)	a/d	a (mm)	d _{max} (mm)	d _{dg} (mm)	As (mm ²)	$ ho_l$ (%)	f_{ys} (mm)	V _u (kN)
208		18	150	270	28.7	0.0147	300	2.5	675	19	35	595	1.47	358	68.7
209		19	150	270	23.5	0.0147	300	3	810	19	35	595	1.47	358	60.1
210		20	150	270	25.8	0.0147	300	3.5	945	19	35	595	1.47	358	45.4
211		21	150	270	30.5	0.0147	300	4	1080	19	35	595	1.47	358	46.6
212		24	150	270	34.3	0.0191	300	2	540	19	35	774	1.91	358	93.2
213		25	150	270	34.8	0.0191	300	2.5	675	19	35	774	1.91	358	71.1
214		26	150	270	38.6	0.0191	300	3	810	19	35	774	1.91	358	58.7
215		27	150	270	38.6	0.0191	300	3.5	945	19	35	774	1.91	358	49.1
216		28	150	270	34.1	0.0191	300	4	1080	19	35	774	1.91	358	50.3
217		2.1a	203	356	49.3	0.0169	406	3	1068	20	36	1221	1.69	414	96
218		2.1b	203	356	49.3	0.0169	406	3	1068	20	36	1221	1.69	414	97.1
219	Chana (1081)	2.2a	203	356	41.6	0.0169	406	3	1068	10	26	1221	1.69	414	87.4
220	Chana (1981)	2.2b	203	356	41.6	0.0169	406	3	1068	10	26	1221	1.69	414	94.4
221		2.3a	203	356	45.2	0.0169	406	3	1068	20	36	1221	1.69	414	99.4
222		2.3b	203	356	45.2	0.0169	406	3	1068	20	36	1221	1.69	414	96.4
223	Batchelor (1981)	4-C-1	152	226	46.6	0.0017	248	3.03	684.78	19	35	58	0.17	1167	19.9
224		SW9-0A	914	184	48.5	0.0062	224	3.24	596.16	19	35	1043	0.62	603	167.6
225		SW9-0B	914	190	48.5	0.006	227	3.14	596.6	19	35	1042	0.6	603	155.5
226		SW9M-0A	914	187	48.5	0.0061	225	3.19	596.53	19	35	1043	0.61	594	155.7
227	Heger and	SW9M-0B	914	185	48.5	0.0062	226	3.23	597.55	19	35	1048	0.62	594	174.3
228	McGref (1982)	SW9M-0A-15	914	190	48.5	0.006	225	2.01	381.9	19	35	1042	0.6	594	299.8
229		SW14-0A	914	191	49	0.0093	227	3.13	597.83	19	35	1624	0.93	673	197.2
230		SW14-0B	914	186	49	0.0096	226	3.21	597.06	19	35	1632	0.96	673	195.9
231		SW1B-0A	914	184	48.3	0.0124	225	3.25	598	19	35	2085	1.24	633	202.6
232	Elzanaty, Nilson (1984)	F7	178	268	20.7	0.006	305	4	1072	13	29	286	0.6	434	33.7

Tabela 10.2: Banco de dados 2. Continuação

Banco de	Autores	Vigas	b_w	d (mm)	f_c	ρι	h	a/d	a	d_{max}	d_{dg}	As	ρ_l	f_{ys}	V_u
Dados 2		Ū.	(mm)	(mm)	(MPa)		(mm)		(mm)	(mm)	(mm)	(mm²)	(%)	(mm)	(KIN)
233		F11	178	270	20.7	0.0119	305	4	1080	13	29	572	1.19	434	45.3
234		F8	178	273	40	0.0093	305	4	1092	13	29	452	0.93	434	46.4
235		F13	178	270	40	0.0119	305	4	1080	13	29	572	1.19	434	46.6
236		F1	178	270	65.5	0.0119	305	4	1080	13	29	572	1.19	434	58.7
237		F3	178	268	69	0.0119	305	2	536	13	29	568	1.19	434	85.3
238		F5	178	268	63.4	0.0119	305	6	1608	13	29	568	1.19	434	43.3
239		С	140	200	19.8	0.0056	230	2.5	500	30	46	157	0.56	504	26.5
240		D	140	200	18.9	0.0081	230	2.5	500	30	46	227	0.81	497	30.5
241	Kung (1985)	Е	140	200	18.9	0.011	230	2.5	500	30	46	308	1.1	492	43
242		F	140	200	18.9	0.0182	230	2.5	500	30	46	510	1.82	507	54
243		E-1	140	200	20.1	0.011	230	2.5	500	30	46	308	1.1	492	40.4
244	Muruyama	N1	200	250	47.1	0.0155	250	2.5	625	19	35	775	1.55	343	97.1
245	(1986)	N2	200	250	51	0.0155	250	2.5	625	19	35	775	1.55	343	83.4
246		A2	150	200	24.2	0.0134	225	2.8	560	20	36	402	1.34	463	45
247	Mansur (1986)	A3	150	200	24.2	0.0134	225	3.6	720	20	36	402	1.34	463	38.5
248		A4	150	200	24.2	0.0134	225	4.4	880	20	36	402	1.34	463	33.8
249	Niwa, Yamada et al (1987)	1	600	2000	27.1	0.0028	2100	3	6000	25	41	3360	0.28	999	402
250		B11	150	221	54	0.0182	250	3	663	16	32	603	1.82	500	58.1
251		B12	151	221	54	0.0182	251	2.3	508.3	16	32	607	1.82	500	70.8
252	Thorenfeld (1990)	B21	150	221	77.8	0.0182	250	3	663	16	32	603	1.82	500	67.9
253	(1))))	B22	150	221	77.8	0.0182	250	2.3	508.3	16	32	603	1.82	500	102.7
254		B52	150	221	97.7	0.0182	250	2.3	508.3	16	32	603	1.82	500	77.7
255	Sahala (1004)	A-2	200	372	80.6	0.0081	400	3	1116	16	32	603	0.81	500	83
256	SCHOIZ (1994)	D-3	200	362	96.8	0.0194	400	4	1448	16	32	1405	1.94	500	121
257	Kim & Park (1994)	CTL-1	170	270	53.7	0.0187	300	3	810	25	41	858	1.87	477	71.1

Tabela 10.2: Banco de dados 2. Continuação

Banco		T 7'	b_w	d	f_c		h	1.1	а	d_{max}	d_{dg}	As	ρ_l	fys	V_{μ}
de Dados 2	Autores	V1gas	(mm)	(mm)	(MPa)	$ ho_l$	(mm)	a/d	(mm)	(mm)	(mm)	(mm²)	(%)	(mm)	(kN)
258		CTL-2	170	270	53.7	0.0187	300	3	810	25	41	858	1.87	477	71.6
259		P1,0-1	170	272	53.7	0.0101	300	3	816	25	41	467	1.01	477	58.3
260		P1,0-2	170	272	53.7	0.0101	300	3	816	25	41	467	1.01	477	56.4
261		A4,5-1	170	270	53.7	0.0187	300	4.5	1215	25	41	858	1.87	477	66.6
262		A4,5-2	170	270	53.7	0.0187	300	4.5	1215	25	41	858	1.87	477	63.8
263		A6,0-1	170	270	53.7	0.0187	300	6	1620	25	41	858	1.87	477	59.2
264		A6,0-2	170	270	53.7	0.0187	300	6	1620	25	41	858	1.87	477	61
265		D550-1	300	550	53.7	0.0188	620	3	1650	25	41	3102	1.88	477	226.1
266		D550-2	300	550	53.7	0.0188	620	3	1650	25	41	3102	1.88	477	214.5
267		D915-2	300	915	53.7	0.0187	1000	3	2745	25	41	5133	1.87	477	332.1
268		B3	262	208	92.4	0.0074	240	2.64	549.12	18	34	403	0.74	632	75.5
269	Hallgren (1996)	B5	283	211	91.3	0.0105	240	2.61	550.71	18	34	627	1.05	604	103.5
270		B7	337	208	85	0.0057	240	2.64	549.12	18	34	400	0.57	630	88.5
271	Top of al (1007)	s2.3	300	348	93.7	0.0094	400	3.53	1228.44	16	32	981	0.94	469	123.1
272	1 all et al (1997)	s2.2	300	348	91.3	0.0188	400	3.53	1228.44	16	32	1963	1.88	469	187.1
273		A1A	105	300	24.8	0.0126	330	3	900	20	36	397	1.26	400	33.5
274		A1B	105	300	24.8	0.0126	330	3	900	20	36	397	1.26	400	29.5
275	Kawano &	A2A	176	500	27.3	0.0136	570	3	1500	20	36	1197	1.36	400	82.5
276	Wantanabe	A2B	176	500	27.3	0.0136	570	3	1500	20	36	1197	1.36	400	101.5
277	(1997)	A3A	350	950	20.7	0.0122	1050	3	2850	20	36	4057	1.22	400	216
278		A3B	350	950	20.6	0.0122	1050	3	2850	20	36	4057	1.22	400	237.5
279		A4A	600	2000	22.2	0.012	2200	3	6000	40	56	14400	1.2	400	610.5
280	Town to DI	BN25	300	225	37	0.0089	250	2.95	663.75	10	26	601	0.89	437	72.9
281	(1998)	BN50	300	450	37	0.0081	500	2.92	1314	10	26	1094	0.81	486	131.6
282	(1))()	BN100	300	925	37	0.0076	1000	2.88	2664	10	26	2109	0.76	550	191.7
283	Ghannoum (1998)	N220-1	400	190	34.2	0.012	220	2.5	475	20	36	912	1.2	433	103.6

Tabela 10.2: Banco de dados 2. Continuação

	Tabela 10.2: Banco de dados 2. Continuação														
Banco de Dados 2	Autores	Vigas	b _w (mm)	<i>d</i> (mm)	f _c (MPa)	ρι	h (mm)	a/d	a (mm)	d _{max} (mm)	d_{dg} (mm)	As (mm²)	$ ho_l$ (%)	f_{ys} (mm)	V _u (kN)
284		N350-1	400	313	34.2	0.012	350	2.5	782.5	20	36	1502	1.2	477	157.9
285		N485-1	400	440	34.2	0.012	485	2.5	1100	20	36	2112	1.2	385	186.8
286		N960-1	400	889	34.2	0.012	960	2.5	2222.5	20	36	4267	1.2	385	360.2
287		N220-h	400	190	34.2	0.02	220	2.5	475	20	36	1520	2	433	122.7
288		N350-h	400	313	34.2	0.02	350	2.5	782.5	20	36	2504	2	477	178.4
289		N485-h	400	440	34.2	0.02	485	2.5	1100	20	36	3520	2	385	214.6
290		N960-h	400	889	34.2	0.02	960	2.5	2222.5	20	36	7112	2	385	379.7
291		M60-S0	150	207	50.8	0.0202	250	3.86	799.02	10	26	627	2.02	554	45.5
292	TI D	M60-S1	150	207	50.8	0.0202	250	2.9	600.3	10	26	627	2.02	554	92.3
293	Islan e Pan (1998)	M60-S4	150	207	50.8	0.0202	250	3.86	799.02	10	26	627	2.02	554	51.9
294	(1))))	M25-S0	150	207	26.6	0.0202	250	3.86	799.02	10	26	627	2.02	350	47.5
295		M25-S3	150	207	26.6	0.0202	250	2.9	600.3	10	26	627	2.02	350	56.5
296		SE100A/45R	295	920	50	0.0103	1000	2.5	2300	10	26	2795	1.03	480	266.7
297		SE50A-45	169	445	53	0.0103	500	2.7	1201.5	10	26	775	1.03	480	77.4
298		SE50A-45R	169	445	53	0.0103	500	2.7	1201.5	10	26	775	1.03	480	91
299		B100	300	925	36	0.0101	1000	2.92	2701	10	26	2803	1.01	550	225
300		B100R	300	925	36	0.0101	1000	2.92	2701	10	26	2803	1.01	550	249
301		B100B	300	925	39	0.0101	1000	2.92	2701	10	26	2803	1.01	550	204
302	Kuchma e	B100L	300	925	39	0.0101	1000	2.92	2701	10	26	2803	1.01	550	223
303	Collins (1999)	B100L-R	300	925	39	0.0101	1000	2.92	2701	10	26	2803	1.01	550	235
304		3CNB	127	191	37.7	0.0165	229	3	573	13	29	400	1.65	461	29.4
305		4CNB	127	191	34.9	0.0165	229	4	764	13	29	400	1.65	461	30.3
306		DF-2	500	1000	18.4	0.0042	1090	2.33	2330	20	36	2100	0.42	550	315
307		DF-4	500	1000	25.5	0.006	1090	2.33	2330	20	36	3000	0.6	550	387
308		DF-5	500	996	25.5	0.0066	1090	2.41	2400.36	20	36	3287	0.66	550	381
309		DF-7	500	1000	20.6	0.0098	1090	2.33	2330	20	36	4900	0.98	550	435

Banco de	Autores	Vigas	b_w	d (mm)	f_c (MPa)	$ ho_l$	h (mm)	a/d	a (mm)	d_{max}	d_{dg}	As (mm ²)	ρ_l (%)	f_{ys} (mm)	V_u (kN)
Dados 2			500	1000	(1.11.4)	0.0008	1000	2.22	()	()	26	(1111)	0.00	550	521
211	-	DF-8	500	1000	22.4	0.0098	1090	2.33	2550	20	30	4900	0.98	550	531
311	-	DF-8R	500	1000	22.4	0.0098	1090	2.33	2330	20	36	4900	0.98	550	579
312		DF-9	500	1000	31.7	0.0098	1090	2.33	2330	20	36	4900	0.98	550	532
313		DF-10	500	1000	31.7	0.0098	1090	2.33	2330	20	36	4900	0.98	550	524
314		DF-10R	500	1000	31.7	0.0098	1090	2.33	2330	20	36	4900	0.98	550	605
315		DF-15	250	962	20.3	0.0175	1090	1.82	1750.84	20	36	4209	1.75	550	330
316	A	DB120	300	925	21	0.0101	1000	2.92	2701	10	26	2803	1.01	550	179
317	Angelakos (2001)	DB130	300	925	32	0.0101	1000	2.92	2701	10	26	2803	1.01	550	185
318	(2001)	DB0,530	300	925	32	0.005	1000	2.92	2701	10	26	1388	0.5	550	165
319	Cao (2001)	SB2003/0	300	1925	30.8	0.0036	2000	2.81	5409.25	10	26	2079	0.36	470	227.2
320	_	V-S-1	457	360	40.9	0.0096	427	3.39	1220.4	19	35	1579	0.96	524	179.2
321	Tureyen e	V-S-2	457	360	41.4	0.0192	427	3.39	1220.4	19	35	3159	1.92	524	203.7
322	F10SCII (2002)	V-D-2	457	360	43.7	0.0036	427	3.39	1220.4	19	35	592	0.36	745	134.8
323		R-S007Na	160	346	37.3	0.0072	400	2.75	951.5	20	36	399	0.72	483	58.9
324		R-S007Nb	160	346	37.3	0.0072	400	2.75	951.5	20	36	399	0.72	483	63.3
325	Tariq e New	R-S010N1	160	346	43.2	0.0108	400	3.32	1148.72	20	36	598	1.08	483	66.7
326	(2003)	R-S010N2	160	346	43.2	0.0108	400	3.32	1148.72	20	36	598	1.08	483	62.2
327		R-S015N1	160	325	34.1	0.0154	400	3.54	1150.5	20	36	801	1.54	483	69.8
328		R-S015N2	160	325	34.1	0.0154	400	3.54	1150.5	20	36	801	1.54	483	70.5
329	OSU Test (2004)	37T	356	1151	31.8	0.0074	1219	2.91	3349.41	19	35	3032	0.74	478	243.8
330		AT-2-250A	250	437	37.7	0.0092	470	2.96	1293.52	10	26	1005	0.92	465	115.8
331		AT-2-250B	250	440	38.5	0.009	470	2.94	1293.6	10	26	990	0.9	465	113.3
332	Sherwood et al.	AT-2-1000A	1000	440	39	0.0091	470	2.94	1293.6	10	26	4004	0.91	465	476
333	(2003)	AT-2-1000B	1000	437	37.9	0.0091	470	2.96	1293.52	10	26	3977	0.91	465	444.8
334	1	AT-2-3000	3000	440	40.6	0.0091	472	2.94	1293.6	10	26	12012	0.91	465	1295.3

Tabela 10.2: Banco de dados 2. Continuação

Banco de Dados 2	Autores	Vigas	b _w (mm)	<i>d</i> (mm)	f _c (MPa)	$ ho_l$	<i>h</i> (mm)	a/d	a (mm)	d _{max} (mm)	d_{dg} (mm)	As (mm²)	$ ho_l$ (%)	f_{ys} (mm)	V _u (kN)
335		AT-3-A	696	307	37.5	0.0093	338	3.38	1037.66	10	26	1987	0.93	448	239.3
336		AT-3-C	706	305	37.1	0.0093	338	3.41	1040.05	10	26	2003	0.93	448	260.2
337		AT-3-B	701	305	37.8	0.0093	338	3.41	1040.05	10	26	1988	0.93	448	254.8
338		AT-3-D	706	307	37.1	0.0093	338	3.38	1037.66	10	26	2016	0.93	448	250.2
339		SBB3.1	105	333	34	0.0155	378	2.97	989.01	10	26	542	1.55	490	42.2
340		SBB3.2	101	333	34	0.0161	378	2.97	989.01	10	26	541	1.61	490	40.6
341		SBB3.3	101	333	34	0.0161	378	2.97	989.01	10	26	541	1.61	490	42.9
342		SN-0.8	250	326	50	0.0086	400	3.07	1000.82	19	35	701	0.86	453	98.5
343	El Savad (2005)	SN-1.2	250	326	44.6	0.0123	400	3.07	1000.82	18	34	1002	1.23	460	116.5
344	EI-Sayeu (2005)	SN-1.7	250	326	43.6	0.0172	400	3.07	1000.82	19	35	1402	1.72	460	144.5
345		SH-1.7	250	326	62	0.0172	400	3.07	1000.82	19	35	1402	1.72	460	160
346		AW1	1170	538	36.9	0.0079	590	3.44	1850.72	10	26	4973	0.79	467	585
347		AW4	1168	506	39.9	0.0169	590	3.66	1851.96	10	26	9988	1.69	467	716
348		AW8	1169	507	39.4	0.0169	591	3.65	1850.55	10	26	10016	1.69	467	789
349	Lubell (2006)	AX6	703	288	41	0.0173	338	3.61	1039.68	10	26	3503	1.73	467	281
350		AX7	704	287	41	0.0104	335	3.62	1038.94	10	26	2101	1.04	413	249
351		AX8	705	289	41	0.0172	339	3.6	1040.4	10	26	3504	1.72	467	272
352		AY1	249	434	40.7	0.0033	467	3	1302	10	26	357	0.33	900	85
353	Guadagnini	SB40	150	223	43.4	0.0135	250	3.36	749.28	20	36	452	1.35	500	45.3
354	(2006)	SB41	150	223	43	0.0135	250	2.24	499.52	20	36	452	1.35	500	68
355		L-10N1	300	1400	38.4	0.0083	1510	2.89	4046	10	26	3486	0.83	452	265
356		L-20N1	300	1400	31.4	0.0083	1510	2.89	4046	20	36	3486	0.83	452	265
357	Sherwood,	L-20N2	300	1400	33.2	0.0083	1510	2.89	4046	20	36	3486	0.83	452	266
358	Bentz e Collins (2007)	L-40N1	300	1400	28.1	0.0083	1510	2.89	4046	40	56	3486	0.83	452	242
359	(2007)	L-50N1	300	1400	41	0.0083	1510	2.89	4046	50	66	3486	0.83	452	272
360		L-50N2	300	1400	40.1	0.0083	1510	2.89	4046	50	66	3486	0.83	452	298

Tabela 10.2: Banco de dados 2. Continuação

Banco de Dados 2	Autores	Vigas	b _w (mm)	<i>d</i> (mm)	f _c (MPa)	ρι	h (mm)	a/d	a (mm)	d _{max} (mm)	d _{dg} (mm)	As (mm ²)	$ ho_l$ (%)	f _{ys} (mm)	V _u (kN)
361		L-50N2R	300	1400	40.1	0.0083	1510	2.89	4046	50	66	3486	0.83	452	323
362		S-10N1	122	280	41.9	0.0083	330	2.89	809.2	10	26	284	0.83	494	36.6
363		S-10N2	122	280	41.9	0.0083	330	2.89	809.2	10	26	284	0.83	494	38.3
364		S-20N1	122	280	39.2	0.0083	330	2.89	809.2	20	36	284	0.83	494	39.1
365		S-20N2	122	280	38.1	0.0083	330	2.89	809.2	20	36	284	0.83	494	38.2
366		S-40N1	122	280	29.1	0.0083	330	2.89	809.2	40	56	284	0.83	494	41.8
367		S-40N2	122	280	29.1	0.0083	330	2.89	809.2	40	56	284	0.83	494	34.9
368		S-50N1	122	280	43.5	0.0083	330	2.89	809.2	50	66	284	0.83	494	38.5
369		S-50N2	122	280	43.5	0.0083	330	2.89	809.2	50	66	284	0.83	494	40.6
370		G-1.9-51	460	850	51	0.0072	915	1.93	1640.5	19	35	2815	0.72	468	444.1
371	NCSU (2007)	G-1.9-38	460	850	38	0.0072	915	1.93	1640.5	19	35	2815	0.72	468	385.1
372		G-2.7-32	460	850	32	0.0072	915	2.74	2329	19	35	2815	0.72	468	284.6

Tabela 10.2: Banco de dados 2. Continuação

11. APÊNDICES

Tabela 11.1: Deslocamentos das vigas da série 150H

B	rita 0	B	rita 1	S	eixo
kN	mm	kN	mm	kN	mm
0	0	0	0	0	0
5	0.0	5	0.1	5	0.3
10	0.1	11	0.2	10	0.6
15	0.3	16	0.4	10	0.7
20	0.6	21	0.6	20	1.0
25	0.8	26	0.8	25	1.1
30	1.0	31	1.0	30	1.4
35	1.2	36	1.2	35	1.6
40	1.4	40	1.4	40	1.9
45	1.7	46	1.6	45	2.2
50	1.9	50	1.8	50	2.6
55	2.2	55	3.6	55	3.2
60	3.1	57	4.3	60	3.8
64	5.3			62	4.2

Tabela 11.2: Deslocamentos das vigas da série 250H

	Brita 0	I	Brita 1	Seix	0
kN	mm	kN	mm	kN	mm
0	0	0	0	0	0
5	0.0	6	0.0	5	0.0
10	0.1	10	0.1	10	0.0
15	0.2	15	0.2	15	0.2
20	0.3	20	0.2	20	0.1
25	0.4	25	0.3	25	0.3
30	0.5	30	0.5	30	0.4
35	0.7	35	0.6	35	0.5
40	0.8	40	0.7	40	0.7
45	1.0	45	0.8	45	0.9
50	1.1	50	0.9	50	1.0
55	1.3	55	1.0	55	1.1
60	1.4	60	1.1	60	1.2
65	1.5	65	1.3	65	1.4
70	1.7	70	1.4	70	1.6
75	1.8	75	1.6	75	1.7
80	2.0	80	1.7	80	1.9
85	2.1	85	1.8	85	2.1
90	2.9	86	1.9	86	2.2
90	3.0	80	3.0	78	3.0

Bri	ta 0	Se	eixo
kN	mm	kN	mm
0	0	0	0
10	0.3	11	0.1
20	0.5	20	0.2
30	0.6	30	0.4
40	0.8	40	0.7
50	0.9	50	0.9
60	1.1	60	1.1
70	1.2	70	1.3
80	1.4	80	1.6
90	1.6	90	1.9
100	1.9	93	2
110	2.2		
120	2.4		
120	2.4		

Tabela 11.3: Deslocamentos das vigas da série V350H

Tabela 11.4: Deslocamentos das viga	s da	a série	450H
-------------------------------------	------	---------	------

Bri	ta 0	Bri	ta 1	Sei	ixo
kN	mm	kN	mm	kN	mm
0	0	0	0	0	0
11	0	10	0	10	0.1
20	0.1	20	0.1	21	0.2
30	0.3	30	0.2	30	0.3
40	0.4	40	0.3	40	0.5
50	0.6	50	0.4	50	0.7
60	0.8	60	0.6	60	0.9
70	0.9	70	0.7	70	1.0
80	1.1	80	0.9	80	1.2
90	1.3	90	1.1	90	1.4
100	1.4	100	1.3	100	1.7
110	1.5	114	1.5	110	1.8
120	1.7	120	1.6	120	2.0
130	1.9	130	1.8	130	2.3
141	2.1	140	2	140	2.5
149	2.3	150	2.1	144	2.7
65	4.2	160	2.3	107	3.8
		170	2.5		
		178	2.8		
		72	4.2		

S	S)	B1			
m	Φ	m	Φ	m	Φ		
0.00	0.00	0.00	0.00	0.00	0.00		
0.07	0.45	0.47	0.09	0.07	0.52		
1.61	0.72	1.61	0.16	1.68	0.49		
3.22	0.96	3.15	0.35	3.29	0.53		
4.69	1.12	4.69	0.59	4.96	0.58		
6.30	1.36	6.30	0.97	6.50	0.63		
7.84	1.58	7.84	1.15	7.97	0.69		
9.38	1.81	9.38	1.53	9.65	0.95		
10.93	2.03	10.93	1.86	10.86	1.14		
12.53	2.28	12.53	2.12	12.60	1.41		
14.07	2.50	14.07	2.37	14.28	1.66		
15.62	2.75	15.62	2.62	15.88	1.89		
17.23	3.01	17.16	2.89	17.23	2.00		
18.77	3.27	18.77	3.13	17.69	2.05		
19.17	3.32	19.97	3.32				

Tabela 11.5: Momento curvatura das vigas do grupo com altura igual a 150 mm

Tabela 11.6: Momento curvatura das vigas do grupo com altura igual a 250 mm

S		BO	1	B1			
m	Φ	m	Φ	m	Φ		
0.00	0.00	0.00	0.00	0.00	0.00		
0.12	0.01	0.12	0.01	0.12	0.01		
2.90	0.12	3.02	0.08	3.14	0.04		
5.68	0.24	5.79	0.13	5.79	0.08		
8.45	0.39	8.45	0.32	8.45	0.13		
11.35	0.56	11.35	0.48	11.35	0.19		
14.12	0.77	14.12	0.59	14.12	0.26		
17.02	0.94	16.90	0.68	16.90	0.33		
19.68	1.12	19.68	0.75	19.68	0.40		
22.58	1.28	22.58	0.83	22.58	0.47		
25.35	1.43	25.35	0.89	25.35	0.54		
28.13	1.57	28.13	0.94	28.13	0.62		
31.03	1.73	31.03	1.00	31.03	0.70		
33.80	1.89	33.80	1.06	33.80	0.77		
36.58	2.05	36.58	1.13	36.58	0.84		
39.36	2.21	39.36	1.21	39.36	0.92		
42.26	2.38	42.37	1.30	42.26	0.99		
45.03	2.56	45.03	1.36	45.03	1.07		
47.81	2.72	47.81	1.44	47.93	1.15		
47.81	2.72	50.59	1.50	47.93	1.15		

S		BO)
m	Φ	m	Φ
0.00	0.00	0.00	0.00
4.71	0.03	4.36	0.02
8.72	0.06	8.20	0.03
12.21	0.08	12.21	0.04
16.57	0.12	16.39	0.07
20.41	0.15	20.41	0.10
24.60	0.17	24.42	0.16
28.44	0.20	28.44	0.20
32.80	0.23	32.62	0.24
36.98	0.27	36.81	0.35
40.99	0.30	40.64	0.40
44.83	0.32	44.83	0.50
48.84	0.35	48.84	0.58
52.85	0.39	54.60	0.68
56.86	0.41	56.86	0.70
61.05	0.45	61.05	0.73
61.05	0.44	65.07	0.78
69.08	0.54	69.08	0.82
73.09	0.62	73.09	0.86
75.53	0.70	75.53	0.88
		81.29	0.95
		85.30	0.99
		89.48	1.03
		93.67	1.07
		97.51	1.11

Tabela 11.7: Momento curvatura das vigas do grupo com altura igual a 350 mm

Tabela 11.8: Momento curvatura das vigas do grupo com altura igual a 450 mm

S		B0		B1	
m	F	m	F	m	F
0	0	0	0	0	0
0.91	0.00	0.91	0.01	0.91	0.00
5.48	0.02	5.25	0.03	5.48	0.01
10.73	0.03	11.18	0.06	10.73	0.02
15.97	0.04	16.20	0.09	15.97	0.03
21.90	0.06	21.44	0.11	21.44	0.04
26.69	0.07	26.69	0.14	26.92	0.05
32.39	0.08	31.94	0.17	31.94	0.07
37.41	0.14	37.19	0.19	37.65	0.09
42.66	0.16	42.66	0.22	42.66	0.10
47.91	0.19	47.91	0.24	48.14	0.11
53.15	0.21	53.15	0.27	53.15	0.12
58.86	0.24	58.63	0.30	58.63	0.14
63.88	0.26	63.88	0.32	63.88	0.16
69.36	0.29	69.13	0.35	69.36	0.18
74.37	0.31	74.37	0.37	74.37	0.20

S		B0		B1	
79.85	0.33	80.07	0.40	79.85	0.22
85.10	0.35	85.10	0.42	85.32	0.26
90.34	0.37	90.34	0.45	90.34	0.29
95.59	0.39	95.59	0.47	95.59	0.32
101.07	0.42	101.07	0.50	101.29	0.34
106.32	0.44	106.32	0.52	106.32	0.37
111.56	0.46	111.56	0.55	111.56	0.39
117.03	0.49	117.03	0.57	120.92	0.43
122.28	0.51	122.28	0.60	122.28	0.44
127.76	0.53	127.54	0.63	127.54	0.46
132.78	0.56	132.78	0.65	132.78	0.48
138.25	0.58	138.25	0.68	138.48	0.50
143.50	0.60	143.50	0.71	143.50	0.52
148.74	0.62	148.74	0.74	148.74	0.54
152.63	0.64	153.99	0.77	153.09	0.56
				159.47	0.59
				165.17	0.61
				169.96	0.63
				175.44	0.65
				180.69	0.67
				185.93	0.69
				188.67	0.70

Tabela 11.8: Momento curvatura das vigas do grupo com altura igual a 450 mm. Continuação

Tabela 11.9: Tabela de entrada para o modelo CDP - Comportamento do concreto submetido a compressão. Calculado pelo método de BIRTEL E MARK (2006)

σ_{c}	ε_{c}^{in}	d_c	\mathcal{E}_{c}^{in}
10.87664	0.00000	0.00000	0.00000
17.19403	0.00039	0.15817	0.00039
20.55645	0.00076	0.23788	0.00076
21.89453	0.00122	0.31801	0.00122
22.00000	0.00141	0.35018	0.00141
21.78524	0.00172	0.39856	0.00172
20.60530	0.00226	0.47953	0.00226
18.61116	0.00283	0.56094	0.00283
11.00000	0.00438	0.76940	0.00438
9.52787	0.00466	0.80401	0.00466
7.22959	0.00524	0.85879	0.00524
5.68687	0.00580	0.89530	0.00580
4.59718	0.00634	0.92039	0.00634
3.79702	0.00686	0.93814	0.00686
3.19120	0.00739	0.95102	0.00739
2.72096	0.00790	0.96057	0.00790
2.34835	0.00842	0.96781	0.00842
2.04791	0.00893	0.97338	0.00893
1.80202	0.00944	0.97774	0.00944
1.59816	0.00994	0.98120	0.00994
1.42721	0.01045	0.98398	0.01045

-			
G_f	w	dt	W
1.80000000	0.000	0.0000000	0.000
1.626303607	0.005	0.0964980	0.005
1.469970069	0.010	0.1833500	0.010
1.329857307	0.015	0.2611904	0.015
1.204760512	0.020	0.3306886	0.020
1.093452674	0.025	0.3925263	0.025
0.994715586	0.030	0.4473802	0.030
0.907363044	0.035	0.4959094	0.035
0.830257721	0.040	0.5387457	0.040
0.762322926	0.045	0.5764873	0.045
0.70255027	0.050	0.6096943	0.050
0.650004095	0.055	0.6388866	0.055
0.603823362	0.060	0.6645426	0.060
0.563221576	0.065	0.6870991	0.065
0.527485236	0.070	0.7069526	0.070
0.495971184	0.075	0.7244605	0.075
0.468103181	0.080	0.7399427	0.080
0.443367955	0.085	0.7536845	0.085
0.421310932	0.090	0.7659384	0.090
0.401531797	0.095	0.7769268	0.095
0.383680027	0.100	0.7868444	0.100
0.367450476	0.105	0.7958608	0.105
0.35257909	0.110	0.8041227	0.110
0.338838811	0.115	0.8117562	0.115
0.326035688	0.120	0.8188691	0.120
0.314005237	0.125	0.8255526	0.125
0.302609057	0.130	0.8318839	0.130

Tabela 11.10: Tabela de entrada para o modelo CDP - Comportamento do concreto submetido a tração. Calculado pelo método de HORDIJK (1991)

Tabela 11.10: Tabela de entrada para o modelo CDP - Comportamento do concreto submetido a tração. Calculado pelo método de HORDIJK (1991). Continuação

G_f	w	dt	W
0.291731701	0.135	0.8379268	0.135
0.281277812	0.140	0.8437345	0.140
0.271169514	0.145	0.8493503	0.145
0.261344043	0.150	0.8548089	0.150
0.251751619	0.155	0.8601380	0.155
0.24235354	0.160	0.8653591	0.160
0.233120475	0.165	0.8704886	0.165
0.224030961	0.170	0.8755384	0.170
0.21507007	0.175	0.8805166	0.175
0.20622824	0.180	0.8854288	0.180
0.197500259	0.185	0.8902776	0.185
0.18888438	0.190	0.8950642	0.190
0.180381558	0.195	0.8997880	0.195
0.171994799	0.200	0.9044473	0.200
0.163728601	0.205	0.9090397	0.205
0.15558849	0.210	0.9135620	0.210
0.147580626	0.215	0.9180108	0.215
0.139711481	0.220	0.9223825	0.220
0.131987571	0.225	0.9266736	0.225
0.124415248	0.230	0.9308804	0.230
0.117000529	0.235	0.9349997	0.235
0.109748967	0.240	0.9390284	0.240
0.102665558	0.245	0.9429636	0.245

0.095754669	0.250	0.9468030	0.250
0.089020000	0.255	0.9505444	0.255
0.082464552	0.260	0.9541864	0.260
0.076090628	0.265	0.9577274	0.265
0.069899832	0.270	0.9611668	0.270
0.063893092	0.275	0.9645038	0.275
0.058070681	0.280	0.9677385	0.280
0.052432249	0.285	0.9708710	0.285
0.046976865	0.290	0.9739017	0.290
0.041703053	0.295	0.9768316	0.295
0.036608835	0.300	0.9796618	0.300
0.031691777	0.305	0.9823935	0.305
0.026949033	0.310	0.9850283	0.310