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ABSTRACT

Control theory is used to stabilize systems and obtain specific responses for each
type of process. Classic controllers, such as the PID used in this research, are spread
globally in industries because they have well-studied topologies in the literature and
are easily applied in microcontrollers or programmable lógic devices; advanced ones,
such as GMV, GPC and LQR, also used in this work, have some resistance in common
applications in base industries, but are widely used in energy, aerospace and robotic
systems, since the complexity and structure of these methods generate robustness
and reach satisfactory performances for processes that are difficult to control. In this
work, these methods are studied and evaluated with a tuning approach that uses re-
inforcement learning. The tuning methods are used in two forms and are applied to
the controllers, these are the Repeat and Improve method and the Differential Games
method. The first works using offline iterations, where the process agent is the chosen
control technique, which selects performance and robustness indexes as an environ-
ment (metric of how the process is evolving), being able to organize an adjustment
policy for the controller, which is based on rewarding the weighting factor until reaching
the process stopping criterion (desired response). The second method uses reinforce-
ment strategies that reward the controller as the response changes, so the LQR learns
the ideal control policies, adapting to changes in the environment, which allows for bet-
ter performance by recalculating the traditional gains found. With the Ricatti equation
for tuning the regulator; in this method, differential games are used as a framework to
model and analyze dynamic systems with multiple agents. To validate what is presented,
the Tachogenerator Motor and the Ar Drone have been chosen. The Tachogenerator
Motor is modeled with least squares estimation in an ARX-SISO topology, in order to
evaluate the first tuning method. The Ar Drone is modeled with a state space approach
to evaluate the second tuning method.
Keywords: Control Theory. Reinforcement Learning. Repeat and Improve. Differential
Games. Ricatti Equation.



RESUMO

A teoria de controle é utilizada para estabilizar sistemas e obter respostas específi-
cas para cada tipo de processo. Controladores clássicos, como o PID utilizado nesta
pesquisa, são difundidos globalmente nas indústrias, isto por possuírem topologias
bem estudadas pela literatura e serem facilmente aplicados em microcontroladores
ou controladores lógico programáveis; já os avançados, como GMV, GPC e LQR tam-
bém utilizados neste trabalho, possuem certa resistência em aplicações comuns das
indústrias de base, mas são muito utilizados em sistemas de energia, aerospaciais e
robóticos, pois a complexidade e estrutura desses métodos gera robustez e alcança
desempenhos satisfatórios para processos de difícil controle. Neste trabalho, esses
métodos são estudados e avaliados com uma abordagem de sintonia que utiliza o
aprendizado por reforço. São aplicadas duas formas de sintonia para os controladores,
estas são o método da Repetição e Melhora e o método de Jogos Diferenciais. O
primeiro utiliza iterações offline, onde o agente do processo é a técnica de controle
escolhida, que trabalha com os índices de desempenho e robustez como ambiente
(métrica de como o processo está evoluindo), sendo capaz de organizar uma política
de ajuste para o controlador, que se baseia em recompensar o fator de ponderação
até obter o critério de parada do processo (resposta desejada). O segundo método se
baseia em utilizar estratégias de reforço que recompensam o controlador conforme a
resposta se modifica, assim o LQR aprende as políticas de controle ideais, adaptando-
se às mudanças do ambiente, o que permite obter melhor desempenho por recalcular
os tradicionais ganhos encontrados com a equação de Ricatti para sintonia do reg-
ulador; neste método, os jogos diferenciais são utilizados como uma estrutura para
modelar e analisar sistemas dinâmicos com múltiplos agentes. Para validar o que é
apresentado, o Motor Tacogerador e o Ar Drone são escolhidos. O Motor Tacogerador
é modelado com a estimação dos mínimos quadrados em uma estrutura ARX-SISO
para avaliação do primeiro método de sintonia. O Ar Drone é modelado com uma abor-
dagem em espaço de estados para avaliação do segundo método de sintonia.
Palavras-chave: Teoria de Controle. Aprendizado por Reforço. Repetição e Melhora.
Jogos Diferenciais. Equação de Ricatti.
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1 INTRODUCTION

1.1 OVERVIEW

The study of control theory is very important for obtaining automated systems in
people’s daily lives, in industry and commerce. Systems arising from these studies are
implemented every day in various processes, such as manufacturing and production
of beverages, vehicles, medicine, energy and even aerospace systems (STEVENS;
LEWIS; JOHNSON, 2015). These processes are based on using the basic principle of
measuring and acting, that is, the sensors are responsible for analyzing and verifying
the variables to be controlled; the actuators are responsible for manipulating other vari-
ables in order to reach a reference with the controlled process variables; the controller
analyzes the sensor data and calculates a correction factor to be applied to the process
by the actuators. The way this controller works depends on the control technique to be
applied. In the literature, more than a thousand forms and structures of controllers are
presented, so, depending on the complexity and equipment available in the process,
the designer can develop an appropriate control algorithm for a system (OGATA et al.,
2010).

Controllers vary in their algebraic development structures; therefore, the way
a controller deals with the error (difference between the measured signal and the
reference signal) is different. Classic controllers tend to work with immediate responses
and, normally, use few path information in their control law. On the other hand, advanced
controllers, such as predictive ones, tend to use the stochasticity of the process, that is,
past samples as a way of analyzing how the future will behave, thus, together with their
parameters, predict possible disturbances and dynamics that occur in the systems.

A concern present in control systems is tuning. Classical controllers have tunings
strongly documented in the literature, however, with the advancement of Artificial Intel-
ligence (AI), new ways to parameterize such systems are discovered every year. This
same principle is applied to advanced controllers, the discovery of new AI techniques
always makes it possible to innovate in this bias; the implementation of neural networks,
genetic algorithms, and reinforcement learning has received good reviews, since such
methods improve the use of databases and allow performing several previous calcula-
tions that manually would be impossible or extremely exhausting (SUTTON; BARTO,
2018).

1.2 JUSTIFICATION

This master’s thesis introduces an innovative approach to improve the tuning of
various controllers in process control systems using advanced reinforcement learning
techniques. The study combines the repeat and improve RL method with the differen-
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tial games Q-learning approach to optimize the performance of Proportional-Integral-
Derivative (PID), Generalized Minimum Variance (GMV), Generalized Predictive Control
(GPC) and Linear Quadratic Regulator (LQR) controllers. The primary objective is to
develop an autonomous and efficient tuning methodology that enhances process con-
trol and system performance, while reducing manual intervention and fine-tuning efforts.
The potential advantages of employing reinforcement learning include adaptive control
strategies, reduced tuning time, and improved stability and robustness of the overall
control system.

The repeat and improve reinforcement learning method is applied to the PID,
GMV and GPC controllers, enabling them to learn from their past actions and iteratively
improve their control strategies. By adapting to changing process conditions and dis-
turbances, these controllers can achieve superior performance compared to traditional
manual tuning methods. Additionally, the differential games Q-learning approach is
used to fine-tune the LQR controller. This method allows the LQR controller to interact
with the process control environment and strategically adapt its parameters to achieve
more efficient and collaborative control, particularly in multi-agent systems.

This research is expected to contribute significantly to the field of process con-
trol by demonstrating the efficacy of advanced reinforcement learning techniques for
controller tuning. The proposed approach is an idea for process control practices that
aims to help in control theory by providing an autonomous and efficient solution that
optimizes the performance of diverse controllers. The study’s outcomes may lead to
improved control system stability, reduced control efforts, and enhanced disturbance
rejection capabilities. Ultimately, the successful implementation of these advanced RL
techniques could pave the way for more intelligent and autonomous control systems
in various industrial applications, promoting efficiency and reliability in process control
operations.

1.3 OBJECTIVES

The general objective of this master’s thesis, based on what has already been
exposed, is to analyze two forms of Reinforcement Learning tuning to parameterize
classic and advanced controllers applied in processes with complex dynamics. In order
to specify the stages of the work, the following specific objectives can be listed:

• Analyze controller structures and topologies.

• Introduce reinforcement learning as a tuning method.

• Use such tuning in controllers, these being SISO and MIMO.

• Expose performance and robustness indexes as a way of evaluating con-
trollers and stopping criteria for tuning.

• Evaluate such methods applied in the processes.
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1.4 STATE-OF-THE-ART

Control theory is a branch of engineering and mathematics that deals with the
analysis and design of systems that can be controlled or regulated to behave in a
desired manner. It involves the use of mathematical models to describe the behavior
of systems and the design of controllers to regulate that behavior. This description
was proposed by Ziegler-Nichols (1942) in one of the first papers proposed about
feedback control. Such paper opened horizons for modern control that is applied in the
21st century, it laid out the foundational principles of feedback control theory, including
the concepts of stability, transient response, and frequency response. Other papers as
Flueggelotz (1961) try to introduce the concept of optimal control, which involves finding
the control inputs that minimize a certain cost function. These papers and authors have
had a significant impact on the development of control theory and have contributed to
its widespread use in engineering and other fields.

Some literatures, such as Stevens, Lewis and Johnson (2015) and McRuer, Gra-
ham and Ashkenas (2014), proposes to study how to acquire desired outputs with
aerospace systems, such as drones and aircraft; those that have multivariable dynam-
ics and fast poles, which generate instabilities and difficulties for classical control tech-
niques. Control theory is crucial for the design, analysis, and operation of aerospace
systems because these systems often exhibit complex dynamic behavior and require
a high degree of accuracy and reliability in their performance. Aerospace systems
such as aircraft, spacecraft, and satellites must operate in harsh and unpredictable
environments and respond quickly and accurately to changes in external conditions
(HE; PACE, 2020). Control theory provides a set of tools and techniques for modeling
the behavior of these systems, designing control algorithms to regulate their behavior,
and analyzing their performance under different operating conditions, also being used
to design control systems that ensure the stability and safety of aerospace systems.
For example, flight control systems in aircraft are designed to maintain stable flight by
adjusting the aircraft’s control surfaces in response to external disturbances such as
wind and turbulence.

Aerospace systems are controlled, most of the times, to achieve precision and
accuracy, because control theory provides techniques for designing control systems that
achieve precise control of the system’s behavior, such as the attitude and orbit control
systems used in spacecraft. Control techniques also provides fault tolerance and those
systems must be able to operate even in the presence of faults or failures in their
components,ensuring that the system continues to operate safely and reliably. Overall,
control theory plays a critical role in the design, operation, and safety of aerospace
systems, and it is essential for ensuring that these systems perform their mission
objectives safely, accurately, and reliably.

In economics, control theory is used to model and analyze market behavior and
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optimize economic systems, as proposed by Prescott (1977). It is also important for
the economy because it allows decision-makers to make informed choices about future
outcomes, and thus take actions to mitigate potential risks and maximize opportunities.
In economic systems, modern control is used to forecast trends and patterns in market
behavior, financial performance, and other economic indicators, and to guide decisions
about investment, production, pricing, and resource allocation (ATHANS, 1974). For
example, predictive control can be used to anticipate changes in consumer demand
and adjust production levels accordingly, or to forecast market conditions and optimize
investment strategies. By using predictive control, companies and policymakers can
make more informed decisions that lead to greater efficiency, profitability, and growth.
Overall, predictive control is important for the economy as it helps to reduce uncertainty,
increase efficiency, and support decision-making in complex and dynamic economic
environments.

In robotics, there are various variables that need to be controlled depending on
the application and the type of robot. These variables are typically controlled using
feedback control techniques such as PID control, model predictive control, and fuzzy
logic control. Those variables, as said in Friedman (1959), Song, Yu and Zhang (2019)
and Xiao et al. (2020), are position of a robot’s end-effector or joints as one of the
most basic variables that needs to be controlled. This involves specifying the desired
position of the robot and ensuring that it moves to that position accurately. The velocity
of a robot’s end-effector or joints is another variable that needs to be controlled, which
involves specifying the desired velocity of the robot and ensuring that it moves at that
velocity accurately. Also, it is necessary to control the acceleration of the robot to
ensure smooth and precise movement. In applications where the robot interacts with
the environment, it may be necessary to control the force or torque exerted by the robot
to ensure safety and accuracy. In applications where the robot is required to grip and
manipulate objects, it may be necessary to control the gripping force to ensure that the
objects are not damaged or dropped, those recently have been used also for biomedical
applications, as proposed by Dutra, Silveira and Pereira (2021).

In general, control theory provides a framework for understanding and improving
the behavior of complex systems. By designing and implementing control systems,
it is possible to improve the efficiency, safety, and reliability of many different types
of systems. Kaelbling, Littman and Moore (1996) and Sutton et al. (1999) innovated
in the technical area of artificial intelligence and allowed new discoveries with the
use of computing. Such works present sketches of what is possible to be analyzed
nowadays. Kaelbling, Littman and Moore (1996) proposes a research that focuses
on decision making, planning, and reinforcement learning in autonomous agents and
robots. they have made significant contributions to the development of Markov decision
processes (MDPs) and their applications in artificial intelligence. In addition, Kaelbling
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has worked on natural language processing and human-robot interaction. This work is
highly referenced when reviewing other literature on reinforcement learning, whether
for problem solving or for tuning controllers.

Sutton and Barto (2018) has a research parallel to that of Kaelbling, this research
is primarily focused on machine learning, particularly in the areas of reinforcement learn-
ing and artificial intelligence. Reinforcement learning is a type of machine learning in
which an agent learns to make decisions by trial and error, receiving feedback in the
form of rewards or punishments. Sutton’s work has helped to develop the theory and
algorithms that underlie reinforcement learning, and he has made significant contribu-
tions to the development of value function approximation, temporal difference learning,
and policy gradient methods.

Sutton is also known for his contributions to the development of the popular
reinforcement learning algorithm known as Q-learning. His book, co-authored with
Andrew G. Barto, "Reinforcement Learning: An Introduction," is considered a seminal
work in the field and is widely used as a textbook in courses on reinforcement learning.
Sutton has received numerous awards and honors for his contributions to the field,
including the AAAI Classic Paper Award, the IJCAI Computers and Thought Award, and
the Royal Society of Canada’s Rutherford Memorial Medal in Physics. This research
has a lot of influence to this thesis, since this methods are used to tune the controllers
presented.

Vrabie and Lewis (2013) also has used the propositions of Kaelbling, Littman
and Moore (1996) and Sutton and Barto et al. (1999) to improve the Q learning method
using the differential games with reinforcement method. It is also recognized as a
big contribution to this area, since this book synthesizes and applies this theory in real
models, with some criticisms, such as convergence time and computational effort; these
are the biggest problems faced in the application of these algorithms.

The junction point between reinforcement learning and control theory is a quanti-
tative analysis, that is, some value must tell intelligence that the control system is good.
For this work, what was proposed in Postlewaite (1996), which provides a comprehen-
sive introduction to the theory and practice of multivariable feedback control, which
is the control of systems with multiple inputs and outputs. This reference has been
really important for performance and robustness analysis, and is one of the biggest
references in this area, being important for recent works, such as Araújo et al. (2017),
Silva et al. (2021) and Yamaguti et al. (2022).

All these ideas are used to achieve the goals of this work, with some changes in
terms, since computational intelligence and classical control theory have many similari-
ties that are treated as different just because they have different names. This is treated
with more details in a chapter of AI.
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1.5 MASTER’S THESIS ORGANIZATION

This master’s thesis is divided into six chapters, with the purpose of introducing
the theme, discussing some of the main works found in the literature during the research
and, finally, defining the objectives of the work. The first chapter has been presented
as the introduction of the work, with an overview, the objectives and a state of art
presentation.

Studying control is also a way of evaluating the application possibility, so it is
presented in Chapter 2 which processes are used, in experimental ways or in simulated
systems. In addition to proposing how these systems are modeled using identification
tools.

Chapter 3 presents which controllers were tested for tuning with reinforcement
learning methods. In this are shown the topologies, diagrams, and equations that repre-
sent such forms of control. As well as the challenges, advantages, and disadvantages
of each one, based on other proposed works. In addition to presenting the performance
and robustness indices, which are used in such techniques as a way to merge control
with artificial intelligence

In Chapter 4, the computational intelligence tools, based on reinforcement learn-
ing, that were used are presented, exposing the main theorems that guided the analysis
and the developed project.

The results of simulations and experimental tests performed are presented in
Chapter 5. Tests were performed on different systems that are proposed in Chapter 2
and aim to assess whether such methods are viable or not.

Finally, in Chapter 6, the final considerations on the study carried out are pre-
sented, in addition to the focus on suggestions for future work based on the results and
on other questions raised during the reading of several works.
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2 PROCESSES AND IDENTIFICATION

2.1 TACHO GENERATOR MOTOR

The Tachogenerator Motor (TGM) is a system used to convert the speed gener-
ated in a motor into voltage, from a coupling connected to a generator that produces
electrical energy with the conversion of mechanical energy (SILVA; SILVEIRA; NASCI-
MENTO, 2022). In addition, this type of model is applied in industrial processes, such as
centrifugal pumps, conveyors, and liquid flow meters, among others (BOLTON, 2021).
Thus, the TGM process, Figure 1, presented in this work was designed for the applica-
tion of process identification and control methods.

Figure 1 – TGM didactic system.

Source: Silva, Silveira and Nascimento (2022).

The designed TGM circuits allow the conversion of input signals from 0 V to
5 V (digital PWM signal) sent from an Arduino to the first motor, whose purpose is



Chapter 2. Processes and Identification 24

to produce an analog signal by converting the speed in the first motor coupled to
the second. Furthermore, the TGM can be regulated by means of potentiometers, to
modify the static gain of the operational amplifiers, thus obtaining similar input and
output values to apply the plant identification methods, based on the schematic circuit,
presented in Figure 2.

Figure 2 – TGM schematic circuit.

Source: Silva, Silveira and Nascimento (2022).

Additionally, the TGM model’s design employs two motors with identical features
and specifications to operate the system at various operating points without substan-
tially altering the conversion of mechanical and electrical energy. Thus, with the aim of
allowing the change of motor model, potentiometers and the LM324 integrated circuit
are used to regulate the set-point, by allowing the experiment with different specifica-
tion motors and causing considerable changes in the response obtained at the system
output.
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2.2 AR DRONE

The AR Drone, also known as the Parrot AR Drone, is a line of unmanned aerial
vehicles (UAVs) developed and produced by the French company Parrot and used in
LACOS (Laboratory of Control and Systems) for practical tests in aerospace control, it
is shown in Figure 3. It is equipped with multiple sensors, including an accelerometer, a
gyroscope, and a magnetometer, which enable it to stabilize itself in mid-air and perform
smooth and controlled flights.

Figure 3 – Quadrotor flying at a parking lot of the Federal University of Pará near the
Guamá River.

Source: Silveira et al. (2020).

Beyond recreational applications, the AR Drone has also found applications
in a variety of professional domains. Its mobility and versatility make it ideal for aerial
photography and filming, as well as research and education. It is also utilized for custom
apps and software that extend the capabilities of the drone, such as autonomous flight
routes and computer vision-based tracking.

Over the years, the AR Drone has inspired a growing community of enthusiasts,
hobbyists, and developers who have contributed to its continued development. Its open-
source software and development kits have allowed users to tinker with its features,
experiment with new applications, and customize its functionalities according to their
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specific needs. For this purpose, it is used for identification and control theory tests,
since its multivariable structure with complex dynamics is the perfect field for tests.

The lateral speed, longitudinal speed, and altitude are important parameters
when it comes to operating and controlling the AR Drone. These measurements provide
crucial information about the drone’s flight characteristics and enable users to maintain
control and navigate the drone effectively.

Lateral speed dictates the rate of sideward movement or horizontal displacement
of the drone. Skillful management of lateral speed is crucial for maintaining precise posi-
tioning, executing dynamic maneuvers, and avoiding collisions during flight (STEVENS;
LEWIS; JOHNSON, 2015). By adjusting lateral speed, pilots can navigate around ob-
stacles, achieve smooth transitions between flight directions, and enhance overall flight
control. Monitoring and adjusting lateral speed in real-time allow for safe and controlled
navigation in various environments, ensuring both stable flight and successful mission
execution.

The longitudinal speed refers to the drone’s speed in the forward or backward
direction, parallel to its longitudinal axis (STEVENS; LEWIS, Frank L; JOHNSON, 2015).
It determines how quickly the drone moves along its flight path. Monitoring and control-
ling the longitudinal speed is crucial for various flight scenarios. For example, during
aerial photography or videography, controlling the drone’s speed ensures smooth and
cinematic footage. In racing or agility-based activities, adjusting the longitudinal speed
allows users to navigate obstacles and complete courses efficiently.

The final state of evaluation is the altitude, which refers to the height or distance
above the ground at which the drone is flying. It is a critical parameter for safe and legal
drone operation. Monitoring the altitude helps users comply with airspace regulations,
avoid collisions with obstacles like buildings or trees, and maintain a clear line of sight
with the drone. Altitude control is also crucial for capturing specific perspectives in aerial
photography or maintaining a consistent height during surveying or mapping tasks.

These measurements assist users in making informed decisions, adjusting flight
parameters, and maintaining safe and stable flight conditions. Whether for recreational
or professional purposes, understanding and controlling these parameters contribute
to the successful and enjoyable operation of the AR Drone. Controlling the lateral
speed, longitudinal speed, and altitude of drones, including the AR Drone, involves
the implementation of various control systems and techniques. The literature suggests
several approaches to achieving precise and stable control over these parameters and
that is important because the choice of control strategy depends on factors such as
the drone’s dynamics, available sensor information, computational resources, and the
specific requirements of the application.
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2.3 NON RECURSIVE LEASTS SQUARES ESTIMATION (NRLS)

2.3.1 Polynomial Approach

Using NRLS mode for the identification of a Single Input Single Output (SISO)
model offers several advantages. This method is straightforward to implement and
computationally efficient. It involves solving a set of linear equations, making it suitable
for real-time or online system identification tasks where fast processing is essential
(COELHO; COELHO, 2004). NRLS also allows batch processing of data, meaning that
it can handle datasets collected over a period of time all at once. This approach is
well-suited for offline identification scenarios where all the data is available in advance,
and the identification can be done in a single step, as is used in this master’s thesis
and shown in the Results chapter. Another advantage is the robustness to noise in the
data. By considering all the data points simultaneously, the impact of individual noisy
measurements tends to average out, leading to more accurate parameter estimates,
which is really important for the presented systems, since TGM has no capacitor filters
and AR Drone is a complex model with many noisy sensors.

For SISO models, this method approach provides closed-form solutions for pa-
rameter estimation. This simplifies the identification process as there is no need for
complex iterative algorithms, unlike recursive methods. Also allows for straightforward
statistical analysis of the estimated model parameters. One can calculate confidence
intervals, perform hypothesis testing, and assess the quality of the model fit, providing
insights into the reliability of the identified model (AGUIRRE, 2004). It may suffer from
sensitivity to the initial parameter estimates, leading to convergence issues or subopti-
mal results. In contrast, NRLS is less sensitive to initial guesses, which can save time
and effort in obtaining satisfactory results. The final reason for use is the versatility
since it is a method that can be easily extended to accommodate more complex model
structures or system identification tasks, such as multiple input systems or time-varying
models (YAMAGUTI; DUTRA; SILVEIRA, 2021).

For this master’s thesis, the NRLS strategy is used in TGM and AR Drone, to
identify a model to be used in model-based controllers. Figure 4 shows the SISO system
block diagram, considering the Auto Regressive with inputs exogenous (ARX) model,
as the process has one input (u(k )): the first motor voltage signal) and one output (y (k ):
the generated voltage in the second motor), it is possible to write the output signal as
(1). The same structure is used for AR Drone, since for lateral speed, longitudinal speed
and altitude, the inputs are lateral, longitudinal and vertical thrusts, respectively.

y (k ) =
B(z)z–1

A(z)
u(k ) (1)

where the roots of B(z) and A(z) are, respectively, the z domain zeros and poles
polynomials of the system.
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Figure 4 – SISO system block diagram within ARX model.

Source: Author(2023).

Due to the systems under-damped dynamic, and considering that the estimated
discrete model is second order, (1) can be represented as a difference equation, as in
(2).

y (k ) = –a1y (k – 1) – a2y (k – 2) + b0u(k – 1) + b1u(k – 2) (2)

Thus, as presented in Yamaguti, Dutra and Silveira (2021), using (2), the vector
containing the read data (measurements vector – y), presented in (3), the matrix en-
compassing inputs and output data of the system (matrix of regressors – Φ), presented
in (4), and the vector of estimated parameters (θ), presented in (5), may be determined.

yT =
[
y (1) y (2) . . . y (N)

]
(3)

Φ =


–y (1) 0 u(1)
–y (2) –y (1) u(2)

...
...

...
–y (N – 1) –y (N – 2) u(N – 1)

 (4)

θ
T =

[
a1 a2 b0 b1

]
(5)

After defining (3), (4) and (5), the following algebraic equation appears:

y = Φθ (6)

According to Coelho and Coelho (2004), to calculate θ using (6), it will be nec-
essary that Φ is a square matrix, however Φ is a matrix of order ΦN×6. Thus, it is
necessary to apply the pseudo-inverse matrix. As a result, the solution of non-recursive
least squares estimator was determined by computing θ as shown in (7).

θ = [ΦT
Φ]–1

Φ
T y (7)
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According to Coelho and Coelho (2004), NRLS is designed taking into account
the knowledge of the dynamics of the process and the value of the squared Pearson
correlation coefficient (R2):

R2 = 1 –
∑N

k=1
[
y (k ) – ŷ (k )

]2∑N
k=1 [y (k ) – ȳ ]2

(8)

where ŷ(k), ȳ and N correspond to estimated output, average output, and number
of samples, respectively. According to Coelho and Coelho (2004), for many practical
applications, values of R2 between 0.8 and 1.0 can be considered sufficient, but lower
values than this range can model the system coherently as well and may be valid for
testing the designed control techniques

2.3.2 State-space approach

The NRLS in a polynomial formulation was shown in the previous subsection
to help create controllers that operate decentralized. The NRLS estimator will be pre-
sented in this subsection utilizing a state space approach (SSLS) to give a model
where the controller interacts directly and centrally with the state variables. For this, it
is considered the model represented in state space in Figure 5.

Figure 5 – Block diagram of system representation in state space

Source: Yamaguti, Dutra and Silveira (2021) adapted.

Considering a MIMO model, the state equation (9), and the output equation (10)
can be represented as follows:


x1(k )

...
xn(k )

 =


â11 · · · â1n

... . . . ...
ân1 · · · ânn




x1(k – 1)
...

xn(k – 1)

 +


b̂11 · · · b̂1n

... . . . ...
b̂n1 · · · b̂nn




u1(k – 1)
...

un(k – 1)

 (9)
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y1(k )

...
yn(k )

 =
[
I1×n 0

]
x1(k )

...
xn(k )

 (10)

Where x1(k ) till xn(k ) correspond to the estimated states, respectively. Thus, the
SSLS solution lies in the determination of the estimated parameters vectors which is
defined as 

θT
1
...
θT

n

 =


a11 . . . a1n . . . b11 . . . b1n

...
...

...
...

...
...

...
an1 . . . ann . . . bn1 . . . bn2

 (11)

For this, according to Silveira et al. (2020), it is necessary to use the calculation
of future observations based on the vector of regressors, in order to achieve a better
estimation of the system, where, according to Nogueira et al. (2019), the estimation
of the state xb can be performed by means of an approximation of type backward of
the derivative of xa. Thus, the state xb estimates the output speed convergence xa as
follows

xb(k ) =
xa(k ) – xa(k – 1)

Ts
(12)

Thus, the matrix of regressors, for the SSLS case, is organized as in (13), as an
example for a one-state system with backward approximation as a second state.

φ =


x1(0) x2(0) u1(0) u2(0)
x1(1) x2(1) u1(1) u2(1)

...
...

...
...

x1(N – 1) x2(N – 1) u1(N – 1) u2(N – 1)

 (13)

Thus, the calculation of the estimated parameters, for the SSLS case, can be
performed using (14)

θ = (φT
φ)–1

φ
T y (14)

2.3.3 OKID

The Observer/Kalman filter Identification (OKID) objective is to enable the esti-
mation of the system matrices A (States Matrix), B (Input Matrix), and Γ (Noise Identifi-
cation Matrix), as well as the noise covariance matrices Q and R, using the state data
estimation estimated by a Kalman filter state estimator (VICARIO, 2014).

The Eigensystem Realization Algorithm (ERA), which traditionally follows OKID
methods, incorporates the OKID/ERA, which identifies the process model and the
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optimal state observer (VICARIO, 2014). The matrices for the detected system are
delivered by the ERA, however, they are organized as the Markov parameters of the
system in (15).

H0 =


CB CAB · · · CA

N
2 –1B

CAB CA2B · · · CA
N
2 B

...
... . . . ...

CA
N
2 –1B CA

N
2 B · · · CAN–2B

 (15)

where N is the number of iterations.
Using the classical model in the form of a discrete-time stochastic dynamical

state space system, the system can be represented by

x(k ) = Ax(k – 1) + Bu(k – d) + Γw(k – 1)
y (k ) = Cx(k ) + v (k )

(16)

considering x(k ) ∈ Rn as a vector of n states variables and u(k ) ∈ Rnu is a vector of nu

outputs w(k ) ∈ Rn is a vector of n states disturbance inputs and v (k ) ∈ Rny is a vector
of ny output disturbance inputs.

By adhering to the points made by Vicario (2014), the OKID provided in this work
aims to achieve a direct technique to retrieve the system’s matrices while keeping the
fundamental components of OKID, as to use a state observer to implicitly estimate the
state of the system to be identified, use the Least-Squares solution to ensure that the
observer is the Kalman filter for the system in (16). The Least-Squares solution has the
same properties as the Kalman filter in terms of the identified Markov parameters and
its Gaussian residuals.

With the ARMAX (AutoRegressive Moving Average with eXogeneus inputs) sys-
tem, presented in (17), the inputs, outputs and noises are used to achieve the output
equation, that can also be represented as (18).

y (k ) =

–y (k – 1) · · · –y (k – na)
u(k – 1) · · · u(k – nb)
w(k – 1) · · · w(k – nc)


T



â1(k )
...

âna(k )
b̂1(k )

...
b̂nb(k )
ĉ1(k )

...
ĉnc (k )



+ vθ(k ) (17)

y (k ) = ŷ (k ) + vθ(k ) (18)
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where the hat symbol is used for estimated values representation.
The estimated output, ŷ(k), and the estimated residuals, v (k), are connected

by this ARMAX model to reach the output y(k). The equations (19) and (20) are the
state-space realization suggested in order to estimate the parameters vector θ(k ).

θ(k + 1) = Iθ(k ) + Wθ(k ) (19)

y (k ) = Iθ(k ) + Wθ(k ) (20)

The true parameters vector represents the system’s state θ(k). For that, w(k)
and v (k) are zero mean Gaussian processes with covariance matrices Q(k) ≥ 0 and
R(k) ≥ 0, respectively. As a result, the Kalman filter for parametric estimating shown
below can be implemented as

θ̂(k + 1) = Iθ̂(k ) + Lθ(k )[y (k ) – ŷ (k )] (21)

ŷ (k ) = φ
T
θ (k )θ̂(k ) (22)

The estimator’s gain is solved recursively in the same way as in the state esti-
mation case, given by (23), achieved from the recursive solution of Ricatti’s equation,
presented in (24).

L = Pθ(k )φ(k )[Rθ(k ) + φ
T (k )Pθ(k )φ(k )]–1 (23)

Pθ(k + 1) = Pθ(k ) – Lθ(k )φT (k )Pθ(k ) + Qθ(k ) (24)

By calculating the variances of w and v , according to (25) and (26), respectively,
one can automatically tune the Q and R matrices with the values found by OKID method,
as shown in (27) and (28), respectively.

σwθ
(k ) =

1
k

k∑
1

[wθ – μwθ]2 (25)

σvθ(k ) =
1
k

k∑
1

[vθ – μvθ]2 (26)

Qθ(k ) =


σwθ1 0 0

0 . . . 0
0 0 σwθi

 (27)

Rθ(k ) = σvθ (28)
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In this way, using (21), (23) and (24), it is possible to solve the estimation problem
with a Kalman Filter observer, using the vector θ̂ as in (29) to pass on the estimated
matrices to the Kalman filter state estimator as in (30) and (31).

θ̂T
1 (k )

...
θ̂T

n (k )

 =
[
Â(k ) B̂(k ) Γ̂(k )

]
(29)

x̄(k + 1) = Â(k )x̄(k ) + B̂(k )u(k ) + L(k )[y (k ) – ȳ (k )] (30)

ȳ (k ) = Cx̄(k ) (31)
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3 CONTROL THEORY

Control theory for both nonlinear as well as linear systems is a part of the
modern study in this field. Robust control, LQR design, and zero-pole assignment
are examples of common design techniques for linear control systems (HOU; WANG,
2013). Lyapunov-based controller designs, back-stepping controller designs, feedback
linearization. are examples of common controller design methodologies for nonlinear
systems. They all qualify as typical Model-Based Control (MBC) system designs for
controller design approaches. In MBC applications, modeling the plant or identifying
the plant model comes first. The controller is then designed based on the plant model
utilizing the certainty equivalence principle, with the belief that the plant model accu-
rately represents the real system. As a result, the MBC hypothesis requires modeling
and plant identification, as shown in Figure 6.

Figure 6 – Block diagram of a generic identification proccess.
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Source: Sumathi, Surekha and Surekha (2007) adapted.

The parameters must be achieved either online or offline using measured data
when modeling a plant from a real experiment. Using identification theory, it is pos-
sible to establish a plant model within a database that either represents the actual
system or approximates it in terms of variance error on the identified model (COELHO;
COELHO, 2004). Modeling is an approximation of the underlying system, and certain er-
rors are inherent, whether done using fundamental principles or data identification. This
is important because the investigation and development of methods that improve the re-
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sponses of various systems depend on the understanding of the theoretical foundation
of identification and control. There are numerous approaches to applying identification
algorithms; the non-parametric method is based on applying a step at a plant’s entrance
and computing certain values that describe the system’s dynamic behavior (AGUIRRE,
2004). A parametric method is a different approach that is described in the current work
and involves knowing the system output when it is stimulated by a known input signal
(COELHO; COELHO, 2004). Both methods determine how it is the difference between
the model that determines the desired plant behavior.

After knowing the process and modeling it, it is possible to evaluate how to get
the desired responses in the system, for this reason control strategies can be used if the
designer wishes to get a different response from the open-loop system or notices that
the plant is unstable (OGATA et al., 2010). These are designed to speed up or speed
down the system’s response and improve attributes that are beneficial to the entire
process, such as reference tracking, a reduction in overshoots, or a shorter settling
time. Since many of these controllers rely on a model to be created, if the system is not
adequately modeled before it is used, the controllers may not track the reference when
they are used in practice and may even damage the system’s components.

Over the years, different strategies and topologies have been developed in the
literature to obtain the aforementioned results. The difference in controller structures
interferes with their ability to track adopted references. Such algorithms may have more
or less complex control laws, be based on increasing model structures assuming noise
and disturbances or even propose stochastic analysis to predict future outputs. This
control study can be analyzed in different domains. The most popular are s-domain
(continuous) and z-domain (discrete), but others types of transfer function modelling
are being researched, as in (DASTYAR; MALEK; YOUSEFI, 2022).

In control theory, the s-domain is a mathematical domain in which the Laplace
transform is used to analyze the behavior of linear time-invariant (LTI) systems (OGATA
et al., 2010). The Laplace transform is a mathematical tool that allows the designer
to convert a time-domain signal or system function into the s-domain, where it can be
represented as a transfer function. The s-domain is a complex frequency domain, with
s representing the complex frequency variable (OPPENHEIM, 1999). In the s-domain,
a transfer function of a system can be expressed as a rational function in the complex
variable s, where the numerator and denominator polynomials represent the output
and input, respectively. The transfer function describes the relationship between the
system input and output in the frequency domain, and it is a useful tool for analyzing
the stability, transient response, and steady-state response of a system (NISE, 2020).

In the s-domain, a transfer function of a system can be expressed as a rational
function in the complex variable s, where the numerator and denominator polynomi-
als represent the output and input, respectively. The transfer function describes the
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relationship between the system input and output in the frequency domain, and it is
a useful tool for analyzing the stability, transient response, and steady-state response
of a system (OPPENHEIM, 1999). This domain is commonly used in control theory to
design controllers, analyze closed-loop stability, and tune control parameters for optimal
system performance. The system and controller transfer functions can be merged in
the s-domain to generate the closed-loop transfer function, which characterizes the
system’s behavior under feedback control (ARAÚJO et al., 2017). This allows us to ex-
amine the closed-loop system’s stability and tweak the controller parameters to achieve
the required levels of performance.

The z-domain is another mathematical domain commonly used in digital signal
processing and control theory to analyze the behavior of discrete-time systems. In this
domain, the z-transform is used to represent discrete-time signals or systems as func-
tions of a complex variable z, which is related to the sampling frequency (OPPENHEIM,
1999). Similar to the Laplace transform in the s-domain, the z-transform converts a
discrete-time signal or system into a function in the z-domain and it is a powerful tool for
analyzing discrete-time systems, it also allows us to derive transfer functions, analyze
stability, and design controllers for digital systems. The Zero Order Hold (ZOH) method,
used in this master’s thesis for all control models, sustains the amplitude of x [n0], which
is conveyed by the area of its corresponding impulse, during an interval of Ts, sampling
time, seconds until the new sample x [n0 + 1] updates this amplitude and so on. Figure
7 assumes that the digital signal xq[n] has amplitudes from the set M = [3,1, 1, 3] and
Ts = 0,2s, as an example proposed by Klautau (2021).

Figure 7 – Signal reconstruction with a Zero Order Hold method.

Source: Klautau (2021).

In control theory, the z-transform is often used to design digital controllers for
discrete-time systems, such as digital filters or digital control systems, which can be im-
plemented on digital computers or microcontrollers (COELHO; JERONYMO; ARAÚJO,
2019). The design of digital controllers in the z-domain is based on similar principles
to those used in the s-domain for continuous-time systems but with modifications to
account for the discrete-time nature of the system. Thus, the idea is to fit the zeros and
poles of the controller, which were previously represented in an infinite plane, now in a
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unitary plane, as represented in Figure 8.

Figure 8 – Schematic of mapping of stability regions from the continuous system to the
discrete system: (a) s domain; and (b) z domain.

Source: Tang et al. (2021) adapted

Both domains are used in control theory, as demonstrated, whether for simulated
or real-world applications. However, as contemporary systems have progressed toward
applications employing microcontrollers or high-frequency switching circuits, analysis in
the z domain has become more viable, as discrete controllers may be used and exam-
ined in this domain with more modern topologies. The algorithms studied throughout
the work are presented in this chapter, as shown in the list below, finishing with the
performance and robustness analysis that uses RST structures for SISO controllers.

• 2.1: Pseudo Proportional Integrative Derivative Control (PPID);

• 2.2: Generalized Minimum Variance Control (GMV);

• 2.3: Generalized Predictive Control (GPC);

• 2.4: Linear Quadratic Regulator (LQR);

• 2.5: Performance and Robustness analysis.

3.1 PSEUDO PROPORTIONAL INTEGRAL DERIVATIVE CONTROLLER

The proportional-integral-derivative (PID) controller is a widely used control algo-
rithm in industrial control systems (OGATA et al., 2010). It is a feedback control system
that continuously measures the error between the desired setpoint and the actual value
of a process variable and uses that error to adjust the output of the controller to min-
imize the error and bring the process variable closer to the setpoint (OGATA et al.,
2010).
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The PID controller has three parameters, the proportional component of the
controller, Kp, calculates an output that is proportional to the current error signal. This
output is proportional to the difference between the setpoint and the current value of the
process variable (NISE, 2020). The integral component of the controller, KI , calculates
an output that is proportional to the cumulative error signal. This output is proportional
to the sum of the current and past error signals (NISE, 2020). The derivative component
of the controller, KD, calculates an output that is proportional to the rate of change of
the error signal. This output is proportional to the difference between the current and
past error signals (NISE, 2020).

The outputs of the proportional, integral, and derivative components are com-
bined to produce the final output of the controller. The tuning of the PID controller
involves adjusting the gains of the three components to achieve the desired control per-
formance (NISE, 2020). The goal is to minimize the steady-state error, reduce the rise
time, and minimize the overshoot and settling time of the controlled process. In Figure
9 is presented the parallel PID discrete mode structure with backward approximation.

Figure 9 – Discrete PID Block Diagram.
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Source: Author (2023).

where yr , e(k), B(z–1), A(z–1), u(k) and y(k) are, respectively, reference, error,
the numerator of the discrete transfer function, denominator of the discrete transfer
function, control signal, and output signal.

The PID controller is also a popular choice for controlling discrete processes in
industry because it is a simple and effective algorithm that can perform well in a wide
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range of applications. Another reason why PID controllers are well-suited to discrete
processes is that they can be easily implemented in digital control systems using
microcontrollers or programmable logic devices. Those algorithms require only basic
arithmetic operations and can be implemented using a few lines of code, making it a
cost-effective solution for many industrial applications (OKUYAMA, 2014). As proposed
by Ogata et al. (2010), the proportional term of the controller provides a quick response
to changes in the process variable, while the integral term eliminates steady-state errors
caused by disturbances or setpoint changes and the derivative term improves stability
by damping out oscillations and reducing overshoot.

There are many topologies of PID controllers since the configurations depend on
the application requirements. This choice depends on the specific requirements of the
process being controlled, such as the desired response time, stability, and robustness
to disturbances. Since the objective of the first Reinforcement Learning tuning method
adopted in this work is to acquire one parameter to tune the PID controller, the Pseudo
Proportional Integral Derivative (PPID), proposed by Silveira et al. (2012), was selected
for this thesis.

Based on the diagram of Fig. 9, is possible to obtain the standard structure of
the ideal discrete PID control law, as in (32).

u(k ) = Kc

e(k ) +
Ts
Ti

k∑
i=1

e(i) +
Td
Ts

[e(k ) – e(k – 1)]

 (32)

This theoretical approach cannot be implemented in this form but is important
to understand that the controller works based on the vector e, which is the difference
between the reference set point vector, yr , and the output vector, y , as shown in (33).

e(k ) = yr (k ) – y (k ) (33)

It is important to point out that for the system to be implementable in microcon-
trollers, such as the Arduino, the output equation must be organized based on the
susceptibility and linearity of time-invariant systems (OPPENHEIM, 1999). So it is nec-
essary that the output is composed of variables that are already memorized. Therefore,
if we have a sample k of a vector, this vector may contain other variables or a portion
of itself at a previous sample, such as k – 1, k – 2, or k – 3. In this way, the difference
equations are formed in a way they can be implemented for the processes, as (32) can
be transformed into (34)

u(k ) = u(k – 1) + Kc

{
e(k ) – e(k – 1) +

Ts
Ti

e(k ) +
Td
Ts

[e(k ) – 2e(k – 1) + e(k – 2)]
}

(34)

Equation (34), as proposed in Visioli (2006), is appropriate to microcontrollers
applications, because it works in single loops and is understandable for digital im-
plementation from the viewpoints of operators and engineers. The proportional and
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derivative bands are also multiplied by the system error. This has an effect on controller
performance since sudden variations in the reference, as well as in the error, vary in-
stantaneously, leading to control actions with excessive magnitudes. This circumstance
may affect actuator implementation and process stability. To prevent practical issues
such as loop saturation, the I+PD implementation can be used, assuming to keep the
integral term with e(k ) = yr (k ) – y (k ), as in (33), but with the substitution of the propor-
tional and derivative terms by e(k) = –y(k). As a result, the ideal digital PID control,
(34), can be redefined as

u(k ) = u(k –1)+Kc

{
–y (k ) + y (k – 1) +

Ts
Ti

e(k ) +
Td
Ts

[2y (k – 1) – y (k ) – y (k – 2)]
}

(35)

A PPID controller with a single parameter is developed to have a simple practi-
cal calibration that not only maintains stability and closed-loop performance but also
facilitates the operator’s tuning duty. Silveira et al. (2012) proposed an analysis based
on the relationship established by Visioli (2006), where is possible to set

Ts
Ti

> 1
100 ; Ti = [2...5] Td (36)

After that, it is possible to achieve the following normalized expressions, (37),
from (35) and (36).

Td
Ts

= 0.4 ; Ti
Td

= 4 ; Ts
Ti

= 0.1 (37)

Those numbers are chosen based on commercial microcontrollers and programmable
logic controller tuning approaches in industries. A few critics gotta be made for Silveira
et al. (2012) article, since those explanations are not clear and does not show how
exactly those numbers appear. However, the structure of the controller works in many
applications and using a simple control law can be implemented as shown below.

u(k ) = u(k – 1) + Kc {0.1yr (k ) – 3.6y (k ) + 6y (k – 1) – 2.5y (k – 2)} (38)

With (38) it is possible to analyze some characteristics of the pseudo-PID con-
troller design, that justifies its application in the current master’s thesis. The first one is
that only the Kc parameter will be used to tune the control law, which makes it easier
for the designer to find the optimal value for his design specification, which can be
based on performance and robustness when evaluating the metrics proposed by the
literature, which are explained in Chapter 3. The second one is this type of control law,
which provides good performance in simple and complex plants (nonlinear). Finally, the
structure of the PPID equation is appropriate from the viewpoint of implementation in
digital technologies (hardware and software) and understanding by plant operators.

It is possible to examine the effect of the tuning parameter Kc in the frequency
domain to guarantee stability for the closed-loop system. This makes it possible to
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assess the robust stability, when there is a model plant mismatch, and the small gain
theorem (BANERJEE; SHAH, 1992). The pseudo-PID control’s digital equation can be
reorganized into the RST canonic structure, as proposed in Silveira et al. (2012):

R(z–1)u(k ) = T (z–1)yr (k ) – S(z–1)y (k ) (39)

R(z–1) = Δ = 1 – z–1 (40)

S(z–1) = Kc [3.6 – 6z–1 + 2.5z–2] (41)

T (z–1) = 0.1Kc (42)

3.2 GENERALIZED MINIMUM VARIANCE CONTROL

A Generalized Minimum Variance (GMV) controller is a robust control approach
used in engineering to maximize dynamic system performance while minimizing output
variance or risk. It is especially beneficial in scenarios including uncertainties, disrup-
tions, and noise, which are ubiquitous in real-world applications (COELHO; JERONYMO;
ARAÚJO, 2019).

One of the most well-known applications of GMV controllers is in industrial pro-
cess control. Consider a chemical reactor that is programmed to produce a specific
chemical compound. Temperature fluctuations, variations in reactant concentrations,
and perturbations in the feed flow rate all impact the reactor’s behavior. Using a GMV
controller helps the system to respond to these uncertainties and disturbances, pre-
serving stable operation and minimizing product output variances (CLARKE; MOHTADI,
1989).

The design of the GMV controller involves developing a dynamic model of the
system that captures its behavior under diverse scenarios. This model is critical for
forecasting how the system will respond to various control inputs and disturbances
(COELHO; JERONYMO; ARAÚJO, 2019). The controller aims to calculate optimal
control signals that steer the system toward desired setpoints while reducing output
variation. This is frequently accomplished by creating an optimization problem and
employing techniques such as quadratic programming (SILVEIRA et al., 2020).

In addition to that, the control law is derived from the minimization of a cost
function associated with the concept of generalized and stochastic systems proposed
by Clarke and Gawthrope (1975). As a result, some performance parameters that apply
to various applications can be included in the synthesis of this controller in order to
give flexibility to the control structure. Because it is a SISO system described as an
ARIX model, The goal of a good GMV controller is to determine control action u(k ) that
minimizes the cost of the function J = E [φ(k + d)], where E [.], according to Coelho,
Jeronymo and Araújo (2019), is the generalized system, which may be used to project
the GMV controller implemented in this master’s thesis, can be expressed as in (43).
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Being P(z–1) (output filter), Q(z–1) (control signal weighting factor) and T(z–1) (Error
correction in steady time) responsible for the system’s respective signals, which act as
GMV synthesis parameters. y(k + d) is the d steps ahead output, as u(k + d) is the
control signal and yr (k ) reference signal.

é o valor esperado (ou esperança matemática, ou simplesmente a média) e a
saída generalizada (φ) é dada por:

JGMV = [Φ(k + d)]2 = [P(z–1)y (k + d) – T (z–1)yr (k ) + Q(z–1)u(k )]2 (43)

The generalized output of the GMV controller is shown in Figure 10, whose
representation leads to the admission that the discrete process is represented by the
DCAR model (Deterministic Controlled Auto-Regressivve), as in (44).

Figure 10 – Generalized output block diagram of GMV controller.

Fonte: Coelho, Jeronymo and Araújo (2019).

A(z–1)y (k ) = z–dB(z–1)u(k ) (44)

The approach proposed in the dissertation thesis is an incremental indirect hy-
bridization of GMV-RST, as presented in Coelho, Jeronymo and Araújo (2019). The
polynom P(z–1) is expressed in (45), and when is inserted in (43), results in the incre-
mental GMV control law (46).

P(z–1) = A(z–1)ΔE(z–1) + z–dS(z–1) (45)

[B(z–1)E(z–1) + Q(z–1)]Δu(k ) = T (z–1)yr (k ) – S(z–1)y (k ) (46)

where the calculation of the plant’s control signal is represented by (47).

u(k ) = u(k – 1) + Δu(k ) (47)
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The GMVC function of transference in a closed loop is observed in (48). However,
in order to ensure reference tracking e no error in steady time, it is necessary to consider
T (1) = t0 = P(1) = S(1), as proposed by (COELHO; JERONYMO; ARAÚJO, 2019).

y (k ) =
B(z–1)T (z–1)

B(z–1)P(z–1) + A(z–1)ΔQ(z–1)
yr (k – d) (48)

The incremental indirect GMV project also needs a determination of the order of
the polynomials E(z–1) and S(z–1). The first, because it is a transportation-free process,
has order zero; thus, the polynomial is just a constant e0 and the second is as follows

Ns = Na (49)

For this reason S(z–1) is represented as

S(z–1) = s0 + s1z–1 + . . . + snz–na (50)

P(z–1) = 1 is considered within this master’s thesis since it simplifies the imple-
mentation and directs the focus on evaluating GMV tuning by means of RL instead
of the influence of filters; nevertheless, in future works, it will be done as a means of
comparison.

Based on the provided polynomials, it is possible to determine the values of s0,
s1 and s2 from (45), where due to order zero of the polynomials P(z–1) and E(z–1),
e0 = 1 and p0 = 1. So this equation can be rewritten as

1 = (1 + a1z–1 + a2z–2 + ... + anz–na)e0 + z–1(s0 + s1z–1 + s2z–2 + ... + sn–1zna) (51)

Using the polynomial identity shown above, s0, s1, and sn assume the values
presented below.

s0 = 1 – a1 (52)

s1 = a1 – a2 (53)

sn = –an (54)

In order to achieve R polynomial values, Equation (55) is used, since it refers
to a control law written in the traditional RST format. What takes the system to (56),
because Q(z–1) is treated as a constant q0 used to tune the controller, so is where the
reinforcement learning will act.

R(z–1) = B(z–1)E(z–1) + Q(z–1) (55)

r0 + r1z–1 + ... + rnz–nb = (b0 + b1z–1 + bnz–nb)e0 + q0 (56)
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Based on (56), r0, r1 and rn are calculated as below.

r0 = b0 + q0 (57)

r1 = b1 (58)

rn = bn (59)

As the general theory of this Chapter is gonna be implemented on second-order
models, the GMVC control law is applied as below for the proposed systems.

Δu(k ) = –
r1
r0
Δu(k – 1) +

t0
r0

yr (k ) –
s0
r0

y (k ) –
s1
r0

y (k – 1) –
s2
r0

y (k – 2) (60)

3.3 GENERALIZED PREDICTIVE CONTROLLER

The Generalized Predictive Controller (GPC) is a popular model-based control
technique applied in engineering and commercial applications. It is a kind of predic-
tive control that attempts to maximize system performance by the prediction of system
behavior in the future and the computation of control actions by that prediction. A mathe-
matical model of the system is used by the GPC algorithm to characterize the system’s
dynamics and how it responds to control inputs. This model can be created using
system identification approaches based on experimental data or from basic principles.

The fundamental concept of the GPC is to make predictions of the system’s
future behavior over a finite prediction horizon (BABUSKA et al., 2023). By predicting
the future states of the system, the controller can optimize the control actions in advance
to achieve desired setpoints or track reference trajectories while considering constraints
on the control inputs and system outputs as represented in Figure 11. With this structure,
GPC can manage complicated systems with various inputs and outputs and handle time
delays, disturbances, and uncertainties, thanks to its predictive nature. Even for systems
with time-varying features and nonlinearities, it can deliver good control performance.

The control actions that minimize a cost function across the prediction horizon
are calculated by the GPC using an optimization technique, often based on quadratic
programming (COELHO; JERONYMO; ARAÚJO, 2019). Finding the best control trajec-
tory that satisfies the control objectives and limitations involves using the cost function,
which takes into account both the control effort and the tracking error.

One of the advantages of the GPC is its ability to handle constraints on the con-
trol inputs and outputs, making it suitable for applications where certain variables need
to stay within predefined limits. This makes it particularly useful in industrial processes
where safety, stability, and efficiency are crucial (BITMEAD; GEVERS; WERTZ, 1989).
It is important to inform that in this master’s thesis, the linear programming methods
normally adopted to include such restrictions will not be used, but based on the per-
formance and robustness indices this will be done by Reinforcement Learning (RL). In
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Figure 11 – Model Based predictive controllers and the horizons influence.

Source: Babuska et al. (2023).

this way, in order to achieve the desired response, this controller’s parameters must be
adjusted, those are Ny , Nu and λ, which are, respectively, the output prediction horizon,
the control prediction horizon, and the control weight factor to be used for RL tuning in
this work.

In the GPC project, the process is represented using a CARIMA (Controlled
Auto-Regressive Integrated Moving Average) discrete linear parametric model, as in
(61).

A(z–1)Δy (k ) = z–1B(z–1)Δu(k ) + C(z–1)v (k ) (61)

Δ is the difference discrete operator 1 – z–1, v (k ) is a Gaussian disturbance,
and C(z–1) is a monic polynomial which can characterize the influence of the colored
noise case in GPC (BITMEAD; GEVERS; WERTZ, 1989; YOON; CLARKE, 1994). A
cost function in a predictive controller quantifies the discrepancy between desired and
predicted outcomes, guiding control decisions. It is designed to be minimized, ensur-
ing optimal system behavior while accounting for control objectives and constraints
(CAMACHO; BORDONS, 2007). In GPC it can be explained as the error between the
prediction of the future and the reference value as well as the increase in future control,
as in (62), where N1 e j are, respectively, the minimum horizon and the interval between
the control and output horizons.
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JGPC =
Ny∑

j=N1

[y (k + j) – yr (k + j)]2 + λ

Nu∑
j=1

[Δu(k + j – 1)]2 (62)

To solve this minimal order problem it is necessary to do a minimization process
in (62), a predicted output (ŷ) achieved using a function of the instantly known signals
values at time k (instant sample) and also the future control entries that must be calcu-
lated. With (63), where Ej (z–1) and Fj (z–1) are determined by the plant model and the
variable j in conjunction with (62) is possible to achieve the predicted output in (64).

C(z–1) = Ej (z
–1)A(z–1)Δ + z–jFj (z

–1) (63)

ŷ (k + j) =
Fj (z–1)

C(z–1)
y (k ) +

Ej (z–1)B(z–1)

C(z–1)
Δu(k + j – 1) (64)

Equation (65) is used to separate the control’s past and future values in order to
generate (66), where uf (k ) and yf (k ) are the filtred values of Δu(k ) and y (k ), by C(z–1).

Ej (z
–1)B(z–1) = Gj (z

–1)C(z–1) + z–jGj (z
–1) (65)

ŷ (k + j |k ) = Gj (z
–1)uf (k – 1) + Fj (z

–1)yf (k ) (66)

Vector φ can be created with the free response predictions and the incremental
future control mechanism, as, respectively, in (67) and (68).

φ =
[
ŷ (k + 1|k ) ŷ (k + 2|k ) ... ŷ (k + Ny |k )

]T
(67)

Ũ =
[
Δu(k ) Δu(k + 1) ... Δu(k + Nu – 1)

]T
(68)

Based on those vectors, (66) can be rewritten in a vectorial form as in (69), where
Ŷ is composed by the output responses.

Ŷ = GŨ + φ (69)

A step response matrix G, presented in (70) with (NyxNu) dimension and lower
triangular Toeplitz matrix structure is calculated, admitting Δu(k + j) = 0 when j ≥ Nu.
With this, the cost function can be minimized, in order to obtain the control vector and
the control law in (71) and (72), respectively, where KGPC is this controller’s gain and
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the first line of gt , shown in (73).

G =



g0 0 · · · 0
g1 g0 · · · 0
...

... · · · ...
gNu–1 gNu–2 · · · g0

...
... · · · ...

gNy–1 gNy–2 · · · gNy –Nu


(70)

Ũ = (GT G + λI)–1GT (yr – φ) (71)

u(k ) = u(k – 1) + KGPC(yr – φ) (72)

gt = (GT G + λI)–1GT (73)

Coelho, Jeronymo and Araújo (2019) propose the use of the diophantine equa-
tion in (63) to project the system that can be effectively implemented, using the mul-
tiplication of polynomials A(z–1) and Δ, achieving Ã(z–1), as presented in (74). This
approach has been chosen for the particular implementation of second-order models
implemented in this master’s thesis.

Ã(z–1) = A(z–1)Δ = 1+a1z–1+a2z–2(1–z–1) = 1+(a1–1)z–1+(a2–a1)z–2–a2z–3 (74)

As proposed in GMVC design, C(z–1) has a unitary value in order to evaluate
the system without filtering. The ratio of this unitary polynomial and Ã(z–1), results in
Ej (z–1) and Fj (z–1). They are removed from the division as indices of the quotient and
rest of the ratio equation, respectively. E(z–1) order is achieved with (75) and F (z–1)
with (76). This fact brings up the assessment of gaps in the GPC since it is a controller
that presents this tuning paradigm that can be evaluated in future works, but which
briefly occurs when the controller works for a range of horizons and within this range
fails for some value without explanation in the literature, being one of the motivations
for Silveira et al. (2012). The idea of using reinforcement learning in different ranges
would also be to analyze whether these gaps disappear.

Nej = j – 1 (75)

Nfj = Na (76)

It is important to analyze that the GPC uses the predicted tracking error multiplied
by the gain KGPC , which is important for the RST hybridization, since the equality in
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(72) and (55), can be organized in R(z–1), S(z–1) and T(z–1) polynomials as shown
below.

R(z–1) =

1 + z–1
Ny∑
j=1

KGPCj
Ḡj

 (77)

S(z–1) =
Ny∑
j=1

KGPCj
FGPCj

(78)

T (z–1) =
Ny∑
j=1

KGPCj
z j (79)

where R(z–1) is monic, being r0 = 1.

3.4 LINEAR QUADRATIC REGULATOR

The Linear Quadratic Regulator (LQR) is a popular control algorithm widely used
in control theory for designing optimal control systems. LQR is a type of state feedback
control algorithm that computes a set of feedback gains that minimize a performance
criterion. The criterion is typically a quadratic function of the state variables and the
control inputs. The LQR controller is designed based on a mathematical model of the
system to be controlled, which describes the dynamics of the system. It uses this model
to compute the optimal feedback gains.

The LQR algorithm is used in control theory to design control systems for a wide
range of applications, including aerospace, automotive, and industrial control systems.
This regulator is used to control systems with a continuous and discrete time, linear time-
invariant (LTI) dynamical system model. This includes systems with multiple inputs and
outputs and systems with unstable dynamics. This algorithm is widely used because
it is simple, robust, and easy to implement. Its implementation is done in state space,
based on the model as shown in (86). The block diagram of the state space model
representation is presented in Figure 12.

ẋ = Ax + Bu
y = Cx

(80)

In Figure 12, x is the state vector, with x(t) ∈ Rn; y is the output vector, with
y(t) ∈ Rq; u is the control signal vector, with u(t) ∈ Rp; A is the state matrix, with
dim[A] = n × n; B is the input matrix, with dim[B] = n × p; C is the output matrix, with
dim[C] = q × n; D is the feedforward matrix, with dim[D] = q × p, where dim[.] refers to
the dimension of these matrices.

The LQR controller is based on the principle of feedback control, which involves
measuring the output of the system and using this information to adjust the inputs to the
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Figure 12 – Space State Representation.
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Source: Author (2023)

system. This algorithm computes the feedback gains that minimize the error between
the actual and desired state of the system, and the control inputs that minimize the
quadratic performance criterion. In summary, the LQR controller is a state feedback
control algorithm widely used in control theory for designing optimal control systems. To
achieve that, the proposed system in (86) is associated to the infinite-horizon quadratic
cost function or performance index, as in (81).

V (x(t0),t0) =
∫ ∞

t0
(xT (τ)Qx(τ) + uT (τ)Ru(τ))dτ (81)

According to Lewis and Vrabie (2012), if the weight matrices Q ≥ 0, R > 0, and
(A,B) is stabilizable, then there is a possibility that LQR can stabilize the system. It can
be noticed, that if (A,

√
Q) is detectable, the system’s unstable modes can be seen in

the output y =
√

Qx , therefore the system can be stabilized.
Finding a control policy that minimizes costs is necessary for solving the LQR

optimum control problem, as proposed in (82).

u∗(t) = arg min
u(t)

t0≤t≤∞

V (t0,x(t0),u(t)) (82)

The proposed solution for (82) is equated by (83), where the matrix gain K is
expressed by (84).

u(t) = –Kx(t) (83)
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K = R–1BT P (84)

A positive definite solution to the algebraic Riccati equation (ARE), presented in
(85), is matrix P.

AT P + PA + Q – PBR–1BT P = 0 (85)

There is a singular positive semidefinite solution to the ARE that produces a
stabilizing closed-loop controller, given by (83), under the stabilizability and detectability
requirements. This solution is where the closed-loop system A – BK is asymptotically
stable (LEWIS; VRABIE, 2012). Equation (85) is, also, an offline solution method that
must be used to solve the ARE with complete information of the system dynamics matri-
ces (A,B). Therefore, a new optimal control solution must also be computed whenever
the system dynamics change or the performance index changes while the system is in
operation.

Since the LQR is implemented in a digital structure, the theory has a few changes
for discrete mode. (86) has a few changes that are assumed for the algorithms, as the
presence of Γ (noise vector) and ε as an identification estimation error, which brings a
stochasticity analysis of the disturbance for the regulator. The equation can be rewritten
as

x(k ) = Ax(k – 1) + Bu(k – d) + Γε

y (k ) = Cx(k )
(86)

This master’s thesis uses the LQR with zero amplitude reference; for this reason,
the control law is written as (87) as a minimization of the cost function presented in
(88).

u(k ) = –Kx(k ) (87)

J =
∞∑
0

[
xT (k )Qx(k ) + uT (k )Ru(k )

]
(88)

3.5 PERFORMANCE AND ROBUSTNESS ANALYSIS

3.5.1 Performance analysis

The trade-off between performance and robustness is a key issue in control
design (ÅSTRÖM; WITTENMARK, 2013). Since performance indicators are chosen
with an emphasis on the specifications considered important to the system, their use
as a quantitative measure to assess the implemented controller is interesting because
when they are minimized, the control system is considered effective or performing within
the desired standards (ARAÚJO et al., 2017).

Two examples of performance indexes that measure a controller’s performance
are the mean integral of the squared error (ISE) and the mean integral of the squared
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control signal (ISU), both of which are applied in this master’s thesis, the first for eval-
uating the reference tracking efficiency and the second for control effort. ISE and ISU
can be calculated with (89) and (90), respectively.

ISE =
1
N

N∑
k=1

[e(k )]2 (89)

ISU =
1
N

N∑
k=1

[u(k )]2 (90)

When evaluating the performance of the control systems, the stochastic and
probabilistic analysis of the signals can reveal additional intriguing factors (MARTINS;
GONTIJO; GONÇALVES, 2019). In this way, evaluating the variance of the error (σ2

e)
and control (σ2

u) signals is interesting to obtain a probabilistic and stochastic evaluation
of the processing of digital signals. Those can be calculated, respectively, as (91) and
(92).

σ
2
e =

1
N

N∑
k=1

[
e(k ) – μe

]2 (91)

σ
2
u =

1
N

N∑
k=1

[
u(k ) – μu

]2 (92)

where μe and μu are, respectively, the mean value of error and control signals.

3.5.2 Robustness analysis

Robustness indexes are required to qualify the implemented controller as op-
timal in the sense of being robust to external disturbances, such as noise, modeling
uncertainties, and load. Among those indexes are Gain Margin (GM) and Phase Margin
(PM), which are directly related to the robust stability of the process. The higher the
values of these indexes, more robust (less sensitive to unwanted disturbances) the
system is on the other hand, the response velocity becomes slower (ARAÚJO et al.,
2017; SILVA et al., 2021).

According to Coelho, Jeronymo and Araújo (2019), the GM is defined as the
required variation in the open-loop gain, necessary to make the system unstable, and
the PM also provides a measure of the relative stability, indicating how much transport
delay can be included in the feedback loop before instability to occurs.

Other two variables are interesting to achieve the values of GM and PM on the
controlled system, the Sensitivity function (Ssen) and the Complementary Sensitivity
(Tcom), presented in (93) and (94), respectively.
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Ssen(z) =
1

1 + Gc(z)Gp(z)
(93)

Tcom(z) =
Gc(z)Gp(z)

1 + Gc(z)Gp(z)
(94)

where Gc(z) and Gp(z) are, respectively, the controller and the process discrete transfer
functions.

Ssen characterizes the effect of an external disturbance acting on the output of
the control loop, therefore indicates how the closed-loop system is sensitive to process
changes, while Tcom is the Closed Loop Transfer Function (CLTF) for set-point changes
(ARAÚJO et al., 2017; SEBORG et al., 2016; SKOGESTAD; POSTLETHWAITE, 2007).

The maximum values of the amplitude ratio of Ssen(z) and Tcom(z) for all frequen-
cies, respectively, MS and MT (known as resonant peak), provide useful robustness
measures and also shows a control system design criterion. These functions can be
described by (95) and (96).

MS
D= max ||Ssen(ejωTs )|| (95)

MT
D= max ||Tcom(ejωTs )|| (96)

The value of MS can also be calculated after a polynomial equality between the
control law of the controller and the canonical form of the controller RST because, in
this way, it is possible to incorporate the advantageous characteristics of the proposed
predictive controllers into the controller (ARAÚJO et al., 2017). The outcome of this
equality is (97) after the proposed consideration using (94).

Ms
D= max(0≤ωn<π)

A(ejωTs )ΔR(ejωTs )
A(ejωTs )ΔR(ejωTs ) + B(ejωTs )S(ejωTs )

(97)

According to Postlethwaite (1996), with MS and MT is possible to obtain GM
and PM, as in (98) and (99), respectively. This mathematical relation is valid for all
implemented controllers of the paper.

GM ≥ min
[

MS
MS – 1

,
MT + 1

MT

]
(98)

PM ≥ min
[
2sin–1

(
1

2MS

)
, 2sin–1

(
1

2MT

)]
(99)
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4 REINFORCEMENT LEARNING TUNING METHODS

Reinforcement Learning (RL) is a type of machine learning in which an agent
learns to make decisions by interacting with an environment. The agent receives feed-
back in the form of rewards or penalties based on its actions, enabling it to learn optimal
strategies over time. Through trial and error, the agent aims to maximize cumulative
rewards, effectively solving complex problems in dynamic and uncertain environments.

RL has been applied to a wide range of applications, including robotics, gaming,
recommendation systems, and autonomous vehicles. In robotics, it has been used to
train them to perform complex tasks such as grasping objects, navigation, and manipu-
lation. RL algorithms can enable robots to learn from experience and adapt to changing
environments, making them more versatile and capable. On Gaming has been used
to train agents to play games such as chess, Go, and Atari games. In some cases, RL
algorithms have been able to achieve superhuman performance, surpassing human
players. RL has been used to train autonomous vehicles to make decisions in complex
driving scenarios, such as avoiding obstacles, navigating intersections, and merging
into traffic. RL algorithms can enable vehicles to learn from real-world experience and
improve their driving skills over time.

Overall, RL has shown promising results in a wide range of applications, and its
potential for solving complex problems continues to be explored by researchers and
practitioners in various fields. It has emerged, also, as a powerful tool for solving control
problems in a wide range of applications. Classical control theory, which encompasses
proportional-integral-derivative (PID) controllers and other linear control techniques,
has long been the dominant paradigm for controlling systems (DOGRU et al., 2022).
However, RL offers a new approach to control that can learn from experience and adapt
to changing environments, making it well-suited to many real-world control problems.

Classical control techniques, such as PID controllers, have been used for decades
to control systems in a wide range of applications. These techniques are based on lin-
ear models of the system being controlled and rely on the assumption that the system’s
behavior is predictable and stable, as explained in Chapter 2. However, many real-
world systems are complex, nonlinear, and subject to disturbances that can cause
unpredictable behavior. As a result, classical control techniques can be limited in their
ability to control these systems effectively. Furthermore, classical control techniques
require expert knowledge and tuning to achieve optimal performance. This process can
be time-consuming and labor-intensive, and may not be suitable for systems that are
subject to changes in their operating conditions or parameters.

Reinforcement Learning offers several advantages over classical control tech-
niques. First, RL can learn from experience, allowing it to adapt to changing environ-
ments and handle nonlinear dynamics and disturbances. RL can also learn optimal
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control policies without the need for expert knowledge or tuning, making it well-suited
to systems that are difficult to model or control.

Another advantage of RL is that it can handle multiple objectives or constraints
simultaneously, allowing it to optimize system performance under a range of condi-
tions. RL can also handle systems with large state and action spaces, which may be
intractable for classical control techniques.

Since RL is a type of machine learning where an agent learns to make decisions
by interacting with an environment and receiving feedback in the form of rewards. The
goal of the agent is to learn a policy, or a mapping from states to actions, that maximizes
the cumulative reward over time.

The RL agent interacts with the environment by taking actions and observing
the resulting state and reward. The agent then updates its policy based on the ob-
served state and reward, using techniques such as value iteration, policy iteration, or
Q-learning.

RL can be applied to a wide range of control problems, including continuous
control, discrete control, and partially observable control. RL can also handle stochastic
environments and nonlinear dynamics, making it well-suited to many real-world control
problems.

The algorithms of RL can be summarized in three main steps, and represented
as in Fig. 13:

• Action selection: The RL agent selects an action based on the current state of
the environment and the agent’s policy. The policy is a mapping from states
to actions that the agent has learned through experience.

• Reward observation: The environment returns a reward signal to the agent
based on the action taken. The reward signal indicates the desirability of the
agent’s action and is used by the agent to update its policy.

• Policy update: The agent updates its policy based on the observed reward
signal and the current state of the environment. There are several methods for
updating the policy, including value iteration, policy iteration, and Q-learning.

As proposed by Sutton and Barto (2018), The agent updates its policy based on
the observed reward signal and the current state of the environment. The policy update
is based on the principle of reinforcement, which is to increase the likelihood of actions
that lead to positive rewards and decrease the likelihood of actions that lead to negative
rewards.

There are several methods for updating the policy, including value iteration, policy
iteration, and Q-learning. Value iteration involves estimating the value function, which is
the expected cumulative reward starting from a given state and following a given policy.
Policy iteration involves optimizing the policy directly by iteratively improving the value
function. Q-learning involves learning the optimal action-value function, which is the
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Figure 13 – Reinforcement Learning Diagram.

Source: Silva, Silveira and Nascimento (2022)

expected cumulative reward starting from a given state and taking a given action, and
then updating the policy based on the learned Q-values (VRABIE; LEWIS, 2013).

RL algorithms can be further categorized based on the type of learning being
used, such as on-policy or off-policy learning, model-based or model-free learning, and
deep reinforcement learning. On-policy learning involves updating the policy based on
experience generated by the current policy, while off-policy learning involves updating
the policy based on experience generated by a different policy. Model-based learning
involves using a model of the environment to learn the optimal policy, while model-free
learning involves directly learning the optimal policy without a model of the environment.
Deep reinforcement learning involves using deep neural networks to approximate the
value function or policy.

The performance and robustness indexes of classical control theory can be used
in RL for process control for several reasons, as familiarity, since control engineers are
often more familiar with the performance and robustness indexes of classical control
theory, such as settling time, overshoot, and stability margins, than with RL-specific
measures such as cumulative reward or convergence rate. By using familiar indexes,
control engineers can better understand and interpret the performance of RL-based con-
trol systems. Other reason is to compare with existing controllers that control engineers
can use the same performance and robustness indexes to compare the performance
of RL-based controllers with existing classical control techniques. This can help control
engineers to evaluate the potential benefits of using RL-based controllers in compari-
son to existing control techniques. Furthermore, optimization of RL-based controllers,
since control engineers can use the performance and robustness indexes to optimize
the RL-based controller’s parameters, such as the learning rate or exploration rate, to
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achieve better performance or robustness.
By setting the optimization objective to be the same as the classical control

indexes, the control engineer can ensure that the RL-based controller performs at
least as well as existing control techniques. Finally, the integration with existing control
systems, since RL-based controllers can be integrated with existing classical control
systems, and the performance and robustness indexes can be used to evaluate the
overall performance of the integrated system. By comparing the performance of the
integrated system with the performance of the classical control system alone, control
engineers can evaluate the benefits of integrating RL-based controllers into existing
systems.

Overall, using performance and robustness indexes of classical control theory in
RL-based process control can help control engineers to better understand and interpret
the performance of RL-based controllers, the use of this computational tool is made
in this master’s thesis based on Repeat and Improve and Differential Games methods,
the first using the base of reinforcement learning proposed by Sutton and Barto (2018)
with a high computational effort; and the second method using optimal tuning strategies
to achieve the parameters of LQR.

4.1 REPEAT AND IMPROVE METHOD

Reinforcement Learning (RL) is a type of machine learning developed in the
Computational Intelligence Community (VRABIE; LEWIS, 2013), the way it works can
be represented by the diagram in Figure 13, where the agent is the control method
used that has as environment the responses based on performance indexes from a
control system loop. With those, the controller assumes a policy of adjusting the tuning
parameter or not, and as reward, the indexes achieve the desired status.

Considering that the agent is the controller and the environment is the reference
and disturbances received by the control system, RL with repeat and improve is used in
this master’s thesis based on the ISE and PM, in order to achieve a better performance
and the desired robustness. The idea is to set a target value (Reward) for robustness
and performance, and, by offline simulations, reach these parameters with the action
addition, calculated based on the step response of the process, as in (100).

if (yreward check ) < 100, action = 0.001
if (100 < yreward check ) < 1000, action = 0.01
if (yreward check ) > 1000, action = 0.1

 (100)

In (100), yreward check is the number of terms in the step response of the process.
This has been achieved based on the complexity of the systems and using an empirical
analysis of how the control actions act in control theory.
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The reward ISE also has an analysis based on tests and using some control
guidance, as in Äström and Winttenmark (2013). Where it is achieved with (101), when
Δy is an output excited by an unitary step u signal and 10 was a constant that empirically
brought the desired results. The reward PM is only based on the desired phase margin
of the system, which, in many tests, has also adopted the GM value for an acceptable
range, and has to be chosen based on reasonable values.

Reward ISE =

∑yreward check
0

Δy
Δu

10 yreward check
(101)

The action value is summed to Ktct (gain of the tunned control technique) till the
stop criteria, rewards, are achieved. Ktct is for all the applied techniques, the control
weighting factor, which for PPID is Kc , for GMV is q0 and for GPC is λ. So, when the
system obtains the desired result, the parameter is chosen and automatically used in
the real-time implementation of the process as a control policy. In (102) the pseudo-
code is presented based on Matlab’s programming language.

While (ISE > reward ISE || PM < reward PM)
{

Kdct = Ktct + action

While (ISE ≤ reward ISE && PM > reward PM)
{

Ktct = Ktct
(102)

It is important to mention that this technique is based on mathematical machine
effort and has it rewards based on the system model. It can be implemented in an
adaptative structure, using each iteration to achieve a better policy, but as presented in
Results Chapter, this method uses a lot of machine processing to reach the rewards,
so for online applications high-speed microprocessors must be used, as in Lewis and
Vrabie (2009) and Vrabie and Lewis (2010) papers.

4.2 DIFERENTIAL GAMES METHOD

Vrabie and Lewis (2013) described the integration of optimal control and RL
techniques to design adaptive control systems. It is known that this technique explains
how optimal control is used to design controllers that provide the best possible control
actions for a given system. It is known that optimal control is a mathematical technique
that involves finding the control actions that minimize a given cost function while satisfy-
ing the system’s constraints and is useful when the system’s dynamics are well-known
and can be modeled accurately (KIRK, 2004).

Furthermore, RL is used when the system’s dynamics are uncertain or difficult to
model accurately, so basically it is a machine learning technique that involves analysis
from trial-and-error interactions with the environment. In RL, an agent interacts with
the environment, receiving feedback in the form of rewards or penalties, and learns to
take actions that maximize the cumulative reward over time, as presented in the last
subsection for the offline loop method. Figure 14 shows how a traditional adaptative
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controller works, using a desired output as a reference for the controller, which sends a
control signal for the plant and for the identification algorithm. With both outputs, a new
estimation of the system is done and a new control signal is calculated based on these
new parameters of the process.

Figure 14 – AdaptativeControl Relation Diagram.

Source: Vrabie and Lewis (2013).

Figure 15 is an illustration of the adaptive control diagram in which the struc-
tures provide real-time algorithms, where an actor component applies a control policy
or action to the environment and a critic component examines the advantages and
disadvantages of that action. The actor-critic structure’s learning mechanism consists
in a policy evaluation, performed by the critic, and a policy improvement, carried out
by the actor (VRABIE; LEWIS, 2013). The policy evaluation step takes place by simply
consuming the results of current activities in the environment and determining how sim-
ilarly beneficial the current action is (SUTTON et al., 1999). Based on the performance
evaluation, one of the many methods can be used to change or enhance the control
policy and it provides a new value that is better than the old one.

The integration of these two techniques by using RL to adapt the optimal con-
trol policies to changing environmental conditions or to unknown system dynamics is
proposed in this work to tune the LQR controller. Specifically, the RL will help the con-
troller to learn the optimal control policies and adapt the control policies to changes in
the environment. This controller is a modern optimal control technique used to design
a linear feedback control law that minimizes a quadratic cost function (BEMPORAD
et al., 2002), as shown in Chapter 3. The LQR controller is used as a baseline control
strategy because it is a well-known and widely used control technique that provides
good performance when the system’s dynamics are well-known and can be modeled
accurately.

It is important the performance analysis of the RL-based adaptive control strate-
gies with the LQR controller in different scenarios, including uncertain and unknown
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Figure 15 – Reinforcement Learning Relation Diagram.

Source: Vrabie and Lewis (2013).

system dynamics, and changing environmental conditions, since the strategies are
designed to learn the optimal control policies online and adapt them to the changing
environment, while the LQR controller is designed offline based on the known system
dynamics and is not adaptive.

It is important to understand that differential games are used as a framework
for modeling and analyzing dynamic systems with multiple agents. A differential game
is a mathematical framework for studying the interactions between multiple agents or
players, where each player tries to optimize its own objective function while taking into
account the actions of the other players (VRABIE; LEWIS, 2013). The goal of each
player is to find a strategy that maximizes its own objective function while taking into
account the strategies of the other players. The RL-based adaptive control strategies
learn the optimal control policies online and adapt them to the changing environment,
which allows the agents to achieve better performance in the differential games. There-
fore, it is possible to understand that differential games are used as a framework for
modeling and analyzing dynamic systems with multiple agents and uses RL-based
adaptive control strategies to design controllers for the agents in the differential games
(VRABIE; LEWIS, 2010).

To equate this proposed system, it must be evaluated that in the linear quadratic
(LQ) zero-sum (ZS) game, the algorithm has linear dynamics as proposed in (103).

ẋ = Ax + Bu + Dw (103)

The state vector is x(t) ∈ Rn, control input u(t) ∈ Rm and disturbance w(t) ∈ Rm.
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This system is associated with the infinite-horizon quadratic cost function or perfor-
mance index, as shown in (104).

V (x(t),u,d) =
1
2

∫ ∞

t
(xT Qx + uT Ru – γ

2 ∥d∥2)dτ ≡
∫ ∞

t
r (x ,u,d)dτ (104)

According to Vrabie and Lewis (2013), using the control weighting matrix R =
RT > 0 and γ > 0, it is possible to achieve the control strategy in the LQ ZS game
that maximizes the cost associated with the disturbance while minimizing the cost
associated with the control, as in (105).

V ∗(x(0)) = min
u

max
d

J(x(0),u,d) = min
u

max
d

∫ ∞

0
(Q(x) + uT Ru – γ

2 ∥d∥2)dt (105)

Equation (105) expresses the intent of the control efforts to bring the states to
zero while using the least amount of energy, whereas the disturbance aims to move
the states away from zero while using the least amount of energy. The state-feedback
policies provide the solution to this optimal control problem, as written in (106) and
(107), with d being an observer variable used to achieve information for the game (or
generalized) algebraic Riccati equation (GARE) equation.

u(x) = –R–1BT Px = –Kx (106)

d(x) =
1
γ2 DT Px = Lx (107)

The intermediate matrix P is the solution to the GARE, as shown in (108)

0 = AT P + PA + Q – PBR–1BT P +
1
γ2 PDDT P (108)

As proposed by Basar and Olsder (1998), a solution P > 0 can be obtained when
the rules, proposed as a pseudocode in (109), are followed.

P > 0 Solution is possible


if (A,B) is stabilizable

if (A,
√

Q) is observable
if γ > γ∗

 (109)

The GARE equation for the nonnegative definite optimal value kernel P > 0
has been solved as part of the ZS game problem. The optimal control is subsequently
provided as state variable feedback in terms of the ARE solution (106) and the worst-
case disturbance (107). In order to solve the GARE, it is an offline solution approach
that requires a thorough understanding of the system dynamics matrices (A, B, D). Also,
if the system dynamics (A, B, D) or the performance index (Q, R, G) change while the
system is operating, a new optimal control solution must be determined.

For understanding the next steps, it is important to review Markov Decision
Processes (MDP), because they provide a framework for studying the Q-Learning RL
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method. With the consideration of MDP (X , U, P, R), where X is a set of states and U is
a set of actions or controls. The transition probabilities, presented in (110), mathematize
for each state of x ∈ X and action u ∈ U, the conditional probability in (111), in order to
transition the states given the MDP is in state x and takes action u (VRABIE; LEWIS,
2013).

ρ : X × U × X 7→ [0,1] (110)

ρ
u
x ,x ′ = Pr

{
x ′|x ,u

}
(111)

With this analysis, the cost function R : X×U×X 7→ R is the expected immediate
cost for Ru

x ,x ′ paid after transition to state x ′ ∈ X given that the MDP starts in state x ∈ X
and takes action u ∈ U. Markov property refers to the fact that transition probabilities
Pu

x ,x ′ depend only on the current state x and not on the history of how the MDP attained
that state (VRABIE; LEWIS, 2013). For this reason, this method is different from Repeat
and Improve previously presented. Convergence and Performance show that, over time,
the RL agent may converge to a stable policy that represents an effective controller for
the given system (SUTTON et al., 1999), so the performance of the tuned controller
is evaluated based on its ability to achieve the desired control objectives and adapt to
changes in the environment.

The basic problem for MDP is to find a mapping, that is a deterministic policy to
solve the problem, where π : X × U 7→ [0,1] that gives, for each state x and action
u, the conditional probability π(x ,u) = Pr {u|x} of taking action u given that the MDP
is in state x . Such a mapping is referred to as a closed-loop control or action strategy
or policy, which is stochastic if there is a nonzero probability of selecting more than
one control when in state x (VRABIE; LEWIS, 2010). MDPs that have finite state and
action spaces are termed finite MDPs, for this reason, there is a convergence for the
covariance, Q and R matrices.

Because the systems employed in this master’s thesis change in a causal way
throughout time, in order to force the MDP to act and change state at nonnegative
integer stage values k , we take into account sequential decision issues and impose a
discrete stage index k . The phases could be related to time or, more generally, to a
series of happenings. The stage value is referred to as the time. Thus, the notion of
optimality should be captured in selecting control policies for MDPs. Define a stage cost
at iteration k by r (k ) = r (k )[x(k )u(k )x(k+1)], then achieving (112) that is rewarded based
on (113), where E is the expected value operator and 0 ≤ γ < 1 is a discount factor
that reduces the weight of costs incurred further in the future (LEWIS; VRABIE, 2009).
Furthermore, the discrete matrixes are presented as Ad , Bd and Cd for traditional state
space matrixes.

Ru
x ,xT = E

{
r (k ) = x , u(k ) = u, x(k + 1) = xT

}
(112)
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J =
k=nit∑
k=0

γ
nit r (k ) (113)

Based on (112) and (113), the value of a policy can be defined as the conditional
expected value of future cost when starting in state x at k and following policy π(x ,u),
creating (114), where V (k ) is known as the value function for policy π(x ,u), which is the
value of being in state x given that the policy is π(x ,u), where nit is the total number of
iterations of the simulation, based on the expectation operator.

V (k ) = Eπ {J(k )|x(k ) = x} = Eπ


k=nit∑
k=0

γ
nit r (k )|x(k ) = x

 (114)

Considering (113), it is necessary to minimize the expected future costs, and
MDP does it with the policy of π(x ,u) as in (115), what leads V (k) to an optimal policy
that corresponds to the value given in (116).

π
∗(x ,u) = arg min

π

V (k ) = arg min
π

Eπ


k=nit∑
k=0

γ
nit r (k )|x(k ) = x

 (115)

V ∗
x (k ) = min

π
V (k ) = min

π
Eπ


k=nit∑
k=0

γ
nit r (k )|x(k ) = x

 (116)

Vrabie and Lewis (2010) proposed that an optimal policy has the property that no
matter what the previous control actions have been, the remaining controls constitute
an optimal policy with regard to the state resulting from those previous controls, based
on Bellman’s optimality principle. For this reason (116) can be rewritten as (117)

V ∗
x (k ) = min

π

∑
u

π(x ,u)
∑
xT

Pu
x ,xT [Ru

x ,xT + γV ∗
x (k + 1)] (117)

Using the MDP presented equations in (105) and assuming Bellman’s equation
for the Discrete-Time LQR, it leads to a theory to tune LQR in discrete time, where Bell-
man’s equation becomes a Lyapunov equation and (104) changes to (118) (VRABIE;
LEWIS, 2013).

V (k ) =
1
2

(xT (k )Q(k )x(k ) + uT (k )Ru(k )) +
1
2

nit∑
i=k+1

(xT
i Q(k )xi + uT

i Rui )

=
1
2

(xT (k )Q(k )x(k ) + uT (k )Ru(k )) + V (k + 1)

(118)

Inserting (103), it is possible to rewrite it in terms of the system state equation, as in
(119) and assuming the constant, that is, stationary, state feedback policy in (106), for
some stabilizing gain K (120) can be achieved.
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2V (k ) = xT (k )Q(k )x(k )+uT (k )Ru(k )+[Adx(k )+Bdu(k )]T P(k )[Adx(k )+Bdu(k )] (119)

2V (k ) = xT (k )P(k )x(k )

= xT (k )Q(k )x(k ) + xT (k )K T RKx(k ) + xT (k )[Ad – BdK ]T P(k )[Ad – BdK ]x(k )

(120)

Since the performance index is undiscounted, that is, γ = 1, a stabilizing gain K ,
that is, a stabilizing policy, must be selected, using Ricatti’s equation in (121), presented
in discrete mode.

[Ad – BdK ]T P(k )[Ad – BdK ] – P(k ) + Q(k ) + K T R(k )K = 0 (121)

According to Watkins (1989) and Watkins and Dayan (1992), the conditional value for
(117) is (122).

Q′[x ,u] =
∑
xT

Pu
xxT [Ru

xxT + γV ∗(k + 1)] (122)

The Q function is equal to the expected return for taking an arbitrary action u at
sample k in state x and thereafter following an optimal policy (WATKINS; DAYAN, 1992).
The Q function is a function of the current state x and the action u. In terms of the Q′

function, the Bellman optimality equation has a particularly simple form, represented
by (123), when the system is represented in Bellman’s equation.

Q′ =
1
2

(xT (k )Qx(k ) + uT (k )Ru(k )) + V (k + 1) (123)

with P being the Riccati solution, yields the Q function for the discrete-time LQR in
(124), defined as (126) for kernel matrix S.

Q′ =
1
2

[
x(k )
u(k )

][
AT

d P(k )Ad + Q(k ) BT
d P(k )Ad

AT
d P(k )Bd BT P(k )Bd + R

][
x(K )
u(K )

]
(124)

Q′[x(k ),u(k )] =
1
2

[
x(k )
u(k )

]′
S

[
x(k )
u(k )

]
=

1
2

[
x(k )
u(k )

]′ [
Sxx Sxu

Sux Suu

][
x(k )
u(k )

]
(125)

Finishing, the control law uses (126) in (124) to reach (127).

∂Q[x(k ),u(k )]
∂u(k )

= 0 (126)

u(k ) = –S–1
uT uSuxx(k ) = –(BT

d P(k )Bd + R)–1BT
d P(k )Adx(k ) (127)

For either the policy iteration or value iteration steps of the latter equation, knowl-
edge of the system dynamics (A, B) is required. On the other hand, (127) requires
knowledge only of the Q function matrix kernel (VRABIE; LEWIS, 2010).
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5 RESULTS

5.1 MODELLING AND IDENTIFICATION

5.1.1 Data Aquisition

The systems were modeled based on data files of real tests. TGM and AR drone
data have been registered at LACOS and were used for LS estimation as follows in the
next subsection. For the TGM process the input signal is the excitation voltage in the
first motor and the output signal is the generated voltage by the second motor. In terms
of identification, it was used a 3 V input step and achieved a linear output that stabilizes
at approximately 3,4 V, with Ts = 0.01 s and nit = 200. TGM output signal when excited
with this input is presented in Figure 16.

Figure 16 – TGM data for identification.

Source: Author (2023).

In the Ar Drone process, there are 3 state variables. They were analyzed in SISO
and MIMO topologies. The outputs are the lateral speed (m/s), longitudinal speed (m/s)
and altitude (m), excited, respectively, with lateral thrust, longitudinal thrust and vertical
thrust, with all thrusters being dimensionless and working in the range of [–1; 1] ∈ R.
As it is a complex model, the data uses a secure range of outputs, used by LACOS
researchers in previous publications, with Ts = 0,065 s and nit = 462, nit = 924 and
nit = 2308 for the respectives variables. Those responses are, respectively shown in
Figures 17, 18 and 19. The whole dataset is used with a batch approach, seeking the
best parameters to evaluate the future control design.
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Figure 17 – Lateral Speed data for identification.

Source: Author (2023).

Figure 18 – Longitudinal Speed data for identification.

Source: Author (2023).



Chapter 5. Results 66

Figure 19 – Altitude data for identification.

Source: Author (2023).

5.1.2 NRLS Polinomial Estimation

In order to design the controllers, the systems are modeled. Using NRLS polyno-
mial estimation theory presented in Chapter 2, TGM, lateral speed, longitudinal speed
and altitude models are presented as ARX structure in equations (128), (129), (130)
and (131), respectively.

yTGM (k ) =
(–0.2175 + 0.2964z–1)z–1

1 – 0.8076z–1 – 0.1224z–2 u(k ) (128)

yLaS(k ) =
(0.0411 + 0.1126z–1)z–1

1 – 1.4557z–1 + 0.4626z–2 u(k ) (129)

yLoS(k ) =
(0.0025 – 0.1408z–1)z–1

1 – 1.5649z–1 + 0.5682z–2 u(k ) (130)

yAlt (k ) =
(–0.0053 + 0.0308z–1)z–1

1 – 1.3568z–1 + 0.3567z–2 u(k ) (131)

As a discrete system, the tests are done with the same input vectors used in
the database in the difference equation structure presented, respectively, in equations
(132), (133), (134) and (135) for validation of the identification stage. Figures 20, 21, 22
and 23 show the respective graphical results of the identification stage with NRLS with
a polynomial approach and Table 1 shows the identification indexes for identification
evaluation.
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yTGM (k ) = 0.8076yTGM (k – 1) + 0.1224yTGM (k – 2) – 0.2175u(k – 1) + 0.2964u(k – 2)
(132)

yLaS(k ) = 1.4557yLaS(k – 1) – 0.4626yLaS(k – 2) + 0.0411u(k – 1) + 0.1126u(k – 2)
(133)

yLoS(k ) = 1.5649yLoS(k–1) – 0.5682yLoS(k–2) + 0.0025u(k–1) – 0.1408u(k–2) (134)

yAlt (k ) = 1.3568yAlt (k –1) – 0.3567yAlt (k –2) – 0.0053u(k –1) + 0.0308u(k –2) (135)

Table 1 – NRLS identification indexes

Identification Indexes TGM Lateral Speed Longitudinal Speed Altitude
JNRMSE 74,1314% 63,4499% 76,1247% 62,1472%

R2 0,8333 0,7521 0,8412 0,7314
Source: Author (2023).

Figure 20 – TGM NRLS identification output signals.

Source: Author (2023).
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Figure 21 – Lateral Speed NRLS identification output signals.

Source: Author (2023).

Figure 22 – Longitudinal Speed NRLS identification output signals.

Source: Author (2023).
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Figure 23 – Altitude NRLS identification output signals.

Source: Author (2023).

5.1.3 NRLS Space State Estimation

In this approach, both systems are modeled. TGM is the first, with the first state
(x1) being it voltage output and the second state (x2) obeying the relation in equation
(12). The estimation is similar as the polynomial approach, but achieving a model as
a state space representation similar to Figure 5 and equationaly represented as (10).
The estimated state equation is presented in (136) and the output state is x1, in order
to achieve that (137) has been created. Figures 24 and 25 show x1 and x2 estimations,
respectively.[

x1(k )
x2(k )

]
=

[
0.9387 –0.0010

–6.1335 –0.0977

][
x1(k – 1)
x2(k – 1)

]
+

[
0.0693
6.9331

]
u(k – 1) (136)

y (k ) =
[
1 0

]
x(k ) + 0 (137)

In the AR drone model estimation, x1, x2, x3, x4 and x5 states are, respectively,
lateral speed (m/s), longitudinal speed (m/s), altitude (m), longitudinal acceleration
(m/s²) and lateral acceleration (m/s²), because x4 and x5 states obey the relation in (12)
for x1 and x2, respectively. The estimated state equation is presented in (138), in order
to achieve that (139) has been created. Figures 26 to 30, shows x1 to x5 estimations,
respectively, using the 30 initial seconds of each database response.
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Figure 24 – TGM NRLS output signal estimation in state space.

Source: Author (2023).

Figure 25 – TGM NRLS convergence velocity signals estimation in state space.

Source: Author (2023).
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x1(k )
x2(k )
x3(k )
x4(k )
x5(k )

 =


1.0142 0.0245 –0.0047 0.0298 –0.0080
–0.0855 0.9272 0.0286 0.0027 0.0288
0.0019 0.0023 1.0003 –0.0005 0.0011
0.2189 0.3765 –0.0723 0.4581 –0.1238
–1.3148 –1.1194 0.4399 0.0412 0.4429




x1(k – 1)
x2(k – 1)
x3(k – 1)
x4(k – 1)
x5(k – 1)



+


0.0882 0.0002 0.0214

–0.0336 –0.0013 –0.0779
0.0073 –0.0000 0.0352
1.3565 0.0030 0.3299

–0.5172 –0.0204 –1.1985


u1(k – 1)

u2(k – 1)
u3(k – 1)


(138)

y (k ) =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

 x(k ) (139)

Figure 26 – Lateral Speed NRLS output signal estimation in state space.

Source: Author (2023).

Table 2 present the estimation indexes for SS approach, the indexes achieved
quantify a closer model to the real signals, less in altitude system. However, the intention
is not to compare the methods but to identify different ways for use in control algorithms.



Chapter 5. Results 72

Figure 27 – Longitudinal Speed NRLS output signal estimation in state space.

Source: Author (2023).

Figure 28 – Altitude NRLS output signal estimation in state space.

Source: Author (2023).
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Figure 29 – Lateral Acceleration NRLS output signal estimation in state space.

Source: Author (2023).

Figure 30 – Longitudinal Acceleration NRLS output signal estimation in state space.

Source: Author (2023).
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Table 2 – NRLS estimation in state space indexes.

Identification
Indexes TGM Lateral

Speed
Longitudinal

Speed Altitude Lateral
Acceleration

Longitudinal
Acceleration

JNRMSE 75.1723% 68.1742% 78.8471% 60.3214% 57.1471 57.2641
R2 0.8417 0.7987 0.8614 0.7314 0.6941 0.6957

Source: Author (2023).

5.1.4 OKID Estimation

OKID method achieves a model that takes into consideration the noises of the
system data. With it, the TGM state equation identified, based on the presented equa-
tions of Chapter 2, is Figure (140). In order to achieve better results, the gains are
improved for the first state, but the observer gains are calculated for both, as repre-
sented in Figure 31. Figure 32 shows the OKID response as an identification method.
As the second state has such a small weight factor for the observer, its identification
will not be shown.[

x1(k )
x2(k )

]
=

[
0.9321 –0.0011

–3.2101 –0.0095

][
x1(k – 1)
x2(k – 1)

]
+

[
0.0765
3.6042

]
u(k – 1)

+

[
0.0039 –0.0000
–0.8031 0.0088

][
w1(k – 1)
w2(k – 1)

] (140)

For the AR drone estimation, x1, x2, x3, x4 and x5 states are estimated with
the same structure of SSNRLS. The achieved state equation is presented in (141), the
output is similar to NRSL in (139). The observer gains are presented in 33. Figures
34 to 38, shows x1 to x5 estimations, respectively, using the 30 initial seconds of each
database response.
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Figure 31 – Observer gains adaptation for TGM OKID.

Source: Author (2023).

Figure 32 – TGM OKID output signal estimation.

Source: Author (2023).
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x1(k )
x2(k )
x3(k )
x4(k )
x5(k )

 =


0.9805 –0.0047 0.0005 0.0303 –0.0049
–0.0283 0.9702 –0.0004 0.0012 0.0408
0.0061 0.0066 0.9999 –0.0017 0.0007
–0.2901 –0.0646 0.0072 0.4650 –0.0734
–0.4270 –0.4516 –0.0062 0.0168 0.6285




x1(k – 1)
x2(k – 1)
x3(k – 1)
x4(k – 1)
x5(k – 1)



+


0.1097 0.0817 –0.0058

–0.0037 –0.0736 –0.0193
0.0051 –0.0054 0.0475
1.6873 1.2512 –0.0827

–0.0575 –1.1356 –0.2904


u1(k – 1)

u2(k – 1)
u3(k – 1)



+


0.0414 0.1135 0.0553 –0.0112 –0.0065
0.0737 0.0096 0.0061 –0.0032 –0.0179

–0.0053 0.0713 –0.0319 0.0020 –0.0052
0.6214 1.7402 0.8505 –0.1712 –0.1019
1.1258 0.1435 0.0924 –0.0481 –0.2763




w1(k – 1)
w2(k – 1)
w3(k – 1)
w4(k – 1)
w5(k – 1)



(141)

Figure 33 – Observer gains adaptation for Ar Drone OKID.

Source: Author (2023).

Table 3 presents the estimation indexes for SS OKID approach, confirming a
closer match to the registered data when compared to Table 2 results.
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Figure 34 – Lateral Speed OKID output signal estimation.

Source: Author (2023).

Figure 35 – Longitudinal Speed OKID output signal estimation.

Source: Author (2023).
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Figure 36 – Altitude OKID output signal estimation.

Source: Author (2023).

Figure 37 – Lateral acceleration OKID output signal estimation.

Source: Author (2023).
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Figure 38 – Longitudinal Acceleration OKID output signal estimation.

Source: Author (2023).

Table 3 – OKID estimation in state space indexes.

Identification
Indexes TGM Lateral

Speed
Longitudinal

Speed Altitude Lateral
Acceleration

Longitudinal
Acceleration

JNRMSE 85.2347% 95.2471% 89.1471% 82.2493% 77.5547 76.1723
R2 0.8417 0.9214 0.8921 0.8213 0.7914 0.7992

Source: Author (2023).

5.2 CONTROL

The control results are presented with simulated and real tests results. For TGM,
all tests have been implemented using daqduino for serial communication between Ar-
duino and Matlab softwares, with 9600 bits/s Baud Rate and Arduino UNO as controller.
The idea of using RL is for achieving the desired parameter for each control with only
mathematical effort, after this machine learning, the achieved parameter is used as the
chosen parameter to be implemented in the control algorithm that is used in the system.

As a method that uses much computer processing, it implementation with non-
adaptative control is reasonable since the tests achieve the parameter and are used
for all reference tracking signals based on a model previously identified. However, for
adaptative control, the improve and repeat method needs to be implemented in high-
speed microprocessors, since the RL algorithm achieves in each sample time one
control action based on the identified model. For simulated tests, as the AR Drone
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results, the idea is to keep the responses as close as the real tests. To achieve this,
white Gaussian noises were used based on the estimation error of NRLS, using this
difference as a vector amplitude in all tests for respective variables.

PPID, GMV and GPC controllers are used in TGM, lateral speed, longitudinal
speed and altitude SISO polynomial NRLS identified transfer functions. For initial con-
ditions, TGM real implementations tests have 3 amplitude reference signals with 3
seconds of duration each, those are 0.5 V, 2.5 V and 1.5 V; the control signal has a
minimum value of 0 V and a maximum value of 5 V for Arduino limitations; the PM
goal is 60º. Have been assumed the following conditions for testing the AR drone: The
reference vector has 1 m/s as amplitude for lateral and longitudinal speeds, and for
altitude, it has 0.5 m, the control signal has a minimum value of -1 and a maximum
value of 1, with the respective direction thrusts for each system, the PM goal is 45º for
all drone variables, with a 60 seconds test and 0.065 s as sample time.

For the LQR, the vector of references is null, since the implementation obtained
was for the first case proposed in Vrabie and Lewis (2010), however, the results were
obtained in the final periods of writing with non-null references and using the Kalman
filter, making an LQG, but this will be used in future works and publications. LQR has an
appliance into drone landing and in future real tests will also be implemented, as initial
conditions, the system starts with lateral and longitudinal speed of 1 m/s and altitude of
0.5 m, and has to reach the ground with null values. Traditional LQR and RL LQR have
12 seconds time duration and 0.065 s as sample time.

It is important to mention that the tests have been done with an Intel i5 processor,
with Nvidia RTX 3050 and 16 GB Ram, with 46 iterations per second for the PPID
controller, 27 iterations per second for the GMV controller and 11 iterations per second
for the GPC controller, what already leads an evaluation that the more complex is the
control structure algorithm more time it takes to add a RL control action.

5.2.1 PPID Control

PPID control technique obtained the results (reference tracking and control sig-
nal) presented in Figures 39 to 42, where the outputs followed the references, even with
the noises of the process. Figure 43 shows the four sensitivity functions plots, where it
can be proved the target PM of the controlled systems. Figures 44 to 47 show the con-
vergence of performance and robustness indexes among the iterations. Table 4 shows
the final iteration PPID indexes. This method presented fast tuning when implemented
with RL, given that it is a method with less mathematical structure, it makes resolving
calculations for software to respond to implemented actions faster. It is worth noting
that the tests show that, for the same model, the PPID uses lower gains to synchronize
the controller, which is also one of the reasons for the speed of convergence of the
indices evaluated.
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Figure 39 – TGM PPID experimental control responses.

Source: Author (2023).

Figure 40 – Lateral Speed PPID control responses.

Source: Author (2023).
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Figure 41 – Longitudinal Speed PPID control responses.

Source: Author (2023).

Figure 42 – Altitude PPID control responses.

Source: Author (2023).
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Figure 43 – Final sensitivity function plots for PPID robustness validation.

a. PPID sensitivity function decomposition for
TGM control.

b. PPID sensitivity function decomposition for
lateral speed control.

c. PPID sensitivity function decomposition for
longitudinal speed control.

d. PPID sensitivity function decomposition for
altitude control.

Source: Author (2023).

Figure 44 – TGM PPID indexes convergence through iterations.

Source: Author (2023).
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Figure 45 – Lateral Speed PPID indexes convergence through iterations.

Source: Author (2023).

Figure 46 – Longitudinal Speed PPID indexes convergence through iterations.

Source: Author (2023).



Chapter 5. Results 85

Figure 47 – Altitude PPID indexes convergence through iterations.

Source: Author (2023).

Table 4 – Final iteration PPID indexes.

PPID Indexes TGM Lateral Speed Longitudinal Speed Altitude
Kc 1.1110 0.3290 0.3010 1.7610
ISE 0.0982 0.0482 0.0266 0.0063
ISU 2.4552 0.0134 0.0033 0.0284
σ2

e 0.0972 0.0480 0.0264 0.0063
σ2

u 0.6371 0.0083 0.0031 0.0283
GM 3.5918 22.4131 7.9471 4.2909
PM 60.0505 ◦ 57.0695◦ 51.8360 ◦ 45.0982 ◦

Source: Author (2023).

The convergence plot presented above brings an interesting analysis normally
explored by computational intelligence articles and theses. The idea is to evaluate how
many iterations are taken to achieve a result, which depends on the hardware config-
uration and the software used. In PPID it has a noisy alteration of ISE and ISU, which
proportionally changes through time. GM and PM change with the system dynamics,
and they have to be a study topic in future works.

5.2.2 GMV Control

Reference tracking and control signal are presented in Figures 48 to 51, where
the outputs followed the references, even with the noises of the process for GMV. Figure
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52 shows the four sensitivity functions plots, where it can be proved the target PM of
the controlled systems. Figures 53 to 56 show the convergence of performance and
robustness indexes among the iterations. Table 5 shows the final iteration GMV indexes.

Figure 48 – TGM GMV experimental control responses.

Source: Author (2023).

Figure 49 – Lateral Speed GMV control responses.

Source: Author (2023).
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Figure 50 – Longitudinal Speed GMV control responses.

Source: Author (2023).

Figure 51 – Altitude GMV control responses.

Source: Author (2023).
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Figure 52 – Final sensitivity function plots for GMV robustness validation.

a. GMV sensitivity function decomposition for
TGM control.

b. GMV sensitivity function decomposition for
lateral speed control.

c. GMV sensitivity function decomposition for
longitudinal speed control.

d. GMV sensitivity function decomposition for
altitude control.

Source: Author (2023).

Figure 53 – TGM GMV indexes convergence through iterations.

Source: Author (2023).
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Figure 54 – Lateral Speed GMV indexes convergence through iterations.

Source: Author (2023).

Figure 55 – Longitudinal Speed GMV indexes convergence through iterations.

Source: Author (2023).
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Figure 56 – Altitude GMV indexes convergence through iterations.

Source: Author (2023).

Table 5 – Final iteration GMV indexes.

GMV Indexes TGM Lateral Speed Longitudinal Speed Altitude
q0 137.5610 5.2710 2134.1470 0.9300
ISE 0.2175 0.0558 0.1558 0.0048
ISU 1.3927 0.0142 0.1317 0.0404
σ2

e 0.2077 0.0536 0.1417 0.0048
σ2

u 0.2937 0.0109 0.0914 0.0404
GM 2.0011 1.9454 7.8231 2.2529
PM 60.1003◦ 45.0044◦ 45.1472◦ 48.4333◦

Source: Author (2023).

It is interesting to evaluate that this control technique achieved a lower perfor-
mance when compared to PPID, using RL tuning method. The noises also were a
problem, since the ARIX structure was used for the project not using C(z–1) as a filter.
A future paper will be written, that has been implemented in TGM is use the ARMAX
identification to identify a model for control design. In the convergence graphs, it is
possible to evaluate that this method takes more iterations than the orders to reach the
stop criteria.
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5.2.3 GPC Control

The last controller implemented with repeat and improve method is the GPC,
which obtains the reference tracking and control signal presented in Figures 57 to 60,
where the outputs followed the references, even with the noises of the process. Figure
65 shows the four sensitivity function plots, where it can be proved the target PM of
the controlled systems. Figures 61 to 64 show the convergence of performance and
robustness indexes among the iterations. Table 6 shows the final iteration GPC indexes.

As its structure is the most complex with the ARX structure used, it has been
the algorithm that takes more time between iterations to achieve a new control action.
The results with this controller have achieved excellent performance indexes, with lower
values than the other ones for ISE and for the variances. For TGM experimental im-
plementation, to achieve the λ implemented, the algorithm took more iterations and
more time than the other tested algorithms. It is also interesting to evaluate, also, that
the dynamics inferred directly into this controller, as for Altitude, the control action was
summed with a 0.001 value in each iteration, which explains the x-axis on Figure 64.

As in GMV test, this algorithm also has been tested with C(Z –1) polynomial,
using ARMAX structure as model, but the results have not been considerably different,
with a performance index difference lower then 5%.

Figure 57 – TGM GPC experimental control responses.

Source: Author (2023).
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Figure 58 – Lateral Speed GPC control responses.

Source: Author (2023).

Figure 59 – Longitudinal Speed GPC control responses.

Source: Author (2023).
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Figure 60 – Altitude GPC control responses.

Source: Author (2023).

Figure 61 – TGM GPC indexes convergence through iterations.

Source: Author (2023).
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Figure 62 – Lateral Speed GPC indexes convergence through iterations.

Source: Author (2023).

Figure 63 – Longitudinal Speed GPC indexes convergence through iterations.

Source: Author (2023).
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Figure 64 – Altitude GPC indexes convergence through iterations.

Source: Author (2023).

Table 6 – Final iteration GPC indexes.

GPC Indexes TGM Lateral Speed Longitudinal Speed Altitude
λ 224.4210 1.3510 1.5710 3.2710

ISE 1.8107 0.5140 0.7601 1.3103
ISU 0.9168 0.0701 0.1051 0.1028
σ2

e 0.0814 0.0823 0.0917 0.1217
σ2

u 0.5628 0.0678 0.1050 0.1022
GM 7.1319 7.8069 4.5469 4.0374
PM 60.0014◦ 45.0100◦ 45.0144◦ 45.1918◦

Source: Author (2023).

5.2.4 LQR Control

The idea of using LQR is to show how Q learning changes its Q matrix, rewarding
the system along the test and, as in Vrabie and Lewis (2013), has normally better results
when compared to traditional LQR with static Q and R matrix. For both simulations, Q
and R have been initialized with unitary values, and using the SS NRLS identified
system, with the x1 = y1 – > Lateral Speed ,x2 = y2 – > Longitudinal Speed and
x3 = y3 – > Altitude.

Figures 66 and 67 show, respectively, the achieved responses using the tradi-
tional LQR based on SSNRLS and OKID models tunned using Ricatti’s equation with Q
and R being initialized, respectively, as diagonal matrixes with 100 and 1 values. Figure
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Figure 65 – Final sensitivity function plots for robustness GPC validation.

a. GPC sensitivity function decomposition for
TGM control.

b. GPC sensitivity function decomposition for
lateral speed control.

c. GPC sensitivity function decomposition for
longitudinal speed control.

d. GPC sensitivity function decomposition for
altitude control.

Source: Author (2023).

68 and 69 show, respectively, the obtained results using the RL LQR proposed based
on SSNRLS and OKID models. This second method uses Q-learning to change the
Q-matrix, as presented in Figure 70, using a ponderation from which state needs a
higher control action, then the LQR policy uses higher weighs for the Ricatti’s equation
gain, then reaching the desired output faster, so reward got smaller when the action
does not have to be applied, as presented in Figure 71. It is important to mention that
this method does not change R matrix, using it as a diagonal matrix with value 1 for all
terms, as in traditional LQR.

It is presented in Table 7 the final indexes of LQR, splitting for each output the
achieved values of the proposed performance and robustness indexes. It is possible
to evaluate that OKID model using Γ matrix helps both tuning methods to stabilize
the systems. For the traditional tuning method, is possible to check that the algorithm
contours the noises, but presents many peaks that in a real implementation may be
dangerous for the AR Drone. When RL is evaluated is possible to check noisy signals for
SSNRLS model and lower for OKID model, but with a small variance from the previous
sample, which is mathematically proved with the σ2 indexes. The robustness evaluation
has presented similar results for all methods, with a small vantage for RL.
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Figure 66 – Traditional LQR signals using SSNRLS estimated model.

Source: Author (2023).

Figure 67 – Traditional LQR signals using OKID estimated model.

Source: Author (2023).
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Figure 68 – RL tunned LQR signals using SSNRLS estimated model.

Source: Author (2023).

Figure 69 – RL tunned LQR signals using OKID estimated model.

Source: Author (2023).
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Figure 70 – Q Learning matrix for RL LQR.

Source: Author (2023).

Figure 71 – Reward convergence for RL LQR.

Source: Author (2023).
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Table 7 – LQR indexes.

LQR Indexes NRLS Trad. LQR OKID Trad. LQR NRLS RL LQR OKID RL LQR
ISELateral Speed 4.1754 2.4152 2.3147 1.9746
ISULateral Speed 0.3147 0.2017 0.2019 0.2005
σ2

e Lateral Speed 0.2014 0.1823 0.1817 0.1813
σ2

u Lateral Speed 0.6628 0.6278 0.6250 0.6122
ISELongitudinal Speed 3.2740 1.9314 1.9311 1.7146
ISULongitudinal Speed 0.1785 0.1584 0.1564 0.1021
σ2

e Longitudinal Speed 0.1914 0.1827 0.1827 0.1723

σ2
u Longitudinal Speed 0.4639 0.3772 0.3750 0.3742

ISEAltitude 0.9541 0.7412 1.7314 0.8614
ISUAltitude 0.9168 0.0701 0.1051 0.1028
σ2

e Altitude 0.3044 0.2923 0.3917 0.3019
σ2

u Altitude 0.2928 0.2818 0.2754 0.2222
GM 6.0214 6.0066 6.0861 6.1384
PM 60.0014◦ 60.0100◦ 60.0144◦ 60.1918◦

Source: Author (2023).
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6 CONCLUSION AND FUTURE WORK PROPOSALS

6.1 CONCLUSIONS

In this master’s thesis, have been delved into the realm of control theory research
with a specific focus on reinforcement learning tuning methods. Throughout this study,
various control techniques, algorithms and methodologies have been explored, such
as: PPID, GMV, GPC and LQR, aiming to provide novel insights and contributions to
the field of control theory.

The first phase of the research involved a review of the existing literature, where
we analyzed and synthesized the current state-of-the-art in control theory. This com-
prehensive survey not only established the foundation for our investigation but also
highlighted the gaps and opportunities for further advancement in the field. That was
important for analyzing the different structures of the proposed controllers, and how the
methods work in different topologies.

Subsequently, it is proposed a novel for control model tuning, with repeat and
improve and sum differential games with Q learning to address the challenges posed
by control theory. The model leveraged uses RL to reach the target values of PM and
ISE for the SISO controllers, in order to optimize control inputs while considering the
model-based structure of those systems. For the Q-learning approach, the study uses
MDPs to optimize Ricatti’s equation, changing the Q matrix along iterations for LQR
control.

To validate the efficacy of the proposed control method, have been conducted ex-
tensive simulations and, where applicable, implemented in real-world experiments. The
results obtained from these analyses showcased the method’s robustness, efficiency,
and performance in contribution to existing control strategies. The achieved results
showed the efficiency of the tuning method used. PPID, GMV and GPC achieved the
intended results and obtained the targets, using only machine math effort, with less
possible human interference, tuning the applied controllers for TGM and Ar drone. On
LQR the method also achieved the intended results, with faster response speed when
compared to the traditional LQR.

Furthermore, it was shown the versatility and applicability of the model through its
successful integration into the identified models, using TGM through real experiments
and on Ar Drone only by simulations with white Gaussian noises. The positive outcomes
from these practical implementations indicate the potential impact of this research
on various real-world control systems and how this method can be an alternative to
traditional tuning methods.

Despite the achievements made, our study also uncovers certain areas that
warrant further investigation. For instance, regular PCs cannot support the math effort
of those methods and cheap microcontrollers either. Addressing these limitations can
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lead to the model’s broader applicability and increased effectiveness in diverse control
scenarios, since the evolution of technology tends to increase the implementation ca-
pacity of those algorithms, which are already used in high-level aerospace control in
North America and Europe (HODGE; HAWKINS; ALEXANDER, 2021; LEWIS, Frank L.;
VRABIE, 2009).

Overall, the findings from this research contribute to the growing body of knowl-
edge in control theory, enriching the domain with a novel approach that can potentially
enhance the efficiency and stability of various control systems. Tuning in PPID presents
viability for classic methods of simpler structures, which are more accepted in the in-
dustry, and for presenting performance and robustness indexes considered good for
complex applications. Furthermore, the feasibility of using this same method of improve
and repeat in predictive SISO controllers, such as GMV and GPC, also brings an ad-
vantage by using a structure more accepted by academia to control highly complex
systems and that will converge to the stop criteria in less time with the evolution of
machine learning embedded in computational systems or high-speed microprocessors.

6.2 FUTURE WORK PROPOSALS

Future research in control theory, particularly involving RL in advanced control
techniques, holds tremendous promise to help the field and address complex control
challenges in diverse applications. The integration of RL techniques into traditional
control paradigms offers an exciting avenue for enhancing control strategies, adapting
to uncertain environments, and achieving optimal performance in dynamic systems.

Future studies could explore stochastic predictive control addresses systems
with inherent uncertainty, it may be done with the incorporation of RL techniques, de-
veloping adaptive controllers that learn to cope with stochasticity and make informed
decisions under uncertainty. These RL-based stochastic predictive controllers could
find applications in areas such as autonomous vehicles, UAVs and robotics, where
environmental uncertainties play a crucial role.

Deep Reinforcement Learning (DRL) methods, such as Deep Q-Networks and
Proximal Policy Optimization, have demonstrated impressive capabilities in learning
complex tasks. Combining DRL with model predictive control can enable control sys-
tems to learn online models of the environment and optimize control actions based on
these learned models. This could lead to improved performance in control tasks and
adaptability to previously unseen scenarios.

Hybrid Predictive Control and RL in Multi-Agent Systems, can be also a research
area with the appliance of predictive control techniques in multi-agent systems, such as
swarms of drones or autonomous vehicles, which presents unique challenges. Future
research can explore integrating RL into hybrid predictive control strategies to enable
agents to learn from each other’s experiences and adapt to the dynamic interactions
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between them. This could lead to more efficient and coordinated behavior in multi-agent
environments.

LQR is a well-established control technique, but it assumes a known linear sys-
tem model, which may not always hold in practical scenarios. Integrating RL into LQR
can create adaptive control systems that learn and update system models online, thus
accommodating system changes and uncertainties. These RL-enhanced adaptive LQR
controllers could be particularly valuable in applications where accurate modeling is
challenging, using Kalman filter estimation in adaptative control, what is the next step
of the presented research.

Reinforcement learning (RL) tuning for power electronics microgrids presents a
compelling and promising avenue for future research. Power electronics microgrids are
complex systems with dynamic energy sources, loads, and storage elements, requiring
sophisticated control strategies to optimize performance and stability. By integrating
RL into the tuning process, control parameters of power electronics devices can be dy-
namically adjusted based on the system’s performance and environmental conditions,
leading to improved control accuracy, robustness, and adaptability. RL’s ability to learn
from data and adapt to changing microgrid conditions can overcome challenges re-
lated to uncertainties and nonlinearities, providing an efficient and scalable solution for
control optimization in microgrid environments. Moreover, RL-tuned power electronics
microgrids could enhance energy efficiency, grid integration, and grid resiliency, con-
tributing to the sustainable development and integration of renewable energy sources
in future smart grids. This is also being researched in LACOS laboratory in partnership
with IFPA power electronics laboratory and UFPB institution.

In conclusion, the integration of reinforcement learning with predictive control,
stochastic predictive control, and linear quadratic control offers an exciting and promis-
ing direction for future research in control theory. These hybrid control paradigms have
the potential to address complex and uncertain control problems, leading to more ef-
ficient, adaptive, and robust control systems across various domains. As researchers
delve deeper into this multidisciplinary intersection, the field of control theory is poised
to witness groundbreaking advancements that will shape the future of intelligent control
systems.
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