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Abstract

Reinforcement Learning (RL) is a learning paradigm suitable for problems in which an agent

has to maximize a given reward, while interacting with an ever-changing environment. This

class of problem appears in several research topics of the 5th Generation (5G) and the 6th Gen-

eration (6G) of mobile networks. However, the lack of freely available data sets or environments

to train and assess RL agents are a practical obstacle that delays the widespread adoption of RL

in 5G and future networks. These environments must be able to close the so-called reality gap,

where reinforcement learning agents, trained in virtual environments, are able to generalize their

decisions when exposed to real, never before seen, situations. Therefore, this work describes a

simulation methodology named CAVIAR, or Communication Networks, Artificial Intelligence

and Computer Vision with 3D Computer-Generated Imagery, tailored for research on RL meth-

ods applied to the physical layer (PHY) of the wireless communications systems. In this work,

this simulation methodology is used to generate an environment for the tasks of user scheduling

and beam selection, where, at each time step, the RL agent needs to schedule a user and then

choose the index of a fixed beamforming codebook to serve it. A key aspect of this proposal is

that the simulation of the communication system and the artificial intelligence engine must be

closely integrated, such that actions taken by the agent can reflect back on the simulation loop.

This aspect makes the trade-off of processing time versus realism of the simulation, an element

to be considered. This work also describes the modeling of the communication systems and RL

agents used for experimentation, and presents statistics concerning the environment dynamics,

such as data traffic, as well as results for baseline systems. Finally, it is discussed how the

methods described in this work can be leveraged in the context of the development of digital

twins.

Keywords — Reinforcement learning, 5G, hybrid simulators, MIMO, resource allocation



Resumo

Aprendizado por reforço, do inglês Reinforcement Learning (RL), é um paradigma de apren-

dizagem adequado para problemas em que um agente tem que maximizar uma determinada

recompensa, enquanto interage com um ambiente em constante mudança. Esta classe de pro-

blema aparece em diversos tópicos de pesquisa da 5a Geração (5G) e da 6a Geração (6G) das

redes móveis. No entanto, a falta de conjuntos de dados ou ambientes disponíveis gratuitamente

para treinar e avaliar os agentes de RL é um obstáculo prático que atrasa a adoção de RL em re-

des 5G e futuras. Esses ambientes devem ser capazes de fechar o chamado reality gap, onde os

agentes de aprendizagem por reforço, treinados em ambientes virtuais, são capazes de generali-

zar suas decisões quando expostos a situações reais, nunca antes vistas. Portanto, este trabalho

descreve uma metodologia de simulação denominada CAVIAR, ou Communication Networks,

Artificial Intelligence and Computer Vision with 3D Computer-Generated Imagery, voltada para

pesquisa sobre métodos de RL aplicados à camada física (PHY) dos sistemas de comunicações

sem fio. Neste trabalho, essa metodologia de simulação é utilizada para gerar um ambiente para

as tarefas de escalonamento de usuários e seleção de feixes, onde, a cada passo, o agente RL

precisa escalonar um usuário e então escolher o índice de um codebook de beamforming para

atendê-lo. Um aspecto fundamental desta proposta é que a simulação do sistema de comuni-

cação e o software de inteligência artificial devem estar intimamente integrados, de modo que

as ações realizadas pelo agente possam refletir de volta no loop de simulação. Esse aspecto

torna a compensação de tempo de processamento versus realismo da simulação, um elemento a

ser considerado. Este trabalho também descreve a modelagem dos sistemas de comunicação e

agentes RL usados para experimentação, e apresenta estatísticas sobre a dinâmica do ambiente,

como tráfego de dados, bem como resultados para sistemas baseline. Por fim, é discutido como

os métodos descritos neste trabalho podem ser aproveitados no contexto do desenvolvimento de

gêmeos digitais.

Palavras-chave — Aprendizado por reforço, 5G, simuladores híbridos, MIMO, alocação

de recursos



Chapter 1

Introduction

1.1 Context

Reinforcement Learning (RL) is a learning paradigm suitable for problems in which an

agent has to learn an optimal behavior that is previously unknown to the system, by maximizing

a given reward via interactions with an environment prone to suffer changes as the time passes.

This class of learning through interaction problem represented by RL, appears in several points

of interest inside the 5th Generation (5G) and the 6th Generation (6G) of mobile networks, such

as in: congestion control [1], network slicing [2], resource allocation [3], and the 5G Physical

Layer (PHY) [4], to name a few.

To enable the use of Artificial Intelligence (AI) to address those challenging tasks, one

could leverage the use of simulators in order generate labeled data to be used inside an Machine

Learning (ML) pipeline, as it is common when dealing with supervised learning methods. In

this regard, some works explore hybrid simulators to perform that task. These software integrate

several other simulators to enable research on multidisciplinary areas, for example, in Vehicle-

to-Everything (V2X) applications, and initially report experiments on use cases where the focus

is on communications in general, without necessarily being data-driven and tailored for ML

[5, 6, 7].

Building upon these ideas, works such as [8, 9] use this same kind of software orchestra-

tion, but explicitly for AI/ML applied to 5G/6G data set generation, however, for the best of the

author knowledge, these approaches do not explicitly exposes interfaces where a reinforcement

learning agent can directly interact with the environment within the simulation flow. That is

important because, having the means of placing the AI "inside the loop", or in other words, en-
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abling a model to receive information and take actions that reflect back on the simulation flow,

is necessary in order to have simulations that can work as an RL environment.

Not only that, but besides including the AI in the loop, these hybrid simulations applied

to RL must also mind its suitability to produce an environment able to train an agent that gen-

eralizes well for real, never before seen, situations. This concept is called reality gap [10] and

is an element to be taken into account when considering the realism of the simulation. That is

because having a small reality gap between virtual and real scenarios become increasingly cru-

cial as the service requirements also become more stringent in the targeted use case. Examples

of such situations can be found in the training of autonomous vehicles, where an agent does not

have the freedom to train from scratch in a real road, without rising safety concerns [11], or in a

communication system that cannot fail to deliver a good Quality of Service (QoS) for its users

for the entirety of the time.

Another case where the reality gap must be minimized is when dealing with the so-called

digital twins. In summary, digital twin is a paradigm in which a target, that can be a physical

asset or a process, is monitored and have its states stored for purposes such as predicting future

events or performing adjustments in the present time, for instance, preventing an incoming

congestion on a network, or scheduling maintenances. The digital twin system synchronizes

a virtual representation of the monitored target in a two-way fashion, reflecting changes in the

physical counterpart back in the virtual one and vice-versa. So, if an RL agent wants to leverage

a digital twin to produce a realistic environment where it can test a given hypothesis or improve

its current performance based on the most recent feedback, without negative effects on the

physical counterpart, the digital twin, and the set of tools that enables it, must be at the same

time realistic and fast enough to allow the agent to adjust itself and act back on the environment

while the data used in its training process is still relevant.

Therefore, leveraging the fact that 5G and beyond systems will benefit from rich con-

textual information to improve performance and reduce loss of radio resources to support its

services [4, 12, 13], the key idea in this work is to use realistic representations of deployment

sites, together with vehicle physics, sensor and communication network simulations, to gener-

ate a virtual representation that enables training and testing RL agents for tasks related to the

PHY of the telecommunication system, such as beam selection and/or user scheduling.
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UAV

Figure 1.1: CAVIAR simulation scenario, depicting the radiation pattern (in light green) corresponding

to the chosen beamforming codebook index to serve a drone (at the right).

1.2 Proposal

This work proposes a simulation methodology named Communication Networks, Artifi-

cial Intelligence and Computer Vision with 3D Computer-Generated Imagery (CAVIAR), with

a preliminary idea proposed in [14], as a methodology suitable to generate environments with

varying reality gap and computational complexity, to train and test RL agents, mainly for prob-

lems related to the PHY of the 5G networks.

More specifically, in this work, the joint beam selection and user scheduling task is posed

as a problem that must be solved with RL. The goal is to schedule and allocate resources to

Unmanned Aerial Vehicles (UAVs), cars and pedestrians, composing a scenario with aerial and

terrestrial User Equipment (UE), as exemplified in Figure 1.1.

The RL agent is executed at the Base Station (BS) and receives a reward based on the

service provided to the users, by periodically taking actions guided by the information captured

from the environment, which includes channel estimates, buffer status, and positions from a
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Global Positioning System (GPS). The training occurs “offline”, without rendering the 3D

scenes, but it is possible to render the output in a post-processing step and generate a video. The

CAVIAR simulation integrates three components: the communications, the AI/ML, and finally

the virtual world subsystems, with the last one being created with AirSim [15] and Unreal

Engine [16].

As RL is a difficult learning paradigm, a simpler version of the same problem and envi-

ronment is also proposed, mainly for educational purposes. This version reduces the complexity

of the simulation by removing the computation of packet buffers, substituting it by predefined

penalties in case of long periods of repeated allocation of the same user. It also removes the 3D

scenarios and, in turn, uses a variant based on the widely known minigrid problem [17]. This

one will be described in Appendix A.

Hence, the main contributions of this dissertation are summarized as follows:

• It provides two environments, with crescent complexity, for exploration of RL approaches

to the problem of user scheduling and beam selection;

• It also outlines the current state-of-the-art research on the use of hybrid simulators for

training and testing of RL agents;

• Finally, it formalizes the use of CAVIAR for digital twins in telecommunications.

1.3 Dissertation Outline

The rest of the work is organized as follows:

• in Chapter 2, some useful concepts to comprehend the proposed methodology are briefly

introduced, focusing on the MIMO beam selection problem and an introduction to the

theory of RL;

• in Chapter 3 we elaborate on the research being conducted to address the problem of

simulating communication systems for reinforcement learning, and the work about reality

gap and digital twins;

• Chapter 4 discusses CAVIAR simulations in general: the software used, explaining some

features available, such as Hardware-in-the-Loop (HITL), also detailing simulation modes,

and providing examples via block diagrams;
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• Chapter 5 explores the specific RL problem addressed in this work, with an overall de-

scription of the experiment and the specific implementation of the communication and

packet traffic models, described in Section 5.2 and Section 5.3, respectively, as well as

RL model used and its design;

• Chapter 6 shows the results, followed by a brief discussion;

• Chapter 7 concludes the work and gives the view of the author regarding possible paths

to be taken in order to improve the current status of the CAVIAR subsystems, as well as

a proposal on how to build a digital twin, based on the same set of tools explored in this

work.



Chapter 2

Background Concepts

In order to better comprehend the application area, as well as the reinforcement learn-

ing methods used, this chapter briefly introduces the concept of MIMO beam selection and

reinforcement learning.

2.1 MIMO Beam Selection

5G and beyond technologies leverages new frequency bands to serve its users, such as

the, once weakly explored, spectrum range of the millimeter waves (mmWaves) [18]. However,

their use depends on massive MIMO techniques, such as beamforming, to produce directional

beams to propagate the antenna reach more efficiently, as, given its use of higher frequencies,

mmWave propagation is more prone to losses due to fading and blockage [18]. This increases

the responsability of the 5G BS, which needs to perform two tasks: to keep track of the valid

beams and to choose the most appropriate one in a process called beam selection, that consists

of selecting a beam-pair for BS and UE to achieve the best communication channel at any given

time [19].

For that, the BS needs to be aware of its surroundings and the users’ locations, which can

be hard to achieve, specially given that 5G networks will enable not only traditional ground

users, such as pedestrians, but also several distinct types of vehicles, like trucks, buses, cars,

and even aerial vehicles, introducing new movement patterns [20]. So, in this context, the site

covered by the base station becomes increasingly dynamic, and the process of beam selection

gets proportionally more complex. This results in systems having to continuously send signals

that do not carry information (overhead) [21], compromising a parcel of the channel capacity.
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Therefore, decreasing this overhead with intelligent beam selection approaches is a fundamental

problem that can enable systems to improve the usage of physical resources (e.g., with lower

latency and higher bit rates) [22, 23, 24].

2.2 Reinforcement Learning

One possible tool to optimize this beam selection process is RL. As defined by Sutton et

al. [25], RL is a computational approach to learn from interaction. In this paradigm, an agent

makes an observation, which can be a partial or an integral representation of the environment

that the agent is exposed to and based on it, the agent defines its state s and chooses an action a,

derived from its policy π, which is, in simple terms, a probability distribution that maps which

action to take given the agent current state. This action results in a change in the observed state

and a reward r, which is sent to the agent as a feedback for its behavior and allows it to, not

only improve its policy, but also improve its capacity to evaluate the environment state that it is

currently at. This dynamic can be represented by Figure 2.1.

Agent

Environment

Observa�on / state 
& 

reward

Ac�on

Figure 2.1: The agent-environment dynamic in reinforcement learning.

This terminology is introduced when posing the RL problem as a Markov Decision Pro-

cess (MDP), which is an idealized way to formalize sequential decision making, computing the

effects of actions in terms of rewards and new states, allowing a more accurate mathematical

analysis of the problem.
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2.2.1 Objective of Reinforcement Learning Methods

Defining concepts and a mathematical framework to solve this class of problems is impor-

tant, as reinforcement learning is a different paradigm from both, supervised and unsupervised

learning. Differently from the former, it does not rely on predefined labels, and also, unlike the

latter, it does not actively search for underlying structures on the data that it is being exposed

to, instead, RL methods focuses on optimizing a value named return (G), which is the sum of

all the accumulated reward throughout a sequence of interactions with the environment.

To achieve this optimization objective, the RL agent faces a trade-off in which it needs

to balance its actions on exploration of the environment, focusing on updating is knowledge

of the dynamics it is inserted into, or on exploitation, which consist on taking actions that

are currently optimal, ensuring a steady return, but leading the agent to abide in a potentially

suboptimal behavior. So, to ensure the exploration of the environment, some methods rely

on strategies such as defining a probability ε for exploratory actions. An example of it is the

common ε-greedy policy, in which the agent exploits the environment with probability 1−ε and

explores it with probability ε.

Objectively speaking, when an agent explores the environment, it tries to improve its

knowledge of the state-value function v(s), which can also be slightly adapted to action-value

functions q(s) as well. Both functions can be described respectively by the Bellman equations

[25], shown in Equation 2.1, to calculate the value v(s) of a state s

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)], (2.1)

and in Equation 2.2, to calculate the value q(s) of taking a certain action a given a state s

qπ(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γ
∑
a

π(a|s)qπ(s′, a′)], (2.2)

where π(a|s) is the probability of taking action a given state s while following policy π, s′ and

a′ are respectively the state and the action that come immediately after the current step, r is the

reward of taking action a while being in state s, p(s′, r|s, a) is the probability of reaching state

s′ and receiving reward r while being in state s and taking action a. Finally, γ is the discount

rate, which affects how much the reward received a long time ago influences the return: as γ

increases, future rewards become more relevant. So, in other words, what Equation 2.1 and

Equation 2.2 tells us is that one can describe vπ(s) as the expected return for an agent that

starts in state s and follows the policy π until the end of the given sequence, while qπ(s, a) is
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the expected return when an agent starts in state s, takes action a and, after that, only follows

actions derived from its policy π.

There are several approaches to implement RL agents to optimize both v and q, as well as

the policy π. The next subsections will explore some approaches that rely on Deep Reinforce-

ment Learning (DRL) to perform these predictions.

2.2.2 State-Value Estimation Approaches

Note that vπ and qπ evaluate a certain policy "π", which can be the optimal policy "∗"

or not. For the case where the optimal policy "∗" is assumed, the state-value equations can be

rewritten as:

v∗(s) = max
a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s
′)], (2.3)

while the action-value function, becomes

q∗(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γmax
a′

q∗(s
′, a′)]. (2.4)

So, posing RL problems as MDPs gives one the mathematical framework that allows

the optimal solutions to be derived theoretically. However, note that the Bellman optimality

equations presented in Equation 2.3 and Equation 2.4 assume previous knowledge of the en-

vironment, mainly in the form of the transition probabilities p(s′, r|s, a). In the rare case that

someone is dealing with an environment where these probabilities are known, the optimal vπ

can be obtained via a model-based method, such as Dynamic Programming [25], but, for the

vast majority of situations, these environment dynamics are unknown, which lead to the need

of using model-free methods. Such methods update their knowledge of the environment via

interactions with it, following the dynamic shown in Figure 2.1. One of the simpler model-free

algorithms is the Monte Carlo method, which will be briefly described in the next paragraph, as

it provides good support for the concepts explored by the state-of-the-art approaches, such as

Advantage Actor Critic (A2C) and Proximal Policy Optimization (PPO).

Monte Carlo has some variations, such as first-visit or every-visit where it only considers

the return received by the first encounter with a certain state, or it computes the experience of

every visit on a state in its state-value update, respectively. So, as every mode rely on improve-

ments on the estimation that occurs only at the end of an episode or trajectory, the first-visit

Monte Carlo method is the one that is going to be described, as it gives enough insight into
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how the other modes work. The only difference from first-visit or every-visit, can be consid-

ered the modification of the computation of the return G(s) for state s, which is made for each

episode e, in case of the first-visit, and for every time it reaches state s during a given episode,

in every-visit. Monte Carlo first-visit improves its v(s) estimation as described in Algorithm 1.

Algorithm 1: Monte Carlo first-visit method.

foreach episode e in Episodes do

while t ≤ Timesteps do

Ge(s)← Ge(s) + rt;

end

v(s) =
∑

eGe(s)

Ne

end

So, given the sequence of state, action, reward and new state proposed in Figure 2.2, the

Monte Carlo approach solves the problem of calculating the state-value v(s) by completing an

entire trajectory, starting from the initial state, on to the final state, and only then, based on

the received rewards, it calculates v(s). In fact, it improves its estimate as the number of new

iterations through the environment also grow, by taking a mean of the return values divided by

the number Ne of episodes.

R = 1
s1

Sequence

R = 3
s2

R = 2
s3 s4

s Initial state s Final state

Figure 2.2: A given sequence of states and rewards, composing an episode.

This can be exemplified by Figure 2.3, where the Monte Carlo agent waits until the end

of the given episode in order to compute the v(s) of each state, based on the already known

rewards.

This allows one to estimate state-values that can become very close to the optimal state-

value, however, this type of calculation is also very slow, as it needs several runs to yield a

good estimate. Therefore, many other approaches were proposed, such as Temporal Difference
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R = 1v(s1)=6

Monte Carlo

R = 3
v(s2)=5

R = 2
v(s3)=2 v(s4)=0 

Actor

Figure 2.3: Monte Carlo estimation of the state-values.

(TD) and n-step bootstrapping methods, until the growing complexity of state and action spaces

eventually led to the need of using functions to define v(s) and q(s), leading to the advent of

DRL. In this context actor-critic methods such as A2C ended up serving as the foundation for

more sophisticated approaches [25].

An A2C agent relies on neural networks to perform the roles of critic and actor, the

first is responsible for receiving the state observation and estimating the v(s), and the second

one is responsible for defining the probability distribution that will influence the action choice.

Besides that, differently from Monte Carlo methods, for example, A2C do not need to wait until

the end of an episode to generate state-value estimates.

R = 1
ṽ(s1)=5

A2C

R = 3
ṽ(s2)=4 ṽ(s3)=1 ṽ(s4)=? 

Actor

Critic: 
yields an estimate of v(s), called ṽ(s),

before reaching the end of the episode

Figure 2.4: Actor-critic estimation of the state-values.

As Figure 2.4 points out, the A2C agent is able to leverage its critic to estimate future

returns before reaching the end of an episode. It uses the difference between the v(s) predicted

by the critic (ṽ(s)), and the calculated estimations, to evaluate its predictive capability, as well

as the the error between predicted state-value and the actual reward obtained by an action at that
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state, named advantage, to further improve the actor actions choice.

Drawing from these advancements, this work uses the PPO method, which is character-

ized for being a sample efficient method, in other words, it tends to need less training episodes

to converge to a good policy, when compared against other approaches in several baseline en-

vironments, as reported in its source paper [26]. It is a state-of-the-art DRL method based on

actor-critic, that adopts policy gradient approaches to continually improve the reward obtained

from its action choice. It draws ideas from a precursor named Trust Region Policy Optimiza-

tion (TRPO) [27], and tries to prevent destructive policy updates by defining a threshold value

ε that keeps its gradient descent steps inside a safe region, but without the extra computation

present in TRPO, that needs to also calculate a Kullback–Leibler (KL) divergence factor.



Chapter 3

Related Works

Having known more about MIMO beam selection and reinforcement learning, to bet-

ter contextualize CAVIAR, this chapter explores some efforts regarding simulations applied to

telecommunications, starting with works related to the generation of synthetic data, by lever-

aging the integration of different simulators, mainly for applications in Deep Learning (DL).

Then, we proceed to investigate different approaches, such as the hybrid simulators, in partic-

ular a hybrid traffic-network simulator for vehicular networks, which not only integrate simu-

lators for data set generation, but also allows visualization and greater parameter configuration.

After that, in Section 3.3 we address concepts such as reality gap and studies that explore the

generalization capacity of reinforcement learning agents trained in virtual environments when

exposed to real, never before seen, situations. Finally, Section 3.4 presents the concept of digital

twins, its broad scope, its adoption by several companies, and how it presents itself as the po-

tential evolution of the current efforts to generate synthetic data and environments for research

in reinforcement learning agent training in general and also for communication systems.

3.1 5G MIMO Data Generation

The 5G and future networks presents many use cases with challenging service require-

ments. One of the main strategies to reach these stringent needs, is to use frequencies in the

unoccupied bandwidth available in the mmWaves spectrum [20]. However, prior to deploying

networks that use this technology, there is a need to correctly assess the environment in which

the propagation will take place, what is usually accomplished via the execution of measure-

ments campaigns, that are both, financially expensive and very laborious [28]. Considering



14

this context, generating propagation channel data through simulations is a reasonable way to

alleviate data scarcity.

Several works aim to address the obstacle of the lack of data to apply AI for future net-

works. Among those, some notable ones are Raymobtime [4], DeepMIMO [9], and Vision-

Wireless (ViWi) [29]. The first one proposes a methodology that combines a vehicle traffic

simulator with a Ray Tracing (RT) simulator to generate channel realizations representing 5G

scenarios with transceivers and objects mobility. It has the advantage of using realistic channel

models due to the utilization of ray tracing, but lacks in two aspects: the first one is realism of

vehicle movements when considering situations outside pre-established mobility patterns, such

as during collisions, because it works in discrete manner by using SUMO traffic simulator [30],

which does not account for vehicle geometry; and the second one is fluidness, as it is not a real-

time simulation, having the need to obtain a channel realization at each step, by repositioning

the vehicles according to the vehicle traffic simulator and invoking the propagation simulator

afterwards. This ends up leading to the need of using it beforehand to generate data and, only

then, utilize it in an ML workflow.

DeepMIMO also suffers from the very same limitations, as it builds upon the same ideas.

However, it tries to differentiate itself from Raymobtime by proposing to use a generic simu-

lation scenario, allowing the users to adjust a set of system and channel parameters, such as

the number of antennas, the number of Orthogonal Frequency-Division Multiplexing (OFDM)

subcarriers, and the number of channel paths, etc.

Finally, the most recent versions of the Raymobtime data set also introduced multimodal

data, extracted from simulating other sources of information, for example, Light Detection and

Ranging (LiDAR) and camera images, to benefit from the increasing variety of sensor signals

to help reduce the overhead associated with link configuration in mmWave communication

systems [12, 31]. In counterpart, as an evolution of the DeepMIMO, there is ViWi[32], which

relies on the same principles regarding the addition of multimodal data seen in Raymobtime,

and, as its predecessor, distincts itself by the assuming that it allows a more generic simulation

in terms of adjustable parameters.
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3.2 Hybrid Simulators for Communication Networks

If from one side we have data-driven simulations, that have the sole purpose of generating

data that will later be used in a AI/ML workflow, from the other we have simulators that seek

realism by integrating several expertises, but without proposing a clear integration with ML

models inside the simulation loop and much less providing examples where these simulators

could be used as reinforcement learning environments. Among those, some notable works are

LIMoSim [6] and Veneris[5].

LIMoSim presents an extension of the ns-3 set of tools by proposing a module that enables

the joint simulation of hybrid ground-based and aerial communication networks, extending ns-3

with mobility models for cars and drones, and a simple 3D visualization feature obtained with

Open Graphics Library (OpenGL). They do this using a shared codebase coupling method in-

stead of the more common High Level Architecture (HLA) approach. In the latter, one must

synchronize/orchestrate several simulators and, besides being a traditional method, its complex-

ity in terms of maintenance and usability is tackled by the former, where they extend the ns-3

simulator by inheriting from parent classes and leveraging the event queue present within the

same codebase of the original software. Nonetheless, LIMoSim still and event-based simulator,

such as ns-3 on which it is based.

Another hybrid simulators is Veneris, that integrates Unity3D, a multipurpose engine [33],

OMNeT++, a network simulator, and Opal, a ray-launching propagation simulator that uses

Graphics Processing Unit (GPU), developed by their team and validated against a custom ray

tracing software implemented in MATLAB. It focuses only on car mobility and generates its

own vehicle systems models, without implementing features that allow integrating with the real

hardware, such as in the concept of HITL, explored in Subsection 4.3.2. Also, Veneris does not

explicitly expose experiments where it interacts with a reinforcement learning agent to execute

actions that would influence the state, and therefore, the next simulation step.

3.3 Improving Simulations Realism to Close Reality Gap

The difficulty of transfering simulated experience into the real-world is called reality gap,

and, in order to close it, several approaches are taken, such as leveraging computer vision

and the use of simulators containing features such as photorealism, physics and sensors mod-

els. In [10], to improve the generalization capacity of autonomous vehicles policies trained
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in simulated environments, a simulator based on Unreal Engine 4, named Car Learning to

Act (CARLA), and the Unreal Engine plug-in, named AirSim, are used to recreate original

traffic scenarios using prior information of a given scene, adding realism to the virtual scenes

based on real ones. Similarly, in [34] a real vehicle was able to drive through 3 kilometers on

a real traffic lane using a DL model trained on synthetic data from a virtual world also built

on Unreal Engine 4. In [11] it is demonstrated that, using virtual simulations with enough

realistic elements, it is possible to learn policies that not only perform well in the virtual sce-

nario where it was originally trained, but also shows good generalization for previously unseen

real-world scenarios. They focus on the problem of obtaining policies for autonomous driving

vehicles and use a simulation engine named Virtual Image Synthesis and Transformation for

Autonomy (VISTA). Their methodology consists on synthesizing photorealistic and semanti-

cally accurate local viewpoints based on a repository of sparsely sampled, human collected,

trajectories. For example, given a state st, composed by an image representing the view from

the driver seat during a real cruise present in the repository, the next state st+1, after the agent

takes an action, will be an artificially generated image produced by VISTA, by taking the clos-

est next image in that cruise and adaptating it using computer vision techniques. By using this

technique they were also able to deploy the policy on a real vehicle.

Therefore, these experiences from the use of RL in the autonomous driving field, show

that using hybrid simulators capable of providing realism in diverse aspects, such as photo-

realism, mobility patterns, real hardware integration, and other relevant characteristics for the

investigated problem, is beneficial to close the reality gap and improve the use of RL as a tool

to deal with problems of interest in 5G and future networks, specially on tasks with stringent

service requirements and highly dynamic scenarios.

3.4 Digital Twins

In order to reduce the reality gap, a virtual environment that hopes to allow training an

agent with the expectation that it can perform equally well on the real world, must also strive to

be in sync with any changes that affects the status of the environment it is trying to simulate. To

address that synchronization between the real world and its virtual representation, a paradigm

named digital twin emerged.

Digital twins are already commercially explored in several areas such as manufacturing
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and aviation [35, 36, 37, 38] and now, big tech companies such as Ericsson, Microsoft, Siemens

and IBM [39, 40, 41, 42, 43, 44, 45], also, some other small companies [46, 47], and open-

source initiaves [48, 49] started to explore this concept in their respective areas as well. More-

over, although it is still in its infancy regarding in its use on wireless systems, digital twins are

already envisioned as an important use case of 6G networks, with increasing amount of works

relating them to communication systems, such as [50, 51, 52, 53].

Digital twins can be used to monitor assets and processes, appearing in diverse manners,

depending on the application. In the literature, digital twins can be sub-categorized by their

level of integration with their physical counterpart:

1. digital model, which is a virtualization, without any automatic interaction or update;

2. digital shadow, is the same as 1, with the addition of automatic state update of the digital

target;

3. digital twin, that not only updates its states automatically, but also adds the possibility to

interact with the monitored counterpart.

Figure 3.1 illustrates this digital twin sub-categorization.

Digital twinDigital shadowDigital model

Physical target

Manual
update

Automatic
update

Digital target

Physical target

Digital target

Physical target

Digital target

Figure 3.1: Definition of digital twins sub-categories in terms of their level of integration with their

physical counterparts (modified figure from Kritzinger, Werner et al. [36]).

A hybrid simulator capable of capturing the Key Performance Indicators (KPIs) of a given

process is a viable option to serve as basis to a digital twin, providing an up-to-date virtual
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environment for the training of a model. In this work, that possibility is still not completely

explored, however, Section 7.2 provides an overview of an implementation that leverages tools

and experience obtained from this effort.



Chapter 4

CAVIAR Simulations

Considering the possibilities that hybrid simulations provide to the training and testing of

RL agents, the CAVIAR methodology is proposed. As initially discussed in [8], the CAVIAR

methodology incorporates three main components: communications, AI/ML, and virtual world

subsystems. In the next sections, we describe the method, focusing on the overall description,

simulation modes, and software used. After that, Chapter 5 elaborates on how the simulation

was realized for the user scheduling and beam selection environment.

Figure 4.1: Representation of a possible CAVIAR simulation, integrating the three subsystems.
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4.1 Overall CAVIAR Description

CAVIAR main idea is to allow a simulation to integrate the three previously mentioned

subsystems. Figure 4.1 displays the main components in a CAVIAR simulation, being brought

together by an orchestrator script. This figure represents the current implementation, where

three different pieces of software are used to realize the simulation. The next paragraphs de-

scribes in general the blocks that encompass the proposed simulation strategy.

Starting from the left, the Communications engine block, in blue, is the one that han-

dles all information regarding the communication aspect of the simulation, such as data traffic,

buffers, wireless channel generation and propagation of radio signals. It can be realized either

by a set of scripts, a single software, or even an integration of them. For example, the packet

traffic can be handled by a specific program such as ns-31 allied with the orchestrator, while

the communication channels can be modeled with the help of a propagation software such as

Remcom Wireless InSite2, or Altair WinProp3, given that the computational needs are met.

The 3D assets used in the Environment and as Mobile entities, such as UAVs, cars, build-

ings, etc, are either created or obtained online, using the same methods described in Raymob-

time [4], in other words, leveraging OpenStreetMap4 and free 3D models libraries. They com-

pose the simulation environment as fixed and/or mobile objects, whose eventual movements

and interactions are managed by the Mobility engine and by the Physics engine of the virtual

world subsystem, respectively. The Sensors engine output can be composed of any sensor re-

lated information, ranging from camera images to GPS data, and constitutes one of the possible

inputs to the AI/ML frontend engine, which performs the necessary pre-processing steps before

using this information in an ML pipeline.

The AI/ML engine receives pre-processed signals and communication parameters that

were simulated in the virtual world environment and suggests actions that are then implemented

by the Orchestrator, which also considers parameters from the Communications engine and the

Environment.

1https://www.nsnam.org/
2https://www.remcom.com/wireless-insite-em-propagation-software
3https://www.altair.com/resource/altair-winprop-datasheet
4https://www.openstreetmap.org

https://www.nsnam.org/
https://www.remcom.com/wireless-insite-em-propagation-software
https://www.altair.com/resource/altair-winprop-datasheet
https://www.openstreetmap.org
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4.2 Out-loop and In-loop Simulation Modes

As a simulation for an RL environment, CAVIAR benefits much more from keeping the

AI inside the loop, however, to also act for the purpose of generating data sets to be used in an

ML pipeline, besides having the common mode of operation, named in-loop, it is also allowed

to run in a much more decoupled way, called out-loop. These two modes of operation refer to

wether the AI/ML engine is used within or outside of the simulation loop, respectively.

An in-loop simulation represents the usual mode of operation depicted in Figure 4.1. It

allows the subsystems to interact with one another in an orchestrated manner, including the

AI in the loop and generating data that is fed back to the system during the simulation. On

the other hand, in an out-loop simulation, CAVIAR is used to generate data, similarly to the

approach adopted by Raymobtime and DeepMIMO. This mode decouples the communication

subsystem from the AI/ML and virtual world ones, having each one run in different moments.

Figure 4.2 exemplifies the outloop CAVIAR data generation pipeline.

Waypoint
generator

Unreal/AirSim

Episodes

Simula�on
environment

- MIMO channels 
- Combined channel magnitudes 

- Data traffic 

Figure 4.2: Out-loop CAVIAR data generation.

First, the virtual world subsystem is used to generate a set of Comma-Separated Values

(CSV) files containing the trajectory data of all moving objects within a simulation, named

episode. To generate it, an waypoint file, which is a text file with reference points for the mobile

entities, must be executed by Airsim, and during its execution, the information from the mobile

elements are stored in the episode. Each one of these episodes lasts about 3 minutes, with a

sampling interval of 10 ms, and is composed by columns related to position and orientation for

pedestrians and cars, with the addition of acceleration, linear, and angular velocities for UAVs

as described in Table 4.1.
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Table 4.1: Content of an episode file generated for the out-loop CAVIAR mode

Content Description

timestamp Moment when the info was gathered

obj Name of the mobile entity

pos_x Position in meters (north positive)

pos_y Position in meters (east positive)

pos_z Position in meters (down positive)

orien_x Quaternion in degrees

orien_y Rotation in degrees

orien_z Rotation in degrees

orien_w Rotation in degrees

linear_vel_x Linear velocity in m/s

linear_vel_y Linear velocity in m/s

linear_vel_z Linear velocity in m/s

angular_vel_x Angular velocity in m/s

angular_vel_y Angular velocity in m/s

angular_vel_z Angular velocity in m/s

linear_acc_x Linear acceleration in m/s2

linear_acc_y Linear acceleration in m/s2

linear_acc_z Linear acceleration in m/s2

angular_acc_x Angular acceleration in m/s2

angular_acc_y Angular acceleration in m/s2

angular_acc_z Angular acceleration in m/s2

The second step is to use the episode files to obtain information from MIMO channels and

data traffic. For that, one must execute the episode files within the CAVIAR Communication

subsystem, pointing out the UE that will be used. This leads to an output CSV file with the

contents disposed in Table 4.2, that stores the environment status during the given simulation

step.
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Table 4.2: Content of an output file generated from a CAVIAR simulation

Content Description

chosen_ue Name of the chosen UE

ue_index Numeric identification of chosen UE

beam_index Codebook index of the selected beam

x UE position in meters on the x-axis (north positive)

y UE position in meters on the y-axis (east positive)

z UE position in meters on the z-axis (down positive)

pkts_dropped Number of all dropped packets in the given step

pkts_transmitted Number of all transmitted packets in the given step

pkts_buffered Number of all buffered packets in the given step

bit_rate_gbps Data rate in Gbps achieved during the given step

channel_mag Magnitude of the combined channel

reward Reward obtained during the given step

4.3 Main Software Tools

To realize the previously mentioned subsystems, CAVIAR leverages the features of Un-

real Engine and AirSim, that provides photorealism; physics, automotive, and sensor modeling;

and an Application Programming Interface (API), that facilitates the interaction between exter-

nal scripts and the simulation. The next subsections provide more details about these capabili-

ties.

4.3.1 Unreal Engine

The advancements on multipurpose engines led them to transcend their initial objective

of being tools for game development and extended their audience to areas such as simulated

training, architectural visualization, digital twins, etc. This expansion also had effects on the AI

research field, that leverages the sophisticated lighting, collision and 3D modeling available in

these tools to provide synthetic data for their models.

Besides providing photorealistic rendering of 3D scenarios, Unreal also provide a physics

engine with useful features for V2X scenarios, such as linear and angular drag, acceleration,
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collision detection, and the possibility to extend it as it is an open-source software.

Due to the availability of the previously mentioned features, and also the possibility to

integrate more plug-ins such as AirSim, CAVIAR uses Unreal Engine as the plataform to im-

plement the virtual world subsystem.

4.3.2 AirSim

AirSim [15] is a autonomous vehicle simulator built as a plug-in for Unreal Engine and

primarily designed for research involving RL and computer vision for the navigation of UAVs

and cars. It provides several capabilities for a simulation ran in Unreal Engine, such as the

modeling of vehicles control systems, mainly for the case of drones, environmental physics

with regards to gravity, magnetic field, and air pressure and density. It also features sensor

simulations, for example, barometer, gyroscope, accelerometer, magnetometer, GPS, RGB and

LiDAR cameras. Finally, to increase the realism of the UAV movements, it allows the use of

Software-in-the-Loop (SITL) and HITL, both approaches allow the use of real flight controller

firmware such as PX4, ROSFlight, etc, to control the drone movement. Figure 4.3 explains how

the HITL takes place in AirSim:
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Figure 4.3: Block diagram explaining how hardware-in-the-loop includes the hardware of the actual

drone inside the simulation loop for increased realism (modified figure from Shah, Shital et al. [15]).
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During a flight mission, the UAV needs to be connected to a flight controller. This element

is the one that will receive a command, given by an autonomous navigation intelligence in a

companion board or via a joystick, and translate it into movement. This command is named the

desired state, or, in other words, where the pilot wants the UAV to be. Once the flight controller

receives this command, it interprets signals from the environment in the form of sensor data and,

based on that, calculates the actuators signal in terms of force and torque to be applied in the

rotors. The calculation of these actuators signals depends on the control strategy implemented

by the flight controller.

Hence, these features allows a real hardware, or its firmware, to be connected to the

simulation via HITL or SITL, respectively, which increases the realism of the simulation, and

also the possibility that the same approach also works in a real life scenario, contributing to the

reduction of the reality gap.



Chapter 5

Experimental Evaluation

5.1 CAVIAR Simulation for User Scheduling and Beam Se-

lection Problems

In 2021, CAVIAR was used in the context of the AI/ML in 5G Challenge, held by the

International Telecommunication Union (ITU)1 2, serving as the methodology where the prob-

lem statement PS-006 was implemented. In this challenge, students and professionals from

several countries affiliated to the ITU, competed for global recognition and prizes. Since the

participants where to undergo evaluations processes, there was a need to improve the repro-

ducibility of training and test procedures, so, the out-loop operation mode proposed in Sec-

tion 4.2 was adopted, due to providing a set of predefined trajectories for the UE to follow,

favoring the predictability of the experiments in general.

Therefore, for this set of experiments, the realization of CAVIAR methodology as an en-

vironment for the user scheduling and beam selection problem is based on the one used at the

challenge. For it, a set of software tools and scripts were prepared, where the Physics and the

Mobility engines, as well as the rest of the Virtual World subsystem, were handled by Unreal

Engine and Airsim. Furthermore, for the AI/ML engine, an RL environment was developed us-

ing PyTorch3. Finally, regarding the Communications engine used by the CAVIAR simulations,

it used a simpler procedure based on geometric MIMO channel modeling [54], instead of im-

plementing methods based on RT. The reason for this choice is that we first want to evolve the

1https://aiforgood.itu.int/about/aiml-in-5g-challenge/
2https://www.youtube.com/watch?v=6o6PUsbaWnA
3https://pytorch.org/

https://aiforgood.itu.int/about/aiml-in-5g-challenge/
https://www.youtube.com/watch?v=6o6PUsbaWnA
https://pytorch.org/
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Communications engine such that newer versions allow calculating the communication chan-

nels in (near) real-time, along with the training of the RL agent.

So, using the virtual scenario provided by CAVIAR, three mobile entities: a pedestrian, a

car, and a UAVs were simulated in order to generate a data set of urban mobility. These recorded

trajectories are organized in episodes, containing spatial information (position, orientation, ac-

celeration, etc.) of each mobile entity as indicated in Table 4.1.

Waypoint
generator

Unreal/AirSim Recorded 
trajectories

Communica�on
simula�on

RL agent train

Rendering

Agent output file 
(actions, states,

rewards)

Steps > 0

Waypoints

Trajectories
execu�on

Observa�ons 
+ 

Rewards 
Ac�ons

Yes

Train or test

Communica�on
simula�on

RL agent  
test

Steps > 0

Ac�ons

YesNo

Train

Test

No

Observa�ons 
+ 

Rewards 

Trained 
RL agent 

Figure 5.1: Out-loop CAVIAR simulation flow used in the experiments.

Then, as shown in Figure 5.1, the recorded trajectories are used as input for the CAVIAR

communication simulation, which is responsible for computing the radio channels and others

parameters related to the telecommunication system, such as buffer size, etc. This information

generated by the communication simulation, along with the spatial data from the trajectories,

are the input for an RL agent, that is trained to choose, in each time slot, a user to serve, and the

beam that should be used.
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5.2 Communication Model

For the communication system, it is assumed a downlink transmission using a carrier

frequency fc = 60 GHz and a bandwidth of 100 MHz. The BS serves three distinct receivers,

located at the UAV, at the car and used by the pedestrian. The MIMO system corresponds

to an analog architecture using a Uniform Planar Array (UPA) with Nt antenna elements at

the BS, and receivers with UPAs with Nr antennas. Therefore, the MIMO channel between

the BS and a given user is represented by a Nr × Nt matrix H. The codebooks are obtained

from Discrete Fourier Transform (DFT) matrices and denoted by Ct = {w̄1, · · · , w̄Nt} and

Cr = {f̄1, · · · , f̄Nr}. They are used at the transmitter and the receiver sides, respectively. When

modeling the beam selection, the chosen beam pair [p, q] is represented by a unique index i ∈

{1, 2, · · · ,M}, where M ≤ NtNr. Each index p (or q) generates a specific radiation pattern, as

depicted in Figure 5.2 for a Nt = 64.

Figure 5.2: Example of radiation pattern for specific beam index with a 8× 8 UPA.
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For the i-th index, the equivalent channel can be calculated as:

yi = w∗iHfi, (5.1)

and the optimal beam index î is given by

î = arg max
i∈{1,··· ,M}

|yi|. (5.2)

Also, noise is not taken in account in order to isolate the impact of the beam selection procedure.

The simplified H currently represents a Line-of-Sight (LoS) channel. A narrowband

channel model [54] is used, but wideband models can be readily incorporated in case their extra

computational cost is not an issue. For simplicity, the users have a single antenna (Nr = 1)

while the BS has a 8× 8 UPA (Nt = 64).

The geometric channel model [54] is adopted with L = 2 Multipath Components (MPCs):

H =
√
NtNr

L∑
`=1

α`ar(φ
A
` , θ

A
` )a∗t (φ

D
` , θ

D
` ). (5.3)

The parameters in Eq. 5.3 are obtained as follows. The phase of the complex-gain α` is

obtained from a uniform distribution with support [0, 2π]. For generating the magnitude |α`|,

first the distance d between the BS and the given receiver is used to calculate the received power

via the Friis equation [55]. The path loss is obtained from this equation and determines |α`|,

which decreases with d. The elevation φ` and azimuth θ` angles, for departure (e.g. φD` ) and

arrival (e.g. φA` ) are obtained from the orientation provided by the LoS path. The nominal LoS

angles are slightly changed by adding to them Gaussian random variables with zero-mean and

variance of 1 degree. These angles are used to compose the steering vectors at and ar.

5.3 Traffic Model

The users data traffics are defined as Poisson processes with time-varying mean λu[t],

with each user u having a specific traffic intensity defined as a percentage of total throughput,

in accordance with Table 5.1. This differentiation is used as a representation of the data require-

ments of distinct applications. Also, besides these throughput differences between users, two

different network load scenarios were specified, representing light and heavy network traffics,

with the simulation alternating between them at every 1000 steps.

The BS has an individual buffer with size of 1 Gigabit for each one of the receivers and

is assumed that each packet has 400 bits. The incoming traffic for each user is buffered when
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Table 5.1: Network load information for light and heavy scenarios

Network load Total throughput UAV (%) Pedestrian (%) Car (%)

Light 40 Gbps 50% 20% 30%

Heavy 90 Gbps 50% 20% 30%

there is buffer space available, otherwise the excess of packets are tail-dropped. The packets

are also dropped when they occupy the buffer for more than 10 steps after arriving.

5.4 Possible Inputs to RL Agents

The inputs (also known as states or observations) can be selected from both, information

provided in CSV files (position (x,y,z), velocities, etc.) or obtained from the environment, such

as the buffer state and channel information for specific beam index previously chosen. More

specifically, the RL agent can use: the UEs geographic position in X, Y, Z, with the origin of

the coordinate system being on the BS RL agent. Also, the UEs orientation in the three rotation

coordinates: the front and side roll angles, as well as its rotation over its own axis. Besides that,

there is also dropped, transmitted and buffered packets. Finally, some other two available input

features for the agent are the bit rate and the channel magnitude at each step of the simulation.

Note that we assume the BS (or equivalently, the RL agent) does not know the best index

î. In practice, this would require a full beam sweep, which is assumed to be unfeasible in our

model due to stringent time requirements. Similarly, given that the RL agent chose user u and

beam index j at time t, it learns only the magnitude |yj| and the spectral efficiency Su,t,j for this

specific user and beam index at time t.

The channel throughput is obtained by multiplying the spectral efficiency Su,t,j by the

bandwidth BW, as shown in Equation 5.4

Tu,t,j = Su,t,jBW, (5.4)

and indicates the maximum amount of bits that can be transmitted. An empirical factor is used

to adjust Tu,t,j in order to define the network load presented in Table 5.1, such that, for the given

input traffic, some packets have to be dropped.

Algorithm 2 summarizes the steps for executing an already trained RL agent.
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Algorithm 2: High-level algorithm of the RL-based scheduling and beam selection

problem.

Initialization for a given episode e;

while t ≤ N e
s do

1) Based on the number of bits in the buffers of the users and other input

information, RL agent schedules user u and selects beam index i;

2) Environment calculates combined channel magnitude |yi| and corresponding

throughput Ti;

3) The number of transmitted bits is Ri = min(Tu,t,j;bu) ;

4) Update buffers;

5) Receive new packets;

6) Eventually drops packets;

7) Environment calculates rewards and updates its state;

8) Update buffers again;

end

5.5 Evaluation of the RL agent

To evaluate the RL agent, the return G over the test episodes is used. The return Ge for

episode e is

Ge =

Ne
s∑

t=1

re[t], (5.5)

where N e
s is the number of steps in episode e. At each time t, a single user can be served and

the corresponding reward re[t] at discrete-time t is a ratio of transmitted and discarded packets

given by

re[t] =
Ptx[t]− Pd[t]
Ptx[t] + Pd[t]

, (5.6)

where Ptx[t] and Pd[t] correspond, respectively, to the total amount (summation for all users)

of transmitted and dropped packets at time t. The reward re[t] is restricted to the range −1 ≤

re[t] ≤ 1 if it does not receive any additional penalty besides dropped packets.
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5.6 Characterizing the Communication Scenario with Base-

line Approaches

To better evaluate the performance of the agent, some baseline approaches to the problem

were also implemented. The first one is meant to characterize a bad result, by choosing the

actions randomly, following a discrete uniform distribution. Another baseline, but now meant

to characterize a good behavior, follows a sequential user scheduling pattern in a round-robin

fashion (uav->car->pedestrian->uav->car->pedestrian...), and always uses the optimum beam

index î for the selected user, obtained via exaustive search (oracle beam selection). In Figure 5.3

we exemplify the channel maximum throughput of this experiment when using this baseline in

200 episodes.
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Figure 5.3: Distribution of the channel throughput when using always the best beam index î and a sim-

ple scheduling strategy, that chooses users sequentially in a round-robin fashion (uav->car->pedestrian-

>uav->car->pedestrian...), over 200 episodes.



Chapter 6

Results and Discussion

6.1 Results

The following results are extracted from a PPO agent from the Stable-Baselines3 package

[56], trained with default parameters during 400 episodes, around 3 million steps. The actor

and critic neural networks have both, two hidden layers of 256 neurons, with Rectified Linear

Unit (ReLU) as activation function.

The agent observation is defined by 19 features, which are: each UE individual position

in XYZ, their dropped, transmitted and buffered packets during the last time step, and the last

scheduled user. The action space is composed by a vector with two integers: a numeric identi-

fication of the user being allocated at the specific time step t, that ranges between [0, 2]; and a

beam group, that represents a subset of the defined codebook and is within the range [0, Ngroups],

where Ngroups is the number of beam groups in which the codebook with 64 indexes was di-

vided. Once the agent chooses one of those groups, the best beam inside the chosen subset is

used to serve the selected user. This approach resembles the one used in [4, 12, 31], where the

model had a top-k approach to beam selection, yielding as output a subset of beams to execute

the beam sweeping, reducing the overall overhead of pilot tones on the communication channel.

Finally, the agent used the reward given in Equation 5.6. However, during the training

process a penalty was also included in order to prevent the agent to schedule a single user in

every step. This penalty consists of keeping a variable Nseq to count how many times a user

was chosen in sequence, and subtracting 2 × Nseq from the reward. In case that Nseq >= 10,

the reward received a penalty of 4×Nseq.

So, three agents were trained in total, providing a comparison between the performance of
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the two baselines defined in Section 5.6 against an agent with different number of beam groups,

namely 4, 32 and 64 beam groups, with the last one being considered an agent that does not

choose a group, but a beam index, therefore being called "No beam groups".

Figure 6.1 shows the agents performances over 25 test episodes, with Figure 6.2 providing

another take on the same experiment, but now considering the cumulative return.
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Figure 6.1: Performance of the agents and baseline approaches over 25 test episodes.

As expected, the baselines were able to provide a fine estimate of both good and bad

behaviors, with the one that implements round-robin and always uses the best beam to serve

the UE being the most performant (yellow line), and the one that always chooses its actions

randomly being the second worst overall (blue line).

The performance of the RL agents improved as the number of beam groups decreased,

given that this reduced the possible beam selection actions, thus suggesting that the beam selec-

tion procedure is the bottleneck of the current approach. To further investigate this hypothesis,

another experiment was executed, this time to evaluate wether the environment was able to train
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Figure 6.2: Cumulative reward of the agents and baseline approaches over 25 test episodes.

an agent that displayed reasonable scheduling performance. So, an agent with action space re-

duced to perform only user scheduling was trained over only 20 episodes (around 124 thousand

steps). While this agent performed the scheduling, the beam selection procedure adopted was

the same from the oracle baseline, in other words, after the agent scheduled a user, it was always

served with the optimal beam.

From the results presented in Figure 6.3, it is possible to see that the agent is capable of

very quickly learning a scheduling approach that surpasses the round-robin, hence, the beam

selection procedure is the one that must receive the focus in efforts to improve the agent design.

6.2 Discussion

The results presented in Section 6.1 showed that the current realization of CAVIAR is

capable of providing an environment to train and test RL agents for the joint problem of user

scheduling and beam selection. However, although generalizing well for user scheduling, it still
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Figure 6.3: Cumulative reward of the scheduling agent and baseline approaches over 25 test episodes.

lacks in performace for the beam selection task.

The literature shows that the problem of joint scheduling and beam selection is a chal-

lenging one and demands sophisticated modeling in order to obtain outstanding results [57, 58].

More specifically, the literature about beam selection also relies on the use of strategies such as

top-k classification, where the objective goes from "choosing the singular best beam to serve a

given user", to instead "choosing a subset that has a high probability of containing the optimal

choice" [4, 31].

Besides that, RL is still a widely investigated tool in the context of 5G and future net-

works, however, it still have downsides that need to be addressed in order for it achieve the

same success of DL on a wide variety of problems. Some of the obstacles that hinders RL

are the impact that the framing of the problem and the reward engineering [59] have on the

agent capacity to converge, also the low data efficiency, where even state-of-the-art methods

commonly need to execute millions of steps in order to converge to a good policy [26].



Chapter 7

Conclusion and Future Works

This work presented a simulation methodology named CAVIAR, as a methodology suit-

able to generate environments with varying reality gap and computational complexity, to train

and test RL agents for the problems related to the PHY of the 5G networks. Using a realization

of it that served as the base for the PS-006 in the 2021 ITU AI/ML in 5G challenge, it was

provided statistics of an experiment in which an RL agent faces the problems of user schedul-

ing and beam selection. The experiments allowed to validate the designed environment for RL

training and testing. The work presented here also participated in the 2021 ITU Kaleidoscope

conference in the video and full-paper tracks, achieving the third place (ex aequo) in the best

paper award.1

Future developments can focus on two different efforts: the first one is to explore the

improvement of each individual subsystem, especially the communications subsystem, as it

concentrates several of the simulation core functionalities and is also the main responsible for

increasing the computational needs. The second effort is to investigate the use of the same set of

tools used in the development of the simulation, to also enable the use of digital twin approaches

in research topics that involve the need to have knowledge about the system deployment site. In

the next subsection, the improvement on the subsystems is discussed in more depth in hopes to

be useful to any researcher intending to continue the efforts.

1https://www.itu.int/en/ITU-T/academia/kaleidoscope/2021/Pages/default.

aspx

https://www.itu.int/en/ITU-T/academia/kaleidoscope/2021/Pages/default.aspx
https://www.itu.int/en/ITU-T/academia/kaleidoscope/2021/Pages/default.aspx
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7.1 Improvements on the Subsystems

Concerning the subsystems improvements, studies must be conducted on how to closely

integrate the artificial intelligence inside the simulation loop, paying close attention to the trade-

off where one must loosen up the realism of the simulated elements and phenomena in order to

maintain the real-time aspect of the simulation. Focusing, on the communications subsystem,

there are three main improvements to be considered. Without order of importance, they are:

the scalability of the number of users in the simulation, the packet traffic simulation, and the

channel models used.

Regarding the scalability issues that arise from increasing users in a scheduling scenario,

one could explore studies such as the one that focus on the concept of ego vehicles to tackle the

problems related to the simulation of V2X systems and the need to run large-scale simulations

to develop and test solutions for that area [7]. This work shows that only a small number of

vehicles, around 60, were needed to perform a complete simulation from the perspective of the

ego vehicle in a typical urban scenario, while keeping the its completeness and maintaining the

experimentation close to a full, non-real-time simulation.

About the packet traffic simulation, software such as ns-3 or OMNeT++ are event-based

network simulators, and need special attention when there is a need to integrate them with a

more dynamic simulation loop. In Section 3.2, the LIMoSim [6] and Veneris[5] were briefly

described, with both being hybrid simulators that use ns-3 and OMNeT++, respectively, to deal

with the network packet traffic. Currently, the CAVIAR environment is being extended with

the addition of the ns-3 simulator, due to the module 5G-LENA [60], that enables support for

the New Radio (NR) Access Network. In this effort, it is recommended to study the methods

adopted by these hybrid simulators to orchestrate the event-based simulators with the continu-

ous ones, to enable more realistic experiments, while maintaining performance.

Now, with respect to the channel models, the current system could be integrated with ray

tracing simulators via orchestration, similar to [4] or [5], however, the real-time aspect could

become a bottleneck of such integration. Other studies, for example, the work in [61], could

also become an alternative to be explored. It focuses on using already existent capabilities of the

rendering plataform, to propose a path loss model called Light Intensity Model (LIM), based

on the use of light physics in the Unity3D game engine, with its performance surpassing a 3rd

Generation Partnership Project (3GPP) [62] based and a New York University (NYU) [63] path

loss model.
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7.2 Using the Realistic Simulation Tools Described in this

Work to Develop Simulations that Explore Concepts Re-

lated to Digital Twins

As the simulation grows in realism, it also increases the possibility of generating a digital

twin of the deployment site. In this section, the objective is to propose a possible digital twin

approach, built upon the the same set of tools used throughout this work. Figure 7.1 shows

the main steps required to achieve the proposed solution. This digital twin system must be

capable of computing physical layer aspects of the communication environment and use them

to improve the system performance. Here, it is presented a quick summary of steps to perform

these tasks, followed by examples of what each step might mean or be used for.

Digital twin Sensing

[Optional]
1. Position of mobile entities (vehicles, people, etc.)

Base stations User equipment

2. Position of UEs, network status, etc. 

8. Feedback on changes 

3. Predict future movements of mobile entities 

4. Compute communication metrics 

5. Compute usable insights 

7. Communicate 

9. Improve model based on feedback 

6. Select best configuration 

Figure 7.1: Overall messages needed by the proposed digital twin solution, together with the main

processing steps.

First, the digital twin must receive information about the real world environment, in order

to compose a virtual scenario:

1. the digital twin receives the position of the mobile entities to place them into the scene.

They could be any object that influences propagation (scatterers). It gathers this data from

a sensing component, that might be a base station-mounted LiDAR, GPS, or any other

sensor;
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2. the digital twin also receives UE information, so that their properties are set and they

are placed inside the scene. The information can include their buffer status, their type,

etc. With this data, the digital twin knows, for instance, which channels are important to

compute and what might cause interference;

Given the environment built inside the virtual world subsystem, the AI/ML models inter-

acts with the twin in the next steps to find what could be improved in the system.

3. the models uses the current position of the users and the scatterers, as well as their possible

trajectories, to predict future situations, such as blocking, that would affect the commu-

nication channel;

4. the models configures parameters that are to be evaluated in the twin. The changes that

they apply to the environment might include different beam allocation and different hy-

pothesis of their utilization, which affects interference and other system behavior.

5. the digital twin generates a virtual environment implementing the changes and computes

the communication metrics, such as the channel between UEs and base stations;

6. the models evaluates the impact that the tested parameters had in the virtual environment

and either proceeds to compute an optimal configuration or loops back to step 4 to evalu-

ate additional parameters.

With such simulations in hand, the AI/ML models can compute hints that help with the

communication aspects on-the-fly, without human intervention, and can also indicate insights

for operators to optimize the network. One example of benefit that could be achieved by such

strategy is in the problem of beam selection, investigated in this work, where the traditional

process of beam sweeping could be executed inside the virtual environment generated in step

5, such that it reduces the overhead in spectrum utilization. Not only that, but, by acquiring and

storing the data from the real environment, the digital twin can also help in the generation of

data to be fed to AI/ML models, to evaluate a hypothesis before applying any actuation in the

real network.

So, once the model is satisfied with the data it got from the digital twin, it now applies the

configuration changes into the real network:

7. the model applies the computed configuration, introduced by step 6, into the network;
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8. this step is the proper operation of the network, where it functions as usual and commu-

nicates with the UEs.

Finally, the network metrics are used by the models and the twin.

9. the base stations report the experienced performance and communication metrics, so the

models can use the feedback to understand if the desired effect has been achieved and

also to improve its knowledge. This feedback might include the achieved power in a

transmission, for example. Similarly, the models also report the communication metrics

to the twin, so that it can learn by experience.
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Appendix A

Toy Environment for MIMO Beam

Selection

During the development of this work, one of the secondary contributions was the devel-

opment of a toy environment for beam selection based on a minigrid format, that can be used

as an educational material for the use of RL approaches for beam selection. In this appendix,

first, the MiniGrid environment will be briefly described and then posed as a beam selection

problem, in the called MIMO MiniGrid.1

A.1 MiniGrid Environment

The Minimalistic GridWorld Environment (MiniGrid) [17] is based on the OpenAI Gym

environment and designed to represent the classic gridworld scenario. Originally, the state space

is represented by the position of the RL agent in the grid and the action space represents the

4 directions to which the agent can move inside the grid. Each movement made by the agent

is rewarded with 0 or a negative value depending on how it is implemented. When the agent

finds the final stage it is rewarded with a maximum value, this value is decreased by the number

of steps the agent takes to find the terminal stage. The episode ends when the final stage is

encountered.

The MiniGrid platform brings several variations of the original gridworld, adding differ-

ent levels of difficulty. There are scenarios with adjustable size, different number of rooms,

obstacle and elements. This environment is used as a basis for the beam selection version, due

1https://github.com/lasseufpa/ml4comm-icc21/tree/main/mimo_rl

https://github.com/lasseufpa/ml4comm-icc21/tree/main/mimo_rl
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to its robust implementation of the simple MiniGrid and easiness of being extended for other

purposes via integration with different packages.

A.2 MIMO Beam Selection MiniGrid Environment

Figure A.1: Example of the proposed MIMO beam selection environment.

As illustrated by Figure A.1, the MiniGrid environment can be used for beam selection

problems in which the BS and UEs exist in a M ×M gridworld, with M2 invariant channels

depending only on position. We can consider the RL agent being executed at a BS serving

single-antenna users on downlink, with an analog MIMO antenna array, using an architecture

with Nb beam vector indices. The BS RL agent actions consist in scheduling one of the Nu

users and choosing one among the Nb beams to serve it, creating an action space with Nu ×Nb

dimension.

An episode lasts Ns time slots, where Ns represents the number of time steps (also called

scenes) that compose the given episode. At each episode, the UEs moves left, right, up or down.

The state to be observed is defined as the users’ positions and a list of Na − 1 indices of the

previously scheduled users, where Na is equal to 3, and represents a memory that stores the last

Na actions already taken. All in a state space dimension of M2Nu × (Nu)
Na−1, where Nu is the

number of users.
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To conclude, the reward at the end of the episode is the normalized magnitude of the

combined channel given the chosen beam. A penalty of −0.5 is added if a user is not allocated

for 10 consecutive slots. The final return is the sum of the rewards.

A.3 MIMO MiniGrid environment results

For the MIMO Minigrid environment two brief experiments were conducted, where first

only one user, and then two users, roamed inside a 6×6 grid world with no additional obstacles

to hinder their movement. The MIMO system used has several similarities with the one de-

scribed with more details in Section 5.2. The main differences are that it used a Uniform Linear

Array (ULA) with Nt = 32 antenna elements at the BS.

Both experiments uses PPO agents with default parameters and actor and critic networks

defined with two hidden layers of 128 neurons each, with tanh activation functions. In the first

scenario, the environment is used for beam selection only, having a single user be served.
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Figure A.2: Performance of a PPO agent in the task of beam selection inside the MIMO MiniGrid

environment.

Figure A.2 and Table A.1 shows that the performance of the agent, in terms of accu-

mulated reward throughout 1000 simulation steps, achieves around 85% of the optimal per-

formance, represented by the oracle, which, similarly with the baseline approach presented in
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Table A.1: Comparison of the methods performance on 1000 steps on a scenario with one user

Method Accumulated reward Mean reward per step Reward variance per step

Oracle 99.115 0.099 0.203

RL 84.892 0.084 0.204

Random 1.602 0.001 5.348

Section 5.6, finds the best beam index by exaustive search.

In a second experiment, the number of users was raised to 2 and, this time, the PPO

agent was able to surpass the performance of the baseline that implements round-robin for user

scheduling and serve using the optimal choice of beam (RR-Oracle), achieving the performance

shown in Figure A.3 and Table A.2.
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Figure A.3: Performance of a PPO agent in a slightly more complex task, with the introduction of one

additional user to the dynamic of the MIMO MiniGrid environment.

These simple experiments are meant to showcase the basic functionality and act as a

proof-of-concept for the use of a MiniGrid-based toy environment for the problems related to

the 5G PHY.
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Table A.2: Comparison of the methods performance on 1000 steps on a scenario with two users

Method Accumulated reward Mean reward per step Reward variance per step

RR-Oracle 74.102 0.074 0.113

RL-RL 76.466 0.076 0.143

Random-Random 7.598 0.007 0.006
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