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RESUMO

Essencial para o progresso tecnológico e econômico, a energia elétrica requer soluções e es-
tratégias bem fundamentadas para um gerenciamento eficiente e sustentável. Unidades consu-
midoras existentes, sem recursos tecnológicos modernos, necessitam de alternativas graduais
para otimizar o uso de energia, aproveitando ao máximo os recursos pré-estabelecidos. Nesse
contexto, o retrofit oferece uma atualização eficaz dessas infraestruturas. Modelos e estratégias
sistemáticas podem padronizar e garantir a replicação dessas soluções em diferentes contextos
através de abstrações conhecidas como frameworks. Contudo, há uma carência de frameworks

para viabilizar a implantação de estratégias sistematizadas de retrofit para a gestão energética,
especialmente no setor elétrico de baixa tensão. Para preencher essa lacuna, esta tese apresenta
o framework SmartLVEnergy, proposto para orientar a concepção de estratégias inovadoras de
retrofit para modernizar instalações legadas de baixa tensão com soluções de IoT, AIoT e com-
putação distribuída, otimizando a gestão energética com recursos tecnológicos distribuídos e
capacidades preditivas avançadas. Os experimentos realizados nesta tese são apresentados no
formato de agregação de artigos científicos, que contribuíram para a concepção do framework

SmartLVEnergy. Como resultado, foi possível implementar ferramentas de gestão energética em
cenários prediais e industriais existentes de maneira sistematizada, fundamentada nas premis-
sas do framework proposto. O enfoque principal foi a análise e previsão da demanda energética
das instalações e seus respectivos circuitos, permitindo antever e mitigar eventos de ultrapas-
sagem de demanda das unidades consumidoras, conforme as diretrizes da Agência Nacional
de Energia Elétrica no Brasil. As estratégias concebidas incluíram o desenvolvimento, a utili-
zação e a integração de recursos de sensoriamento, comunicação e computação, distribuídos
localmente, na nuvem e na borda, de acordo com os preceitos do framework SmartLVEnergy,
maximizando o aproveitamento dos recursos existentes conforme as necessidades específicas
de cada instalação. O framework proposto é flexível e permite a integração, a expansibilidade e
a interoperabilidade das soluções tecnológicas ao longo dos sistemas legados, permitindo ope-
rações conforme as peculiaridades e recursos de cada contexto pré-existente. Esta versatilidade
confirma a relevância deste trabalho como uma proposta robusta e sustentável para promoção
da eficiência energética na atualidade, especialmente em sistemas legados de baixa tensão.

Palavras-chave: eficiência energética; gerenciamento energético; retrofit; internet e inteligência
artificial das coisas; sistemas legados de baixa tensão.



ABSTRACT

Essential for technological and economic progress, electrical energy requires well-founded solu-
tions and strategies for efficient and sustainable management. Existing consumer units, lacking
modern technological resources, need gradual alternatives to optimize energy use, making the
most of pre-established resources. In this context, retrofit offers an effective update for these
infrastructures. Systematic models and strategies can standardize and ensure the replication of
these solutions in different contexts through abstractions known as frameworks. However, there
is a lack of frameworks to enable the implementation of systematic retrofit strategies for energy
management, especially in the low-voltage energy sector. To fill this gap, this thesis presents
the SmartLVEnergy framework, proposed to guide the design of innovative retrofit strategies
to modernize legacy low-voltage installations with IoT, AIoT, and distributed computing solu-
tions, optimizing energy management with distributed technological resources and advanced
predictive capabilities. The experiments conducted in this thesis are presented in the format of
aggregated scientific articles, which contributed to the conception of the SmartLVEnergy frame-
work. As a result, it was possible to implement energy management tools in existing building
and industrial scenarios in a systematic manner, based on the premises of the proposed frame-
work. The main focus was the analysis and prediction of the energy demand of the installations
and their respective circuits, allowing to anticipate and mitigate demand overrun events of the
consumer units, following the guidelines of the Brazilian National Electric Energy Agency. The
strategies conceived included the development, use, and integration of sensing, communication,
and computing resources, distributed locally, in the cloud, and at the edge, according to the prin-
ciples of the SmartLVEnergy framework, maximizing the use of existing resources according
to the specific needs of each installation. The proposed framework is flexible and allows the in-
tegration, expandability, and interoperability of technological solutions across legacy systems,
enabling operations according to the peculiarities and resources of each pre-existing context.
This versatility confirms the relevance of this work as a robust and sustainable proposal to pro-
mote energy efficiency today, especially in legacy low-voltage systems.

Keywords: energy efficiency; energy management; retrofit; internet and artificial intelligence
of things; low-voltage legacy systems.
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1 INTRODUÇÃO

A preparação desta tese segue os princípios estabelecidos na resolução n◦ 3359 do re-
gimento do Programa de Pós-Graduação em Engenharia Elétrica (PPGEE) da Universidade
Federal do Pará (UFPA). De acordo com o §2◦ do artigo 54 deste regulamento, a tese pode ser
apresentada tanto no formato tradicional quanto por meio da agregação de artigos científicos.

Segundo o Artigo 54 - "Para o Doutorado, a Tese pode ser desenvolvida pelo método
tradicional ou por agregação de artigos científicos".

De acordo com o §2◦, a elaboração da tese por agregação de artigos científicos deve
incluir pelo menos três artigos completos publicados em revista especializada com comitê edi-
torial, cumprindo os índices mínimos de aceitação estabelecidos pelo PPGEE. Alternativamente,
um capítulo de livro, livro inteiro ou patente também podem ser aceitos. Todos os documentos
devem ser relevantes para o tema da tese e estar em conformidade com os critérios do Qua-
lis da CAPES. O PPGEE definirá em resolução específica os índices mínimos de aceitação do
periódico.

Segue a lista cronológica dos trabalhos aceitos e publicados que compõem a estrutura
desta tese de doutorado:

1. Energies - MDPI (ISSN: 1996-1073). Qualis CAPES A2 em Engenharias IV (2017-2020),
JCR: 3.0, CiteScore: 6.2. A Retrofit Strategy for Real-Time Monitoring of Building Elec-

trical Circuits Based on the SmartLVGrid Metamodel.

2. Sustainability - MDPI (ISSN: 2071-1050). Qualis CAPES A2 em Engenharias IV (2017-
2020), JCR: 3.3, CiteScore: 6.8. A Demand Forecasting Strategy Based on a Retrofit

Architecture for Remote Monitoring of Legacy Building Circuits.

3. IEEE Sensors Journal - IEEE (ISSN: 1558-1748). Qualis CAPES A1 em Engenharias IV
(2017-2020), JCR: 4.3, CiteScore: 7.7. SmartLVEnergy: An AIoT Framework for Energy

Management through Distributed Processing and Sensor-Actuator Integration in Legacy

Low-Voltage Systems.

Nas seções subsequentes, avançaremos com as discussões pertinentes a esta tese, abor-
dando a contextualização e principais desafios relacionados ao tema de pesquisa, problemáticas
e motivações, a hipótese de pesquisa, os objetivos e a organização deste documento de tese.
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1.1 CONTEXTUALIZAÇÃO

O advento da era digital no século XXI trouxe avanços tecnológicos significativos, que
se refletem em diversos setores da sociedade. Uma porção desses avanços está centrada na efici-
ência e na otimização dos recursos essenciais para as atividades diárias, como a energia elétrica
e a água. Para isso, os paradigmas digitais deste século, como Internet das Coisas (IoT), Smart

Buildings, Smart Grids e Smart Cities, viabilizam a transformação tecnológica nos setores resi-
denciais, prediais, industriais e metropolitanos, garantindo o gerenciamento e controle eficiente
desses recursos (Gomes et al., 2019).

Apesar da transformação digital oriunda dos preceitos desses paradigmas, muitos sis-
temas pré-existentes tornaram-se obsoletos frente às novas tecnologias emergentes. Entretanto,
eles ainda podem desempenhar papéis fundamentais nas práticas cotidianas. Esses sistemas são
denominados de sistemas legados (Cao; Iansiti, 2022; Ntafalias et al., 2022). Mesmo ainda
funcionais, lâmpadas, tomadas, equipamentos eletrodomésticos e outros dispositivos eletroele-
trônicos, quando obsoletos, passam a compor parte dos sistemas e infraestruturas legados nos
setores aos quais pertencem.

O setor elétrico de baixa tensão, que ainda mantém grande parte de suas operações
manuais e equipamentos desde sua concepção, consiste em muitos elementos e infraestruturas
pré-existentes. No entanto, mesmo sendo composto em grande parte por recursos e atividades
legadas, a presença deste setor é um forte indicador de desenvolvimento socioeconômico. Como
exemplo disso, Jaiswal et al. (2022) e Said, Bhatti e Hunjra (2022) destacam os impactos do
setor elétrico no progresso e desenvolvimento sustentável e socioeconômico. Nas análises apre-
sentadas, os autores adotam a demanda energética como fator correlato ao desenvolvimento so-
cioeconômico. Portanto, destaca-se a relevância de gerir adequadamente a demanda energética
das unidades consumidoras com o objetivo de implementar medidas que reforcem e otimizem
o uso dos insumos energéticos.

Nesse contexto, a concepção da Internet das Coisas, do inglês Internet of Things (IoT),
possibilita a gestão de ativos e insumos essenciais por meio de soluções digitais avançadas,
as quais integram sensoriamento, controle e comunicação em rede de dados. Essas soluções,
quando aplicadas ao setor elétrico, permitem gerenciar remotamente a demanda energética e
outras grandezas elétricas em tempo real, eliminando ou reduzindo a necessidade de intervenção
humana (Tamilarasu et al., 2021; Aoun et al., 2021). Tal abordagem minimiza potenciais erros
de medição e assegura a coleta de dados em um tempo pré-determinado.

Como um resultado da fusão entre soluções concebidas a partir dos conceitos do IoT e
da aplicação de técnicas avançadas de Inteligência Artificial, surge o conceito de Inteligência
Artificial (IA) das Coisas, do inglês Artificial Intelligence of Things (AIoT) (Gao et al., 2023).
Através desse paradigma, os dados recolhidos por redes de sensores sem fio (Wireless Sensor

Networks, WSN), ou outras soluções digitais IoT, são utilizados para tarefas de Aprendizado de
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Máquina, incluindo regressão, classificação e agrupamento. A partir disso, é possível viabilizar
análises preditivas, para aprimorar a qualidade das decisões tomadas.

A relevância das soluções de IoT e AIoT no âmbito energético é incontestável, especi-
almente devido ao crescimento contínuo na demanda por energia e na necessidade em geren-
ciar de forma eficiente outras grandezas elétricas (Matin et al., 2023). Essas tecnologias têm
o potencial para transformar os sistemas elétricos de baixa tensão, impulsionando-os rumo a
uma maior sustentabilidade, eficiência e resiliência. Isso inclui os setores residenciais, prediais,
industriais e urbanos. Mediante a implementação de estratégias sistemáticas cuidadosamente
delineadas, ajustadas às necessidades e realidades específicas das unidades consumidoras, é
possível integrar soluções digitais provenientes desses paradigmas em cenários pré-existentes,
mesmo naqueles com escassez de recursos tecnológicos. Dessa forma, viabiliza-se uma alterna-
tiva concreta para a convergência digital do setor elétrico pré-existente.

Nas seções subsequentes, serão abordados desafios e oportunidades associadas à moder-
nização dos sistemas elétricos legados de baixa tensão e à implementação de soluções inteligen-
tes neste setor.

1.2 DESAFIOS NA MODERNIZAÇÃO DO SETOR ELÉTRICO

Na busca pela modernização de sistemas legados, uma prática comum envolve a substi-
tuição total ou parcial dos componentes existentes para acelerar os processos de convergência
tecnológica. Contudo, essa estratégia pode levar a custos elevados e ao desperdício dos recursos
usuais. Mhlanga, Denhere e Moloi (2022), por exemplo, propuseram uma alternativa para via-
bilizar a educação na África durante a pandemia da COVID-19 por meio da digitalização das
metodologias educacionais. Eles salientaram as dificuldades da implementação rápida e abrupta
deste processo de convergência em países emergentes. Portanto, para que essas nações possam
implantar novos recursos tecnológicos, torna-se essencial adotar estratégias menos disruptivas
e uma transição digital gradual, maximizando a utilização de recursos existentes.

Nesse contexto, surge a oportunidade de aplicar estratégias de modernização e perso-
nalização de sistemas já estabelecidos, beneficiando-se dos recursos legados existentes. Esta
abordagem, também conhecida como retrofit, é particularmente útil para atualizar infraestru-
turas e sistemas que, apesar de desempenharem funções essenciais, carecem de interfaces ou
capacidade de interoperabilidade com sistemas mais modernos (Nair; Verde; Olofsson, 2022;
Alabid; Bennadji; Seddiki, 2022; Saffari; Beagon, 2022).

Para ilustrar essa abordagem, apresentamos em Fernandes et al. (2022) uma proposta
sistemática para transformação digital de sistemas de iluminação legados. A fim de evitar a
substituição completa dos equipamentos já em uso, optou-se por modernizar os drivers de ilu-
minação LED antigos, que não possuíam recursos de controle ou monitoramento remoto. Estes
foram substituídos por dispositivos capazes de monitorar tanto o consumo de energia quanto
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o status operacional da luminária. Além disso, esses novos dispositivos permitem acionar a
lâmpada de forma remota e controlar o fluxo luminoso por meio de redes sem fio. A Figura 1
demonstra o processo de retrofit realizado para modernização das luminárias de LED, onde o
ACU-LUM foi o hardware moderno que substituiu o driver de LED legado.

Figura 1. Retrofit para modernização de iluminação LED.

Fonte: (Fernandes et al., 2022).

Perspectivas como esta tornam viável a implementação de soluções digitais de IoT e
AIoT em ambientes legados (Yigitcanlar et al., 2020). Contudo, a complexidade dessa imple-
mentação pode não ser uniforme, dependendo das particularidades de cada sistema ou infraes-
trutura. A escolha da estratégia apropriada deve considerar os recursos disponíveis e as neces-
sidades específicas de cada setor. Como exemplo, existem estratégias que habilitam a gestão
energética por meio do monitoramento remoto de circuitos elétricos, sem o uso de serviços
sofisticados de processamento, comunicação e armazenamento. Este cenário é comum em co-
munidades indígenas, rurais e isoladas, conforme apresentado nos trabalhos de Ali et al. (2023a)
e Kalpana et al. (2023). Em contraste, outras comunidades podem requerer estratégias sofistica-
das e funcionalidades distintas, incluindo o monitoramento individual de cargas específicas em
uma instalação, ressaltando a necessidade de abordagens personalizadas para a digitalização de
grandezas elétricas e outros parâmetros desejados. Ahmad et al. (2024), por exemplo, propu-
seram um dispositivo centralizador para coleta de dados energéticos oriundos dos disjuntores
do quadro principal de energia de uma instalação legada. Com esses dados, os autores utiliza-
ram recursos de Aprendizado de Máquina para determinar, por clusterização, qual carga estaria
operante a partir de sua assinatura de corrente elétrica. Esta aplicação caracteriza-se como uma
solução de AIoT em uma infraestrura pré-existente.

No entanto, observa-se a necessidade de estabelecer metodologias sistematizadas, an-
coradas em protocolos e normas bem definidas, com o objetivo de padronizar a execução de
estratégias de retrofit para serem aplicadas em processos de modernização e atualização em
diversos casos e sistemas. Identificam-se na literatura poucos modelos e metamodelos de refe-
rência para tal propósito, o que dificulta a concepção e implementação uniforme de estratégias
voltadas à transformação digital de sistemas legados.

Nesse contexto, destaca-se o metamodelo SmartLVGrid, uma proposta inovadora para
viabilizar a transição digital dos sistemas elétricos em direção ao paradigma de Smart Grids



18

(Gomes et al., 2019). Esse metamodelo consiste em primitivas operacionais e pilhas de protoco-
los bem estabelecidos para definição e modelagem de estratégias de retrofit para modernização
dos sistemas de distribuição de energia de baixa tensão. Em outro estudo, propusemos adap-
tações neste metamodelo para idealizar um modelo de sistema capaz de modernizar edifícios
legados em direção ao paradigma de Smart Buildings, possibilitando que os protocolos e primi-
tivas do SmartLVGrid pudessem ser utilizados em outros casos e sistemas além dos sistemas de
distribuição de energia de baixa tensão (Fernandes et al., 2022).

Todavia, a literatura ainda não apresentou alternativas específicas para orientar a auto-
mação e sistematização da gestão de recursos energéticos em sistemas residenciais, industriais
ou prediais já existentes. Uma abordagem promissora envolve a expansão do escopo teórico das
definições e modelagens propostas por metamodelos, integrando um contexto orientado à ação
por meio de frameworks (Shehory; Sturm, 2014). Um framework concebido com base em es-
tratégias de retrofit facilitaria o desenvolvimento e a aplicação de soluções inteligentes para ge-
renciamento energético em infraestruturas estabelecidas, mas ainda não otimizadas, utilizando
tecnologias de comunicação em redes sem fio distribuídas de sensores e atuadores. Além disso,
a proposta de um framework para esta finalidade oferece uma oportunidade para avançar o es-
tado da arte na gestão energética de instalações legadas, incorporando tecnologias de tempo
real com capacidades preditivas e em tempo real. Com isso, oportuniza-se a otimização do setor
elétrico de baixa tensão em diferentes contextos e sistemas de maneira eficiente e sustentável,
reduzindo a necessidade de grandes intervenções ou investimentos.

1.3 DESAFIOS NA ANÁLISE DE DADOS DOS SISTEMAS ELÉTRICOS LEGADOS

Considerando o contexto socioeconômico dos setores legados, a implementação de mé-
todos estatísticos e soluções de Aprendizado de Máquina em infraestruturas já existentes, pode
ser limitada devido aos elevados custos associados à instalação de sistemas computacionais so-
fisticados. Além disso, equipamentos e unidades consumidoras pré-existentes podem não dispor
de recursos para aquisição de dados, ou mesmo bases de dados pré-estabelecidas para elabora-
ção de estudos aprofundados que corroborem com processos de auditoria energética.

Nesse sentido, a implementação de soluções em nuvem para análise e processamento de
dados em sistemas elétricos legados oferece diversos benefícios, contribuindo para uma gestão
mais eficaz, flexível e descentralizada do consumo de energia. As soluções em nuvem fornecem
um alto grau de escalabilidade, permitindo que sistemas de aquisição de dados se adaptem fa-
cilmente à expansão da infraestrutura ou ao aumento da demanda energética. Além disso, elas
oferecem acesso a recursos computacionais avançados, que podem corroborar com oportuni-
dades para a eficiência energética e favorecer a integração com outras tecnologias emergentes,
como Inteligência Artificial e IoT, para aprimorar ainda mais o monitoramento e a gestão de
energia (Long et al., 2022).

No entanto, embora a literatura apresente trabalhos voltados ao setor elétrico que pro-
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põem o uso de aplicações específicas de Inteligência Artificial baseadas em nuvem, essa alterna-
tiva pode não ser economicamente viável para todas as comunidades, incluindo as pré-existentes
(Bird et al., 2022). Os custos associados ao uso intensivo e constante de serviços em nuvem,
principalmente na aquisição cumulativa de parâmetros de ativos ou de unidades consumidoras,
podem tornar a manutenção de soluções inteligentes financeiramente onerosa em determinados
contextos. Para elucidar melhor a necessidade de recursos computacionais na implementação
de sistemas inteligentes, e contextualizar os recursos de hardware necessários para aplicações
específicas de inteligência artificial e análise de dados, exibe-se a Figura 2.

Figura 2. Recursos computacionais para implementação de soluções inteligentes.

Fonte: (Ray, 2022).

Conforme ilustrado, a implementação de soluções inteligentes baseadas em nuvem, ou
Cloud Computing, exige recursos avançados de hardware, geralmente direcionados à execução
de algoritmos de Aprendizado Profundo. EsSe hardware normalmente inclui unidades de pro-
cessamento de tensores (TPUs), arranjos de portas programáveis em campo (FPGAs), unidades
de processamento gráfico (GPUs) e unidades centrais de processamento (CPUs). Todos esses
elementos possuem alta capacidade computacional em termos de processamento, memória e
consumo energético, o que os torna dispositivos mais custosos de serem acessados.

Por outro lado, em aplicações inteligentes na borda (Edge Computing), os algoritmos de
Aprendizado de Máquina (Machine Learning, ML) requerem processos de otimização para que
possam ser embarcados em dispositivos com menor capacidade computacional, como smartpho-

nes, dispositivos móveis e computadores modulares. Estes últimos contam com unidades de
processamento conhecidas como System-on-a-Chip (SoC), que condensam todos os periféri-
cos necessários, incluindo memória e CPU, em um único semicondutor (Chandrasekaran et al.,
2022). Dado que esses dispositivos são geralmente alimentados por baterias, sua capacidade de
processamento é intencionalmente reduzida para aumentar a autonomia.

Geralmente, aplicações robustas de modelos de IA, requerem um volume substancial de
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dados. Neste contexto, as soluções de AIoT oferecem capacidade de comunicação em redes de
dados para o envio de informações pertinentes, além de recursos extras para análises estatísticas
e preditivas desses dados, incluindo a predição e a previsão de grandezas elétricas. Dependendo
dos recursos disponíveis para análise de parâmetros energéticos, estas soluções podem ser apli-
cadas tanto em ambientes de nuvem, quanto na borda no contexto das instalações legadas, o que
agrega valor em processos de otimização energética.

No entanto, dependendo do tamanho da amostra desejada e do volume de informações,
os dispositivos de sensoriamento podem consumir uma quantidade considerável de energia e lar-
gura de banda da rede na transmissão dos dados adquiridos (Schizas et al., 2022). É importante
enfatizar que os recursos de infraestrutura de redes de comunicação podem ser limitados em
sistemas pré-existentes e, para promover processos de comunicação nestas circunstâncias, deve-
se viabilizar a implantação das melhores topologias de rede para cada caso. Ademais, o envio
massivo de dados para um servidor local ou em nuvem atribui uma capacidade centralizadora
aos dispositivos que processam e recebem esses dados.

Em conformidade com os princípios dos sistemas distribuídos, nos quais a capacidade
computacional é partilhada para minimizar dependências e problemas com sistemas centraliza-
dos, seria proveitoso que os algoritmos de aprendizado operassem diretamente nos sensores no
contexto de AIoT (Hou et al., 2023). Isso viabilizaria predições e classificações em tempo real
de maneira distribuída nos setores energéticos, considerando que esses dispositivos, equipados
com câmeras, elementos ópticos, unidades de medição inercial (IMUs), microfones e outros
sensores ambientais, físicos e químicos, podem estar dispersos em um determinado ambiente.
Além disso, otimizaria o custo com recursos adicionais para processamento e comunicação em
redes de dados, possibilitando inferências de previsões em tempo real.

De acordo com o exposto na Figura 2, a tendência para estes cenários é a adoção do
paradigma de TinyML (Tiny Machine Learning), voltado para soluções preditivas operáveis
em plataformas microcontroladas (MCUS) de baixo custo, com capacidade reduzida de proces-
samento e armazenamento e associada com elementos sensores (Ray, 2022). Este campo de
atuação é recente e conta com fortes pesquisas para aplicações de redes neurais convolucionais
em modelos extremamente compactos e precisos, como por exemplo, a arquitetura "Bacalhau-
Net"descrita por Rosa et al. (2022), empregada para classificação de modulações de rádio.

É relevante destacar que o uso de modelos preditivos em microcontroladores requer pro-
cessos rigorosos para otimizar e compactar os modelos, tais como a quantização e a destilação
de conhecimento. A quantização simplifica os pesos e parâmetros das redes neurais, enquanto
a destilação de conhecimento reduz a complexidade do modelo, incluindo a remoção de cone-
xões neurais internas, com o intuito de diminuir o custo computacional (Garbay et al., 2022).
Embora essas estratégias sejam eficazes para implementar modelos inteligentes em plataformas
microcontroladas, elas podem resultar em uma perda de precisão e acurácia, o que agrega ainda
mais desafios para estudos neste campo de pesquisa (Rostami et al., 2024).
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Por outro lado, a literatura carece de trabalhos relacionados voltados para soluções de
TinyML no setor elétrico para predições energéticas por meio de redes de sensores. Houveram
notáveis exceções na previsão de energia fotovoltaica, demonstrando sua viabilidade nos micro-
controladores STM32F3 e ESP32-S3 nos trabalhos de Gruosso e Gajani (2022) e Hayajneh et al.
(2024), respectivamente. No entanto, ainda não foram obtidos trabalhos nesse âmbito aplicáveis
diretamente ao gerenciamento energético considerando a realidade de unidades consumidoras
inseridas no setor elétrico brasileiro ou outros cenários pré-existentes.

1.4 DISCUSSÃO DO PROBLEMA E MOTIVAÇÕES

No setor energético, soluções baseadas em IoT têm o potencial de automatizar proces-
sos de auditoria, permitindo o acompanhamento e o controle remoto de parâmetros elétricos de
interesse em unidades consumidoras. Utilizando dados coletados por redes de dados acessíveis,
modelos de Aprendizado de Máquina podem prever o consumo e a demanda de energia, viabi-
lizando a otimização no planejamento e alocação de recursos energéticos. No entanto, mesmo
com tecnologias avançadas disponíveis, o principal desafio abordado neste trabalho é a falta de
propostas para implementar essas tecnologias em instalações existentes, especialmente aquelas
com recursos limitados para processamento computacional, monitoramento e controle remoto.

No Brasil, unidades consumidoras que recebem alimentação em média e alta tensão
são tarifadas de forma binômica, com base no consumo e em uma demanda energética previa-
mente contratada com a distribuidora local (Rodrigues; Moraes; Berejuck, 2021). A demanda é
avaliada a cada 15 minutos e, se ultrapassada, pode resultar em multas, conforme a Resolução
Normativa ANEEL N◦ 1000/2021 (Agência Nacional de Energia Elétrica, 2021). Ferramentas
de previsão de demanda energética para os próximos 15 minutos, baseadas em dados de moni-
toramento dos circuitos de baixa tensão, poderiam prever excessos e permitir ações preventivas,
reduzindo o ônus financeiro aos consumidores de instalações residenciais, industriais e predi-
ais pré-existentes e, dessa forma, colaborando para o planejamento do fornecimento energético
pelas concessionárias. Apesar disso, conforme mencionado anteriormente na Seção 1.2, a litera-
tura carece de alternativas sistemáticas para implementar esses recursos nos sistemas elétricos
pré-existentes, para corroborar com o planejamento e a otimização energética.

Nesse cenário, estratégias de retrofit poderiam ser utilizadas para automatizar os siste-
mas pré-existentes com recursos computacionais, de controle e monitoramento remoto, preser-
vando suas infraestruturas. Para que essas estratégias fossem replicáveis, a padronização das
técnicas aplicáveis deveria ser sistematizada por meio de protocolos estabelecidos em um mo-
delo de referência, que incluísse a estratégia de retrofit em sua concepção. Isso viabilizaria a
modernização tecnológica das infraestruturas legadas e a melhoria dos processos de gerencia-
mento energético, promovendo sustentabilidade e eficiência energética.

O metamodelo SmartLVGrid, apesar de apoiar características semelhantes, não contem-
pla estratégias para gestão energética analítica ou preditiva, nem metodologias para implementa-
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ção de soluções de sensoriamento, controle e processamento computacional distribuído aplicá-
veis a este cenário. Nenhum modelo de referência no estado da arte e da técnica foi encontrado
com o objetivo de promover a atualização tecnológica de sistemas energéticos legados, nem
casos similares aplicáveis a instalações prediais ou fabris existentes no Brasil ou em outras
localidades emergentes tecnologicamente.

Portanto, destaca-se a necessidade de evoluir esse metamodelo para um framework, no
qual os conceitos e premissas do SmartLVGrid sejam utilizados sistematicamente no desenvol-
vimento e aplicação de soluções para modernização de infraestruturas legadas. Isso permitirá
uma análise enriquecida dessas infraestruturas por meio do monitoramento, controle e análise
preditiva das unidades consumidoras e seus respectivos circuitos, aprimorando os processos de
gestão energética. Isso inclui distribuir os custos computacionais entre elementos sensores e
servidores, considerando os recursos existentes e a infraestrutura de rede de dados disponível.
Não foi encontrado nenhum framework na literatura, que seja baseado em técnicas de retrofit,
conceitos de IoT, AIoT, ou TinyML, e que inclua a concepção de soluções inteligentes com-
putacionalmente distribuídas em borda, nuvem, nevoa, ou localmente, aplicáveis a diferentes
cenários no setor elétrico de baixa tensão.

1.5 HIPÓTESE

É possível conceber um framework que viabilize a criação de estratégias padronizadas
e sistematizadas para a modernização tecnológica de sistemas legados de diferentes naturezas
no setor elétrico de baixa tensão. A premissa é aproveitar ao máximo os recursos existentes, fa-
cilitando a gestão energética de infraestruturas com limitação de recursos, por meio de soluções
desenvolvidas para promover a automação, comunicação e o uso de recursos computacionais
distribuídos, conforme as necessidades das infraestruturas. Dessa forma, espera-se equiparar
tecnologicamente infraestruturas menos favorecidas com infraestruturas de ponta, por meio de
uma transição digital gradual com mínimos impactos socioeconômicos e estruturais, além de
viabilizar a gestão de energia de forma eficiente e sustentável pelo lado da demanda.

1.6 OBJETIVOS

O objetivo desta tese é conceber e validar o framework denominado SmartLVEnergy,
para modernizar e viabilizar o gerenciamento energético de sistemas elétricos legados de baixa
tensão e orientar a implantação, o desenvolvimento e a integração de soluções de IoT, AIoT e
computação distribuída por meio de estratégias sistemáticas de retrofit, evoluindo e expandindo
a aplicabilidade do metamodelo SmartLVGrid. Com isso, almeja-se otimizar e modernizar a
gestão energética pelo lado da demanda, em baixa tensão, integrando recursos preditivos, de
monitoramento e de controle remoto, e processamento computacional distribuído, aproveitando
ao máximo os recursos existentes em unidades consumidoras industriais, prediais e residenciais.
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Os objetivos específicos desta tese são listados a seguir:

• Orientar o desenvolvimento, o uso e a integração de plataformas de retrofit para sensoria-
mento e controle energético nos cenários existentes por meio de estratégias sistemáticas,
aproveitando ao máximo os recursos do legado.

• Assegurar que a interoperabilidade e os recursos de comunicação utilizados preservem as
redes de dados existentes, ou que se adaptem às necessidades das instalações legadas.

• Promover a integração de recursos computacionais descentralizados para processamento,
armazenamento e análise preditiva de dados energéticos, distribuídos em borda, névoa,
nuvem, ou localmente, conforme as necessidades e recursos das instalações existentes.

• Propor um framework para gestão energética inteligente, fundamentado no metamodelo
SmartLVGrid, para elaborar estratégias sistemáticas para implantação de soluções tecno-
lógicas que modernizem infraestruturas legadas de baixa tensão e preservem ao máximo
os recursos existentes.

1.7 ORGANIZAÇÃO DO DOCUMENTO DE TESE

A partir deste capítulo, este documento de tese está estruturado na seguinte sequência:

• No Capítulo 2, serão expostos os conceitos e os trabalhos relacionados que precedem
este trabalho de tese, destacando as lacunas de pesquisa identificadas e as definições do
framework proposto.

• No Capítulo 3, serão exibidas as contribuições de cada artigo publicado para atingir
os objetivos estabelecidos. Também serão reproduzidos na íntegra os respectivos artigos
que apresentam as experimentações realizadas, os resultados obtidos para validação da
proposta e as perspectivas futuras de cada pesquisa conduzida.

• No Capítulo 4, abordam-se as conclusões do trabalho a partir dos resultados obtidos, as
limitações da pesquisa e as perspectivas para trabalhos futuros a partir desta tese.

No Apêndice A, fez-se referência as publicações aceitas para o 15th IEEE/IAS Interna-
tional Conference on Industry Applications (INDUSCON 2023) e para o Simpósio Brasileiro
de Sistemas Elétricos 2023 (SBSE 2023), como contribuições parciais da pesquisa realizada ao
longo do desenvolvimento da tese.
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2 REVISÃO DE LITERATURA

Neste capítulo, serão apresentados os conceitos básicos de eficiência energética discu-
tidos nas experimentações dos artigos publicados como parte desta tese, com ênfase no cená-
rio energético brasileiro. Em seguida, serão apresentados os trabalhos relacionados ao tema
desta pesquisa, subdivididos conforme os tópicos abordados nas experimentações, que incluem
soluções e frameworks para gerenciamento energético, modernização tecnológica e recursos
preditivos no setor elétrico. Também serão expostas as definições preconizadas pelo metamo-
delo SmartLVGrid, utilizado como base para concepção do framework SmartLVEnergy. Vale
destacar que os artigos anexados como capítulos desta tese contêm detalhes adicionais com as
respectivas análises críticas sobre o estado da arte apresentado nesta seção.

2.1 EFICIÊNCIA ENERGÉTICA

A eficiência energética refere-se à otimização do consumo de energia, alcançada pela
aplicação de práticas comportamentais, econômicas e tecnológicas em sistemas e processos
(Godoi, 2011). O objetivo subjacente é minimizar o uso de energia sem comprometer a quanti-
dade ou a qualidade dos produtos e serviços produzidos, tanto no curto quanto no médio e longo
prazo. Para alcançar essa otimização, é fundamental compreender a demanda energética espe-
cífica de um sistema e, consequentemente, desenvolver planos eficazes para reduzir o consumo
de energia progressivamente.

Para evidenciar a relevância destes parâmetros, serão discutidos os conceitos de con-
sumo e demanda no contexto energético brasileiro, alvo das experimentações deste trabalho.

2.2 CONSUMO E DEMANDA DE ENERGIA

A quantificação do consumo de energia de uma unidade consumidora ou de um circuito
individual se dá pela totalização da energia útil ou reativa utilizada ao longo de um intervalo
de tempo. Em contrapartida, a demanda energética se estabelece como a média das potências
exigidas pelas cargas de uma unidade consumidora, um cálculo realizado em períodos de 15
minutos, conforme o padrão adotado no Brasil (Viana et al., 2012). No Brasil, existem duas ca-
tegorias nas quais as unidades consumidoras são enquadradas, denominadas Grupo A e Grupo
B, as quais diferem entre si quanto às características e padrões de consumo de energia (Agência
Nacional de Energia Elétrica, 2021). As unidades pertencentes ao Grupo A recebem energia
com tensões iguais ou superiores a 2,3 kV e são tarifadas tanto pelo consumo quanto pela de-
manda energética contratada (kW). Já as unidades classificadas como Grupo B são alimentadas
com tensões menores que 2,3 kV e sua tarifação se dá exclusivamente pelo consumo acumulado
de energia (kWh). As unidades do grupo A incluem instalações de médio e grande porte, como
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edifícios e indústrias. Por outro lado, instalações do grupo B incluem residências e instalações
de pequeno porte.

Embora haja fornecimento energético a partir da média tensão, grande parte das uni-
dades consumidoras opera seus ativos e cargas em baixa tensão, necessitando de recursos para
adequação dos níveis de tensão para níveis próprios para consumo. Este fato motivou a proposta,
considerando a oportunidade de automatizar o setor elétrico a partir dos sistemas de baixa ten-
são. Nesse contexto, o monitoramento e a projeção da demanda e do consumo de energia em
baixa tensão tornam-se essenciais para maximizar a economia de energia. O monitoramento
em tempo real permite que os gestores antecipem e atuem em situações de demanda excessiva,
minimizando despesas associadas ao excedente da demanda contratada. Ademais, a aplicação
de técnicas preditivas pode aprimorar ainda mais o processo decisório na gestão energética pelo
lado da demanda.

2.3 TRABALHOS RELACIONADOS

Nesta seção, abordam-se os trabalhos relacionados ao gerenciamento energético em
tempo real com soluções IoT e AIoT, além de estudos sobre a evolução tecnológica por meio
de técnicas e recursos de retrofit, middleware, interoperabilidade, metamodelos e frameworks

utilizados em processos de conversão tecnológica no setor elétrico.

2.3.1 Gerenciamento Energético no Paradigma de IoT

O monitoramento de energia desempenha um papel fundamental na gestão eficiente do
setor elétrico, permitindo a avaliação dos parâmetros elétricos da rede, do consumo de energia e
da qualidade energética. As soluções baseadas na Internet das Coisas (IoT) têm se mostrado re-
levantes nesse contexto, permitindo a implementação de recursos de monitoramento em tempo
real e remotamente em ambientes residenciais, prediais, industriais e metropolitanos (Anand et

al., 2022). Além disso, o paradigma de IoT facilita a interconexão de dispositivos dedicados ao
monitoramento energético e sua integração com sistemas computacionais, incluindo soluções
baseadas em nuvem.

Diversos estudos têm abordado soluções em tempo real baseadas em IoT para o mo-
nitoramento de energia. Por exemplo, Sultania, Mahfoudhi e Famaey (2020) viabilizaram o
monitoramento energético em tempo real por meio de dispositivos de hardware interconectados
em uma rede móvel baseada em Narrowband IoT (NB-IoT) para aplicações de Smart Grids. Da
mesma forma, Shivaraman et al. (2020) apresentaram uma solução descentralizada para moni-
toramento energético em tempo real a partir de dispositivos móveis. Govindarajan, Meikanda-
sivam e Vijayakumar (2020) realizaram um estudo de avaliação de desempenho de diferentes
soluções de IoT em tempo real. Por fim, Muralidhara, Hegde e Math (2020) e Tanasiev et al.
(2021) utilizaram soluções digitais para fornecer dados de consumo de energia em tempo real
aos usuários por meio de redes de dados sem fio.
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2.3.2 Modernização por Técnicas de Retrofit

A abordagem de retrofit envolve a atualização de sistemas antigos ou tecnologicamente
obsoletos, tornando-os atualizados e permitindo a adoção de novos recursos (Seri et al., 2021).
Essas técnicas são frequentemente aplicadas a estruturas de edifícios e dispositivos legados para
preservá-los e atualizá-los, requerendo um conhecimento específico dos elementos e infraestru-
turas existentes, para garantir interfaces adequadas e a implantação segura das funcionalidades
desejadas. Por exemplo, Martín-Garín et al. (2018) apresentaram soluções para a automação de
infraestruturas legadas usando estratégias de retrofit. Lall et al. (2022) propuseram uma arquite-
tura de retrofitting para equipamentos legados, utilizando sensores externos para coleta de dados
e análise em nuvem, demonstrando sua viabilidade em um ambiente de laboratório. Já o traba-
lho de Kumar, Srinivasan e Mani (2022) apresentou uma abordagem de retrofit para avaliar a
eficácia da integração de sistemas de sensoriamento baseados em IoT em edifícios inteligentes,
demonstrando sua viabilidade como ferramentas de avaliação de sustentabilidade.

2.3.3 Soluções de Middleware e de Interoperabilidade

As soluções de middleware fornecem conexões entre sistemas heterogêneos em níveis
físicos ou lógicos. Por outro lado, a interoperabilidade entre esses sistemas é um dos desafios
mais complexos no domínio IoT, tanto no desenvolvimento de software quanto de hardware
(Zhang et al., 2021; Mishra; Varma et al., 2021). Em certas situações, é necessário garantir a
interação entre sistemas diferentes, independentemente do protocolo de comunicação utilizado
(Rahman; Hussain, 2020; Lee et al., 2021). O uso de soluções de middleware e interoperabili-
dade facilita a escalabilidade de aplicações IoT, a conexão e interação com sistemas existentes,
reduzindo a complexidade da integração de novas tecnologias.

A literatura apresenta diversos estudos que exploram a convergência tecnológica por
meio de soluções de middleware e de interoperabilidade. Por exemplo, Araújo et al. (2018a) im-
plementou um modelo de middleware para Smart Grids a partir de uma estrutura de mediação
baseada na modernização de medidores antigos para monitorar parâmetros elétricos em Redes
de Sensores Sem Fio (WSNs). O mesmo grupo de autores propõe uma metodologia para a inte-
roperabilidade de medidores antigos em Smart Grids usando WSNs em (Araújo et al., 2018b).
Fortes et al. (2019) apresentaram um modelo de sistema para viabilizar a interoperabilidade e
interconexão de dispositivos em um campus universitário, servindo como demonstração para
futuras aplicações em Smart Cities. Além disso, Koo e Kim (2022) propuseram um framework

de interoperabilidade, incluindo um sistema com recursos de IoT que facilita a identificação e o
uso de serviços entre plataformas heterogêneas, convertendo caminhos de recursos específicos
em formatos de solicitação para cada plataforma. Por fim, Ali et al. (2023b) propuseram um
novo modelo de middleware para cidades inteligentes que integra IoT e Big Data para superar
desafios como heterogeneidade de dispositivos e segurança, com sua eficácia comprovada por
testes de desempenho e equilíbrio de carga.
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2.3.4 Metamodelos em Sistemas Tecnológicos

Assim como os modelos representam uma realidade, os metamodelos são utilizados
para criar novas linguagens de modelagem ou expandir as existentes (Jeusfeld, 2009). Eles
desempenham um papel importante na análise, criação e desenvolvimento de modelos de inte-
gração de sistemas, incluindo a integração de sistemas antigos com interfaces de mediação e
interoperabilidade (Mohanty, 2015). Assim, infere-se que os metamodelos possam facilitar a
transição tecnológica de sistemas pré-existentes.

Na literatura, existem estudos que relatam casos de sucesso utilizando a abordagem
de metamodelos para evolução de sistemas tecnológicos. Por exemplo, Cicirelli et al. (2016)
desenvolveram um metamodelo para a interação de dispositivos em ambientes inteligentes por
meio da modelagem de relações e atributos. Hassine, Khayati e Ghezala (2017) elaboraram
um metamodelo IoT, capaz de transformar soluções de software escritas em uma linguagem de
modelagem específica para uma aplicação em Java, visando padronizar o desenvolvimento de
forma orientada. Abdelouahid, Marzak e Sae (2018) também propuseram um metamodelo IoT
para conectar objetos heterogêneos com alto nível de interoperabilidade. Já Gomes et al. (2017)
introduziram um meta sistema para facilitar a transição de sistemas antigos de distribuição de
energia elétrica para o paradigma de Smart Grids, por meio de estratégias de modernização. O
metamodelo SmartLVGrid, derivado desse meta sistema, é apresentado em Gomes et al. (2019),
fornecendo primitivas e protocolos para o uso de soluções de mediação e interoperabilidade por
meio da modernização de sistemas elétricos antigos de baixa tensão. Esse metamodelo pode
ser estendido a qualquer nicho tecnológico, incluindo o setor elétrico. Não foram encontradas
outras abordagens similares na literatura. Portanto, o metamodelo SmartLVGrid será utilizado
como alicerce para concepção do framework proposto, SmartLVEnergy, para a modernização
de sistemas legados de baixa tensão. A seguir, serão apresentadas a definição e as características
do metamodelo SmartLVGrid.

2.3.5 O metamodelo SmartLVGrid

O SmartLVGrid, ou Smart Low Voltage Grids, consiste de um metamodelo orientado
à conversão de circuitos de baixa tensão pré-existentes para o paradigma de Smart Grids em
sistemas de distribuição de energia legados (Gomes et al., 2019). O modelo se baseia em uma
série de protocolos projetados para incrementar funcionalidades de controle, supervisão e co-
municação em sistemas existentes por meio de estratégias de retrofit. O SmartLVGrid opera
tanto a nível local, próximo ao consumidor, quanto a nível central, em centros de controle de
empresas de energia. A distinção geográfica desses níveis demanda o uso de interfaces de redes
locais (LANs) ou metropolitanas (MANs) para estabelecer a conexão lógica entre os sistemas
legados, e os centros de supervisão e controle (SCC). A estrutura de protocolos adotada pelo
modelo SmartLVGrid é demonstrada na Figura 3.
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Figura 3. A pilha de protocolos do metamodelo SmartLVGrid.

Fonte: (Fernandes et al., 2022).

Como mostra a Figura 3, o metamodelo SmartLVGrid engloba as camadas de intero-
perabilidade e de middleware. De acordo com a estrutura de protocolos, a modernização deve
ser feita na infraestrutura existente, em pontos de interface, ou Points of Interface (PoI), onde
ocorrem as interações. A camada de middleware se conecta à camada legada através de um nó
de acoplamento e interação, conhecido como CIN (Coupling and Interaction Node). Esse en-
lace facilita a execução de microprocessos, denominados Funções de Retrofitting de Domínio
(DRFs), que são uma das categorias de primitivas operacionais (Operational Primitives, OPs)
definidas pelo SmartLVGrid.

As primitivas operacionais são descritas como processos antes realizados por operado-
res de campo no sistema elétrico legado que passam a ser executados através dos nós de acopla-
mento e interação e pelos nós de serviço (Service Nodes, SN), unidades lógicas responsáveis
pela interface entre as camadas de middleware e de interoperabilidade. As funções de suporte
computacional (CSFs) implementam serviços de processamento e armazenamento na camada
de middleware. Por outro lado, as funções de suporte entre domínios (ISFs) realizam os proces-
sos de comunicação na mesma camada. A seguir, serão detalhadas as camadas de middleware e
de interoperabilidade, que compõem o metamodelo SmartLVGrid.

Localizada na base da estrutura do metamodelo, a camada de middleware é implemen-
tada fisicamente através de dispositivos de retrofit, compostos por hardware embarcado, senso-
res e atuadores que se adequam às DRFs a serem executadas. Esta camada também é conhecida
como Automation and Communication Unit (ACU) e sua representação é retratada na Figura 3.

O modelo representativo do ACU conta com três portas: "In/Out", "Get"e "Run". As
ISFs operam os processos e serviços de comunicação através da porta "In/Out"do ACU. A porta
"Get"implementa a coleta de dados obtidos por meio de DRFs associadas a medições e detecção.
Por último, a porta "Run"atua com DRFs de controle sobre a camada legada. Vale destacar que
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as rotinas de processamento e armazenamento de dados do ACU são implementadas pelas CSFs,
juntamente com outras funções de suporte computacional.

A camada de interoperabilidade é incumbida de assegurar um conjunto de normas, hie-
rarquias e a infraestrutura necessária para a implementação de uma rede de ACUs que interaja
com estes dispositivos e aproveite suas funcionalidades. Nesta camada, cada ACU é classificado
conforme sua posição na hierarquia do metamodelo SmartLVGrid. Os ACUs que supervisionam
e monitoram outros ACUs e, opcionalmente, executam DRFs são chamados de coordenadores
(coordinators). Os ACUs que executam DRFs na camada legada e são supervisionados pelos co-
ordenadores são chamados de operadores (operators). Na eventualidade de expansão do sistema
elétrico em operação, o que implica maior capacidade computacional do ACU coordenador, o
metamodelo prevê subcoordenadores (subcoordinators) para cada grupo de ACUs operadores.
Portanto, os subcoordenadores estarão ligados a um único ACU coordenador que se comuni-
cará com o centro de controle para transmitir informações do sistema. É importante ressaltar,
que cada ACU tem sua própria unidade de processamento, possibilitando o processamento dis-
tribuído do sistema a partir da modernização de cada ativo legado.

A seguir, apresentamos os trabalhos relacionados com previsão e predição de demanda
e consumo energético com métodos estatísticos e modelos de aprendizagem de máquina, que
corroboram com recursos preditivos para aprimorar o processo de tomada de decisão, o geren-
ciamento e o controle de carga em sistemas elétricos.

2.3.6 Previsão de Demanda Energética com Métodos Estatísticos

A previsão de demanda energética e do consumo de energia é um tema amplamente
pesquisado na literatura. Os métodos estatísticos mais comumente utilizados nesse contexto são
baseados em técnicas autorregressivas, sendo os mais conhecidos o Autoregressive Integrated

Moving Average (ARIMA) e o Seasonal ARIMA (SARIMA). Por exemplo, os autores Zieliska-
Sitkiewicz et al. (2021), utilizaram o método SARIMA para prever o consumo energético na
Polônia em diferentes escalas de tempo. O trabalho de Velasquez et al. (2022), utilizou-se do
método ARIMA para estimar a demanda energética no Brasil e avaliar sua previsibilidade com
dados reais. Já Silva et al. (2022), empregaram o método SARIMA para prever o consumo
de energia no setor industrial brasileiro em curto prazo. Esses métodos estatísticos permitem a
previsão da demanda energética futura com base em valores passados de demanda, utilizando
técnicas de reordenação dos dados presentes nos conjuntos de dados. Além disso, trabalhos
como os de Shah, Jan e Ali (2022) e Manno, Martelli e Amaldi (2022) apresentaram o método de
janela deslizante e modelos autorregressivos para prever a demanda energética de curto prazo.

2.3.7 Previsão de Demanda Energética com Aprendizado de Máquina

Embora os métodos estatísticos sejam eficazes na previsão de séries temporais com pa-
drões de sazonalidade e tendência bem definidos, eles podem ser limitados quando a série tem-
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poral apresenta padrões mais complexos e não-lineares. Nesses casos, os métodos de Apren-
dizado de Máquina podem oferecer melhores resultados (Rajula et al., 2020). Por exemplo,
Shirzadi et al. (2021) aplicaram a regressão de Floresta Aleatória (Random Forest Regression,
RFR) e o SVR para prever o consumo de eletricidade em médio prazo com base em um conjunto
de dados do Canadá. Pavlicko, Vojteková e Blaeková (2022) propuseram modelos baseados em
Redes Neurais Artificiais para prever o consumo de energia elétrica na Eslováquia. Os autores
Aisyah et al. (2022) utilizaram modelos de Regressão de Vetor de Suporte (Support Vector Re-

gression, SVR) e Regressão Generalizada (General Regression Neural Network, GRNN) para
prever o consumo de energia na Indonésia. Arjomandi-Nezhad et al. (2022) relataram o uso de
métodos de Ensemble Learning, como o regressor XGBoost (XGBR) e o RFR, para prever a
demanda de energia no dia seguinte durante o período da pandemia.

Em casos de grande volume de dados, relações não-lineares, presença de ruídos e com-
portamentos não estacionários, as Redes Neurais Profundas podem ser uma alternativa ao Apren-
dizado de Máquina. No entanto, é importante ressaltar que essas redes exigem mais recursos
computacionais e são mais complexas em comparação com os modelos supervisionados de
Aprendizado de Máquina. É comum que os autores utilizem Redes Neurais Recorrentes, espe-
cialmente as redes LSTM, em conjunto com técnicas de janela deslizante (Elkamel et al., 2020;
Mustaqeem; Ishaq; Kwon, 2021; Bashir et al., 2022; Torres; Martínez-álvarez; Troncoso, 2022).

2.3.8 Previsão de Demanda Energética no Contexto de Instalações Prediais

Os trabalhos mencionados anteriormente contribuem para o estado da arte da previsão
de demanda e consumo energético. No entanto, esses trabalhos focaram em previsões de inte-
resse de companhias energéticas, localidades regionais ou nacionais, não estando diretamente
relacionados com instalações prediais e industriais. Portanto, buscou-se trabalhos na literatura
que investigassem aplicações de previsão de demanda voltadas para instalações prediais.

Eseye et al. (2019) utilizaram o modelo de perceptron multicamadas para prever a de-
manda de edifícios residenciais, educacionais e de uso misto para as próximas 24 horas. Já Na-
bavi et al. (2021) realizaram a previsão de demanda e geração de fontes renováveis de energia
elétrica (fotovoltaica e eólica) em 5 residências inteligentes. Esse estudo utilizou redes LSTM
como modelos de previsão e cerca de 11 meses de dados coletados. Mounter et al. (2021) pro-
puseram um estudo para auxiliar gestores e técnicos com previsões energéticas de longo prazo
para um edifício da Universidade de Teesside (Reino Unido), utilizando diferentes técnicas de
aprendizado de máquina, como regressão linear, SVR e redes neurais. Os autores Durand, Agui-
lar e R-Moreno (2022) realizaram a previsão de demanda utilizando redes LSTM aplicadas ao
contexto de Smart Buildings. No trabalho de Mariano-Hernández et al. (2022), foram utilizados
dados de consumo energético de contadores inteligentes instalados em subestações de edifícios,
que registraram o consumo de todo o edifício em intervalos de 15 minutos. A partir desses da-
dos, os autores analisaram a integração de métodos de previsão de consumo para melhorar a
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eficiência energética em instalações prediais. O trabalho de Lee, Kim e Gu (2023) mostrou a
previsão de energia em uma empresa de alimentos com base em dados obtidos do sistema de
gestão de energia da fábrica, utilizando os métodos SVR e perceptron multicamadas.

2.3.9 Soluções de AIoT para Gerenciamento Energético

Também foram selecionados alguns trabalhos que incorporam o conceito de AIoT para
análise de energia elétrica, no intuito de apresentar soluções de Inteligência Artificial basea-
das em dados energéticos obtidos de soluções digitais de IoT. Por exemplo, Das, Zim e Sarkar
(2021) desenvolveram um sistema de controle de energia com base em um hardware que uti-
liza comunicação Wi-Fi, relés, sensores de corrente e armazenamento em nuvem, utilizando o
algoritmo de árvore de decisão para auxiliar em tomadas de decisão quanto ao gerenciamento
de consumo energético monitorado. De forma similar, Arivukkody, Gokulakannan e Kalpana
(2022) apresentaram um dispositivo de hardware para monitorar a presença humana e o con-
sumo energético em unidades consumidoras residenciais. Os autores também utilizaram um
modelo de árvore de decisão sobre uma base de dados armazenada em nuvem para determinar
o desperdício de energia. No trabalho de Salama e Abdellatif (2022), redes neurais foram uti-
lizadas para prever o consumo de energia com base em dados coletados por sensores de um
sistema residencial, permitindo desligar um ou mais dispositivos com o objetivo de reduzir o
consumo mensal. Já Zhu, Ota e Dong (2022), implementaram uma plataforma de Inteligência
Artificial para dispositivos de borda para melhorar a eficiência energética de tarefas de edge

computing em soluções de AIoT.

2.3.10 Frameworks AIoT para Gerenciamento Energético

Apesar das soluções exibidas na Subseção 2.3.9, outros estudos adotam uma abordagem
mais ampla através de frameworks voltados ao gerenciamento inteligente de energia aplicáveis
em diversos setores. Estes frameworks orientam ações para desenvolver e implantar estratégias
de gerenciamento energético com elementos sensores, atuadores, análise preditiva processa-
mento distribuído de informações, para atender outros casos e sistemas similares.

Golpîra e Bahramara (2020) propuseram um framework de gerenciamento de energia
aproveitando tecnologias baseadas em nuvem e IoT para redes de distribuição de energia em
Smart Cities. Eles reduziram os custos operacionais otimizando os padrões de consumo de carga
e a geração de energia alternativa com base nos preços de mercado. O trabalho de Ullah et al.
(2021) expôs um framework de gerenciamento de energia para o setor industrial utilizando IoT e
Big Data para processamento, armazenamento e visualização de dados. Essa abordagem forne-
ceu uma metodologia flexível para que as indústrias escolham a plataforma IoT mais adequada
com base em suas necessidades. Han et al. (2021) propuseram um framework de gerenciamento
de energia inteligente para Smart Grids, residências e indústrias, incorporando soluções de dis-
positivos de borda para gerenciamento de energia em tempo real em comunicação com um
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centro de supervisão baseado em nuvem. Já Hashmi, Ali e Zafar (2021) enfatizaram a impor-
tância do gerenciamento de energia industrial ao introduzir um framework baseado em recursos
de IoT, análise de dados e Big Data para adquirir dados de energia.

Outros trabalhos demonstraram abordagens práticas para validar os frameworks propos-
tos utilizando soluções baseadas em sensores, comunicação e controle. Saleem et al. (2022),
por exemplo, propuseram um framework para gerenciamento de energia do lado da demanda
em Smart Grids usando recursos de IoT e Nuvem para gerar e compartilhar remotamente perfis
e cargas de consumidores com empresas de energia ou consumidores. Similarmente, Ullah et al.
(2022) implementaram uma solução de middleware para gerenciamento de energia do lado da
demanda, focando na interoperabilidade dos recursos de monitoramento e controle de energia.
Onile et al. (2024) apresentaram um framework para gerenciamento de energia, oferecendo ser-
viços de recomendação e avaliação de consumidores e previsão de comportamento de carga para
melhorar a eficiência energética. Por fim, Jha et al. (2024) desenvolveram um framework para
dispositivos de gerenciamento de energia inteligente integrando recursos de software, hardware
e comunicação com medidores de energia. Capacidades de previsão de demanda de energia
foram incorporadas usando algoritmos de Aprendizado de Máquina

Em cenários onde o uso de elementos de sensores inteligentes para processamento de
dados em tempo real é considerado, as soluções TinyML oferecem vantagens econômicas, de
segurança, privacidade, largura de banda, previsão offline e latência. No entanto, nenhum dos
trabalhos citados incorporaram TinyML em seus frameworks propostos.

2.4 LACUNAS NA LITERATURA

Embora os estudos referenciados tenham enriquecido significativamente o estado da arte
e da técnica em suas respectivas áreas de interesse, identificou-se várias lacunas na literatura
atual. Estas lacunas, que serão detalhadamente exploradas e abordadas no contexto deste traba-
lho de tese, são particularmente relevantes dado o cenário energético das unidades consumido-
ras pré-existentes, incluindo as que se fazem presentes no setor elétrico brasileiro. Enumeramos
essas lacunas nos tópicos seguintes:

1. Inexistência de trabalhos que empreguem estratégias sistemáticas de retrofit para atualizar
sistemas legados de baixa tensão, utilizando soluções IoT e AIoT adaptadas às necessida-
des das instalações, com o objetivo de otimizar a eficiência energética.

2. Escassez de metamodelos, frameworks ou arquiteturas genéricas para padronizar e facili-
tar a implementação de recursos de automação, processamento distribuído e comunicação,
por meio de retrofit, para viabilizar a gestão de energia em sistemas elétricos legados.

3. Limitações das propostas quando aplicadas a outros casos e sistemas devido ao foco em
contextos particulares e à falta de estratégias sistemáticas, dificultando a escalabilidade e
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a interoperabilidade com as tecnologias emergentes.

4. Falta de propostas de soluções de middleware para estabelecer interfaces físicas e lógi-
cas com sistemas legados ou recursos que facilitem a interoperabilidade de dispositivos
sensores e atuadores no contexto de eficiência energética.

5. Escassez de bases de dados e de propostas para elaboração de bases de dados que regis-
trem parâmetros energéticos de instalações pré-existentes e seus respectivos circuitos.

6. Falta de investigações que abordem sobre soluções AIoT que permitam análises energéti-
cas preditivas a nível de circuito dentro das infraestruturas pré-existentes.

7. Falta de soluções baseadas em TinyML ou em computação em borda para análises ener-
géticas preditivas em instalações legadas e seus respectivos circuitos.

Na próxima seção, serão expostas as premissas e definições do framework proposto, que
contribuirá para completar as lacunas identificadas no estado da arte atual.

2.5 O FRAMEWORK SMARTLVENERGY

Para preencher as lacunas relacionadas ao estado da arte atual, propõe-se o framework

denominado de SmartLVEnergy, do inglês Smart Low-Voltage Energy. A proposta deste fra-

mework consiste na otimização dos sistemas de energia de baixa tensão com protocolos e inter-
faces adaptáveis, viabilizando o gerenciamento avançado de energia em infraestruturas legadas.
Isto é promovido através da integração de plataformas de retrofit baseadas em elementos sen-
sores e atuadores, comunicando-se através de protocolos de comunicação compatíveis com a
infraestrutura existe ou mais viável ao cenário existente.

O desenvolvimento e implantação das plataformas de retrofit segue as premissas da mo-
delagem dos ACUs, descrita no metamodelo SmartLVGrid, e, portanto, atuam com middlewa-

res realizando a interface entre as entidades legadas e as plataformas digitais de supervisão e
controle. Desse modo, as plataformas de retrofit podem incorporar e implementar as chamadas
DRFs, ISFs e CSFs, primitivas operacionais do SmartLVGrid.

Na prática, o SmartLVEnergy implementa as definições e protocolos do metamodelo
SmartLVGrid para a concepção de estratégias sistemáticas de soluções IoT e AIoT no contexto
energético. Enquanto o metamodelo define padrões e diretrizes essenciais para a integração,
expansão e interoperabilidade das tecnologias empregadas, o SmartLVEnergy organiza e pa-
droniza a implementação de soluções digitais, garantindo adaptabilidade e escalabilidade para
diversos cenários e necessidades energéticas. Dessa forma, o SmartLVEnergy se caracteriza
como um framework, por oferecer uma estrutura robusta e flexível que orienta e facilita o de-
senvolvimento e a integração de recursos eficientes para a gestão energética.
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No entanto, com a proposta de expansão da aplicabilidade do referido metamodelo, as
CSFs, que gerenciam recursos computacionais como armazenamento e processamento de infor-
mações, também incorporam capacidades de processamento de borda, como modelos prediti-
vos baseados em aprendizado de máquina. Este aspecto, não delineado no metamodelo original,
define as funcionalidades de processamento ou preditivas podem ser integradas por meio das
plataformas de retrofit. Dessa forma, parte do processamento realizado em um servidor local,
na nuvem ou na névoa, pode ser executado na borda, mostrando o potencial deste framework

para distribuição e descentralização dos recursos computacionais existentes para gerenciamento
energético dos sistemas legados, não apenas na rede de distribuição de baixa tensão, mas nos
setores prediais, residenciais e industriais, transcendendo o escopo do SmartLVGrid.

O framework SmartLVEnergy destaca-se por sua capacidade de garantir a compatibi-
lidade e o máximo aproveitamento da rede e das instalações elétricas, enquanto aproveita o
potencial da computação em Nuvem, Névoa e Borda, incluindo aplicações TinyML para geren-
ciamento de energia. O SmartLVEnergy, portanto, marca um avanço significativo, preenchendo
a lacuna entre o monitoramento, controle em tempo real e análises preditivas de ponta, baseadas
em soluções práticas e sustentáveis voltadas ao gerenciamento de energia de sistemas legados
de baixa tensão. Essa abordagem melhora a eficiência energética e alinha-se com os objetivos
globais de sustentabilidade (Bibri et al., 2024), avançando a literatura na transformação digital
das práticas de gerenciamento de energia. A Figura 4 ilustra a pilha do SmartLVEnergy. Mais
detalhes sobre seus componentes são discutidos nas subseções 2.5.1, 2.5.2 e 2.5.3.

Figura 4. A pilha de protocolos do SmartLVEnergy.1 (©2024 IEEE)

Fonte: (Fernandes et al., 2024).

1 ©2024 IEEE. Reprinted, with permission, from R. Fernandes, C. Costa, R. Gomes and N. Vilaça, "SmartL-
VEnergy: An AIoT Framework for Energy Management through Distributed Processing and Sensor-Actuator
Integration in Legacy Low-Voltage Systems,"in IEEE Sensors Journal, in May, 2024.
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2.5.1 Recursos e Funcionalidades Computacionais

O framework SmartLVEnergy emprega um conjunto integrado de funcionalidades e re-
cursos de computacionais distribuídos e descentralizados para implementar e melhorar a efici-
ência operacional dos sistemas de supervisão e controle. Ao aproveitar a computação local, o
framework garante resposta imediata e privacidade de dados para tarefas de análise e controle
em tempo real, minimizando a latência e reduzindo a dependência de redes externas. A com-
putação em névoa aprimora ainda mais essa capacidade, trazendo serviços de computação, ar-
mazenamento e rede mais próximos aos dispositivos finais, melhorando o gerenciamento de da-
dos e a confiabilidade de aplicativos em sistemas distribuídos com latência reduzida. Enquanto
isso, a computação em nuvem oferece armazenamento expansivo e poder de processamento,
permitindo aos centros de supervisão e controle o compartilhamento, processamento e análise
avançada de informações.

2.5.2 Protocolos de Rede e Funcionalidades de Comunicação

Este componente é dedicado aos protocolos que permitem a interoperabilidade entre as
plataformas de retrofit. Esses protocolos facilitam o envio de solicitações e o recebimento de
respostas dos centros de supervisão e controle. Juntamente com a estrutura e encapsulamento
das mensagens transmitidas, os protocolos devem ser utilizados de acordo com os padrões de
comunicação existentes ou adequados para maximizar o uso da infraestrutura de rede de comu-
nicação pré-existente. Além disso, essa camada também habilita funcionalidades de aplicação,
como atualizações de firmware over-the-air (OTA) para plataformas de retrofit.

2.5.3 Funcionalidades de Borda

Este componente delineia a capacidade de processamento e predição a ser implementada
através de plataformas de retrofit. Isso inclui a integração de tarefas de processamento com
dispositivos sensores e atuadores, e a execução ou treinamento de modelos de aprendizado
de máquina em proximidade com a camada legada. Essa proximidade aprimora o processo
de tomada de decisão, pois permite ação direta sem depender das infraestruturas de rede para
retransmitir dados para o centro de controle e supervisão, que normalmente requer acesso à
internet e processamento adicional de dados. Além de reduzir a latência, essa camada oferece
recursos para implementar funcionalidades de AIoT na borda para facilitar a implantação de
soluções de TinyML, avançando o gerenciamento inteligente de energia em instalações legadas.
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3 ARTIGOS PUBLICADOS

3.1 CONTRIBUIÇÕES DOS ARTIGOS PARA O FRAMEWORK PROPOSTO

Para conceber e validar o framework SmartLVEnergy conforme a hipótese e os objetivos
estabelecidos, as experimentações realizadas na pesquisa se concentraram em unidades consu-
midoras prediais e industriais brasileiras com características legadas, regidas pela ANEEL. Va-
lidadas por meio de três artigos científicos publicados, essas experimentações basearam-se em
modelos sistemáticos que impulsionaram a concepção do framework proposto, para desenvolver
e implantar clusters de monitoramento com sensores e recursos computacionais para visualiza-
ção, análise e predição de dados de demanda de energia. Utilizando redes de dados e interfaces
físicas e lógicas padronizadas, e compatíveis com as infraestruturas existentes, garantiu-se a in-
teroperabilidade dos sistemas legados com soluções tecnologicamente emergentes e promoveu-
se a gestão energética nessas instalações, conforme diretrizes da ANEEL, por meio de recursos
computacionais alocados em borda, localmente e em nuvem.

O Artigo 01, denominado "A Retrofit Strategy for Real-Time Monitoring of Building

Electrical Circuits Based on the SmartLVGrid Metamodel", descreve uma estratégia sistemá-
tica de retrofit para incorporar ferramentas de gestão energética em instalações prediais legadas,
em conformidade com os padrões da ANEEL. O trabalho foca na capacidade do monitoramento
em tempo real dos circuitos, a partir do retrofit de quadros de distribuição de energia elétrica.
Os dispositivos responsáveis pelas interfaces físicas e lógicas para aquisição de dados da in-
fraestrutura existente foram desenvolvidos com base na adaptação de primitivas operacionais
inspiradas nas pilhas de protocolos do metamodelo SmartLVGrid, viabilizando a expansão da
proposta para outros casos e sistemas na esfera da gestão energética. Esta iniciativa englobou
o desenvolvimento de hardware, firmware e soluções de comunicação sem fio em barramento,
bem como uma aplicação de software hospedada em nuvem, projetados para se ajustar e validar
as premissas do modelo proposto. Por meio disso, realizou-se um estudo de caso para mitigação
e redução da demanda energética da instalação, para reduzir ultrapassagens de demanda contra-
tada junto a concessionária de energia da unidade consumidora em estudo. Resultados parciais
deste trabalho também foram publicados no trabalho "Uma estratégia de retrofit para detecção

de ultrapassagens de demanda em sistemas prediais legados", referenciado no Apêndice A.

Em seguida, o Artigo 02, intitulado "A Demand Forecasting Strategy Based on a Retrofit

Architecture for Remote Monitoring of Legacy Building Circuits", surge como uma continuação
refinada do artigo anterior. O trabalho foca em uma estratégia AIoT sistemática, baseada em
retrofit e também inspirada em adaptações no metamodelo SmartLVGrid, para monitoramento
e predição das demandas de energia de uma instalação legada e dos circuitos que a compõem.
Neste trabalho, houve um aprimoramento no hardware de monitoramento em relação ao Artigo
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01, tornando-o mais robusto. A pesquisa foi realizada em uma instalação fabril pré-existente.
Uma das contribuições deste trabalho foi a integração de uma rede sem fio Peer-to-Peer (P2P)
adaptada para o monitoramento de circuitos em quadros legados de distribuição industrial. Ali-
nhado às normativas da ANEEL, o trabalho apresenta uma ferramenta para previsões de de-
manda de curto prazo, para os próximos 15 minutos, para antever possíveis picos de demanda
e evitar onerações adicionais com ultrapassagens de demanda contratada. Durante o estudo, foi
possível avaliar modelos de previsão de séries temporais de demanda energética, desde a etapa
de pré-processamento de dados até a otimização e análise de resultados. A metodologia utili-
zada na otimização dos modelos foi validada no trabalho A Bayesian Optimization Approach

of Ensemble and Decision Tree Learning Applied to Industrial Energy Consumption Prediction,
referenciado no Apêndice A. Também foi proposta uma alternativa para obter dados energéticos
de unidades consumidoras legadas, abordando uma lacuna pouco explorada na literatura.

Apesar das contribuições substanciais dos Artigos 01 e 02 em preencher parte das la-
cunas identificadas no estado da arte, o metamodelo SmartLVGrid já estava sendo expandido
e implementado além de sua concepção inicial, para aplicação e desenvolvimento de soluções
específicas no domínio da gestão energética, convergindo as estratégias propostas para caracte-
rização de um framework, segundo as definições de (Josey, 2016). Dessa forma, o Artigo 03,
intitulado "SmartLVEnergy: An AIoT Framework for Energy Management through Distributed

Processing and Sensor-Actuator Integration in Legacy Low-Voltage Systems", aborda as defini-
ções e conceitos deste framework e fundamenta as propostas dos trabalhos anteriores em um
escopo ainda mais abrangente. O SmartLVEnergy não apenas incorporou as primitivas do me-
tamodelo SmartLVGrid, mas também facilitou a implementação e aplicação dessas primitivas,
contribuindo para a redução da dependência de infraestrutura centralizada, ao alocar recursos
de computação distribuída para infraestruturas legadas, permitindo um gerenciamento de ener-
gia descentralizado com capacidades de previsão, sensoriamento, controle, armazenamento e
processamento de dados. Este estudo introduziu inovações, como previsões de demanda de
energia de curto prazo realizadas diretamente nos sensores, em conformidade com os padrões
da ANEEL, permitindo o processamento distribuído de informações críticas em instalações
existentes com sensores adaptados. Assim, o framework ofereceu uma via sistemática para o
desenvolvimento de soluções TinyML aplicáveis a uma ampla gama de sistemas elétricos de
baixa tensão em diversos ambientes de forma sustentável e econômica, preservando a infraes-
trutura existente e servindo como modelo para viabilizar a gestão sustentável de energia em
diversos contextos.

A Figura 5 exibe as contribuições da pesquisa para alcançar os objetivos esperados,
correlacionando-as com a evolução do framework SmartLVEnergy a partir de cada trabalho
publicado que compõe esta tese.
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Figura 5. Contribuições das publicações para evolução do SmartLVEnergy.

Fonte: Autoria Própria.

A partir da próxima seção deste capítulo, serão exibidas as publicações que compõem
os resultados e experimentações desta tese para validação e concepção do framework SmartL-
VEnergy, bem como as perspectivas futuras da pesquisa conduzida em cada um dos trabalhos.
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3.2 ARTIGO 01 - A RETROFIT STRATEGY FOR REAL-TIME MONITORING OF BUIL-
DING ELECTRICAL CIRCUITS BASED ON THE SMARTLVGRID METAMODEL

3.2.1 Resumo

O paradigma da Internet das coisas (IoT) promove o surgimento de soluções para via-
bilizar estratégias de gerenciamento de energia. No entanto, essas soluções podem favorecer o
descarte ou substituição de sistemas obsoletos, mas ainda necessários. Assim, uma proposta que
preconize o retrofit de sistemas pré-existentes seria uma alternativa para implementar o monito-
ramento e gerenciamento de energia. Nesse sentido, este trabalho apresenta uma estratégia de
monitoramento de parâmetros elétricos em tempo real por meio de soluções IoT, aplicações hos-
pedadas em nuvem e retrofitting de sistemas elétricos prediais legados. Nesta implementação,
adaptamos o metamodelo SmartLVGrid para sistematizar a inserção de recursos de monitora-
mento remoto em circuitos de baixa tensão. Para isso, desenvolvemos plataformas embarcadas
para monitoramento dos circuitos de um quadro elétrico predial e uma aplicação para visualiza-
ção e armazenamento de dados na nuvem. Com isso, foi realizado o monitoramento remoto da
unidade consumidora em relação à demanda de energia, fator de potência e eventos de variações
de parâmetros elétricos nos circuitos do quadro de distribuição legado. Também realizamos um
estudo de caso com o sistema proposto, identificando eventos de ultrapassagem de demanda
contratada na unidade consumidora, mitigando a contribuição individual dos circuitos da insta-
lação neste processo. Portanto, nossa proposta apresenta uma alternativa para viabilizar a gestão
energética e aproveitamento máximo dos recursos existentes.

3.2.2 Revista

• Energies - MDPI (ISSN: 1996-1073).

• Qualis A2 (2017-2020), JCR: 3.0, CiteScore: 6.2.

• Website: www.mdpi.com/journal/energies.

• Link do trabalho: www.mdpi.com/1996-1073/15/23/9234.

3.2.3 Corpo Editorial

• Prof. Dr. Rongyue Zheng. Faculty of Civil and Environmental Engineering. Ningbo Uni-
versity, China.

• Dr. Li Huang. Faculty of Civil and Environmental Engineering. Ningbo University, China.

3.2.4 Publicação

https://www.mdpi.com/journal/energies
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Abstract: The Internet of things (IoT) paradigm promotes the emergence of solutions to enable energy-
management strategies. However, these solutions may favor the disposal or replacement of outdated
but still necessary systems. Thus, a proposal that advocates the retrofit of pre-existing systems would
be an alternative to implement energy monitoring. In this sense, this work presents a strategy for
monitoring electrical parameters in real time by using IoT solutions, cloud-resident applications, and
retrofitting of legacy building electrical systems. In this implementation, we adapted the SmartLVGrid
metamodel to systematize the insertion of remote monitoring resources in low-voltage circuits. For
this, we developed embedded platforms for monitoring the circuits of a building electrical panel
and application for visualization and data storage in the cloud. With this, remote monitoring of the
consumer unit was carried out in relation to energy demand, power factor, and events of variations of
electrical parameters in the circuits of the legacy distribution board. We also carried out a case study
with the proposed system, identifying events of excess demand in the consumer unit, mitigating the
individual contribution of the installation circuits in this process. Therefore, our proposal presents an
alternative to enable energy management and maximum use of existing resources.

Keywords: retrofit; SmartLVGrid; real-time systems; IoT; energy monitoring; energy efficiency

1. Introduction

Society drives the development of new technologies for automation, processes, and
systems in the most diverse sectors. Industries, cities, homes, and building installations are
examples of environments with constant technological transformations. In this context, the
digital paradigms of this millennium, such as Industry 4.0, Internet of things (IoT), smart
grids, smart cities, and smart buildings, promote technological convergence processes by
using digital integration solutions for monitoring and control of assets and inputs [1]. In
addition, through digital paradigms it is possible to optimize the assets present in these
environments, promoting flexibility, scalability, dynamism, and efficiency, in addition to
other socioeconomic benefits [2].

The digital transition obtained from the implementation of these paradigms can occur
abruptly or not [3]. The implementation time and the cost of digital solutions for this are
preponderant factors, because short-term transformations may require larger investments.
Usually, these types of solutions promote the disposal or replacement of resources that
could still be useful or with acquisition costs not fully amortized [4]. In such cases, it is
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necessary to employ processes that steer the technological transition gradually through
strategies based on leveraging legacy resources; otherwise, these processes would only be
feasible for absolutely new solutions.

The electricity sector, indispensable for the realization of many social and economic
practices, maintains much of its legacy structure from its conception [5]. This involves
performing manual processes to carry out maintenance and management of the legacy
electrical systems in operation [4]. Thus, specialized professionals are still needed in
the field to perform these activities, which makes it difficult to record and access data
in real time or which, occasionally, may lead to failures or field accidents. Thus, the
implementation of digital paradigms provides the opportunity for the emergence of new
techniques to automate electrical systems and enable energy management and efficiency.
In this sense, IoT solutions can be employed in energy-efficiency strategies through the
addition of real-time communication capabilities, distributed computing processing, and
the control and sensing of objects through interconnection in data networks [6,7]. In smart
grids and smart building models, in which the automation of electrical systems is widely
applied, IoT solutions ensure safety, efficiency, and maximum system excellence in their
operations [8–11]. However, despite the use of IoT in implementing new solutions for
energy monitoring and control, there is a lack of strategies to integrate new solutions with
legacy electrical systems.

The retrofit strategy, on the other hand, presents itself as a solution to this problem.
Through retrofitting, it is possible to update and customize old or technologically outdated
but still necessary systems, in order to preserve them and reduce costs in the addition of
new functionalities in legacy systems [12]. In addition, this strategy enables a gradual
rather than an abrupt technological transition in legacy electrical systems, making the
maximum use of pre-existing resources. Still, in order for retrofit to be used systemically in
the upgrade and integration of legacy electrical systems with IoT solutions, it is necessary to
use a reference model based on architectural definitions endowed with standardized logic
layers, protocols, and interaction interfaces applied to the specificities of this particular
context. However, the literature presents few works that employ retrofit techniques from
reference models to standardize their implementations, especially in the electrical sector.

At [5], the authors proposed a reference metamodel for smart grids, named SmartLV-
Grid. It enables the transition from a legacy passive low-voltage power distribution plant
to the smart grid paradigm by using the retrofit strategy in conjunction with systems engi-
neering concepts. SmartLVGrid is composed of protocol stacks that enable the integration
of legacy structures with compatible middleware (hardware and firmware). In addition,
these protocols specify how to realize the logical link (interoperability) of the developed
middlewares with a supervision and control center.

Interoperability, scalability, flexibility, and system efficiency are some of the essential
aspects to make energy management in the electricity sector viable, developed, and ma-
ture [13]. However, the SmartLVGrid metamodel does not address methods or resources
that advocate data analysis for real-time energy management, including virtualization
and integration of legacy systems with IoT solutions and computational tools such as
cloud computing, dashboards, and databases, for example. With data presented centrally
in the cloud, it is possible to use virtual environments to manage energy consumption
more effectively [14]. From this, we proposed a new method for managing low-voltage
legacy circuits based on the adaptation of the SmartLVGrid metamodel and the use of
the retrofit strategy. This way, we were able to make the most of pre-existing resources,
in addition to providing technological means to analyze energy efficiency by monitoring
electrical parameters with interactive dashboards in cloud software applications. In this
context, no studies were found in the literature that carried out investigations or practical
implementations of strategies, including a reference model and the use of retrofit, as the
authors in [5] found, to perform energy management in the proposed way.

In this article, we present a strategy, which employs IoT solutions, retrofit of legacy
electrical systems and cloud-resident applications, for real-time monitoring of legacy elec-
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trical parameters and energy management. As a proof of concept, the proposed strategy
was used to insert energy-monitoring resources in building circuits of a low-voltage power
distribution board. To implement remote monitoring, we developed embedded hardware
platforms and, respectively, their firmware, in order to implement the middleware and
interoperability layers of our adaptation of the SmartLVGrid metamodel, but adapted to
meet the circuits of the switchboard in use. Throughout this article, the details of the soft-
ware applications and platforms developed are described, at the physical and architectural
levels, with the necessary information to make it possible to use the same methodology
in the implementation of new solutions and guarantee the insertion of new functionali-
ties, preserving as much as possible the legacy infrastructures. In this sense, we raise the
following contributions related to this work.

(1) We introduce energy monitoring through the adaptation of the SmartLVGrid meta-
model, use of IoT solutions, and the use of the retrofit strategy in a systemic way,
enabling energy management and maximum preservation of legacy electric circuits.

(2) We develop hardware devices and their respective firmware, enabling the retrofit of
the circuits of a distribution board, based on the premises of the reference model.

(3) We develop a software application for circuit virtualization, with dashboards, database
and cloud computing resources, systematically integrated with the implementation of
the metamodel adapted in this work.

(4) We present the resources for monitoring the electrical quantities of each legacy circuit
of a low voltage building switchboard.

To present the proposal of this article, we divided the sections as follows. In Section 2,
we present a survey of the state of the art related to the theme. In Section 3, we present
a survey of the theoretical framework for the implementation of our proposal. Section 4
presents our model proposal, based on the retrofit of legacy low-voltage circuits of a power
distribution board. In Section 5, we present the materials and methods used, making them
compatible with the architecture exposed in the previous section. In Section 6, we present
the results obtained. In Section 7, we present the conclusions, along with proposals for
future work.

2. Related Work
2.1. Energy Monitoring Solutions in the Context of the IoT Paradigm

Energy monitoring improves efficiency and management in the electricity sector, en-
abling analysis of the grid’s electrical parameters, the demand consumed and the power
quality, and providing managers with resources (e.g., computational and data) for deci-
sion making. In this context, IoT solutions contribute to provide remote and real-time
monitoring and control in the residential, building, industrial and metropolitan sectors,
interconnecting devices to the energy system and integrating these devices with computing
systems, including cloud solutions [15,16].

Real-time applications enable monitoring in deterministic time, without conflicts and
in a prioritized manner so that all events and tasks are executed as expected. The relevant
literature presents work with real-time IoT solutions to implement energy-monitoring
systems. At [17], real-time energy monitoring was implemented via interconnected hard-
ware devices in a narrowband IoT (NB-IoT)-based mobile network for smart grid ap-
plications. Similarly, the authors of [18,19] have developed hardware devices to make
energy-consumption data available in real time to users over a wireless data network. The
authors of [20] used the Raspberry Pi 3 platform as an interface between an energy meter
and a graphic application for displaying data obtained in real time. At [21], the authors
exposed a study evaluating the performance of different real-time IoT solutions. On the
other hand, the authors of [22] presented a decentralized solution for real-time energy
monitoring from mobile devices.

In addition to real-time communication and monitoring, IoT solutions use computing
resources for data storage, processing, and visualization to analyze and expose parameters
for decision-making. From these, it is possible to elaborate databases to analyze and expose
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the main parameters of value for decision making. In this sense, the literature presents
works that use these resources in energy monitoring applications. In [23], the authors
used structured query language (SQL) databases, along with the graphical interfaces of
the developed application, to store and display the main electrical parameters and the
consumed demand of a building circuit. The authors of [24] presented energy consumption
and temperature measurements of a climate control system by using interactive dashboards.
At [25], the authors discussed IoT solutions for energy monitoring, including cloud data
storage and processing.

It is important to comment on the contributions of the literature in the IoT area for
improving energy efficiency. In this area, proposals involve energy-demand management
and power quality analysis of facilities. Energy-demand management uses monitored
data to develop strategies and make decisions for reducing energy consumption. The
authors of [26] presented a survey of the energy demand consumed by the School of
Telecommunication Engineering of the Polytechnic University of Madrid over the course
of one year. From the obtained data, the authors used a wireless network that employed
market devices to control the energy demand in the school. On the other hand, the
authors of [27] managed the energy demand of residences in a Simulink software model,
considering the insertion of renewable sources and networked devices. In addition, the
work [28] described an energy-management system that uses real-time IoT platforms in
order to improve energy efficiency.

Proposals in the literature that use IoT for facility power quality analysis seek to
improve power quality in metropolitan, industrial, building, or residential settings. In the
works [29–32], for example, the authors have developed hardware devices to remotely
monitor voltage sags, swells, and the electrical parameters of the circuits used. In [33], the
authors proposed an algorithm for disturbance and event analysis in the context of power
quality. For this, they employed real-time IoT devices in monitoring the parameters and
stored the obtained data in the cloud for further use of the algorithm. In [34], the authors
motivated the need to monitor electrical parameters to improve power supply reliability
and power quality. In this same work, the authors also presented the development of a
device capable of remotely monitoring the number and duration of power interruptions
and voltage variations on both sides of circuit switching devices, with the possibility of
local storage in case of failures of communication.

Tables 1–4 summarize the works associated with the context of this article and cited in
the subsection. However, in our literature search, we did not find works that use retrofit
strategies to take advantage of legacy systems based on IoT solutions and computational
resources in order to offer resources to improve energy efficiency and power quality. Thus,
the solutions exposed are focused on the particular context of their applications, which
may make it infeasible to implement the proposed strategies in other cases. In addition,
we did not find studies that propose metamodels capable of providing the insertion of
automation, electronic control, distributed processing and communication resources in
electrical systems from retrofit techniques for the same purpose of energy management.

Table 1. Works with emphasis on energy efficiency.

Work Year Application

[26] 2021 Demand control from WSN

[27] 2018 Demand Management with Renewable Sources

[28] 2019 Demand Management with IoT Solutions
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Table 2. Works with emphasis on computational resources for energy management.

Work Year Application

[23] 2019 Use of databases and interfaces to display electrical
parameters and the demand of a circuit

[24] 2018 Interactive dashboards for consumption display energetic

[25] 2021 Methods of viewing, storing and cloud energy data processing

Table 3. Work on real-time systems for energy monitoring.

Work Year Application

[17] 2020 Energy demand monitoring in a real-time NB-IoT network

[18–20] 2018, 2020 Development of devices for real-time consumption monitoring2020

[21] 2020 Evaluation of real-time solutions for energy monitoring

[22] 2020 Decentralized monitoring solution energy in mobile devices

Table 4. Work with emphasis on power quality analysis.

Work Year Application

[29–32] 2019, 2018 Devices for monitoring sags, swells and electrical parameters2019, 2021

[33] 2020 Algorithm for disturbance and event analysis of power
quality with IoT devices

[34] 2020
Development of a device and an algorithm applied to the remote

monitoring of power interruptionsand voltage
variations in switching circuits

2.2. Retrofit

The retrofit strategy uses techniques to take advantage of old but still necessary
systems, through the inclusion of new features [12]. However, the use of this strategy
requires prior and specific knowledge of the pre-existing elements and infrastructures, in
order to perform the proper interfaces for implementation of the desired functionalities
without causing damage or accidents.

The integration of legacy systems with digital ecosystems by using retrofit and IoT
techniques is a well-cited topic in the literature. In [35], the authors propose strategies for
using retrofit to reduce energy consumption and improve the comfort of legacy building
facilities. The authors of [36] implemented a wireless sensors network (WSN) for controlling
and monitoring legacy air conditioners from retrofit devices. In [37], the author presented
solutions for automation of legacy infrastructure using retrofit strategies. Also, the authors
of [38] proposed a model based on the building energy management system (BEMS) method
and the worldwide web consortium (W3C) specifications for monitoring and controlling
energy consumption from a WSN, in the context of smart buildings, from a retrofit strategy.

Table 5 shows the retrofit works discussed above. These works presented satisfactory
results regarding the technological upgrade of pre-existing systems using retrofit strategies.
However, the proposed methods serve a pre-established number of cases and systems,
making scalability, distributed processing, or even interoperability with other applica-
tions difficult. Furthermore, the authors did not employ generic architectural models to
standardize the presented strategies in the use of larger numbers of devices, of the same
nature or not. In contrast to the aforementioned works, the present work distinguishes
itself by presenting retrofit techniques performed in a systemic way from a strategy and an
architecture developed to promote energy management in legacy building circuits.
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Table 5. Works with contributions from retrofit techniques.

Work Year Application

[35] 2015 Using retrofit to reduce energy consumption and improving the
comfort of old buildings

[36] 2017 Using retrofit to enable control and air conditioner monitoring

[37] 2018 Retrofit Strategies for Automation legacy infrastructure

[38] 2021 Retrofit strategy for monitoring and control of energy consumption from a model
based on the BEMS method and the W3C specifications

2.3. Middleware and Interoperability

Middlewares provide physical or logical interfaces between heterogeneous systems,
and are challenges in terms of hardware and software development for IoT [39,40]. On the
other hand, there are situations in which it is necessary to provide, in addition to physical
or logical interfaces, interaction between different systems. In these cases, it is necessary
to use methods that enable interoperability, especially in IoT applications that need to
interact regardless of the communication protocol used [41,42]. Therefore, middleware and
interoperability solutions are important allies in the integration of IoT solutions with legacy
systems, reducing the complexity of integrating new technologies with existing resources
and helping in the scalability of IoT applications.

The literature also presents work that enables technology convergence processes
through interoperability middleware solutions. The authors of [43] proposed a method by
which to realize interoperability of legacy industrial systems in the context of Industry 4.0 by
employing minor changes to existing communication media. In [44], the authors proposed
an architecture model to enable the interoperability and interconnection of devices located
on the Malaga University campus, as a proof of concept for future applications of the model
in smart city deployments. The work [45] presents a middleware solution that enables
the interfacing of devices located in intelligent office environments. In [46], the authors
deployed a smart grid model from a middleware architecture based on retrofitting legacy
meters for monitoring electrical parameters in WSNs. The same authors, in [47], contributed
a methodology to enable interoperability of legacy meters in smart grids from WSNs.

Table 6 presents the main characteristics of the above-mentioned works. These works
contribute with solutions for standardization of technological convergence processes. How-
ever, they do not propose middleware solutions for energy management that make available
physical and logical interfaces with legacy systems. Still, in the context of energy efficiency,
the works do not present resources, which enables the communication interoperability of
the proposed systems. Furthermore, the works in the literature did not conceive generic
methodologies that could be applied to new systems and scenarios, beyond those exposed
in the respective works. In this work, we proposed a generic architecture for retrofitting
legacy building circuits, based on middleware and interoperability resources, which al-
lows virtualization, communication and the insertion of IoT devices, enabling energy
management from the monitoring of electrical parameters in real time.

Table 6. Work with emphasis on middleware and interoperability solutions.

Work Year Application

[43] 2017 Method for system interoperability legacy industrialists in the
context of Industry 4.0

[44] 2019 Model for device interoperability in a university campus

[45] 2010 Middleware for device interface located intelligent office environments

[46] 2018 Model based on a middleware architecture for retrofitting legacy meters to WSNs

[47] 2018 Methodology for Enabling Interoperability of legacy meters from WSNs
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2.4. Metamodels

Just as models are abstractions of some reality, metamodels are abstractions of models
to design new modeling languages or extend existing modeling languages [48]. They
are employed in the analysis, design, development, and integration of models for any
system. This includes the integration of legacy systems with middleware and interop-
erability interfaces [1,49]. Therefore, metamodels enable the technological transition of
pre-existing systems.

In this context, the literature exposes successful cases using the metamodel approach.
In [50], the authors proposed an IoT metamodel to connect heterogeneous objects by using
the premise of interoperability. The authors of [51] also implemented an IoT metamodel
capable of transforming a software solution written in a specific modeling language for
a Java application in order to standardize the development in a guided way. In [52],
a metamodel was proposed for device interaction in intelligent environments from a
modeling of relationships and attributes. In [4], the authors introduced a metasystem
to enable the transition of legacy electric power distribution systems to the smart grids
paradigm through the retrofit strategy. Table 7 presents the main characteristics of the
aforementioned works.

Table 7. Papers with contributions based on metamodels.

Work Year Application

[50] 2018 Metamodel for device interoperability heterogeneous

[51] 2017 Metamodel for transforming solutions from software in a targeted manner

[52] 2016 Metamodel for device interaction in intelligent environments

[4] 2017 Retrofit-based meta-system for transition from legacy power distribution systems
to the Smart Grid paradigm

Further on, the [4] metasystem evolved into the SmartLVGrid metamodel, which
presents itself with primitives and protocols for using middleware solutions and interoper-
ability resources through the retrofit of legacy low-voltage electrical systems [5]. Because
this metamodel describes generic interfaces to be used for upgrading pre-existing systems,
it is possible to extend the applications and resources made available by it to any techno-
logical niche, including in the electric sector itself. We found no other similar approaches in
the literature to enable energy management in building environments from the individual
monitoring of each circuit in the installation. Therefore, the SmartLVGrid metamodel is
used as a basis to perform retrofits of electrical circuits enabling the remote monitoring of
electrical parameters.

3. SmartLVGrid

Smart low-voltage grids (SmartLVGrid) is a metamodel for modeling legacy low-
voltage circuits in power distribution systems based on the smart grid paradigm. It
consists of a protocol stack and uses a retrofit strategy to add control, monitoring, and
communication capabilities to pre-existing systems. This model is structured both at the
local level, close to the final consumer, and at the central level, in the supervisory centers of
the energy utilities. The geographical separation of these levels requires the use of local area
network interfaces (LANs) or metropolitan area network interfaces (MANs) to establish
logical links between the legacy systems and the operation and command centers. Figure 1
illustrates the protocol stack established in the SmartLVGrid model.
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Figure 1. The protocol stack of the SmartLVGrid metamodel. The protocol stack of the SmartLVGrid
metamodel [1].

As per Figure 1, the SmartLVGrid metamodel is composed of the interoperability
and middleware layers. According to the metamodel, the retrofit is performed under the
legacy structure at interface points called points of interface (PoI). The middleware layer
interfaces with the legacy layer through the coupling and interaction node (CIN), allowing
the execution of microprocesses called domain retrofitting functions (DRFs), one of the
classes of operational primitives (OPs) of the metamodel.

The OPs are processes previously performed by field operators in the legacy elec-
trical system that are now executed through service nodes (SNs) and CIN nodes, logical
units responsible for the interfaces between the interoperability/middleware and middle-
ware/legacy layers, respectively. The computational support functions (CSFs) implement
processing and storage services in the middleware layer, and the interdomain support
functions (ISFs) perform the communication processes in the same layer.

3.1. A Middleware Layer

The middleware layer is at the lowest level of the stack of the metamodel. Physically,
this layer is implemented by means of retrofit devices, composed of embedded hardware,
sensors, and actuators compatible with the DRFs to be executed. This layer is also called
automation and communication unit (ACU), and its representation is illustrated in Figure 1.
The representative model of the ACU consists of three ports: In/Out, Get, and Run. The
communication processes and services of the ISFs are executed through the In/Out port.
The Get port implements data collection by means of measurement and sensing DRFs.
Finally, the Run port acts with control DRFs over the legacy layer. It should be noted that
the ACU’s processing and data storage routines are implemented through CSFs, as well as
other computational support functions.

3.2. The Interoperability Layer

The interoperability layer is responsible for guaranteeing a set of rules and hierarchies
and represents the infrastructure to implement network communication with the ACUs,
aiming to interact remotely with these devices and use their functionalities. This layer clas-
sifies each ACU according to its position in the SmartLVGrid metamodel hierarchy. ACUs
that supervise and monitor other ACUs and optionally run DRFs are called coordinators.
ACUs that run DRFs on top of the legacy layer and are supervised by coordinators are
called operators. In cases of expansion of the operating power system, which implies more
computational capacity for the coordinator ACU, the metamodel provides subcoordinators
for each cluster of operator ACUs. In this way, the subcoordinators will be associated with
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a single ACU coordinator that will communicate with the supervision and control center to
pass on information about the system. It is important to note that each ACU has its own
processing unit, enabling the distributed processing of the system from the retrofit of each
legacy asset.

The supervision and control center retains all control and monitoring of the system
from the communication with all coordinators present in the power grid. Other functions
are the administration of the consumer units, distribution busbars and transformer stations.
It is up to the technical–administrative staff of the supervision center to delimit the DRFs
and autonomous decision-making to be performed by the retrofit devices.

4. Methodology for Implementing the Proposed System

SmartLVGrid was initially designed to be used in conjunction with low-voltage con-
sumer units and their interfaces with the legacy electrical system [5]. However, in [1],
the authors presented a model based on the retrofit of a legacy building lighting circuit,
showing the feasibility of adapting SmartLVGrid for smart buildings. In this sense, the
present work contributes by extending the SmartLVGrid model and using the retrofit
method for a new load profile: the legacy electrical circuits of a power distribution board.
The term legacy, in this case, refers to the fact that, previously, the circuits did not have
any element that provided the execution of interoperability, control, or remote monitoring
functionalities. Figure 2 illustrates the retrofit strategy developed.

Figure 2. Proposed retrofit strategy for energy monitoring.

As illustrated, the strategy proposed in this work promotes the insertion of retrofit
modules (1) consisting of specific hardware and firmware for network communication,
processing, data storage, and for the acquisition of the electrical parameters of each circuit
of the switchboard. It should be noted that the retrofit modules (1) are calibrated with a
precision current and voltage source before being installed in the circuits. These modules
(1) have been inserted next to the circuit breakers (2) of the power distribution board in
order to
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• standardize the development and installation of retrofit modules;
• reduce visual impacts by confining the solution within the switch cabinet;
• standardize the development and installation of retrofit modules; and
• preserve as much as possible the existing electrical installation

In this way, the disposal or removal of any element present in the circuit (cables,
walls, socket points, circuit breakers, among others) was avoided. After retrofitting the
circuits of the switchboard, it was possible to supervise them from a supervision and
control center. In this work, the supervisory center is located in a cloud for accessing the
monitored parameters from anywhere. In addition, the supervisory center was designed to
provide energy management resources in real time, enabling the analysis of active demand
consumed and other electrical quantities, such as voltages, currents, and power factor. It
is noteworthy that the literature has not presented works with this approach, involving
the extension and use of metamodels and retrofit techniques for this purpose. The tests
of the proposal and the validation of the results were obtained from the integration of the
retrofit modules with the supervisory center, through which it was possible to monitor,
individually, each circuit and its respective electrical parameters and events.

The following section presents the modeling performed to extend the SmartLVGrid
model and the conception of our proposal. Based on this modeling, it is possible to under-
stand in more detail the hardware and software elements conceived for the development of
our proposal and the adaptations made to the SmartLVGrid metamodel for the insertion of
monitoring resources in the legacy building circuits of a distribution board.

4.1. SmartLVGrid Metamodel Adapted to the Proposed System

To insert a new load profile into the context of the SmartLVGrid metamodel, we
extended the middleware and interoperability layers of this metamodel, creating the
necessary interfaces to the switchboard circuits. These adaptations were made starting with
the specifications of the operational primitives and the composition of the ACUs to be used.
This also involves the methods for integrating the physical interfaces of the ACUs with the
legacy switchboard circuits, detailed in the next section. In addition, the supervisory and
control center was implemented by using cloud services with dashboards and databases,
premises not explored by the original metamodel. Figure 3 illustrates the interfaces adapted
from the SmartLVGrid metamodel for the proposal of this paper, along with the integration
with the supervision and control center (SCC).

In this paper, retrofit modules for measuring electrical parameters act as ACU oper-
ators in the system. They were called ACU-BREAKERs, because they are located next to
the circuit breakers of the legacy circuits. In addition, the proposed implementation relies
on a router to communicate and interface with the cloud services responsible for housing
the dashboard and database. Therefore, in the proposed architecture, this device has been
classified as an ACU coordinator, and is referred to as ACU-ROUTER.

Figure 3 illustrates the interoperability between the ACUs over the local area network
(LAN) interface. The ACU-ROUTER, in the role of coordinator, communicates with the
supervisory and control center (SCC), which, in this paper, is located in the cloud next to
the other computational services for visualizations and data processing in the context of
energy efficiency and power quality. With the ACUs interconnected, each circuit can be
virtualized by the SCC in order to individually organize the parameters obtained by each
circuit. It should be noted that the interface point is located between the circuit breaker
and the electrical circuit, from where the Get port extracts the measurement data up to
the CIN. In this case, the service nodes act as the interface of the available communication
media with the LAN network, providing the data and access paths for this (TCP ports, IP
addresses, SSID, among others). The following subsection presents a brief description of
the architecture of each ACU developed in our proposal.
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Figure 3. SmartLVGrid architecture adapted to the proposed model.

4.1.1. ACU-BREAKER Modeling

Figure 4 exposes the architecture diagram of the ACU-BREAKER and its interfaces.
As mentioned, this ACU is responsible for collecting the electrical parameters of the legacy
circuit associated with its respective breaker. The measurement of the electrical parameters,
according to the SmartLVGrid metamodel, is characterized as a DRF executed by the
Get port of this ACU. Similarly, the communication of this ACU is done through the
In/Out port, responsible for executing the ISFs of requests and responses to the ACU
coordinator (ACU-ROUTER). Moreover, the ACU-BREAKER has CSFs associated with
data storage, device configuration, and network connection management. To perform
the abovementioned operational primitives, it should be noted that this ACU has digital
processing resources for acquisition and adjustments of the measured electrical parameters,
communication, transduction, and conditioning of electrical signals, and also protection
against possible overcurrent and overvoltage surges.

Figure 4. ACU-BREAKER architecture diagram.
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4.1.2. ACU-ROUTER Modeling

Similarly, Figure 5 illustrates the ACU-ROUTER architecture diagram and its respec-
tive interfaces. Although this ACU does not have interfaces with the legacy layer and does
not have Get and Run ports for DRF execution, it plays an important role in the proposed
system. Through it, it is possible to interface the ACU operators, responsible for measuring
the electrical parameters, with the supervisory control center (SCC), which is located in
the cloud. The ACU-ROUTER/SCC interface is also performed through In/Out ports,
by means of ISFs associated with request and response messages. Regarding CSF, the
ACU-ROUTER performs the connection management of the ACU operators on the data
network used.

Figure 5. ACU-ROUTER architecture diagram.

5. Materials and Specifications for System Implementation

This section presents the strategies used to develop the middleware and interop-
erability layers and the supervision and control center (SCC) of the monitoring system
in this paper. To this end, the software features, message exchange patterns, and hard-
ware and firmware specifications of the retrofit modules will be defined, according to the
specifications of our proposal.

5.1. Definition of the System Interoperability Layer

Because our proposal is based on retrofit, we reused existing network and infrastruc-
ture resources in the scenario used for the case study. In this sense, to provide network
interconnection for the ACUs, we reused the wi-fi network infrastructure available in the
vicinity of the power distribution board and jointly employed the MQTT communication
protocol. From this, we established the premises to enable interoperability with the ACU
devices in our proposal.

We used the Mosquitto MQTT broker running on a cloud-resident virtual machine
(DigitalOcean Droplet), along with the applications and software services of the SCC.
The packets were transmitted in the system with QoS 0, to reduce the latency of the data
exchange between the ACUs and the broker [53,54]. The virtual machine’s IP address and
TCP port 1883 were used to provide access to the MQTT broker. This address and port
was passed to the firmware for networking the ACUs via messages presented later in the
paper. Thus, the service nodes (SNs) recommended in the metamodel were implemented
with the establishment of the network connection of the ACUs to the MQTT broker. It is
important to mention that in order to have interoperability between the ACU-ROUTER and
ACU-BREAKER middleware, the In/Out ports and the SNs must use the same standard
and communication network.

To enable interoperability between ACUs via Wi-Fi LAN and the MQTT protocol,
we used request and response messages in JSON format, implemented via the cJSON
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library [55]. Because the SCC is hosted in the cloud, its connection to the ACU-ROUTER
takes place via the Internet. The MQTT messages were transmitted in the SCC/ACUs
direction and the responses transmitted in the opposite direction. In this context, messages
were used for electrical parameter requests, updating device network registration, and
updating device calibration parameters. Figure 6 illustrates the process adopted to enable
the communication of the ACUs with the cloud-hosted SCC, according to the proposed
architecture, for a request to send electrical parameters as follows:

• The SCC, via the Internet, establishes communication with the Wi-Fi LAN interface of
the ACU-ROUTER and ACU-BREAKER (1);

• The configuration of the service nodes (SNs) of the ACU-ROUTER and ACU-BREAKER
is performed (2);

• The request message (3) is transmitted;
• By means of MQTT messages, the ISFs for synchronizing communication and sending

data from the ACUs (4) are executed.

Figure 6. Communication process of the proposed system.

5.2. Implementation of ACU-BREAKER Middleware

The conception of the ACU-BREAKER was based on the development of a hardware
device, and respective firmware, to monitor the electrical parameters in real time of a
three-phase circuit located in a power distribution board, being possible to use it to monitor
two-phase or single-phase circuits. To monitor the switchboard circuits through the retrofit
strategy recommended in the proposed system architecture, we designed a panel containing
six ACUs-BREAKER, power supplies, and battery backup for continuous operation in cases
of power interruption. In this way, it is possible to detect power interruption or voltage
and current variation events in cases of re-energization of the monitored circuits.

Each ACU panel was installed next to six circuit breakers in the switchboard. Thus,
for 48 circuits present in the electrical panel, eight panels containing six ACUs each were
developed. The ACU-BREAKER was designed with reduced dimensions in order to
facilitate its installation. Figure 7 illustrates the strategy described above for installing the
ACU-BREAKER and the hardware features present in its design. On the other hand, the
main hardware components of the ACU-BREAKER are detailed in Figure 8, including the
connections to the support board that distributes the power supplies and battery backup to
each ACU.
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Figure 7. Strategy for using ACU-BREAKER.

Figure 8. Main hardware components of the ACU-BREAKER.

5.2.1. SoC for Processing and Communication

As mentioned, the ACU-BREAKER has a system-on-a-chip (SoC), with processing
and communication capabilities, through which we develop the DRFs, CSFs, and ISFs of
the ACU. To do this, we used the ESP32-D0WD-V3 SoC present in the ESP32-WROOM-
32E module from the manufacturer Espressif [56,57]. Through the ESP32 module, it was
possible to take advantage of wi-fi communication resources and the MQTT protocol to
implement the ISFs through request and response messages, and network connection
management (one of the CSFs). In addition, the ESP32 module has serial communication
peripherals used to debug the developed firmware and to communicate with the electrical
signal acquisition circuitry. The ESP32-WROOM-32E module has a 4 MB flash memory,
which was used to implement the CSF for storing the calibration settings parameters and
for storing the communication network configuration parameters.

5.2.2. Circuit for Acquisition and Digitalization of Electrical Parameters

To ensure the reliability of the obtained electrical parameters, even in nonsinusoidal
conditions, we chose to use an integrated circuit dedicated to the acquisition and digiti-
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zation of the electrical parameters by means of the mean value technique. To do this, we
employed the ADE7758 integrated circuit and the discrete components associated with it.
This integrated circuit communicates with the processing unit by means of a serial interface
and its function is to receive the electrical parameters of voltage and current previously
conditioned, and then to digitize and process these parameters. The use of this integrated
circuit in the ACU-BREAKER is detailed in Figure 8. Through this process, we obtained the
parameters of effective voltage and current, network frequency and active, reactive and
apparent power. The active, reactive and apparent power and power factor parameters
were computed by the ESP32 module by using the active, reactive, and apparent power
parameters obtained. All the technical aspects, equations, and diagrams used to support
the use of the ADE7758 as commented above are detailed in its datasheet [58].

Through the integrated circuit ADE7758, we performed a procedure for calibration of
the parameters obtained through gain and offset adjustments as described in its datasheet,
ensuring the accuracy of the acquired values. To perform the calibration, we used a
precision source, PPS400.3 from the manufacturer MTE [59], to provide known parameters
of voltage and current. In this way, it was possible to adjust the gain and offset parameters
based on the values provided by the precision source and the measurement performed by
the ADE7758. We developed a routine in the firmware of the ACU-BREAKER to receive,
adjust, and update the parameters in the internal registers of the ADE7758, as specified in
its datasheet. It is important to note that each ACU-BREAKER was calibrated individually,
as each was affected differently by the tolerance or precision of the components used for
signal conditioning or transduction. In the tests performed, it was possible to obtain a
measurement with about 1% error through the calibration adjustments. Figure 9 illustrates
the ACU-BREAKER on a bench to be calibrated by using the precision source used.

Figure 9. Benchtop ACU-BREAKER for calibration with precision source.

5.2.3. Protections and Connections for Measuring Voltage and Current

As illustrated in Figures 7 and 8, the ACU-BREAKER has discrete components respon-
sible for the protection and conditioning of the electrical signals to be introduced in the
integrated circuit ADE7758 and, which were previously obtained through the connections
of acquisition of the electrical voltages and the connections with the current transformers
with the differential channels of the mentioned circuit. It is important to note that these
connections physically implement the Get port of this ACU.

The internal ADCs of the ADE7758 rely on pre-conditioned voltage and current signals
with low values, being 500 mV the maximum peak value of the signals inserted into the
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three voltage and current channels [58]. Consequently, in order to be able to perform
maximum 500 V peak readings from the mains, we set up the voltage transduction circuit
by using a resistive divider to create the 500 mV/500 V ratio on the voltage channels.
Considering the neutral as the reference, we use a resistive divider of 1 (MΩ) and 1 (kΩ)
after the voltage connector. In this way we establish the conditioning of the voltage
channels. It is important to note that the resistors used are accurate to 1%, to maximize the
effectiveness of the system, and operate with powers of up to 250 mW, avoiding overheating
due to the high electrical potentials to which they can be subjected.

The current transformers were sized to meet the circuit breaker currents. To meet
this demand, we chose to use the noninvasive current transformers of the AcuCT mV
series, produced by the manufacturer Accuenergy [60]. Regardless of the nominal current
of these transformers, their full-scale outputs are 333 mV. However, to use them with the
differential current channels of the ADE7758, it was necessary to make adjustments to the
signals obtained from these transducers. The maximum full scale of the current channels is
500 mV peak, but it can be adjusted to 250 mV or 125 mV peak. In this sense, we used a
resistive divider to adjust the current transformer output to 250 mV peak in each circuit
and set the current channel full scale to the same value, changing the internal gain registers
of the ADE7758.

Because the electrical voltage transduction is performed in a non-isolated manner, to
ensure protection against surges, overcurrents and overvoltages, the input protections of the
ACU-BREAKER voltage channels are composed of gas discharge tubes (GDTs), polymeric
positive temperature coefficient (PPTC) resettable fuses and Zener-type diodes. To ensure
the protection of the ESP-WROOM-32E module in serial communication with the ADE7758,
we used a digital isolator to separate the main’s neutral from the module’s digital reference.
Thus, it was necessary to use two power supplies in the panel of the designed ACUs, one
for power supply to the ADE7758 and one for power supply to the ESP-WROOM-32E and
its peripherals. On the other hand, the current channels rely on galvanic isolation and the
noninvasive measurement of current transformers. Therefore, only Zener-type diodes have
been used to prevent overdrafts from damaging the ACU-BREAKER current channels.

5.2.4. Electrical Schematic and Layout

The electrical schematic and layout of the ACU-BREAKER were developed in Al-
tium 21 software. Figure 10 illustrates a three-dimensional (3D) perspective of the layout
designed for the ACU-BREAKER.

Figure 10. Perspective of the ACU-BREAKER from above (a) and below (b) in 3D.

5.2.5. ACUs Panel

As mentioned earlier, a panel containing six ACU-BREAKERs, two 5 V power sup-
plies, one for the ESP32-WROOM-32E module’s digital circuit and one for the ADE7758’s
acquisition circuit, and a battery backup were designed. Additionally, a power distribution
board was designed and positioned on the panel to share power from the power supplies
with the ACUs via connectors. The board was designed to be positioned internally to the

55



Energies 2022, 15, 9234 17 of 31

distribution board and installed on six of the circuits present. For a total of 48 circuits,
eight panels were developed. Figure 11 illustrates the ACU panel previously developed in
Inventor software.

Figure 11. Perspective of the elaborate ACU panel.

5.3. The ACU-ROUTER Middleware

An ACU does not necessarily have to be a hardware device to be developed based on
the premises of the SmartLVGrid metamodel. Because it is based on a retrofit strategy, the
technological adaptation process can occur through existing devices with the necessary in-
terfaces to enable interoperability with other system applications. In this sense, to interface
with the other ACU operators (e.g., ACU-BREAKER) and enable system communication,
the ACU-ROUTER (coordinator) was selected to be a wi-fi router in the vicinity of the
electrical panel used to implement the proof of concept of this article. The router used was
the AP 310 model from Intelbras manufacturer [61].

The wi-fi router does not implement control or monitoring functionality on the electri-
cal circuits or any host system. Therefore, as an ACU, it does not perform DRFs on the host
system. However, through it, you can perform message exchanges and communication
synchronization with other ACU operators. Thus, through its In/Out port, implemented
through its wireless communication transceivers, it was possible to perform ISFs in the
system. In addition, this device counts on computational resources for connection manage-
ment and network configuration, which characterizes its CSFs. For future implementations
based on the SmartLVGrid metamodel, it is important to emphasize that the desired op-
erational primitives (DRFs, CSFs and ISFs) depend on the application of ACUs in future
systems. Thus, if a market device allows for a non-abrupt technological transition and
meets the needs for interfaces to existing/developed systems, it can be used as an ACU.
However, for customized solutions, like the ACU-BREAKER, it is necessary to develop the
hardware resources and the respective firmware to enable the interaction with other ACUs
and the legacy layer, preserving it as much as possible.

5.4. Implementation of the Supervision and Control Center

The supervision and control center was implemented by means of software services
and applications, including databases and dashboards, located in a virtual cloud machine
on the DigitalOcean [62] provider. Through the SCC, it was possible to view the update of
monitored electrical parameters in real time and to register ACUs in order to virtualize the
energy monitoring of each circuit in the switchboard.

To develop the screens and dashboards we used the Angular framework in version
10, an open source platform for Web application development [63]. On the other hand,
Python language version 3.9 was used to develop software services to transport data to
the developed Web application and support the management of other services, such as
data storage and device registration. The websocket protocol was used to enable real-time
communication between the MQTT broker and the Web application, because through it, it
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is possible to send requests and receive event-driven responses without the need to consult
a server to update the interface [64].

In order to enable the storage of the monitored data in real time, we used the MongoDB
database. On the other hand, the event history and device registration were stored in the
PostgreSQL database for organization according to data type. Figure 12 illustrates the
architecture of the SCC described in this section and its integration with the devices in
our proposal.

Figure 12. Structure of the supervision and control center.

5.5. Proposal Evaluation Scenario

Our retrofit proposal for monitoring electrical circuits in smart buildings was evaluated
in the dental polyclinic of the State University of Amazonas, located in the Cachoeirinha
neighborhood, in Manaus. The demands contracted by the distributor are 115 kW during
peak hours, from 08:00 pm to 10:59 pm, and 160 kW during off peak hours during the rest
of the day. The peak and off-peak tariff schedules for each energy distributor in Brazil can
be consulted on the website of the National Agency for Electrical Energy, ANEEL, under
“Tariffs and Economic-Financial Information” [65]. Currently, in the case of the polyclinic
in question, the electric power distributor is Amazonas Energia.

The polyclinic has an electrical power distribution board, a switchboard, that operates
with a nominal voltage of phase-neutral 127 Vrms, voltage to which the ACU-BREAKERs
were calibrated on the bench. The board in question has 48 circuits and all were monitored
by each ACU individually. Each ACU-BREAKER was identified according to the circuit
enumeration of the board. The Wi-Fi network configuration parameters, containing the
IP address of the virtual machine and the TCP port for MQTT communication, along
with the identification of the ACUs, were passed on and stored in the ACUs after the
bench calibration procedure. After this, it was possible to assemble the panels with the
ACU-BREAKERs, power supplies, batteries, backing plates, and the necessary cabling
for installation.

Each ACU-BREAKER was connected to its respective circuit via voltage connectors and
current transformers. The panel, in turn, was positioned on the inside of the switchboard.
Figure 13 illustrates the ACU panel installed in that scenario. Then, illustrating the retrofit
of the switchboard circuits, Figure 14 exposes the ACU-BREAKER connections that interface
with the legacy layer of the system. Once powered up, the ACUs, preconfigured with
network parameters, began communicating with the MQTT broker running on the virtual
machine hosting the SCC applications in the cloud.
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Figure 13. Panel with ACUs installed in the switchboard.

Figure 14. Retrofitting the electrical circuit with ACU-BREAKER connections.
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6. Results

In this section, the results obtained from the implementation and performance eval-
uation of our monitoring proposal for the legacy electric power distribution board will
be presented. Initially, the service nodes (SNs) were established by connecting the ACUs
to the supervision and control center (SCC) through pre-registered network data. From
this, it was possible to evaluate the execution of the operational primitives (DRFs, ISFs,
and CSFs) established for the ACU-BREAKER and the ACU-ROUTER, which validates the
adaptation of the SmartLVGrid metamodel and the retrofit strategy used. To present the
energy management capabilities made available by the proposal, we developed software
interfaces that record and expose events and electrical parameters obtained in real time.

6.1. Validation of CSFs

CSFs have been implemented to manage network services and store network configu-
ration data. To illustrate the execution of this operational primitive, Figure 15 exposes some
of the logs from the CSF routines implemented in the ACU-BREAKER, obtained by debug-
ging through the universal asynchronous receiver/transmitter (UART) serial interface. In
a dual form, these logs also represent the establishment of the network connection made
through the LAN interface to the ACU-ROUTER, which in turn establishes communication
with the MQTT broker through the Internet.

Figure 15. Logs regarding the CSFs implemented in ACU-BREAKER.

6.2. Validation of ISFs and DRF Monitoring of Electrical Parameters

The message exchange process established through the ISFs made it possible to send
requests and receive responses between the ACU-BREAKER and the supervision and
control center (SCC). This was accomplished via encapsulated packets in JSON format,
transmitted via the MQTT protocol with QoS 0. To validate this operational primitive, we
captured the sending and receiving data logs from the communication service implemented
in Python language in the SCC. From this, it was possible to configure the ACUs, calibrate
them, and request the measured electrical parameters of each circuit, characterizing the
DRF performed by the ACU-BREAKER. Figure 16 illustrates the logs of the responses of
the electrical parameter requests made to the ACU-BREAKER connected to the different
circuits of the legacy power distribution board.

Figure 16. Logs of receiving parameters from the switchboard circuits.
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It can be seen in the “datetime” field that the electrical parameters were collected
at practically the same timestamp, which characterizes the synchronism of the proposed
real-time system. In circuit 35, the measured voltages are far below the nominal voltage
(127 Vrms), indicating an undervoltage event. Note that the voltages of phases A and B of
the other circuits are below the nominal voltages, but within the 5% of variation allowed
according to the resolution of quality of electric power supply established by ANEEL [66].

6.3. SCC Interfaces

The proposed SCC has the premise of enabling real-time energy management with
resources for analysis of power quality and energy efficiency, which is one of the contribu-
tions of this work. Its access was accomplished by accrediting users through a login and
security key after accessing the address and TCP port of the cloud virtual machine where
the application was installed. With the software services in operation, it was necessary to
develop interfaces that indicated changes in the power factor, energy demand, monitored
electrical quantities and quality of service parameters such as overvoltage and overcur-
rent [67]. The electrical parameters provide subsidies for the analysis of energy quality,
which ensure the reliability of the electrical energy supply service also in low-voltage
consumer units [68]. Thus, the importance of this monitoring is justified.

Figure 17 illustrates the interface developed to identify the ACUs in operation asso-
ciated with each circuit in the frame, including a dashboard to view the instantaneous
electrical quantities per phase, the power factor and demand factor, the installed power of
the circuit, energy consumption and events related to power quality and energy efficiency.
In the “Device Information” field, the unique identification of the ACU in the network (ID)
is noted. The consumer unit is also informed, along with the circuit ID (Circuit 32), the
installed power and the firmware version of the ACU. There is an indicator as to whether
the ACU is connected or not. The field that exposes the occurred events presents the time
(timestamp) of occurrence and which event occurred, the value and the percentage of
variation of the parameter in relation to the nominal conditions. In Figure 17, the ACU of
this circuit has identified consecutive overcurrent events.

Figure 17. Operational interface for monitoring the circuits via ACUs.

In the dashboard, the cards signal in red the nonconformities with the observed
parameters. The demand factor, for example, which represents the ratio of active power
measured by the installed power, is below 50%. This value was the threshold set for
this metric for analyzing the usage of each circuit in the facility. We established with the
building’s engineering team that below 50%, the circuit would be underutilized; hence, the
definition of this threshold, for this case.

Similarly, Figure 18 exposes the information resulting from the consumer unit, based
on the parameters monitored by the ACUs. In the “Consumer Unit Information” field, one
can see the consumer unit identification (1780), the consumer unit, and the values of the
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demands contracted by the utility at peak (115 kW) and off-peak (160 kW) hours. In the
dashboard on the side it is possible to view the last registered values of the power factor,
active, apparent and reactive power, and energy consumption. According to module 8 of
the Brazilian normative resolution ANEEL nº 956/2021, a power factor of the installation
below 0.92 results in fines in the energy bill, and this is the threshold for this ratio [66]. In
Figures 17 and 18, respectively, it is possible to observe the power factor card of circuit 32
and the installation in red, as they are below the previously defined threshold. In addition,
Figure 18 exposes alerts that identify events of exceeding the demand contracted by the
utility in off-peak hours, thus events signaling the reduction of the facility’s power factor
below 0.92.

Figure 18. Operational interface for consumer unit analysis.

By using the SCC, it is also possible to observe the time series collected from the ACUs.
Figures 19 and 20 expose the active power (a) and the power factor (b) of circuit 47 of the
facility and the consumer unit, respectively. Circuit 47 supplies a refrigeration compressor
in the installation. In these figures, phases A, B, and C are represented by the curves in
blue, red, and green, respectively. The time graphics display up to two monitored electrical
quantities per phase or the graphics of the three phases of a single parameter. It should be
noted that the viewing history can be selected through the time gap icon and that below the
graph the instantaneous values of the quantities are displayed as the cursor is positioned
on the screen. In Figures 19 and 20, the visualization period is from 1–2 August 2022.

To visualize the demand and the power factor of the consumer unit with respect to the
contract previously established with the utility from the monitored board, we developed
differentiated interfaces for analyzing the demand and the power factor. During the same
period from 1–2 August 2022, Figures 21 and 22 illustrate the three-phase energy demand
and power factor of the installation, respectively. In Figure 21, the three-phase power
resulting from the active power of each phase of the consumer unit is observed. As estab-
lished in the Brazilian normative resolution ANEEL no. 1000/2021, the measured demand
must be computed from the average of the three-phase active power every 15 min [69].
Thus, we show in Figure 21 a bar graph to illustrate the demand measured every 15 min
of monitoring. We insert the dotted orange curve to represent the demand contracted by
the utility at peak and off-peak times. At times when the bar graphs are red, it shows the
excess of contracted demand. Otherwise, the graph remains blue. Below the graph, as we
position the cursor on the screen, the instantaneous parameters of the graph are shown. On
the other hand, Figure 22 shows the installation’s power factor, including the limit line that
establishes the minimum power factor (0.92).
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Figure 19. Active power (a) and power factor (b) in each phase (A, B, and C) of circuit 47.

Figure 20. Active power (a) and power factor (b) in each phase (A, B, and C) of the consumer unit.

Figure 21. Graph for analyzing the demand of the consumer unit.
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Figure 22. Graph for analyzing the power factor of the consumer unit.

6.4. Case Study with Proposed System

In Brazil, the consumer units can be classified according to the tariff group, accord-
ing to the contracting options defined by the National Agency of Electric Energy in the
Brazilian normative resolution ANEEL nº 1000/2021 [69]. Consumer units of group A
are usually medium and high-voltage consumers (industrial, shopping malls, buildings),
while consumer units of group B are low-voltage consumers (houses, apartments) [70,71].
Although group B consumer units are charged only for energy consumption, group A
consumer units are said to be binomial, and can be charged both for energy consumption
and for an energy demand previously contracted with the energy provider [72]. In addition,
if the average demand of the 15 min is higher than the contracted demand, the consumer
unit will pay a fine for exceeding the demand.

The dental polyclinic of the State University of Amazonas fits in group A and has a
contracted off peak demand of 160 kW and peak demand of 115 kW since its inauguration.
Currently, the university usually receives monthly increases in its energy bill as a result
of excessive energy consumption and excess demand. Subsequently, we identified that
since the inauguration, some equipment has been installed in the polyclinic, which has
led to increased energy demand. An example of this is circuit 32, which represents the
circuit of a compressed air compressor that serves all floors of the facility. Through the
ACU-BREAKER responsible for monitoring this circuit, we identified that it is responsible
for raising the demand by about 42 kW, approximately 14 kW per phase, as illustrated in
Figure 23. In this figure, phases A, B, and C are represented, respectively, by the curves in
blue, red, and green.

From our proposal, we identify between May and June 2022 contracted demand
exceedances, as shown in Figure 24. It can be observed that at times when the active power
is reduced in Figure 23, the demand of the installation is reduced in Figure 24. This way, it
can be inferred that circuit 32 is one of the circuits responsible for exceeding the contracted
demand in the dental polyclinic facility. Because this circuit supplies an essential load for
the activities in the facility, regarding the clinical care of patients, the demand control or
equipment replacement are infeasible alternatives at the present moment. In this case, it will
be necessary to renegotiate the contracted energy demand, because the initial contracted
demand is still being exceeded due to the growth of the polyclinic over the years and the
use of energy-intensive equipment. In this way, it is expected that, even with the increase
in the contracted demand from the energy concessionaire, the excess fines for exceeding
the contracted demand will be reduced, and, with this, the monthly bill. In other words,
with the measurements taken from the retrofit strategy implemented in our proposal, it is
possible to monitor the energy demand and define actions for the rational use of electricity.
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Figure 23. Curve of active powers per phase in circuit 32 of the installation.

Figure 24. Demand curve for the installation between May and June 2022.

6.5. Discussion

Based on the tests and analysis to validate the retrofit functions and operational
primitives of the measurement modules, the conformity of the results with respect to the
proposed architecture was noted. Thus, it can be inferred that there was success in adapting
the SmartLVGrid metamodel to enable the monitoring interfaces of the electrical circuits
of a legacy building installation. It is noteworthy that both ACUs enabled the insertion of
remote monitoring resources in a network of devices from the retrofit performed, especially
the ACU-BREAKER, which in its operation domain enabled the obtainment of the electrical
parameters of each circuit in the grid. Another important validation was the exchange of
messages between the supervisory center (SCC) and each ACU-BREAKER, as established
in the premises of the interoperability layer.

The parameters monitored by our proposal are of utmost importance for power quality
and energy-efficiency studies, because they enable the implementation of energy audit
processes to optimize the use of electric energy and reduce costs to the final consumer. In
this context, the final consumer can audit and mitigate energy consumption and power
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quality in a sectored way, analyzing the contribution of each circuit to the increase in
energy demand or change in energy quality parameters. With this, the consumer can study
the feasibility of contractual changes in energy demand, make changes to the facilities or
reduce the use of installed equipment, if possible. Thus, the use of stationary measurement
of circuits as proposed in this work is justified. Examples of this were presented in the
verification of excess demand and the low power factor of the installation’s circuits, as
well as of the consumer unit itself. According to the case study shown, the demand of
the installation is higher than the contracted demand, suggesting the readjustment of the
demand contracted with the concessionaire. It is important to mention that our proposal
can be applied to mitigate similar problems in electrical circuits present in large industries
and other building facilities, helping managers of these sectors in decision making that lead
to significant reductions in energy demand and adequacy of energy quality parameters.

The retrofit strategy used made it possible to take advantage of the entire legacy
infrastructure, from the available data network to the electrical materials present in the
facility. Despite being a gradual and not-abrupt technological process, the proposed strategy
added new resources for building energy management. Considering the deployment
of clusters from the proposed architecture, our strategy enables the scalability of the
monitoring system as well as the distributed processing of electrical parameters.

The cost of the retrofit carried out in relation to the costs of existing solutions on the
market for monitoring building electrical circuits was also analyzed. Initially, before the
proposal presented in this work, the maintenance team of the dental polyclinic carried out
initial quotations to evaluate the possibility of acquiring devices for monitoring electrical
parameters. This survey was conducted through regional and national distributors. At the
best quote obtained, each monitoring device was budgeted at about $213.41. In addition,
most solutions on the market would not be customized to the needs of the building
maintenance team or would take advantage of part of the pre-existing infrastructure in the
installation, requiring more resources to operate in the desired way. However, each ACU-
BREAKER has a unit production cost of $41.79, not counting the solution development cost
(hardware and firmware) and SCC costs. It is known that for large quantities, the cost of
the ACU-BREAKER tends to be reduced. Even so, our solution, adapted to the customer’s
needs, exceeded almost 80% of the cost of the market solution quoted in the region and in
Brazil by the maintenance team itself.

The studies found in the literature do not address the use of metamodels based on the
retrofit strategy to enable energy management. In addition, most of these studies present
specific solutions for pre-established cases, without the use of architectural models that
enable the use of legacy infrastructure, in a scalable manner, in order to perform energy
monitoring. Furthermore, many of them do not address the reuse of legacy resources.
However, the system proposed in this paper distinguishes itself by presenting a method,
based on the SmartLVGrid metamodel, dedicated to energy management from the retrofit
of legacy low-voltage electrical circuits of a distribution board. More than that, the proposal
presents a cloud-based supervisory center, ensuring security and access to data regardless
of location, with dashboard capabilities for viewing the history of electrical parameters
and events associated with power quality and energy efficiency. Thus, this approach fills a
gap observed in the state of the art and technique for energy monitoring, in a systemic and
hierarchically well-defined way.

7. Conclusions

In this work, the SmartLVGrid metamodel was used to enable energy management
through the monitoring of electrical parameters in real time from the retrofit of the circuits
of a legacy switchboard. To do this, an architecture based on the adaptation of the physical
and logical interfaces of the original metamodel was proposed so that this new load profile,
the circuits of a building installation, could receive new technological functionalities making
the most of the pre-existing elements. To validate the strategy presented, it was necessary to
develop the hardware and respective firmware of a retrofit module for monitoring electrical
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quantities, called ACU-BREAKER. This device was assigned operational primitives (DRFs,
CSFs, and ISFs), based on the SmartLVGrid metamodel, to execute its functionalities. In
order to enable the interconnection of each ACU-BREAKER in a wireless data network, a
wi-fi router was used as the system hub, called ACU-ROUTER in the proposed architecture.
The ACU-BREAKER and the ACU-ROUTER implement, respectively, the role of operator
and coordinator of the proposal. In addition, a cloud-based supervisory system (SCC)
was developed to store the monitored parameters and make them available in interactive
dashboards for quality and energy efficiency analysis. The monitored parameters were
the reactive, active and apparent powers, the power factor, the current and the effective
voltage in the three phases of each circuit of the board. Based on the results obtained, it
was verified that the proposal enables energy management through a transparent process
of technological transition, allowing the maximum use of the available infrastructure of the
pre-existing legacy circuits. The proposed architecture is customizable to the installation’s
needs, because the retrofit can be applied according to the physical and logical interfaces
available. In addition, the system’s middleware and interoperability layers allow for
systemic development and enable distributed processing and scalability for cases of energy
monitoring expansion. It is emphasized that, through the results presented, it is possible
to mitigate possible excess demand, the reduction of the power factor, and the conformity
of the electrical parameters of the installation from the individual analysis of each circuit.
In this way, a first step is taken to implement an energy audit process. For future work,
we suggest the integration of the proposal of this work with monitoring systems in smart
grids and the implementation of clusters based on the proposed architecture, including
the analysis of the harmonics present in the system and the evaluation of the performance
of the SCC hosted in the cloud with the increase of monitored data. We also suggest the
integration and evaluation of our proposal with new dynamic energy markets, involving
the apportionment of energy through other alternative energy sources. In addition, with the
data collected, it is suggested to label and treat them to predict the demand for energy and
other electrical quantities to control the demand of the installation by using electrical drive
devices for this purpose. It is also suggested that an economic analysis of the consumer
unit through the proposed system be performed.
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Abbreviations
The following abbreviations are used in this manuscript:

ACU Automation and communication unit
ANEEL Agência Nacional de Energia Elétrica
BEMS Building energy management system
CIN Coupling and interaction nodes
CSFs Computational support functions
DRFs Domain retrofitting functions
GDT Gas discharge tubes
GPIO General-purpose input–output
IoT Internet of Things
ISFs Interdomain support functions
JSON JavaScript object notation
LAN Local area network
MAN Metropolitan area network
MQTT Message queue telemetry transport
NB-IoT Narrowband IoT
OPs Operational primitives
PoI Points of interface
PTC Positive temperature coefficient
QoS Quality of service
rms Root mean square
SmartLVGrid Smart Low Voltage Grids
SN Service node
SoC System-on-a-chip
SQL Structured query language
TCP Transmission control protocol
W Watts
W3C World Wide Web Consortium
WSN Wireless sensor network
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3.3 ARTIGO 02 - A DEMAND FORECASTING STRATEGY BASED ON A RETROFIT
ARCHITECTURE FOR REMOTE MONITORING OF LEGACY BUILDING CIRCUITS

3.3.1 Resumo

A previsão de demanda de energia é crucial para planejar e otimizar o uso de recursos
energéticos em instalações prediais. No entanto, integrar soluções digitais e técnicas de apren-
dizagem em edifícios legados apresenta desafios significativos devido aos recursos limitados ou
desatualizações, dificultando a análise preditiva nesses edifícios e seus circuitos. Para preencher
essa lacuna, este artigo propõe uma estratégia inovadora de previsão de demanda usando uma
arquitetura de retrofit AIoT baseada no metamodelo SmartLVGrid. Essa arquitetura permite
o monitoramento remoto dos circuitos prediais legados, facilitando a coleta, processamento e
armazenamento de dados na nuvem. Usamos vários algoritmos de aprendizado, incluindo re-
gressão linear, regressor de vetor de suporte, regressor de floresta aleatória, regressor XGBoost
e redes neurais de memória de curto prazo (LSTM), para prever a demanda de energia 15 mi-
nutos à frente, identificando possíveis ultrapassagens de demanda contratada de acordo com os
regulamentos brasileiros. Após a otimização bayesiana, a rede neural LSTM superou outros mo-
delos para a maioria dos conjuntos de dados selecionados e detectou 32 de 38 ultrapassagens de
demanda no conjunto de teste. XGBoost e floresta aleatória seguiram com bons desempenhos,
detectando 30 ultrapassagens de demanda. No geral, nossa solução otimiza o uso de energia
e mitiga com eficiência possíveis ultrapassagens de demanda contratada em instalações pre-
diais. Isso foi obtido por meio de uma abordagem sistematizada para atualizar as instalações
pré-existentes, promovendo eficiência energética e a sustentabilidade.
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Abstract: Energy demand forecasting is crucial for planning and optimizing the use of energy resources
in building facilities. However, integrating digital solutions and learning techniques into legacy
buildings presents significant challenges due to limited or outdated resources, hampering predictive
analytics in these buildings and their circuits. To fill this gap, this article proposes an innovative demand
forecasting strategy using an AIoT retrofit architecture based on the SmartLVGrid metamodel. This
architecture allows remote monitoring of legacy building circuits, facilitating the collection, processing
and storage of data in the cloud. We use several learning algorithms, including linear regression,
support vector regressor, random forest regressor, XGBoost regressor, and long short-term memory
(LSTM) neural network, to predict energy demand 15 min ahead, identifying potential overruns of
contracted demand in accordance with Brazilian regulations. After Bayesian optimization, the LSTM
neural network outperformed other models for most of the selected datasets and detected 32 out of
38 demand overruns on the test set. XGBoost and random forest followed closely, detecting 30 demand
overruns. Overall, our cost-effective solution optimizes energy usage and efficiently mitigates potential
demand exceedances in building installations. This is achieved through a step-by-step approach to
upgrading existing aging facilities, which promotes energy efficiency and sustainability.

Keywords: demand forecast; retrofit; SmartLVGrid; AIoT; machine learning; real-time energy
monitoring; energy efficiency; sustainability; smart buildings

1. Introduction

Digital paradigms, including internet of things (IoT), and smart buildings and cities,
are enabling the efficient use of resources essential for daily activities, such as electricity and
water. In addition, they help in better decision making regarding the management of these
resources, promoting scalability, flexibility, and dynamism characterized by the so-called
data-driven approach [1,2]. However, the digital transformation of legacy systems still
presents challenges such as a lack of support and updates, incompatibilities, and insufficient
resources to interact with current systems. Alternatively, updating these systems can occur
through a process of gradual and less costly technological transformation compared to the
complete replacement of legacy systems [3–5]. Thus, using strategies that promote the
digital transformation of legacy infrastructures can be a viable alternative for acquiring
data and information for data-driven management of legacy systems.

Despite maintaining a significant portion of its legacy resources, the electricity sector is
essential for the development of numerous socioeconomic activities. This can be observed by
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the correlation between the increase in energy demand and the modernization of society [6,7].
Energy demand is a fundamental parameter for issues such as sustainability and energy
efficiency, as it subsidizes the dimensioning of energy resources to meet society’s needs.
However, most legacy systems do not have resources for monitoring or forecasting demand
in real time, making it impossible to take actions to reduce or optimize energy demand.
Additionally, the lack of these resources makes it impossible to forecast exceedances of the
contracted demand of companies and industries with energy concessionaires, which may
result in fines or increases in the energy tariff of building installations. Thus, the use of digital
solutions to monitor and forecast energy demand represents an opportunity to upgrade and
optimize legacy resources.

Artificial intelligence of things (AIoT) can enable the management of electricity in
terms of decentralized remote monitoring and computational resources for demand fore-
casting or energy consumption prediction [8,9]. Nevertheless, the literature lacks demand
forecasting strategies based on energy parameters of legacy systems, which in many cases
require interoperability resources and real-time monitoring. Without these, accessing the
accurate demand profile of existing facilities and their circuits becomes a challenge for
forecasting tasks using statistical methods or learning models.

In this context, retrofitting can be a strategy to update existing systems with digital solu-
tions, preserving their resources and infrastructure [10,11]. However, to perform retrofitting
systematically, allowing flexibility, scalability, and standardized integration with legacy
systems, a reference model with well-defined protocols and interfaces is required. The
SmartLVGrid metamodel enables the digital convergence of electrical systems to the smart
grids paradigm [3,12]. In the literature, this metamodel has been used to achieve smart
building convergence in legacy buildings to promote energy efficiency through resources
for managing energy demand and electrical parameters in building installations [4,5].

However, there is a gap in the state of the art regarding the use of statistical techniques
and artificial intelligence to predict energy demand in legacy building circuits. In this sense,
we propose a legacy circuit retrofitting architecture based on a reference model to monitor
electrical circuits and generate a monitoring database that can be used to implement energy
demand forecast models for the installation and its circuits. This allows for a systematic and
non-abrupt strategy for modernizing existing resources, allowing demand management
and forecasting in the operations of building facilities. Furthermore, this proposal may
enable the implementation of the strategy in other cases and systems.

In this article, we proposed a demand forecasting strategy in legacy building systems
based on the retrofitting of these facilities. In our proposal, we presented a retrofit archi-
tecture to integrate hardware devices into a building power distribution panel capable of
collecting and transmitting real-time data to the cloud. These data were further processed
using supervised learning techniques to predict the energy demand of both the facility
and its circuits. We used the SmartLVGrid metamodel at the physical and architectural
levels as a basis to retrofit the legacy installation, ensuring the necessary interfaces and
interoperability between monitoring devices and the cloud application created for data
storage and processing.

With the data acquired by the proposed monitoring system, we conducted an ex-
ploratory analysis of the consumption and demand data from the installation and its
circuits to mitigate the potential exceedance of the contracted demand in the legacy build-
ing installation of this study, following the regulatory standards for energy supply and
distribution in Brazil, where the proposal was validated. Consequently, we performed
short-term demand forecasting for the next 15 min. As learning models, we employed the
random forest regressor (RFR), support vector regression (SVR), XGBoost regressor (XGBR),
and a long short-term memory (LSTM)-based neural network architecture. Additionally,
we used the performance results of the linear regression (LR) model as a baseline for eval-
uating and comparing the performance metrics (root mean squared error—RMSE, mean
absolute error—MAE, and R-squared score—R²) obtained for the mentioned models.

Therefore, we highlight the following contributions of this work:
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(1) Developing an AIoT solution for energy demand forecasting in legacy buildings and
their circuits based on a retrofit strategy;

(2) Implementing and comparing the performance of demand forecasting models in
legacy electrical circuits using different learning models;

(3) Implementing a new real-time monitoring system for energy demand in legacy electri-
cal circuits based on the SmartLVGrid metamodel;

(4) Proposing a systematic method for creating databases through the monitoring of
pre-existing circuits;

(5) Developing an alternative for detecting exceedances of the contracted demand with
energy utility companies in legacy building installations using learning models.

To present our proposal, we divide the paper as follows: Section 2 provides a survey
of the state of the art related to the topic. In Section 3, we highlight the research gaps in the
literature concerning the theme of this work. Section 4 provides the theoretical framework
of the SmartLVGrid metamodel. Section 5 presents our proposal for energy monitoring
based on retrofitting low-voltage legacy circuits of a power distribution panel. In Section 6,
we define our strategy and methodology to enable demand forecasting in the building
installation and its legacy circuits. Section 7 presents the obtained results. In Section 8, we
discuss the results, followed by the conclusions and proposals for future work in Section 9.

2. Related Work

The forecasting of energy demand is constantly researched in the literature, as well
as the prediction of energy consumption. Among the approaches used in this context,
statistical methods, machine learning, or deep learning models can be mentioned, employed
based on pre-established databases. The most commonly used statistical methods are based
on autoregressive techniques, with the most common ones being autoregressive integrated
moving average (ARIMA) and seasonal ARIMA (SARIMA) methods. In [13], the SARIMA
method was used by the authors to predict energy consumption in Poland on a quarterly,
monthly, and weekly scale, using data from 2015 to 2021. In [14], the authors used the
ARIMA method to estimate energy demand in Brazil from 2021 to 2025 and evaluated the
predictability of the model using real data from the period 2014 to 2015. The authors of [15]
also employed the SARIMA method to forecast short-term energy consumption for the
Brazilian industrial sector. These statistical methods have also been used in the literature
to make predictions using time series by rearranging the data present in the datasets to
enable the forecasting of future energy demand based on past demand values. In the
works [16,17], the authors used the sliding window method and autoregressive models to
enable predictions of short-term future demands.

Although statistical methods have shown significant results in time series forecasting,
they are well-suited when the dataset exhibits well-defined seasonality and trend patterns.
When the time series exhibits more complex and even nonlinear patterns, machine learning
methods can provide better results compared to statistical methods [18]. In [19], the authors
proposed models for predicting electricity consumption in Slovakia using artificial neural
networks. The authors of [20] used the support vector regression (SVR) and generalized
regression neural network (GRNN) models to predict energy consumption in Indonesia.
In the work [21], the authors applied random forest regression (RFR) and SVR to predict
medium-term electricity demand using a Canadian database. In [22], the authors applied two
ensemble learning methods, the XGBoost regressor and RFR, to forecast demand for the next
day during the pandemic period. In the work [23], the authors employed machine learning
methods, including linear regression (LR), multivariate polynomial regression, SVR, gradient
boosting regressor (GBR), RFR, and K-neighbors regressor, to predict energy demand in New
South Wales, Australia. In [24], the authors developed a clustering-based method for electricity
prediction that was evaluated using a dataset with data from 105 substations. In the work [25],
the authors presented a summary of the works developed in the IEEE demand forecasting
competition, which included anomalous consumption data from a metropolitan region during
the COVID-19 pandemic period. Various data preprocessing and demand prediction methods
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using machine learning were presented. In an analysis of the cited works, it is mentioned
that in cases of large data volume, nonlinear relationships among the characteristics present
in the database, the presence of noise, and non-stationary behaviors, deep neural networks
can be an alternative to machine learning. However, it is emphasized that deep networks
require more computational resources and are more complex compared to supervised machine
learning models. It is also mentioned that authors commonly use recurrent neural networks in
this scenario, especially LSTM networks, combined with sliding window techniques [26–31].
Tables 1 and 2 summarize the previously presented works.

Table 1. Studies employing statistical methods for demand and energy consumption prediction.

Work Year Application Methods or Models Dataset Origin

[13] 2021 Prediction of electricity consumption in Poland on a
quarterly, monthly, and semi-annual scale.

XGBoost, GRNN, SARIMA,
ETS, NNETAR Cire.pl

[14] 2022 Forecast of Brazilian monthly energy demand. RS, ES, ARIMA ONS Brazil

[15] 2022 Prediction of monthly consumption of industrial
electricity in the Brazilian energy system.

HW, SARIMA, TBATS, DLM,
NNAR, MLP Central Bank of Brazil

[16] 2022 Out-of-sample, monthly, weekly, and hourly forecast
for Nord Pool electricity demand. AR, FAR, FARX Nord Pool

[17] 2022 Short-term forecast of hourly energy demand of
different energy districts. SLFN, ARIMA, SVR, LSTM Arpae, ARPA Lombardia

The abbreviations are presented in the list of abbreviations.

Table 2. Machine and deep learning studies for demand and energy consumption prediction.

Work Year Application Methods or Models Dataset Origin

[19] 2022 Development of electricity forecasting
models in Slovakia. Gray Models, ANN Damas (SEPS)

[20] 2022 Electricity prediction in Bali Island, located in
Indonesia, using electricity and weather data. SVR, GRNN East Java Province, domestic

generators, ERA5-ECMWF

[21] 2021 Use of machine and deep learning models for
medium-term prediction in Canada. LSTM, SVR, NARX, RFR IESO (Canada), Gov. of Canada

[22] 2022 Forecast for the next day of energy demand in
Germany in COVID-19 pandemic period. Ensemble-based models OPSD

[23] 2022 Prediction of energy demand in
New South Wales, Australia.

LR, MPR, SVR, ENR, GBR, DTR,
RFR, KNNR AEMO, Gov. of Australia

[24] 2022 Energy prediction based on cluster
optimization method. Greedy clustering Ausgrid

[25] 2022
Demand prediction works in a metropolitan region

using machine learning, statistical methods, and
hybrid models.

Ensemble methods, AR, LR BluWave-ai

[26] 2022 Short-term energy forecast using learning models. ARIMA, LSTM, Prophet,
Hybrid models Elia grid

[27] 2020 Long-term demand prediction in Florida with
regression models.

MRM, CNN variants,
RFR, LSTM

EIA (U.S.), FCC,
Census Bureau (U.S.),

Bureau of Labor Statistics (U.S.)

[28] 2022 Prediction of energy consumption in Spain using
LSTM networks. LSTM variants Spain Electricity Consumption

[29] 2021 Use of LSTM and convolutional networks for
short-term demand forecasting in France and Korea. LSTM and CNN variants UCI repository, local

Korean dataset

[30] 2023 Forecasting energy consumption demand using TFT,
which outperformed other deep learning models. LSTM variants, TCN, TFT London DataStore

[31] 2022
Energy consumption forecasting on smart grids with

N-BEATS, outperforming other deep
learning methods.

LSTM and GRU variants,
TCN, N-BEATS London DataStore

The abbreviations are presented in the list of abbreviations.

75



Sustainability 2023, 15, 11161 5 of 37

The previously cited works contribute to the state of the art in demand forecasting and
energy consumption. However, these works focus on predictions and forecasts relevant
to energy companies, regional, or national contexts, rather than being directly related to
building and industrial facilities. Additionally, the datasets employed were not produced
through wireless sensor networks (WSNs) developed and configured by the authors, which
would allow for the investigation of specific details or aspects, such as the use of predictive
models for energy demand control, for example.

Thus, we sought literature that investigates the building context and applications of
demand forecasting specifically tailored to building installations. In [32], demand and
generation prediction of renewable energy sources, specifically photovoltaic and wind en-
ergy, were conducted in five smart residences using LSTM networks as prediction models,
with approximately 11 months of collected data. In [33], an energy management strategy
based on demand classification and prediction was presented. In addition to predicting the
demand for a commercial building in Singapore, the authors developed neural network
algorithms for decision making regarding energy excess treatment, application of photo-
voltaic energy, and energy storage conditions in the battery bank. In [34], the authors used
a FFANN model for demand forecasting in the next 24 h for residential, educational, and
mixed-use buildings. The authors of [35] predicted energy consumption in a food company
based on data obtained from the factory’s energy management system using the SVR and
multilayer perceptron (MLP) methods. The work in [36] presents a study to assist managers
and technicians with long-term energy predictions for a building at Teesside University
(UK) using different machine learning techniques such as SVR and neural networks. In [37],
the authors performed demand prediction using LSTM networks applied to the context of
smart buildings. In [38], energy consumption data from smart meters installed in building
substations, which recorded the consumption of the entire building at 15-mi intervals,
were utilized. Based on this data, the authors analyzed the integration of methods for
consumption forecasting to improve energy efficiency in building installations. Table 3
presents the works cited in this paragraph on demand forecasting and energy consumption
in building and industrial infrastructures.

Table 3. Research on forecasting demand and consumption of electricity in building and industrial
infrastructures.

Work Year Application Methods or Models Dataset Origin

[32] 2021 Energy prediction and for renewable sources in
smart buildings. LSTM variants HUE dataset (Havard dataverse)

[33] 2020 Prediction and classification of energy demand for
decision making in smart buildings.

MLP, RNN, LSTM, GRU,
EM-GMM, BGM, K-means Own data

[34] 2019 Use of the FFANN model to forecast demand for the
next 24 h of buildings. FFANN Buildings of Finland

[35] 2023 Energy prediction in a food company using machine
learning models. MLP and SVR variants Own data, KEPCO, KMA

[36] 2021 Long-term energy prediction
in a university building. PR, SVR, ANN Own data

[37] 2022 Prediction of energy demand in smart buildings. ARIMA, LSTM Mendeley data

[38] 2022 Forecasting of energy consumption in smart
buildings with different drift detection methods. RFR, XGBoost CNN, TCN Own data

The abbreviations are presented in the list of abbreviations.

Additionally, we selected some works that incorporate the concept of AIoT for electri-
cal energy analysis. In [39], the authors developed a hardware device to monitor human
presence and energy consumption. By using a decision tree model on a cloud-stored
database, they determined energy waste in residential consumer units. Using the same
decision tree algorithm, the authors of [40] created an energy control system based on
hardware with wifi communication, relays, current sensors, and cloud storage. In the

76



Sustainability 2023, 15, 11161 6 of 37

work [41], neural networks were employed to predict energy consumption based on data
collected from sensors in a residential system. The authors utilized these predictions to
turn off one or more devices to reduce monthly energy consumption. The authors of [42]
addressed the challenges of thermal management in electric vehicle batteries and proposed
an AIoT-based preventive diagnostic system to improve safe driving, efficient maintenance,
and product lifecycle management, aiming to optimize efficiency and battery life. Table 4
summarizes the selected AIoT works.

Table 4. Literature works on AIoT implementation in energy applications.

Work Year Application Methods or Models Dataset Origin

[39] 2022 IoT solution to control consumption and energy
waste in homes. Decision tree Own data

[40] 2021 AIoT solution for controlling energy consumption in
smart homes. Decision tree Own data

[41] 2022
Use of neural networks to control energy

consumption in homes from wireless
sensor networks (WSNs).

ANN Own data

[42] 2023 AIoT system for preventive diagnosis of thermal
challenges in electric vehicle batteries. ANN Own data

The abbreviations are presented in the list of abbreviations.

3. Research Gap

Previous studies on demand and energy consumption forecasting have shown the
potential to enhance energy efficiency in building and industrial infrastructures within
their respective contexts. However, there are several gaps in the current state of the art
regarding demand or energy consumption forecasting in building facilities:

• Most existing studies rely on databases generated by third parties, without real-time
AIoT solutions specifically designed to construct databases that capture patterns or
characteristics of not only the overall electrical installation but also individual circuits
and sectors within it. This presents an opportunity to leverage demand or consumption
forecasting algorithms to optimize operations for specific installations of interest;

• The studies have not explored the forecasting of energy consumption and demand at
the circuit level within building installations, which would enable individual analysis
of high-consumption loads within the facility. This limitation stems from the lack of
digital monitoring solutions that can collect individual demand data from building
circuits, in addition to capturing the overall energy demand of the facility;

• The existing works do not provide AIoT solutions that enable the forecasting or detec-
tion of demand exceedances in legacy building systems, hindering digital convergence
in pre-existing environments. A sustainable technological alternative is needed to
promote energy efficiency in these installations. Retrofit strategies could be employed
to introduce computational resources and update legacy infrastructures, leveraging
existing resources to extract consumption and energy demand data for specific studies
focused on legacy installations;

• The studies do not utilize retrofit strategies or metamodels with generic architectures
and protocol stacks to enable systematic data collection through digital solutions
that incorporate control, monitoring, distributed processing, and communication
capabilities within data networks. Such approaches would benefit various cases and
applications in the domain of energy forecasting.

Therefore, this study proposes to address these gaps by developing and implementing
digital solutions using retrofit techniques and the SmartLVGrid metamodel for accurate
demand forecasting in legacy installations.
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4. SmartLVGrid

A smart low-voltage grid, or SmartLVGrid, is a metamodel that enables the techno-
logical convergence of legacy power distribution systems into the smart grid paradigm
through retrofit strategies and systems engineering concepts. Its proposal involves adding
electronic and computational resources for the control and monitoring of legacy systems
using supervisory systems hosted on a local network or even in the cloud. These function-
alities are described in the platform as operational primitives (OPs), which were previously
performed by field operators and later, with the implementation of the metamodel, taken
over by the added technological resources. This metamodel consists of protocol stacks
described in two layers: middleware and interoperability, as shown in Figure 1.

Figure 1. The SmartLVGrid stack [4].

As illustrated in Figure 1, the retrofitting of the existing infrastructure (legacy layer) is
carried out through points of interface (PoIs) that interact with the middleware layer through
the coupling and interaction node (CIN). Through this interface, the metamodel defines one
of its operational primitives (OPs) called the domain retrofitting function (DRF), which is
responsible for performing control and monitoring functions in the legacy layer. On the other
hand, the service nodes (SNs) enable the middleware layer to interact with the interoperability
layer through predefined communication standards and protocols. Thus, communication
processes are performed by the interdomain support functions (ISFs). It should be noted that
in the middleware layer, computational support functions (CSFs) are implemented to provide
processing and storage services. In the following paragraphs and Sections 4.1 and 4.2, more
details about the middleware and interoperability layers will be provided.

4.1. Middleware Layer

The middleware layer, which interacts directly with the legacy layer, is implemented
through retrofitting solutions. Typically, these solutions encompass hardware devices
with embedded processing, including sensor and actuator elements compatible with the
DRFs to be executed. Alternatively, the middleware layer is described as the automation
and communication unit (ACU), as shown in Figure 1. The ACU has “In/Out” ports
that perform the communication processes, “Get” and “Run”, responsible for monitoring
functionalities and controlling the legacy system, respectively. It should be noted that the
CSFs are executed through the storage and processing resources of the ACU.

78



Sustainability 2023, 15, 11161 8 of 37

4.2. Interoperability Layer

The interoperability layer enables communication between ACUs through a data
network. Additionally, the communication protocols and device hierarchies modeled
through the SmartLVGrid metamodel are established within the interoperability layer.
In this context, the ACUs that supervise and collect data from other ACUs, as well as
execute DRFs when applicable, are hierarchically referred to as ACU coordinators. On
the other hand, the supervised ACUs that execute DRFs in the legacy layer are called
ACU operators. In cases of expanding the legacy system, it may be necessary to increase
the computational capacity of the ACU coordinator. In the metamodel, it is possible to
define sub-coordinators for each cluster of ACU operators, as described in [4]. Thus,
sub-coordinators are associated with a single ACU coordinator, which transfers system
information to and from the supervisory center. It is important to emphasize that, due to
the local processing capability of each ACU, actions and directives can be performed by the
ACU itself at the local level, enabling distributed and decentralized processing.

5. Methodology for Implementing the Energy Monitoring System

In previous works, we utilized wifi network infrastructures for communication with
the supervisory centers [3–5]. However, in this study, we explore a different alternative for
communication between our monitoring proposal and the supervisory center, as well as for
the physical interface of the retrofit modules with the legacy building circuits, considering
the specific characteristics of the monitored consumer unit. Specifically, we focus on a
wifi router assembly factory where the main power distribution panel does not have
sufficient space for installing retrofit modules, as shown in [5]. In this scenario, it is a
factory regulation not to use wifi networks within its facilities to reduce interference issues
and IP node conflicts during router testing and validation processes. Therefore, we employ
a different retrofit approach compared to previous state-of-the-art works in terms of both
physical and logical interfaces. Figure 2 illustrates the proposed retrofit strategy for the
power distribution panel in the industry under study. Subsequently, Figure 3 presents an
architecture diagram of the devices used in accordance with the SmartLVGrid metamodel,
highlighting the adopted communication standards as well as the physical and logical
interfaces of our monitoring proposal.

Figure 2. Retrofit strategy.

As depicted in Figure 2, the new strategy involves the integration of more compact
retrofit modules compared to the modules developed in [5]. Still referred to as ACU-
BREAKERs, in this study, the retrofit modules were powered by connecting them to
the breakers of the main power distribution panel, enabling the monitoring of electrical
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parameters for each circuit. This made individual circuit monitoring more independent
as we utilized non-shared power sources for each retrofit module. On the other hand, the
proposed approach included an ACU coordinator with the capability to: (i) communicate
with the ACU-BREAKERs and the supervisory and control center (SCC); (ii) provide
backup power through batteries; and (iii) monitor the electrical parameters of the main
panel breaker. This device was named ACU-MAIN. It is worth noting that the current
measurement of both ACU-BREAKER and ACU-MAIN were performed non-invasively
using current transformers, and voltage was measured through direct contact with the
terminals of the breaker and the main power bus.

In this study, we employed a technological update approach based on the protocol
stack of the SmartLVGrid metamodel, and we conceptualized the physical and logical
interfaces of the devices as presented in Figure 3. In this figure, we illustrate the peer-
to-peer communication between the operator modules, the ACU-BREAKERs, and the
coordinator module, ACU-MAIN, to forward the acquired data from the monitored circuits
and the main panel breaker to a local server. It is important to highlight that the monitoring
of the main breaker was not performed in [5], a feature that enables the detection of power
supply interruptions in other monitored circuits of the installation.

Figure 3. Proposed SmartLVGrid architecture.

To avoid the use of a wifi infrastructure network for communication between the ACU
operators and the ACU-MAIN in the mentioned industrial environment, we employed
the ESP-NOW ad hoc low-level network, which enables multi-hop, lightweight, secure,
self-organized wireless communication. ESP-NOW operates in the 2.4 GHz ISM band
and can coexist with other standards such as Bluetooth and wifi [43,44]. Studies have
shown that ESP-NOW exhibits lower latency and longer range compared to Bluetooth
and wifi [45]. Additionally, unlike Bluetooth low energy, ESP-NOW does not limit the
number of connected nodes, which justified its selection as the network protocol for
peer-to-peer interconnection [46]. On the other hand, the logical interface between the
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ACU-MAIN and the supervisory center was established through wired communication
with a local server, adopting the MQTT protocol over ethernet. This allowed us to establish
a connection with the cloud-hosted SCC. In summary, some benefits related to the hardware
and communication architecture of our retrofit proposal include:

• Utilization of a peer-to-peer communication architecture among the wireless nodes,
ACU-BREAKER (operator), and ACU-MAIN (coordinator), through the ESP-NOW ad
hoc network, enabling communication flexibility and reducing the number of IP nodes;

• Adaptation of the monitoring modules, ACU-BREAKER, with a specific and compact
design for installation in small-sized power distribution panels, reducing the space
requirements and visual clutter of the industrial distribution panel;

• Development of retrofit modules that allow easy and intuitive installation in power dis-
tribution panels, thanks to the agile coupling features and reduced physical dimensions;

• Preservation of the existing resources in the installation, including the infrastructure,
breakers, cables, connections, and the main distribution panel itself.

In this way, we enable the monitoring of the electrical panel and the forwarding of
data to a local server for subsequent transmission to the cloud, where the supervisory and
control center (SCC) is located. In the SCC, we built a dataset containing the obtained data
from each circuit to be used in the demand prediction algorithms. Expanding its original
proposal, the SCC now contributes not only with resources for storing and visualizing
past information but also with predictive analysis resources for each circuit of the building
installation through demand forecasting. The retrofit proposal tests were carried out by
integrating and validating the physical integration and communication of the monitoring
system with the cloud application, which receives the electrical parameters obtained from
each circuit.

Subsequently, we present the modeling of the ACUs, compatible with the assumptions
of the SmartLVGrid metamodel. The presented modeling will provide a detailed under-
standing of the conceived and developed physical and logical interfaces at the hardware
and/or software level for the retrofit modules in the energy monitoring system.

5.1. ACU-BREAKER Conception and Modeling

Figure 4 presents the improved ACU-BREAKER (operator) developed during this
work. The main differentiators of this ACU operator are its physical connection to the
legacy circuits of the power distribution panel and the use of the ESP-NOW ad hoc protocol
for communication between the ACU operators and the coordinator. As shown in the
figure, it has metallic terminations that fit into the breakers and current transformers
embedded in its structure. Therefore, the installation of the ACU-BREAKER is facilitated
by inserting and screwing the connection cables of transformers/breakers onto the metallic
terminations of the ACU-BREAKER. It is worth noting that the hardware and firmware
resources and functionalities of the ACU-BREAKER are similar to those described in [5].
Thus, this ACU provides the DRF of electrical parameter monitoring through its Get port,
performs ISFs of request and response through its In/Out port, and utilizes the ESP-NOW
protocol for communication, along with CSFs related to network connection management,
device configuration, and data storage. In terms of hardware, this device includes the
same electronic surge protection devices, voltage and current channel conditioning, and
ADE7758 for digitalization of acquired electrical parameters [47–49]. It is important to
mention that the calibration procedures for the ACU-BREAKER, as described in [5], were
maintained during the development of this work.
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Figure 4. ACU-BREAKER architecture diagram and its physical perspective after development.

5.2. ACU-MAIN Conception and Modeling

The ACU-MAIN coordinator of the proposed system has similar DRFs, ISFs, and
CSFs as the ACU-BREAKER. Additionally, it has the function of managing the network
connection and communication with the other ACUs, including storing the identification
data of the connected ACUs. Furthermore, it has an ethernet communication interface to
communicate with the local server of the factory using the MQTT protocol [50–52]. The
service nodes (SNs) of the SmartLVGrid metamodel for both the ACU-MAIN and ACU-
BREAKER are established based on the credentials used in the ESP-NOW communication
protocol, which includes the MAC address of the ESP32 used in the ACU hardware.
It should be emphasized that the In/Out ports of this ACU are implemented through
the ethernet interface for MQTT communication and the 2.4 GHz radio for ESP-NOW
communication. The voltage and current parameters are monitored through the physical
connection to the main bus and current transformers, respectively [53]. Figure 5 illustrates
the ACU-MAIN developed in this work.

Figure 5. ACU-MAIN architecture diagram and its physical perspective after development.

5.3. Definition of the System Interoperability Layer

As mentioned earlier, the interoperability of the system occurs through two forms
of communication. First, within the power distribution panel, the ACU operators com-
municate with the ACU-MAIN using the ESP-NOW wireless communication protocol.
Second, the ACU-MAIN communicates with the local server of the factory through an
ethernet interface, using the MQTT protocol with QoS 0. It should be noted that the ethernet
interface was determined according to the company’s requirements and aligns with the
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retrofit concept of the SmartLVGrid metamodel, which aims to maximize the utilization
of the existing legacy system. Consequently, the local server forwards the messages to an
MQTT broker hosted on the DigitalOcean Droplet virtual server hosting service, also with
QoS 0, where the processing of energy data takes place. It is important to mention that
the request messages for electrical parameters are transmitted in JSON format and, upon
receipt at the SCC, they are stored in a MongoDB database.

The service nodes (SNs), illustrated in Figures 4 and 5, represent the credentials that
allow the ACUs to communicate in a wireless network. In this work, the SNs are imple-
mented through the credentials that enable the communication of devices using the ESP-NOW
protocol, including the MAC address of the ESP32 in each ACU in the proposed P2P interface.

Regarding the messages in our proposal, they are implemented using JSON format for
both the interface between ACU operators and the ACU-MAIN and the interface between
the ACU-MAIN and the local server. The same message protocol is also adopted for
communication between the local server and the SCC. The messages include request and
response messages for sending the monitored electrical parameters along with timestamps,
network communication parameter changes, inclusion of new devices, and ACU-BREAKER
calibration. Figure 6 illustrates the process adopted to enable the interoperability of our
proposal in a request of electrical parameter scenario as follows:

• The local server requests the electrical parameters from the ACU operators and the
ACU-MAIN every minute (1);

• The configuration of the service nodes (SNs) of the ACU-BREAKERs and the ACU-
MAIN is performed (2);

• The request for electrical parameters is sent from the ACU-MAIN to each ACU-
BREAKER using the ESP-NOW protocol (3);

• Upon receiving the request, the ACU-BREAKER performs ISFs to synchronize com-
munication and transmits the requested data to the ACU-MAIN (4);

• After collecting the information from the ACUs and the message timestamps, the local
server forwards the data to the cloud-hosted SCC (5).

Figure 6. Communication process of the proposed system.
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5.4. Installation of the ACUs

Once assembled, tested, and calibrated, the ACUs were installed and configured to
operate in the existing power distribution panel of the router factory. Each ACU was
calibrated beforehand to match the nominal currents and voltages of the breakers in the
panel, with a maximum error of 1%, using a precision three-phase source and the internal
registers of the ADE7758, the integrated circuit used in the ACUs for electrical parameter
digitalization [54,55]. The panel operates with a phase-neutral voltage of 127 Vrms and has
22 circuits. Figure 7 illustrates the ACUs installed in the legacy power distribution panel.
As depicted, the first distribution breaker does not have an ACU-BREAKER installed, as it
was damaged during the evaluation period of the proposal.

Figure 7. ACUs installed on legacy power distribution board.

6. Proposed Demand Forecast Strategy

The literature presents applications of the SmartLVGrid metamodel used for the
management, control, and energy monitoring of power distribution systems and building
systems [3,4,12]. In [5], we presented a data-driven energy management strategy by
monitoring real-time energy demand in each circuit of a building installation based on
the aforementioned metamodel. In Brazil, where the proposed work was implemented,
medium- and high-voltage consumer units are categorized as “binomials”, being charged
based on both consumption and previously contracted energy demand from a local energy
distributor [56]. The demand is weighted every 15 min, and if it exceeds the stipulated
value in the established contract, the consumer unit is subject to fines according to the
Brazilian National Electric Energy Agency (ANEEL) in the normative resolution ANEEL
No. 1000/2021 [57]. To assist the participating managers in the conducted case study,
we also developed a visual interface with demand exceedance alarm indicators so that
managers could choose to develop demand control strategies or renegotiate the demand
contract with the energy distributor.
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Thus, we noticed that a tool for predictive analysis of energy demand could contribute
to anticipate potential exceedances and, if possible, act promptly to reduce costs associated
with consumer demand exceeding limits, also assisting in demand management. Therefore,
considering that each circuit in the legacy installation can be monitored through retrofit
modules, the forecasting of demand for the next 15 min of the installation and its circuits
could be performed at the supervision and control center (SCC), becoming an additional
data analytics functionality incorporated into audit processes to enhance energy efficiency.
Such a strategy would enable decision making for demand control or renegotiation of
demand limits with the utility company, if necessary.

In this study, after installing the ACU-MAIN and ACU-BREAKERs in the main power
distribution panel, we let the devices operate and collect individual data from each circuit,
including the main breaker. The data were collected based on the interoperability definitions
specified earlier in Section 5.3. The collected circuit parameters are detailed in Table 5.
Subsequently, Table 6 presents the identification and load connected to each circuit, along
with the monitoring system device that supervises the respective circuits.

Table 5. Data variable description.

Data Variable Description

Circuit identification Monitored circuit identification.
MAC address MAC address of installed ACU.

Timestamp Timestamp of samples (datetime format).
Power factor Power Factor of each circuit (%).

Active energy Active energy of each circuit (Wh).
RMS current RMS current of each circuit (A).
RMS voltage RMS voltage of each circuit (V).

Table 6. Circuit, load, and monitoring device description.

Circuit Identification Load Monitoring Device

Circuit 0 All Building Installation ACU-MAIN
Circuit 2 Production Line—02 ACU-BREAKER-1
Circuit 3 Production Line—03 ACU-BREAKER-2
Circuit 4 Production Line—04 ACU-BREAKER-3
Circuit 5 Reserve Circuit ACU-BREAKER-4
Circuit 6 Electrical Panel—Production ACU-BREAKER-5
Circuit 7 Reserve Circuit ACU-BREAKER-6
Circuit 8 Electrical Panel—Server 02 ACU-BREAKER-7
Circuit 9 Support Area—02 ACU-BREAKER-8
Circuit 10 Central Air Conditioning—01 ACU-BREAKER-9
Circuit 11 Support Area—03 ACU-BREAKER-10
Circuit 12 Administration ACU-BREAKER-11
Circuit 13 Central Air Conditioning—02 ACU-BREAKER-12
Circuit 14 Electrical Panel—Stock 01 ACU-BREAKER-13
Circuit 15 Support Area—01 ACU-BREAKER-14
Circuit 16 Central Air Conditioning—03 ACU-BREAKER-15
Circuit 17 Electrical Panel—Stock 02 ACU-BREAKER-16
Circuit 18 Support Area—04 ACU-BREAKER-17
Circuit 19 Electrical Panel—Server 01 ACU-BREAKER-18
Circuit 20 Reserve Circuit ACU-BREAKER-19
Circuit 21 Chamber ACU-BREAKER-20
Circuit 22 Reserve Circuit ACU-BREAKER-21

The proposed system transmits the collected data from minute to minute to the local
server and then to the cloud. Based on this, it was possible to create a database at the
SCC for conducting the study proposed in this work. The database used in this study was
generated from 15 January to 12 April 2023, and contains data from the main breaker and
21 circuits of the distribution panel that supply loads and other distribution panels within

85



Sustainability 2023, 15, 11161 15 of 37

the building installation. Due to industrial confidentiality reasons, the obtained database
and other company data could not be published or made available to the public at the
moment, but we can make it available upon request and negotiations carried out directly
with us. For the forecasting task proposed, only the minute-to-minute active energy data
from each circuit will be used, which were subsequently processed to obtain the energy
demand. The other data are used by the industry in energy audit procedures. It is important
to mention that the building in question has a demand limit of 120 kW.

Throughout this section, we presented the exploratory analysis of the obtained data,
the preprocessing techniques used for training the learning models, and the performance
metrics for model evaluation. Hereafter, the concepts of the learning models used will be
presented, followed by the division of the training and validation datasets.

In summary, to prepare the data for use in time series forecasting, we used the sliding
window technique so that previous demand data could be used to predict future demand for
the next 15 min for circuits within the installation, following the ANEEL guidelines in [57].
These data were normalized using the min–max method. Based on the performance of other
works in the literature, we used machine learning regression techniques as learning models,
such as random forest regressor (RFR), support vector regression (SVR), and XGBoost
regressor (XGBR). Additionally, we used the linear regression (LR) method to obtain a
prediction baseline from the preprocessed data, and a recurrent neural network model,
specifically a long short-term memory (LSTM) network, as a deep learning alternative to
compare with the other obtained results.

6.1. Exploratory Data Analysis and Definition of the Circuits to Be Analyzed

Before preprocessing the obtained data, we analyzed the contribution of each circuit
to the energy consumption of the building installation. For this purpose, we performed
a Pareto analysis of the total energy consumption of the circuits in the installation from
15 January to 12 April 2023. In this analysis, the cumulative percentage consumption was
based on the ratio of the individual consumption of each circuit, monitored by the ACU
operators, to the total consumption of the installation measured by the ACU-BREAKER.
Circuit 0 represents the entire installation, which is monitored by the ACU-MAIN. The
other circuits, from 2 to 22, are monitored through the ACU-BREAKERs. The Pareto
diagram of the energy consumption of the circuits present in the installation is illustrated
in Figure 8. It should be noted that, due to damage to the ACU-BREAKER of circuit 1
during the installation process and the fact that other circuits have much lower energy
consumption compared to the rest, the total and percentage consumption of these circuits
are identified as “other circuits” in the diagram.

We noticed that circuits 13, 16, 10, 8, 6, 12, and 14 accounted for approximately 80%
of the total consumption of the installation. Since energy consumption is directly related
to energy demand, we chose to perform demand forecasting studies for these circuits
considering their contributions to the demand increase. In addition to these circuits, we
also used the demand data obtained from the ACU-MAIN. From the energy data monitored
every minute by the circuits, we extracted the 15-min energy demand for the mentioned
circuits. Table 7 presents the statistical and descriptive data for 15-min demand intervals
for the specified circuits. Here, ”count” represents the number of demand values for each
circuit’s dataset. Figure 9 illustrates box plots that detail the variation in the 15-min energy
demand for these circuits.

We observed from Table 7 and Figure 9 that the average values of the 15-min demand
are directly proportional to the cumulative percent of energy in Figure 8, justifying the
selection of circuits based on Pareto analysis for the demand forecasting study. According
to Table 7, the data count is the same for all samples collected from the selected circuits.
From Table 7 and Figure 9, with the exception of circuits 6 and 8, we noticed that the largest
deviations obtained are concentrated in the upper part of the graphs. We can observe
from Table 7 that the standard deviation of the energy demand is more significant in the
demand obtained from the monitored data of the main breaker of the distribution panel
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(circuit 0). Additionally, it can be observed in Figure 9 that the graph indicates possible
demand exceedances in the installation during the data collection period in this circuit,
with values exceeding the contracted demand of 120 kW, as illustrated by the red marking
in the figure. On the other hand, the outliers in the same figure are less frequent in the
circuits of the main panel monitored by the ACU-BREAKERs. The circuits that present the
most outliers are the demand data of circuits 8 and 12. We expect that the LSTM, SVR, RFR,
and XGBR models perform better than the linear regression model in datasets with higher
variability. The preprocessing techniques applied to the 15-min demand data, which are
subsequently used in the training and testing of the learning models, will be presented next.

Figure 8. Pareto diagram of the energy consumption of building circuits.

Table 7. Descriptive statistics of the 15-min demand data.

Statistics Circ. 0 Circ. 6 Circ. 8 Circ. 10 Circ. 12 Circ. 13 Circ. 14 Circ. 16

Count 6782 6782 6782 6782 6782 6782 6782 6782
Mean (kW) 62.18 6.27 8.86 9.13 5.90 13.92 5.27 10.90

Standard deviation (kW) 34.18 3.55 3.22 8.90 4.92 11.24 3.33 9.67
Lower value (kW) 9.25 0.54 0.09 0.11 0.66 0.46 0.45 0.11
First quartile (kW) 21.74 1.45 9.02 0.12 1.52 0.57 0.87 0.12

Median (kW) 72.35 8.57 9.79 5.49 3.76 20.14 6.51 11.11
Third quartile (kW) 89.60 8.79 10.44 19.52 9.80 24.33 8.13 22.30
Upper value (kW) 126.46 10.80 13.46 21.59 25.07 27.44 11.74 24.14
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Figure 9. 15-min demand variation of the building installation and monitored circuits, with the
contracted demand of the installation represented by a dashed red line.

6.2. Data Preprocessing

In this section, we present the methods used for data preprocessing in our study,
which include the sliding window technique and min–max normalization. This crucial
step ensures that the data entered into the models are in a suitable and ideal format for
forecasting energy demand in the context of this work.

6.2.1. Sliding Window

The sliding window algorithm was used to generate the input data for the models by
selecting subsets of sequential samples. These subsets are called sliding windows, which
move with a predetermined temporal unit step according to each application [58]. This
technique is widely used in areas such as time series forecasting, signal processing, and
temporal data analysis. In this work, the temporal unit is defined as the energy demand
values obtained from each circuit over a 15-min period. Each sliding window, as illustrated
in Figure 10, is composed of past demand values (i.e., blue sets), which are used as input
to predict the energy demand for the next temporal unit (i.e., cubes). We determined the
optimal window size through empirical tests, where we established possible window values
and performed iterative loops using the learning models. Based on the results obtained
for each defined window, we have selected the best possible window size to predict the
demand for the selected circuits. The window size determined from the conducted tests
was 10 temporal units (samples) of 15 min of previous demands to predict the value of the
energy demand for the subsequent sample.

Figure 10. Sliding window technique.
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6.2.2. Min–Max Normalization

The min–max data normalization method scales a dataset so that its values are within a
specified range [a, b]. This technique is commonly used to preprocess data before applying
machine learning algorithms. When applying min–max normalization to a dataset, the
original values are transformed into new scaled values that fall within a specified range.
This transformation is performed using an adaptation of the standard linear transformation,
as shown in Equation (1). In this work, the range defined for data normalization was [0, 1].

xnorm =
x− xmin

xmax − xmin
(1)

6.3. Evaluation Metrics

In this section, we explain the critical metrics used to evaluate the performance of the
implemented learning models. These evaluation metrics provide quantitative information
about the performance of the models in forecasting energy demand.

6.3.1. Root Mean Squared Error—RMSE

Root mean squared error (RMSE) is a widely used metric for evaluating the perfor-
mance of regression models. This measure assesses the difference between the actual values
yi and the predicted values ŷi of a dependent variable by calculating the square root of the
mean of the squared errors, as shown in Equation (2).

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi) (2)

By examining the equation of RMSE, it can be seen that the metric resembles the
standard deviation. Thus, the RMSE value can be interpreted as a metric that indicates the
variability in errors in relation to the actual values of the dependent variable. Therefore,
it can be considered as an indicator of the model’s accuracy, with a lower RMSE value
indicating better performance. Additionally, the RMSE metric can be used as a quantitative
measure of the prediction quality of the model for comparative analysis between regression
techniques. It is worth noting the use of the square root, the RMSE can be interpreted in
terms of the dependent variable, which helps in understanding the magnitude of errors
generated by the evaluated model [59].

6.3.2. Mean Absolute Error—MAE

Mean absolute error (MAE) is an evaluation metric that provides the average magni-
tude of the n absolute differences between the predicted values yi and the expected values
ŷi. This metric is expressed in the same unit as the dependent variable and, therefore,
provides a straightforward understanding and interpretation of the achieved performance,
facilitating a direct comparison between different models [60]. The mathematical expression
for MAE can be seen in Equation (3).

MAE =
1
n

n

∑
i=1
|yi − ŷi| (3)

6.3.3. R-Squared Score—R²

The R-squared score (R2) is an evaluation metric that indicates the proportion of the
variance in the dependent/predicted variable y that is explained by the input/expected
variables. This metric takes values between 0 and 1, where 0 indicates that the model
does not explain any variability in the dependent variable, and 1 indicates that the model
explains all the variability in the dependent variable. Therefore, as the R2 value increases,
the model fits the data better and explains a higher proportion of the variance in the
dependent variable. On the other hand, an R2 value close to 0 indicates that the model is
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unable to explain the variation in the dependent variable [61]. This metric is expressed
in Equation (4).

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (4)

6.4. Learning Models

In this section, we delve into the specificities of the learning models used in this work,
which include linear regression, support vector regression, random forest regression (RFR),
XGBoost regression, and LSTM-type recurrent networks.

6.4.1. Linear Regression (LR)

The linear regression (LR) method aims to establish a linear relationship between
the response variable y and the predictor variables x1, x2, . . . , xl , which are called the
dependent and independent variables, respectively. In the context of demand prediction,
the independent variable is the sampled data allocated in the window, while the dependent
variable is the predicted demand. The linear relationship is obtained by estimating the
parameter vector θ and adding an additive disturbance or noise term η. Thus, considering
yn as the demand at time n, and applying the sliding window, it follows that:

yn = θ0 + θ1yn−1 + θ2yn−2 + . . . + θlyn−l + ηn (5)

and

ηn = yn − (θ0 + θ1yn−1 + θ2yn−2 + . . . + θlyn−l) (6)

Considering N observations and l = 10, we have:

S(θ) =
N

∑
n=l+1

(yn − θ1yn−1 − θ2yn−2 − . . .− θlyn−l)
2 (7)

S(θ) =
N

∑
n=l+1

η2
n (8)

or in vector form:

S(θ) =
N

∑
n=l+1

(yn − θT ỹn)
2 (9)

where

θ = (θ0, θ1, . . . , θl)
T (10)

and

ỹn = (1, yn−1, yn−2, . . . , yn−l)
T (11)

In this case, w = (w0, w1, . . . , wl)
T is the estimated vector of θ that minimizes S(θ). In

general terms, the LR model performs a prediction by calculating the weighted sum of the
input data and adding a constant term. This process determines the weights and biases
of the model. In its multiple form, it involves the use of two or more predictors, i.e., more
input variables for training. It is one of the most commonly used low-complexity models
when the response variable and predictor have a strong linear correlation [62].

6.4.2. Support Vector Regression (SVR)

The SVR (support vector regression) prediction technique aims to predict output
values by determining a hyperplane that closely resembles the input data. In this algorithm,
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the maximum number of instances possible is considered within a margin of ε, with the
aim of determining weights and biases, that provides the generalization for the model.
To achieve this, the objective is to minimize the error J(w, w0, ξ, ξ̂) given by Equation (12),
where ξn and ξ̂n are the slack variables corresponding to a deviation from the ε margin,
with the penalty control given by C, constrained by Equations (13)–(15).

J(w, w0, ξ, ξ̂) =
1
2
||w||2 + C

(
N

∑
n=1

ξn +
N

∑
n=1

ξ̂n

)
(12)

yn − wTxn − w0 ≤ ε + ξ̂n, n = 1, 2, . . . , N (13)

wTxn + w0 − yn ≤ ε + ξn, n = 1, 2, . . . , N (14)

ξ̂n ≥ 0, ξn ≥ 0, n = 1, 2, . . . , N (15)

In this way, contributions to the cost function from errors with an absolute value
less than or equal to ξ are set to zero. The optimizer’s objective is to estimate w and
w0 in a manner that the contribution of error values greater than ξ and smaller than ξ̂ is
minimized. Thus, this algorithm is interesting for initial testing in machine learning and has
the advantage of not being affected by local minima, unlike deep neural network algorithms.
However, as the amount of data increases, this algorithm tends to lose performance when
attempting to establish a linear response [63].

6.4.3. Random Forest Regression (RFR)

In a regression tree, the determination of the root node variable and subsequent nodes
is defined by maximizing the weighted averages in the child nodes or, equivalently, by
minimizing the weighted variance σ2

w of subsets Y1, Y2, . . . , Yn, with |Y1|, |Y2|, . . . , |Yn|
elements, as shown in Equation (16).

σ2
w(Y1, Y2, . . . , Yn) =

N

∑
n=1

|Yn|
|Y| σ2(Yn) (16)

In the RF method, which is an algorithm based on an ensemble of decision trees,
the bootstrap aggregating strategy is applied during the model learning phase. Bootstrap
aggregating aims to construct a series of trees by randomly sampling the original data, using
only a subset m of predictors from a complete set p of predictors. These samples are then
trained independently and in parallel with each other. Finally, the values are aggregated by
calculating the average of the results obtained from each individual regression tree [64].

Thus, by averaging multiple decision trees that are subjected to high variance, the
model exhibits better generalization performance and is less prone to overfitting. The RF
technique has been widely used to solve low-complexity regression problems due to its
high performance and robustness against overfitting.

6.4.4. XGBoost Regressor (XGBR)

The XGBoost regressor algorithm is based on making predictions using regression
decision trees. The method utilizes information aggregation, random forest for tree selection
during batch training, error minimization using gradient descent, and regularization of
weights and biases. Equations (17) and (18) present the weight function and the objective
function, respectively. In these equations, gi and hi are the first- and second-order gradients
of the loss function, λ and γ represent additional regularization terms, T represents the
number of nodes, q represents the tree structure, and Ij is the instances of a node j. In
addition to regularization, XGBoost uses an additional shrinkage technique to prevent
overfitting by scaling the weights obtained by a factor η, similar to a learning rate. This
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process reduces the influence of each individual tree and allows room for future trees to
improve the model.

wj = −
∑i∈Ij

gi

∑i∈Ij
hi + λ

(17)

J(q) = −1
2

T

∑
j=1

(∑i∈Ij
gi)

2

∑i∈Ij
hi + λ

+ γT (18)

This algorithm has shown promise in various prediction scenarios, including regres-
sion and classification problems. This is due to its high scalability, as the execution time of
this algorithm can be 10 times faster than others, and it can be scaled for numerous exam-
ples in distributed configurations or with limited processing memory due to implemented
optimizations and parallel processing capabilities [65].

6.4.5. Long Short-Term Memory (LSTM)

LSTM networks are a type of recurrent neural network that feature an internal memory
cell structure as their main characteristic. Through the logistic function and multiplier
weight matrices, these gates are implemented and referred to as the input gate (it), forget
gate ( ft), and output gate (ot). There is also the vector that represents the internal state (Ct)
of the LSTM cell and the candidate value (C̃t). The mathematical definitions of the gates,
cell state, and candidate value of the LSTM network are presented in Equations (19)–(23),
including the respective biases bC, bi, b f , and bo.

ft = σ(W f [ht−1, xt ] + b f ) (19)

it = σ(Wi[ht−1, xt ] + bi) (20)

ot = σ(Wo[ht−1, xt ] + bo) (21)

Ct = ft ◦ Ct−1 + it ◦ C̃t (22)

C̃t=̃ tanh(Wc[ht−1, xt ] + bC) (23)

The application of these networks is interesting for problems involving sequential
data and time series, such as the electrical demand curve, for example, [66]. While a fully
connected neural network has separate parameters for each input feature, recurrent neural
networks share the same weights across different time steps, establishing a strong temporal
relationship among the data.

6.5. Definition of Training and Test Sets

The demand data for the selected circuits consists of 6782 observations, as shown in
Table 7. To proceed, we normalized the dataset using the min–max technique, we divided it
into training and test subsets in order to implement and validate the learning models. Thus,
80% of the observations were used for training, and 20% were used for testing. Figure 11
illustrates the separated training and test sets for each circuit selected for the proposed
demand prediction study in this work. After dividing the data, we applied the sliding
window technique to prepare the input and output data subsets for training and testing
the learning models. As mentioned earlier, the sliding window size adopted was 10 past
values to predict a demand value for the next 15 min.
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Figure 11. Training and test sets of the selected circuits.

The training of the models was carried out on a local server from the data collected in
the SCC, where we evaluated the predictive models before transferring them back to the
cloud server. The server has a 2.3 GHz Intel Core i7-11800H processor, 16 GB RAM, 4 GB
GPU, and 500 GB SSD.

6.6. Software Libraries and Optimization of Learning Models

The experiments with the learning models were conducted on the Jupyter Lab platform of
the Anaconda distribution using the Python language. We utilized several libraries, including
TensorFlow, Pandas, NumPy, Matplotlib, Seaborn, XGBoost, and Scikit-learn. To enhance
the performance of the learning models on the established dataset, we used the Optuna
framework for Bayesian optimization of the hyperparameters of the machine learning models
and fine-tuning of the LSTM model. Bayesian optimization techniques have proven to be
more efficient in finding better hyperparameters and searching for the best parameters to be
used in neural networks and their variants. This is because they make use of prior information
about the behavior of the objective function to guide the search [67,68]. Optuna is an easy-
to-configure Bayesian optimization framework that is suitable for hyperparameter tuning
and determining the best parameters for supervised learning models for a given training and
testing set. With a define-by-run API, the search space for the best parameters is dynamically
defined by Optuna during the runtime of an objective function instantiated to test the desired
model under pre-established conditions [69]. Thus, Optuna was used to train and evaluate

93



Sustainability 2023, 15, 11161 23 of 37

the models for each dataset of the selected circuits. The parameter K in the table represents
the number of trees used in the RFR and XGBR models.

6.7. Definition of Parameters and Architectures of Learning Models

To accomplish the task of energy demand forecasting in our proposal, we conducted
an investigation into various machine learning models to determine the most suitable
one(s) for predicting the energy demand of the researched circuits, which exhibit distinct
demand patterns. The architecture for evaluating the learning models is illustrated in
Figure 12a, and the implemented LSTM model architecture is represented in Figure 12b.
After conducting tests using the Optuna framework to evaluate the models, we were able to
select the best parameters for each learning model. The tests were conducted individually
for each model, considering the normalized datasets of circuits 0, 6, 8, 10, 12, 13, 14, and 16.
We conducted 500 trials per study in an effort to find the optimal parameters that enabled
the models to effectively capture the temporal demand characteristics. The mean squared
error (MSE) metric was used as the evaluation criterion for training all the machine learning
models. Table 8 showcases some of the hyperparameters discovered for the machine
learning models after the Bayesian optimization process, considering the selected datasets.

Figure 12. Learning models (a) and LSTM recurrent neural network model (b) used to evaluate
demand forecasting.

Table 8. Hyperparameters used in machine learning models after optimization process.

Dataset SVR RFR XGBR

Circ. 0 C: 115.495, ε: 0.011 K: 236 γ: 0.107, λ: 0.036,
η: 0.207, K: 645

Circ. 6 C: 119.050, ε: 0.034 K: 558 γ: 0.273, λ: 0.898,
η: 0.308, K: 530

Circ. 8 C: 53.516, ε: 0.011 K: 102 γ: 0.072, λ: 0.538,
η: 0.242, K: 684

Circ. 10 C: 108.645, ε: 0.028 K: 498 γ: 0.407, λ: 0.238,
η: 0.245, K: 505

Circ. 12 C: 51.044, ε: 0.014 K: 132 γ: 0.059, λ: 0.859,
η: 0.260, K: 500

Circ. 13 C: 119.953, ε: 0.031 K: 217 γ: 0.254, λ: 0.284,
η: 0.034, K: 555

Circ. 14 C: 108.214, ε: 0.018 K: 43 γ: 0.205, λ: 0.914,
η: 0.246, K: 549

Circ. 16 C: 117.43, ε: 0.055 K: 408 γ: 0.255, λ: 0.458,
η: 0.173, K: 569

K: number of trees.
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When implementing the SVR, RFR, and XGBR models, it is crucial to understand the
impact of the chosen parameters following the optimization process. In the case of SVR,
the parameters C and ε control the regularization and error tolerance, respectively. Higher
values of C can lead to overfitting, while very low values can result in underfitting. The
parameter ε determines the width of the tolerance margin around the regression hyperplane.
Therefore, the optimization process using the Optuna framework was crucial in selecting
appropriate parameters and improving the SVR’s performance. On the other hand, in
the RFR model, the number of estimators (trees) K, determined through the optimization
process, improves the model’s generalization capability and reduces both the training
and optimization times. The XGBR model also has several important parameters, such
as the learning rate (η) and the number of estimators (K). The learning rate controls the
contribution of each estimator in the update process. Lower values can lead to better
generalization, while higher values can cause overfitting. The number of estimators affects
the model’s generalization capability and training time.

We also implemented an LSTM neural network model to compare with the LR, SVR,
RFR, and XGBR models. In the implementation process of this model, we tested various
architectures, including bidirectional LSTM networks and hybrid LSTM and convolutional
networks. We also experimented with stacking LSTM layers to achieve better results.
However, the best performance for the test set was obtained using a single LSTM layer with
one artificial neuron in the output. We also utilized Optuna to optimize the parameters of
the proposed LSTM network. Each Optuna trial for the LSTM network consisted of 100
training epochs using the Adam optimizer [66]. We conducted 500 trials for this model in
the Optuna framework. The best parameters for this model are presented in Table 9. It is
important to note that the activation function used in the LSTM layer of the models was
the hyperbolic tangent (tanh).

Table 9. Best parameters for LSTM model on each dataset.

Dataset Learning Rate Units Batch Size

Circ. 0 3.209 × 10−2 38 70
Circ. 6 1.055 × 10−2 23 24
Circ. 8 3.085 × 10−2 20 23

Circ. 10 2.711 × 10−2 80 24
Circ. 12 2.521 × 10−2 80 70
Circ. 13 3.351 × 10−2 48 64
Circ. 14 2.101 × 10−2 28 36
Circ. 16 2.722 × 10−2 80 64

The learning rate determines the step size used by the Adam optimization algorithm
during the training of the LSTM. Low learning rates can result in slower convergence or
become trapped in local minima, while high learning rates can make the training unstable
and prevent the model from finding an optimal solution. The number of units determines
the model’s capacity to learn complex representations and capture patterns in the data.
Higher values increase the learning capacity but also increase the training time and the
need for more training data. The batch size determines the number of training samples
used in each weight update pass of the LSTM. A larger batch size can speed up training by
processing more samples in parallel. However, a larger batch size requires more memory,
and training may become more challenging to parallelize. The choice of batch size depends
on the available memory, the size of the training set, and the trade-off between training
speed and accuracy. Thus, finding the appropriate parameters is crucial for striking a
balance between training speed and the performance of the LSTM model.
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7. Results
7.1. Performance Evaluation of Learning Models

Initially, we assessed the LR model’s performance on the acquired datasets to establish
a baseline for the performance metrics, to be achieved by the other learning models. After
optimizing the learning models, we used the hyperparameters from Table 8 to evaluate
the performance of the SVR, RFR, and XGBR models, and the parameters from Table 9
to evaluate the performance of the LSTM model. The performance metrics obtained for
the learning models for the test subsets of each energy demand dataset are presented in
Table 10. It is important to mention that the results presented for the performance metrics
are not normalized, as the data were returned to their original scale after the models’
predictions.

Table 10. Result of learning models’ performance metrics for test sets of selected demands (non-
normalized values).

Demand RMSE (kW) MAE (kW) R² (%)

Dataset LR SVR RFR XGBR LSTM LR SVR RFR XGBR LSTM LR SVR RFR XGBR LSTM

Circ. 0 9.116 8.789 8.269 8.252 8.216 * 4.874 4.278 4.152 * 4.273 4.285 92.705 93.22 93.998 94.02 94.07 *
Circ. 6 0.957 0.936 0.875 0.868 0.865 * 0.312 0.321 0.267 0.272 0.251 * 91.94 92.29 93.26 93.37 93.52 *
Circ. 8 0.426 0.417 0.424 0.420 0.415 * 0.215 0.199 * 0.217 0.214 0.205 86.81 87.35 86.90 87.16 87.39 *
Circ. 10 2.987 2.948 2.753 2.701 * 2.723 1.278 1.298 1.140 1.120 * 1.171 89.07 89.35 90.71 91.06 * 90.93
Circ. 12 1.296 1.291 1.302 1.317 1.288 * 0.729 0.728 0.729 0.754 0.694 * 94.23 94.27 94.17 94.04 94.30 *
Circ. 13 3.192 3.116 3.007 3.021 3.003 * 1.353 1.437 1.241 1.313 1.238 * 91.14 91.55 92.13 92.06 92.15 *
Circ. 14 0.670 0.656 0.595 0.606 0.577 * 0.269 0.275 0.254 0.274 0.243 * 95.23 95.43 96.23 96.10 96.47 *
Circ. 16 4.825 4.461 4.011 3.875 * 3.978 2.912 2.240 2.161 2.154 2.202 * 75.82 79.33 83.29 84.40 * 83.56

Values in bold with an asterisk represent the best results.

Comparatively, based on the results presented in Table 10, the LSTM recurrent neural
network model demonstrated superior performance compared to the other models for the
majority of the datasets. The LSTM showed good R² values, indicating that it can better
estimate the variability in demand patterns compared to the other models. Thus, we assert
that the ability of recurrent neural networks to handle temporal and sequential depen-
dencies was beneficial for the task of demand forecasting in the selected circuit datasets.
We emphasize that the optimization process conducted to select the best parameters for
this model, which are presented in Table 9, was crucial for the achieved performance. On
the other hand, the LR model performed the worst among the learning models. This can
be attributed to the simplicity of the linear model, which, in most cases, failed to capture
complex relationships in the demand data of the selected circuits. In all cases, the RMSE
performance followed the results of the R² metric. However, the MAE metric did not always
correlate with RMSE and R², as other models generated better results than the LSTM in this
evaluation metric.

Regarding the performance of the SVR, RFR, and XGBR models, we can observe in
Table 10 that they outperformed the baseline metrics of the LR model. Only in one case, the
dataset of circuit 12, did the LR model perform better than the RFR and XGBR models in
terms of RMSE, MAE, and R². Depending on the dataset and the selected parameters, at
least one of the machine learning models outperformed the others. For circuits 8 and 12,
the SVR model stood out among the three models. In circuits 13 and 14, the RFR model
performed better than the other two models. For circuits 0, 6, 10, and 16, the XGBR, being
more complex than SVR and RFR, achieved better performance. For the datasets of circuits
10 and 16, the XGBR outperformed the LSTM model, which performed better than all the
other models for the other datasets. In general, we can observe that the RFR and XGBR
models tend to have better performance when compared to SVR in terms of RMSE and
MAE in most cases, with XGBR standing out.

Considering the descriptive statistical data presented in Table 7 and Figure 9, we
can observe that the variability in average values, standard deviation, and data range of
demand influences the performance of the models. In the datasets of circuits 12 and 13,
for example, where there is a greater variation in the data range, the SVR and RFR models
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outperformed others due to their better handling of data dispersions in these datasets. For
the circuit 8 data, where abnormalities (outliers) are illustrated in Figure 9, it was observed,
through the R² metric in Table 10, that the learning models’ generalization ability was
significantly affected for this dataset. Additionally, in the circuit 0 dataset, which exhibits
greater variations as it represents the entire installation’s energy demand, we observed
the highest error values. This observation also justifies the performance of the LR models,
which are sensitive to outliers, variance, and complex relationships within the datasets.
In such cases, more complex and flexible models, such as LSTM, might be needed for
capturing demand patterns. It is important to highlight that, to enhance the performance
of the LSTM networks considering the high variance of the datasets exposed in Figure 9,
we observed that the Optuna optimizer sought to increase the number of LSTM units, as
presented in Table 9, so that the learning model could better capture the demand patterns.

Additionally, Table 11 presents the total optimization time for each model to search
for the best parameters with the Optuna framework. Subsequently, using the optimal
parameters, Table 12 illustrates the training and prediction times for each learning model.

Table 11. Total study time to optimize learning models.

Demand Total Study Time (s)

Dataset SVR RFR XGBR LSTM

Circ. 0 507.04 515.30 1512.57 55,554.55
Circ. 6 488.40 556.79 999.02 22,786.94
Circ. 8 505.96 563.52 1308.05 3995.51

Circ. 10 537.58 605.69 1113.27 24,081.63
Circ. 12 499.79 501.52 1231.30 20,654.27
Circ. 13 521.80 508.32 891.77 27,640.51
Circ. 14 488.50 453.44 1229.87 27,559.57
Circ. 16 555.51 562.22 1333.36 18,281.69

Table 12. Training time and prediction time of learning models.

Demand Training Time (ms) Prediction Time (ms)

Dataset LR SVR RFR XGBR LSTM LR SVR RFR XGBR LSTM

Circ. 0 35.06 228.90 117.07 3302.61 29,469.54 3.02 3.00 1.94 2.00 281.49
Circ. 6 2.00 126.98 209.68 1740.05 63,918.14 0.99 1.00 3.99 1.99 297.31
Circ. 8 1.01 106.73 31.67 2362.45 64,716.04 1.04 2.00 0.99 1.99 280.51

Circ. 10 2.10 218.34 245.26 1524.37 52,318.09 1.06 2.01 4.84 1.99 668.13
Circ. 12 0.99 61.58 53.69 1804.42 67,387.26 1.14 2.98 2.01 1.00 293.59
Circ. 13 1.99 193.57 105.97 965.42 23.293,50 1.01 3.00 1.05 1.00 269.96
Circ. 14 1.94 184.85 22.01 1186.26 44,027.02 0.99 1.00 0.99 1.51 272.30
Circ. 16 0.99 301.30 192.10 2015.23 24,600.22 1.01 2.01 5.01 2.00 295.66

Despite delivering the highest performance, the LSTM recurrent network model
demanded a greater computational time for optimization, training, and prediction processes.
As outlined previously in Section 6.7, the variables such as units, batch size, and learning
rate significantly influenced the training duration of the LSTM models. On the other
hand, the LR model demonstrated a shorter training and prediction timeframe. It is
worth noting that the optimization, training, and prediction durations directly correlate
with the parameters employed in the model implementation, which varied throughout
the hyperparameter tuning process and the learning models’ evaluation. For instance,
the training time for the RFR model increased for datasets where the tree count was
higher, similar to the XGBR model when comparing the results in Table 12 with the
hyperparameters displayed in Table 8. In the case of SVR, the regularization parameter C
directly impacted the training duration. The XGBR model occupied the second-longest
computational time in the training process, while the SVR and RFR models alternated
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between the measured durations during the analysis. Hence, for demand data where the
training parameters demanded a larger computational effort, the models’ training time
was extended, subsequently influencing the optimization time for the selected dataset. It
is crucial to underscore that, as per Section 6.4.4, although the XGBR model necessitated
more training time, its prediction duration was reduced, aligning it closely with simpler
models such as LR.

7.2. Evaluation of Our Proposal for Demand Forecast

Table 13 outlines the count of actual demand exceedances beyond 120 kW sourced
from the building installation’s test data subset (circuit 0), alongside the number of demand
exceedances forecasted by each learning model throughout the period from 25 March to 12
April 2023, representing the test set of demand data.

Table 13. Actual and predicted number of demand overruns by learning models.

Actual LR SVR RFR XGBR LSTM

38 22 24 30 30 32

As demonstrated, during the testing period for the implemented models, the LSTM
model, notwithstanding its higher computational cost for training, proved more effective
than other models in the forecasting task. This makes it ideal for use in the SCC to predict the
energy demand for the upcoming 15-min intervals in order to avoid demand exceedances.
In this context, the LR and SVR models fell short in detecting these exceedances, while
the RFR and XGBR models exhibited similar performance. Consequently, the metrics and
results elaborated in the prior section align with the comparison made in Table 13.

For comparison purposes, Figure 13 depicts the predictions made by the examined
models from 1:00 a.m. on 7 April to 8:00 a.m. on 8 April 2023. The figure highlights the pre-
cision with which the models forecast the demand, particularly during periods of minimal
variation. Generally speaking, it is observed that the LR, RFR, and SVR models tend to be
less precise during moments of variation in comparison to the XGBR and LSTM models.
However, during instances of high variation, such as shown for the data from circuit 16, the
models are prone to consistent errors that impair their performance in achieving forecasting
metrics. Additionally, Figure 14 showcases both actual and forecasted demands using
the LSTM neural network models for each circuit’s test sets during the period from 26
March to 4 April 2023. For the data from circuits 10, 13, and 16, we highlighted periods
of high variance in energy demand in yellow, where the LSTM model did not perform
adequately. This situation might be prevalent for loads with constant energy demand
variation, as in the case of the three air conditioning units in the installation. Under these
circumstances, the RMSE metric penalizes the performance of learning models sensitive
to these variations. Consequently, a similar outcome is reflected in the R² metric since
the model fails to accurately capture these variations. To mitigate these inaccuracies, we
could contemplate incorporating other correlated data or different forecasting techniques
to enhance the predictability of the forecasting models.

For the circuit 0 data, which represents the entire building installation, we marked
in dashed red lines the contracted demand of 120 kW, as shown in Figure 14. From April
1, we observed that the installation’s demand exceeded the contracted demand in certain
periods. These demand exceedance events are marked in dark red in the figure, both for
the installation data (circuit 0) and for the data from the other circuits. We also highlighted
in light red the periods in which the circuits had increased demand compared to the data
observed in previous periods. We noticed that the algorithm generated forecasts that closely
tracked the actual values over time. We suggest using these forecasts to guide the control
of the installation’s demand and avoid potential exceedances.
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Figure 13. Actual (black) and predicted demand by the LR (magenta), SVR (cyan), RFR (green), XGBR
(blue dashed), and LSTM (red dashed) models during the period 01:00 a.m. on 7 April 2023 until
08:00 a.m. of 8 April 2023.

99



Sustainability 2023, 15, 11161 29 of 37

Figure 14. Contracted demand (dashed red), and actual (blue) and predicted values (dashed black)
for the 15-min power demand of the selected circuits using the respective proposed LSTM recurrent
network models in the period from 26 May to 4 April 2023.
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7.3. Discussion of the Results Obtained from the Monitoring Proposal

We implemented a cluster of sensor devices that communicate within a power distribu-
tion panel using an ad hoc wireless network. These devices transmit electrical parameters
from a building installation and its circuits to a local server, and subsequently to a supervi-
sion and control center (SCC). Our proposal’s development was based on SmartLVGrid
metamodel, which advocates technological updates through the retrofitting of existing
systems. To implement the middleware layer of this model, we designed two energy moni-
toring devices: the ACU-MAIN and the ACU-BREAKER. The ACU-MAIN is responsible
for monitoring the main power bus of the installation’s distribution panel and acts as a
concentrator for the ACU-BREAKER cluster, which monitors the energy consumption of
the remaining circuits in the panel.

During the implementation of the ACU-BREAKER and ACU-MAIN devices, we
took into account the physical space constraints available in the panel for installation.
Therefore, we proposed a novel approach for retrofitting breakers by updating the ACU-
BREAKER device compared to the work presented in [5]. This approach facilitates the
physical connection interface with the monitoring device, enabling the digital convergence
of legacy infrastructure to the smart buildings paradigm. Additionally, we implemented an
interoperability layer using request and response message exchanges that travel through
the physical layer of the IEEE 802.11 standard via the ESP-NOW protocol. This wireless
communication enables our retrofitting proposal without the need for additional wired
ethernet network points, following the directives of the factory in which our study took
place. Thus, we enable flexible retrofitting of the installation by leveraging pre-existing
resources and adding capabilities to enable energy management.

Our proposal has been operating continuously and uninterruptedly since the start of
data collection after its installation, validating our approach to building energy monitoring
retrofitting. As a result, we were able to build a database containing energy data from the
legacy installation for its managers, including power factor, active energy, current, and
voltage data for both the overall installation and individual circuits. This has enabled
data-driven energy management of the legacy installation, as the monitored data became
available in databases and dashboards at the supervision and control center (SCC).

7.4. Discussion of the Results Obtained for Forecasting Energy Demand in the Proposed Scenario

Based on the Brazilian regulatory resolution ANEEL n° 1000/2021 [57], the consumer
unit in question falls under the binomial tariff structure. In this case, it is charged based
on both consumption and a contracted limit demand, which is measured by the energy
utility every 15 min. Incidentally, during periods of high production, the factory exceeds
the contracted demand of 120 kW and consequently incurs penalties. With the collected
database, we conducted an analysis of the loads that contribute the most to the increase
in consumption and demand exceedances of the installation using Pareto analysis. We
identified seven loads that contribute to nearly 80% of the total installation consumption.
Based on this, we analyzed the variations in energy demand every 15 min for the loads
of these circuits. To perform our analysis, we applied the sliding window technique with
10 previous demand samples and min–max normalization as a processing step for demand
forecasting for the next 15 min. Subsequently, we employed various learning models,
namely, linear regression (LR), support vector regressor (SVR), random forest regressor
(RFR), XGBoost regressor (XGBR), and a long short-term memory (LSTM) recurrent neural
network model. We evaluated the performance of each model and, to ensure the best
possible performance, we utilized the optimization framework Optuna to search for the
best parameters for the demand data of each selected circuit.

We observed that the LSTM model performed the best, followed by the XGBR, RFR,
and SVR models, respectively. The LSTM model was able to capture the demand pattern of
the selected circuits most effectively, as shown in the metrics presented in Table 10, and it
predicted the highest number of demand exceedances for the test set, as shown in Table 13.
However, the LSTM model required the longest computation time for optimization, training,
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and making predictions (Tables 11 and 12). All the other models outperformed the baseline
LR metrics, with notable performance from the XGBR model, which outperformed LSTM
for two datasets (circuits 10 and 16). This opens up opportunities for future neural network
architectures that can surpass the metrics presented in Table 10. In Figure 14, we can
observe that the predictions made by the LSTM model performed well for the selected
circuit datasets. We noted that depending on the nature of the monitored loads, there may
be data variations that could affect the predictability of the forecasting algorithms. We
hope that by increasing the dataset size and incorporating other variables correlated with
demand and seasonality, we can improve the performance of the learning algorithms for
demand forecasting tasks. In our research, we have achieved the objective of demonstrating
the impact and relevance of monitoring and forecasting the energy demand of circuits in a
legacy building installation, aiming to detect possible breaches of contracted demand and
identify the circuits where action should be taken to rectify demand transgressions in line
with the regulatory framework of the Brazilian energy system.

8. Conclusions

In this work, we developed an AIoT strategy that performs energy demand forecasting
for a legacy building installation and its circuits for the next 15 min, based on the retrofit
of the pre-existing energy system and the premises of the SmartLVGrid metamodel. The
protocols of the SmartLVGrid metamodel enabled us to design an architecture that facilitates
the technological transformation of a legacy installation into the smart buildings paradigm,
making the most of the existing resources.

During the development of this study, we conceived a cluster of sensor devices called
ACU-BREAKERs that monitor the individual electrical parameters of each electrical circuit
and communicate through an ESP-NOW ad hoc network with a coordinating device
called ACU-MAIN. In our proposal, the ACU-MAIN device performs multiple functions,
including coordinating data requests from other ACUs, monitoring the main power bus of
the installation, and transmitting the collected data via ethernet to a locally available server
within the installation. The server, in turn, forwards the collected data to the cloud-hosted
SCC, where data analysis is conducted to improve the energy management processes.

Our proposal operated continuously from 15 January to 12 April 2023, and with the
data obtained we conducted statistical analyses to identify the loads that contributed the
most to the increase in consumption and energy demand of the installation. Based on
Brazilian regulations, we focused on forecasting for the next 15 min to detect possible
demand surpasses in the installation and identify the main loads causing this transgression.
In this way, we provided data-driven insights for decision making regarding possible
surpasses and where and when to act to control the load demand.

We employed preprocessing techniques such as sliding window for dividing the
training and testing datasets of each circuit, along with min–max normalization of the
data. As learning models, we used LR as the baseline for evaluating the machine learning
models SVR, RFR, XGBR, and an LSTM-based recurrent neural network model. The
hyperparameters of each learning model were optimized using the Optuna framework for
Bayesian optimization, in order to extract the best possible performance. Subsequently,
we evaluated the learning models, and the LSTM model outperformed the other learning
models, followed by XGBR, RFR, SVR, and LR. In this order, the models had longer training
and optimization times. We also evaluated which models successfully predicted the highest
number of demand surpasses, with a highlight on the LSTM and XGBR models.

It is important to emphasize that we evaluated a model for each dataset of each circuit.
For the construction of building electrical systems with more circuits and power boards, the
implementation of learning models for each dataset could become unfeasible. In addition,
for other cases and systems, the use of other learning models, preprocessing, and feature
selection methods and other retrofit strategies could be adopted to obtain better results for
the benefit of a more sustainable building ecosystem.
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However, whether to optimize the use of energy inputs or to plan operations in
building facilities, in our proposal, the forecast and monitoring of energy demand allow
data-based management of pre-existing energy systems in legacy facilities. In precarious
scenarios, without infrastructure or resources to implement modern control and commu-
nication systems, our retrofit architecture facilitates a non-abrupt digital transformation
towards smart building convergence, leveraging AIoT concepts and predictive models
based on wireless network data. In addition, we digitized the installation’s circuits using
the assumptions of our retrofit architecture, which recommends taking advantage of ex-
isting resources through well-defined protocol stacks. We emphasize that the proposed
architecture represents an alternative for using electrical parameters from legacy circuits
to create databases for predictive analysis, such as the energy demand forecast presented
in this work. Thus, it is possible to guarantee the sustainability and improve the energy
efficiency of old building installations.

9. Future Perspectives

Once we make the electrical system observable and allocate resources for demand
forecasting, we enable the management of current and future energy resources from the
demand side. Therefore, for future work, we suggest allocating local intelligence resources
to implement new strategies that include demand control of the installation based on local
business rules. This can be achieved by controlling the loads present in the installation’s
circuits, as we know which loads will affect the installation during demand exceedances.
By also forecasting the demand of the installation’s loads, we suggest utilizing distributed
energy resources to inject the necessary energy to compensate for the energy demand
during peak moments, avoiding possible exceedances from the energy generation side. In
this way, renewable or non-renewable resources can be activated based on the proposed
predictive intelligence to partially or fully meet the installation’s energy demand.

Additionally, we suggest that this process may involve new dynamic energy markets,
where energy sources from free energy markets can be negotiated and utilized depending
on the predictability scenario of demand exceedances to reduce the costs associated with
possible exceedances. The prediction task can also analyze future energy costs, recom-
mending potential energy suppliers based on this dynamic analysis. Further work in this
field can explore other prediction resources based on other energy aspects of a building
installation, involving protection systems, energy consumption, or power quality. This
includes studies focused on optimizing energy utilization and mitigating harmonics in the
installation.

From the perspective of artificial intelligence models, we suggest evaluating the
proposed strategy for other learning model architectures and datasets, including variations
of the LSTM recurrent neural network model in the context of building electrical circuits in
smart buildings. We also recommend using other preprocessing techniques and different
sliding window sizes to assess the performance of the learning models in short, medium,
and long-term prediction contexts, depending on the study’s needs. For future work, we
suggest exploring knowledge transfer techniques to facilitate the training of other learning
models for circuits within the same cluster and for clusters located in other locations or
installations. In this work, we developed specialized demand forecasting models for each
circuit of the installation, which can make it costly to maintain the system in some cases.
Through knowledge transfer techniques, it is possible to generalize the demand pattern
capturing techniques for circuits in a building installation and scale this strategy to other
cases and systems, involving the same installation or other legacy installations.
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Abbreviations
The following abbreviations are used in this manuscript:

ACU Automation and communication unit
AEMO Australian Energy Market Operator
AI Artificial intelligence
AIoT Artificial intelligence of things
ANEEL Agência Nacional de Energia Elétrica
ANN Artificial neural network
AR Autoregressive model
ARIMA Autoregressive integrated moving average
API Application programming interface
BGM Bayesian Gaussian mixture
CIN Coupling and interaction node
Cire.pl Centrum Informacji o Rynku Energii
CNN Convolutional neural networks
CSFs Computational support functions
Damas Damas Energy information system
DLM Dynamic linear model
DRFs Domain retrofitting functions
DTR Decision tree regression
ECMWF European Centre for Medium-Range Weather Forecasts
EIA Energy Information Administration
EM-GMM Expectation maximization Gaussian mixture model
ENR Elastic net regression
ETS Smoothing state space model
ES Exponential smoothing
FAR Functional autoregressive model
FARX Fractional-order autoregressive model with exogenous variables
FCC Florida Climate Center
FFANN Feedforward artificial neural network
GBR Gradient boosting regression
GPU Graphics processing unit
GRNN General regression neural network
GRU Gated recurrent unit
HW Holt–Winters
IEEE Institute of Electrical and Electronics Engineers
IESO Independent electricity system operator
IoT Internet of things
ISFs Interdomain support functions
JSON JavaScript object notation
KEPCO Korea Electric Power Corporation
KMA Korea Meteorological Administration
KNNR K-nearest neighbor regression
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LAN Local area network
LR Linear regression
LSTM Long short-term memory
MAC Media access control
MAE Mean absolute error
MAN Metropolitan area network
MLP Multilayer perceptron
MPR Multivariate polynomial regression
MRM Multiple regression model
MQTT Message queue telemetry transport
NARX Non-linear autoregressive exogenous
N-BEATS Neural basis expansion analysis for interpretable time series
NNAR Autoregressive neural networks
NNETAR Neural network time series forecasts
ONS Operador Nacional do Sistema
OPs Operational primitives
OPSD Open power system data
P2P Peer-to-peer
PoI Points of interface
PR Polynomial regression
QoS Quality of service
R² R-squared score
RAM Random access memory
RFR Random forest regressor
RMS Root mean square
RMSE Root mean squared error
RNN Recurrent neural networks
RS Regression with seasonality
SARIMA Seasonal ARIMA
SCC Supervision and control center
SLFN Single-layer feedforward neural networks
SmartLVGrid Smart low-voltage grids
SN Service node
SoC System-on-a-chip
SSD Solid state drive
SVR Support vector regression
TBATS Trigonometric Box–Cox transform, ARMA errors, trend, and

seasonal components
TCN Temporal convolutional network
TCP Transmission control protocol
TFT Temporal fusion transformer
U.S. United States
W Watts
WSN Wireless sensor network
XGBoost Extreme gradient boosting
XGBR XGBoost regressor
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3.4 ARTIGO 03 - SMARTLVENERGY: AN AIOT FRAMEWORK FOR ENERGY MANA-
GEMENT THROUGH DISTRIBUTED PROCESSING AND SENSOR-ACTUATOR IN-
TEGRATION IN LEGACY LOW-VOLTAGE SYSTEMS 2 3

3.4.1 Resumo

A integração digital é essencial para a gestão eficiente e sustentável dos recursos ener-
géticos, especialmente na modernização de infraestruturas desatualizadas. Isso envolve a in-
corporação de dispositivos sensores e atuadores para monitoramento e controle precisos de
energia, apoiados por computação distribuída desde a borda até a nuvem, necessária para deci-
sões analíticas e preditivas personalizadas. As estratégias de retrofit incorporam esses recursos
em sistemas mais antigos, melhorando as infraestruturas existentes enquanto se adaptam ao
progresso tecnológico. No entanto, faltam metodologias sistemáticas para a integração de sen-
sores e atuadores na literatura. Portanto, este artigo apresenta o framework SmartLVEnergy,
projetado para modernizar sistemas legados de baixa tensão com uma abordagem de retrofit,
integrando sensoriamento descentralizado, controle, processamento distribuído e análises predi-
tivas. O framework foi utilizado para viabilizar o retrofit do painel de distribuição de energia de
uma planta de manufatura legada com dispositivos sensores, que suportam monitoramento re-
moto e análise preditiva descentralizada usando modelos para previsão de demanda de energia
a cada 15 minutos baseados em redes Long Short-Term Memory (LSTM) de duas camadas, ade-
rindo aos princípios da Inteligência Artificial das Coisas (AIoT) e do Tiny Machine Learning

(TinyML). Comparado com modelos LSTM de única camada e não quantizados para a previsão
de demanda de energia da instalação, entre 8 de maio e 11 de julho de 2023, nossa abordagem
mostrou redução na latência de previsão e no consumo de memória. O disjuntor principal apre-
sentou métricas de R-quadrado (Rš) de 96,67% e Erro Quadrático Médio (RMSE) de 7,23 kW,
com o sensor associado mostrando uma latência de previsão de 54,55 ms e utilizando 58,45 KB
de memória FLASH. Essas métricas para o sensor de melhor desempenho foram 97,33%, 0,39
kW, 5,55 ms e 10,20 KB. Este framework de AIoT marca um avanço significativo no retrofit

de sensores e atuadores, mesclando tecnologia digital com sistemas legados para uma gestão
inteligente de energia.

2 ©2024 IEEE. Reprinted, with permission, from R. Fernandes, C. Costa, R. Gomes and N. Vilaça, "SmartL-
VEnergy: An AIoT Framework for Energy Management through Distributed Processing and Sensor-Actuator
Integration in Legacy Low-Voltage Systems,"in IEEE Sensors Journal, in May, 2024.

3 In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE
does not endorse any of UFPAs products or services. Internal or personal use of this material is
permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or pro-
motional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a Li-
cense from RightsLink.
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SmartLVEnergy: An AIoT Framework for Energy
Management through Distributed Processing
and Sensor-Actuator Integration in Legacy

Low-Voltage Systems
Rubens Fernandes, Carlos Costa, Jr., Raimundo Gomes, Neilson Vilaça

Abstract— Digital integration is essential for effi-
cient and sustainable management of energy re-
sources, especially in modernizing outdated in-
frastructures. This involves embedding sensor
and actuator devices for precise energy monito-
ring and control, supported by distributed com-
puting from edge to cloud, necessary for tai-
lored analytical and predictive decisions. Retrofit
strategies incorporate these resources into older
systems, enhancing existing infrastructures while
adapting to technological progress. Nevertheless,
systematic methodologies for sensor-actuator in-
tegration are lacking in the literature. Therefore,
this article introduces the SmartLVEnergy frame-
work, designed to modernize legacy low-voltage
systems with a retrofitting approach, integrating
decentralized sensing, control, distributed pro-
cessing, and predictive analytics. The framework
was employed to retrofit the energy distribution
panel of a legacy manufacturing plant with sensor
devices, which support remote monitoring and
decentralized predictive analysis using 15-minute energy demand forecast models based on 2-layer Long Short-Term
Memory (LSTM) networks, adhering to Artificial Intelligence of Things (AIoT) and Tiny Machine Learning (TinyML) prin-
ciples. Benchmarked against non-quantized and single-layer LSTM models for the installation energy demand forecast
between May 8 and July 11, 2023, our approach showed reduced prediction latency and memory consumption. The main
circuit breaker exhibited a 96.67% R-squared score (R2) and 7.23 kW Root Mean Squared Error (RMSE), with the associated
sensor showing a prediction latency of 54.55 ms and using 58.45 KB of FLASH memory. These metrics for the best-
performing sensor were 97.33%, 0.39 kW, 5.55 ms, and 10.20 KB. This AIoT framework marks a significant advancement
in sensor-actuator retrofitting, blending digital technology with legacy systems for intelligent energy management.

Index Terms— AIoT, demand forecasting, retrofit, sensor-actuator system integration, SmartLVEnergy Framework,
SmartLVGrid Metamodel, TinyML.

I. INTRODUCTION

THE convergence of the Internet of Things (IoT) and
Artificial Intelligence (AI) is increasingly contributing

to the advancement of sustainability and energy management
across diverse applications, thereby yielding substantial socio-
economic benefits. Implementations grounded in these tech-
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nologies facilitate, for instance, the integration of intelligent
tools within Smart Environment systems for predictive analysis
of energy consumption and circuit monitoring. This integration
serves to optimize energy utilization and mitigate wastage, all
from a demand-side perspective [1]–[3].

To confer tangible and enduring benefits, concerted efforts
must be directed toward the cost-effective revitalization of
legacy installations, addressing the challenge of modernizing
their infrastructures to align with the demands of the digi-
tal age. Transitioning existing installations to energy-efficient
Smart Environments requires advanced systems capable of dy-
namic energy management. This entails the integration of sen-
sor and actuator networks to gather real-time data and enable
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real-time control strategies. These strategies should be built
on a strong foundation that merges statistical methodologies
for forecasting and the capabilities of Machine Learning tech-
niques for pattern recognition and adaptive decision-making
[4]. Acknowledging the need for sophisticated management in
the electrical sector, Artificial Intelligence of Things (AIoT)
emerges as a promising route for modernization. By integrat-
ing predictive analytics with data from interconnected sen-
sors, AIoT unlocks innovative solutions for real-time remote
monitoring and analysis. This fusion of AI and IoT provides
groundbreaking opportunities for optimizing energy consump-
tion, ensuring grid reliability, and advancing proactive main-
tenance strategies [5].

While smart technologies possess considerable potential for
diverse fields, transitioning current infrastructures to these sys-
tems is a significant challenge. Extensive hardware upgrades
often pose an impractical and cost-prohibitive barrier, further
compounded by limitations associated with complete techno-
logical replacement. Addressing these constraints necessitates
innovative approaches that leverage existing hardware capa-
bilities while seamlessly integrating smart technology func-
tionalities [6]. Adding to this challenge is the difficulty in
obtaining accurate energy data, which is crucial for evaluat-
ing these installations, frequently hampered by the absence
of adequate technology for consistent data collection [7]. In
developing countries, for context, this problem is especially
acute in legacy consumer units, where effective sensing, con-
trol and predictive resources are often elusive [8]. Furthermore,
the widespread use of pollutant-intensive energy sources in
these regions aggravates environmental concerns [9].

Implementing sudden technological changes in existing in-
frastructure can carry significant economic impacts, potentially
impeding the adoption of new features. Therefore, it is vital
to develop well-conceived, systematic strategies to effectively
manage this transition. Retrofitting is recognized as an effec-
tive strategy to update legacy infrastructures, thereby enhanc-
ing the management of critical resources. Retrofit interventions
facilitate the digital upgrade of consumer units and circuits
by integrating sensors and actuators at essential interfacing
points [10]. However, the effectiveness and extensibility of
retrofitting hinge on a well-conceived architectural framework
that sets forth essential principles, aligns interface protocols
with existing infrastructures and secures data network inter-
operability. Whereas current literature does not offer com-
prehensive frameworks for these purposes, it references the
SmartLVGrid metamodel as an exemplar for updating legacy
circuits in the low-voltage energy distribution domain to meet
Smart Grid standards [11]. This metamodel encompasses the
standardization of interfaces, both physical and logical, which
are fundamental to systematizing control, sensing, and data
traffic strategies from legacy systems to supervision centers.

Within the context of Smart Environments, where legacy in-
frastructure poses challenges to implementing advanced tech-
nologies, Cloud computing presents a compelling approach for
establishing decentralized supervisory centers. By offloading
computational and storage demands onto the Cloud, this solu-
tion overcomes hardware limitations while offering flexibility
and scalability for diverse monitoring and control needs [12].

Nevertheless, the economic feasibility of cloud-based energy
management solutions can vary significantly among different
communities. The costs associated with intensive and contin-
uous use of cloud services may render these smart solutions
financially impractical in certain scenarios [13]. Depending
on the required complexity of resources, those initially desig-
nated for cloud implementation may be alternatively deployed
on fog servers or directly onto the sensor devices, a process
referred to as Edge Computing [14]. Grounded in the prin-
ciples of distributed systems, this approach harnesses shared
computational capacity to minimize reliance on centralized
architectures, thereby mitigating potential failure risks [15].
By facilitating on-device data processing, Edge Computing
enables near-real-time analysis, minimizing both latency and
the demand for high-bandwidth networks and powerful central
computing resources. This distributed paradigm fosters en-
hanced responsiveness and resource efficiency, paving the way
for scalable and resilient data processing across geographically
dispersed networks.

The trend for predictive solutions in these scenarios consid-
ers the adoption of Tiny Machine Learning (TinyML) which
aligns with AIoT implementations on cost-effective embed-
ded systems with limited processing and storage capacities
in conjunction with sensor technology [16]. Such a strategy
provides a streamlined and scalable pathway to update legacy
systems with predictive functionalities, circumventing the need
for extensive modifications or significant financial outlays.

The integration of decentralized computing and digital so-
lutions holds substantial promise for optimizing energy man-
agement in legacy systems. Central to this integration is the
standardization of physical and logical interfaces, particularly
through retrofit strategies. The SmartLVGrid, with its stan-
dardized interfaces for upgrading low-voltage distribution sys-
tems, exemplifies this approach. However, there is a need
for a framework that not only transcends the initial scope of
SmartLVGrid but also leverages its groundwork to facilitate
IoT and AIoT implementations, enhancing energy manage-
ment in industries, buildings, and consumer units.

The goal of this paper is to introduce and demonstrate
the effectiveness of the SmartLVEnergy framework, leverag-
ing Cloud, Fog, and Edge Computing functionalities to tailor
energy management to the specific requirements of a given
infrastructure. To this end, sensor devices were developed and
installed on an energy distribution panel at a router manu-
facturing plant in Manaus (Brazil), following the proposed
framework. Specifically, the legacy system comprises the main
circuit and associated circuits of the factory’s power distribu-
tion board, lacking intelligent circuit breakers. This system
was selected due to issues with exceeding energy demand and
resulting fees based on national legislation. Importantly, the
factory lacked existing IoT or AIoT solutions, classifying it
as a legacy installation. Similar challenges are prevalent in
other legacy systems globally, including homes, buildings, and
industries.

Our approach enabled remote monitoring of each circuit, as
well as the main energy bus of the installation. To enhance
energy management and adhere to the Brazilian standards set
by the National Electric Energy Agency (ANEEL) [17], each
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retrofit device was outfitted with a TinyML model for forecast-
ing short-term (15 min ahead) energy demand. These models
employed quantized 2-layer stacked recurrent neural networks
based on Long Short-Term Memory (LSTM) architecture. The
performance of these models was evaluated focusing on mem-
ory consumption, latency, and accuracy, by comparing them
against their non-quantized equivalents and single-layer LSTM
counterparts. Each model was trained using the dataset derived
from the same monitored circuits in the panel. This approach
enables real-time monitoring and forecasting, aiding in de-
cisive actions for energy management in legacy low-voltage
systems.

This paper makes the following key contributions:
1) Introducing SmartLVEnergy, a comprehensive AIoT

framework to integrate retrofit solutions and distributed
computational functionalities for energy management in
legacy low-voltage systems;

2) A practical implementation of a sensor system model
according to the proposed SmartLVEnergy framework
to enable energy demand monitoring and forecasting in
legacy circuits, utilizing TinyML principles;

3) A comparative performance analysis of quantized and
non-quantized LSTM models aimed at forecasting en-
ergy demand in legacy building circuits.

This paper is organized as follows. Section II provides a
survey of the state of the art related to the topic. Section III
elucidates the concepts underlying the SmartLVEnergy frame-
work. Section IV introduces a system model for demand mon-
itoring and forecasting in legacy building circuits, based on
the SmartLVEnergy framework. In Section V, the methodol-
ogy employed for the implementation and evaluation of the
proposed system is detailed. Section VI discusses the results
obtained and Section VII presents conclusions and proposals
for future work.

II. RELATED WORK

A. Context
This paper aims to bridge a significant gap in the litera-

ture concerning advanced energy management in low-voltage
systems, building upon previous research by these and other
researchers [11], [18], [19], [20]. The scope of SmartLVGrid
covers the transition from legacy electrical energy distribution
networks towards the smart grid paradigm. In a previous paper,
[18], we employed SmartLVGrid primitives and protocols to
upgrade the lighting system of a legacy building installation
by retrofitting existing luminaires and inserting monitoring,
control, and communication resources. In another study [19],
we presented a similar strategy to enable the monitoring and
energy management of a legacy building installation through
the retrofit of legacy circuit breakers with IoT sensor solutions.
In a later publication [20], building upon the advancements in
IoT hardware and communication from [19], we introduced an
approach to enhance a pre-existing installation. This involved
implementing real-time monitoring through sensor-retrofitted
legacy circuit breakers and incorporating AIoT capabilities.
Additionally, we forecasted energy demand for a manufactur-
ing facility and its associated legacy circuits, thereby integrat-

ing predictive intelligence through a retrofit approach utilizing
data collected from sensor devices.

Although previous research has made substantial contribu-
tions to the field, it is essential to articulate the differences
between this study and earlier efforts. In reference [20], the
SmartLVGrid metamodel [11] was utilized to develop a sys-
tem capable of predicting energy demand based on sensor
data. This paper builds upon that foundation by enhancing
the SmartLVEnergy framework. It not only incorporates the
primitives of the SmartLVGrid metamodel but also facilitates
the distributed processing of energy data from legacy systems.
This adaptation reduces reliance on centralized computing and
network infrastructure for energy data analysis in legacy sys-
tems. Furthermore, while the methodology was previously val-
idated in a real-world router manufacturing facility (as in [20]),
the present study introduces innovations such as short-term
energy demand forecasts conducted directly on the sensors.
This capability enables distributed processing of critical energy
management information in existing installations using retrofit
sensor elements. Consequently, this framework offers a sys-
tematic avenue for developing TinyML solutions that are appli-
cable to a broad spectrum of low-voltage electrical systems in
urban, industrial, residential, and commercial settings, enhanc-
ing the versatility of the SmartLVGrid metamodel. Importantly,
our approach is both sustainable and cost-effective, preserving
existing infrastructure like cables and circuit breakers, thereby
serving as a model for sustainable energy management across
diverse environments.

B. Frameworks in Smart Energy Management

Research in this field presents various methodologies for
predicting energy demand and consumption in consumer units,
utilizing real-time data, cloud and fog computing resources
[21], [22]. These methodologies range from statistical tech-
niques to Machine Learning models, chosen based on data
complexity, dimensionality, and nonlinearity. In complex sce-
narios, Deep Learning models, especially LSTM networks,
become critical for forecasting energy demand over varying
periods.

Some works explore both the use of Machine Learning and
Statistical approaches in energy forecasting within residen-
tial and commercial buildings [23], [24]. Additional studies
demonstrate LSTMs’ effectiveness in various settings [25]–
[27]. Despite their robustness, the context-specific nature of
these models hinders their integration into diverse systems
due to the lack of standardized adaptation methodologies and
often-limited data handling capabilities or data repositories in
legacy settings, thus highlighting a critical gap in enabling
their widespread adoption.

Beyond cloud and fog solutions, a promising approach is
shifting towards edge-based solutions, enhancing efficient lo-
calized data processing [28]. Recent literature emphasizes en-
ergy predictive models tailored for edge computing systems.
A methodology was introduced for training, compressing, and
evaluating energy forecasting models using the Raspberry Pi
platform and residential building data [29]. Dalai et al. (2019)
[30] utilized Machine Learning on the Raspberry Pi as an edge
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device to compare real-time energy consumption predictions
with cloud-based computing, demonstrating faster prediction
times with edge-based computing for real-time energy con-
sumption forecasting. Tran and co-authors (2022) [31] detailed
a technique for forecasting photovoltaic energy output a day
ahead, leveraging meteorological data. They utilized data from
solar and weather instruments using stacked LSTMs, opti-
mized for edge servers and validated on the Jetson Nano plat-
form. Moreover, an edge-AI-based forecasting was introduced
by Lv et al. (2022) [32] for short-term electricity in smart
microgrids, analyzing datasets from Belgium and China.

Despite the performance comparisons detailed in the exist-
ing literature, which demonstrate the viability of cloud, fog,
and edge computing solutions for energy analysis and forecast-
ing, other studies take a broader approach through intelligent
energy management frameworks that are applicable across var-
ious sectors with sensor and actuator components, as well
as the distributed processing of energy information. Table I
compares existing frameworks for energy management across
different applications.

In [33], the authors proposed an energy management frame-
work leveraging cloud-based and IoT technologies for energy
distribution networks in Smart Cities. They reduced opera-
tional costs by optimizing load consumption patterns and al-
ternative energy generation based on market prices, with de-
centralized decision-making near loads and energy sources,
including at the Distribution System Operator. Paper [34] in-
troduced an energy management framework for the industrial
sector utilizing IoT and big data for data processing, storage,
and visualization. This approach provides a flexible methodol-
ogy allowing industries to select the most suitable IoT platform
(such as AWS, Azure, Google, IBM, or Oracle) based on their
specific needs and realities. In [35], the authors conducted a
literature review focusing on energy management frameworks
for Smart Buildings employing deep learning algorithms. The
review covered topics including alternative energy sources,
load control, cost reductions, performance improvements, and
practical implementations. In [36], the researchers proposed
an intelligent energy management framework for Smart Grids,
homes, and industries, incorporating edge device solutions for
real-time energy management in communication with a cloud-
based supervisory center. This framework includes energy
forecasting capabilities to support decision-making processes.
Study [37] emphasized the importance of industrial energy
management and introduced a conceptual framework based on
IoT features, data analytics, and Big Data to acquire energy
data.

Other research papers demonstrate practical approaches to
validate proposed frameworks through sensor-based, commu-
nication, and control solutions. For example, in [38], a frame-
work was proposed for demand-side energy management in
Smart Grids using IoT and Cloud resources to generate and
remotely share consumer profiles and loads with energy com-
panies or consumers. Similarly, in [39], a middleware solution
was implemented for demand-side energy management, focus-
ing on the interoperability of sensor and actuator elements for
energy monitoring and control. In [40], a framework was pre-
sented for sustainable demand-side energy management based

on digital twins, AI, and IoT, offering consumer recommen-
dation and evaluation services and load behavior prediction to
enhance energy efficiency. Lastly, in [41], a framework was
developed for smart energy management devices integrating
software, hardware, and communication resources with exist-
ing energy meters using a retrofit approach. Predictive energy
demand capabilities were incorporated using Linear Regres-
sion (LR), extreme Gradient Boosting (XGBoost), and LSTM
algorithms on a microcomputer.

Despite significant advancements in frameworks for energy
management, prior studies have generally lacked systematic
methodologies and real-world implementations on real-time
sensor and control devices within legacy electrical systems.
Moreover, these studies have not sufficiently explored the de-
velopment of specialized sensing and control solutions, or the
generic retrofit interfaces for integration or distributed pro-
cessing and analysis of energy data with existing systems.
This highlights a critical need for focused research to enhance
interoperability and functionality in energy management tech-
nologies. The prevailing literature often overlooks the chal-
lenge of integrating AIoT solutions into legacy installations
for energy prediction in residential, commercial, or industrial
settings. Studies on the retrofitting and modernization of exist-
ing systems have primarily focused on using processing plat-
forms as edge servers for proposed prediction tasks. In scenar-
ios where designing sensor elements with on-site intelligence
for real-time processing is considered, TinyML solutions of-
fer economic, security, privacy, bandwidth, offline prediction,
on-device analytics, and latency advantages. Nevertheless, de-
spite these benefits, none of the cited works have incorporated
TinyML into their proposed frameworks. The SmartLVEnergy
framework aims to address this gap by offering a compre-
hensive and systematic approach to modernizing these legacy
systems to improve energy management.

C. TinyML in Energy Management

TinyML enhances energy management through advanced
predictive functions in microcontroller-based sensors, neces-
sitating efficient optimization like quantization to minimize
computational load [42], [43]. Review articles have explored
TinyML applications in environmental scenarios and areas like
image recognition and biomedical signal processing [44], [45],
but energy consumption or demand prediction intersecting
with TinyML remains underexplored in their studies. There
were notable exceptions in which TinyML was applied for
forecasting photovoltaic energy at varying intervals, demon-
strating its feasibility on the ESP32-S3 and STM32F3 mi-
crocontrollers, respectively [46], [47]. Similarly to this paper,
Hayajneh et al. (2024) [46] employed a two-layer stacked
LSTM for energy prediction. Nevertheless, the authors worked
with photovoltaics rather than focusing on energy monitoring
sensors embedded in low-voltage systems.

Our study centers on the integration of TinyML to enhance
energy efficiency and sustainability in legacy systems. This
includes designing systemic and intelligent retrofit solutions,
and ensuring smooth digital integration while adhering to the
constraints of existing network and electrical infrastructures.
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TABLE I: Comparison of frameworks for energy management

Work Year Applications IoT Distributed
Processing AIoT Practical

Implementations
Sensor-Application
Interoperability

Sensor-Actuator
Integration

Retrofit
Approach

TinyML
Sensors

[33] 2020 Smart Cities [X] [X]
[34] 2021 Smart Industries [X] [X]
[35] 2021 Smart Buildings [X] [X]

[36] 2021 Smart Grids, Homes,
Industries [X] [X] [X] [X]

[37] 2021 Smart Grids, Homes,
Buildings, Industries [X] [X] [X] [X] [X] [X]

[38] 2022 Smart Grids, Homes,
Buildings, Industries [X] [X] [X] [X] [X] [X]

[39] 2022 Smart Industries [X]
[40] 2024 Smart Grids, Industries [X] [X]
[41] 2024 Smart Grids [X] [X] [X] [X] [X] [X]

III. SMARTLVENERGY FRAMEWORK

SmartLVEnergy enhances low-voltage energy systems with
adaptable protocols and interfaces, facilitating advanced en-
ergy management. It integrates sensors and actuators with
bespoke communication protocols to provide comprehensive
AIoT capabilities. The integration of our framework with ex-
isting infrastructures relies on retrofit platforms, which are
sensors and actuators capable of being added to pre-existing
systems for control and monitoring tasks. The development
and resources of these devices are guided by the specifications
of the Automation and Communication Unit (ACU) described
in the SmartLVGrid metamodel. This ACU acts as the middle-
ware, forming the lowest layer of the metamodel, and includes
operational primitives like DRFs, CSFs, and ISFs (described
in the SmartLVGrid metamodel section). Computational Sup-
port Functions (CSFs), which manage computational resources
such as information storage and processing, can also incorpo-
rate edge processing capabilities like machine learning-based
predictive models. This aspect, although not explicitly outlined
in the SmartLVGrid metamodel, defines which processing or
predictive functionalities can be integrated via retrofit plat-
forms. By utilizing this approach, part of the processing typi-
cally handled on a local server, in the cloud, or fog, is instead
executed at the edge. Additionally, the “Local, Fog, and Cloud
Computing Resources and Functionalities” layer can leverage
distributed computing resources based on available capacities
and requirements, thereby reducing centralized computational
demands. Moreover, functions needed to facilitate sensor and
actuator interoperability with the supervisory center can be
implemented using communication functionalities and network
protocols.

Our framework stands out in its ability to ensure net-
work and electrical installation compatibility, while leveraging
the potential of Cloud, Fog, and Edge Computing, including
TinyML applications for energy management. SmartLVEnergy
thus marks a significant advancement in the field, bridging the
divide between cutting-edge predictive analytics and practi-
cal, sustainable energy management solutions for legacy low-
voltage systems. This approach enhances energy efficiency and
aligns with global sustainability goals [48], marking a major
step forward in the digital transformation of energy manage-
ment practices.

Figure 1 depicts the SmartLVEnergy framework stack.

Fig. 1: SmartLVEnergy framework.

As previously discussed, the SmartLVEnergy framework is
designed to enhance the SmartLVGrid metamodel implemen-
tation and complement prior research by these authors [18],
[19], [20] with energy data processing and analytics adjacent
to legacy systems, thereby facilitating the automation and en-
hancement of energy management. By enabling the allocation
of distributed computational to legacy infrastructures and their
associated circuits, this framework facilitates decentralized en-
ergy management, leveraging prediction, sensing, control, stor-
age, and data processing capabilities.

Further details on its components and applications are dis-
cussed in the following subsections.

A. SmartLVGrid Metamodel

SmartLVGrid facilitates digital upgrades, enhancing exist-
ing structures with Operational Primitives (OPs) [11]. Utiliz-
ing systems engineering and retrofitting, it merges electronic
and computational technologies for improved sensing, control,
and communication in existing infrastructures. The metamodel
consists of two main layers, middleware, and interoperability,
as illustrated in Figure 1.

The SmartLVGrid metamodel’s legacy layer (Figure 1) is
modernized through Points of Interface (PoIs). The middle-
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ware layer, connected to the Legacy layer via Coupling and In-
teraction Nodes (CIN), implements Domain Retrofitting Func-
tions (DRF) for control and data gathering. This layer includes
other two OPs: Computational Support Functions (CSF) for
data operations and Interdomain Support Functions (ISFs) that
facilitate communication through Service Nodes (SN). The
SNs ensure the middleware layer communication and cross-
platform compatibility within legacy systems via the interop-
erability layer.

1) Middleware Layer: The middleware layer serves as the
intermediary between legacy systems and SmartLVGrid’s in-
novations, enabled by retrofit platforms containing sensors and
actuators. These devices, known as Automation and Commu-
nication Units (ACU) (Figure 1), feature the “In/Out” port
for the ISFs implementation, and the “Get” and “Run” ports
for the DRFs. Through CSFs, the ACUs integrate processing
and storage capabilities, adding local intelligence to the legacy
layer. This study aims to apply predictive models as a CSF
feature from a SmartLVEnergy perspective.

2) Interoperability Layer: This layer acts as the communica-
tive core, interfacing with the Supervisory and Control Center
(SCC) of the legacy system within Local or Metropolitan Area
Networks (LAN/MAN). It specifies the communication rules
among ACUs using communication standards and protocols
for the existing infrastructure. This layer structures a data
network, assigning hierarchical roles to ACUs as coordina-
tors or operators. In expanded systems, it allows the inclusion
of sub-coordinator ACUs, enhancing efficiency and real-time
decision-making in distributed setups. In this study, Wide Area
Networks (WAN) were introduced as an alternative for com-
munication interfaces in the interoperability layer.

B. Local, Fog and Cloud Computing Resources and
Functionalities

The SmartLVEnergy framework employs an integrated suite
of local, fog, and cloud computing functionalities and re-
sources to implement and enhance the operational efficiency
of the SCC. By leveraging local computing, the framework
ensures immediate response and stringent data privacy for real-
time analytics and control tasks directly at or near consumer
units, thereby minimizing latency and reducing reliance on
external networks. Fog computing further enhances this ca-
pability by bringing computing, storage, and networking ser-
vices closer to end devices, improving data management, and
application reliability across distributed systems with reduced
latency. Meanwhile, cloud computing offers expansive storage
and robust processing power, enabling the SCC to undertake
extensive data sharing, sophisticated information processing
and to harness advanced analytics.

This framework allows for the sharing of these compu-
tational functionalities, effectively distributing the computa-
tional load to maximize operations based on the needs and
availability of legacy systems. Additionally, all these resources
contribute to the energy management of existing installations
using data from retrofit solutions, and also in controlling in-
stallation loads, depending on the available resources.

C. Network Protocols and Communication
Functionalities

This component is dedicated to communication protocols
that enable interoperability among retrofit platforms within the
middleware layer. These protocols are crucial for facilitating
the sending of requests and receiving responses from the SCC.
The communication protocols, along with the structure and
encapsulation of transmitted messages, must be developed in
line with existing communication standards and topologies
suitable for the installation to maximize the use of the pre-
existing communication network infrastructure, where SNs are
utilized as access parameters to the data network. Moreover,
this layer also enables communication functionalities, such as
over-the-air (OTA) firmware updates for retrofit platforms.

D. Edge Functionalities
The edge functionalities delineate the processing capabili-

ties that can be implemented through retrofit platforms. This
includes the integration of processing tasks with sensor and
actuator devices, and executing or training machine learning
models in proximity to the legacy layer. This proximity en-
hances decision-making processes, as it allows for direct action
without relying on network infrastructures to relay data to
the control and supervision center, which typically requires
internet access and further data processing. Besides reducing
latency, this layer offers a framework for implementing AIoT
functionalities at the edge that can facilitate the deployment of
applications like TinyML, advancing intelligent energy man-
agement in legacy installations.

IV. A SMARTLVENERGY SYSTEM FOR TINYML-BASED
DEMAND FORECASTING IN LEGACY CIRCUITS

This section presents a system based on the SmartLVEnergy
framework principles to demonstrate its effectiveness in incor-
porating AIoT features using distributed computing and sen-
sor integration in an existing manufacturing environment. The
proposed system addresses the requirements and challenges
discussed in the following subsection.

A. Problem Description
The SmartLVGrid metamodel has transcended its original

utility in energy distribution, finding diverse applications. Its
adaptability is evident in retrofitting building lighting for Smart
Building integration [18] and advancing the digitalization of
building and industrial circuits for superior energy manage-
ment, integrating real-time monitoring and predictive demand
forecasting [19], [20]. These developments align with ANEEL
regulations in Brazil, where consumer units on medium or
high-voltage grids face tariffs based on consumption and
predetermined demand within 15-minute intervals [17], with
penalties for exceeding contracted demand.

As previously mentioned, studies [18]–[20] extended the
SmartLVGrid metamodel with the SmartLVEnergy frame-
work’s principles. They encountered network and computa-
tional constraints that required systemic adaptations to make
the most of existing resources. Although vital for oversight,
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storage, and processing, the continuous use of cloud and fog
computing in industrial environments may incur significant
costs and prove inappropriate for conventional consumer units.
Further impediments include:

1) Need for continuous high-speed internet and a sturdy
secure network for ongoing energy management;

2) Delays in real-time feedback, leading to risks of delayed
or suboptimal actions and impacting vital operations;

3) Exposure to disruptions due to technical or administra-
tive issues with cloud or network service providers.

In emerging societies, legacy structures confront such chal-
lenges. Yet, with the TinyML approach, prediction algorithms
can be integrated into sensors that monitor these infrastruc-
tures, enabling sophisticated on-device analytics. Whereas re-
fining these models, especially through quantization tech-
niques, might occasionally affect prediction accuracy, it sup-
ports offline forecasting, and bolsters data-driven decision-
making, all whereas reducing dependence on complex net-
working and costs associated with cloud, fog, and edge servers.

To address these issues, we propose a retrofit approach
aligned with the SmartLVEnergy framework principles, equip-
ping sensor devices with predictive capabilities for energy de-
mand forecast in the entire building and key circuits. Building
upon existing literature contributions [20], we utilize decen-
tralized computing to reduce dependence on cloud and fog-
based forecasting methods in the legacy infrastructure mon-
itored. In compliance with ANEEL guidelines, our assess-
ment contrasts embedded quantized models with their non-
quantized equivalents over a 15-minute interval, focusing on
performance, prediction latency and memory consumption.

B. System Architecture Definitions

The AIoT system architecture from the SmartLVEnergy
framework in Figure 2 is an enhancement of prior work [20].
It enables energy demand forecasting for legacy installations
and their circuits using edge functionalities in sensor devices.

The proposed system architecture streamlines the imple-
mentation of SmartLVGrid metamodel operational primitives,
adhering to the component structure of the SmartLVEnergy
framework. Central to this architecture is the middleware layer,
which involves the integration of retrofit platforms, notably the
ACU-MAIN. This element acts as a coordinator, interfacing
with the main circuit breaker of existing distribution panels and
communicating with operational devices, specifically ACU-
BREAKERs, coupled with the remaining legacy circuits.

As DRFs, both ACUs acquire and process electrical param-
eters. This capability is intrinsically linked to their ”Get” port.
Among the CSFs of these ACUs, the storage of configuration
parameters in data networks and the management of connec-
tions in this specific network stand out. As for the ISFs, they
manage and process both requests and responses within the
network they belong to, using their ”In/Out” ports. The ACU-
MAIN has two communication interfaces, one Peer-to-Peer
(P2P) and another Local Area Network (LAN) Bus, used for
interactions both with the ACU operators and the local server,
respectively.

Fig. 2: Proposed AIoT system.

Unlike previous research, the ACUs now embed AI capabil-
ities to enable demand energy forecasting as a primary CSF.
A key feature of this architecture is its emphasis on Edge
Computing functionalities, demonstrated through the applica-
tion of ACUs that enable real-time monitoring and predictive
analytics of energy demand. By retrofitting at the local level,
close to existing circuitry, the system’s capability in smart
energy management is significantly enhanced. Another signifi-
cant aspect is the detailed specifications for the interoperability
layer, implemented via Network Protocols and the proposed
Communication Functionalities. Among these, is the establish-
ment of an intermittent data network communication structure,
ensuring secure exchanges of request and response messages.
Additionally, it is important to note the inclusion of support
for over-the-air firmware updates (FOTA), enabling dynamic
model updates and adjustments for future contingencies. This
architecture, therefore, offers considerable flexibility in various
contexts, allowing for systematic, structured reconfiguration or
expansion through the modification or addition of interfaces
and resources, including the integration of updated predictive
models into the device firmware.

Located on the installation’s local server, the SCC operates
at a decentralized level within the architecture. It serves as
a hub for the deployment and management of computational
resources, essential in optimizing energy management. This
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includes the deployment of Data Analytics, Visualization, Stor-
age, and Firmware Development functionalities, encompassing
training, testing, evaluation, and the development of learning
models for the ACUs. At the SCC, demand forecasting al-
gorithms for the subsequent 15-minute period are developed,
in alignment with ANEEL guidelines and leveraging energy
data from the devices. Additionally, the architecture offers the
capability to connect the SCC with cloud or fog computing
services, facilitating interaction among these services for geo-
graphically distributed computational functionalities. However,
this aspect of linking with cloud or fog services will not be a
focus of evaluation in this study.

Sections IV-B.1 and IV-B.2 delve into the retrofit platforms
and network protocol specifications within the proposed archi-
tecture to clarify the physical and logical interfaces.

1) Retrofit Platform Specifications: The retrofit sensor solu-
tions were installed on the power distribution panel of a legacy
manufacturing facility situated in the industrial hub of Manaus,
Amazonas, Brazil. The chosen plant, a router factory, encoun-
tered occasional challenges with exceeding energy demand and
aimed to comply with ANEEL regulations [17]. As part of the
proposed framework, the suggestion is to individualize this
prediction process within sensor devices. The characteristics
of the developed devices are further detailed in [19], [20].
Figures 3a and 3b respectively showcase the physical attributes
of the ACU-BREAKER and ACU-MAIN. As depicted, the
ACU-BREAKER was designed to be compatible with three-
pole thermomagnetic circuit breakers, capturing the voltage
from each pole. Additionally, it features three current trans-
formers, facilitating cable routing to the breaker. This allows
for a retrofit in the facility’s circuits in a less intrusive manner
with minimal visual clutter since the devices will be installed
internally in the industry’s panel.

(a) (b)

Fig. 3: ACU-BREAKER (a) and ACU-MAIN (b).

The ACU-MAIN has connectors that accommodate current
transformers and terminals that collect the voltage from the
three-phase busbar of the installation. Therefore, it does not
attach to the breaker like the ACU-BREAKER. Moreover, it
comes with an Ethernet connector, used to communicate over
a LAN with the local server.

Both devices internally incorporate components for surge
protection, voltage and current channel conditioning, and the
Analog Front-End ADE7758 for accurate digitization of the
acquired electrical parameters. As a processing and communi-
cation unit, these devices integrate the System on Chip (SoC)

ESP32 from the manufacturer Espressif.
2) Network Protocols Specifications: SmartLVEnergy under-

scores the need to align existing networks and resources to fa-
cilitate the modernization of current systems. As elucidated in
[49], legacy network infrastructures might grapple with chal-
lenges introduced by new connection-oriented communication
technologies for the internet. Hence, binding sensor devices
to TCP or UDP-based protocols in legacy network infrastruc-
tures may impede the integration of smart devices in certain
scenarios. Although IPV6 emerges as a solution for connecting
more devices compared to IPV4, developing nations like South
Africa point to hurdles in integrating IPV6 into their older
networks, encompassing costs, incompatibilities, and political
challenges [50].

From this viewpoint, non-IP connections can be a feasible
path for integrating retrofit solutions into some legacy infras-
tructures. Both Bluetooth Low Energy and the ESP-NOW pro-
tocol are highlighted alternatives in the literature. ESP-NOW,
coexisting with WiFi and Bluetooth on the ISM 2.4 GHz band,
is prominent for its multi-hop, lightweight, secure, and self-
sustainable wireless communication. Exclusive to Espressif
manufacturer devices, this protocol operates atop the MAC
layer of the IEEE 802.11 standard, devoid of an IP connection
requirement. Utilizing vendor-specific action frames, it trans-
mits data directly between devices using MAC addresses [51].
This approach enhances scalability and agility, streamlining
communication immediately post-initialization, and negating
prolonged pairing requirements. Such a feature is pivotal dur-
ing power supply interruptions when energy sensors necessi-
tate swift reconnection post-reboot. Additionally, this protocol
endorses FOTA updates for compatible devices.

Thus, we chose to facilitate interoperability using P2P in-
terfaces, employing the ESP-NOW protocol for communica-
tion between the ACU-BREAKERs and the ACU-MAIN. This
strategy bypasses the legacy network infrastructure, minimiz-
ing IP connections and potential network overload. Our pro-
posal also features an Ethernet interface for the ACU-MAIN to
link with a local server, utilizing the efficient MQTT protocol
with QoS 0, which is known for its lightweight structure and
reliable transmission in low-bandwidth scenarios [52]. This
Ethernet approach was recommended by the studied industry’s
engineering team.

After selecting the protocols, we implemented and validated
the ISFs discussed in section IV-B. Notably, the SNs shown in
Figure 1 serve as unique credentials allowing ACUs to interact
across various interfaces. Ethernet interface credentials pertain
to installation network parameters and target application ad-
dresses. In contrast, for the P2P interface, the credentials are
linked to the ESP32 MAC Address of the ACUs, facilitating
communication via the ESP-NOW protocol.

The system’s communication operations proceed as follows:
every minute, the ACU-MAIN collects and processes electri-
cal parameters from the installation’s main electrical bus and
then requests data processed from the ACU-BREAKERs using
the ESP-NOW protocol. Data are then forwarded to the local
server using MQTT. Additionally, the ACU-MAIN can receive
firmware updates via HTTPS and distribute them to the ACU-
BREAKERs through ESP-NOW.

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2024.3403484

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

118



FERNANDES et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2024) 9

V. EXPERIMENTAL SCENARIO

This section explores the integration of the developed sen-
sor devices and the application of data analysis and Machine
Learning to enable efficient energy management in the legacy
low-voltage circuits of the proposed SmartLVEnergy system.

A. Installation of the Proposed System

After the initial definitions, the ACUs were manufactured,
set up, tested, calibrated, and then installed. Calibration was
crucial to ensure the measurement accuracy stayed within a 1%
margin of error. For this, we utilized a high-precision three-
phase source to adjust the internal registers of the ADE7758.
The industrial panel under investigation operates with a phase-
to-neutral voltage of 127 Vrms and comprises 22 circuits.
Figure 4 showcases the ACUs, installed consistently with the
proposed architecture. It’s pertinent to note that the ACU-
BREAKER associated with the first circuit breaker experi-
enced malfunction during the evaluation phase and has been
excluded from this study’s analysis.

Fig. 4: ACUs integrated into an energy distribution panel.

B. Experimental Data

With the installation of the ACU-BREAKERs and the ACU-
MAIN in the distribution panel, we initiated minute-by-minute
data collection on parameters such as active energy, power
factor, root mean square (RMS) voltage, and current across
all circuits, encompassing the main breaker. The variables and
their descriptions within the dataset are itemized in Table II.
The dataset, industry-owned and devoid of missing values, can
be made available upon request.

A previous work offers preliminary observations on energy
demand spanning January 15 to April 12, 2023 [20]. A Pareto
analysis isolated the top 80% energy-consuming circuits for
the duration, anchoring the demand forecasting study to the
most significant load contributors relative to the installation’s
overall demand.

TABLE II: Data variable description.

Variable Description

Identification Monitored circuit identification.
MAC MAC address of installed ACU.
Timestamp Timestamp of samples (datetime format).
Power factor Power Factor of each circuit (%).
Active energy Active energy of each circuit (Wh).
RMS current RMS current of each circuit (A).
RMS voltage RMS voltage of each circuit (V).

Table III delineates the seven circuits accounting for roughly
79.6% of the total energy consumption within the installation,
elaborating on the energy consumption and the proportional
impact of each load. Next, we processed the active energy
to ascertain the energy demand of each circuit at 15-minute
intervals. Based on this, a total of 6,782 data points of demand
were considered for analysis for each dataset corresponding to
each circuit. This evaluation facilitated a deeper understanding
of the demand patterns for the circuits identified in Table III.

TABLE III: Major circuits and their energy consumption.

Identification Load Energy Impact

Circuit 13 Central Air - 02 23.6 MWh 18.4%
Circuit 16 Central Air - 03 18.5 MWh 14.4%
Circuit 10 Central Air - 01 15.5 MWh 12.1%
Circuit 8 Server 02 15.0 MWh 11.7%
Circuit 6 Production 10.6 MWh 8.2%
Circuit 12 Administration 10.0 MWh 7.8%
Circuit 14 Stock 01 8.9 MWh 7%
Total - 102.1 MWh 79.6%

Figure 5 presents violin plots with embedded boxplots to ex-
hibit the distribution and key descriptive statistics of datasets.
The “All” plot, encapsulating 15-minute demand data from
the facility monitored by ACU-MAIN, exhibits a broad dis-
tribution, as indicated by the expansive shape of the violin
plot, suggesting substantial variability in the facility’s total en-
ergy demand. The centrally situated boxplot within the violin
plot delineates the median and interquartile range, providing
a transparent comparison of demand dispersion against other
circuit datasets.

Conversely, circuits 6 and 8 display a clustering of data
around a narrow demand range, exhibiting limited variation
and extremes, with circuit 8 also showing outliers. In con-
trast, circuits 10, 13, and 16, with wider violin plots and more
pronounced boxplots, indicate a greater spread in demand and
broader variability. Notably, circuit 12 is marked by a wide
violin plot with an elongated boxplot and multiple outliers,
alluding to a demand distribution with significant variation
and extreme data points. For circuit 14, the scarcity of out-
liers suggests that extreme demands are either atypical or non-
characteristic for this circuit. Upon closer inspection of circuit
14’s violin plot, two distinct frequencies in energy demand
are observed, implying that this circuit operated within two
predominant demand ranges during the data collection period.
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Fig. 5: 15-minute demand variation of the installation.

C. Preprocessing Input Data

The sliding window technique and min-max normalization
were employed as preprocessing methods for the demand
datasets of the main installation and circuits 6, 8, 10, 12,
13, 14, and 16. We leveraged the sliding window algorithm
to prepare the model’s input data, deriving it from sequential
sample subsets, often termed sliding windows. These windows
move forward based on a defined temporal unit, contingent
upon the requirements of the application. Empirical evalua-
tions suggested that a window size encapsulating 10 temporal
units, where each unit corresponds to 15 minutes of prior de-
mand data, proved effective in forecasting the energy demand
for the imminent sample. We used a window of 150 minutes
to forecast the subsequent 15-minute energy demand for each
circuit of the installation.

Furthermore, the min-max normalization technique adjusts
the dataset so that its values are confined within a predeter-
mined range. This normalization is achieved by Equation (1).
For this research’s objectives, we designated the normalization
boundaries as [0, 1].

xnorm =
x− xmin

xmax − xmin
(1)

D. Evaluation Metrics

This section details the metrics employed to evaluate the
performance of the TinyML models in demand forecasting.

1) Root Mean Squared Error (RMSE): This metric quantifies
the discrepancy between the actual and forecasted values by
computing the square root of the average of squared differ-
ences, as presented in Equation (2).

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2. (2)

2) R-Squared Score (R²): R2 indicates how well the inde-
pendent variables capture the variance in the dependent vari-
able. A value nearing 1 suggests that the model closely fits the
observed data, as depicted in Equation (3). Recent research
suggests that R2 is a more intuitively informative metric than
RMSE for evaluating regression tasks [53].

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
. (3)

E. Training, Validation and Test Subsets
We allocated 80% of the experimental data for training and

reserved the remaining 20% for model validation. We then
adopted the sliding window method to frame the input and out-
put subsets during both training and validation phases. Again,
our selected window size leveraged 150 minutes of past data
to predict demand in the upcoming 15 minutes.

Owing to limitations in employee availability and the in-
dustry’s readiness for ACU-BREAKERs and ACU-MAIN
TinyML upgrades, these devices were removed in late April.
Since they lacked FOTA capabilities in their earlier version,
they were manually updated using serial communication. The
ACUs were reinstalled on May 6, 2023. Throughout May to
July, the embedded TinyML models in these devices moni-
tored and predicted 15-minute demand intervals. Using these
predictions, we validated the test outcomes, focusing on both
the overall installation and the selected circuits.

F. LSTM Neural Networks
LSTM networks have demonstrated remarkable proficiency

in the domain of time-series and sequential data analysis, sur-
passing many conventional AI models. This proficiency largely
arises from the LSTM’s inherent capability to establish tempo-
ral dependencies within data. LSTMs are designed with mem-
ory cells and can be architected with multiple layers, leading to
stacked LSTM networks. Stacked networks offer an elevated
level of temporal abstraction, enhancing accuracy in predicting
sequential data, such as electrical demand forecasting.

Nevertheless, the computational complexity of LSTMs is
substantially higher compared to many deep learning models.
This makes deploying such networks on limited-resource de-
vices challenging. This complexity can be evidenced in Equa-
tions (4)-(9) [54], detailing the underlying mathematical oper-
ation of the LSTM. This operation involves several variables:
input gate (it), forget gate (ft), output gate (ot), candidate
value (C̃t), cell state (Ct), current hidden layer state (ht),
previous hidden layer state (ht−1), in addition to the weight
vectors Wi,Wf ,Wo,Wc and their respective biases bi, bf , bo,
and bc.

it = σ(Wi · [ht−1, xt] + bi) (4)

ft = σ(Wf · [ht−1, xt] + bf ) (5)

ot = σ(Wo · [ht−1, xt] + bo) (6)
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C̃t = tanh(Wc · [ht−1, xt] + bc) (7)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (8)

ht = ot ⊙ tanh(Ct) (9)

G. Quantization in Neural Networks
Quantization techniques aim to reduce model size to op-

timize memory usage during the inference stage of artificial
neural networks on microcontroller systems. In this work, we
will implement a process that involves truncating the precision
of weights and activations by converting 32-bit floating-point
values to 8-bit integers. This not only conserves memory but
also reduces the microcontroller’s processing load. However,
a delicate balance between model precision and the precision
of weights and activations is crucial. Overzealous reduction
can degrade the neural network’s performance [45].

The post-training quantization method is given by Equation
(10), where xbit is the new 8-bit integer value, xfloat is the
32-bit floating-point value, Cs is an arbitrary floating-point
scale coefficient, and Cz is an 8-bit integer offset value.

xbit =
xfloat

Cs
+ Cz (10)

H. Models Used for Forecasting
A comparison of learning models for energy demand fore-

casting was conducted in literature using the same datasets as
this current research [20]. The comparative analysis included
models such as Support Vector Regression, Random Forest Re-
gression, XGBoost, and LSTM neural networks, with Linear
Regression serving as the baseline. Notably, LSTM models
excelled in terms of accuracy, although they required more
time for inferences.

In this work, we extend our efforts to enhance the fore-
casting accuracy of LSTM models. Therefore, we explored
variations of LSTM networks to achieve better performance.
Keeping in mind that quantization could potentially reduce the
prediction accuracy for each dataset, and the prior model had
only one LSTM layer, we experimented with stacking LSTMs
to enhance their learning capability and feature extraction.
Figure 6 depicts the stacked LSTM architecture.

Fig. 6: Proposed stacked LSTM architecture.

The models were implemented using the Tensorflow 2.12.0
library in Python. Through the ESP-IDF framework, we de-
ployed TensorFlow Lite Micro in C++ for predictions on the
ESP32 of the ACUs, using ESP-NN optimizations. With the
aid of the Bayesian optimizer, Optuna, we determined the op-
timal hyperparameters for the models relative to each dataset.

Utilizing the Optuna framework, we conducted 100 trials to
optimize each model for up to 100 epochs, implementing early
stopping and employing the hyperbolic tangent (tanh) activa-
tion function in the LSTM layers. The choice of maximum
epochs and trials was based on preliminary studies involving
training on each dataset and the verification of model conver-
gence.

VI. RESULTS AND DISCUSSION

The evaluation conducted aligns with the single-layer LSTM
network results from [20], utilizing the same dataset and time
frame, from January 15 to April 12, 2023. For this purpose,
we utilized a server matching the specifications in the cited
work, a 2.3 GHz Intel Core i7-11800H processor with 16 GB
RAM, 4 GB GPU, and a 500 GB SSD.

The methodology entailed training two-layer stacked LSTM
models for each of the selected datasets, with a consistent
sample window of 10 past 15-minute energy demand intervals
for predicting future demand and a data division of 80 percent
for training and 20 percent for validation. Subsequently, the
models underwent quantization from 32-bit floating point to
8-bit integer to enable their deployment on the CPUs of retrofit
platforms. It is noteworthy that the SoC ESP32, integral to the
ACUs, operates at 240 MHz and includes 520 KB of SRAM
and 4 MB of external FLASH memory.

The RMSE and R2 metrics for the validation sets across
each dataset are presented in Table IV. This evaluation em-
ployed 32-bit floating-point models on the server CPU and
8-bit integer models on the proposed ACUs. In the findings
detailed in this table, the non-quantized stacked LSTM models
developed in this research notably surpassed the performance
of the single-layer LSTM models in [20] across the validation
datasets. Moreover, the quantized stacked models showed im-
proved performance on most validation datasets, except for cir-
cuits 12, 13, and 16, where their performance metrics did not
surpass those of their non-quantized counterparts and single-
layer models. In every instance, the RMSE performance mir-
rored the outcomes indicated by the R2 metric.

In Table V, the performance metrics for the test datasets,
which include 6,201 energy demand samples collected by each
ACU from May 8 to July 11, 2023, reveal that non-quantized
stacked LSTMs also excelled in the datasets for circuits 6, 8,
12, 14, 16, and the comprehensive ”All” dataset, representing
the 15-minute demand of the entire manufacturing facility.

TABLE IV: Performance metrics evaluated on selected demand
validation sets from January 15 to April 12, 2023. RMSE is
reported in kW, whereas R2 is presented as percentage.

LSTM 32-bit [20] Stack. LSTM 32-bit Stack. LSTM 8-bit
Dataset RMSE R2 RMSE R2 RMSE R2

All 8.22 94.07 8.01 94.36 8.17 94.14
Circ. 6 0.87 93.52 0.82 94.13 0.83 93.90
Circ. 8 0.42 87.39 0.41 87.68 0.41 87.56
Circ. 10 2.72 90.93 2.68 91.19 2.70 91.09
Circ. 12 1.29 94.30 1.28 94.38 1.38 93.46
Circ. 13 3.00 92.15 2.97 92.32 3.03 92.02
Circ. 14 0.58 96.47 0.56 96.68 0.58 96.49
Circ. 16 3.98 83.56 3.86 84.50 3.99 83.44
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TABLE V: Performance metrics evaluated on selected demand
test sets from May 08 to July 11, 2023. RMSE is reported in
kW, whereas R2 is presented as percentage.

LSTM 32-bit Stack. LSTM 32-bit Stack. LSTM 8-bit
Dataset RMSE R2 RMSE R2 RMSE R2

All 7.13 97.17 7.09 97.20 7.23 96.67
Circ. 6 1.04 95.16 0.98 95.72 0.98 95.74
Circ. 8 0.37 97.15 0.36 97.36 0.36 97.33
Circ. 10 2.13 94.93 2.22 94.50 2.26 94.32
Circ. 12 1.20 96.09 1.19 96.17 1.24 95.81
Circ. 13 2.42 94.05 2.47 93.82 2.54 93.48
Circ. 14 0.77 95.91 0.76 95.98 0.78 95.79
Circ. 16 2.70 93.81 2.64 94.10 2.83 93.22

In contrast, the quantized models showed a decline in per-
formance compared to their non-quantized counterparts, at-
tributable to the loss of precision during the quantization pro-
cess. Nevertheless, the models’ performance was similar in
terms of RMSE and R2, as evidenced by the results for the
validation set in Table IV and the test set in Table V. Thus,
if factors like seasonality, climate change, or variations in
manufacturing output alter the predictions made by the ACUs,
impacting the accuracy of these forecasts, FOTA updates can
be employed to upgrade the firmware of the ACUs, along
with the embedded prediction models in these sensor devices,
aiming to improve model performance.

The stacked LSTM layers in the quantized models allowed
them to retain a level of performance on par with the single-
layer LSTM models. If deployed in a quantized form, this
model might face additional precision losses in its predictions.
Notably, the test dataset predictions were more accurate than
those from the validation set, suggesting that the model’s train-
ing on historical data, where previous seasonal variations could
impact precision, has led to improved performance.

Figure 7 exhibits actual data with model predictions from
June 30 to July 5, 2023. Despite being trained on earlier
data, the models accurately mirrored these trends. The 32-bit
stacked LSTM more closely aligns with actual data, showing
superior accuracy and understanding of data complexity. In
contrast, the 8-bit stacked LSTM, whereas following the gen-
eral trend, shows deviations, especially in sharp data changes,
indicating that its lower-bit representation might reduce pre-
dictive detail, suggesting a trade-off between computational
efficiency and accuracy in capturing fine details.

Furthermore, Table VI provides a detailed analysis of the
latency for single-sample prediction for each model within the
test datasets, from data and model allocation to the final pro-
cessed prediction. The latency can vary depending on the com-
putational load on the server and the software services involved
in data processing and sample prediction. Higher latency with
more robust hardware may be influenced by factors such as
the operating system and active services. As demonstrated, the
latency was significantly lower for quantized stacked LSTM
models, occurring in real-time on the developed retrofit plat-
forms. It is noteworthy that increased model complexity leads
to higher prediction latency, as evidenced by the non-quantized
stacked LSTM model exhibiting greater latency compared to
the single-layer model.

Fig. 7: Actual versus predicted demand from June 31 to July
5, 2023.
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TABLE VI: Latency of LSTM models.

Dataset LSTM 32-bit Stack. LSTM 32-bit Stack. LSTM 8-bit

All 249.25 ms 429.33 ms 54.55 ms
Circ. 6 261.03 ms 415.78 ms 11.75 ms
Circ. 8 248.10 ms 405.11 ms 5.55 ms
Circ. 10 255.61 ms 419.17 ms 31.74 ms
Circ. 12 268.32 ms 417.16 ms 18.54 ms
Circ. 13 256.21 ms 411.54 ms 17.54 ms
Circ. 14 275.63 ms 435.37 ms 112.3 ms
Circ. 16 249.06 ms 430.30 ms 53.66 ms

The prediction latency may increase when utilizing cloud or
fog computing, particularly in legacy facilities contexts lacking
fast internet and robust network infrastructures. To address
this, our study introduces a wireless sensor network employing
ESP-NOW and MQTT protocols over Ethernet without inter-
net communication. To evaluate the communication latency of
our proposed network, we focused on measuring the Round-
Trip Time (RTT) of data transmitted. Using ESP-NOW, the
RTT for 18 Byte parameter requests sent from ACU-MAIN to
ACU-BREAKERs and their 50 Byte responses were recorded.
These packets included circuit energy demand, LSTM model
predictions, and additional data specified in Table 1, yielding
an average RTT of 4.79 ms. Further, latency between ACU-
MAIN and the local server for transmitting comprehensive
circuit data was assessed, averaging 57.47 milliseconds using
MQTT over Ethernet with QoS 0. With the potential expan-
sion of the system to include more ACU-BREAKERs, we
anticipate an increase in total communication latency and data
volume to the Supervision and Control Center (SCC). This
necessitates the development of other interconnected sensing
clusters to prevent network congestion at the system coordi-
nator.

Following the integration of real-time offline capabilities
into retrofit platforms, the computational workload previously
managed by a local server has shifted to ACUs, leading to dis-
tributed computational expenses. This decentralization of the
inference process to sensor nodes not only improves resource
utilization but also enhances the overall responsiveness of the
system. To quantify this distributed computational load, Table
VII delineates the RAM and FLASH memory usage for energy
demand inference via LSTM networks.

TABLE VII: Memory used for inference.

LSTM 32-bit Stack. LSTM 32-bit Stack. LSTM 8-bit
Dataset RAM FLASH RAM FLASH RAM FLASH

(KB) (KB) (KB) (KB) (KB) (KB)

All 2.63 40.96 7.43 218.81 5.17 58.45
Circ. 6 2.16 25.96 4.01 57.54 4.95 17.27
Circ. 8 2.07 23.80 3.06 30.24 4.85 10.20
Circ. 10 3.95 120.38 5.20 137.64 5.05 37.73
Circ. 12 4.01 125.53 5.37 88.64 5.02 25.27
Circ. 13 2.95 54.87 4.97 85.12 4.99 24.35
Circ. 14 2.32 30.18 10.02 355.13 5.29 92.88
Circ. 16 4.57 177.56 7.56 211.91 5.16 56.67

The non-quantized stacked LSTM networks exhibited in-
creased memory consumption compared to other architectures.
Conversely, the single-layer LSTM network showed reduced

RAM and FLASH memory usage for predictive inference
tasks. However, for most datasets, the quantized LSTM mod-
els required considerable RAM usage, similar to the non-
quantized models, but due to quantization, they consumed
less FLASH memory than their non-quantized counterparts.
Furthermore, they even used less FLASH memory than some
single-layer models.

The proposed AIoT system, aligned with the SmartLVEn-
ergy framework, revolutionizes legacy low-voltage circuits by
integrating decentralized predictive capabilities through retrofit
sensing platforms. These platforms are uniquely equipped with
two-layer, 8-bit integer LSTM models, optimized for TinyML
environments, offering a cost-effective solution for retrofit sce-
narios with limited microcontroller computational capacity.
The ACU-MAIN platform, pivotal in monitoring and predict-
ing main energy bus demand, doubles as a system coordinator,
aggregating data from ACU-BREAKER units that monitor and
forecast individual circuit demands.

This innovation significantly enhances edge computing
functionalities, communication, and computational functional-
ities allocation for SCC. It allows for sophisticated modeling
of the system, leading to the creation of retrofit platforms
and communication protocols that embody the middleware
and interoperability layers of the SmartLVEnergy metamodel.
SmartLVGrid’s operational primitives, DRFs, CSFs, and ISFs,
are expertly crafted for decentralized predictive energy man-
agement, with DRFs tracking electrical parameters and energy
demands in compliance with ANEEL regulations. The stand-
out CSF is the system’s short-term energy demand forecast-
ing, which anticipates demand for each retrofitted circuit over
the next 15 minutes, as per ANEEL standards. ISFs facilitate
communication between ACU-BREAKERs and ACU-MAIN
via the ESP-NOW protocol, and between ACU-MAIN and the
local server using MQTT with QoS 0 over Ethernet.

For demand prediction, historical data from sensor de-
vices in an existing factory setup was utilized. Eight de-
mand datasets, including factory and individual circuit data,
were selected to validate the AIoT system. Comparisons be-
tween existing single-layer LSTM models and our proposed
two-layer stacked LSTM model, trained using similar prepro-
cessing techniques and a 10-sample window for future de-
mand prediction, highlighted the superior performance of our
model. After quantizing these two-layer LSTM models from
32-bit float to 8-bit integer, they were implemented in the
proposed ACUs. Performance comparisons of quantized and
non-quantized stacked LSTM models, based on RMSE, R2,
memory usage and prediction latency, were conducted using
both existing literature data and post-upgrade test data. The
quantized models, while maintaining a precision comparable
to other architectures, enabled faster on-device predictions
than server-based forecasts at the SCC with a reduced and
decentralized computational load. This approach redistributes
processing costs from a centralized server to the retrofit plat-
forms, marking a significant advancement in decentralized and
intelligent energy management systems.

To conclude our analysis, we conducted a comparison be-
tween our approach and existing solutions, focusing on per-
formance (Table VIII) and cost (Table IX).
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TABLE VIII: Benchmarking: Performance of different TinyML LSTM models in energy forecast scenarios.

Work Model TinyML
Tool

Microcontroller
Familly CoreMark No. of

Features
Look-Back
Period

Peformance
Metrics

Model Size
FLASH (KB)

Inference
Time (ms)

[46] 2-Layer
LSTM

TensorFlow
Lite Micro ESP32-S3 1181.6*

(2 cores/240MHz) 7 2h (30-min
ahead forecast)

R²: 96.08 %
RMSE: 0.0536 MW ∼22.26 ∼4.83

[47] Single-Layer
LSTM

STM32
Cube.AI STM32F3 245**

(1 core/72MHz) 8 8h (1h-ahead
forecast) MAE: 0.048 kW ∼20.38 -

This Work
(Circuit 8)

2-Layer
LSTM

TensorFlow
Lite Micro ESP32 994.26***

(2 cores/240MHz) 1 1.5h (15-min
ahead forecast)

R²: 97.33 %
RMSE: 0.358 kW ∼10.20 ∼5.55

Data retrieved from: * [55], ** [56], *** [57].

Table VIII shows the top performance metrics for LSTM
models in TinyML for predicting energy demand. Additionally,
we used CoreMark to assess processing platform performance
[58]. Given the different purposes, datasets, prediction hori-
zons, and sample periods among this and previous studies,
a comparison of existing LSTM models with this work in
Table VIII cannot be assumed. Additionally, different stud-
ies employed distinct performance metrics. As in paper [46],
we chose R² and RMSE to represent the performance of our
model, with R² intuitively indicating energy demand predic-
tion based on input parameters. Conversely, [47] provided
MAE as the only performance metric, and the authors did
not deploy the LSTM model on a microcontroller platform,
as our work and [46] did. Our prediction had the shortest
future time interval (15 minutes) and fewer input features.
Moreover, our model used less memory due to fewer features
compared to other TinyML LSTM models. Despite having a
more complex model with more features, the ESP32-S3 with
higher CoreMark than the ESP32 used in our hardware had
significantly faster inference times, highlighting CoreMark’s
role in processor selection for TinyML applications.

Smart breakers are promising for upgrading electrical instal-
lations with wireless communication, ensuring interoperability
with digital platforms, and providing real-time electrical data.
Typically integrated into local Wi-Fi networks, they acquire
unique IP addresses [59]. Nevertheless, as the number of de-
vices directly connected to Wi-Fi networks increases without
aggregator elements to manage Wi-Fi connections, network
overload may arise, especially in legacy infrastructures less
capable of handling increased traffic and IP addressing. Fur-
thermore, replacing legacy breakers with smart ones raises
sustainability concerns due to the disposal of usable breakers.

The retrofit approach can be refined to reduce impacts,
aligning the installation effort with that of replacing cir-
cuit breakers. For integrating additional sensors or actuators
through our framework, strategic analysis of PoIs can stream-
line efforts, allowing for the effective utilization of existing
functional resources. Unlike existing market options, we tai-
lored a solution for legacy infrastructure needs, preserving
original breakers and adding predictive analysis for enhanced
energy management. Our sensor solution attaches directly to
existing breakers, integrating without discarding devices.

Table IX exhibits existing energy sensor solutions, high-
lighting their features and unit prices. It is important to note
that the estimated pricing of our solutions is based solely on
low-volume production costs, with competitor pricing sourced
directly from manufacturer-associated references. Thus, it is

not feasible to directly compare the final cost of our product
with that of the manufacturers. In this case, the presented
prices emphasize the competitiveness of our solution. In high-
volume production, where unit costs typically decrease, our
pricing could become even more advantageous. Additionally,
while our solution lacks some communication features found
in other products, it uniquely incorporates predictive resources
in its sensor elements for energy management.

TABLE IX: Benchmarking: Cost-benefit.

Product Function Commun.
Standards

Real-time
Sensing

Predictive
Resources

Unit Price
(EUR)

[60] Sensor IEEE
802.15.4 [X] 164.50

[61]
Data
Gateway
for [a]

Modbus
IEEE:
802.3
802.11
802.15.4

446.00

[62] Smart
Breaker

LTE*
IEEE:
802.11
802.15.4

[X] 89.00**

ACU-
MAIN

Sensor/
Data
Aggregator

IEEE
802.11 [X] [X] 38.61

ACU-
BREAKER Sensor IEEE

802.11 [X] [X] 21.43

*: Abbreviation for Long-Term Evolution.
**: Price retrieved from: [63].

VII. CONCLUSION AND FUTURE WORK

This paper proposes the SmartLVEnergy framework, a novel
approach to enhance energy management in legacy systems
through the combined power of predictive sensing and de-
centralized computation. Building upon the foundation of the
SmartLVGrid metamodel, SmartLVEnergy leverages Cloud,
Fog, and Edge computing technologies to facilitate the imple-
mentation of AIoT-based retrofit solutions. As demonstrated
in a practical application, SmartLVEnergy successfully es-
tablished a system capable of monitoring and forecasting
short-term energy demand directly on sensor devices within
a legacy industrial distribution panel. This system utilized
quantized Long Short-Term Memory (LSTM) networks within
the TinyML framework, achieving a critical balance between
computational efficiency across retrofit solutions and mini-
mized latency. This optimization enabled real-time operational
decision-making, ultimately leading to improved energy man-
agement within legacy low-voltage consumer units through the
integration of predictive and monitoring capabilities.
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Future work could explore:
• Decentralized control solutions through SmartLVEnergy.
• Comprehensive economic feasibility analysis of SmartL-

VEnergy implementations.
• Transfer learning strategies to avoid training specific

models for each circuit.
• Evaluating framework performance in different systems

and integrating cloud and fog computing solutions.
• Assessing the economic impact and integration of these

energy management systems with sustainable energy gen-
eration and dynamic energy markets.
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4 CONCLUSÕES

Esta tese propõe o framework SmartLVEnergy, concebido para modelar estratégias siste-
máticas de retrofit para modernizar e desenvolver ferramentas de gestão energética em unidades
consumidoras pré-existentes, utilizando soluções de Internet das Coisas (IoT) e de Inteligência
Artificial das Coisas (AIoT). Nas experimentações apresentadas, isso possibilitou a elaboração
de estratégias para monitoramento remoto, análises preditivas e distribuição descentralizada
dos recursos computacionais, viabilizando a implementação e desenvolvimento de tecnologias
avançadas em infraestruturas legadas de baixa tensão.

As estratégias propostas incluíram, sistematicamente, recursos de sensoriamento em
tempo real, utilizando middlewares cuidadosamente modelados com interfaces físicas e lógi-
cas bem estabelecidas e ajustadas às necessidades dos sistemas pré-existentes. Isso permitiu o
uso eficiente desses recursos para a convergência tecnológica e virtualização de sistemas ener-
géticos prediais e industriais legados. Com isso, as experimentações realizadas promoveram a
interoperabilidade e interconexão dos dispositivos de monitoramento em redes de dados sem fio,
adaptadas às necessidades das instalações existentes. É importante mencionar que os recursos
de middleware e de interoperabilidade propostos, fundamentados nas pilhas de protocolos do
metamodelo SmartLVGrid, maximizaram a utilização e preservação dos recursos presentes na
infraestrutura das unidades consumidoras legadas.

Mostrou-se também a distribuição e descentralização de recursos computacionais em
borda, nuvem e localmente, para visualização, armazenamento e processamento dos dados ener-
géticos adquiridos, conforme as necessidades específicas das instalações. Isso atribuiu às unida-
des consumidoras pré-existentes a capacidade descentralizada de utilização dos recursos com-
putacionais especializados para a gestão energética dessas instalações. Isso também envolveu
a coleta e construção de bases de dados das unidades consumidoras legadas e seus respecti-
vos circuitos, que geralmente não possuem bases de dados existentes ou recursos para análise
avançada dos parâmetros monitorados.

Utilizando os dados adquiridos ao longo da pesquisa, foi possível analisar a demanda
energética e outros parâmetros das instalações, em conformidade com as regulamentações da
ANEEL. Isso permitiu a otimização e o planejamento dos recursos energéticos de acordo com
as necessidades específicas das instalações. Também foi possível incluir recursos preditivos
para demanda energética, com o intuito de auxiliar as unidades consumidoras em análise no
controle desse parâmetro, para detectar possíveis ultrapassagens de demanda que pudessem au-
mentar a oneração energética dessas instalações, conforme as regulamentações do setor elétrico
brasileiro. Isso foi implementado tanto a nível centralizado quanto distribuído nos próprios ele-
mentos sensores (middlewares) desenvolvidos, através das técnicas de TinyML incluídas graças
aos recursos propostos pelo framework SmartLVEnergy.
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Neste contexto, conclui-se que o framework SmartLVEnergy, ao generalizar estratégias
de modernização com soluções IoT e AIoT, contribui significativamente para o avanço da atu-
alização tecnológica rumo à gestão energética eficiente de unidades consumidoras legadas de
baixa tensão. As estratégias de retrofit baseadas no framework não apenas promovem a preserva-
ção e otimização dos sistemas existentes, mas também se destacam como soluções sustentáveis,
potencializando a gestão energética por meio de uma evolução tecnológica gradual e efetiva.
Além disso, essa abordagem garante a escalabilidade das soluções tecnológicas para o setor
elétrico de baixa tensão, adaptando-se a diferentes cenários e sistemas. Isso é possível graças às
interfaces físicas e lógicas, além dos recursos computacionais distribuídos e descentralizados
integrados às infraestruturas existentes, conforme suas necessidades, baseadas na estrutura do
SmartLVEnergy. O framework proposto abraça a flexibilidade, expansibilidade e interoperabili-
dade ao longo de toda a instalação, permitindo operações conforme as peculiaridades e recursos
de cada contexto. Esta versatilidade confirma a relevância deste trabalho como uma proposta
robusta para os complexos desafios energéticos da atualidade, especialmente em unidades con-
sumidoras pré-existentes.

4.1 DESAFIOS DE PESQUISA E TRABALHOS FUTUROS

Como principais desafios de pesquisa e trabalhos futuros, destaca-se a necessidade de
estudos prévios especializados para definir os recursos a serem utilizados nas estratégias de
modernização em cada caso, pois as particularidades das infraestruturas podem variar signifi-
cativamente. Embora o framework SmartLVEnergy possa fundamentar e orientar as ações a
serem tomadas, tecnologias de automatização, de comunicação ou computacionais mais avan-
çadas podem ser difíceis de implementar nesses ecossistemas devido ao grau de precariedade
das instalações e aos recursos limitados para investimento no processo de transformação tecno-
lógica. A ausência de dados sobre essas infraestruturas é outro fator que retarda o processo de
modernização, necessitando de recursos mínimos para viabilizar análises energéticas avançadas.
Para isso, o framework pode orientar a alocação de recursos físicos e lógicos para viabilizar essa
transição com mínimos impactos e investimentos. Ainda, estudos futuros podem contribuir para
determinar quando a abordagem do retrofit, por meio dos protocolos do framework SmartLVE-
nergy, torna-se viável ou não economicamente para ser utilizada na modernização de ambientes
pré-existentes.

O SmartLVEnergy pode ser a chave para a integração de recursos digitais e de Inteligên-
cia Artificial em infraestruturas existentes rumo aos paradigmas "Smart", como os paradigmas
de Smart Buildings, Smart Cities, Smart Industries, Smart Homes, Indústria 4.0/5.0, entre ou-
tros, no que tange aplicações para o domínio energético. No entanto, seus conceitos e premissas
podem se estender para outros ecossistemas no domínio destes paradigmas, incluindo moni-
toramento ambiental, de recursos hídricos, entre outros, contribuindo para aprimorar recursos
tecnológicos defasados com tecnologias emergentes, de forma gradual e com mínimos impactos
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socioeconômicos.

Outro aspecto que deve ser explorado envolve alternativas ao treinamento individuali-
zado dos modelos para cada circuito das unidades consumidoras em análise, que se mostrou
uma tarefa dispendiosa nos trabalhos publicados, computacionalmente e analiticamente. Tra-
balhos futuros podem abordar o uso de aprendizado federado voltado ao setor elétrico através
do próprio SmartLVEnergy, para contemplar funcionalidades computacionais em borda para
viabilizar o treinamento dos modelos nas próprias plataformas de retrofit. Nesse contexto, a
segurança dos dados analisados é outro aspecto que deve ser discutido futuramente para preser-
vação das informações obtidas das unidades consumidoras, com análises mais profundas dos
recursos computacionais de segurança utilizados na concepção das soluções propostas para o
gerenciamento energético associado a tecnologias digitais.

Um desafio de pesquisa no âmbito desta tese foi a impossibilidade de implantação das
estratégias experimentais e práticas envolvendo técnicas de acionamento e controle nas ins-
talações em estudo, devido a restrições relativas às próprias regras de negócio das unidades
consumidoras em análise. Pretende-se que trabalhos futuros possam incluir a utilização de ele-
mentos de atuação para viabilizar o controle energético automatizado em infraestruturas lega-
das. Além disso, devido à ausência de fontes alternativas de geração renovável ou não renovável
nestas unidades consumidoras, não foi possível integrar as soluções projetadas para o gerenci-
amento automatizado junto a essas fontes alternativas. Outros trabalhos podem promover essa
integração, considerando um gerenciamento econômico mais aprofundado com a participação
em mercados dinâmicos de energia para uma gestão energética mais eficiente, permitindo a
compensação da demanda e do consumo energético com outras fontes energéticas na instalação
junto à concessionária de energia conforme o custo-benefício.

Ressalta-se que o framework SmartLVEnergy não contempla em sua concepção recur-
sos para embasar processos sistemáticos de modernização de sistemas de média e alta tensão
no setor elétrico. A criticidade de operações de modernização de infraestruturas de média e alta
tensão pode contemplar complexos desafios de sensoriamento, controle, comunicação e proces-
samento de dados que podem ser explorados em trabalhos futuros, com o intuito de expandir a
aplicabilidade do framework proposto rumo à digitalização de redes elétricas mais complexas e
abrangentes.

A impossibilidade de expandir as estratégias propostas devido ao número reduzido de
quadros de distribuição das unidades consumidoras analisadas foi outra limitação de pesquisa
no âmbito desta tese. Trabalhos futuros podem avaliar a usabilidade do framework em cenários
legados mais extensos e complexos. Neste trabalho, a estratégia de retrofit consistiu unicamente
no retrofit dos disjuntores dos quadros de distribuição em análise. Outras verificações que pro-
movam o aproveitamento máximo e viabilizem o retrofit de outras formas também são aspectos
a serem explorados em outras propostas. Além disso, os artigos que compõem esta tese aborda-
ram principalmente a demanda energética, mas o consumo e outros parâmetros voltados para a
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qualidade de energia também poderão ser explorados futuramente para uma análise energética
mais aprofundada, operando de forma conjunta com soluções digitais para viabilizar a atuação
sobre o controle energético, de forma a garantir a qualidade do serviço e melhores resultados
em termos de impactos econômicos.
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