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– To the Fundação Amazônia de Amparo a Estudos e Pesquisas (FAPESPA) for

financed this work under grant 054/2021.



“If everyone is moving forward to-

gether, then success takes care of it-

self”

Henry Ford



Resumo

Resumo da Dissertação apresentada à UFPA como parte dos requisitos necessários para
obtenção do grau de Mestre em Engenharia Elétrica.

Context-aware Route Selection for Urban
Computing

Orientador: Denis Lima do Rosário
Palavras-chave: Seleção de Rotas; Computação Urbana; Mobilidade Urbana

Com o crescimento populacional nas áreas urbanas, a infraestrutura urbana mais
extensa enfrenta diversos problemas que afetam a saúde e a qualidade de vida da pop-
ulação. As mudanças na mobilidade urbana tornaram-se intensas, pois a revolução tec-
nológica mundial trouxe diversas ferramentas e métodos para prevenir tendências nocivas
ao transporte urbano. Nesse contexto, as soluções de Internet das Coisas (IoT) realizam
uma forma ub́ıqua de perceber a mobilidade da população e o contexto de mobilidade local
como criminalidade, acidentes e qualidade do ar próximo à infraestrutura viária, comple-
mentando a mobilidade da cidade. Da mesma forma, as Redes Sociais baseadas em Local-
ização (LBSN) dispõem de dados geolocalizados dos usuários, permitindo a identificação
de padrões de mobilidade, fluxos de tráfego e recomendações de modais alternativos de
transporte. Nesse sentido, novas soluções de mobilidade devem atender às questões da
cidade em relação ao transporte público, criminalidade, fatores que influenciam o tráfego
e comprometimento da qualidade do ar. Além disso, os métodos de seleção de rotas devem
considerar caracteŕısticas de conforto, tornando as viagens urbanas mais agradáveis. Esta
dissertação de mestrado propõe e avalia duas abordagens de seleção de rotas conscientes
da poluição, um método de rotas h́ıbridas multimodais e um método de seleção de rotas
personalizado multicritério, para melhoria do fluxo de mobilidade dos cidadãos urbanos.
A solução multimodal h́ıbrida supera o monomodal, oferecendo opções de viagens menos
exorbitante e menos polúıdas. Os perfis personalizados da solução multicritério superam
a escolha de um único critério no mesmo contexto considerando todas as possibilidades
de rota calculadas.



Abstract

Abstract of Dissertation presented to UFPA as a partial fulfillment of the requirements
for the degree of Master in Electrical Engineering.

Context-aware Route Selection for Urban
Computing

Advisor: Denis Lima do Rosário
Keywords: Route Selection; Urban Computing; Smart Mobility

With population growth in urban areas, the more extensive city infrastructure
faces several problems affecting the population’s health and quality of life. Urban mo-
bility changes became intense since the worldwide technological revolution brought many
tools and methods to prevent harmful tendencies regarding urban transportation. In this
context, Internet of Things (IoT) solutions perform a ubiquitous way of sensing the pop-
ulation mobility and the local mobility context as criminality, accidents, and air quality
near the road infrastructure, complementing the city mobility. Likewise, Location-based
Social Networks (LBSN) dispose of users’ geolocated data, allowing the identification of
mobility patterns, traffic flows, and alternative modal transport recommendations. In this
matter, novel mobility solutions must attend city issues regarding public transportation,
criminality, traffic influencing factors, and air quality compromising. Also, route selection
methods must consider comfort features, making more pleasant urban trips. This mas-
ter’s dissertation proposes and evaluates two pollution-aware route selection approaches,
a multi-modal hybrid routes method and a multi-criteria personalized route selection
method, for urban citizens’ mobility flow improvement. The hybrid multi-modal solution
surpasses the single-modal, offering less expensive and less polluted trip options. The
multi-criteria solution personalized profiles outperform the single-criterion choice in the
same context considering all calculated route possibilities.
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CHAPTER 1

Introduction

This chapter introduces the route selection need in the urban mobility context,

and also how tools can provide a smart user mobility for either single or multi-modal.

Furthermore, we outline this dissertation’s main contributions and text organization.

1.1 Overview

Urban growth had exponential growth in all sectors since the migration began

from rural areas, and citizens concentrated in large cities. The culture of productivity

established the accelerated rhythm of the urban routine, where all citizens work in their

designated position to advance society and quality of life [1]. The population demands

benefits and facilities that urban areas can provide, which leads to greater demand for

space occupied by housing and work infrastructure. Hence, vertical expansion becomes a

strong trend with residential and business buildings [2].

The urban scenario verticalization benefits housing and businesses, but urban

transport mobility needs to improve the infrastructure of obsolete urbanization projects.

Numerous types of mobility are growing amidst the mobility-engineered highway system

of the past. From transporting people to transporting goods, whether for work or a simple

tourist trip, urban transport has become an essential sector in large cities that does not

stop working; it only has a decrease in flow at night or on holidays [3].

Different types of transportation, such as walking, cycling, public transit, and

private vehicles, have been used nowadays. These different transportation modes com-

pose the urban mobility, where an efficient city mobility and transportation corroborate

to economic growth, better social relations, and the population’s quality of life [4]. This

trend brings problems to the mobility fluidity, compromising productivity, with signif-
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icant traffic jams that affect air quality. Such effects also decrease the quality of life,

causing respiratory problems and stress for citizens. Hence, it is important to efficient

use the different transportation modes based on user, city, and transportation context

information.

In this context, the modernization and popularity of connected devices bring a

plethora of data to be used in different areas, such as, urban mobility. For instance,

many web-connected things interact among them and users, resulting in extensive data

acquisition. In addition, the Internet of Things (IoT) represents systems and physical

objects interconnected to the Internet for data exchange between heterogeneous devices

without human intervention [5] [6]. Thus, IoT applied to urban mobility can present

smart elements, such as traffic lights, parking lots, and flow management, which provide

a vast amount of data for a experience-aware services [7] [8].

The Information and Communication Technologies (ICT) provides a set of ser-

vices and applications, changing the urban mobility scenario [9]. The ICT advance

brought mobile devices and internet access proliferation for the population. Traffic in-

formation, public transportation schedule, and ride-hailing services ease urban travel de-

cisions. Beyond that, the connected devices permit a larger data-gathering, with the

pervasive sensing advance in human behavior and transportation infrastructure.

1.2 Motivation and Challenges

The extensive urbanization process and consumer demand in many world scenar-

ios cause a delay in urban mobility evolution and represent significant global challenges.

Passenger and goods transportation services imply fleet growth, causing traffic congestion

and poor air quality in city areas. However, urban mobility flow improvement relies on

economic-ecological sustainability allied to drivers’ satisfaction attainment [10]. Smart

city services benefit urban life by reducing the population’s exposure by redirecting to

less concentrated vehicle pollutants areas.

The IoT technologies represent one of the key enabling subject to ubiquitous

computing, referring to physical network objects with sensors to connect between them

and exchange information [11]. The connected ecosystem combines data from physical

and online world, for human behaviour identification. Thus, the information gathering

provides knowledge to develop mobility, society, economy, and culture solutions [12] [13].

The information generation in urban context for users and infrastructure became a part

of the urban context, specially in crisis’ times.

The personalized experience-aware route selection method assists the decision-

making on routes focusing on the user experience, considering multiple factors in the

urban scenario, affecting comfort and health. Developers must consult and attend the

Technology, policy, community, and environment sectors to improve city transportation

and reach the smart mobility status [14]. Through the information technologies implemen-

tation, the data processing and exchange between sectors contribute to urban mobility
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method solutions, which address all quality of life and business-affecting factors when

implemented in the city environment.

The traditional vehicular navigation systems dispose of much context information

about traffic and hazards along the way, used to assist drivers [15]. Although, the typical

navigation applications, ordinarily available in mobile devices and onboard car systems, do

not consider the area criminality level and accidents’ historical level. The contextual data

scarcity may lead to potentially dangerous and unpleasant paths, risking user integrity

[16]. Moreover, our method permits personalizing the route selection, allowing users to

apply their distinct preferences, aiming at time-saving, eco-friendly, or less dangerous

urban trips. Therefore, the Multi-criteria Decision Making (MCDM) method application

helps the route selection problem, considering some of the most important criteria which

affect trips in a simpler and accessible way. Further, The method deals with the route

alternatives, which more can be created depending on travel distance and city context

[17].

Besides that, the growth in the urban vehicular fleet motivates the alternative

path suggestion, as the number of cars increase with the urban population growth. The

inefficient transportation systems in greater city scenarios impact in larger congestion,

longer travel time, and negative impacts to the environments [18]. In this context, Multi-

modal transportation offers an alternative for the population, with economic relief and

less commute time, combining different transportation modes and their features [19]. The

bus trips may be cheaper but represent a bigger walking distance and waiting time, when

Hired Private Vehicles (HPV) represent a time-saving way but are much more expensive.

The hybrid multi-modal method with bus and HPV suggests balanced routes between

economic and time-efficient [20].

The poor air quality in the city scenario affects the quality of life and threatens

the environment. Vehicular emissions, industrial activity, and dust contribute to air

pollution rise. The most common pollutants in urban areas are particulate matter (PM),

nitrogen oxides (NOx), sulfur oxides (SOx), ozone(O3), carbon monoxide (CO), and carbon

dioxide (CO2). The last represents 75% of global greenhouse gas (GHG) pollution, with

the transportation sector as the primary source of emissions [21].

In this context, smart mobility solutions aim to reduce the population’s exposure

to an urban area with a high concentration of pollutants, preserving the quality of life of

its citizens. For instance, users could rely on a service to select less polluted routes for

smart mobility since air pollution impacts the inhabitants’ health. Methods to identify

pollution use active governmental sensors at specific points for collection and subsequent

analysis, allowing the identification of low air quality areas. However, regarding the cost

of implementation, there is a need to use passive sensing through existing services, such

as emission calculations, if the open data portals do not share the air quality data for

analysis [22].
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1.3 Goals

This master thesis presents two route selection methods for urban areas as a

solution for more comfortable, healthier, securer, and eco-friendly paths. We integrate a

multi-modal routing method with a pollution calculation, combining public transportation

with HPV for economical, efficient, and eco-friendly trips [9]. In addition, we present a

personalized multi-criteria route selection with comfort, security, and air quality features

to suggest better urban paths based on different user preferences [16].

Thus, the work objectives includes:

• Present the multi-modal route selection method with air pollution calculation.

• Compare the hybrid routes with single-modal routes in economic, trip-related and

air quality features.

• Present the multi-criteria route selection method application.

• Compare the personalized profiles selection with greedy simpler preferences, select-

ing balanced routes for each user profile.

1.4 Contribution

This master thesis has the following main contributions:

• Route selection methods based on economic, comfort, security, and health features

for urban mobility environment.

• Combination between urban transportation modes, proposing alternative routes for

better time and cost management.

• Efficient local context open data use for route selection based on user profiles pref-

erences, achieving faster, healthier, or more pleasant routes.

• Algorithm evaluation of the proposed selection methods compared to the state-of-

art.

1.5 Text Organization

The remaining of this document is structured as follows:

• Chapter 2: presents the theoretical references about urban computing and their ap-

plications. Also, explains the AHP method for selection and the evaluation metrics

for both proposed methods.
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• Chapter 3: presents the state-of-art related works about multi-modal routing and

multi-criteria route selection, highlighting their differences.

• Chapter 4: Details the multi-modal routing method, explaining the performance

evaluation.

• Chapter 5: Describes the multi-criteria route selection and the user profiles evalua-

tion.

• Chapter 6: Concludes this work.
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CHAPTER 2

Basic Concepts

This chapter presents the main concepts and paradigms of urban computing and

smart mobility. The geolocated data on social networks and open data repositories is

discussed in the importance of urban mobility solutions for considering local contextual

data and air quality. After that, the route selection for car navigation applications char-

acteristics is described.

2.1 Urban Computing

A United Nations (UN) report shows that 55% of the global population lives in

urban areas nowadays, and prospects warn the growth to 68% until 2050 [23]. In this

matter, large urban centers need more infrastructure with expressive population growth.

Transportation, housing, water, and energy supplies need solutions to avoid overload,

compromising the constant rhythm. The urban computing concept mainly develop so-

lutions for different urban areas, integrating technologies to assist and help the correct

resource allocation, without restructuring the whole system [24].

Urban computing also uses diverse data types to understand, manage and improve

urban environments. The IoT and Ubiquitous technologies deal with data collection, pro-

cessing, analysis, and dissemination about their inhabitants and city authorities. Urban

planners apply computer science, statistics, and data analysis through many big data

sources, including social media, mobile devices, sensors, and others. In this way, they

develop tools for proper management of the urban scenario [25].

Some solutions and methods focus on traffic improvement, natural disaster predic-

tion, and mitigation or public safety enhancement. New urban services and applications

emerge to assist people in better navigating around the city, easing the chaotic daily life,
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such as mobile mapping, public transportation, smart parking, and pedestrian navigation.

These services dispose of much relevant urban information to aid the population in route

planning [26].

Besides that, urban services also help understand and mitigate urban pollution

since it is a great concern in many global cities. Urban pollution refers to air, water, and

soil contamination around urban areas due to anthropological actions, such as transporta-

tion, industrial production, and energy generation [27]. Urban computing services help

with environmental issues by integrating data collection about pollution levels, simulating

urban solutions for further application, and enabling intelligent transportation systems

for congestion mitigation and electric vehicle implementation [8].

The Location-Based Social Networks (LBSN) is a definitive solution applied to

urban computing services. It generates one specific data type in every user interaction

with social media and networks. Each interaction generates geographic and temporal

records when users agree to share personal information. Urban developers leverage these

interactions beyond social and POI promotions, such as Foursquare and Twitter.

This work uses the LBSN as leverage for human behavior identification. Our

method identifies valid urban trips through social interactions and builds multi-modal

routes for public transportation and Hired Private Vehicles. Social media data returns

the most realistic expression of human mobility, especially in urban centers.

2.2 Analytic Hierarchy Process - AHP

MCDM methods introduce alternative decision processes based on mathematics

and psychology. Many business, industry, and government applications use the decision

methods, assisting when facing multiple criteria. Specifically, Thomas L. Saaty [28] cre-

ated the Analytic Hierarchy Process (AHP) in the 1970s and kept refined, updated, and

enhanced it with newer and intelligent methods such as the fuzzy AHP. The method aids

decision-makers with many alternatives and deals with subjective judgments such as “I

guess”.

In this work, we use the AHP method to implement the route selection method

considering the trip, health, and comfort-related factors. For the correct route selection

among alternatives with different contextual information, we need to choose a decision-

making method that is simple and robust, aiming at scalability for any urban environment

application. The AHP method for route selection offers robustness, considering dense

criteria and weight with simple mathematical calculations for selection.

The built hierarchy between elements and the weight definition to each alternative

route tuple defines the path preference order. Saaty [28] describes the correct AHP use

with decision matrix determination for every alternative relating to a criterion, defining

the criteria normalized indexes. Nonetheless, the collected dataset for analysis normalizes

its raw value indexes for each criterion, allowing the full use of the AHP method.
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Saaty’s scale [28] defines the element importance degree to another and allows the

comparison matrix built, as shown in Equation 2.1. Specifically, M represent the decision

matrix with all fn,n pairwise comparison. The matrix objectives are problem complexity

level reduction and driver’s profile preference definition, facilitating method application

due to elevated criteria quantity in various problems.

In the pairwise comparison, the AHP method uses a verbal judgments scale rang-

ing from “equal” to “extreme” (equal relevance, great relevance, greater relevance, huge

relevance, and extreme relevance), referring to a criterion comparison importance to an-

other for the problem solution reach. Numerical judgments represent every verbal judg-

ment, being “equal” equivalent to 1 and “extreme” to 9 (1, 3, 5, 7, and 9) with the

intermediate values (2, 4, 6, and 8).

M = (Fi,j)n×n =


f1,1 f1,2 . . . f1,n
f2,1 f2,2 . . . f2,n
...

...
. . .

...

fn,1 fn,2 . . . fn,n

 (2.1)

A consistency validation for the matrix is an AHP method step for the correct

matrix built. Equation 2.2 shows consistency ratio (CR) and consistency index (CI)

fraction to obtain random index (RI), calculating decision-makers’ judgments consistency.

CR =
CI

RI
(2.2)

The maximum matrix auto-value (λmax) must be equal to matrix dimension n for

matrix consistency maintenance. The n − 1 value is used for logically deduced pairwise

comparison. Therefore, the fraction between these elements obtains the CI, shown in

Equation 2.3.

IC =
λmax − n

n− 1
(2.3)

The maximum eigenvalue indicates the judgment consistency measure, calculated

through the judgment matrix (A) and the priority column vector (w) product, which splits

the vector mean, as seen in Equation 2.4.

λmax = vector mean
Aw

w
(2.4)

The author also defines the RI as a constant value applied to defined decision

matrices for the hierarchy analysis method. This paper uses the 1,41 RI value for using

an eight elements matrix [28], as shown in table 1 . The formulas calculation obtains a

valid CI for all profiles since it is less than 10%, as further shown in Chapter 5.

The AHP method sums the problem in 3 steps: state the objective, define the
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Table 1: Average Random Index for AHP

Decision Matrix Elements 1 2 3 4 5 6 7 8
gray!10 Random Index 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41

criteria, and pick the alternative from the weights. The following example explains the

AHP practical approach didactically [29] [30].

Hypothetically, a man called Bob needs to buy a new car. However, Bob must

evaluate the best car for him and his family. For him, the car must be stylish, reliable, and

economical. Bob chooses the AHP tool to aid the decision-making. Firstly, Bob needs to

perform the three initial steps.

He starts the AHP application by defining the objective: to buy a new car.

Then, he defines the evaluation criteria regarding cars: style, reliability, and fuel economy.

Finally, Bob defines the available alternatives: Honda, Chevrolet, Renault, and Ford.

After the steps, the hierarchical tree arranges the information, as seen in Figure 1.

After declaring the objective, criteria, and alternatives, Bob needs to ponder how

each criterion relates to another. Based on the decision-makers judgments, the AHP

prioritizes one criterion over another. So Bob needs to relate the best criterion to select

a new car. Due to the best car and option available, being beautiful, super reliable, and

spending low fuel can not exist, Bob and every other decision-maker need help when

dealing with distinct alternatives.

Buy a new car

Style Reliability Fuel Economy

Honda Chevrolet Renault Ford

Figure 1: Buy a car problem AHP hierarchy

Then Bob starts relating the three criteria, which depend on predefined judgment

values, as mentioned in Section 2.2 and shown in Table 2, proposed initially by Saaty [28].

The Scale of Relative Importance translates linguistic choices into numeric numbers and

indicates the importance of a criterion to another. Our route selection method uses 1 to

10 for positive relationships and 1/1 to 1/5 for negative relationships.

For e.g., Bob favors Style over Economy if the Style criterion is three times more

important than the Fuel Economy when selecting a new car. Also, the inverse relationship
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Intensity of Importance Definition
gray!101 Equal Importance

3 Slight Importance
gray!105 Moderate Importance

7 Moderate Plus Importance
gray!109 Strong Importance

Table 2: Scale of Relative Importance for AHP

is valid because Economy is 1/3 more important than Style, consequently three times less

important. We conclude that Bob moderately disfavors Economy over Style when selecting

a new car.

The Judgment Matrix, shown in Equation 2.1, aggregates the relation between

criteria. For Bob, Reliability is the most important criterion, followed by Style and Fuel

Economy as the least important. Based on these judgments, the matrix in 2.5 shows Bob’s

preference in the pairwise comparison. The matrix contains the relative importance and

the inverse relation assuring the matrix consistency. Bob must implement the idea of

turning the Judgment Matrix into a priority ranking.


Style Reliability FuelEconomy

Style 1 1/3 5

Reliability 3 1 7

FuelEconomy 1/5 1/7 1

 (2.5)

With the eigenvector solution, the AHP method turns the pairwise comparison

matrix into the priority ranking, also known as the Vector of Priorities. The eigenvector

is a non-zero vector set to represent a square matrix. One way to obtain the eigenvector

is to apply a multiplication loop: by squaring the Judgment Matrix n times, summing

and normalizing the rows, and then checking if the difference between two consecutive

calculations is smaller than a predefined value or has no difference. The obtained criteria

priority eigenvector is shown in Equation ??

Vector of Priorities =


Priorities

Style 0.3196

Reliability 0.5584

FuelEconomy 0.1220

 (2.6)

After defining the criteria ranking, the method needs the same procedure for the

alternatives for the criteria evaluation. Bob judged all four options (Honda, Chevrolet,

Renault, and Ford) under the Style (Equation 2.7) and Reliability (Equation 2.8) criteria.

For Fuel economy, Bob evaluates the options by the miles per gallons consumption for

the most economical car, as shown in Equation 2.9.
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Style =



Honda Chev Renault Ford

Honda 1 1/4 4 1/6

Chev 4 1 4 1/4

Renault 1/4 1/4 1 1/5

Ford 6 4 5 1

 =



Priorities

Honda 0.1160

Chev 0.2470

Renault 0.0600

Ford 0.5770

 (2.7)

In terms of style (Equation 2.7) and reliability (2.8), the same judgments made

in the criteria matrix, Bob made for the criteria relating to the options, obtaining three

criteria eigenvector for the four car alternatives.

Reli. =



Honda Chev Renault Ford

Honda 1 2 5 1

Chev 1/2 1 3 2

Renault 1/5 1/3 1 1/4

Ford 1 1/2 4 1

 =



Priorities

Honda 0.3790

Chev 0.2900

Renault 0.0740

Ford 0.2570

 (2.8)

Regarding Fuel Economy, Bob used the miles per gallons consumption informa-

tion in each alternative car, obtaining the eigenvector through the average calculation.

The average normalization process indicates the eigenvector in a 0 to 1 scale, as seen in

Equation 2.9, for the AHP next step.

Fuel Economy =


Honda 34/113

Chevrolet 27/113

Renault 24/113

Ford 28/113

 =


Honda 0.3010

Chevrolet 0.2390

Renault 0.2120

Ford 0.2480

 (2.9)

When quantitative information is unavailable, verbal judgments achieve qualita-

tive information about the alternatives. The preference judgments for style and reliability

features are complex for different decision-makers’ verbal preferences and represent qual-

itative information. Fuel Economy is a feature with numeric values and quantitative

information, making it simpler to obtain the alternative ranking through its characteris-

tics.

After completing all judgments matrix, a necessary step for the decision matrix

before going further is to check the consistency with the CR, as seen in Equation 2.2.

Equation 2.10 calculates the maximum eigenvector value by multiplying the matrix col-

umn sum and the priority eigenvector. Then, Equation 2.11 obtains the CI for priorities
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to be analyzed.

λmax =
[
3.33 1.75 8

]
.

0.31960.5584

0.1220

 = 3.0174 (2.10)

CI =
λmax − n

n− 1
=

3.0174− 3

3− 1
= 0.0087 (2.11)

After that, Bob obtained the CR by dividing the CI for the RI defined in Table

1. In Bob’s case, RI is 0.58 for three criteria elements. Finally, the CR is consistent if

lower than 0.10%, otherwise will be a need to recheck the criteria relation. For the criteria

priority, the CR was 1.5%, indicating consistency, as seen in Equation 2.12.

CR =
CI

RI
=

0.0087

0.58
= 0.015, where

{
CR < 10%→ adequate

CR ≥ 10%→ inadequate
(2.12)

For the last step in the AHP method, Bob needs to multiply the priorities vector

by the alternative ranking under each criterion, as shown in Equation 2.13. A single

matrix aggregates the alternative ranking for each feature, built in four lines and three

columns. Finally, after the multiplication, Bob gets the Ford alternative as the highest

value above all alternatives under his preference, as shown in Equation 2.14.


Style Reliability FuelEconomy

Honda 0.1160 0.3790 0.3010

Chevrolet 0.2470 0.2900 0.2390

Renault 0.060 0.0740 0.2120

Ford 0.5770 0.2570 0.2480

.

Priorities

Style 0.3196

Reliab. 0.5584

FuelEcon. 0.1220

 (2.13)


Criteria

Honda 0.3060

Chevrolet 0.2720

Renault 0.0940

Ford 0.3280

 (2.14)

With the example, AHP reveals a logical framework helping individuals and

groups in complex decision analysis, showing the benefits between alternatives based on

a set of criteria in a given problem in a structured and flexible way.
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2.3 Evaluation Metrics

Evaluation metrics for urban mobility methods vary depending on the specific

objective for the user’s need. Navigation systems and ride or bike-sharing rely on much

urban information to provide efficient transportation alternatives. The comparison be-

tween methods indicates a superior performance when correctly performed [31].

Travel time indicates the time users take from origin to destination. This metric

determines the method’s efficiency in time-saving, affecting the urban productivity rhythm

that most users seek to mitigate. Our methods uses the travel time for indicating the

time spent in route alternatives or different transportation modes [32].

Walking distance measures the need to walk to different transportation modes’

stop points to urban destinations. We also can measure accessibility with the percentage

of accessible destinations within a specific time limit or walking distance to enter the

transportation mode, such as bus stops [33].

The modal shift can be related to the multi-modal routes method and measure

the population’s possibility to switch urban transportation modes as a alternative hybrid

route. This method can avoid traffic congestion, improve air quality with fewer emission

vehicles, and encourage collective transportation [34].

In terms of air quality, carbon emission metrics introduces the sustainability-

aware urban mobility solutions. Measuring the carbon emission and air quality help de-

termine the environmental impact of the actual transportation system for further changes

[35] [36]. We assess the pollution measure in our proposed two method, with CO2 emis-

sion calculation, as explained in Section 4.4 and through air quality sensors readings, as

explained in Section 5.4.

Nature and Tourist Attractions can fulfill the user’s need or happiness, which

indicates comfort features. Geographic Information Systems (GIS) and navigation services

contain geo-located information about green areas and Point-of-Interest (POI). In our

personalizing method, we attend to the comfort and pleasant of users with customized

preferences and weighted profiles, offering the best route alternative in a criteria hierarchy

[37].

The cost-effectiveness metric relates the solution benefits to the cost it takes.

Many solutions can offer a fast and comfortable alternative in transportation like HPV

services, such as Uber, but much expensive. In contrast, public transportation can be a

cheaper option, but need walk to the bus top and can be slow or uncomfortable [38].

The safety metric assess the accident risk or injuries regarding a mode of trans-

portation or a mobility solution. Criminality can be considered a safety and security met-

ric to be accounted. Many methods retrieve the safety level identification by historical

data analysis, avoiding dangerous areas and alerting the local authorities for infrastruc-

tural changes [39].

For the multi-criteria route selection method, we choose the percent deviation
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from a known standard (PDFKS) to evaluate the personalized user profiles to greedy

options, simulating the traditional navigation systems [16] [40]. Section 5.4 explains the

PDFKS metric calculation and application in the route selection problem.

2.4 Chapter Conclusions

This Chapter provided the theoretical background and insights about the Urban

Computing paradigm, the AHP method with an example, and the Evaluation Metrics

for the proposed route selection methods. The presented concepts its necessary for this

dissertation thesis understanding. In the following Chapter, we will approach the methods’

related works in the state-of-the-art literature.
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CHAPTER 3

Related Works

This chapter presents the leading works in the literature regarding multi-modal

routing, multi-criteria route selection, and pollution-aware urban routes relating to this

work’s proposed approaches. In the state-of-art methods, route selection approaches

consider the social networks data for human and mobility flows analysis, hybrid routes

involving different transportation modes, and air quality measurement, but not the three

elements in the same solution. Similarly, in the multi-criteria route selection literature,

many works need to consider health, comfort, and security factors when offering urban

routes without customizing the preference. We highlight the difference between state-of-

art approaches to our methods and all related objectives attended.

3.1 Multi-modal Methods

This section presents the essential concepts about location-based social network

sharing usage, urban multi-modal routing solutions, and urban mobility pollution analysis.

All discussed concepts focused on specific solutions and were categorized into LBSN data

usage, direct integration of multi-modal routing, mobility flow analysis based on social

networks, and air pollution approach.

Ferreira et al. [41] investigated how LBSN check-ins could be used to study

tourists’ mobility behavior. The authors chose and evaluated social media-generated

data, such as Twitter, Flickr, and Foursquare, for behavior analysis of tourists and city

residents, showing their important locations and visiting time. The method combines

data mining techniques with spatial analysis and natural language processing to extract

useful information from social interactions.

The authors also used clustering techniques to group similar tweets, photos, and
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check-ins into semantic categories for popular activities and location identification, such

as dining, nightlife, or sightseeing [41]. The chosen data treatment and modeling are

appropriate for mobility identification and reveal insight into spatiotemporal and semantic

aspects of tourists’ movements. However, data collection in the used case can not explicitly

address essential mobility elements.

Rodrigues et al. [42] presented a framework called SMAFramework, to integrate

heterogeneous urban data sources and find their correlations. The work aims to help

city planners with urban mobility data and data-driven solutions to facilitate citizen

trip experiences around the city. Tool development was made for the framework users

to manage, standardize, and integrate the data from different sources for information

extraction.

For standardization, the authors use a Multi-Aspect Graph model, which is an

extension of the traditional graph concept and allows the representation of time-varying

constraints. Also, a part of the framework contains some developed tools to collect and

analyze data from different urban sources, such as the Fuzzy Matcher, which evaluates

the correlation between space and time with real data from New York taxis company [42].

The author’s approach is relevant to data leveraging for urban applications; however,

pollution issues were not raised.

Rodrigues et al. [43] proposed a hybrid multi-modal routing solution and an

evaluation method for large-scale use, providing route impact analysis on mobility flow in

the use case urban area. Multi-modal route generation includes walking, bus, subways,

ferries, other modes, and Hired Private Vehicle (HPV), such as taxis, and application

services, like Uber.

The authors’ method identifies the most relevant city flows using an efficient clus-

tering technique, creating personalized routes and avoiding traffic congestion. The work

provides a comparison of the hybrid routes and traditional routes with only one trans-

portation mode [43]. However, The authors focus on cost reduction without significantly

impacting the user experience and trip time, not considering the pollution and air quality.

Kalajdjieski et al. [35] proposed a prediction air pollution method based on

convolutional neural networks (CNN) using camera images. The authors preferred IoT

infrastructure security and traffic light camera images instead of air pollution sensors,

which are most useful in countries with fewer sensors installed. The authors developed

the air pollution estimation approach based on cameras to facilitate real-time heat maps

of air pollution creation and to track pollution sources.

The work evaluates four architectures that classify images and perform data aug-

mentation for imbalanced datasets, with enhanced generative approaches to reach a better

performance related to state-of-the-art [35]. Although, the approach had significant de-

pendence on public infrastructure, which implies an occasional bottleneck in the system.

Simplified and decentralized methods can offer system robustness.

Zou et al. [36] proposed a near real-time healthier route planning (HRP) method
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with an experimental online implementation service for air pollution exposure (APE)

minimization in daily travels by the method reliability and feasibility validation. The

study concentrates on the HRP method with steps, including the fine-scale air pollution

concentration mapping, risk weight estimation of road segment exposure to air pollutants,

dynamic updating mechanism of the Dijkstra algorithm in healthier route search, and

development of the online service.

The method boosts healthier route planning through the fine-scale risk estimation

achievement, providing an alternative to minimize exposure risk and protect human health

in improved travel behaviors [36]. The author’s objective was defined as a route planner

and minor exposure to pollution without multi-modal integration and proper data mining

for urban planning analysis and modification.

Table 3 shows the main related works comparison under four categories. Based

on the related work, this work proposes the main features of LBSN data usage, multi-

modal routing, mobility flow analysis integration, providing statistics to be used by users

who opt for less polluting modes of transport and by urban transport managers who can

optimize values to improve the quality of life.

Table 3: Multi-modal approach related works features comparison

Work LBSN data usage Multimodal routing Mobility flow analysis Air quality measure
gray!10 Ferreira et al. [41] yes no no no

Rodrigues et al. [43] yes yes yes no
gray!10 Rodrigues et al. [42] yes no yes no

Kalajdjieski et al. [35] no no yes yes
gray!10 Zou et al. [36] no no no yes

blue!10Multi-modal Method yes yes yes yes

3.2 Multi-criteria Selection

This section presents the main state-of-art works related to multi-criteria method,

navigation systems, and trip influencer factors. The related work selection criteria con-

tain health, well-being, comfort, and security factors on route selection based on driver

preference.

Wu et al. [44] proposed a traffic-route selection optimization approach using sym-

metry/asymmetry contextual traffic data and multi-criteria decision analysis for urban-

logistic routing recommendation. All potential routes from the delivery service employee’s

point of origin to his POI are collected and identified as candidate paths. The Multi-

criteria Decision Analysis (MCDA) generates a ranking of candidate paths based on the

contextual data evaluation.

The author aims to collect contextual data from the urban transportation database

and Google Maps routing Application Programmin Interface (API) metadata, construct-

ing a context-based social network. The work contains a comparison to the produced

ranking by different MCDA methods [44]. The work presented an urban route selection
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for deliverymen used in urban logistics, needing to be more beneficial for citizen use. Be-

sides, the criteria for selection are limited to average speed, congestion degree, distance,

and worker personal interest.

Sarraf et al. [45] added an analytic choice method for the developed safer route

planning application, comparing different multi-criteria methods outcomes for the same

objective. The work develops a fully automated approach to acting as a transportation

expert, analyzing road safety levels and user judgments, and selecting the most suitable

path among alternative routes from a source to a destination.

Besides that, the authors present a comparative study of five MCDMmethods and

three approaches to derive fuzzy criteria weights [45]. Regardless, the proposed system

analyzed historical and live monitoring, considering vehicle accidents in the analysis area,

offering safer routes and urban infrastructure reports for future enhancement.

Kaivonen et al. [46] proposed real-time monitoring with data gathering on pol-

lution through urban public transportation networks, covering the whole city area and

addressing air quality issues as urban environment criteria. The authors evaluated data

collection on mobile sensors compared to stationary air sensors, choosing an efficient way

to map pollution in the urban environment.

The work proposes a bus routes identification method that can provide good town

coverage, passing through highly polluted areas which require attention. Route planning is

also studied to select bus routes that can acquire measurements from important locations.

The method develops the solution via image analysis on a bus route map provided by the

local bus company [46]. Although the advance in the state-of-the-art, the solution does

not return a less polluted route alternative for user selection.

Zhang et al. [47] proposed a routing method for Vehicular Ad Hoc Network based

on a fuzzy logic system. The method considers the relative speed, the angle between the

node and neighbors, the connection angle between the destination node and its neighbors,

and the node density of neighbors as the input of fuzzy logic, combining all these criteria

into a node location prediction algorithm.

Thus, the work proposes the Geographic Routing method based on Velocity,

Angle, and Density (GRVAD). Simulation results show that the proposed method out-

performs the previous methods in many performance evaluations. Their proposal is an

efficient routing approach for Vehicular Ad Hoc Networks (VANET) but does not con-

sider contextual data for humanized mobility and only improves communication metrics

between devices.

Hsun et al. [48] proposed a route recommendation method for taxi drivers to keep

picking up passengers and receive a better profit while letting drivers successfully arrive

at the reservation’s location on time. The method considers real-time predictions and

traffic network information, aiming for higher profit. The criteria for this approach rely

on pick-up probability, drop-off distribution, road network, distance, and time factors.

The authors developed a novel framework that intelligently combines two pre-
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diction modules, traffic network information, and a search algorithm. Besides that, they

design an attentive heuristic function search scheme and propose three indicators to eval-

uate the effectiveness in generating routes [48]. The authors did not consider health,

comfort, and risk factors, only the usual navigation criteria compared to standard meth-

ods.

Solé et al. [40] proposed a method for feature measurement that composes a route,

which affects driver security and pleasure on urban trips. The article evaluated different

route selection methods with single or multi-criteria and some pre-defined profiles. The

authors introduced two novel multi-criteria route selection methods; the first method is

called Route to Vector (R2V) and translates the route features into vectors and finds the

closest to the best vector.

The second, called Hierarchical with Variable Tolerance (HVT), follows a user-

defined feature order to reach the best route. The authors build a novel dataset containing

criminality, traffic, accidents, nature, tourist, attractions, and trajectory information data

about 3170 routes from the city of London to apply their proposed method; the results

indicated decreased driving risks without significant time-related penalties [40]. The au-

thors intended the best route identification from the created dataset containing weights

of different trip-influencing factors but did not consider air pollution as a criterion.

Table 4 shows the relation between previous works and this paper on different

issues, such as the multi-criteria approach, various criteria in the selection, including air

pollution, and providing the best route ranking based on defined user profiles preference.

This paper presents contributions on each element integration, contrasting state-of-art

approaches.

Table 4: Features addressed in related works

Work Multi-criteria Air pollution Comfort and Routes User
Approach factor security factors ranking Profiles

gray!10Wu et al. [44] yes no no yes no
Sarraf et al.[45] yes no yes yes no

gray!10Kaivonen et al. [46] no yes no no no
Zhang et al.[47] yes no no no no

gray!10 Hsieh et al. [48] yes no no yes no
Solé et al. [40] yes no yes yes yes

blue!10 Multi-criteria Method yes yes yes yes yes

3.3 Chapter Conclusions

Based on the two methods’ related works analysis, we perceive the need for inte-

gration on every service feature, providing a route selection considering some of the most

important factors in a personalized way and integrating transportation modes to create

hybrid economic and time-saving alternatives.

After analyzing the main issues related to multi-modal method addressed by the
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state-of-art, it can be highlighted the need to integrate methodologies for data collection

and analysis, multi-modal routing from urban flows, and the calculation of greenhouse gas

emission according to modal used. For the multi-criteria method, the literature review

indicates the integration need for other factors in vehicle trip suggestion, using emerging

technology to enhance the data acquisition step for route selection from each driver’s

necessities.
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CHAPTER 4

Multi-modal Route Selection Method in a

Urban Computing Scenario

As the first method in this master thesis, this Chapter introduces the multi-modal

route selection method. The proposed method considers the pollution level calculation

for each transport mode in urban routes built. The evaluation performance compares

the hybrid multi-modal routes with the traditional single-modes in several trip-related

methods and the GHG emission calculation.

4.1 Overview

Figure 2 depicts the air pollution-aware multi-modal urban route selection method

overview. In the “Data Processing” part, we use the dataset acquisition through LBSN

data collection to identify all valid urban trips. In the “Flow Identification” part, we

apply the trip clustering process for the main flow identification, representing the average

paths in-between all trip information. At least, in the “Method Evaluation” part, we

analyze all trip-related features to compare the three route alternatives: performed by

bus, only performed by HPV, and the hybrid alternatives.

Figure 3 presents the method workflow. This is important by smart cities services

aim to reduce the exposure of the population to environments with a high concentration

of pollutants are likely to have an impact on the quality of life of its citizens. Specifically,

the multi-modal routing with pollution calculation methodology can generate new results

for the analyzed emissions for each modal in certain areas where the user’s location data

are collected. The transportation mode distance traveled, and the fuel type calculation

can return the CO2 amount in every trip.
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Figure 2: Multi-modal method overview

In this context, we consider two approaches for the air pollution-aware multi-

modal urban route selection method, namely, hybrid multi-modal urban routes and emis-

sion approach. The “Record Linkage” step represents all LBSN data collection and pro-

cessing, validating the user trips around the city. The “Clustering” step represents the

data reduction method, identifying the average mobility flows of all valid trips. The

“Routing” and “Visualization of Routes” steps represent the build routes between main

flows and enable the routes to map through a mapping tool. At least, the “Comparative

Analysis of Routes” step demonstrates the economic, trip, and pollution-related metrics

comparison between the hybrid and single-modal approaches.

The emission calculation approach relates to the hybrid multi-modal through

the gathered information obtained in the “Visualization of Routes” step and merges the

pollution levels in the “Comparative Analysis of Routes” step. The “Fuel Data Gathering”

step obtains the vehicle fuel local specification, obtaining the fuel mixture composition

values. The “Fuel Data Filtration” step selects the specific fuel for each transport mode

used for the analysis. After this process, the “Fuel and Routing Data Linkage” step

links the fuel values to each route information gathered in the past process, obtaining the

consumed fuel value. In conclusion, the “CO2 Emission Determination” step returns for

the “Comparative Analysis of Routes” step the emitted pollutant amount.

4.2 Data Acquiring and Mining

The geolocated data choice is arbitrary for the data-acquiring method, which

is based on the cities’ urban characteristics and user behavior. This methodology uses
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Figure 3: Emission calculation inserted to the multimodal service workflow

anonymous social media records with coordinates and timestamp information, for mo-

bility flow retrieval and analysis. There is a need to filter valid user trips, allowing the

identification of urban mobility flows, excluding the random and unlinked user records.

For the anonymous user data preparation for the analysis, the LBSN attend

the location and time information requirements and have great popularity among the

population, specifically in urban scenario. Rodrigues et al. [23] 1 use in their methodology

two famous social networks which provide the necessary elements for the practical urban

mobility analysis, i.e., Foursquare and Twitter. We only used one city sector for the

methodology analysis because of the records’ limited dataset coverage area.

In our methodology, we use the dataset acquired by Rodrigues et al. [43] from the

Twitter API Tool. The authors acquired all raw tweets data in the São Paulo metropolitan

area, with minimal difference in time between interactions. The authors used data mining

to identify valid trips by matching the trip distance with Origin-Destination (OD) pair,

time variation verification, and matching speed variation.

4.3 Flow Identification

The flow pattern identification simplifies the mobility analysis, and in-depth char-

acterizes its relationship with multi-modal transport. Rodrigues et al. [49] used math-

ematical calculation and visualization tools in the identification method for clustering

all valid trips into mobility flows. The developed framework uses different clustering

programming tools and assists the urban mobility analysis.

After the valid trip data mining, the next step is identifying the most frequent

urban flow from all proper trips. From the main flows, we can identify the impacts of

the transport modes in the most frequented urban routes without calculating for every

route in the treatment phase. The grouping of (OD) pairs for each trip identifies the most

relevant zones along the dataset, and we classify the flows into trending and secondary.

1https://github.com/diegopso/hybrid-urban-routing-tutorial-sbrc
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The results from the technique execution indicate 12 mobility flows from the

collected Twitter data, as shown in Figure 4. The flows concentrations reside in “Jardim

Itatinga”, “Oĺımpico em Sâo Caetano do Sul”, “Jardim dos Perdizes”, and “Aclimação”.

Only seven flows include the central four districts, and the authors consider for the user

experience analysis [23].

Figure 4: 12 main flows acquired by analysed Twitter Data

4.4 Emission Calculation

Regarding the emission calculation per transport mode, we implemented a stan-

dardized method for any road vehicles, used fuel, and applied it to the Brazilian urban

context [50]. The inventory calculation method proposed by the Intergovernmental Panel

on Climate Change (IPCC) defines gas emissions as harmful to the atmosphere and pop-

ulation health. The emission results obtain the CO2 values from burning fuel with the

proposed “top-down” approach for emission estimation performance. Therefore, we in-

tegrated these calculations into the proposed methodology, defining the correct emission

values for multi-modal transportation.

The “top-down” approach determines the greenhouse gas emission estimation in

three main equations. Equation 4.1 defines the energy consumption (CC) value, measured

by tera-joule (TJ). The fuel consumption (CA) value indicates by liters, the physical unit

conversion factor of the fuel amount measurement to an equivalent oil ton (tEP), based
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on the fuel higher calorific value (Fconv), the equivalent oil ton value is 45.2× 10−3 TJ,

and the upper-to-lower calorific value correction factor (Fcorr).

CC = CA× 45, 2× 10−3 × Fcorr (4.1)

The Algorithm 1 applies the emission calculation in the route determination

method code, determining the CO2 total emission value with the traveled distance value

for each vehicle into possible routes. The emission calculation method is implemented

through Python programming tools and guarantees the independent value functionality

for different fuels, with conversion, correction, and emission modularity for any type. Ta-

ble 5 indicates the Fconv of the physical fuel unit quantity measurement and the Fcorr,

alternating between solid and liquid (0,9) and gaseous fuels (0,95).

Table 5: Conversion factor values.

Fuel Types Fconv values (tEP/m³)
gray!10Gasoline 0.771

Anhydrous alcohol 0.520
gray!10Hydrated alcohol 0.496

Diesel 0.848
gray!10Dry natural gas 0.857

Algorithm 1 Energy consumption algorithm

1: procedure Energy(CA,Fconv, Fcorr)
2: FconvV alue← ””
3: FcorrV alue← ””
4: FconvList← FconvListV alues
5: FcorrList← FcorrListV alues
6: for element ∈ FconvList do
7: if element[0] == Fconv then
8: FconvV alue← element[1]

9: for element ∈ FcorrList do
10: if element[0] == Fcorr then
11: FcorrV alue← element[1]

12: CC ← (CA ∗ FconvV alue ∗ FcorrV alue ∗ 45.2 ∗ 10(−3)

13: return CC

After obtaining the energy consumption value, the carbon content (QC) equation

uses it for the local-specific fuel burn. The carbon content value expresses the value in

carbon gigagram (GgC), after multiplying the energy consumption with the carbon emis-

sion factor and converting the gigagram to tons of carbon (10−3), as shown in Equation

4.2.

QC = CC × Femiss× 10−3 (4.2)
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The Algorithm 2 calculates the emitted carbon (EC) amount by vehicle. Table

6 presents the carbon emission factor published by the IPCC [51], and we integrated the

calculation into our method.

Table 6: Carbon emission factor values.

Fuel Types Femiss values (tC/TJ)
gray!10Gasoline 18.9

Anhydrous alcohol 14.81
gray!10Hydrated alcohol 14.81

Diesel 20.2
gray!10Dry natural gas 15.3

Algorithm 2 Carbon emission algorithm

1: procedure Carbon(CC,Femiss)
2: FemissV alue← ””
3: FemissList← FemissListV alues
4: for element ∈ FemissListV alues do
5: if element[0] == Femiss then
6: FemissV alue← element[1]

7: EC ← (CC ∗ FemissV alue ∗ 10(−3))
8: return EC

At least, Equation 4.3 converts the carbon emission value, considering 44 tons of

CO2 correspond to 12 tons of carbon. We relate the emission calculation to a consumption

per vehicle of 8 kilometers per liter in the HPV case and 2 for buses. The analyzed

equations form an excellent methodology for obtaining greenhouse gas emissions from

terrestrial transportation sources, calculating the fuel amount burned, the carbon content,

and the corresponding emissions of CO2 (ECO2).

ECO2 = EC × 44/12 (4.3)

The Algorithm 3 implements the emitted carbon to CO2 converting function.

The proposed method integrates the emission calculation approach into the hybrid multi-

modal urban routes and has greater precision due to considering the global annual fuel

consumption for the given analyzed environment, not the used vehicle specificity.

Algorithm 3 CO2 emission algorithm

1: procedure CO2(EC)
2: ECO2← ((EC ∗ 44/12) ∗ 10−6)
3: return ECO2
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4.5 Routing and Visualization

This section defines the performed routes from the identified flows, alternating

between transportation modes as possibilities for each route. The method uses the route

alternatives with hybrid or single mode defining the user experience metrics. The method

also adds the CO2 emission calculation from the traveled distance for each vehicle.

For the routing process stage, we compute route possibilities alternating between

urban modals in the analyzed city context with the SMAFramework [49] aid. In addition,

the TomTom Routing API tools permit the congestion areas identification, suggesting

alternative routes using transit and global positioning services. The Google Directions

API computes the generated routes processed by the multi-modal approach, allowing its

visualization.

In the multi-modal routes formation stage, we use three transportation modes:

foot, bus, and hired vehicle. In the visual representation of each formed route for each

mobility flow, red represents the bus, some green stretches define the walking, and blue

represents the hired vehicle sections, calculated with the Uber price estimation, as defined

in [23]. The author introduces two types of hybrid routes: “Hybrid 1” has a more expres-

sive bus section along the route, and “Hybrid 2” with more Uber section. The walking

sections along the dataset-obtained flows characterize the bus stop way performed by foot

and alternates in the route beginning, middle, or end.

After processing and distributing the route among alternative options, we gener-

ated the geographical representation, which displays in a 2D map the determined sections,

defined as “steps” for each transport mode suggested for the user to use. The developed

algorithm initializes the map generation of the suggested route output. Each route sec-

tion contains information such as origin, destination, travel time, overview polyline, and

transportation mode. The Overview Polyline is a suggested route-coded representation as

an approximated path to obtain the point sequence that forms the decoded route. Some

colored drawn parts in the map define the mode to be taken by the user.

4.6 Evaluation

This section presents the obtained results on the data analysis methodology from

the social networks data for the São Paulo urban transportation metrics. The generated

route possibilities with transportation modes have different settings, allowing the compar-

ative analysis for experience and economic metrics for urban users. The values correspond

to the average value obtained for each analyzed flow [23].

The evaluation methodology uses the Python Matplotlib library for graph gen-

erating, which shows the comparative analysis between the average metrics for the main

flows’ alternative routes. The graph representation indicates the analyzed urban envi-

ronment status to each presented metric and enables the analytic selection based on the
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user preference by comparing the alternatives, choosing less expensive routes or with less

duration.

After defining the multi-modal method resulting in graphs, we add the CO2

emission calculation methodology to the resulting comparative analysis. We integrate

the emission estimation graph into the user experience metrics approach, containing the

pollution amount for each vehicle for the traveled distance along the generated route.

Four main factors represent the experience metrics along the identified seven main

flows: the distance traveled, the transport mode estimated price, the elapsed waiting time

for vehicle arrival, and the user’s walking distance. In the route performance comparison,

the walking distance integrates the total distance traveled in a trip, while an entire graph

indicates the average between modes.

4.6.1 Previous Analysis

The multi-modal routing work [23] performed a comparative analysis for the

generated routes considering the obtained main flows, which considers the walking and

traveled distance, the estimated price for each transport mode, the travel time, and the

user waiting time to the vehicle arrival. The metrics bar graphs explain the difference

between the average for all routes in the main flows, with the difference between single

modes and the “Hybrid 1” and “Hybrid 2” alternatives, as explained in Section 4.5.

Figure 5 presents obtained values for the main flows, comparing metrics and

evidencing the advantages between different transport modes chosen for analysis. The

distance, time duration, cost, and waiting time metrics represent urban trip-related fea-

tures, and the presented evaluations are essential for the hybrid method validation.

Regarding the estimated duration for each trip and type of route, Figure 5a

indicates the more significant time taken to complete the trip using a bus since they have

mandatory stops and can take longer and unnecessary routes for most users, contrasting

to the routes performed by Uber. The decrease in time duration represents 30% to 50% of

the total duration, and Hybrid routes have a negligible decrease compared to traditional

types of routes. The graph depicts the estimated duration similarity of the hybrid routes

to single-mode, differentiating in price.

Figure 5b presents the distance traveled by different transport modes and flows;

the difference is insignificant, representing a 1% to 10% variance due to the similar route

construction and exact departure and arrival points. The graph’s blue bar indicates the

walking distance taken on the route, which is more frequent on bus routes because of

the need to walk to its boarding point/stop. The distance graph with the walking course

depicts the little distance walking on Uber and hybrid routes, with the cost advantage for

the hybrid routes.

Figure 5c presents the disparity between the cost of each transportation mode,

mainly showing a 70% to 80% decrease in spending on buses and Uber. The hybrid routes
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have a balanced price for use less Uber mode, as the most expensive transportation. Also,

the hybrid offers less cost than a whole Uber route, more convenience, less waiting time,

and a minor trip duration for users. The cost estimation graph observes the large disparity

between the two single-mode routes and validates the hybrid alternative need.

Figure 5d presents the user waiting time for boarding in the transport mode.

The wait time is longer on routes with only buses, compared to routes performed only by

Uber, increasing from 60% to 90%. Alternatively, hybrid routes decrease the waiting time

by 5% to 20% when compared to the bus-only routes. The waiting time graph depicts the

little time for Uber with a higher cost and the hybrid alternative to decrease the time.
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Figure 5: Obtained Results for Different Route Selection Methods.

Figure 6 shows the average impact on the routes built from main flows. The

graphical representations made explicit the comparison between the multi-modal ap-

proach with the traditional routes with the whole trip on a bus or Uber. Figure 6a

shows the analyzed flows’ average travel time, demonstrating the relative decrease in the

hybrid route advantage compared to whole bus routes. There is less variation between

the route duration, mainly performed by Uber, due to the duration consistency shown in

the application.

Figure 6b shows the similar indicated evidence in Figure 5b. The average distance

taken by the three route types is similar, despite the reduced variation occurrence in the

Uber-performed routes, with greater endurance than whole bus routes.

Figure 6c presents the average price among the transportation types in the routes.

The analysis presents a disparity between bus and Uber cases, increasing about 75% of

the trip cost. The alternative hybrid mode appears to increase only 50% for a user who
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wants to save economically.

Figure 6d demonstrates the waiting time disparity between trip types, with the

worst value for bus compared to Uber routes, increasing 75% to 90% the time spent.

The hybrid route type offers an alternative, balancing the waiting time between the two

transport modes, as seen in (Figure 5d.

Figure 6e presents the average walking distance traveled separated from the total

distance traveled, evidencing the disproportion between bus and Uber routes. The hybrid

route brings feasibility in reducing the necessary distance for the user to walk to the

boarding point and start the trip.

(a) Trip duration. (b) Travel Distance.

(c) Price. (d) Waiting time.

(e) Walking Distance.

Figure 6: Average performance of routes metrics, considering flows 1 to 7.
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4.6.2 Emission Analysis

Figure 7a represents the obtained results for the emission calculation value in the

seven main flows, acquired through the calculated traveled distance by the vehicle types

used along the route and converted to the fuel amount consumed and integrated into the

calculation. The comparative routes analysis indicates the pollution emitted by different

transportation types in the main flows.

Bus-only routes perform a higher emission than all types due to the high fuel

consumption, with about an 85% increase compared to Uber use and more significant

emission adjustment in the hybrid alternative route. However, we need to emphasize the

greater passenger transport capacity of the bus, justifying the higher emission by the

mode when hired or private vehicles bring no more than five occupants.

Figure 7b presents the average emission values applied to all routes, indicating the

highest pollutants concentration among all the generated routes transportation modes.

The bus trip sections have a significant pollution occurrence, but it is necessary to consider

again the occupants carried in the public transportation compared to HPV and private

vehicles.
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Figure 7: CO2 emission calculation results
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4.7 Chapter Conclusions

This chapter explained the multi-modal route selection in an urban computing

scenario with the building dataset from LBSN interaction data. After the data analysis,

the main mobility flows aggregate the user behavior to demonstrate the hybrid routes’

effectiveness. The emission calculation algorithm adds the environmental feature to con-

sider in urban routes since the air pollution concentration growth and health threats.

The comparison of performance evaluation shows the trade-off between single-mode and

hybrid routes when choosing a cheaper or faster alternative. The hybrid method intro-

duces a viable way to overcome economic and time-related problems in traditional urban

transportation.
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CHAPTER 5

Multicriteria Route Selection Method in a

Urban Computing Scenario

This Chapter describes how our method works, combining the multi-criteria

decision-making method and the urban routes’ contextual data for the personalized route

selection. We also define the necessary steps for validating the AHP criteria preferences

and introduce the personalized user profiles. Thus, we detail the method application spec-

ifying the implemented algorithm, highlighting its efficiency in the personalized profiles

performance evaluation.

This Chapter presents a different application in the urban scenario, considering

the described concepts in Chapter 4. The personalized multi-criteria provides an alterna-

tive selection for single-modal trips but considers more trip-related features.

5.1 Scenario Overview

Figure 8 presents the overview for a personalized experience-aware multi-criteria

route selection scheme. The criteria definition step processes all contextual route-related

data. The selection method step defines the AHP method criteria and alternatives valida-

tion with user profile weights description. Finally, the method evaluation steps evaluate

the method application by comparing the custom profiles with greedy profiles.

The data acquisition phase in the criteria definition step consists in retrieving all

contextual and physical data for the dataset build. The authors [52] collected open data

from websites and geographic tools to complete the dataset. We added the pollution factor

through the local air quality open database [53]. In the Data characterization phase, we

insert all contextual and physical feature values to the route alternatives, updating the
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Figure 8: Methodology overview for route selection

London routes 1 dataset with the pollution level. The updated dataset contains eight

criteria elements, described as follows:

• Crime: This criterion is related to the criminality level considering crime event

history in determined areas. An open data United Kingdom police repository [54]

containing all geolocated crime records are analyzed, and the average crime severity

assigns the crime criterion value.

• Accidents: Defines a danger level to vehicle accidents near a determined route.

The United Kingdom government’s open data repository [54] provides geolocated

accident records. The accident severity degree and the fatalities that occurred define

the criterion value.

• Nature: Natural landscapes and “green” areas affect trip aesthetics. Parks, gar-

dens, marinas, golf fields, nature reserves, lawns, meadows, and water define a

pleasant trip and decrease driver stress. The Overpass API provides the natural

occurrence through OpenStreetMap API [55], allowing the criterion value through

the intersected area between nature polygons.

• Attractions: Defines the tourist attractions near the route traces. Overpass API

[55] provides geolocated POI data. The attraction level indicates the POIs number

in the region.

• Duration: Defines a traditional parameter for a vehicular navigation system af-

fecting driver trip perception. Long trips may be a stressful experience and widely

avoided. HERE API [56] provides the estimated duration for each route for alter-

native route tuple adding.

1https://ieee-dataport.org/open-access/crawdad-ufrjlondon-trajectories
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• Traffic: Represents the most stress-related trip factor, implying in-route travel

time. HERE API [56] provides the route vehicle density level. The traffic level is

the comparison between duration with and without vehicle density.

• Length: Navigation system elementary factor provided by HERE Maps API [56],

directly impacting vehicle combustion consumption and travel financial cost.

• Pollution: We added the pollution factor for the dataset with the London Air

Quality Open Data [53], avoiding threatening population’s health. The raw values

the NO2 concentration level near the route, with a 300m sensor tolerance.

The data normalization phase standardizes each criteria raw value from 0 to 1

for multi-criteria application on alternative selections. The Equation 5.1 calculates the

normalized value for each criterion raw value (Xi) in the dataset, with Xmax representing

the maximum value and Xmin the minimum value, which the lower occurrence indicates a

better index for selection, such as crime and accidents occurrence, estimate duration, trip

length, and pollution level. The Equation 5.2 normalizes the criterion raw value inversely

for some criteria for which the higher occurrence indicates a better index for selection,

such as natural areas, tourist attractions, and traffic ratio.

X̂i =
Xmax −Xi

Xmax −Xmin

(5.1)

X̂i =
Xi −Xmin

Xmax −Xmin

(5.2)

In the user profile phase of the selection method step, we define the pairwise

preference comparison between features for the four profiles (Worker, Green, Safe, and

Tourist). Afterward, the AHP method phase guarantees the matrix consistency for prefer-

ence if it needs any correction. The alternative rank phase defines the best route selection

as the product between the preference and alternative weights.

Finally, the method evaluation step analyses the best result for all routes for the

user and greedy profiles under a profile comparison, corresponding to selection preference

with higher priority on only one feature. These comparison objectives validate the user

preference as a practical way to make a route choice.

5.2 Selection Method

In this section, we introduce the AHP methodology to obtain the selection weights

for the proposed criteria. Figure 9 shows the route selection objective hierarchy after the

method application, defining the objective, criteria, and alternatives. The MCDMmethod

applied to the route selection context complements the traditional car navigation system

factors with pleasant, health, and security factors. As initially arranged in the dataset,
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alternative route options for OD pair sets range from two to seven selection paths, as seen

in the Figure 9 bottom line.

Route selection

Duration Length Traffic Criminality Accidents Nature Attractions Air Pollution

Alternative 1 Alternative 2 ... Alternative n

Figure 9: Hierarchy model for route selection representation

We define the four customized user preferences for the multi-criteria route selec-

tion method application: Worker, Green, Safe, and Tourist. In this way, we define four

profile matrices to achieve the relative weights for further method application, as shown

in Table 7. The result weights for Higher criteria weights indicate a higher preference,

while smaller criteria indicate the opposite. The alternative evaluation process will use

criteria weights for selection.

Table 7: Trip feature weights for different profiles
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gray!10 Worker 0.046 0.063 0.021 0.021 0.260 0.227 0.328 0.034
Green 0.085 0.040 0.280 0.087 0.031 0.055 0.059 0.362
gray!10 Safe 0.369 0.244 0.024 0.023 0.073 0.129 0.047 0.092
Tourist 0.164 0.101 0.117 0.394 0.058 0.018 0.011 0.044

For instance, the Worker profile has a higher weight in the Length feature, fol-

lowed by Duration and Traffic, aiming for faster trips [57]. The Green profile feature rank

is Pollution and Nature for a bucolic and healthier trip [58]. Safe profile seeks a securer

trip, prioritizing Crime occurrence and Accidents [59]. At last, the Tourist profile is for

travelers and visitors, with higher weights on the Attraction feature [60]. For the research

purpose, we consider only four profiles for demonstration; the method can work with any

preference as long as the matrix is valid for the AHP method.

The route selection method defines the alternative paths’ preference order us-

ing the relationship between the criteria index in each alternative tuple and the criteria

weights. The used dataset contains a normalization acquired from contextual data infor-

mation for each feature; we can apply the decision method directly since the normalized

index represents a quantitative value, as defined in Section 2.2.
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Figure 10 depicts the relationship between each criteria index and the seven route

alternatives from the OD pair “setID 56”, comparing the performance in every route

alternative. We calculate the performance of each alternative by multiplying it with the

defined criteria weight. Figure 10a presents the index scale for criminality in every route,

with the route 0 achieving the value one and considered the securer; route 6 is the most

dangerous path with value zero.

Figure 10b presents the accidents historical nearby the route alternative, with

value one indicating a less chance of car accidents, indicated by routes 0 and 5. Figure

10c and 10d depicts the value one for routes nearby green areas and tourist attractions,

with route 4 the higher value. For attraction and nature, more occurrence means a good

level justifying the reverse normalization.

Figures 10e, 10f, and 10g relate to Duration, Traffic, and Length, respectively;

value one represents a minor level for those three and better performances among alter-

natives. Finally, Figure 10h indicates the pollution level for each alternative route, with

value one in route 6 for routes with less pollution in the sensor readings.

0 1 2 3 4 5 6

Alternatives

0.0

0.2

0.4

0.6

0.8

1.0

C
ri
m
e

(a) Criminality

0 1 2 3 4 5 6

Alternatives

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
id
e
n
ts

(b) Accidents

0 1 2 3 4 5 6

Alternatives

0.0

0.2

0.4

0.6

0.8

1.0

N
a
tu
re

(c) Nature

0 1 2 3 4 5 6

Alternatives

0.0

0.2

0.4

0.6

0.8

1.0

A
tt
ra
ct
io
n
s

(d) Attractions

0 1 2 3 4 5 6

Alternatives

0.0

0.2

0.4

0.6

0.8

1.0

D
u
ra
ti
o
n

(e) Duration

0 1 2 3 4 5 6

Alternatives

0.0

0.2

0.4

0.6

0.8

1.0

Tr
a
ff
ic

(f) Traffic

0 1 2 3 4 5 6

Alternatives

0.0

0.2

0.4

0.6

0.8

1.0

Le
n
g
th

(g) Length

0 1 2 3 4 5 6

Alternatives

0.0

0.2

0.4

0.6

0.8

1.0

Po
llu
ti
o
n

(h) Pollution

Figure 10: Criteria index seven routes alternatives from “setID 56”

5.3 Method Application

Algorithm 4 computes the method application for matrix consistency calculation

and the route evaluation for each OD pairs in order. line 1 to line 4 declares the

consistency index, the consistency ratio, and the F value for matrix weights . In lines 5

to 14, we applied the AHP method for attributing the preference weights. In lines 15

to 17, we define the variables for alternative evaluation. At least, in lines 18 to 20, we

calculate the alternative route performance by multiplying every preference tuple value

with each normalized feature value, returning the result array for further comparison, as

seen in line 21.

For computational method implementation and flexible route selection, many
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Algorithm 4 Decision matrix consistency and route evaluation

Require: M ,C
1: incRat← 1.41
2: consistencyRatio← 0.10
3: F ← shape(M, 1)
4: weights← a list of zeros in the range of F
5: for i← 1 to length(F ) do
6: weights[i]← reduce(F (x, y) = x.y,M [i, :](1/F ))

7: weights← weights/sum of all elements in weights
8: λMax ← mean(sum(M.weights)/weights)
9: consInd← (λMax − F )/(F − 1)
10: RC ← consInd/incRat
11: if RC > consistencyRatio then
12: return ∅
13: routesParams← C[columns[parameters]]
14: resultsArray ← ∅
15: N ← length(routesParams)
16: for i← 1 to N do
17: resultsArray ← sum(multiply(routesParams[i], weights))

18: return resultsArray

programming tools achieve geolocated data filtering and route alternative order definition

goals. The method framework aims at data analysis of factors, including pollution, and

inserting each alternative tuple. Each criteria-defined value distinguishes the best route

and the alternative order for any OD pair.

The AHP method application, jointly with the route evaluation algorithm, as

shown in the Algorithm 4, presents a time complexity, in the worst case, as O(n+m),

where m is the number of features to be evaluated in the profile, and n represents the

number of alternative routes within an OD pair. We consider the presented complexity

efficient due to its asymptotic value being limited by a polynomial, guaranteeing the

algorithm’s scalability in a future application.

5.4 Evaluation

In this section, we describe the dataset and introduce the mechanism of pollution

level attribution for paths near air quality sensors. Furthermore, we define the statistical

tool for profile comparison to establish our personalized approach efficiency.

5.4.1 Methodology

The London routes were designed for selection methods evaluation, containing

different factors besides the standard time, length, and traffic. The criminality, accidents,
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nature, and attractions metrics consideration imply more pleasant and safe trips through

the city. To consider the drivers’ health and well-being, we introduce the air quality

attribution to routes through sensor readings and add the pollution value to the dataset.

In this way, we consider the London public pollution data, which allows air qual-

ity level attribution for each alternative route with collected readings timestamp in the

same dataset date. London Air Quality Network (LAQN) API provides pollution sensor

readings, with sensors installed in and around London. Integrated sensors network has a

real-time data collection of main pollution-related gaseous substances: O3, nitrogen diox-

ide (NO2), and inhalable particles with a diameter smaller than 10 and 2,5 micrometers.

The API request retrieves the 2020 readings information, with a significant presence of

NO2. Pollution feature considers NO2 level, with normalization for route selection method

application.

We assume a set of routes in the dataset as a latitude-longitude pair path set

R = {1, ..., n}, R ∈ Rn×2. The methodology considers C = {R|R ∈ Rnx2} as the path

alternatives with standard departure and arrival OD pair, and then it is considered Ri ∈
Ck e Rj ∈ Ck if and only if for the same arrival and destination paths. With S = {1, ...,m},
S ∈ Rm×2 the available London sensor set for determined pollution agent, so for each point

ri ∈ R the pollution record for sensors s ∈ S, as shown in Algorithm 5.

The London Sensor Network API used for pollution factor attribution does not

attend routes far from sensors tolerance in the built dataset. Similarly, other routes can

contain readings from more than one sensor and consider an incoherent pollution level.

For such cases, the proposed method excludes invalid routes for correct attribution and

considers a tolerance t = 300 m.

Algorithm 5 assigns pollution levels to alternative route points for the given OD

pair. The pollution record to each latitude-longitude pair attribute the pollution value,

calculated from pollution(sj). After declaring C as the path set and S as the available

sensor set, line 1 defines an empty set for pollution associated with the determined

path, filled with the pollution value from the nearest sensor. lines 2 and l3 receive path

length and starts sensor distance as 0. In lines 4 to 6, the algorithm starts the for-

loop iterating routePollution to every routesPollution (path alternatives). In lines 7

to 10, a second for-loop inside the first one is initiated, iterating associated points near

the path. lines 11 to 15 begin the third loop iterating existing pollution sensor data

for pointPollution. All loops finish attributing the values in lines 16 to 21. Finally, in

line 22, the algorithm returns the pollution value for each route alternative in the given

set ID. The algorithm returns 142 OD pairs with pollution-normalized values attributed,

allowing the correct method application.

The Haversine function, shown in Equation 5.3 and line 13, calculates the dis-

tance between a tracepoint and a sensor considering the earth curvature. State-of-art

solutions use geographic coordinates handling with this equation for the appropriate dis-

tance obtaining, represented by OD pair.
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Algorithm 5 Routes pollution attribution and exclusion

Require: C ̸= ∅, S ̸= ∅, t = 300
1: routesPollution = ∅
2: N ← length(C)
3: distance← 0
4: for k ← 1 to N do
5: routePollution = ∅
6: minorDistanceRoute←∞
7: M ← length(ck)
8: for i← 1 to M do
9: P ← length(S)
10: pointPollution← 0
11: minorDistancePoint←∞
12: for j ← 1 to P do
13: distance← haversine(rj, sj)
14: if distance < minorDistancePoint then
15: minorDistancePoint← distance
16: pointPollution← pollution(sj)

17: routePollution← pointPollution
18: if minorDistancePoint < minorDistanceRoute then
19: minorDistanceRoute← minorDistancePoint
20: if minorDistanceRoute > t then
21: return ∅
22: routesPollution← routePollution
23: return routesPollution

D = 2arcsin

[√
sin2(

r1 − s1
2

) + cos(r1)cos(s1)sin2(
r2 − s2

2
)

]
(5.3)

We compare the results from the four user profiles proposed to each greedy profile.

The eight greedy profiles choose the alternative tuple with maximum value for only one

criterion of all, as a common method in commercial navigation systems considers only

Length, Traffic, and Duration when choosing a car trip. We measure the relation between

every profile and the maximum value for a route choice with a mathematical method.

We use the PDFKS [40] for comparing the profiles to greedy profiles. The Equa-

tion 5.4 calculates the PDFKS value, where p[f ] is the average value from feature f for

each profile p, and stf [f ] is the best average value for feature f among all profiles results

from the dataset values.

Mpf =
p[f ]− std[f ]

std[f ]
× 100% (5.4)
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5.4.2 Results

Figure 11 shows the PDFKS matrix, where the M matrix rows represent the

selection profiles (p), i.e., four user profiles and eight greedy profiles, and the columns

represent the trip features (f ) for evaluation. The PDFKS metric value represents the best

average value for each profile to the known standard (std [f ]). For example, the first Safe

profile index shows a 3.6% increase to the best average value for crime, validating the Safe

profile route selection with less crime than the other profiles after the onlyCrimes. Also,

Safe presented a 39.5% deviation from the best average for accident feature, representing

its second priority for route choice. This value does not represent the more significant

performance for the accident due to the higher priority for crime feature and the data

arrangement. In a feature less related to the main priority, the Safe profile scored a -46%

deviation for the attraction feature, which its weight has less impact on selection.

In contrast, Nature, Attraction, and Traffic ratio have negative percentage PDFKS

values in the matrix because the method searches for the higher nature and attraction

occurrence and a higher traffic ratio that indicates a less congested road, implying on a

raw value less than the known standard, resulting negative percentage. A lower raw value

indicates the best route selection for all other features containing positive PDFKS values;

the better selection method is with features closest to 0%.
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Figure 11: Methodology overview for route selection

We apply the absolute sum method for all 12 profiles, validating the user profiles,

summing all elements without considering negative values. The lowest absolute sum of

PDFKS for each profile represents the better selection method, considering all routes,
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as shown in Figure 12. We can note that greedy preferences have the known standard

value (0%), indicating the best routes for a single feature, but tend to deviate more from

all other features. Each proposed profile (Worker, Green, Safe, and Tourist) correlate to

more than one feature, where we differentiate with colors the relationships and compare

the resulting performance for all cases.

The Green profile has the closest value for the pollution standard and outranks

the onlyPollution in other features and has the second best deviation from nature feature

(-14.2%), resulting in a greener experience route. The Safe profiles outrank onlyCrimes

(3.6%) and onlyTraffic (-1.7%), when the Crime feature is its higher priority, and higher

traffic indicates slower paths and more dangerous routes, with the best deviation from

crime. The worker profile overcomes its higher weighted features: onlyLength (6.4%),

onlyDuration (1.9%), and onlyTraffic (-1.8%), surpassing the standard navigation systems

in selection. The Tourist profile has better route selection than onlyAttraction, deviating

from the standard attraction value with the best performance (-10.3%) and from nature

feature (-12,6), with better performance for tourist users.

We note that all greedy profiles have the best performance for its features pri-

orities but have a higher deviation in other features. The onlyAccidents have the lower

absolute sum representing the best profile for selection in the evaluated environment.

Otherwise, we note that the existence of an AHP profile with balanced weights for each

criterion obtains better performance than single-criterion profiles, explaining the onlyAc-

cidents higher performance. In other words, for diverse environments datasets, a specific

profile with distributed weights, a priority for a few features, can outrank a greedy option.
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Figure 12: PDFKS absolute sum for each selection profile

In summary, our proposed user profile obtained a higher performance than its

greedy opponents or was close to surpassing them. Tourist profile obtained the second

(116,9%) best absolute sum and outranked the onlyAttractions greedy opponent by 13,4%,

using the difference percentage. The Worker is the third (130,9%) best performance com-
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pared to greedy options, outranking them by 23,53% in the average difference percentage.

Also, Safe and Green profiles surpassed their greedy opponents by 23,8% and 46,4%,

respectively. This result indicates excellent usability for our method for considering all

contextual data for selection than prioritizing only one criterion.

5.5 Chapter Conclusions

This chapter presented the personalized multi-modal route selection. The AHP

method for selecting routes under the comfort, security, pleasant, and health features

brings completeness to an urban navigation solution. The personalized user profiles en-

sure the selection based on customized preference, suggesting the most suitable path for

a different need. The selection and pollution feature addition algorithms were explained

as advanced compared to the state-of-the-art, adding a simpler method with bigger cri-

teria. The performance evaluation depicts the customized profiles as an alternative to

greedy options, like traditional navigation systems. The method shows the possibility

of considering a large contextual data variety for the best route selection for any user

preference.

The multi-modal method, seen in Chapter 4, considers five features for compari-

son between hybrid and single-modal, and the multi-criteria single-mode considers eight.

Despite the difference between applications, both presented methods were developed for

urban scenario applications and provide an efficient, personalized route selection with

contextual information and pollution estimation.
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CHAPTER 6

Conclusion

This Chapter presents the work conclusions. In Section 6.1, we present the main

contributions of this master’s thesis. Section 6.2 brings new implementations for the two

route selection methods. Finally, Section 6.3 references the previous academic research

supporting this master’s thesis production.

6.1 Contributions

In this master thesis, We propose two route selection methods: a novel ap-

proach to multi-modal urban pollution-aware routing needs by using location-based social

network collected data and an MCDM method with personalized routes for urban trip

path choice considering all eight features. The multi-modal method offers less expensive,

healthier trips for the population and data collection about carbon emissions for mobility

planners to consider when turning urban scenarios dynamic and sustainable.

After acquiring and submitting the geo-located data from social networks, the

mobility flows are identified with separated multi-modal used on routes. Each chosen

modal CO2 emission is calculated on the identified routes and evaluated on specific met-

rics, such as waiting time, walking distance, and price estimation. The proposed algorithm

proves its efficiency and can be used by users of route applications, city authorities, and

environmental studies on urban mobility, developing a better and more productive life

quality for smart cities.

The multi-modal method considers all eight trip-related features, comparing the

personalized profiles to greedy options for each feature, and we observe a result closest

to the best value from all features’ best average value compared. This method shows

that traditional navigation systems can offer faster or healthier routes but can lead to
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dangerous or unpleasant paths. With the pollution factor addition, our method can

prevent and alert the drivers and authorities to the polluted air threats, raising the quality

of life. Furthermore, we developed the method with simple mathematical methods for easy

applicability in navigation systems.

6.2 Future Works

For the multi-modal route selection method, a more efficient data acquiring

method can be applied for a large set of geo-located data in less populated urban areas

with pollution active sensing coverage in order of reliable emission sensing and mobility

analysis.

Furthermore, a routing system can be built integrating various features and a

multi-modal method for intelligent public transportation. The system can consider IoT-

enable feature prediction for real-time route selection, integrating user devices into a more

extensive urban computing solution.

6.3 Published Work

1. BRITO, M.; SANTOS, C.; OLIVEIRA, H.; CERQUEIRA, E.; ROSÁRIO, D.

“Air Pollution Calculation for Location Based Social Networks Multimodal Routing

Service”, in Anais do VI Workshop de Computação Urbana (CoUrb - 2022), June

2022. Received Honorable Mention Award.

2. BRITO, M.; MARTINS, B.; SANTOS, C.; MEDEIROS, I.; ARAÚJO, F.;SERUFFO,

M.; OLIVEIRA, H.; CERQUEIRA, E.; ROSÁRIO, D. “Personalized Experience-

aware Multi-criteria Route Selection for Smart Mobility”, in Anais do XLI Simpósio

Brasileiro de Redes de Computadores e Sistemas Distribúıdos (SBRC - 2023), June

2023.
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[8] F. Araújo, S. Pinheiro, I. Medeiros, D. Rosário, E. Cerqueira, U. Bezerra, M. Tostes,
and A. Antloga, “Plataforma para coleta de dados de eletropostos para véıculos
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