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Abstract

The use of AI/Ml is a key feature for the new generations of mobile communications as

the actual generations are becoming more complex in order to provide a faster connection

for a large number of users, but in general, it requires large datasets in order to produce

high-quality AI/ML models. Due to the costs of collecting real measurements, especially

in vehicular and aerial scenarios, this dissertation proposes a modular methodology that

enables the combination of different simulators in order to produce realistic datasets for

V2X and aerial cellular communications. The methodology also brings the possibility to

train AI/ML models in-loop with the simulations. Furthermore, this dissertation details

benchmarks for CPU and simulation time in different simulation scenarios and also the

results of a use case showing the data that can be extracted from the combinations of

the used simulators, where it is possible to observe that the use of parallel computing can

reduce the simulation time by approximately five times.

Keywords — 5G, V2X, UAV, AI/ML, co-simulation



Resumo

O uso de inteligência artificial é um recurso chave para as novas gerações de comunicações

móveis, já que com a evolução das gerações os sistemas vem ficando cada vez mais comple-

xos para conectar cada vez mais usuários com taxas mais altas de transmissão, porém isto

normalmente requer grandes bancos de dados para o treinamento de modelos inteligência

artificial de alta qualidade. Devido aos custos para coletar medições reais, especialmente

em cenários veiculares e aéreos, esta dissertação propõe uma metodologia modular onde

é posśıvel combinar diferentes simuladores para produzir banco de dados realistas para

V2X e comunicações aéreas celulares. A metodologia também traz a possibilidade de

treinar modelos de inteligência artificial integrados com as simulações. Além disso, este

trabalho detalha análises para o uso de CPU e para o tempo de simulação em diferentes

cenários, os resultados de um caso de uso mostrando os dados que podem ser extráıdos

das combinações dos simuladores utilizados também é discutido, mostrando que o com o

uso de técnicas de computação paralela o tempo necessário para executar as simulação

pode ser reduzido em aproximadamente cinco vezes.

Palavras-chave — 5G, V2X, UAV, AI/ML, co-simulações



Chapter 1

Introduction

This chapter introduces the developed research for this dissertation. First, it de-

scribes the motivations and the relevance of this work (Section 1.1), followed by a brief

review of the state-of-the-art (Section 1.2). In a second moment the aims (Section 1.3)

and the research contributions (Section 1.4) are presented. An outline of the dissertation

is also provided in Section 1.5.

1.1 Motivation and Relevance

Wireless communications systems have become a crucial aspect of contemporary

societies, and the most diverse types of essential services depend at some level on mobile

communications networks. The fifth-generation of mobile telecommunications technology

(5G) networks are ascending as the foundation for innovative solutions in various sectors,

such as in the industry, agriculture, security, and so forth. These innovative solutions are

emerging, due to some features brought by 5G networks that promise to provide reliable

communications with low latency at ultra-high speeds (DOGRA et al., 2021).

Two emerging applications that will largely benefit from the next generations of

mobile telecommunications technologies are autonomous and semi-autonomous driving

and unmanned aerial vehicles (UAVs). Due to the relevance of wireless communications for

vehicles, the 3rd Generation Partnership Project (3GPP) in its Release 16 has established

the standards for vehicle-to-everything (V2X) communications based on the 5G new radio

(NR) (3GPP, 2019). The 5G NR V2X introduced the concept of sidelinks, which refers to

direct communications between the user equipments (UEs) without data going through a
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base station (BS) (GARCIA et al., 2021).

Figure 1.1 shows the relations among the keywords of papers that involve 5G net-

works and UAVs. The figure was produced from data collected at the Scopus platform,

the metadata from all DOI-indexed research papers that mentioned 5G and UAV in the

last 10 years was used to show how the keywords of these documents are related, only

the 40 more recurrent keywords were used to produce the figure. Each line represents the

connection between the keywords among the analyzed papers.

Figure 1.1: Relation between the keywords of papers involving 5G and UAVs

blockchain

learning systemsiterative methods

artificial intelligence

machine learning

iot

6g

vehicle transmissions

optimization problems

beamforming

multiple access

heterogeneous networks

mimo systems

trajectories

mobile edge computing

disasters

optimization

mobile communications

signal to noise ratio

network security

aircraft detection

edge computing

network architecture

internet of things (iot)

resource allocation

cellular network

wireless communications

reinforcement learningenergy utilization

deep learning

queueing networks

quality of service

mobile telecommunication systems

base stations

millimeter waves

energy efficiency

wireless networks

vehicle to vehicle communications

internet of things

unmanned aerial vehicle

5g mobile communication systems

VOSviewer

Source: Author (2023)

Regarding Figure 1.1 it can be noticed that there is a large number of publications

that focuses on the physical layer of the wireless networks. The most recurring themes

are beamforming and multiple-input multiple-output (MIMO) systems. Another recur-

rent research topic is the use of artificial intelligence (AI)/machine learning (ML) models
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alongside 5Gbeyond 5G (B5G) network functions in order to optimize different aspects of

these networks for vehicle communications.

The use AI/ML is interesting for complex problems, especially when the solution

requires the tunning of various parameters or problems that do not have a solution yet.

In the new generations of mobile communications systems AI/ML techniques can be

used in all layers and functions to improve the overall reliability. As wireless networks

operate in stochastic environments, the use of reinforcement learning (RL) is one of the

most interesting approaches, and has been widely used to solve Markov decision processes

(MOROCHO-CAYAMCELA et al., 2019).

The training of AI/ML models, in particular when using deep learning and RL

requires large datasets, which can become a problem for the applications in mobile net-

works, in special when it comes to the physical layer. A solution can be the use of

synthetically generated data to train the AI/ML models for the communications systems

(KLAUTAU et al., 2018). In this context, this dissertation will present the so-called

Simulation of Communication Networks, Artificial Intelligence and Computer Vision with

3D Computer-generated Imagery (CAVIAR), a hybrid co-simulation methodology focused

on the use of AI/ML in 5G/B5G networks.

1.2 Related Works

Table 1.1: Summary of related works

References Communications AI 3D Supported UEs Modularity
AirSimN ns-3 PyTorch - UAVs,cars -
Veneris OMNeT++ - Unity3D Cars -
Raymobtime Wireless InSitee TensorFlow Blender Cars -
FlynetSim ns-3 - - UAVs -
CORNET ns-3 - - UAVs -
This work ns-3+5G-LENA PyTorch UE4 UAVs, cars ✓

Source: Author (2023)

Table 1.1, summarizes the most relevant features of related works, that propose

simulation environments for the use of AI/ML in communications. The AirSimN (TANG
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et al., 2021), Veneris (EGEA-LOPEZ et al., 2019), and Raymobtime (KLAUTAU et al.,

2018) are dependent on specific simulation softwares, which does not guarantee modularity

in the system, limiting the use cases. Other projects such as FlynetSim (BAIDYA et al.,

2018), and CORNET (ACHARYA et al., 2020) do not provide a realistic simulation of

the simulation scenarios, such as providing virtual images of the 3D environment, which

also limits the use cases.

1.3 Aims and objectives

All innovations that can be achieved based on the new generations of mobile com-

munications systems require the development of integrated solutions that are capable to

adapt the networks to the needs of the users in different aspects. This requires envi-

ronments where it will be possible to simulate with realism different aspects of the real

world. This work seeks the development of a hybrid co-simulation environment where

each real-world aspect can directly or indirectly affect the performance and reliability of

wireless communications systems. The research will focus on an architecture that would

allow high flexibility, in order to ensure the maximum level of realism for each simulation

scenario.

The most relevant objectives of this research can be summarized as:

• Develop a hybrid co-simulation system involving 5G/B5G networks, AI/ML models,

and virtual worlds.

• Generate realistic simulations using standard computers.

• Enable the training and testing of AI/ML models inside the co-simulation sytem.

• Run fully automated co-simulations, where each part of the system can impact the

future steps of the overall system.

1.4 Research Contributions

The simulation methodology generated during the development of this research can

be used in different investigations, especially the ones involving AI/ML applied in mo-

bile networks. Examples of how new wireless network research can benefit from hybrid
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co-simulation environments can be found in the results of the 2021 International Telecom-

munication Union (ITU) AI/ML in 5G Challenge1, where an initial version of this work

was used as the basis.

The most relevant contributions of this dissertation are:

• The development of a co-simulation environment for training and testing AI/ML

models for communications networks.

• The integration of AI/ML models as co-simulation units of complex, where these

models can directly impact the next steps of a co-simulation.

• The integration of different units in order to provide the most diverse scenarios

considering mobility, 3D images, and communications networks.

• The use of parallel computing to reduce the simulation time.

• The use 3D virtual imagery for applications in communications networks.

1.4.1 Publications

During the development of this work, some research papers were published providing

details of each development phase of the project. Initially, in 2021 an extended abstract

was published showing how UAVs simulators can be used to provide more realism to

mobile communications simulations. Latter in 2021 a conference and a journal paper were

published describing an initial version of CAVIAR that was used in the 2021 ITU AI/ML

in 5G Challenge. After the challenge, another journal paper was published in 2022 with

all participants showing the results obtained using the CAVIAR co-simulations. Some

parts of this work were also published in a book chapter published in 2023.

Book Chapters:

1. Aldebaro Klautau, Ilan Correa, Felipe Bastos, Ingrid Nascimento, João Borges,

Ailton Oliveira, Pedro Batista, Silvia Lins. Integrated simulation of deep learn-

ing, computer vision and physical layer of UAV and ground vehicle networks .

Deep Learning and Its Applications for Vehicle Networks, 2023.

1ITU-ML5G-PS-006: <https://challenge.aiforgood.itu.int/match/matchitem/39>.

https://doi.org/10.1201/9781003190691
https://doi.org/10.1201/9781003190691
https://challenge.aiforgood.itu.int/match/matchitem/39
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Journal Papers:

1. Ilan Correa, Ailton Oliveira, Bojian Du, Cleverson Nahum, Daisuke Kobuchi,

Felipe Bastos, Hirofumi Ohzeki, João Borges, Mohit Mehta, Pedro Batista,

Ryoma Kondo, Sundesh Gupta, Vimal Bhatia, and Aldebaro Klautau. Simu-

lation of Machine Learning-Based 6G Systems in Virtual Worlds . ITU Journal

on Future and Evolving Technologies, 2022.

2. Ailton Oliveira, Felipe Bastos, Isabela Trindade, Walter Frazão, Arthur Nasci-

mento, Diego Gomes, Francisco Müller and Aldebaro Klautau. Simultaneous

beam selection and users scheduling evaluation in a virtual world with rein-

forcement learning . ITU Journal on Future and Evolving Technologies, 2021.

Conference Papers:

1. João Borges, Ailton Oliveira, Felipe Bastos, Daniel Suzuki, Emerson Oliveira,

Lucas Bezerra, Cleverson Nahum, Pedro Batista, and Aldebaro Klautau. Re-

inforcement Learning for Scheduling and Mimo beam Selection using Caviar

Simulations . ITU Kaleidoscope: Connecting Physical and Virtual Worlds,

2021.

Extended Abstracts:

1. Carlos Vinagre, Ailton Oliveira, Felipe Bastos, Emerson Oliveira, and Aldebaro

Klautau. Autonomous UAV Simulator for Research and Development Applied

to 5G Networks . Computer on the Beach, 2021.

1.5 Dissertation outline

This work consists of 5 chapters, and the following summarizes the organization:

• Chapter 1: Contains the introduction of this work, including its aims and Contri-

butions.

• Chapter 2: Introduces important concepts related to co-simulations architecture

and describes with detail the architecture of the proposed methodology.

https://doi.org/10.52953/SJAS4492
https://doi.org/10.52953/SJAS4492
https://doi.org/10.52953/CHUZ8770
https://doi.org/10.52953/CHUZ8770
https://doi.org/10.52953/CHUZ8770
https://doi.org/10.23919/ITUK53220.2021.9662100
https://doi.org/10.23919/ITUK53220.2021.9662100
https://doi.org/10.23919/ITUK53220.2021.9662100
http://dx.doi.org/10.14210/cotb.v12.p540-542
http://dx.doi.org/10.14210/cotb.v12.p540-542
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• Chapter 3: Describes the implementation details of a simulation embodiment for

disaster situations using CAVIAR methodology.

• Chapter 4: Presents different experiments that evaluate the performance and the us-

ability of the proposed methodology. It also includes discussions about the obtained

results.

• Chapter 5: Completes this dissertation by providing general conclusions and sug-

gestions for future works.



Chapter 2

CAVIAR Architecture

This chapter describes the architecture of the modular simulation methodology enti-

tled CAVIAR. In Section 2.1, important concepts related to hybrid co-simulations will be

explained. In Section 2.2 the overall CAVIAR methodology will be explained, including

some new concepts.

2.1 Co-Simulation Enviroments

In this section, important concepts related to simulations/co-simulations are defined.

The first important thing we need to define is dynamical systems (Figure 2.1), which is a

mathematical model of physical or computer systems, it is important to notice that these

models are normally of real systems, but it is also possible to define models for systems

that do not exist yet. During its existence, a dynamical system can change between

diverse states and also produce different outputs, the sequence of states followed by the

dynamical system’s states and outputs are called, behavior traces (GOMES et al., 2018).

It is also important to define the time variables, that are used in the simulation

environments. The simulated time t ϵ T , defined over a time base T is different from the

time that passes in the real-world, that is called wall-clock time (WcT) and defined as

τ ϵWcT . To compute the behavior trace for a dynamical system during a simulation time

interval [0, t] it needs τ units of WcT, than the simulated time t and the WcT τ are

directly related variables. In real-time simulations, t tends to be equal τ (GOMES et al.,

2018; FUJIMOTO, 2001).

The algorithms that are used to compute the approximated behavior traces of dy-
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Figure 2.1: Dynamical System Diagram

rl¥

X
+

Source: Author (2023)

namical systems are defined as simulators (Figure 2.2). A simulator always needs a dynam-

ical system and input sequence of states to compute the behavior traces. All simulators

have an associated error and the accuracy of a simulator can be defined by thresholds

for the errors, which varies depending on the dynamical system (GOMES et al., 2018;

CELLIER; KOFMAN, 2006).

Figure 2.2: Simulator Diagram

Input 

+ 

X 

|- — » States 

» Outputs 

Model 

Simulator 

Output 
» 

Source: Author (2023)

Another important term that needs to be defined, is the concept of simulation unit

(SU). A SU can be defined as a black box that produces a behavior trace when inputs

are provided. It can be a dynamic system or an entity in the real-world (GOMES et al.,
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2018), the different types of SU will be more detailed later. And finally, the behavior

trace produced by a SU can be defined as a simulation.

According to Brailsford et al. (2019) a SU can be classified considering different

simulation approaches, where the three most used are:

• Discret event simulations (DESs), are based on queuing theory, where the models

are decomposed in different events that are assigned to a specific timestamp. The

time flow of DESs should be well-defined, allowing the processes to progress through

time, and each event comprises a change in the system’s state in a specific timestamp.

• Continuous time simulations (CTSs), are systems where the state is continuously

tracked, for that reason, they are often modeled by differential equations. The

outputs of these dynamical systems are the integration of differential equations,

and when ran in computers the outputs are approximated values, discretization is

normally used.

• Agent-based simulations (ABSs), are composed of different agents, that are in-

dependent entities with attributes and behaviors. Each agent autonomously makes

decisions based on their state and the states of other agents that are around. In ABSs

the outputs depend on the agents and the relationship between them (BONABEAU,

2002).

There are diverse techniques to couple distinct simulation systems, providing a sin-

gle global simulation, these techniques are defined as co-simulation techniques. In co-

simulations, each simulator is considered a SU, which receives inputs and produces be-

haviors (GOMES et al., 2018).

In co-simulations, it is also possible to have other entities besides dynamical systems.

Real devices and even human beings can be considered parts of a co-simulation system.

Despite being real devices or software, all parts of a co-simulation are considered SUs.

When coupling other entities apart from mathematical models in a co-simulation, there

is a specific nomination, the most common in the literature are illustrated in Figure 2.3

and can be defined as:

• Hardware-in-the-loop (HIL), is a type of simulation where real physical devices

are connected with other SUs, and the inputs of the real hardware will be fed with
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realistic virtual signals. The use of HIL is normally expensive and not flexible

(KWON; CHOI, 1999).

• Software-in-the-loop (SIL), is the integration of production source codes and other

SU, that are normally mathematical models. SIL can be an less expensive alternative

to HIL, it is also possible to use SIL to compare production software with pure

simulation options (KWON; CHOI, 1999).

• Human-in-the-loop (HITL) simulations, consider human interactions as part of the

co-simulation environment, and not as a simple input to a system. It is also possible

to use HITL in brain–computer interface (BCI) simulations, or on other types of

biological and medical simulations (ROTHROCK; NARAYANAN, 2011).

• Virtual-images-in-the-loop (VIIL), consists of using synthetic data generated by 3D

engines as an input to parts of a co-simulation system. This approach is normally

used to simulate systems that require computer vision features (SCHOFIELD et al.,

2023).

Figure 2.3: The different types of co-simulations models

(a) Hardware-in-the-loop simulation

Hardware Dynamical System

(b) Software-in-the-loop simulation

Software Dynamical System

(c) Human-in-the-loop simulation

Human Dynamical System

(d) Virtual-images-in-the-loop simulation

Virtual Images Dynamical System

Source: Author (2023)

The connection between the co-SUs that composes a co-simulation needs to ensure

the accuracy of the final simulation, then an orchestrator becomes a critical part of these
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systems. The orchestrator is responsible to manage how the inputs and outputs of each

SU will be connected in order to produce the correct behavior traces according to the

simulation scenario, another crucial task of orchestrators is to control the simulation time

flow in all SUs, ensuring that the timestamps will be precisely synchronized (GOMES et

al., 2018).

When a co-simulation involves SUs from different simulation approaches, such as

mixing CTS and ABS, the development of an orchestrator becomes considerably more

complex, regarding the simulation time management. In CTSs SUs there is more flexibility

in deciding the step size of the simulation, on the other hand, DESs SUs needs the inputs

at precise timestamps. Simulations with SUs that use different approaches are called

hybrid co-simulations, in Brailsford et al. (2019) the most common solutions for hybrid

co-simulations orchestration are described as:

• Sequential: Where the SUs of each approach are executed in sequence. When a SU

is running the simulation time is paused for the others SUs. In this work, this is the

adopted solution.

• Enriching: Where the SUs uses a predominant approach, and the other types of SU

are used only for special cases. When it occurs, the orchestrator needs to ensure

synchronization for these special events.

• Interaction: Where the orchestrator can dynamically define the execution order of

each SU at runtime.

• Integration: Where the orchestrator precisely defines the moment where one ap-

proach ends and another begins. Globally the different simulation approaches are

seamless.

The orchestrator can be classified according to its integration mode, the coordination

of the simulations can be fully automated, can use intermediate files, or can be manual

in simpler cases (BRAILSFORD et al., 2019).

2.2 Caviar Methodology

CAVIAR is a hybrid co-simulation methodology, that focuses on 5G/B5G realist

scenarios, and how AI/ML models can impact these systems. One of the most important
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aspects of CAVIAR is that it tries to bring a high level of realism, creating an environment

that simulates the most diverse facets of a real-world situation. In order to create realistic

simulation scenarios, each CAVIAR simulation should include SUs that are categorized

into three different modules; the communications module, the 3D module, and the AI

modules.

Figure 2.4: CAVIAR’s modules structure
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Source: Author (2023)

As illustrated in Figure 2.4 the CAVIAR’s modules should be composed by SUs

that are crucial to simulations involving the most diverse factors that impacts the perfor-

mance of wireless communications systems. The communications module (Figure 2.4a) is

responsible for all SUs related to data transmission, which includes all layers of a commu-

nications network. The 3D module (Figure 2.4b) is responsible for the creation of realistic

virtual scenes, which include the vehicle’s mobility and also the rendering of virtual 3D

images. The AI module is fundamental to investigate how AI/ML agents will impact

different parts of a wireless communications network. A smart orchestrator (Figure 2.4d)

is indispensable to coordinate the various SUs that can compose each CAVIAR’s module.

All inputs and outputs of each CAVIAR’s SU can be shared with the AI module,

which is composed of algorithms responsible to train and test AI/ML models. These mod-

els can be trained with large datasets composed by the traces of CAVIAR’s simulations

or they can be trained during the simulation process, which introduces the concept of

AI-in-the-loop (AIIL) simulation (Figure 2.5), being this the integration of AI with the

other SUs in a co-simulation system.
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Figure 2.5: AI-in-the-loop simulation
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Source: Author (2023)

The 3D module is also very important because the rendering of 3D scenes can enable

meaningful strategies for the use of computer vision to improve the quality of service of

5G/B5G wireless communications, for example, it is possible to place a camera in a BS

to detect the movement of vehicles and train an AI model to decide the best antenna

positioning. The physical system provided by 3D engines also enables the use of sensors

such as light detection and rangings (LIDARs), barometers, etc.

As each CAVIAR’s module can be composed for distinct SUs that can be developed

based on different simulation approaches (CTS or DESs), an orchestrator that is prepared

to deal with hybrid co-simulation is necessary. A set of Python scripts along with an

interprocess communications protocol are used to determine the execution schedule and

also how the inputs and outputs will be shared between the SUs.

Figure 2.6 shows how the CAVIAR’s modules can be connected in a search and

rescue (SAR) simulation scenario. In the presented embodiment the Network Simulator

3 (ns-3) is used to simulate a V2X sidelink network for a swarm of virtual UAVs that are

being simulated by AirSim simulator inside the 3D scenario provided by Unreal Engine

4 (UE4). The simulated UAVs used AI methods for real-time object detection in 3D

scenes. More details about this implementation will be given in Chapter 3.

2.2.1 Automation of CAVIAR co-simulations

Regarding the level of automation of CAVIAR, the simulations can be orchestrated

using diverse topologies, that are classified into two main categories, completely in-loop

simulations, and out-loop simulations. The completely in-loop simulations (Figure 2.7a)

is the main target of this work. In this topology, all CAVIAR’s modules have its SUs
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Figure 2.6: Embodiment of the CAVIAR method for a SAR use-case
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integrated in a completely automated way, using a sequential approach. The simulation

steps advance synchronously between the SUs, which allows the outputs of one SU to

influence the behavior trace of the other SUs in the next step. This type of simulation is

an excellent option to measure the impacts of AI/ML models in communications systems.

Sometimes it is interesting to execute CAVIAR’s modules or parts of a module

in different moments, using a semi-automated routine, these topologies are classified as

out-loop simulations. For example, in works developed in Klautau et al. (2018), Dias

et al. (2019), Suzuki et al. (2022) all wireless communications channels are generated in

a preprocessing moment and after virtual images are generated to be used to train and

test AI/ML models (Figure 2.7b). This was necessary due to the characteristics of the

ray-tracing simulator used in that embodiment.

As simulations involving 3D engines normally demand a high CPU and GPU usage,

it is preferable to run them separately in some specific situations. All works described in

Oliveira et al. (2021), Borges et al. (2021), Correa et al. (2022) use sets of mobility traces

that were previously generated by the CAVIAR 3D module, putting in the simulation

loop just the communications and AI modules (Figure 2.7c). This kind of approach is

interesting to test different AI/ML models in a faster way. It is also possible to compose

large datasets from CAVIAR traces to be used for AI/ML training in a postprocessing

moment, as illustrated in Figure 2.7d.
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Figure 2.7: The modes for integrating CAVIAR’s modules
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Chapter 3

Implementation

This chapter discusses an implementation of the CAVIAR methodology in a SAR

situation, where different UAVs are used to search for people in an urban scenario, as

previously illustrated in Chapter 2. In Section 3.1 a brief introduction about SAR is

presented, while Section 3.2 describes with details the simulation environment that was

implemented.

3.1 SAR missions assisted by UAVs

In disaster situations, such as floods, wildfires, storms, earthquakes, or several other

emergency, finding and rescuing the survivors without delay and ensuring the safety of

rescue teams is crucial. The use of UAVs in these situations is important to reduce the

operation time and to ensure more efficiency in the rescue process (ALOTAIBI et al.,

2019).

Due to the variety of sensors that a UAV can carry, it is possible to use UAVs to

search for survivors via different methods, including computer vision, cellular localization,

and sounds (LINS et al., 2021). The most used methods are based on computer vision, but

Albanese et al. (2021) brings an important discussion about the use of cellular localization

to search for survivors behind obstacles.

During a SAR mission it is possible to have UAVs controlled by a capacitated pro-

fessional or fully autonomous vehicles. Alotaibi et al. (2019) reported that a swarm of

autonomous UAVs is the more efficient manner to search for people in disaster situations,

they also indicate that the number of UAVs is directly related to the number of rescued
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survivors.

When using a UAV swarm it is important to ensure that all vehicles involved in the

mission are fully connected and also connected to a terrestrial controller in most cases. The

connection between the UAVs can be done using different technologies. Cellular networks

enable long-range communications which bring a great advantage to SAR missions. In

cellular networks the UAVs can act as simple UE, in coverage areas, they can act as

mobile BSs increasing the network coverage (ALSAEEDY; CHONG, 2020), and it is also

possible to create a direct link using sidelinks in out-of-coverage scenarios (MISHRA et

al., 2022).

3.2 Proposed simulation enviroment

Figure 3.1: Simulation Scenario

5G Sidelink

UAVs Controller

Source: Author (2023)

In order to validate the methodology described in Chapter 2, a simple simulation

environment was developed considering the three essential modules of CAVIAR: mobility,
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communications, and AI. In this simulation, all modules work together using the in-loop

paradigm.

The UE4 is used alongside the AirSim simulator to provide mobility for the simula-

tion environment, with AirSim a swarm of UAVs is used to search for people in a possible

SAR situation, and the UE4 also provides the mobility of cars and pedestrians. Taking

advantage of the realistic graphics provided by UE4, a You Only Look Once (YOLO) deep

neural network was implemented as the AI module, which is used to search for people to

be rescued as illustrated in Figure 3.1.

Figure 3.2: Simulation Sequence Diagram
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The communications module was deployed using the ns-3 with its module for 5G

communications, the 5G-LENA. The communications network was inspired by the work

of Mishra et al. (2022), considering 5G sidelinks channels.
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As shown in Figure 3.2, the simulations start at the mobility module, which is

responsible for the 3D images and also for the mobility of the users. The images captured

by the UAVs are transmitted as a video streaming to the AI module, which is responsible

to detect the pedestrians to be rescued. The mobility module also informs the position of

each actor (UAVs, cars, and pedestrians) to the communications module, which simulates

all layers of a 5G network.

After each simulation step, the mobility module saves the traces of all 5G network

layers in a database, and the AI module also saves the labels for the detected pedestrians.

It is important to notice that the AI module processes the images in parallel with the

other modules, while the communications and mobility modules work in sequence. The

mobility module only goes to the next step after the ACK from the communications

module. At the end of the simulation, the communications module computes different

key performance indicators (KPIs) related to the 5G network.

Table 3.1 shows that the number of users can vary from 2 to 45 in the described

simulations, including different types of UEs. It also shows all parameters used for this

simulation environment, each one of these parameters will be discussed in more detail in

the following subsections.

Table 3.1: Parameters of the modules used in SAR use-case

ns-3 / 5G-LENA
ns-3 version: : 3.36 5G-LENA version:: 0.2.y
Scenario: NR Sidelink Mode 4 Channel model: TR 37.885
Frequency: 5.9 GHz Bandwidth: 40 MHz
Numerology: 0 Transmission Power: 23dBm
Antenna Element: Isotropic Antenna Array: 1× 2

YOLO
Version: V7 Model: YOLOv7-tiny

ZMQ
libzmq version: 4.3.4 cppzmq version: 4.11
pyzmq version: 23.2.1

AirSim / Unreal Engine
AirSim version: 1.3.0 Unreal Engine version: 4.27.2
Number of UAVs: 1-5 Number of cars: 0-2
Number of pedestrians: 0-36 Number of UAV’s controllers: 0-2

Source: Author (2023)
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3.2.1 The urban 3D scenario

Thinking about SAR mission involving UAVs, a good strategy is an urban or semi-

urban environment, that offers a considerable number of obstacles, such as buildings, cars,

trees, and other types of vegetation. In that kind of scenario, it is possible to simulate

realistic situations for SAR and also for mobile communications networks.

Figure 3.3: Proposed Urban Scenario

Source: Author (2023)

With the help of UE4 the 3D scenario of Figure 3.3 was developed seeking to achieve

the maximum of realism, as techniques of computer vision will be used to detect possible

survivors in the simulated disaster situation.
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3.2.2 Mobility structure

The developed SAR simulation has different actors that are in constant movement:

the cars, the pedestrians, and the UAVs. As previously described in Airsim Section, the

AirSim is a complete UAV simulator, that provides an application programming interface

(API) to control each vehicle, for this SAR mission five UAVs were configured to fly

around the 3D scenario.

In this implementation, the simplest mode of AirSim is being used, where neither

SIL nor HIL are considered. As this work does not focus on UAVs path planning, a script

was developed to generate random trajectory for the UAVs. The square shown in Figure

3.3 was divided into 48 waypoints as illustrated in the graph of Figure 3.4, each UAV

randomly selects four waypoints, one from each quadrant, and a land point to compose

its trajectory. To avoid accidental crashes, all UAVs fly in different altitudes. The first

UAV flys between 10m and 14m, the second one flys between 15m and 19m, and so on.

Figure 3.4: Waypoints Coordenates
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The cars and the pedestrians do not have the same level of realism as the UAVs, they

are just simple 3D objects that move around a predefined trajectory, not considering the

air resistance or others physicals variables. The trajectories of the cars and pedestrians are

shown in Figure 3.5. The cars are programmed to move in circles following the trajectory’s

lines, and the pedestrians have a more random comportment, but always follow the pre-

defined lines, that are in the sidewalks. The simulations can also have one or two fixed

UAVs controllers.

Figure 3.5: Cars and pedestrians trajectories, identified by the white lines

Source: Author (2023)

3.2.3 Network topology and patterns

As previously described in this chapter, the different actors of the simulation will

use 5G NR sidelinks to communicate. The NR V2X sidelinks have two modes of operation

considering the resource allocation (ALI et al., 2021):

• Mode 1: The next generation nodeB (gNB) schedules the resources for the UEs,

and the UEs are only responsible for the data transmission.

• Mode 2: The UEs determines the transmission resources, normally with pre-configured

instructions by the network. This mode is more used in out-of-coverage situations.
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The NR V2X supports unicast, groupcast, and broadcast messages. For this SAR

scenario all actors, including UAVs, cars, and pedestrians will be connected using the

NR V2X and they will periodically send broadcast messages. Other parameters of the

network, such as channel model, antenna configuration, frequency, etc. are described in

Table 3.1.

At the end of the simulations, the network module also computes three KPIs in

order to evaluate the V2X performance. These KPI are (ALI et al., 2021):

• The packet inter-reception delay (PIR), that is the elapsed time between the re-

ception of two packages transmitted by a specific UE. The average PIR is computed

for each pair of UEs

• The packet reception ratio (PRR), that is the ratio of neighbors that successfully

received a package over the total number of neighbors. For this scenario, the PRR

is computed for each transmitted package in a 200 m range.

• The Throughput, that is the total number of successfully received bytes during the

simulation, and it is measured for each pair of UEs.

3.2.4 Real-time object detection

The images captured from the UAVs cameras are analyzed by an YOLO network

to recognize the pedestrians to be rescued in the SAR mission. The use of AI in these

scenarios can be done completely in the cloud, as the work developed by Surmann et al.

(2019), the AI model can be partitioned between different actors inside a communications

network, as suggested by Lins et al. (2021), or it can be done completely in the edge

device (MCENROE et al., 2022).

Considering a SAR mission in an out-of-coverage scenario, the simplest way to per-

form AI image processing is using the AI models in the edge. Therefore in this simulation

environment, all images will be processed directly on the UAVs. The YOLOv7 will be

used considering its tiny mode, which is a model optimized for edge computing.

The YOLOv7-tiny model was completely optimized for edge AI applications, it uses

a ReLU for the activation function, instead of the SiLU used by the others YOLOv7

models. Besides the activation function, the tiny version also reduces the number of

parameters during the network training (WANG et al., 2022).
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Table 3.2: Comparison of YOLO models for real-time object detection

Model Nº of Parameters Average Precision (validation)
YOLOX-S 9.0M 40.5%
YOLOX-M 25.3M 46.9%
YOLOX-L 54.2M 49.7%
YOLOX-X 99.1M 51.2%
YOLOv4 64.4M 54.8%

YOLOv4-CSP 52.9M 55.6%
YOLOv4-tiny 6.1M 28.4%
YOLOv4-tinyl3 8.7M 31.9%
YOLOv5-N 1.9M 28%
YOLOv5-S 7.2M 37.4%
YOLOv5-M 21.2M 45.4%
YOLOv5-L 46.5M 49.0%
YOLOv5-X 86.7% 50.7%
YOLOv7-tiny 6.2M 38.0%

YOLOv7-tiny-SiLU 6.2M 42.4%
YOLOv7 36.9M 55.5%

YOLOv7-E6E 151.7M 60.5%

Source: Wang et al. (2022)

Table 3.2, shows the performance of different versions of YOLO networks using the

Microsoft COCO dataset (LIN et al., 2014). It is possible to note that the YOLOv7-tiny

is 10% more accurate than the YOLOv5-N, which uses a larger number of parameters,

and it is more than 25% faster than the YOLOv6-N (WANG et al., 2022).

3.2.5 Interprocess communications

As in this simulation, only two CAVIAR’s modules will use the ZMQ protocol to

exchange messages, the most basic ZMQ pattern will be used, the client/server mode.

Using the ZMQ client/server architecture, two sockets are open between the two

simulators: the request socket and the response socket. A request socket can be connected

and send requests to different ZMQ servers, but the socket will be blocked until it has

received a reply. The ZMQ response socket will also be blocked if there are no requests.

In summary, the client/server architecture of ZMQ works with pair of messages and the

client can not send a new request before receiving the server response (HINTJENS, 2013).

The communication between the mobility module and the AI module is done by
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video streaming and does not pass through ZMQ, as illustrated in Figure 3.6. This

simplest architecture is used because for this scenario the results of the AI module do not

need to be feedbacked to the other modules.

Figure 3.6: Illustration of the messages exchanged between the CAVIAR modules
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Source: Author (2023)



Chapter 4

Results and Discussion

This chapter presents the results of the simulations performed in the CAVIAR sim-

ulation embodiment described in Chapter 3. The discussions will be focused on the

computer benchmarks discussed in Section 4.1. Results considering the KPIs related to

the implemented communications network are presented in Section 4.2, and results about

the AI/ML for real-time object detection are presented in Section 4.3.

4.1 Benchmarks

The computer performance and the WcT are key factors related to co-simulations

environments involving a large number of complex SU, especially when it uses AI/ML

models. To evaluate the performance of the CAVIAR methodology in completely in-loop

simulation, three experiments were executed. In the first one various simulations were

executed increasing the number of UEs from 5 to 40, to evaluate the stress that this

would cause in the system. In this first experiment, just one UAV was used. In the

second experiment, five UAVs were used, and the number of UEs was also increasing

from 5 to 40. A third experiment was executed using the same parameters as the second

experiment, but distributing the CAVIAR modules into two distinct computers.

The experiments were performed using modern personal computers, without any

special configurations. Information concerning the hardware specifications of the two used

computers is in Table 4.1. Computer 01 was using as operating syste (OS) the PopOS

version 22.04, and Computer 02, the Ubuntu version 20.04.4, both are Debian-based Linux

systems. The two computers were interconnected using a local network.
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Table 4.1: Simulation hardware specifications

Computer 01
CPU model: Intel® Core™ i7-8700 Nº of CPU cores: 6
CPU base frequency: 3.20 GHz GPU model: NVIDIA® GeForce RTX™ 2060
RAM type: DDR4 RAM capacity: 16GB
RAM frequency: 2400 MHz VRAM: 6GB
Storage type: SSD Storage speed: 510MB/s

Computer 02
CPU model: Intel® Core™ i7-10700F Nº of CPU cores: 8
CPU base frequency: 3.20 GHz GPU model: NVIDIA® GeForce RTX™ 3060
RAM type: DDR4 RAM capacity: 64GB
RAM frequency: 2400 MHz VRAM: 12GB
Storage type: HDD Storage speed: 245MB/s

Source: Author (2023)

Each SU of the implemented co-simulation environment was individually analyzed

in terms of computational costs. The PSrecord1 software was used to carry out all com-

putational analyses. The PSrecord is a software that registers in comma-separated val-

ues (CSVs) files, all computational resources used by a process and its child process. It

is important to notice in the CPU load analyses, that besides the process directly re-

lated to the simulations, the analyses software and the OS were also using parts of the

computational available resources.

4.1.1 Results considering one UAV

In the first experiment, eight simulations were performed increasing the number of

users from five to a total of 40 users. Among these, one UE was a UAV searching for

survivors using computer vision, one UE was the UAV controller, two UEs were cars, and

all the others were pedestrians walking in the scenario. These simulations were performed

using only Computer 01.

Figure 4.1 shows the CPU load of each SU during the WcT. As the number of UAVs

was fixed to just one UAV, the CPU load of almost all SUs does not change when the

number of UE increases.

Only the processes related to the communications module (ns-3) are demanding more

1PSrecord: <https://github.com/astrofrog/psrecord>.

https://github.com/astrofrog/psrecord
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computational power with the increase in the number of users. But as shown in Figure

4.1c and Figure 4.1d, the CPU load for the communications modules does not increase

after the simulation with 30 users, this happens because along with other processes, the

simulations made the CPU reach its limit. Arriving at this boundary load, the CPU does

not allow the ns-3 process to continue rising the CPU load.

Figure 4.1: CPU usage for a simulation considering one UAV
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(b) CPU usage with 20 users
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It is important to notice that the AI module represented by the YOLO process in

Figure 4.1 is using a low percentage of the CPU, however, it used 52% of the GPU load

during all simulations. The processes of AirSim and UE4 are parts of the 3D module,

where the AirSim process is only responsible for the UAV control, and the UE4 process
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is responsible for the 3D rendering and the physics simulation, including the sensors and

actuators that are embedded on the UAV.

4.1.2 Results considering five UAVs

The simulations executed in this second experiment used similar parameters to the

ones of the first experiment: it was a set of eight simulations with an increasing number

of users from 5 to 40. Differently from the previous experiment, the number of UAVs

was fixed to five, the number of UAVs controllers varied from 0 to 1, the number of cars

varied from 0 to 2, and the others UEs were pedestrians. As previously, all simulations

were executed using only Computer 01.

In this experiment, it is possible to notice that the CPU load used by the UE4 pro-

cess is greater than the percentage used previously and it also presents more variations

during the time, as notable in Figure 4.2. This occurs because the UE4 is responsible for

simulating all the physical parameters that are inside the 3D virtual scenario, including

the wind speed, magnetic field, etc. When the number of UAVs is incremented it be-

comes more costly to simulate the stimulus that will be inputted in the dynamical system

responsible for the UAVs control. It does not occur when other types of users are incre-

mented because the cars and pedestrian models are much simpler and do not consider all

the physical variables used in the UAVs controller.

Similar to the first experiment it is noticeable that the growth of CPU load allocated

for the ns-3 tends to stagnate after a certain number of users, as shown in Figure 4.2c

and Figure 4.2d, but at this case, the maximum percentage of CPU load achieved by the

communications module is much smaller. The CPU load allocated to the UE4 process

also becomes stagnate in this second experiment, this is also related to the maximum

capacity of the CPU.

The CPU load associated with the AI module remains low and static with a higher

number of UAV because even having five UAVs in the simulation, only the images of one

UAV are being used as input to the YOLO network.

4.1.3 Results for distributed simulation considering five UAVs

In this third experiment, the distribution of the users in the simulations was identical

to the second experiment, with eight simulations with several UEs varying from 5 to 40.
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Figure 4.2: CPU usage for a simulation considering five UAVs
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The difference is that the CAVIAR simulation modules were distributed: the 3D and the

AI modules were executed in Computer 01, and the communications module was executed

in Computer 02.

Figure 4.3: CPU usage for a simulation considering five UAVs using a distributed topology

(a) CPU usage with 10 users at Computer 01
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In Figure 4.3a and Figure 4.3c the total percentage of the CPU load used by the

co-simulations remains at the same level as in the second experiment, what reinforces

the CPU load limit due the high demands from the 3D module. On the other hand,

Figure 4.3b and Figure 4.3d shows that the communications module has used less than

five percent of the CPU load in the most stressful case. It is also noticeable that when

executed in a separated computer the ns-3 process has more freedom to demand more
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CPU resources when the number of UEs increases.

4.1.4 Simulation time

Figure 4.4 shows the elapsed WcT to execute each one of the simulations executed

in the three previously discussed experiments. All simulations were executed within 2

minutes considering the simulation time. For the first experiment where just one UAV

was used, time WcT starts to increase more strongly when the number of users overcomes

the threshold of 25 users. This is the point where the communications module archived

the maximum percentage of CPU usage, which causes an increase in processing time.

For the experiment with five UAVs, the WcT starts increasing when the number of users

reaches the number of 20 users because in this situation the CPU is more stressed by the

3D module.

Figure 4.4: Simulation time
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When the co-simulation processing is split into two computers in the third exper-

iment, the elapsed WcT remains almost constant along all the simulations, because in
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these cases the combined resources of the two computers are sufficient to process the

demands from all the CAVIAR’s modules. The WcT used in the distributed scenario is

higher than the WcT used at the smallest simulation from the first experiment. This

occurs because in the distributed topology the network delay needs to be considered, and

the simulations trace storage in Compute 02 is done using an HDD, which has a limited

writing speed.

4.2 Communications module results

To better evaluate the results produced from the implemented 5G V2X network,

two more experiments were performed. For both experiments, five UAVs were used to

search for people in a possible SAR situation, but only the UAVs were connected to the

communications network, all UEs were sending broadcast messages with a fixed data

rate in V2X sidelink mode 02 structure. All network parameters were set according to

Table 3.1, and the only changed parameter was the bandwidth, in the first simulation a

40 MHz bandwidth was used, differently from the 10 MHz bandwidth used in the second

simulation.

Table 4.2: PRR values for a simulation with 5 UEs and 40 MHz of bandwidth

UE ID Range Nº of receivers Average PRR
1 200.0m 5 0.6926
2 200.0m 5 0.6685
3 200.0m 5 0.6955
4 200.0m 5 0.7031
5 200.0m 5 0.7043

Source: Author (2023)

Among the different computed KPIs, this section will focus on the PRR. As previ-

ously described, the PRR is related to the number of successfully received packages in a

certain radius, being directly related to the reliability of the system. Table 4.2 shows that

all UE have a PRR around 0.7, thus from all packages transmitted from all UEs 70% are

arriving correctly to all the receivers.

Some simulations were performed to detect how the simulation parameters affect the

PRR. First, the transmission power has been reduced by half, but it did not produce any
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significant change in the results, because the simulation 3D scenario has a limited area,

where the maximum distance between the UAVs is around 14 m. After a new simulation

was performed, at this time reducing the bandwidth to only 10 MHz, which causes a

reduction to the PRRs to a value around 0.55, reducing the network reliability.

Table 4.3: PRR values for a simulation with 5 UEs and 10 MHz of bandwidth

UE ID Range Nº of receivers Average PRR
1 200.0 5 0.5258
2 200.0 5 0.5163
3 200.0 5 0.6004
4 200.0 5 0.6033
5 200.0 5 0.5413

Source: Author (2023)

These results can be used as an example of how wireless communications networks

can benefit from simulations using the CAVIAR methodology. For example, an AI/ML

model can use data from the sensors that are embedded in the UAVs to choose the better

parameters to configurations the communications network if the receiver UE is near the

transmission UE it is possible to reduce the transmission power ensuring the reliability of

the communications system, and at the same, the UAVs can benefit of it to reduce the

power consumption.

4.3 AI module results

Figure 4.5 shows one single video frame that was transmitted from the CAVIAR’s

3D module to the AI module. At the AI module the images were processed by an YOLOv7

network using the parameters described in Chapter 3. The pedestrians inside the simula-

tion were correctly labeled with a mean average precision of 70%.

It is important to notice that the used AI model of trained with a dataset composed

of real images of different objects, and when it was tested in the simulation environment

with virtually generated images, the network classified correctly the objects inside the 3D

scene, and with a mean average precision that was higher than the precision computed

when the model was analyzed using real images. This demonstrates the efficiency of using

VIIL in co-simulation environments.
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Figure 4.5: Object detection result generated by the AI module

Source: Author (2023)



Chapter 5

Conclusion and Future Works

This chapter provides general conclusions and suggestions for future works.

5.1 Conclusion

This dissertation aimed to develop a hybrid co-simulation system for investigations

involving AI/ML and the future generations of mobile communications networks. Based

on the analysis of benchmark results and the outputs generated by the co-simulation

environment, it can be concluded that it is possible to perform simulations with high

levels of realism using different aspects of the real world in simple distributed or single

computer topology.

The use of fully automated approaches (in-loop simulations), and the introduction

of the AIIL concept brings to CAVIAR the possibility to easily integrate AI/ML in its

simulations, including the use of RL agents in the mobile communications systems. There-

fore, this work does not use any output of the AI module to improve the communications

network, but further research can benefit from the implemented methodology to test how

the wireless communications systems can interact with AI/ML in a realist simulation

environment.

5.2 Future Works

As some concepts presented in this work are new and given the possible usage of

CAVIAR methodology in a large range of situations, it leaves room for improvements and
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future works. Some suggestions for future investigations are provided as follows:

• The use of ray-tracing simulations, in order to provide more realistic wireless chan-

nels. The stochastic models that are being used do not benefit from all features that

are provided by the 3D engines.

• The use of multiple mobility SUs. In the implemented embodiment the UAVs mo-

bility was implemented with sophisticated models, but the cars and pedestrians

are simple objects following a pre-defined trajectory. Other co-simulators can be

implemented to ensure more realism for all the users.

• The study of interprocess communications protocols. The ZMQ was used to ex-

change messages between the SUs because it is one of the most used tools in the

state-of-the-art, but other alternatives were not tested.

• The use of AI/ML as communications network functions. In the present imple-

mentation, the results of the AI do not impact the communications module. But

an important research topic is how to use AI/ML to improve communications (for

instance, in 6G), and CAVIAR enables such integrated simulations.
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