UNIVERSIDADE FEDERAL DO PARA
INSTITUTO DE TECNOLOGIA
PROGRAMA DE POS-GRADUACAO EM ENGENHARIA ELETRICA

Hybrid CAVIAR Simulations and Reinforcement Learning Applied to 5G Systems:
Experiments with Scheduling and Beam Selection

Joao Paulo Tavares Borges

DM: 04/2022

UFPA / ITEC / PPGEE
Campus Universitdrio do Guam4
Belém-Paréa-Brasil

2022

UNIVERSIDADE FEDERAL DO PARA
INSTITUTO DE TECNOLOGIA
PROGRAMA DE POS-GRADUACAO EM ENGENHARIA ELETRICA

Joao Paulo Tavares Borges

Hybrid CAVIAR Simulations and Reinforcement Learning Applied to 5G Systems:

Experiments with Scheduling and Beam Selection

DM: 04/2022

UFPA / ITEC / PPGEE
Campus Universitdrio do Guama
Belém-Para-Brasil

2022

i

il

UNIVERSIDADE FEDERAL DO PARA
INSTITUTO DE TECNOLOGIA
PROGRAMA DE POS-GRADUACAO EM ENGENHARIA ELETRICA

Joao Paulo Tavares Borges

Hybrid CAVIAR Simulations and Reinforcement Learning Applied to 5G Systems:

Experiments with Scheduling and Beam Selection

A dissertation submitted to the examination com-
mittee in the graduate department of Electrical
Engineering at the Federal University of Pard in
partial fulfillment of the requirements for the de-
gree of Master of Science in Electrical Engineer-

ing with emphasis in Computational Intelligence.

UFPA / ITEC / PPGEE
Campus Universitario do Guama
Belém-Para-Brasil

2022

Dados I nter nacionais de Catalogacdo na Publicacdo (CIP) de acordo com | SBD
Sistema de Bibliotecas da Univer sidade Federal do Para
Gerada automaticamente pelo médulo Ficat, mediante os dados for necidos pelo(a) autor (a)

B732h Borges, Jodo Paulo Tavares.
Hybrid CAVIAR Simulations and Reinforcement Learning
Applied to 5G Systems: Experiments with Scheduling and Beam
Selection / Jo&o Paulo Tavares Borges. — 2022.
73f.:il. color.

Orientador(@): Prof. Dr. Aldebaro Barreto da Rocha Klautau
Janior

Dissertac8o (Mestrado) - Universidade Federal do Parg,
Instituto de Tecnologia, Programa de Pos-Graduacdo em
Engenharia Elétrica, Belém, 2022.

1. Aprendizado por reforgo. 2. 5G. 3. Simuladores
hibridos. 4. MIMO. 5. Alocagdo de recursos. |. Titulo.

CDD 621.3

Hybrid CAVIAR Simulations and Reinforcement Learning Applied to 5G Systems:
Experiments with Scheduling and Beam Selection

A dissertation submitted to the examination committee in the graduate department of Electrical
Engineering at the Federal University of Pard in partial fulfillment of the requirements for the
degree of Master of Science in Electrical Engineering with emphasis in Computational

Intelligence.

Approved in 28 /01 /2022

MO@WO qua t

Prof. Dr. Aldebaro Barreto da Rocha Klautau Junior

ADVISOR

L-’\j;;: L\-» :_,'k L\-w IL‘;"-“- &'/‘U—-.. Q‘

Prof. Dr. Carlos Renato Lisboa Francés

MEMBER OF THE EXAMINATION COMITTEE

n C ,
IMHX{/@N&&\

Prof. Dr. Ilan Sousa Correa

MEMBER OF THE EXAMINATION COMITTEE

Prof. Dr. Carlos Tavares da Costa Janior

DIRECTOR OF THE GRADUATE
DEPARTMENT OF ELECTRICAL ENGINEERING

Acknowledgments

First, I would like to express my gratitude to God for giving me the opportunity to progress
my professional career, and to work alongside several talented and helpful colleagues through-
out the past few years at LASSE, with special thanks to Aldebaro Klautau, Ailton Oliveira,
Cleverson Nahum, Felipe Bastos, Pedro Batista, Luan Gongalves, Daniel Suzuki, Emerson
Oliveira, Ingrid Ariel and Lucas Matni for their valuable help in this work. Many thanks to
my family and friends for all their continuous support along the years.

I also give my thanks to the sponsors of this work, which was supported in part by the
Innovation Center, Ericsson Telecomunicacdes S.A., Brazil, CNPq and the Capes Foundation.
Finally, some of the CAVIAR concepts and motivation, were initially presented by the author
in the “Connecting physical and virtual worlds" ITU Kaleidoscope 2021 academic conference

from which I am also thankful.

Jodo Paulo Tavares Borges

January 2022

vii

If I have seen further it is by standing
on the shoulders of giants.

Isaac Newton

List of Acronyms

5G 5th Generation

A2C Advantage Actor Critic

6G 6th Generation

RL Reinforcement Learning

DRL Deep Reinforcement Learning
UAV Unmanned Aerial Vehicle

BS Base Station

Al Artificial Intelligence

API Application Programming Interface
PHY Physical Layer

LoS Line-of-Sight

ULA Uniform Linear Array

CAVIAR Communication Networks, Artificial Intelligence and Computer Vision with 3D

Computer-Generated Imagery
UPA Uniform Planar Array
3GPP 3rd Generation Partnership Project
DFT Discrete Fourier Transform

DL Deep Learning

GPS Global Positioning System

ITU International Telecommunication Union
KPI Key Performance Indicator

MDP Markov Decision Process
MIMO Multiple-Input Multiple-Output
ML Machine Learning

mmWave millimeter wave

MPC Multipath Component

NR New Radio

OFDM Orthogonal Frequency-Division Multiplexing
PHY Physical Layer

QoS Quality of Service

RT Ray Tracing

UE User Equipment

V2X Vehicle-to-Everything

CSV Comma-Separated Values
LiDAR Light Detection and Ranging
ViWi Vision-Wireless

NYU New York University

LIM Light Intensity Model

SITL Software-in-the-Loop

HITL Hardware-in-the-Loop

HLA High Level Architecture

iX

OpenGL Open Graphics Library

PPO Proximal Policy Optimization

TD Temporal Difference

TRPO Trust Region Policy Optimization

ReLU Rectified Linear Unit

GPU Graphics Processing Unit

VISTA Virtual Image Synthesis and Transformation for Autonomy
CARLA Car Learning to Act

KL Kullback-Leibler

List of Figures

1.1

2.1
2.2
2.3
24

3.1

4.1

4.2
4.3

5.1
5.2
5.3

6.1
6.2

CAVIAR simulation scenario, depicting the radiation pattern (in light green)
corresponding to the chosen beamforming codebook index to serve a drone (at
theright). 3
The agent-environment dynamic in reinforcement learning. 7
A given sequence of states and rewards, composing an episode. 10
Monte Carlo estimation of the state-values. 11
Actor-critic estimation of the state-values. 11
Definition of digital twins sub-categories in terms of their level of integration

with their physical counterparts 17

Representation of a possible CAVIAR simulation, integrating the three subsys-

TEIMS. e 19
Out-loop CAVIAR data generation. 21
Block diagram explaining how hardware-in-the-loop includes the hardware of

the actual drone inside the simulation loop for increased realism. 24
Out-loop CAVIAR simulation flow used in the experiments. 27
Example of radiation pattern for specific beam index witha 8 x 8 UPA. 28
Distribution of the channel throughput when using always the best beam index

7 and a simple scheduling strategy, that chooses users sequentially in a round-

robin fashion (uav->car->pedestrian->uav->car->pedestrian...), over 200 episodes. 32

Performance of the agents and baseline approaches over 25 test episodes. . . . 34

Cumulative reward of the agents and baseline approaches over 25 test episodes. 35

6.3

7.1

A.l
A2

A3

Cumulative reward of the scheduling agent and baseline approaches over 25 test

ePISOdes. e e e e

Overall messages needed by the proposed digital twin solution, together with

the main processing Steps. e e e

Example of the proposed MIMO beam selection environment.
Performance of a PPO agent in the task of beam selection inside the Multiple-
Input Multiple-Output (MIMO) MiniGrid environment.
Performance of a PPO agent in a slightly more complex task, with the introduc-

tion of one additional user to the dynamic of the MIMO MiniGrid environment.

Xii

54

List of Tables

4.1
4.2

5.1

A.l

A2

Content of an episode file generated for the out-loop CAVIAR mode 22
Content of an output file generated from a CAVIAR simulation 23
Network load information for light and heavy scenarios 30

Comparison of the methods performance on 1000 steps on a scenario with one

Contents

Acknowledgment

List of Acronyms

List of Figures

List of Tables

Contents

1 Introduction

1.1
1.2
1.3

Context e e e e e
Proposal

Dissertation Outline

2 Background Concepts

2.1
2.2

MIMO Beam Selection e e

Reinforcement Learning Lo

2.2.1 Objective of Reinforcement Learning Methods

2.2.2 State-Value Estimation Approaches

3 Related Works

3.1
32
33
34

SGMIMO DataGeneration
Hybrid Simulators for Communication Networks
Improving Simulations Realism to Close Reality Gap

Digital Twins e

vi

viii

xi

xiii

xiv

N

O o0 9 N &

4 CAVIAR Simulations

4.1
4.2
4.3

Overall CAVIAR Description v v v i it it e e
Out-loop and In-loop Simulation Modes
Main Software Tools L
43.1 UnrealEngine
432 AIrSim

5 Experimental Evaluation

5.1
5.2
53
54
5.5
5.6

CAVIAR Simulation for User Scheduling and Beam Selection Problems
Communication Model
Traffic Model
Possible Inputs to RL Agents
Evaluationof the RL agent

Characterizing the Communication Scenario with Baseline Approaches

6 Results and Discussion

6.1
6.2

Results

DISCuSSIon e e e e e e

7 Conclusion and Future Works

7.1
7.2

Improvements on the Subsystems
Using the Realistic Simulation Tools Described in this Work to Develop Simu-

lations that Explore Concepts Related to Digital Twins

Bibliography

Appendices

A Toy Environment for MIMO Beam Selection

A.1 MiniGrid Environment

A.2 MIMO Beam Selection MiniGrid Environment

A.3 MIMO MiniGrid environmentresults

XV

19
20
21
23
23
24

26
26
28
29
30
31
32

33
33
35

37
38

39

42

50

Abstract

Reinforcement Learning (RL) is a learning paradigm suitable for problems in which an agent
has to maximize a given reward, while interacting with an ever-changing environment. This
class of problem appears in several research topics of the 5th Generation (5G) and the 6th Gen-
eration (6G) of mobile networks. However, the lack of freely available data sets or environments
to train and assess RL agents are a practical obstacle that delays the widespread adoption of RL
in 5G and future networks. These environments must be able to close the so-called reality gap,
where reinforcement learning agents, trained in virtual environments, are able to generalize their
decisions when exposed to real, never before seen, situations. Therefore, this work describes a
simulation methodology named CAVIAR, or Communication Networks, Artificial Intelligence
and Computer Vision with 3D Computer-Generated Imagery, tailored for research on RL meth-
ods applied to the physical layer (PHY) of the wireless communications systems. In this work,
this simulation methodology is used to generate an environment for the tasks of user scheduling
and beam selection, where, at each time step, the RL agent needs to schedule a user and then
choose the index of a fixed beamforming codebook to serve it. A key aspect of this proposal is
that the simulation of the communication system and the artificial intelligence engine must be
closely integrated, such that actions taken by the agent can reflect back on the simulation loop.
This aspect makes the trade-off of processing time versus realism of the simulation, an element
to be considered. This work also describes the modeling of the communication systems and RL
agents used for experimentation, and presents statistics concerning the environment dynamics,
such as data traffic, as well as results for baseline systems. Finally, it is discussed how the
methods described in this work can be leveraged in the context of the development of digital
twins.

Keywords — Reinforcement learning, 5G, hybrid simulators, MIMO, resource allocation

Resumo

Aprendizado por refor¢o, do ingl€s Reinforcement Learning (RL), € um paradigma de apren-
dizagem adequado para problemas em que um agente tem que maximizar uma determinada
recompensa, enquanto interage com um ambiente em constante mudanca. Esta classe de pro-
blema aparece em diversos topicos de pesquisa da 5* Geracdo (5G) e da 6* Geragdo (6G) das
redes méveis. No entanto, a falta de conjuntos de dados ou ambientes disponiveis gratuitamente
para treinar e avaliar os agentes de RL € um obstaculo pratico que atrasa a ado¢do de RL em re-
des 5G e futuras. Esses ambientes devem ser capazes de fechar o chamado reality gap, onde os
agentes de aprendizagem por reforco, treinados em ambientes virtuais, sdo capazes de generali-
zar suas decisdes quando expostos a situacdes reais, nunca antes vistas. Portanto, este trabalho
descreve uma metodologia de simulacdo denominada CAVIAR, ou Communication Networks,
Artificial Intelligence and Computer Vision with 3D Computer-Generated Imagery, voltada para
pesquisa sobre métodos de RL aplicados a camada fisica (PHY) dos sistemas de comunicagdes
sem fio. Neste trabalho, essa metodologia de simulagdo € utilizada para gerar um ambiente para
as tarefas de escalonamento de usudrios e selecdo de feixes, onde, a cada passo, o agente RL
precisa escalonar um usudrio e entdo escolher o indice de um codebook de beamforming para
atendé-lo. Um aspecto fundamental desta proposta é que a simulagdo do sistema de comuni-
cacdo e o software de inteligéncia artificial devem estar intimamente integrados, de modo que
as acgOes realizadas pelo agente possam refletir de volta no loop de simulagcdo. Esse aspecto
torna a compensacao de tempo de processamento versus realismo da simulacao, um elemento a
ser considerado. Este trabalho também descreve a modelagem dos sistemas de comunicagio e
agentes RL usados para experimentacao, e apresenta estatisticas sobre a dindmica do ambiente,
como trafego de dados, bem como resultados para sistemas baseline. Por fim, € discutido como
os métodos descritos neste trabalho podem ser aproveitados no contexto do desenvolvimento de
gémeos digitais.

Palavras-chave — Aprendizado por reforco, 5G, simuladores hibridos, MIMO, alocagao

de recursos

Chapter 1

Introduction

1.1 Context

Reinforcement Learning (RL) is a learning paradigm suitable for problems in which an
agent has to learn an optimal behavior that is previously unknown to the system, by maximizing
a given reward via interactions with an environment prone to suffer changes as the time passes.
This class of learning through interaction problem represented by RL, appears in several points
of interest inside the 5th Generation (5G) and the 6th Generation (6G) of mobile networks, such
as in: congestion control [1], network slicing [2], resource allocation [3], and the 5G Physical
Layer (PHY) [4], to name a few.

To enable the use of Artificial Intelligence (Al) to address those challenging tasks, one
could leverage the use of simulators in order generate labeled data to be used inside an Machine
Learning (ML) pipeline, as it is common when dealing with supervised learning methods. In
this regard, some works explore hybrid simulators to perform that task. These software integrate
several other simulators to enable research on multidisciplinary areas, for example, in Vehicle-
to-Everything (V2X) applications, and initially report experiments on use cases where the focus
is on communications in general, without necessarily being data-driven and tailored for ML
[5,6,7].

Building upon these ideas, works such as [8, 9] use this same kind of software orchestra-
tion, but explicitly for AI/ML applied to 5G/6G data set generation, however, for the best of the
author knowledge, these approaches do not explicitly exposes interfaces where a reinforcement
learning agent can directly interact with the environment within the simulation flow. That is

important because, having the means of placing the Al "inside the loop", or in other words, en-

abling a model to receive information and take actions that reflect back on the simulation flow,

is necessary in order to have simulations that can work as an RL environment.

Not only that, but besides including the Al in the loop, these hybrid simulations applied
to RL must also mind its suitability to produce an environment able to train an agent that gen-
eralizes well for real, never before seen, situations. This concept is called reality gap [10] and
is an element to be taken into account when considering the realism of the simulation. That is
because having a small reality gap between virtual and real scenarios become increasingly cru-
cial as the service requirements also become more stringent in the targeted use case. Examples
of such situations can be found in the training of autonomous vehicles, where an agent does not
have the freedom to train from scratch in a real road, without rising safety concerns [11], or in a
communication system that cannot fail to deliver a good Quality of Service (QoS) for its users

for the entirety of the time.

Another case where the reality gap must be minimized is when dealing with the so-called
digital twins. In summary, digital twin is a paradigm in which a target, that can be a physical
asset or a process, is monitored and have its states stored for purposes such as predicting future
events or performing adjustments in the present time, for instance, preventing an incoming
congestion on a network, or scheduling maintenances. The digital twin system synchronizes
a virtual representation of the monitored target in a two-way fashion, reflecting changes in the
physical counterpart back in the virtual one and vice-versa. So, if an RL agent wants to leverage
a digital twin to produce a realistic environment where it can test a given hypothesis or improve
its current performance based on the most recent feedback, without negative effects on the
physical counterpart, the digital twin, and the set of tools that enables it, must be at the same
time realistic and fast enough to allow the agent to adjust itself and act back on the environment

while the data used in its training process is still relevant.

Therefore, leveraging the fact that 5G and beyond systems will benefit from rich con-
textual information to improve performance and reduce loss of radio resources to support its
services [4, 12, 13], the key idea in this work is to use realistic representations of deployment
sites, together with vehicle physics, sensor and communication network simulations, to gener-
ate a virtual representation that enables training and testing RL agents for tasks related to the

PHY of the telecommunication system, such as beam selection and/or user scheduling.

eived, en'SIOYEIANIOUE for_safety
1446_516 - OgjIDwe
.

Figure 1.1: CAVIAR simulation scenario, depicting the radiation pattern (in light green) corresponding

to the chosen beamforming codebook index to serve a drone (at the right).

1.2 Proposal

This work proposes a simulation methodology named Communication Networks, Artifi-
cial Intelligence and Computer Vision with 3D Computer-Generated Imagery (CAVIAR), with
a preliminary idea proposed in [14], as a methodology suitable to generate environments with
varying reality gap and computational complexity, to train and test RL agents, mainly for prob-
lems related to the PHY of the 5G networks.

More specifically, in this work, the joint beam selection and user scheduling task is posed
as a problem that must be solved with RL. The goal is to schedule and allocate resources to
Unmanned Aerial Vehicles (UAVs), cars and pedestrians, composing a scenario with aerial and
terrestrial User Equipment (UE), as exemplified in Figure 1.1.

The RL agent is executed at the Base Station (BS) and receives a reward based on the
service provided to the users, by periodically taking actions guided by the information captured

from the environment, which includes channel estimates, buffer status, and positions from a

Global Positioning System (GPS). The training occurs “offline”, without rendering the 3D
scenes, but it is possible to render the output in a post-processing step and generate a video. The
CAVIAR simulation integrates three components: the communications, the AI/ML, and finally
the virtual world subsystems, with the last one being created with AirSim [15] and Unreal
Engine [16].

As RL is a difficult learning paradigm, a simpler version of the same problem and envi-
ronment is also proposed, mainly for educational purposes. This version reduces the complexity
of the simulation by removing the computation of packet buffers, substituting it by predefined
penalties in case of long periods of repeated allocation of the same user. It also removes the 3D
scenarios and, in turn, uses a variant based on the widely known minigrid problem [17]. This
one will be described in Appendix A.

Hence, the main contributions of this dissertation are summarized as follows:

e [t provides two environments, with crescent complexity, for exploration of RL approaches

to the problem of user scheduling and beam selection;

e It also outlines the current state-of-the-art research on the use of hybrid simulators for

training and testing of RL agents;

e Finally, it formalizes the use of CAVIAR for digital twins in telecommunications.

1.3 Dissertation Outline

The rest of the work is organized as follows:

¢ in Chapter 2, some useful concepts to comprehend the proposed methodology are briefly
introduced, focusing on the MIMO beam selection problem and an introduction to the

theory of RL;

e in Chapter 3 we elaborate on the research being conducted to address the problem of
simulating communication systems for reinforcement learning, and the work about reality

gap and digital twins;

e Chapter 4 discusses CAVIAR simulations in general: the software used, explaining some
features available, such as Hardware-in-the-Loop (HITL), also detailing simulation modes,

and providing examples via block diagrams;

e Chapter 5 explores the specific RL problem addressed in this work, with an overall de-
scription of the experiment and the specific implementation of the communication and
packet traffic models, described in Section 5.2 and Section 5.3, respectively, as well as

RL model used and its design;
e Chapter 6 shows the results, followed by a brief discussion;

e Chapter 7 concludes the work and gives the view of the author regarding possible paths
to be taken in order to improve the current status of the CAVIAR subsystems, as well as
a proposal on how to build a digital twin, based on the same set of tools explored in this

work.

Chapter 2

Background Concepts

In order to better comprehend the application area, as well as the reinforcement learn-
ing methods used, this chapter briefly introduces the concept of MIMO beam selection and

reinforcement learning.

2.1 MIMO Beam Selection

5G and beyond technologies leverages new frequency bands to serve its users, such as
the, once weakly explored, spectrum range of the millimeter waves (mmWaves) [18]. However,
their use depends on massive MIMO techniques, such as beamforming, to produce directional
beams to propagate the antenna reach more efficiently, as, given its use of higher frequencies,
mmWave propagation is more prone to losses due to fading and blockage [18]. This increases
the responsability of the 5SG BS, which needs to perform two tasks: to keep track of the valid
beams and to choose the most appropriate one in a process called beam selection, that consists
of selecting a beam-pair for BS and UE to achieve the best communication channel at any given
time [19].

For that, the BS needs to be aware of its surroundings and the users’ locations, which can
be hard to achieve, specially given that 5SG networks will enable not only traditional ground
users, such as pedestrians, but also several distinct types of vehicles, like trucks, buses, cars,
and even aerial vehicles, introducing new movement patterns [20]. So, in this context, the site
covered by the base station becomes increasingly dynamic, and the process of beam selection
gets proportionally more complex. This results in systems having to continuously send signals

that do not carry information (overhead) [21], compromising a parcel of the channel capacity.

Therefore, decreasing this overhead with intelligent beam selection approaches is a fundamental
problem that can enable systems to improve the usage of physical resources (e.g., with lower

latency and higher bit rates) [22, 23, 24].

2.2 Reinforcement Learning

One possible tool to optimize this beam selection process is RL. As defined by Sutton et
al. [25], RL is a computational approach to learn from interaction. In this paradigm, an agent
makes an observation, which can be a partial or an integral representation of the environment
that the agent is exposed to and based on it, the agent defines its state s and chooses an action a,
derived from its policy 7, which is, in simple terms, a probability distribution that maps which
action to take given the agent current state. This action results in a change in the observed state
and a reward r, which is sent to the agent as a feedback for its behavior and allows it to, not
only improve its policy, but also improve its capacity to evaluate the environment state that it is

currently at. This dynamic can be represented by Figure 2.1.

—> Agent

Observation / state Action
&
reward

s Environment =

Figure 2.1: The agent-environment dynamic in reinforcement learning.

This terminology is introduced when posing the RL problem as a Markov Decision Pro-
cess (MDP), which is an idealized way to formalize sequential decision making, computing the
effects of actions in terms of rewards and new states, allowing a more accurate mathematical

analysis of the problem.

2.2.1 Objective of Reinforcement Learning Methods

Defining concepts and a mathematical framework to solve this class of problems is impor-
tant, as reinforcement learning is a different paradigm from both, supervised and unsupervised
learning. Differently from the former, it does not rely on predefined labels, and also, unlike the
latter, it does not actively search for underlying structures on the data that it is being exposed
to, instead, RL methods focuses on optimizing a value named return ((z), which is the sum of
all the accumulated reward throughout a sequence of interactions with the environment.

To achieve this optimization objective, the RL agent faces a trade-off in which it needs
to balance its actions on exploration of the environment, focusing on updating is knowledge
of the dynamics it is inserted into, or on exploitation, which consist on taking actions that
are currently optimal, ensuring a steady return, but leading the agent to abide in a potentially
suboptimal behavior. So, to ensure the exploration of the environment, some methods rely
on strategies such as defining a probability € for exploratory actions. An example of it is the
common e-greedy policy, in which the agent exploits the environment with probability 1 — e and
explores it with probability e.

Objectively speaking, when an agent explores the environment, it tries to improve its
knowledge of the state-value function v(s), which can also be slightly adapted to action-value
functions ¢(s) as well. Both functions can be described respectively by the Bellman equations
[25], shown in Equation 2.1, to calculate the value v(s) of a state s

va(s) = Zﬂ(a]s)Zp(s’,r\s,a)[r%—’yu,{s’)], 2.1
a s'r

and in Equation 2.2, to calculate the value ¢(s) of taking a certain action a given a state s
qr(s,a) = Zp(s', r|s,a)[r + Z m(als)qr (s, a')], (2.2)

where 7(a|s) is the probability of taking action a given state s while following policy 7, s’ and
a’ are respectively the state and the action that come immediately after the current step, r is the
reward of taking action a while being in state s, p(s’, 7|s, a) is the probability of reaching state
s’ and receiving reward r while being in state s and taking action a. Finally, ~y is the discount
rate, which affects how much the reward received a long time ago influences the return: as
increases, future rewards become more relevant. So, in other words, what Equation 2.1 and
Equation 2.2 tells us is that one can describe v,(s) as the expected return for an agent that

starts in state s and follows the policy 7 until the end of the given sequence, while ¢, (s, a) is

the expected return when an agent starts in state s, takes action a and, after that, only follows
actions derived from its policy 7.

There are several approaches to implement RL agents to optimize both v and ¢, as well as
the policy 7. The next subsections will explore some approaches that rely on Deep Reinforce-

ment Learning (DRL) to perform these predictions.

2.2.2 State-Value Estimation Approaches

n n " n

Note that v, and ¢, evaluate a certain policy "7", which can be the optimal policy "x
or not. For the case where the optimal policy "«" is assumed, the state-value equations can be
rewritten as:

v.(s) = mngp(s’, rls,a)[r + yv.(s)], (2.3)
s',r
while the action-value function, becomes
0 (s,a) = Zp(s’, rls,a)[r +~ max q.(s',d")]. 2.4
s',r

So, posing RL problems as MDPs gives one the mathematical framework that allows
the optimal solutions to be derived theoretically. However, note that the Bellman optimality
equations presented in Equation 2.3 and Equation 2.4 assume previous knowledge of the en-
vironment, mainly in the form of the transition probabilities p(s’, r|s,a). In the rare case that
someone is dealing with an environment where these probabilities are known, the optimal v,
can be obtained via a model-based method, such as Dynamic Programming [25], but, for the
vast majority of situations, these environment dynamics are unknown, which lead to the need
of using model-free methods. Such methods update their knowledge of the environment via
interactions with it, following the dynamic shown in Figure 2.1. One of the simpler model-free
algorithms is the Monte Carlo method, which will be briefly described in the next paragraph, as
it provides good support for the concepts explored by the state-of-the-art approaches, such as
Advantage Actor Critic (A2C) and Proximal Policy Optimization (PPO).

Monte Carlo has some variations, such as first-visit or every-visit where it only considers
the return received by the first encounter with a certain state, or it computes the experience of
every visit on a state in its state-value update, respectively. So, as every mode rely on improve-
ments on the estimation that occurs only at the end of an episode or trajectory, the first-visit

Monte Carlo method is the one that is going to be described, as it gives enough insight into

10

how the other modes work. The only difference from first-visit or every-visit, can be consid-
ered the modification of the computation of the return G(s) for state s, which is made for each
episode ¢, in case of the first-visit, and for every time it reaches state s during a given episode,

in every-visit. Monte Carlo first-visit improves its v(s) estimation as described in Algorithm 1.

Algorithm 1: Monte Carlo first-visit method.

foreach episode e in Episodes do
while ¢ < Timesteps do
Ge(8) + Ge(s) + 14

end

Gel(s
v(s) = ZeNe()

end

So, given the sequence of state, action, reward and new state proposed in Figure 2.2, the
Monte Carlo approach solves the problem of calculating the state-value v(s) by completing an
entire trajectory, starting from the initial state, on to the final state, and only then, based on
the received rewards, it calculates v(s). In fact, it improves its estimate as the number of new
iterations through the environment also grow, by taking a mean of the return values divided by

the number N, of episodes.

Sequence

.
, N
, \
R=3 ! K

@ Initial state ¢ S ! Final state

Figure 2.2: A given sequence of states and rewards, composing an episode.

This can be exemplified by Figure 2.3, where the Monte Carlo agent waits until the end
of the given episode in order to compute the v(s) of each state, based on the already known
rewards.

This allows one to estimate state-values that can become very close to the optimal state-
value, however, this type of calculation is also very slow, as it needs several runs to yield a

good estimate. Therefore, many other approaches were proposed, such as Temporal Difference

11

Monte Carlo

R=3 : \
> V(sa)=0 ;

\ Actor)

Figure 2.3: Monte Carlo estimation of the state-values.

(TD) and n-step bootstrapping methods, until the growing complexity of state and action spaces
eventually led to the need of using functions to define v(s) and ¢(s), leading to the advent of
DRL. In this context actor-critic methods such as A2C ended up serving as the foundation for
more sophisticated approaches [25].

An A2C agent relies on neural networks to perform the roles of critic and actor, the
first is responsible for receiving the state observation and estimating the v(s), and the second
one is responsible for defining the probability distribution that will influence the action choice.
Besides that, differently from Monte Carlo methods, for example, A2C do not need to wait until

the end of an episode to generate state-value estimates.
@ > (s4)=2 |

Figure 2.4: Actor-critic estimation of the state-values.

A2C

Critic:
yields an estimate of v(s), called V(s),
before reaching the end of the episode

As Figure 2.4 points out, the A2C agent is able to leverage its critic to estimate future
returns before reaching the end of an episode. It uses the difference between the v(s) predicted
by the critic (0(s)), and the calculated estimations, to evaluate its predictive capability, as well

as the the error between predicted state-value and the actual reward obtained by an action at that

12

state, named advantage, to further improve the actor actions choice.

Drawing from these advancements, this work uses the PPO method, which is character-
ized for being a sample efficient method, in other words, it tends to need less training episodes
to converge to a good policy, when compared against other approaches in several baseline en-
vironments, as reported in its source paper [26]. It is a state-of-the-art DRL method based on
actor-critic, that adopts policy gradient approaches to continually improve the reward obtained
from its action choice. It draws ideas from a precursor named Trust Region Policy Optimiza-
tion (TRPO) [27], and tries to prevent destructive policy updates by defining a threshold value
e that keeps its gradient descent steps inside a safe region, but without the extra computation

present in TRPO, that needs to also calculate a Kullback-Leibler (KL) divergence factor.

Chapter 3

Related Works

Having known more about MIMO beam selection and reinforcement learning, to bet-
ter contextualize CAVIAR, this chapter explores some efforts regarding simulations applied to
telecommunications, starting with works related to the generation of synthetic data, by lever-
aging the integration of different simulators, mainly for applications in Deep Learning (DL).
Then, we proceed to investigate different approaches, such as the hybrid simulators, in partic-
ular a hybrid traffic-network simulator for vehicular networks, which not only integrate simu-
lators for data set generation, but also allows visualization and greater parameter configuration.
After that, in Section 3.3 we address concepts such as reality gap and studies that explore the
generalization capacity of reinforcement learning agents trained in virtual environments when
exposed to real, never before seen, situations. Finally, Section 3.4 presents the concept of digital
twins, its broad scope, its adoption by several companies, and how it presents itself as the po-
tential evolution of the current efforts to generate synthetic data and environments for research

in reinforcement learning agent training in general and also for communication systems.

3.1 5G MIMO Data Generation

The 5G and future networks presents many use cases with challenging service require-
ments. One of the main strategies to reach these stringent needs, is to use frequencies in the
unoccupied bandwidth available in the mmWaves spectrum [20]. However, prior to deploying
networks that use this technology, there is a need to correctly assess the environment in which
the propagation will take place, what is usually accomplished via the execution of measure-

ments campaigns, that are both, financially expensive and very laborious [28]. Considering

14

this context, generating propagation channel data through simulations is a reasonable way to

alleviate data scarcity.

Several works aim to address the obstacle of the lack of data to apply Al for future net-
works. Among those, some notable ones are Raymobtime [4], DeepMIMO [9], and Vision-
Wireless (ViWi) [29]. The first one proposes a methodology that combines a vehicle traffic
simulator with a Ray Tracing (RT) simulator to generate channel realizations representing 5G
scenarios with transceivers and objects mobility. It has the advantage of using realistic channel
models due to the utilization of ray tracing, but lacks in two aspects: the first one is realism of
vehicle movements when considering situations outside pre-established mobility patterns, such
as during collisions, because it works in discrete manner by using SUMO traffic simulator [30],
which does not account for vehicle geometry; and the second one is fluidness, as it is not a real-
time simulation, having the need to obtain a channel realization at each step, by repositioning
the vehicles according to the vehicle traffic simulator and invoking the propagation simulator
afterwards. This ends up leading to the need of using it beforehand to generate data and, only

then, utilize it in an ML workflow.

DeepMIMO also suffers from the very same limitations, as it builds upon the same ideas.
However, it tries to differentiate itself from Raymobtime by proposing to use a generic simu-
lation scenario, allowing the users to adjust a set of system and channel parameters, such as
the number of antennas, the number of Orthogonal Frequency-Division Multiplexing (OFDM)

subcarriers, and the number of channel paths, etc.

Finally, the most recent versions of the Raymobtime data set also introduced multimodal
data, extracted from simulating other sources of information, for example, Light Detection and
Ranging (LiDAR) and camera images, to benefit from the increasing variety of sensor signals
to help reduce the overhead associated with link configuration in mmWave communication
systems [12, 31]. In counterpart, as an evolution of the DeepMIMO, there is ViWi[32], which
relies on the same principles regarding the addition of multimodal data seen in Raymobtime,
and, as its predecessor, distincts itself by the assuming that it allows a more generic simulation

in terms of adjustable parameters.

15

3.2 Hybrid Simulators for Communication Networks

If from one side we have data-driven simulations, that have the sole purpose of generating
data that will later be used in a AI/ML workflow, from the other we have simulators that seek
realism by integrating several expertises, but without proposing a clear integration with ML
models inside the simulation loop and much less providing examples where these simulators
could be used as reinforcement learning environments. Among those, some notable works are
LIMoSim [6] and Veneris[5].

LIMoSim presents an extension of the ns-3 set of tools by proposing a module that enables
the joint simulation of hybrid ground-based and aerial communication networks, extending ns-3
with mobility models for cars and drones, and a simple 3D visualization feature obtained with
Open Graphics Library (OpenGL). They do this using a shared codebase coupling method in-
stead of the more common High Level Architecture (HLA) approach. In the latter, one must
synchronize/orchestrate several simulators and, besides being a traditional method, its complex-
ity in terms of maintenance and usability is tackled by the former, where they extend the ns-3
simulator by inheriting from parent classes and leveraging the event queue present within the
same codebase of the original software. Nonetheless, LIMoSim still and event-based simulator,
such as ns-3 on which it is based.

Another hybrid simulators is Veneris, that integrates Unity3D, a multipurpose engine [33],
OMNeT++, a network simulator, and Opal, a ray-launching propagation simulator that uses
Graphics Processing Unit (GPU), developed by their team and validated against a custom ray
tracing software implemented in MATLAB. It focuses only on car mobility and generates its
own vehicle systems models, without implementing features that allow integrating with the real
hardware, such as in the concept of HITL, explored in Subsection 4.3.2. Also, Veneris does not
explicitly expose experiments where it interacts with a reinforcement learning agent to execute

actions that would influence the state, and therefore, the next simulation step.

3.3 Improving Simulations Realism to Close Reality Gap

The difficulty of transfering simulated experience into the real-world is called reality gap,
and, in order to close it, several approaches are taken, such as leveraging computer vision
and the use of simulators containing features such as photorealism, physics and sensors mod-

els. In [10], to improve the generalization capacity of autonomous vehicles policies trained

16

in simulated environments, a simulator based on Unreal Engine 4, named Car Learning to
Act (CARLA), and the Unreal Engine plug-in, named AirSim, are used to recreate original
traffic scenarios using prior information of a given scene, adding realism to the virtual scenes
based on real ones. Similarly, in [34] a real vehicle was able to drive through 3 kilometers on
a real traffic lane using a DL model trained on synthetic data from a virtual world also built
on Unreal Engine 4. In [11] it is demonstrated that, using virtual simulations with enough
realistic elements, it is possible to learn policies that not only perform well in the virtual sce-
nario where it was originally trained, but also shows good generalization for previously unseen
real-world scenarios. They focus on the problem of obtaining policies for autonomous driving
vehicles and use a simulation engine named Virtual Image Synthesis and Transformation for
Autonomy (VISTA). Their methodology consists on synthesizing photorealistic and semanti-
cally accurate local viewpoints based on a repository of sparsely sampled, human collected,
trajectories. For example, given a state s;, composed by an image representing the view from
the driver seat during a real cruise present in the repository, the next state s;,, after the agent
takes an action, will be an artificially generated image produced by VISTA, by taking the clos-
est next image in that cruise and adaptating it using computer vision techniques. By using this
technique they were also able to deploy the policy on a real vehicle.

Therefore, these experiences from the use of RL in the autonomous driving field, show
that using hybrid simulators capable of providing realism in diverse aspects, such as photo-
realism, mobility patterns, real hardware integration, and other relevant characteristics for the
investigated problem, is beneficial to close the reality gap and improve the use of RL as a tool
to deal with problems of interest in 5G and future networks, specially on tasks with stringent

service requirements and highly dynamic scenarios.

3.4 Digital Twins

In order to reduce the reality gap, a virtual environment that hopes to allow training an
agent with the expectation that it can perform equally well on the real world, must also strive to
be in sync with any changes that affects the status of the environment it is trying to simulate. To
address that synchronization between the real world and its virtual representation, a paradigm

named digital twin emerged.

Digital twins are already commercially explored in several areas such as manufacturing

17

and aviation [35, 36, 37, 38] and now, big tech companies such as Ericsson, Microsoft, Siemens
and IBM [39, 40, 41, 42, 43, 44, 45], also, some other small companies [46, 47], and open-
source initiaves [48, 49] started to explore this concept in their respective areas as well. More-
over, although it is still in its infancy regarding in its use on wireless systems, digital twins are
already envisioned as an important use case of 6G networks, with increasing amount of works
relating them to communication systems, such as [50, 51, 52, 53].

Digital twins can be used to monitor assets and processes, appearing in diverse manners,
depending on the application. In the literature, digital twins can be sub-categorized by their

level of integration with their physical counterpart:
1. digital model, which is a virtualization, without any automatic interaction or update;

2. digital shadow, is the same as 1, with the addition of automatic state update of the digital

target;

3. digital twin, that not only updates its states automatically, but also adds the possibility to

interact with the monitored counterpart.

Figure 3.1 illustrates this digital twin sub-categorization.

Manual > Automatic
update update

Digital model Digital shadow Digital twin

__

Physical target Physical target Physical target

A A

Digital target Digital target Digital target

Figure 3.1: Definition of digital twins sub-categories in terms of their level of integration with their

physical counterparts (modified figure from Kritzinger, Werner et al. [36]).

A hybrid simulator capable of capturing the Key Performance Indicators (KPIs) of a given

process is a viable option to serve as basis to a digital twin, providing an up-to-date virtual

18

environment for the training of a model. In this work, that possibility is still not completely
explored, however, Section 7.2 provides an overview of an implementation that leverages tools

and experience obtained from this effort.

Chapter 4

CAVIAR Simulations

Considering the possibilities that hybrid simulations provide to the training and testing of
RL agents, the CAVIAR methodology is proposed. As initially discussed in [8], the CAVIAR
methodology incorporates three main components: communications, AI/ML, and virtual world
subsystems. In the next sections, we describe the method, focusing on the overall description,
simulation modes, and software used. After that, Chapter 5 elaborates on how the simulation

was realized for the user scheduling and beam selection environment.

CAVIAR simulation overview

Mobile
entities
Mobility engine

Communication Next time Environment
parameters step t performance
indicators

ETER

Scene

Physics engine

Rendering |
y— | . .—r’
engine ;

uonezi|ensin

Kinematics

ETER

Communications
engine

Orchestrator Sensors engine

l

Al/ML frontend
engine

Comm.
service
providers

Al/ML engine

T Features

Communication Il Communications subsystem

performance indicators - Al/ML subsystem
I Virtual world subsystem

Figure 4.1: Representation of a possible CAVIAR simulation, integrating the three subsystems.

20

4.1 Opverall CAVIAR Description

CAVIAR main idea is to allow a simulation to integrate the three previously mentioned
subsystems. Figure 4.1 displays the main components in a CAVIAR simulation, being brought
together by an orchestrator script. This figure represents the current implementation, where
three different pieces of software are used to realize the simulation. The next paragraphs de-

scribes in general the blocks that encompass the proposed simulation strategy.

Starting from the left, the Communications engine block, in blue, is the one that han-
dles all information regarding the communication aspect of the simulation, such as data traffic,
buffers, wireless channel generation and propagation of radio signals. It can be realized either
by a set of scripts, a single software, or even an integration of them. For example, the packet
traffic can be handled by a specific program such as ns-3! allied with the orchestrator, while
the communication channels can be modeled with the help of a propagation software such as

Remcom Wireless InSite?, or Altair WinProp?, given that the computational needs are met.

The 3D assets used in the Environment and as Mobile entities, such as UAVs, cars, build-
ings, etc, are either created or obtained online, using the same methods described in Raymob-
time [4], in other words, leveraging OpenStreetMap* and free 3D models libraries. They com-
pose the simulation environment as fixed and/or mobile objects, whose eventual movements
and interactions are managed by the Mobility engine and by the Physics engine of the virtual
world subsystem, respectively. The Sensors engine output can be composed of any sensor re-
lated information, ranging from camera images to GPS data, and constitutes one of the possible
inputs to the AI/ML frontend engine, which performs the necessary pre-processing steps before

using this information in an ML pipeline.

The AI/ML engine receives pre-processed signals and communication parameters that
were simulated in the virtual world environment and suggests actions that are then implemented
by the Orchestrator, which also considers parameters from the Communications engine and the

Environment.

Mttps://www.nsnam.org/
2https://www.remcom.com/wirelessfinsitefemfpropagationfSoftware
Shttps://www.altair.com/resource/altair-winprop-datasheet

*https://www.openstreetmap.org

https://www.nsnam.org/
https://www.remcom.com/wireless-insite-em-propagation-software
https://www.altair.com/resource/altair-winprop-datasheet
https://www.openstreetmap.org

21

4.2 Out-loop and In-loop Simulation Modes

As a simulation for an RL environment, CAVIAR benefits much more from keeping the
Al inside the loop, however, to also act for the purpose of generating data sets to be used in an
ML pipeline, besides having the common mode of operation, named in-loop, it is also allowed
to run in a much more decoupled way, called out-loop. These two modes of operation refer to
wether the AI/ML engine is used within or outside of the simulation loop, respectively.

An in-loop simulation represents the usual mode of operation depicted in Figure 4.1. It
allows the subsystems to interact with one another in an orchestrated manner, including the
Al in the loop and generating data that is fed back to the system during the simulation. On
the other hand, in an out-loop simulation, CAVIAR is used to generate data, similarly to the
approach adopted by Raymobtime and DeepMIMO. This mode decouples the communication
subsystem from the AI/ML and virtual world ones, having each one run in different moments.

Figure 4.2 exemplifies the outloop CAVIAR data generation pipeline.

Unreal/AirSim

Waypoint
generator

Episodes

- MIMO channels

- Combined channel magnitudes Slmulatlon
- Data traffic environment

Figure 4.2: Out-loop CAVIAR data generation.

First, the virtual world subsystem is used to generate a set of Comma-Separated Values
(CSV) files containing the trajectory data of all moving objects within a simulation, named
episode. To generate it, an waypoint file, which is a text file with reference points for the mobile
entities, must be executed by Airsim, and during its execution, the information from the mobile
elements are stored in the episode. Each one of these episodes lasts about 3 minutes, with a
sampling interval of 10 ms, and is composed by columns related to position and orientation for
pedestrians and cars, with the addition of acceleration, linear, and angular velocities for UAVs

as described in Table 4.1.

Table 4.1: Content of an episode file generated for the out-loop CAVIAR mode

Content

Description

timestamp
obj
pos_x
pos_y
pos_z
orien_x
orien_y
orien_z
orien_w
linear vel x
linear_vel_y
linear_vel z
angular_vel_x
angular_vel_y
angular_vel_z
linear_acc_x
linear_acc_y
linear_acc_z
angular_acc_x
angular_acc_y

angular_acc_z

Moment when the info was gathered

Name of the mobile entity

Position in meters (north positive)
Position in meters (east positive)

Position in meters (down positive)

Quaternion in degrees
Rotation in degrees
Rotation in degrees
Rotation in degrees

Linear velocity in m/s

Linear velocity in m/s

Linear velocity in m/s

Angular velocity in m/s
Angular velocity in m/s
Angular velocity in m/s
Linear acceleration in m/s?
Linear acceleration in m/s?
Linear acceleration in m/s?
Angular acceleration in m,/s?
Angular acceleration in m /s

Angular acceleration in m /s

22

The second step is to use the episode files to obtain information from MIMO channels and

data traffic. For that, one must execute the episode files within the CAVIAR Communication

subsystem, pointing out the UE that will be used. This leads to an output CSV file with the

contents disposed in Table 4.2, that stores the environment status during the given simulation

step.

23

Table 4.2: Content of an output file generated from a CAVIAR simulation

Content Description
chosen_ue Name of the chosen UE
ue_index Numeric identification of chosen UE
beam_index Codebook index of the selected beam
X UE position in meters on the x-axis (north positive)
y UE position in meters on the y-axis (east positive)
z UE position in meters on the z-axis (down positive)

pkts_dropped Number of all dropped packets in the given step
pkts_transmitted Number of all transmitted packets in the given step
pkts_buffered Number of all buffered packets in the given step
bit_rate_gbps Data rate in Gbps achieved during the given step
channel_mag Magnitude of the combined channel

reward Reward obtained during the given step

4.3 Main Software Tools

To realize the previously mentioned subsystems, CAVIAR leverages the features of Un-
real Engine and AirSim, that provides photorealism; physics, automotive, and sensor modeling;
and an Application Programming Interface (API), that facilitates the interaction between exter-
nal scripts and the simulation. The next subsections provide more details about these capabili-

ties.

4.3.1 Unreal Engine

The advancements on multipurpose engines led them to transcend their initial objective
of being tools for game development and extended their audience to areas such as simulated
training, architectural visualization, digital twins, etc. This expansion also had effects on the Al
research field, that leverages the sophisticated lighting, collision and 3D modeling available in
these tools to provide synthetic data for their models.

Besides providing photorealistic rendering of 3D scenarios, Unreal also provide a physics

engine with useful features for V2X scenarios, such as linear and angular drag, acceleration,

24

collision detection, and the possibility to extend it as it is an open-source software.
Due to the availability of the previously mentioned features, and also the possibility to
integrate more plug-ins such as AirSim, CAVIAR uses Unreal Engine as the plataform to im-

plement the virtual world subsystem.

4.3.2 AirSim

AirSim [15] is a autonomous vehicle simulator built as a plug-in for Unreal Engine and
primarily designed for research involving RL and computer vision for the navigation of UAVs
and cars. It provides several capabilities for a simulation ran in Unreal Engine, such as the
modeling of vehicles control systems, mainly for the case of drones, environmental physics
with regards to gravity, magnetic field, and air pressure and density. It also features sensor
simulations, for example, barometer, gyroscope, accelerometer, magnetometer, GPS, RGB and
LiDAR cameras. Finally, to increase the realism of the UAV movements, it allows the use of
Software-in-the-Loop (SITL) and HITL, both approaches allow the use of real flight controller
firmware such as PX4, ROSFlight, etc, to control the drone movement. Figure 4.3 explains how

the HITL takes place in AirSim:

Physical domain Virtual domain

O .+ Vehicle model Environment

Q‘Z}%
) F . —
Desired state q}ég Orce ang forqu Environmental forces (i.e. i
\?S"\o e gravity, angular drag, etc.) |
g Sensor data | Sensors | Kinematics Physics
ontrolle ; models engine
Sy -
% 07‘9@ :
NN\ Sensor data Pose
o o '
TN\
()
\ 4 \ 4
Companion Desired state API Iayer L Rendering
board Perception data engine
Estimated state

sensor and

perception data

Figure 4.3: Block diagram explaining how hardware-in-the-loop includes the hardware of the actual

drone inside the simulation loop for increased realism (modified figure from Shah, Shital et al. [15]).

25

Du