

UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICA

ÁDINA LIMA DE SANTANA

DETERMINAÇÃO DE PARÂMETROS DE TRANSFERÊNCIA DE MASSA DO PROCESSO DE EXTRAÇÃO SUPERCRÍTICA

BELÉM 2013

ÁDINA LIMA DE SANTANA

DETERMINAÇÃO DE PARÂMETROS DE TRANSFERÊNCIA DE MASSA DO PROCESSO DE EXTRAÇÃO SUPERCRÍTICA

Dissertação apresentada ao Programa de Pós Graduação em Engenharia Química da Universidade Federal do Pará como parte dos requisitos necessários para a obtenção do título de Mestre em Engenharia Química

ORIENTADORES: Prof^a. Dr^a. Marilena Emmi Araújo Prof. Dr. Ing. Nélio Teixeira Machado

> BELÉM 2013

Dados Internacionais de Catalogação-na-Publicação (CIP) Sistema de Bibliotecas da UFPA

Santana, Ádina Lima de, 1987-Determinação dos parâmetros de transferência de massa do processo de extração supercrítica / Ádina Lima de Santana. - 2013.

Orientadora: Marilena Emmi Araújo; Coorientador: Nélio Teixeira Machado. Dissertação (Mestrado) - Universidade Federal do Pará, Instituto de Tecnologia, Programa de Pós-Graduação em Engenharia Quí-mica, Belém, 2013.

1. Transferência- massa. 2. Extração com fluido supercrítico. 3. Modelos matemáticos. 4. Dióxido de carbono. I. Título. CDD 22. ed. 660.28423

ÁDINA LIMA DE SANTANA

DETERMINAÇÃO DE PARÂMETROS DE TRANSFERÊNCIA DE MASSA DO PROCESSO DE EXTRAÇÃO SUPERCRÍTICA

Dissertação apresentada ao Programa de Pós Graduação em Engenharia Química da Universidade Federal do Pará como parte dos requisitos necessários para a obtenção do título de Mestre em Engenharia Química

LINHA DE PESQUISA: PROCESSOS ORGÂNICOS DATA DA AVALIAÇÃO: __/_/__ CONCEITO: _____

BANCA EXAMINADORA

Wanifere Comi Ancio

Prof^a. Dr^a. Marilena Emmi Araújo (Orientadora – FEQ/ITEC/UFPA)

Nels Tringin Madad

Prof. Dr. Ing. Nélio Teixeira Machado (Orientador – FEQ/ITEC/UFPA)

Prof^a. Dr^a. Maria Ângela de Almeida Meireles (Membro – DEA/FEA/UNICAMP)

Kaul Nons de

Prof. Dr. Raul Nunes de Carvalho Jr (Membro - FACET/UFPA)

Ao Senhor Deus Todo Poderoso, hoje e eternamente.

AGRADECIMENTOS

Ao Deus Todo Poderoso, capaz de fazer infinitamente mais de tudo aquilo que pedimos ou pensamos, que me fez chegar até aqui, apesar das minhas limitações: obrigada por essa conquista e pelo que há de vir!

Aos meus pais, Antônio Cordeiro de Santana e Raimunda Lima de Santana, e meu irmão Ádamo Lima de Santana pela força e por acreditarem na minha capacidade de vencer essa batalha.

Aos meus orientadores, Prof.^a Dr.^a Marilena Emmi Araújo e Prof. Dr. Ing. Nélio Teixeira Machado pela orientação com incentivo, paciência e excelência neste trabalho.

À prof^a. Dr^a. Maria Angela de Almeida Meireles e ao prof. Dr. Raul Nunes de Carvalho Jr. pelas sugestões que contribuiram no aprimoramento deste trabalho.

Ao Sr. Ribamar (secretário do PPEQ - Programa de Pós-Graduação em Engenharia Química), pela paciência e eficiência nos atendimentos referentes a minha estada neste curso de mestrado, apesar das dificuldades que ele tem enfrentado (espero que ele venha superar tudo isso).

À prof^a. Dr^a. Shirley Cristina Cabral Nascimento e aos colegas do PPEQ, Cydemar Brito da Paixão, Dilson Nazareno Pereira Cardoso, Elizeu Melo, Hellen Carvalho Barros, Kelly Sarmento, João Monteiro e Takashi Dias Nishioka pela amizade e auxílio nos estudos.

Aos colegas do Laboratório Term@ (LEQ – UFPA), M.Eng. Andréia Mancio, M.Eng. Alberto Takakura, M.Eng. Dyenny Lhamas, M.Eng. Fernando Azevedo, M.Eng. Silvio Mota e ao Sr. Nahum, da Usina de Biocombustíveis pelo companheirismo e pelas eventuais ajudas.

À bibliotecária Maria Ivone Maia da Costa (UFPA), e à estagiária Monique pelas colaborações no decorrer do levantamento bibliográfico.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ), pelo auxílio financeiro, mediante bolsa.

A todas as demais pessoas que por direito deveriam estar mencionadas aqui (mas não há espaço suficiente) deixo expressos os meus maiores agradecimentos e profundo respeito, que sempre serão poucos diante do muito que me foi ofertado. Muito obrigada a todos!

"Combati o bom combate, acabei a carreira, guardei a fé."

II Timóteo 4:7 (Bíblia Sagrada)

RESUMO

A extração com fluido supercrítico de materiais líquidos e sólidos despertou o interesse para aplicações industriais nas últimas décadas, mais particularmente sob o conceito de química verde e biorefinarias, portanto é fundamental que se faça uma modelagem desse processo a fim de otimizar as condições operacionais e simular o processo. O objetivo geral deste trabalho consiste na determinação de parâmetros de transferência de massa do processo de extração supercrítica de matriz sólida, empregando o dióxido de carbono como solvente, a partir de dados cinéticos de extração e na avaliação sistemática de cinco modelos matemáticos para descrever as cinéticas de extração dos óleos da polpa e da casca do buriti, do óleo de açaí de da oleoresina de cúrcuma, medidas no Laboratório de Extração Supercrítica, da Faculdade de Engenharia Química (UFPA), a fim de contribuir para o estudo de ampliação de escala e análise de custo de produção. Foram avaliados os modelos de Tan e Liou, Goto et al. (1993), Martinez et al. (2003), Esquível et al. (1999), e Sovová (1994). A modelagem das cinéticas de extração foi realizada utilizando aplicativos computacionais desenvolvidos e validados neste trabalho a partir de diferentes dados experimentais publicados na literatura. Diante de 40 cinéticas medidas com diferentes equipamentos de extração, configurações de leito, tipos de matérias primas, preparo dos materiais, pressão e temperatura e outros parâmetros de processo (com destaque ao rendimento global e a vazão de solvente), foi construído um panorama dos resultados acerca da capacidade dos modelos de transferência de massa em descrever as mais diferentes curvas globais de extração. De forma geral, os modelos de Goto et al. (1993) e Sovová (1994) apresentaram as melhores previsões aos dados experimentais das matérias primas tratadas neste trabalho com menores valores de qui quadrado, erros relativo, faixa de erro e desvios padrão e valores de R² próximos da unidade.

Palavras-chave: Açaí, buriti, cúrcuma, extração supercrítica, dióxido de carbono, modelagem.

ABSTRACT

Supercritical fluid extraction of liquid and solid materials sparked interest for industrial applications in recent decades, particularly under the concept of green chemistry and biorefineries, so it is essential to make a modeling of this process in order to optimize and simulate operating conditions process. The objective of this work consists in determining the parameters of mass transfer of supercritical extraction of solid matrix by employing carbon dioxide as solvent, from kinetic data extraction and five systematic evaluation of mathematical models to describe the kinetics extraction of oils from the peel and pulp of buriti, oil from açaí and oleoresin from turmeric, measured in Supercritical Extraction Laboratory, Faculty of Chemical Engineering (UFPA) in order to contribute to the study of scale-up and production cost analysis. Were evaluated the models of Tan and Liou, Goto et al. (1993), Martinez et al. (2003), Esquível et al. (1999), and Sovová (1994). The extraction kinetics modeling was performed using computer applicatives developed and validated in this work from different experimental data published in the literature. Facing 40 kinetic measurements with different extraction equipment, bed settings, types of raw materials, preparation of materials, pressure and temperature and other process parameters (especially income and global flow solvent), was built an overview of results ability of the models on the mass transfer in more different curves describing the overall extraction. Generally, the model Goto et al. (1993) and Sovová (1994) showed the best predictions to experimental data of raw materials treated in this work with smaller values of chi-square, relative errors, range and standard error and R² values close to unity.

Keywords: Açaí, buriti, turmeric, supercritical extraction, carbon dioxide, modeling.

LISTA DE ILUSTRAÇÕES

Figura 1	Definição do estado supercrítico para o dióxido de carbono puro.	
Figura 2	Curva Global de Extração em Três Estágios	
Figura 3	Fluxograma do processo empregado em ambiente computacional para a determinação dos parâmetros cinéticos ajustado por duas retas	
Figura 4	Fluxograma do processo empregado em ambiente computacional para a determinação dos parâmetros cinéticos ajustado por três retas	77
Figura 5	Interface computacional gerada para o ajuste de duas retas	78
Figura 6	Interface computacional gerada para o ajuste de três retas	78
Figura 7	Interface computacional gerada para o modelo de Sovová	83
Figura 8	Comparação entre os ajustes dos dados de gengibre para duas retas a 30°C e 100 bar (EXP 01)	102
Figura 9	Comparação entre os ajustes dos dados de gengibre para duas retas a 40°C e 100 bar (EXP 04)	102
Figura 10	Comparação entre os ajustes dos dados de gengibre para duas retas a 30°C e 300 bar (EXP 08)	103
Figura 11	Comparação entre os ajustes dos dados de cravo da índia para três retas a 30°C e 100 bar (EXP 14A)	103
Figura 12	Comparação entre os ajustes dos dados de cravo da índia para três retas a 35°C e 100 bar (EXP 29A)	104
Figura 13	Comparação entre os ajustes dos dados de cravo da índia para três retas a 15°C e 66 bar (EXP 40A)	104
Figura 14	Comparação entre os ajustes dos dados de artemisia para o modelo de Tan e Liou (1989) a 400 bar, 50°C e 5,5x10 ⁻⁵ kg/s	113
Figura 15	Comparação entre os ajustes dos dados de artemisia para o modelo de Goto <i>et al.</i> (1993) a 400 bar, 50°C e 5,5x10 ⁻⁵ kg/s	113
Figura 16	Comparação entre os ajustes dos dados de artemisia para o modelo de Esquível <i>et al.</i> (1999) a 400 bar, 50°C e 5,5x10 ⁻⁵ kg/s	114
Figura 17	Comparação entre os ajustes dos dados de artemisia para o modelo de Martínez <i>et al.</i> (2003) a 400 bar, 50°C e 5,5x10 ⁻⁵ kg/s	114
Figura 18	Comparação entre os ajustes dos dados de artemisia para o modelo de Tan e Liou (1989) a 200 bar, 50°C e 5,5x10 ⁻⁵ kg/s	115
Figura 19	Comparação entre os ajustes dos dados de artemisia para o modelo de Esquível <i>et al.</i> (1999) a 200 bar, 50°C e 5,5x10 ⁻⁵ kg/s	115
Figura 20	Comparação entre os ajustes dos dados de artemisia para o modelo de Martínez <i>et al.</i> (2003) a 200 bar, 50°C e 5,5x10 ⁻⁵ kg/s	116

- **Figura 21** Comparação entre os ajustes dos dados de artemisia para o 116 modelo de Esquível *et al.* (1999) a 400 bar, 30°C e 11,1x10⁻⁵ kg/s
- Figura 22 Comparação entre os ajustes dos dados de funcho para o modelo 122 de modelo de Tan e Liou (1989) a 0,03 kg, 250 bar, 30°C e 8,33x10⁻⁵ kg/s
- Figura 23 Comparação entre os ajustes dos dados de funcho para o modelo 122 de modelo de de Goto *et al.* (1993) a 0,06 kg, 250 bar, 30°C e 8,33x10⁻⁵ kg/s
- Figura 24 Comparação entre os ajustes dos dados de funcho para o modelo 123 de modelo de Tan e Liou (1989) a 0,06 kg 250 bar, 30°C e 8,33x10⁻⁵ kg/s
- **Figura 25** Comparação entre os ajustes dos dados de funcho para o modelo 123 de Goto *et al.* (1993) a 0,06 kg 250 bar, 30°C e 8,33x10⁻⁵ kg/s
- **Figura 26** Comparação entre os ajustes dos dados de funcho para o modelo 124 de Goto *et al.* (1993) a 0,03 kg 250 bar, 30°C e 13,3x10⁻⁵ kg/s
- **Figura 27** Comparação entre os ajustes dos dados de artemisia para o 129 modelo de Sovová (1994) a 400 bar, 50°C e 5,5x10⁻⁵ kg/s
- **Figura 28** Comparação entre os ajustes dos dados de artemisia para o 129 modelo de Sovová (1994) a 200 bar, 50°C e 5,5x10⁻⁵ kg/s
- **Figura 29** Comparação entre os ajustes dos dados de artemisia para o 130 modelo de Sovová (1994) a 400 bar, 30°C e 11,1x10⁻⁵ kg/s
- **Figura 30** Comparação entre os ajustes dos dados de funcho para o modelo 130 de Sovová (1994) a 0,03 kg, 250 bar, 30°C e 8,33x10⁻⁵ kg/s
- **Figura 31** Comparação entre os ajustes dos dados de funcho para o modelo 131 de Sovová (1994) a 0,06 kg 250 bar, 30°C e 8,33x10⁻⁵ kg/s
- **Figura 32** Comparação entre os ajustes dos dados de funcho para o modelo 131 de Sovová (1994) a 0,03 kg 250 bar, 30°C e 13,3x10⁻⁵ kg/s
- Figura 33 Comparação entre os ajustes dos dados do buriti (Cunha *et al.*, 138 2012b) para os modelos de transferência de massa a 20 g e 150 bar
- Figura 34 Comparação entre os ajustes dos dados do buriti (Cunha *et al.*, 138 2012b) para os modelos de transferência de massa a 220 g e 150 bar
- Figura 35 Comparação entre os ajustes dos dados do buriti (Cunha *et al.*, 139 2012b) para os modelos de transferência de massa a 20 g e 200 bar
- Figura 36Comparação entre os ajustes dos dados do buriti (Cunha *et al.*, 1392012b) para os modelos de transferência de massa a 220 g e 200

bar

- Figura 37 Comparação entre os ajustes dos dados do buriti (Cunha *et al.*, 140 2012b) para os modelos de transferência de massa a 20 g e 250 bar
- Figura 38 Comparação entre os ajustes dos dados do buriti (Cunha *et al.*, 140 2012b) para os modelos de transferência de massa a 165 g e 250 bar
- Figura 39 Comparação entre os ajustes dos dados do buriti (Cunha *et al.*, 141 2012b) para os modelos de transferência de massa a 180 g e 250 bar
- **Figura 40** Comparação entre os ajustes dos dados do buriti (Cunha *et al.*, 141 2012b) para os modelos de transferência de massa a 220 g e 250 bar
- Figura 41 Comparação entre os ajustes dos dados do buriti (Rüster, 1997) 150 para os modelos de transferência de massa a 250 bar e 50°C (EXP II)
- Figura 42 Comparação entre os ajustes dos dados do buriti (Rüster, 1997) 150 para os modelos de transferência de massa a 250 bar e 50°C (EXP III)
- Figura 43 Comparação entre os ajustes dos dados do buriti (Rüster, 1997) 151 para os modelos de transferência de massa a 250 bar e 50°C (EXP IV)
- Figura 44 Comparação entre os ajustes dos dados do buriti (Rüster, 1997) 151 para os modelos de transferência de massa a 250 bar e 50°C (EXP V)
- Figura 45 Comparação entre os ajustes dos dados do buriti (Rüster, 1997) 152 para os modelos de transferência de massa a 250 bar e 50°C (EXP VII)
- Figura 46 Comparação entre os ajustes dos dados do buriti (Rüster, 1997) 152 para os modelos de transferência de massa a 250 bar e 70°C (EXP VIII)
- Figura 47 Comparação entre os ajustes dos dados do buriti (Rüster, 1997) 153 para os modelos de transferência de massa nas condições de 250 bar e 70°C (EXP XI)
- Figura 48 Comparação entre os ajustes dos dados do buriti (Rüster, 1997) 153 para os modelos de transferência de massa a 300 bar e 50°C (EXP XIII)
- Figura 49 Comparação entre os ajustes dos dados do buriti (Rüster, 1997) 154 para os modelos de transferência de massa a 250 bar e 70°C (EXP XV)

- Figura 50 Comparação entre os ajustes dos dados da cúrcuma para os 161 modelos de transferência de massa a 250 bar e 45°C (EXP 1A)
- Figura 51 Comparação entre os ajustes dos dados da cúrcuma para os 161 modelos de transferência de massa a 200 bar e 45°C (EXP 1B)
- Figura 52 Comparação entre os ajustes dos dados da cúrcuma para os 162 modelos de transferência de massa a 200 bar e 45°C (EXP 2A)
- Figura 53 Comparação entre os ajustes dos dados da cúrcuma para os 162 modelos de transferência de massa a 200 bar e 45°C (EXP 2B)
- Figura 54 Comparação entre os ajustes dos dados da cúrcuma para os 163 modelos de transferência de massa a 300 bar e 45°C (EXP 3A)
- Figura 55 Comparação entre os ajustes dos dados da cúrcuma para os 163 modelos de transferência de massa a 300 bar e 45°C (EXP 3B)
- **Figura 56** Comparação entre os ajustes dos dados da cúrcuma para os 164 modelos de transferência de massa a 250 bar e 45°C (EXP 4A)
- Figura 57 Comparação entre os ajustes dos dados da cúrcuma para os 164 modelos de transferência de massa a 250 bar e 45°C (EXP 4B)
- Figura 58 Comparação entre os ajustes dos dados da cúrcuma para os 165 modelos de transferência de massa a 250 bar e 45°C (EXP 5A)
- Figura 59 Comparação entre os ajustes dos dados da cúrcuma para os 165 modelos de transferência de massa a 250 bar e 45°C (EXP 6A)
- Figura 60 Comparação entre os ajustes dos dados da cúrcuma para os 166 modelos de transferência de massa a 250 bar e 45°C (EXP 6B)
- Figura 61 Comparação entre os ajustes dos dados do açaí para os modelos 175 de transferência de massa a 40°C e 200 bar (EXP 1)
- Figura 62 Comparação entre os ajustes dos dados do açaí para os modelos 175 de transferência de massa a 200 bar e 40°C (EXP 2)
- Figura 63 Comparação entre os ajustes dos dados do açaí para os modelos 176 de transferência de massa a 250 bar e 40°C (EXP 1)
- Figura 64 Comparação entre os ajustes dos dados do açaí para os modelos 176 de transferência de massa a 250 bar e 40°C (EXP 2)
- Figura 65 Comparação entre os ajustes dos dados do açaí para os modelos 177 de transferência de massa a 300 bar e 40°C (EXP 1)
- Figura 66 Comparação entre os ajustes dos dados do açaí para os modelos 177

de transferência de massa a 300 bar e 40°C (EXP 2)

- Figura 67 Comparação entre os ajustes dos dados do açaí para os modelos 178 de transferência de massa a 200 bar e 50°C (EXP 1)
- Figura 68 Comparação entre os ajustes dos dados do açaí para os modelos 178 de transferência de massa a 200 bar e 50°C (EXP 2)
- Figura 69 Comparação entre os ajustes dos dados do açaí para os modelos 179 de transferência de massa a 250 bar e 50°C (EXP 1)
- **Figura 70** Comparação entre os ajustes dos dados do açaí para os modelos 179 de transferência de massa a 250 bar e 50°C (EXP 2)
- Figura 71 Comparação entre os ajustes dos dados do açaí para os modelos 180 de transferência de massa a 300 bar e 50°C (EXP 1)
- Figura 72 Comparação entre os ajustes dos dados do açaí para os modelos 181 de transferência de massa a 300 bar e 50°C (EXP 2)

LISTA DE TABELAS

Tabela 1	Propriedades de Gases, Líquidos e Fluidos Supercríticos 2			
Tabela 2	Dados críticos para alguns componentes puros.	29		
Tabela 3	Lista das variáveis necessárias para descrição de processos 4 realizados em meio supercrítico.			
Tabela 4	Relação dos ajustes das cinéticas experimentias usadas para a 7 avaliação dos aplicativos de 2 e 3 retas			
Tabela 5	Relação das cinéticas experimentais usadas para a avaliação dos aplicativos para modelagem de transferência de massa			
Tabela 6	Parâmetros de processo para a extração de óleo de buriti, dados de Cunha <i>et al</i> (2012b)	84		
Tabela 7	Configuração do leito para extração do óleo de buriti, dados de Rüster (1997).	85		
Tabela 8	Configuração do leito para extração da oleoresina de cúrcuma.	86		
Tabela 9	Configuração do leito para extração de óleo de açaí.	87		
Tabela 10	Ajuste das cinéticas de Rodrigues (2002) a partir dos aplicativos de duas e três retas.	91		
Tabela 11	Dados experimentais para cinética de artemisia a 400 bar, 50° C e 5,5x10 ⁻⁵ kg/s.	97		
Tabela 12	Dados experimentais para cinética de artemisia a 0,05 kg, 200 bar, 50° C e 5,5x 10^{-5} kg/s.	98		
Tabela 13	Dados experimentais para cinética de artemisia a 0,05 kg, 400 bar, 30° C e 11,1x10 ⁻⁵ kg/s.	99		
Tabela 14	Ajuste dos modelos de transferência de massa para artemisia a 400 bar, 50°C e 5,5x10 ⁻⁵ kg/s.	100		
Tabela 15	Ajuste dos modelos de transferência de massa para artemisia a 200 bar, 50°C e 5,5x10 ⁻⁵ kg/s.	101		
Tabela 16	Ajuste dos modelos de transferência de massa para artemisia a 400 bar, 30°C e 11,1x10 ⁻⁵ kg/s.	102		
Tabela 17	Dados experimentais para cinética de funcho a 0,03 kg, 250 bar, 30° C e 8,33x 10^{-5} kg/s.	108		
Tabela 18	Dados experimentais para cinética de funcho a 0,06 kg, 250 bar, 30° C e 8,33x10 ⁻⁵ kg/s.	109		
Tabela 19	Dados experimentais para cinética de funcho a 0,03 kg 250 bar, 30° C e 13,3x10 ⁻⁵ kg/s.	110		
Tabela 20	Parâmetros estatísticos para as cinéticas de funcho.	111		
Tabela 21	Parâmetros ajustáveis e estatíscos do modelo de Sovová (1994) para artemisia.	117		
Tabela 22	Parâmetros ajustáveis e estatíscos do modelo de Sovová (1994) 1 para funcho.			
Tabela 23	Valores dos parâmetros ajustáveis dos modelos de transferência de massa das cinéticas de buriti (Cunha <i>et al.</i> , 2012b).	126		

- **Tabela 24**Valores dos parâmetros cinéticos calculados pela planilha de 127
duas retas para o buriti (Cunha *et al,.* 2012b).
- Tabela 25Valores dos parâmetros cinéticos calculados pela planilha de três127retas para o buriti (Cunha *et al,.* 2012b).
- **Tabela 26**Valores de χ^2 e R² dos dados de cinética de extração do buriti128(Cunha *et al.*, 2012b).
- Tabela 27 Valores de erro médio, faixa de erro e desvio-padrão dos 129 modelos de Martínez *et al.* (2003), Tan e Liou (1989), Goto *et al.* (1993) e Sovová (1994) para o buriti, dados de Cunha *et al.* (2012b).
- Tabela 28 Valores de erro médio, faixa de erro e desvio-padrão do modelo 130 de Esquível *et al.* (1999) para o buriti, dados de Cunha *et al.* (2012b).
- Tabela 29Valores dos parâmetros ajustáveis dos modelos de transferência137de massa das cinéticas de buriti (Rüster, 1997).
- Tabela 30Valores dos parâmetros cinéticos calculados pela planilha de 137
duas retas para o buriti (Rüster, 1997).
- Tabela 31Valores dos parâmetros cinéticos calculados pela planilha de três138retas para o buriti (Rüster, 1997).
- **Tabela 32**Valores de χ^2 e R² dos dados de cinética de extração do buriti138(Rüster, 1997).
- Tabela 33 Valores de erro médio, faixa de erro e desvio-padrão dos 139 modelos de Martínez *et al.* (2003), Tan e Liou (1989) e Goto *et al.* (1993) para o buriti, dados de Rüster (1997)
- Tabela 34Valores de erro médio, faixa de erro e desvio-padrão dos 140
modelos de Sovová (1994) e Esquível *et al.* (1993) para o buriti,
dados de Rüster (1997)
- **Tabela 35**Valores dos parâmetros ajustáveis dos modelos de transferência148de massa das cinéticas de cúrcuma.
- Tabela 36Valores dos parâmetros cinéticos calculados pela planilha de 149
duas retas para a cúrcuma.
- **Tabela 37**Valores dos parâmetros cinéticos calculados pela planilha de três149retas para a cúrcuma.
- **Tabela 38**Valores de χ^2 e R² dos dados de cinética de extração da 150
cúrcuma.
- Tabela 39 Valores de erro médio, faixa de erro e desvio-padrão dos 151 modelos de Martínez *et al.* (2003), Tan e Liou (1989) e Goto *et al.* (1993) para a cúrcuma.
- Tabela 40 Valores de erro médio, faixa de erro e desvio-padrão dos 152 modelos de Sovová (1994) e Esquível et al. (1993) para a cúrcuma.
- Tabela 41Valores dos parâmetros ajustáveis dos modelos de Martínez et 161al. (2003), Tan e Liou (1989), Goto et al. (1993) e Esquível et al.

(1999) das cinéticas de açaí

- **Tabela 42**Valores dos parâmetros ajustáveis do modelo de Sovová (1994)162das cinéticas de açaí.
- Tabela 43Valores dos parâmetros cinéticos calculados pela planilha de 163
duas retas para o açaí.
- Tabela 44Valores dos parâmetros cinéticos calculados pela planilha de três163retas para o açaí.
- **Tabela 45** Valores de χ^2 e R² dos dados de cinética de extração do açaí. 164
- Tabela 46Valores de erro médio, faixa de erro e desvio-padrão dos 165
modelos de Martínez *et al.* (2003) e Tan e Liou (1989) para o
açaí.
- Tabela 47Valores de erro médio, faixa de erro e desvio-padrão dos 166
modelos de Goto *et al.* (1993) e Sovová (1994) para o açaí.
- Tabela 48Valores de erro médio, faixa de erro e desvio-padrão do modelos167de Esquível *et al.* (1993) para o açaí.

LISTAS DE ABREVIATURAS, SIGLAS E SÍMBOLOS

A	Parâmetro pertencente ao modelo de Goto et al. (1993);			
a ₁	Parâmetro pertencente ao modelo de Goto et al. (1993);			
a ₂	Parâmetro pertencente ao modelo de Goto et al. (1993);			
AL ₁	Parâmetro dependente de t _{CER} (-);			
AL ₂	Parâmetro dependente de t _{FER} (-);			
a _p	Área específica de transferência de massa (L ²);			
b	Parâmetro pertencente ao modelo de Goto et al. (1993);			
b	Parâmetro ajustável ao modelo de Esquível <i>et al.</i> (1999);			
b ₀	Parâmetro ajustável à reta (-);			
b ₁	Parâmetro ajustável à reta (-);			
b ₂	Parâmetro ajustável à reta (-);			
b ₃	Parâmetro ajustável à reta (-).			
Bi	Número de Biot (-);			
b _i	Parâmetro ajustável ao modelo de Martínez et al. (2002);			
С	Parâmetro pertencente ao modelo de Goto et al. (1993);			
Ci	Razão mássica de soluto nos poros da folha (-);			
Cs	Razão mássica de soluto na folha (-);			
D	Diâmetro do leito de extração em metros (m);			
D	Coeficiente difusivo (L ² T ⁻¹), parâmetro ajustável ao modelo de Crank			
(1975);				
D _{aX}	Coeficiente de dispersão na fase sólida (L ² T ⁻¹);			
D_{aY}	Coeficiente de dispersão na fase fluida (L ² T ⁻¹);			
D _{EF}	Difusividade efetiva entre as partículas (MT ⁻¹);			
Dp	Diâmetro da partícula, em metros (m);			
е	Meia espessura da folha (M);			
е	Razão entre a massa de óleo recuperada em função do tempo (T) e a			
massa inicial	(M) de carga livre de soluto para o modelo de Esquível <i>et al.</i> (1999);			
$e_{ m lim}$	Parâmetro ajustável, que representa o valor de "e" para um tempo			
infinito de extração no modelo de Esquível <i>et al.</i> (1999);				

 E_m Erro médio relativo;

*e*_{max} Erro máximo;

 e_{\min} Erro mínimo;

EFSC	Extração com Fluido Supercrítico;		
F ₀	Massa de alimentação no extrator (M);		
f(r)	Função definidora do retardo da extração por difusão (-);		
F_{E}	Faixa de erro;		
FSC	Fluido Supercrítico;		
h	Coordenada axial (L);		
Н	Altura do leito de extração (L);		
H/D	Relação altura/leito (-);		
J*	Taxa de transferência de massa (-);		
J(X,Y)	Termo de transferência de massa interfacial (s ⁻¹);		
К	Massa de soluto de difícil acesso (M).		
К	Constante adsortiva de equilíbrio (-), parâmetro ajustável ao modelo de		
Goto <i>et al.</i> (1	993);		
К	Massa inicial de soluto inacessível (M);		
k	Parâmetro do modelo de Lack citado por Sovová (1994);		
K _d	Coeficiente de dessorção (T ⁻¹), parâmetro ajustável ao modelo de Tan		
e Liou (1989);		
k _{des}	Coeficiente de dessorção (T ⁻¹);		
k _f - Coeficiente volumétrico de transferência de massa (L ⁻³);			
<i>k</i> ga	Coeficiente de transferência de massa (T ⁻¹), parâmetro ajustável ao		
modelo de Cocero e García (2001);			
k p	Coeficiente de transferência de massa global, pertencente ao modelo		
de Goto e <i>t al.</i> (1993);			
k _{Xa}	Coeficiente de transferência de massa na fase sólida, para o modelo de		
Sovová (1994);			
k Ya	Coeficiente de transferência de massa na fase fluida, para o modelo de		
Sovová (1994);			
m	Massa extraída (M);		
m _e	Massa de extrato, relativo a N (M);		
$m_{\rm exp}$	Massa experimental (M);		
m _{cal}	Massa calculada pelo modelo (M);		
m_{CO_2}	Massa de solvente (M);		

M _{CER}	Taxa de transferência de massa para o período CER;
<i>m</i> _{totalext}	Massa total extraída (M);
N	Massa de material insolúvel ou de sólidos inertes (M);
N	Número de pontos;
0	Massa total de soluto (M);
Р	Massa de soluto de fácil acesso (M);
Р	Pressão de Operação (ML ⁻ 1T ⁻²);
P _C	Pressão crítica em bar (ML ⁻ 1T ⁻²);
q	Quantidade específica de solvente (M);
q _m	Quantidade específica de solvente de dentro das partículas (M);
r	Concentração na fase sólida (-);
R ²	Coeficiente de correlação (-);
S	Área transversal do leito (L ²);
S	Desvio padrão;
SQ_{cal}	Soma dos quadrados calculadas para o modelo;
SQ_{total}	Soma total dos quadrados;
$SQ_{resíduos}$	Soma dos quadrados dos resíduos;
t	Tempo (T);
t*	Tempo de duração do período de taxa constante de extração para os
ensaios com	vazão de 1,0g/min;
t _{mi}	Parâmetro ajustável do modelo de Martínez <i>et al.</i> (2003)
W	parâmetro do período de taxa constante de extração (-);
u	Velocidade intersticial do solvente no leito (L T ⁻¹);
Х	Teor ou razão de soluto na fase sólida (-);
X ₀	Rendimento extrapolado para um tempo de extração infinito (-);
X _k	Relação de massa de solutos para as células intactas na fase sólida (-);
X _p	Relação entre a massa de soluto para o soluto facilmente acessível
também na f	ase sólida (-);
Y	Razão entre soluto e solvente (-);
у	Concentração de solvente relacionado à fase livre de solvente;
У	Coordenada da partícula (-);

Y_{CER} Razão da massa de soluto na fase fluida para o período de taxa constante de extração;

- Y* Solubilidade (-);
- z Coordenada adimensional (-);
- Z Parâmetro do período de taxa decrescente de extração (-);

LETRAS GREGAS

- β Porosidade da folha ou da partícula (-);
- χ^2 Teste qui-quadrado;
- ΔX Média logarítmica do soluto na fase sólida;
- ΔY Média logarítmica do soluto na fase fluida;
- ε_b Porosidade do leito ou fração de vazios (-)
- ε_p Porosidade da partícula (-);

 ϕ Coeficiente adimensional de transferência de massa (-), parâmetro ajustável ao modelo de Goto *et al.* (1993).

- ρ_f Densidade do fluido (ML⁻³)
- ρ_s Densidade do sólido (ML⁻³)
- τ Tempo adimensional, para o modelo de Sovová (-)
- τ Tempo de residência da partícula para o modelo de Goto *et al.* (T)

1 INTRODUÇÃO	25
2 OBJETIVOS	27
2.1 OBJETIVO GERAL	27
2.2 OBJETIVOS ESPECÍFICOS	27
3 REVISÃO BIBLIOGRÁFICA	28
3.1 EXTRAÇÃO COM FLUIDO SUPERCRÍTICO	28
3.2 CURVAS GLOBAIS DE EXTRAÇÃO (OVERALL EXTRACTION CURVES)	32
3.3 RENDIMENTO	37
3.4 MEDIDAS EXPERIMENTAIS DAS CINÉTICAS DE EXTRAÇÃO	38
3.5 MODELAGEM MATEMÁTICA	41
3.5.1 Balanço Diferencial de Massa sobre o Leito Fixo	43
3.5.2 Modelos matemáticos	45
3.5.2.1 Modelo de Sovová (1994)	46
3.5.2.2 Modelo de Tan e Liou (1989)	55
3.5.2.3 Modelo de Martínez <i>et al.</i> (2003)	57
3.5.2.4 Modelo de Goto <i>et al.</i> (1993)	59
3.5.2.5 Modelo de Esquível <i>et al.</i> (1999)	61
3.5.2.7 Modelo de Cocero e García (2001)	63
3.6 APLICAÇÃO DA MODELAGEM MATEMÁTICA PARA O PROCESSO EXTRAÇÃO SUPERCRÍTICA	DE 67
3.7 AMPLIAÇÃO DE ESCALA PARA PROCESSOS DE MATRIZ SÓLIDA	70
3.8 MATÉRIAS-PRIMAS	71
3.8.1 Açaí	71
3.8.2 Buriti	71
3.8.3 Cúrcuma	72
4 METODOLOGIA	73

SUMÁRIO

4.1 AVALIAÇÃO DOS APLICATIVOS DE DUAS E TRÊS RETAS7	75
4.2 AVALIAÇÃO DOS APLICATIVOS PARA MODELOS DE TRANSFERÊNCIA D MASSA 81	E
4.3 AMBIENTE COMPUTACIONAL PARA O MODELO DE SOVOVÁ (1994)8	33
4.4 DETERMINAÇÃO DOS PARÂMETROS DE TRANSFERÊNCIA DE MASS PARA EFSC DO BURITI, CÚRCUMA E AÇAÍ8	;A 34
5 RESULTADOS E DISCUSSÃO9)1
5.1 RESULTADOS GERADOS PELOS APLICATIVOS DE DUAS E TRÊS RETAS 9	€1
5.2 RESULTADOS GERADOS PELOS APLICATIVOS PARA MODELAGEM D TRANSFERÊNCIA DE MASSA9	е Э7
5.3 RESULTADOS GERADOS PELO AMBIENTE COMPUTACIONAL PARA MODELO DE SOVOVÁ (1994)11	0 17
5.4 DETERMINAÇÃO DOS PARÂMETROS DE TRANSFERÊNCIA DE MASS PARA EFSC DO BURITI, CÚRCUMA E AÇAÍ12	;A 24
5.4.1 Buriti (Cunha <i>et al.</i> , 2012b)12	24
5.4.2 Buriti (Rüster, 1997)13	35
5.4.3 Cúrcuma (Chassagnez-Méndez, 1998)14	16
5.4.4 Açaí (Souza, 2006)15	59
6 CONCLUSÕES17	′4
7 REFERÊNCIAS17	' 6
8 ANEXOS) 1
8.1 ROTEIRO DE UTILIZAÇÃO DO SOFTWARE ORIGIN 8.0	€1
8.1.1 Ajuste de Parâmetros19	€1
8.1.1.1 Modelo de Tan e Liou (1989)19	€1
8.1.1.2 Modelo de Martínez <i>et al</i> (2003)19) 1
8.1.2 Procedimento) 2
8.1.3 Referências)0
8.2 RESULTADOS DOS AJUSTES REALIZADOS NESTE TRABALHO)1

8.2.1 Resultados 2 e 3 Retas	201
8.2.2 Determinação dos Parâmetros de Transferência de Massa para EFSC Buriti, Cúrcuma e Açaí gerados pelos programas Origin e Excel	do 207
8.2.2.1 Buriti (dados de Cunha <i>et al</i> (2012b)	207
8.2.2.2 Buriti (dados de Rüster, 1997)	217
8.2.2.3 Açaí (dados de Souza, 2006)	228
8.2.2.4 Cúrcuma (dados de Chassagnez-Méndez, 1998)	242
8.3 ROTEIRO DE UTILIZAÇÃO DO AMBIENTE COMPUTACIONAL PARA MODELO DE SOVOVÁ	0 254
8.3.1 Primeira etapa	254
8.3.2 Segunda etapa	254
8.3.3 Terceira etapa	256
8.3.4 Quarta etapa	256
8.3.4.1 Inserção dos tempos de extração	257
8.3.4.2 Inserção das massas extraídas	258
8.3.4.3 Inserção das massas e tempos de extração nas devidas unidades	259

1 INTRODUÇÃO

Os danos atribuídos aos aditivos sintéticos nos produtos industrializados contribuíram para a crescente demanda de produtos naturais, dando incentivo às pesquisas voltadas a obtenção de componentes ativos oriundos de extratos vegetais. Os compostos presentes nos óleos voláteis apresentam diversas propriedades que os tornam valiosos para fins medicinais, alimenticios, aromatizantes e corantes, ou para a fabricação de perfumes. A qualidade do extrato de plantas é influenciada pela escolha da metodologia de extração utilizada. Entre as metodologias, destaca-se o interesse no processo de separação usando fluido supercrítico pelo fato de viabilizar a recuperação de compostos funcionais de elevada pureza (MARTINEZ-CORREA *et al.*, 2012; MESOMO *et al.*, 2012; MEZZOMO *et al.*, 2012; PEREIRA; MEIRELES, 2010; QUISPE-CONDORI *et al.*, 2008; PEREIRA *et al.*, 2006).

É de conhecimento universal que a região amazônica brasileira apresenta vasta diversidade de plantas e animais. Entre as plantas, há muitas cujos óleos e gorduras com atividade biológica podem ser extraídos, e nos produtos da indústria alimentícia, exercem papel importante para a saúde humana como fonte energética e antioxidante (ALBUQUERQUE *et al.*, 2003).

O processo de extração supercrítica tornou-se um método bastante difundido em função da recuperação de componentes alimentícios e de outros produtos dadas às suas vantagens únicas, tais como o uso de temperaturas baixas, extração seletiva, simplicidade e a recuperação do produto livre de solvente e é baseado no contato de uma matriz sólida com um solvente no estado supercrítico, de forma que o solvente retira do sólido as substâncias que se deseja obter (óleos voláteis, pigmentos, por exemplo). Após a extração, com a redução da pressão, e consequentemente redução da temperatura do solvente, o extrato é separado, obtendo-se o produto final puro (MUSTAPA *et al.*, 2011; MARTÍNEZ, 2002).

A viabilidade e a implantação de processos químicos para aplicações particulares requer estudos prévios de fatores economicos como ampliação de escala, custo de manufatura e a necessidade de um solvente não tóxico. O sucesso da tecnologia supercrítica para as mais diversas aplicações depende do conhecimento desta tecnologia sob o enfoque de diferentes áreas de estudo (CUNHA *et al.*, 2012a; AGUIAR *et al.*, 2011; CYGNAROWICZ-PROVOST, 1996)

25

A modelagem e simulação das curvas experimentais de um processo de extração supercrítica são importantes para o dimensionamento de uma unidade de extração supercrítica. A determinação dos parâmetros dos modelos é uma tarefa difícil de ser realizada, por duas razões: a primeira, porque o extrato é uma mistura complexa de componentes que variam em peso molecular e natureza química e, a segunda, pelo fato desta tecnologia trabalhar em condições de pressão elevada (MOURA, 2004).

Na literatura, muitos modelos matemáticos com a finalidade de representar o processo de extração supercrítica foram propostos, entre eles os modelos de Tan e Liou (1989), Goto *et al.* (1993) e Sovová (1994), e as curvas obtidas a partir deles foram comparadas com os dados experimentais. A maioria desses modelos tem como fundamento a aplicação de um balanço de massa diferencial ao longo do leito fixo.

Portanto, a partir do uso de ferramentas computacionais associadas aos modelos de transferência de massa que se aplicam a EFSC, é possível formar um banco de dados destes parâmetros que descrevem esse processo, para diversos sistemas de extração de diferentes matrizes vegetais, possibilitando a utilização destes para futuros estudos de aumento de escala de produção e servindo de base para as indústrias que utilizam essas matérias-primas em seus processos produtivos.

Este trabalho tem como objetivo determinar parâmetros de transferência de massa aplicados à EFSC a partir do tratamento de dados cinéticos obtido com a extração de três diferentes extratos vegetais e avaliação de ferramentas computacionais elaboradas no Laboratório de Simulação de Processos e Termodinâmica Aplicada (TERM@), que contribuam para a otimização desses processos em larga escala.

2 OBJETIVOS

2.1 OBJETIVO GERAL

O objetivo geral deste trabalho consiste na determinação de parâmetros de transferência de massa do processo de extração supercrítica de matriz sólida, empregando o dióxido de carbono como solvente, a partir de dados cinéticos de extração e na avaliação sistemática de modelos matemáticos da literatura, a fim de contribuir para o estudo de ampliação de escala e análise de custo de produção de três diferentes extratos vegetais (açaí, buriti e cúrcuma).

2.2 OBJETIVOS ESPECÍFICOS

- a) Avaliar os aplicativos em Excel referentes aos ajustes de duas e três retas, para a determinação de t_{CER} e t_{FER}, desenvolvidos no Laboratório de Simulação de Processos e Termodinâmica Aplicada (TERM@), comparando com resultados publicados na literatura e calculados utilizando o programa estatístico SAS;
- b) Avaliar os aplicativos em Excel desenvolvidos no Laboratório de Simulação de Processos e Termodinâmica Aplicada (TERM@) para os seguintes modelos de transferência de massa: Tan e Liou (1989), Goto *et al.* (1993), Sovová (1994), Esquível *et al.* (1999) e Martínez *et al.* (2003). Os resultados serão comparados com os obtidos usando o software Origin 8.0 e com os resultados da literatura utilizando o software Tecanalysis;
- c) Desenvolvimento de aplicativo em Excel para solução do modelo de transferência de massa de Sovová (1994);
- d) Avaliar os modelos de transferência de massa para descrever as cinéticas de extração com dióxido de carbono supercrítico do buriti (*Mauritia flexuosa*), açaí (*Euterpe oleraceae*) e cúrcuma (*Curcuma longa L.*), cujos dados foram medidos no Laboratório de Extração Supercrítica do Laboratório de Engenharia Química (UFPA), a fim de elaborar uma base de dados de parâmetros de processo de extração de matrizes sólidas de matérias-primas amazônicas, visando contribuir para a ampliação de escala.

3 REVISÃO BIBLIOGRÁFICA

Neste tópico são relatados de forma simples a definição e a importância da aplicação da tecnologia supercrítica na atualidade, bem como a relevância de se estudar a modelagem matemática para a simulação de processos em larga escala.

3.1 EXTRAÇÃO COM FLUIDO SUPERCRÍTICO

A Extração com Fluido Supercrítico (EFSC) é uma tecnologia de separação que usa um fluido supercrítico como solvente. Todo o fluido é caracterizado pelo seu ponto crítico, o qual é definido em termos da temperatura (T_c) e pressão (P_c) críticas e a partir daí, a substância é considerada um fluido supercrítico quando este está acima das suas temperatura e pressão críticas (SOVOVÁ *et al.*, 2010; SAHENA *et al.*, 2009; CHUANG, 2007; BRUNNER, 2005).

Acredita-se que a qualidade dos óleos oriundos de sementes oleaginosas obtidos por dióxido de carbono em condições supercríticas seja superior aos produtos extraídos com hexano ou expeller, por causa da seletividade na extração das frações desejáveis do óleo contidas na semente (GOODRUM; KILGO; SANTERRE, 1996).

Os fluidos, no estado supercrítico, são aqueles com condições de pressão e de temperatura superiores às do ponto crítico, onde o fluido exibe propriedades físicoquímicas intermediárias entre as de um líquido e de um gás, favorecendo o seu uso como solvente. Algumas características tornam esta técnica atraente, em função de: elevada densidade; baixa viscosidade; baixa tensão superficial; alta difusividade; e grande influência da convecção natural, além de alto poder de solvatação e grande potencial de seletividade (GENENA, 2005; SOUZA *et al.*; 2002).

Tais propriedades (tabela 1), intermediárias entre os estados gasoso e líquido, valorizam o poder de solvatação dos FSCs em relação aos gases e, ao mesmo tempo, aumentam a taxa de transferência de massa em relação aos líquidos, contribuindo para a aplicabilidade da tecnologia supercrítica para problemas analíticos de separação (KITZBERGER, 2005; TAYLOR, 1996).

	Densidade (ɑ/cm³)	Viscosidade (ɑ/cm.s)	Difusividade (cm ² /s)
Gás (101,3kPa; 15 - 30°C)	(0,6-2,0)x10 ⁻³	(1,0-3,0) x 10 ⁻⁴	0,1 – 0,4
Fluido Supercrítico T _C , P _C	0,2 - 0,5	(1,0-3,0) x 10 ⁻⁴	0,7 x 10 ⁻³
T _C , 4P _C	0,4 - 0,9	(3,0-9,0) x 10 ⁻⁴	0,2 x 10 ⁻²
Líquido (15 - 30ºC)	0,6 - 1,6	(0,2-3,0) x 10 ⁻⁴	(0,2–2,0) x 10 ⁻⁵

 Tabela 1: Propriedades de Gases, Líquidos e Fluidos Supercríticos.

Fonte: Temelli e Glüçü-Ünstündağ, 2005.

Sob pressões e temperaturas moderadas, rendimentos elevados de substâncias extraíveis podem ser obtidos durante o processo. Macías-Sanchez *et al* (2010) ao avaliar as influências dessas variáveis na recuperação de luteína e β -caroteno da alga *Scenedesmus almeriensis*, diante de CO₂ supercrítico, obtiveram o maior rendimento, de 50%, na pressão de 400 bar e na temperatura de 60°C. De acordo com esses autores, não é aconselhável aumentar a temperatura além desse valor, pois os compostos de interesse poderão sofrer degradação térmica.

Dependendo do tamanho molecular, polaridade e ponte de hidrogênio das moléculas, as temperaturas críticas de substâncias puras (tabela 2) variam numa ampla faixa. A água, por exemplo possui uma temperatura ($T_c=374,1^{\circ}C$) e pressão ($P_c=220$ bar ou $P_c=22,06$ MPa) críticas elevadas, o que contribui para o elevado custo do processo para se alcançar essas condições, enquanto que o dióxido de carbono, o mais utilizado, possui temperatura e pressão críticas moderadas ($T_c=31,3^{\circ}C$ e $P_c=74$ bar ou $P_c=7,38$ MPa), as quais propiciam a extração dos compostos termolábeis com mínima degradação (TEMELLI; SEIFRIED, 2011; SOUZA *et al.*, 2002; CHEUNG, 1999).

Componente	T _C (°C)*	P _C (MPa)*
Etileno	9,4	5,04
Dióxido de Carbono	31,1	7,38
Etano	32,3	4,87
Óxido Nitroso	36,6	7,26
Propano	96,8	4,25
n-Hexano	234,5	3,01
Acetona	235,1	4,70
Metanol	239,6	8,09
Etanol	240,9	6,14
Etil Acetato	250,2	3,83
Água	374,1	22,06

Tabela 2: Dados críticos para alguns componentes puros.

* T_C – Temperatura crítica, P_C - Pressão crítica.

Fonte: Brunner, 1994.

Segundo Brunner (2005), sob condições críticas para pressão e temperatura, não há variação repentina das propriedades dos componentes, visto que a variação dessas propriedades é monótona quando se situa nas condições críticas, nas linhas rachuradas do gráfico 1.

Gráfico 1: Definição do estado supercrítico para o dióxido de carbono puro (Brunner, 1994).

O dióxido de carbono em estado supercrítico é o solvente mais usado em aplicações alimentícias. Ele não é apenas barato e prontamente disponível em elevado nivel de pureza, mas também é seguro de manipular e, fisiologicamente, corresponde aos baixos em que se apresenta nos alimentos, por ser facilmente removido pela simples expansão para valores de pressão ambientalmente comuns e, consequentemente, está aprovado para o processamento de alimentos sem declaração, referentes aos órgãos de fiscalização (BRUNNER, 2005).

De acordo com Saengcharoenrat e Guyer (2004), pelo fato de o dióxido de carbono supercrítico possuir uma temperatura crítica (31,1°C) próxima à temperatura ambiente (25°C) é um solvente atrativo para o processamento de materiais termosensíveis, como os aromas, os pigmentos e os antioxidantes. Tal fato foi comprovado numa investigação do efeito do dióxido de carbono supercrítico em óleo de cebola, onde os autores mostraram que uma temperatura moderada de extração lhe rendeu aroma característico da cebola fresca.

Diversos artigos técnicos e científicos relatando aplicações da EFSC para extração de óleos essenciais, oleoresinas e outros materiais aromáticos de muitas matrizes vegetais foram desenvolvidos. Recentemente, o processo de EFSC foi usado para a obtenção dos óleos de diferentes matérias-primas de origem vegetal, tais como: jambú (DIAS et al., 2012), buriti (CUNHA et al., 2012a; FRANÇA et al., 1999), gengibre (MESOMO et al., 2012), pescada-olhuda (AGUIAR, 2011), palma (AZEVEDO et al., 2011), carqueja (SILVA et al., 2009), sementes de linhaça (GALVÃO, 2009), açaí (SOUZA, 2006), amêndoa de pêssego (MEZZOMO, 2008), própolis (BISCAIA, 2007), funcho (MOURA et al., 2005), cebola (SAENGCHAROENRAT; GUYER, 2004) e camomila (POVH et al., 2001).

Por fim, a abordagem da EFSC requer o conhecimento de propriedades físicoquímicas, dados de equilíbrio de fases e modelos matemáticos que permitam simular com confiança o processo de extração (SOUZA *et al.*, 2002).

31

3.2 CURVAS GLOBAIS DE EXTRAÇÃO (OVERALL EXTRACTION CURVES)

O percurso da extração de uma matriz sólida com fluido supercrítico pode ser representada pelas curvas globais de extração (tradução da nomenclatura 'Overall Extraction Curves' - OEC), onde a quantidade de extrato coletada durante o processo é plotada em função do tempo ou da quantidade de solvente utilizada (BRUNNER, 1994; MCHUGH; KRUKONIS, 1993).

A extração de solutos a partir de matrizes vegetais com fluidos supercríticos não é uma função linear do tempo e as OECs servem para determinar parâmetros como: tempo mínimo de extração, caracterização das etapas de extração, determinação da solubilidade e modelagem da transferência de massa do sistema (ALBUQUERQUE; MEIRELES, 2012).

De acordo com Brunner (1994), as curvas de extração são obtidas pela massa total do óleo extraída como função do tempo de extração, através da relação apresentada na equação 1.

$$m_{TOTAL} = Q_{CO_2} \int_0^{t_{TOTAL}} Y(t) dt$$
⁽¹⁾

Onde:

m_{TOTAL} - Massa total de óleo extraída (M);

 Q_{CO2} - Vazão de solvente (MT⁻¹);

Y(t) - concentração do óleo em função do tempo de extração.

O gráfico 2 mostra dois tipos de curvas de extração. A primeira parte de ambas as curvas (linha) é correspondente a etapa CER (período de taxa constante de extração: Constant Extraction Rate), onde a superfície externa da partícula está recoberta por uma camada de óleo e o solvente retira esta camada superficial num processo de transferência de massa majoritariamente influenciada pelo efeito convectivo. A segunda parte (tracejada) da curva representa a etapa FER (período de taxa decrescente de extração: Falling Extraction Rate) caracterizado pelo decréscimo da taxa de extração, na qual ambos os efeitos de convecção e difusão na fase sólida são responsáveis pela determinação da taxa de extração A terceira fase (pontilhada), que é apenas mostrada na curva I, corresponde ao período DC (DC - Diffusion Controled), onde o soluto na superfície sólida sofre exaustão; representando o fim do processo, onde a matriz sólida é esgotada e os fenômenos

32

difusivos da fase sólida são predominantes (BRUNNER, 1994; AGUIAR, 2011; QUISPE-CONDORI, 2005; SOUSA *et al.*, 2002; RODRIGUES, 1996; FERREIRA, 1991).

Tempo ou Quantidade de Solvente

A curva I é característica de processos onde o sólido possui uma alta concentração inicial de extrato. Na etapa CER, a transferência de massa é constante e controlada pela relação de equilíbrio entre o extrato e fase fluida, e por uma baixa resistência externa a transferência de massa. A curva II representa casos onde a concentração inicial de soluto na matriz sólida é baixa, ou o soluto está inacessível ao solvente, neste caso, assim como na etapa FER da curva I, a resistência interna a transferência de massa é dominante (BRUNNER, 1994).

Em geral, no período CER consegue-se extrair entre 50-90% do extrato total e a otimização do processo deveria ser focado nesta fase (QUISPE-CONDORI, 2005).

Sovová (1994) relata que através da predição das curvas de extração, os modelos matemáticos formulados para sistemas com fluido supercrítico devem ter soluções simples, além de permitir a determinação de condições ótimas de extração.

Com a análise das curvas globais de extração é possível obter informações importantes sobre o método extrativo. A razão mássica de soluto na fase fluida do extrator (Y_{CER}) é o coeficiente angular de uma reta ajustada aos dados experimentais da curva de extração (massa de extrato versus tempo de extração) obtidos no período de taxa de extração constante. A taxa de transferência de massa para o período CER (M_{CER}) é determinada através da razão entre o Y_{CER} e a vazão de solvente. Estas e outras informações são de extrema relevância já que normalmente são utilizadas nos modelos matemáticos para reproduzirem as OEC.

A otimização dos processos que empregam os fluidos supercríticos requer o conhecimento dos fatores que afetam a viabilidade econômica de um processo de extração com dióxido de carbono. Deve-se, portanto, encontrar as condições operacionais que maximizem a taxa de extração e a quantidade percentual de extrato obtido de uma matéria-prima vegetal, sem comprometer a qualidade do produto, que lhe confere um alto valor agregado. Essas condições são denominadas parâmetros de processo (AGUIAR, 2011; MARTÍNEZ, 2005).

O projeto de processos de EFSC em meios porosos necessita não apenas de informações referentes à caracterização do leito fixo e à otimização de parâmetros de processo (pressão, temperatura, vazão de solvente, velocidade superficial e densidade aparente), em particular, as condições de estado, mas também a solubilidade do soluto na fase supercrítica (CUNHA *et al.*, 2008).

A densidade aparente difere da densidade real por desconsiderar o empuxo causado pelo ar (atmosfera) e suas flutuações onde a pesagem é realizada, tornando-se nesse caso uma medida exata do peso específico. Vários autores, como Vasconcellos (2007), Quispe-Condori (2005), Souza (2006) e Rüster (1997) calcularam este parâmetro a partir da divisão entre massa de alimentação necessária para empacotar o leito e o seu respectivo volume.

Com os dados de densidade real (da matriz sólida, obtida experimentalmente através do picnômetro de hélio) e aparente (do leito) é calculada a porosidade do leito (cujo valor deve estar na faixa de 0 a 1).

$$\varepsilon_b = 1 - \frac{\rho_a}{\rho_s} \tag{2}$$

Onde: ε_b - Porosidade do leito;

34

 ρ_{a} - Densidade aparente;

ho - Densidade do sólido ou densidade real

A densidade real (ou densidade do sólido) e a porosidade do leito são parâmetros importantes para a modelagem matemática aplicada a processos de extração com fluido supercrítico. No caso do modelo de Goto *et al.* (1993), utiliza -se além da porosidade do leito, a porosidade da partícula (ou porosidade da folha), que foi determinada pelos autores a partir da equação 2, enquanto que a porosidade do leito foi determinada experimentalmente considerando-a como a fração de vazios. Döker *et al.* (2010) e Mongkholkhsornsilp *et al.* (2005) aplicaram essa mesma relação para a obtenção da porosidade da partícula das sementes de gergelim e nim, respectivamente.

Perderssetti (2008) obteve a porosidade da partícula do óleo de canola a partir da determinação do valor de sua área superficial específica através do método BET-N₂, enquanto que a porosidade do leito foi calculada através da relação mostrada na equação 2. Michielin (2009) considerou o valor numérico de "0,54" para a porosidade da partícula de erva-baleeira, por ter sido o valor calculado no trabalho de Goto *et al.* (1993), que trabalharam com hortelã, enquanto que a porosidade do leito foi calculada através da relação 2.

A matriz ideal para a EFSC corresponde a partículas sólidas finamente moídas, que apresentem boa permeabilidade, permitindo assim maior exposição do soluto ao solvente e as piores são consideradas aquelas constituídas por tecidos animais vivos, como peixes, os quais são virtualmente impermeáveis, onde outras técnicas de extração são mais fáceis de serem empregadas (SANTOS JÚNIOR, 2010).

A solubilidade pode ser determinada experimentalmente pelos métodos estático e/ou dinâmico, e é definida como a máxima concentração de soluto dissolvido na fase solvente na saída do extrator para uma dada condição de temperatura e pressão. Para isto, a coluna de extração deve ser suficientemente longa, ou a vazão de solvente suficientemente baixa, de modo a garantir um tempo de contato suficiente entre as fases, permitindo a saturação do solvente com o óleo na saída do extrator (ANDRADE, 2011; CUNHA *et al.*, 2011).

Uma das conclusões obtidas por Azevedo *et al.* (2011) no estudo sobre a determinação experimental da solubilidade do óleo de buriti em dióxido de carbono supercrítico pelo uso dos métodos operacionais dinâmico e estático foi que os dados de solubilidade obtidos pelo método dinâmico estavam próximos dos medidos pelo método estático, o que indica a viabilidade desses métodos para a medição da solubilidade do óleo em meio supercrítico.

Carvalho *et al.* (2009) avaliaram a solubilidade do CO₂ supercrítico e o rendimento da extração dos óleos essenciais de *Piptadenia gonoacantha* e *Piptadenia rígida* em diferentes faixas de pressão e temperatura e descreveram matematicamente os dados experimentais usando o modelo de transferência de massa Esquível *et al.* (1999) e o modelo de solubilidade de Chrastil (1982), os quais apresentaram comportamento adequado diante dos dados experimentais medidos pelos autores.
3.3 RENDIMENTO

Rendimento é definido pela relação entre a massa extraída e a massa de alimentação, conforme a equação 3.

O rendimento global (X₀), é obtido a partir das curvas globais de extração e é definido como a quantidade máxima de soluto que pode ser extraída de uma matriz sólida específica em dadas condições de temperatura e pressão (PEREIRA; MEIRELES, 2010; SILVA *et al.*, 2009).

$$\mathsf{Rendimento} = \left(\frac{m_{EXTRATO}}{F_0}\right) \tag{3}$$

Onde:

m_{EXTRATO} - massa total obtida durante a extração (M);

F₀ - Massa de alimentação usada para empacotar o leito (M).

Na extração com CO₂ supercrítico, a interpretação deste parâmetro indica o efeito da solubilização do extrato no solvente e para que seus valores sejam válidos e reprodutíveis deve-se especificar uma metodologia para a execução dos experimentos (SILVA, 2004; ANDRADE, 2002).

Silva *et al.* (2009) ao modelarem as OEC do óleo de essencial de carqueja, estimaram três hipóteses de valores de rendimento global para investigar influência nas curvas resultantes, onde a primeira se refere ao uso do maior valor de rendimento global obtido de todas as cinéticas medidas, a segunda, do uso de um rendimento global a ser ajustado, e a terceira, de se usar o maior valor de rendimento global obtido a partir do método clássico de extração com solvente.

Segundo Mezzomo (2008) a EFSC de matérias-primas vegetais usando CO₂ como solvente proporciona o teor de material extraível na ordem de 1 a 10%, salvo exceções como o cravo-da-índia, cujo rendimento chegou a 18,2% para Ivanovic *et al.* (2011) e 17,1% para Martínez *et al.* (2007), ou oleoresinas, como de cavalinha (Michielin *et al.*, 2005), que apresentou rendimento inferior a 1%.

3.4 MEDIDAS EXPERIMENTAIS DAS CINÉTICAS DE EXTRAÇÃO

A conformação da planta de extração supercrítica será de acordo com a necessidade do processo a que se destina. Este tópico trata de uma revisão sobre procedimentos experimentais utilizados na literatura, no que diz respeito às medidas dos equipamentos, configurações do leito extrativo, bem como as condições de temperatura e pressão.

Os experimentos de Cunha *et al* (2012a,b) para a extração do óleo da polpa de buriti foram realizados no Laboratório de Extração Supercrítica, pertencente ao Laboratório de Engenharia Química da UFPA na mesma planta piloto utilizada por Chassagnez-Méndez (1998) para a extração da oleoresina de cúrcuma e por Rüster (1997) para a extração do óleo da polpa e da casca do buriti.

Cunha *et al* (2012a,b) utilizaram uma adaptação da planta piloto, que consiste em um conjunto de dois cilindros acoplados verticalmente por flanges, o superior (C1) com 49,2 cm³ (C1) e o inferior (C2), com 81,4 cm³ (C2), adaptados em um extrator de 1000 cm³, um compressor de membrana com capacidade de elevar a pressão de 60 a 400 bar, um cilindro de CO₂, um sistema de amostragem constituído de um vaso separador contendo no seu interior um tubo de ensaio, um medidor de vazão, dois banhos termostáticos e uma unidade de controle que registra as pressões e temperaturas no sistema.

Os experimentos de extração do óleo da polpa do buriti de Cunha *et al* (2012b) foram realizados a pressões de 150 e 200 bar e 60°C, utilizando 20, 165, 180, 220 g da polpa seca e moída de buriti com diferentes configurações de leito. A amostra de 20 g da polpa seca de buriti foi submetida a extração supercrítica utilizando a configuração do cilindro inferior C1, com 14,8 cm de altura, 2,65 cm de diâmetro, área superficial de 5,5 cm² e volume de 81,4 cm³, mantendo o cilindro superior C2 vazio. O procedimento experimental para as amostras de 165, 180, 220 g da polpa seca e moída de buriti consistiu em inserir estas quantidades no extrator de 1000 cm³ envolvidas em um invólucro de brim da cor branca, cuja altura em centímetros correspondeu a 10% do valor em gramas da matéria prima, ou seja, 220 g de buriti corresponderam a 22 cm de altura do leito (invólucro) , que possuía 5,9 cm de diâmetro, 27,34 cm² de área e volume de 601,47cm³.

Chassagnez-Méndez (1998) utilizou uma configuração simplificada da planta piloto que consiste em um compressor de membrana, com capacidade de elevar a

pressão de 100 até 350 bar, a uma vazão máxima de até 20 g/s de CO₂; um recipiente de aço com camisa de aquecimento de 1 litro de capacidade que é usado como extrator; um separador constituído de um recipiente de aço, contendo no seu interior um tubo de ensaio, com possibilidade de ser trocado em intervalos regulares de tempo; e diversas válvulas, manômetros, termopares, e medidor de vazão de forma que possa obter-se um controle e registro adequado das variáveis operacionais (pressão, temperatura e vazão). Foi adaptado no recipiente de 1 litro (extrator) um pequeno leito de ferro, de 19,8 cm de altura e diâmetro interno 1,76 cm.

Souza (2006) utilizou outra planta de EFSC do Laboratório de Extração Supercrítica (Laboratório de Engenharia Química - UFPA) cujo leito possui 2,2 cm de diâmetro e 33 cm de altura, além de um banho de aquecimento, dois banhos termostáticos, sendo um de resfriamento e outro de aquecimento, uma bomba HPLC, a qual é acionada a partir de um compressor de ar, já que o movimento do pistão da bomba se dá com a injeção de ar comprimido na bomba, um extrator e dois separadores, sistema de coleta do soluto, válvulas de controle e micrométricas e o medidor de vazão.

Os experimentos de Quispe-Condori (2005), que mediu as cinéticas de extração das matérias primas *Artemisia annua* L. (artemisia), *Cordia verbenacea* DC (erva-baleeira), *Ocimun selloi* Benth (alfavaca) e *Foeniculum vulgare* (funcho) nas seguintes unidades de extração supercrítica (LASEFI/FEA/UNICAMP): a primeira, de nome 'Spe-ed SFE'', é constituída de um cilindro de N₂, um cilindro de CO₂, um banho de resfriamento, uma unidade de bombeamento e uma unidade de controle de temperatura e duas colunas de extração, uma de 5 ml e outra de 300 ml.

A segunda unidade, de nome 'LASEFI_TUHH' é constituída de um cilindro de N_2 , um cilindro de CO_2 , uma válvula reguladora de pressão V1, um banho de resfriamento, uma coluna de extração (com volume de 100 cm³, 2 cm de diâmetro e 32 cm de altura) e colunas de separação.

Rodrigues (2002) a partir do uso das matérias primas erva-doce, gengibre e cravo-da-índia, mediu suas cinéticas na linha de extração supercrítica de óleos essenciais do LASEFI (FEA/UNICAMP) composta de dois reservatórios de cilindro sifonado de aço inox, onde o primeiro tinha 25 kg de capacidade para 25 kg de CO₂ e o segundo, 200 cm³ de volume, e conectado a um banho de resfriamento para

estabilização da temperatura. Em alguns experimentos, o segundo reservatório foi substituído por uma serpentina de aço inox de 1/4 de polegada de diametro interno por 600 cm de comprimento, encamisada e conecada ao mesmo banho de refrigeração.

Além dos reservatórios, Rodrigues (2002), usou um extrator de leito fixo ou coluna de aço inox encamisada, conectada a um banho de resfriamento (idêntico ao do segundo reservatório), com 60,5 cm de comprimento com 2,16 cm de diâmetro interno e 0,28 cm de espessura da parede. Foi usada também uma válvula micrométrica, para controle da vazão de solvente na saída do extrator, um coletor, um medidor de vazão, válvulas agulha, fitas aquecedoras e cronômetros digitais.

No experimento de Rüster (1997), a matéria-prima seca e triturada foi inserida em um extrator de aço inoxidável com capacidade de 1000 ml ora em um saco de pano (171 g de alimentação para a casca e 59,54 g para a polpa) ora na célula de extração adaptada no extrator (23,7 g de alimentação para a casca e 16,6 g para a polpa). Essa diferença entre leitos foi alvo do trabalho de Machado *et al.* (2001), que notaram diferentes curvas de extração (o teor de extração para o leito em saco de pano foi de 90% para a casca e de 83,7% para a polpa e para a célula de extração, 97,2% para a polpa e 94,7% para a casca) em função dos dois tipos de leito fixo adotados, ao verificarem a influência dos diferentes tipos de leito fixo nas cinéticas de transferência de massa na extração supercrítica do óleo de buriti.

3.5 MODELAGEM MATEMÁTICA

Modelos matemáticos cumprem um papel notável quando a ampliação de escala é necessária, e são também indispensáveis para o controle e a melhoria do processo. Para a aplicação industrial de um possível processo que envolva FSC, é muito importante ter amplo conhecimento dos modelos que permitem correlacionar e extrapolar os dados experimentais (LANGA *et al.*, 2009).

A modelagem matemática de curvas globais de EFSC é útil para a adimensionalização de extratores, obtenção de parâmetros que proporcionem a ampliação de escala, dimensionalização de equipamento para posterior análise de custos que o processo pode gerar. Esse método tem sido empregado por vários autores para reproduzir dados experimentais e, a partir deles, ajustar parâmetros que contribuirão para a simulação de processos extrativos em escalas e condições operacionais variadas (MEZZOMO *et al.*, 2009; CARVALHO JR., 2004; MOURA, 2004; MARTÍNEZ *et al.*, 2003).

Os modelos apresentados na literatura para descrever o processo de EFSC apresentam diferenças na quantidade de variáveis, portanto, existem modelos menos ou mais complexos. Com o objetivo de gerar um resultado mais confiável, condizente com a realidade do processo extrativo, autores têm buscado reunir em um único modelo a maior parte destas variáveis (tabela 3), fazendo com que estes modelos apresentem certa complexidade.

O modelo de Esquível *et al.* (1999), por exemplo, necessita de apenas duas informações para que seja resolvido, que são a massa de alimentação no extrator e o rendimento global, enquanto que o modelo de Sovová (1994), de forma contrária reune um número de variáveis muito grande para se descrever com maior precisão as cinéticas obtidas experimentalmente.

Para Brunner (1994), a descrição dos fenômenos físicos que ocorrem durante o processo é importante para a compreensão dos modelos a serem apresentados. Para o autor, o sistema de extração composto por duas fases, uma formada pela matriz da qual se pretende extrair o composto ou a mistura de compostos desejada, e uma fase fluida, composta pelo solvente no estado supercrítico com o extrato nele dissolvido.

De acordo com Stefanni (2003) vários modelos publicados diferem entre si não apenas do ponto de vista matemático, mas também pelos mecanismos de transferência de massa que controlam o processo, pois mudam para matrizes vegetais distintas.

VARIÁVEL	UNIDADE	SIGNIFICADO
Т	Θ	Temperatura de operação
Р	M ⁻ LT ⁻²	Pressão de operação
Н	L	Altura do leito de extração
D	L	Diâmetro do leito de extração
H/D	-	Relação de altura e diâmetro
А	L^2	Área superficial
V	L ³	Volume do cilindro que forma o leito
Fo	М	Massa de alimentação de amostra
Q _{CO2}	ML ⁻¹	Vazão de solvente
u	MT ⁻¹	Velocidade do solvente
P CO2	ML ⁻³	Massa específica do solvente
$ ho_{ m s}$	ML ⁻³	Massa especifica da amostra
D _p	L	Diâmetro da partícula
ε _p	-	Porosidade da partícula da amostra
ε _b	-	Porosidade do leito
X ₀	-	Rendimento global
X _w	-	Fração de água na amostra

Tabela 3: Lista das variáveis necessárias para descrição de processos realizados em meio supercrítico.

Além desses dados sobre o sistema extrativo são necessários os dados de cinética de extração apresentados em massa extaída acumulada (massas derivadas da soma com as obtidas no tempo antecessor) em função do tempo, gerando uma tabela com determinado número de pontos, onde a partir desta tabela é plotada a OEC que é o gráfico da cinética de extração experimental, cuja serventia está em se estabelecer a comparação entre a OEC obtida experimentalmente e a OEC gerada a partir dos resultados dos modelos de transferência de massa.

3.5.1 Balanço Diferencial de Massa sobre o Leito Fixo

O balanço diferencial de massa considera os fenômenos de transporte que ocorrem no processo, caracterizado pela variação da quantidade de extrato com o tempo e com a posição no extrator (BRUNNER, 1994).

Rosa *et al.* (2009) apresentam três mecanismos de transferência de massa, que são a transferência na região de vácuo por transporte convectivo, a transferência na região de vácuo pela dispersão axial e a transferência de massa na interface vazia da partícula.

Para Meireles (2003) a modelagem matemática do processo de EFSC pode ser descrita por um balanço diferencial de massa aplicada sobre o leito. Conforme Martínez (2005), as equações diferenciais de balanço de massa no leito de extração, quando resolvidas, fornecem curvas que expressam os perfis de massa de extrato em função do tempo.

Para se fazer o balanço de massa durante o processo de EFSC, considera-se o sistema como um leito cilíndrico formado por partículas da matéria-prima dispostas de forma homogênea. Em geral, para leitos cilíndricos, a relação entre o diâmetro do leito e o diâmetro das partículas é tal que, predominam os efeitos da transferência de massa radial. Neste caso, trata-se a transferência de massa unidirecional e considera-se, também, que não há reação química entre os componentes (MARTÍNEZ, 2005).

As equações 4 e 5 se referem ao balanço diferencial de massa para as duas fases presentes no sistema.

Para a fase fluida:

$$\frac{\partial Y}{\partial t} + \underbrace{u \frac{\partial Y}{\partial h}}_{ACUMULO} = \underbrace{\frac{\partial Q}{\partial h}}_{CONVEC \zeta \tilde{A}O} = \underbrace{\frac{\partial Q}{\partial h}}_{DISPERS \tilde{A}O} + \underbrace{\frac{J(X,Y)}{\varepsilon_{b}}}_{T.M.INTERFACIAL}$$
(4)

Para a fase sólida:

$$\frac{\partial X}{\partial t} + = \frac{\partial}{\partial h} \left(D_{aX} \frac{\partial X}{\partial h} \right) + \frac{J(X,Y)}{\underbrace{(1-\varepsilon_b)}} \frac{\rho_{CO_2}}{\rho_S}$$

$$\underbrace{(1-\varepsilon_b)}_{T.M.INTERFACIAL}$$
(5)

- Y Razão entre soluto e solvente (-);
- X Razão entre soluto e sólido (-);
- u Velocidade intersticial do solvente no leito (L T⁻¹);
- D_{aY} Coeficiente de dispersão na fase fluida (L^2T^{-1});
- J(X,Y) Termo de transferência de massa interfacial (T⁻¹);
- D_{aX} Coeficiente de dispersão na fase sólida (L^2T^{-1});
- ρ_{CO_2} Densidade do solvente (ML⁻³);
- ρ_s Densidade do soluto (ML⁻³);
- ϵ_{b} Porosidade do leito (-);

t - Tempo (T);

h - Coordenada axial (L),

A transferência de massa nas direções radial e tangencial do leito de extração podem ser desprezadas, pois o comprimento da coluna é bem maior que o seu diâmetro, e o solvente escoa com velocidade na direção axial.

A partir da solução dessas equações diferencias de balanço de massa as curvas expressam os perfis de massa de extrato em função do tempo são obtidas. Para isto, vários modelos matemáticos foram propostos a partir do balanço de massa diferencial no leito de extração.

3.5.2 Modelos matemáticos

Para dimensionar adequadamente uma planta de extração com fluido supercrítico e avaliar o comportamento cinético, a modelagem matemática do processo é de suma importância. A aplicação industrial dessas técnicas depende da viabilidade comercial da extração quando aplicada em determinada matéria-prima (HATAMI *et al.*, 2012).

Um modelo não deve ser um mero instrumento matemático, mas deve representar o significado físico da estrutura sólida nas observações experimentais. Portanto, os modelos matemáticos que não possuem associação física para os materias e o estudo do processo apresentam poder de validação limitada, apesar de sua utilização para ajustar dados experimentais (REVERCHON; DE MARCO, 2008).

Inúmeros modelos que representam o processo de extração com fluido supercrítico, a partir de uma matriz sólida já foram descritos na literatura. Esses modelos matemáticos, quanto ao método de resolução, podem ser classificados, como modelos de solução analítica, que possuem parâmetros ajustáveis, e modelos de integração numérica (não há ajuste de parâmetros). Apenas modelos que possuem solução analítica serão alvo deste trabalho.

Conforme Rosa *et al.* (2009), os modelos matemáticos usados para descrever as curvas globais de extração podem ser divididos em três principais categorias: os empíricos, os que usam analogias com a transferência de calor e os obtidos por balanço de massa diferencial.

3.5.2.1 Modelo de Sovová (1994)

Sovová (1994) propôs um modelo baseado em diversos balanços de massa no leito extrator, em que considera o material extraível contido numa estrutura esférica, com células rompidas numa camada externa e células intactas no nucléolo, além de assumir o estado de equilíbrio estabelecido entre o solvente e o soluto dentro das células rompidas no extrator durante a pressurização, isto é, antes de o solvente começar a fluir a partir do extrator.

A teoria que fundamenta este modelo engloba a transferência de massa tanto para a fase sólida quanto para a fase fluida. A adequação do modelo requer as seguintes condições de processo:

- Matriz sólida composta por material moído;
- Leito de extração cilíndrico com fluxo axial de solvente;
- Solvente livre de soluto na entrada do extrator;
- Temperatura e pressão de operação constantes;
- Tamanho de partículas e distribuição de soluto homogêneas no leito de extração no início do processo.

O teor de óleo disponível para extração foi definido pela autora considerandose que o teor inicial de óleo presente no sólido (O) consiste no somatório entre o óleo de fácil acesso, ou óleo livre (L), e o óleo de difícil acesso, presente dentro das partículas da fase sólida (K), como representado pela equação 6:

$$O = L + K \tag{6}$$

A concentração de soluto na fase sólida é descrita com base no teor de sólidos totais livre de soluto (N), através das relações:

$$\boldsymbol{X}_{0} = \frac{O}{N}$$
(7)

$$\boldsymbol{X}_{P} = \frac{K}{N}$$
(8)

$$\boldsymbol{X}_{K} = \frac{P}{N} \tag{9}$$

Onde:

X - Teor ou razão de soluto na fase sólida (-);

- O Massa total de soluto (M);
- N Massa de material insolúvel (M);
- P Massa de soluto de fácil acesso (M);

K - Massa de soluto de difícil acesso (M).

Para este modelo, um balanço de massa para um elemento diferencial do leito foi escrito da seguinte forma:

Fase sólida:

$$-\rho_s(1-\varepsilon_b)\frac{\partial X}{\partial t} = J(X,Y)$$
(10)

Fase fluida:

$$\rho_{CO_2} \cdot \varepsilon_b \frac{\partial Y}{\partial t} + \rho_{CO_2} \cdot U \frac{\partial Y}{\partial h} = J(X, Y)$$
(11)

Onde:

X - razão mássica do soluto na fase sólida (-)

Y - razão mássica do soluto na fase fluida (-),

No modelo de Sovová, os termos referentes à dispersão de soluto na fase fluida são desprezados, eliminando-se, portanto, o primeiro termo do balanço de massa na fase fluida. Portanto, a equação 11 transforma-se na equação 12:

$$\rho_{CO_2} U \frac{\partial Y}{\partial h} = J(X, Y)$$
(12)

Para o balanço de massa na fase sólida, a condição de contorno é:

$$X(h,t=0) = X_0$$
(13)

Para o balanço de massa na fase fluida, a condição de contorno é:

$$Y(h = 0, t) = 0$$
(14)

A solução analítica desse modelo é iniciada a partir da inserção das variáveis adimensionais:

$$r = \frac{X}{X_{\kappa}}$$
(15)

$$y = 1 - \frac{Y}{Y^*} \tag{16}$$

$$z = \frac{k_{Ya}}{U}h$$
(17)

$$\tau = \frac{\varepsilon k_{Y_a} \rho_{CO_2} Y^* t}{(1 - \varepsilon) \rho_S X_K}$$
(18)

Onde ''r' é eficiência da moagem, um fator volumétrico entre as células rompidas. Introduzindo as condições de contorno no balanço de massa tem-se a equação 19 como resultado, e suas condições de contorno (equações 20 e 21):

$$\frac{\partial r}{\partial \tau} = \frac{\partial y}{\partial z} = -J^*(r, y) \tag{19}$$

$$r(z, \tau = 0) = r_0$$
 (20)

$$Y(z = 0, \tau) = 1$$
(21)

Onde:

$$J^{*}(r, y) = \frac{J(X, Y)}{\epsilon k_{Ya} \rho_{CO_{2}} Y^{*} t}$$
(22)

O termo J(X,Y) é definido por Sovová (1994) como:

Para X>X_K

$$J(X,Y) = k_{Y_a}(Y^* - Y)$$
(23)

Para X≤ X_K:

$$J(X,Y) = k_{Xa} X \left(1 - \frac{Y}{Y^*} \right)$$
(24)

Após isso, foi definida uma função f(r):

$$J^*(r, y) = f(r)y$$
(25)

Tal que:

. .

$$f(r>1) = 1$$
 (26)

$$f(r \le 1) \le 1 \tag{27}$$

Para se determinar o perfil de concentração no baixo período de extração Sovová substitui o termo J* da equação 25 na equação 20 através de sua integração utilizando as condições de contorno de cada uma. O termo J*´ foi substituído por ser considerado independente da concentração de soluto na fase fluida. A integração das equações, juntamente com a omissão do termo y resulta na equação 28 com a condição de contorno exposta na equação 29.

$$\frac{1}{f(r)}\frac{\partial r}{\partial z} + r = r_0$$

$$\frac{\partial r(z = 0, \tau)}{\partial z}$$
(28)

$$\frac{\partial r(z=0,t)}{\partial \tau} = -f(r) \tag{29}$$

No período da taxa de extração constante no qual o soluto é de fácil acesso (na condição X>X_K, r>1), tem-se a equação 30 onde a equação 31 é sua condição de contorno.

$$\frac{\partial r}{\partial z} + r = r_0 \tag{30}$$

$$\frac{\partial r(z=0,\tau)}{\partial \tau} = -1 \tag{31}$$

Para o mesmo período, mas para a condição (X≤XK, r≤1) é definida uma constante k, de forma que:

$$f(r \le 1) = kr \tag{32}$$

A função da constante k é introduzir no modelo o coeficiente de transferência de massa na fase sólida (k_{Xa}), mostrado na equação 33:

$$k = \frac{k_{Xa}\rho_{S}X_{K}}{k_{Ya}\rho_{CO_{2}}Y^{*}}$$
(33)

Sovová (1994) obteve o perfil de concentração de soluto na fase sólida, expressos pelas equações 34, 35 e 36:

Para
$$\tau < \tau_m$$

 $r = r_0 - \tau \exp(-z)$ (34)

$$r = r_0 - \tau_m \exp[-(z - z_w)]$$
(35)

Para
$$au_m \leq au < au_n$$
, $z > z_w$ e $au \geq au_n$

 $\mathbf{Poro} \ \tau_m \leq \tau < \tau_n, \ z > z_w$

$$r = \frac{r_0}{1 + \{r_0 \exp[k(\tau - \tau_m)] - 1\}\exp(-r_0 kz)}$$
(36)

Onde:

$$\tau_m = r_0 - 1 \tag{37}$$

$$\tau_n = \tau_m + \frac{1}{k} \ln \left[\frac{1 + \tau_m \exp(r_0 kZ)}{1 + \tau_m} \right]$$
(38)

$$Z = \frac{k_{Ya}h}{U}$$
(39)

$$z_{w} = \frac{1}{kr_{0}} \ln \left\{ \frac{r_{0} \exp[k(\tau - \tau_{m})] - 1}{(r_{0} - 1)} \right\}$$
(40)

Sovová (1994) utiliza três equações para descrever o perfil de concentração de soluto na fase sólida no processo de extração com fluido supercrítico. Na primeira etapa, descrita pela equação 34, há soluto de fácil acesso em todo o leito de extração.

Quando se esgota o soluto de fácil acesso na entrada do leito ($\tau = \tau_m$), iniciase o segundo período do processo, onde z_w é a coordenada que divide o leito de extração em duas seções: a seção onde $z < z_w$, na qual o soluto é extraído do interior das células e a seção onde $z > z_w$, onde ainda há soluto de fácil acesso. A variável τ é definida como igual a τ_n quando a coordenada z atinge o fim do leito de extração e, então, não há mais soluto de fácil acesso em nenhuma seção do leito. Integrando a equação 19 em relação a y, o perfil de concentração de soluto na fase fluida:

Para
$$\tau < \tau_m$$

$$y = \exp(-z) \tag{41}$$

Para $\tau_m \leq \tau < \tau_n, \ z > z_w$.

$$y = \frac{\tau_m \exp(z_w - z)}{r_0 - \exp[k(\tau - \tau_m)]}$$
(42)

Para $\tau_m \leq \tau < \tau_n$, $z > z_w$ e para $\tau \geq \tau_n$.

$$y = \frac{r_0 \exp[k(\tau - \tau_m)]}{\exp(r_0 k z) + r_0 - \exp[k(\tau - \tau_m)] - 1}$$
(43)

Para a análise de dados experimentais, as equações do modelo devem ser funções de grandezas facilmente mensuráveis, como tempo ou massa de extrato. As equações que definem a curva de extração pelo modelo de Sovová (1994), são as que se seguem:

Para q<q_m:

$$e = \frac{m_e}{N} = qY^* [1 - \exp(-Z)]$$
(44)

Para q_m≤q<q_n:

$$e = \frac{m_e}{N} = Y^* [q - q_m \exp(z_w - Z)]$$
(45)

Para q≥q_n:

$$e = \frac{m_e}{N} = X_0 - \frac{Y^*}{W} \ln\left\{1 + \exp\left(\frac{WX_0}{Y^*}\right) - 1\right] \exp[W(q_m - q)] \frac{X_k}{X_0}\right\}$$
(46)

Onde:

m_e - Massa de extrato, relativo a N (M);

q - Quantidade específica de solvente, expressa na equação 47.

$$q = \frac{m_{CO_2}}{N} \tag{47}$$

q_m - Quantidade específica de solvente de dentro das partículas (M), expresso na equação 48:

$$q_{m} = \frac{X_{0} - X_{K}}{Y^{*}Z}$$
(48)

- m_{CO_2} Massa de solvente (M)
- z Coordenada adimensional (-);
- Z parâmetro do período de taxa decrescente de extração (-);
- W parâmetro do período de taxa constante de extração (-);
- u Velocidade superficial do solvente (LT⁻¹);
- t Tempo (T);
- r Concentração na fase sólida (-);

f(r) - Função definidora do retardo da extração por difusão de dentro das partículas (-);

- h Coordenada axial (L),
- H Altura do leito (L);
- J* Taxa de transferencia de massa (-);
- K Massa inicial de soluto inacessível (M);
- k Parâmetro do modelo de Lack citado por Sovová;
- k_{Ya} Coeficiente de transferencia de massa na fase fluida (LT⁻¹);
- k_{Xa} Coeficiente de transferencia de massa na fase sólida (LT⁻¹);
- ε Porosidade do leito ou fração de vazios (-);
- ρ_f Densidade do fluido (ML⁻³);
- ρ_s Densidade do sólido (ML⁻³);
- τ Tempo adimensional (-);
- y concentração de solvente relacionado à fase livre de solvente (-);

Y* - solubilidade do extrato no solvente (-).

Povh (2000), em seu estudo sobre a extração do óleo essencial de camomila, apresentou um método o qual considerou o escoamento pistonado (que despreza a direção radial de fluxo), as propriedades do sistema (temperatura, pressão e vazão de solvente) constantes ao longo da extração e o leito homogêneo acerca da distribuição do soluto, bem como o tamanho das partículas.

Com base nessas considerações, o modelo trabalhado nesse estudo, que foi o de Sovová (1994), teve suas equações modificadas a partir dessas considerações (equações 49, 50 e 51) a fim de facilitar o cálculo dos coeficientes de transferência de massa da fase fluida (k_{Ya}) e sólida (k_{Xa}), para o período CER.

As modificações das equações são caracterizadas pela inclusão das variáveis de tempos referentes às taxas constante e decresente de extração (t_{CER} e t_{FER}) e de vazão mássica de solvente, não alterando a integridade do modelo original.

Para t < t_{CER}:

$$m = Y^* [1 - \exp(-Z)] Q_{CO_2} t$$
(49)

Para $t_{CER} \le t \le t_{FER}$:

$$m = Y^* [t - t_{CER} \exp(z_W - Z)] Q_{CO_2} .t$$
(50)

Para t \leq t_{FER}:

$$m = N \left\langle X_0 - \frac{Y^*}{W} \ln \left\{ 1 + \left[\exp\left(\frac{WX_0}{Y^*}\right) - 1 \right] \exp\left[\left(\frac{W.Q_{CO_2}}{N}\right) (t_{CER} - t) \right] \left(\frac{X_K}{X_0}\right) \right\} \right\rangle$$
(51)

Onde:

$$Z = \frac{N \cdot k_{Ya} \cdot \rho_{CO_2}}{Q_{CO_2} \cdot (1 - \varepsilon) \cdot \rho_S}$$
(52)

$$t_{CER} = \frac{N.X_{P}}{Y^{*}.Z.Q_{CO_{2}}}$$
(53)

$$X_P = X_0 - X_K = \frac{M_{CER} t_{CER}}{N}$$
(54)

$$\frac{z_{W}}{Z} = \frac{Y^{*}}{W.X_{0}} \ln \left\{ \frac{X_{0} \cdot \exp\left[\left(\frac{W \cdot Q_{CO_{2}}}{N}\right)(t - t_{CER})\right] - X_{K}}{X_{0} - X_{K}} \right\}$$
(55)

$$W = \frac{N.k_{Xa}}{Q_{CO_2}.(1-\varepsilon)}$$
(56)

$$t_{FER} = t_{CER} + \frac{N}{W.Q_{CO_2}} . \ln\left[\frac{X_K + (X_0 - X_K).\exp\left(\frac{WX_0}{Y^*}\right)}{X_0}\right]$$
(57)

Sendo:

m - Massa de extrato (M);

N - Massa de sólidos inertes (M);

Y* - Solubilidade do extrato no solvente (-), que, de acordo com Povh (2000) pode ser calculada pela equação 58, tornando-se a solubilidade operacional.

$$Y^{*} = \frac{M^{*}}{Q_{co2}}$$
(58)

M* - taxa de transferência de massa para o período de taxa constante de extração à vazão de1,0g/min (POVH, 2000).

 k_{Ya} - Coeficiente de transferência de massa na fase fluida (T⁻¹);

 k_{Xa} - Coeficiente de transferência de massa na fase sólida (T⁻¹);

X₀ - Razão entre massa inicial e de soluto na fase sólida (-);

X_k - Relação de massa de solutos para as células intactas na fase sólida (-);

X_p - Relação entre a massa de soluto para o soluto facilmente acessível também na fase sólida (-).

Para estimar os parâmetros para o modelo foi adotado seguinte procedimento, conforme Povh, Meireles e Marques (2001):

- A relação inicial de massa de soluto (X₀) foi calculada usando 10% acima do montante total do extrato para cada condição experimental;
- O sólido inerte foi considerado a massa da alimentação menos a massa total de extrato;
- Os valores de Y_{CER} (razão da massa de soluto na fase fluida, na saída do leito, para o período de taxa constante de extração) foram adquiridos como uma estimativa da solubilidade do extrato no solvente supercritico. Este valor, de acordo com Povh (2000) pode ser calculado através da equação 59:

$$Y_{CER} = \frac{M_{CER}}{Q_{CO2}}$$
(59)

Em que M_{CER} é a taxa de transferência de massa para o período de taxa constante de extração (MT⁻¹)

- Os valores de M_{CER} foram usados para estimar Z, através da equação 49;
- O coeficiente de transferencia de massa na fase fluida (k_{Ya}) foi calculado através da equação 52;
- O tempo foi calculado como uma interceptação entre a primeira e a segunda linha do spline e a equação 53 foi usada para estimar X_p;
- W inclui o coeficiente de transferencia de massa na fase sólida foi estimado usando a equação 56 e as definições a seguir:

$$k_{Xa} = \frac{k_{Ya}\rho_{CO_2}\Delta Y}{\rho_S\Delta X} \tag{60}$$

$$k_{Ya} = \frac{M_{CER}}{\rho_{CO2} S.H.\Delta Y}$$
(61)

$$\Delta Y = \frac{Y_{CER}}{\ln\left[\frac{Y^*}{\left(Y^* - Y_{CER}\right)}\right]}$$
(62)

$$\Delta X = \frac{\left(X^* - X_P\right) - \left(X^* - X_K\right)}{\ln\left[\frac{\left(X^* - X_P\right)}{\left(X^* - X_K\right)}\right]} = \frac{\left(X_P + X_K\right)}{2}$$
(63)

$$X^* = \frac{m_e - (M^*.t^*)}{N}$$

ΔX - Média logarítmica do soluto na fase sólida

ΔY - Média logarítmica do soluto na fase fluida

k_{Ya} - Coeficiente de transferência de massa na fase fluida (T⁻¹);

 k_{Xa} - Coeficiente de transferência de massa na fase sólida (T⁻¹);

H - altura do leito (m)

S - área transversal do leito (m²);

t* - Tempo de duração do período de taxa constante de extração para os ensaios com vazão de 1,0g/min (POVH, 2000);

X₀ - Razão entre massa inicial e de soluto na fase sólida (-);

X_k - Relação de massa de solutos para as células intactas na fase sólida (-);

X_p - Relação entre a massa de soluto para o soluto facilmente acessível também na fase sólida (-).

3.5.2.2 Modelo de Tan e Liou (1989)

O modelo de Tan e Liou, assim como Sovová considera a unidade de extração como um leito cilíndrico no qual o sólido, devidamente pré-tratado, é acomodado. O solvente com pressão e temperatura fixas flui axialmente através do leito, retirando do sólido os compostos de interesse. Desta forma, na saída do leito tem-se o extrato, formado pelos compostos solubilizados no CO₂ supercrítico (MARTÍNEZ, 2002). Esse modelo representa a transferência de massa interfacial com um modelo cinético de primeira ordem, apresentado no balanço de massa no leito de extração, que pode ser escrito da seguinte forma:

Na fase sólida:

$$\frac{\partial X}{\partial t} = -k_d X \tag{65}$$

Na fase fluida:

$$\wp \frac{\partial Y}{\partial t} + u\rho \frac{\partial Y}{\partial h} = -(1-\varepsilon)\rho_s \frac{\partial X}{\partial t}$$
(66)

Na equação (65) k_d é a constante de dessorção, que é o único parâmetro a ser ajustado no modelo de Tan e Liou (1989), cuja adequação aos dados experimentais 55

(64)

necessita de condições iniciais e de contorno (equações 67, 68 e 69) para resolver as equações de balanço de massa que regem esse modelo:

$$Y(h,t=0) = 0 (67)$$

$$Y(h,t=0) = X_0$$
 (68)

$$Y(h=0,t) = 0 (69)$$

A equação 70, resultante da resolução das equações 65 e 66 com as condições 67 e 68, expressa a razão mássica de óleo no solvente na saída do extrator, em função do tempo de processo.

$$Y(h = H, t) = \frac{1 - \varepsilon}{\varepsilon} X_0 \frac{\rho_s}{\rho} \left[\exp\left(\frac{k_d \varepsilon H}{u}\right) - 1 \right] \exp(-k_d t)$$
(70)

De acordo com Martínez (2002), a condição inicial (equação 69), embora seja apresentada por Tan e Liou (1989), não é obedecida na equação 70, o que indica erro na resolução das equaçãoes de balanço de massa.

A curva de extração a ser obtida pelo modelo deve apresentar a massa de óleo na saída do extrator em função do tempo de extração. Esta massa pode ser obtida resolvendo-se a integral na equação 71:

$$m = \int_{0}^{t} Y.Q_{CO_2} dt \tag{71}$$

Substituindo a equação 65 na 66 e integrando-a, tem-se:

$$m = \frac{A}{k_d} \left[1 - \exp(k_d B) \right] \left[\exp(-k_d t) - 1 \right]$$
(72)

Onde:

$$A = Q_{CO_2} \frac{1-\varepsilon}{\varepsilon} X_0 \frac{\rho_{s \circ LIDO}}{\rho_{CO2}}$$
(73)

$$B = \frac{\varepsilon H}{u} = \frac{\varepsilon H \rho_s}{Q_{CO_2}}$$
(74)

Em que:

Q_{CO2} - Vazão mássica de solvente, no caso o dióxido de carbono (MT⁻¹);

- ε Porosidade do leito (-)
- H Altura do leito (L);
- S Área superficial (L²)

- ρ_{solido} Densidade do sólido (ML⁻³)
- $\rho_{\rm CO2}$ Densidade do solvente (ML⁻³);
- u Velocidade do solvente, em (LT⁻¹);
- X₀ Rendimento global (-);
- t Tempo de extração (T);
- m Massa extraída (M);
- k_d Constante de dessorção (T⁻¹)

3.5.2.3 Modelo de Martínez et al. (2003)

O modelo de Martínez *et al.* (2003) foi elaborado na tentativa de contemplar um ponto que modelos anteriores não tratavam, a composição do extrato buscado, pois modelos anteriores tratam o extrato como sendo um pseudocomposto. Por isso, este modelo se baseou num extrato multicomponente, a fim de se ter uma maior aproximação dos resultados experimentais, já que com o tratamento do extrato como multicomponente o modelo descreve o mais próximo da realidade.

O modelo considerou a variação da concentração de composto no extrato ao longo da extração, sabendo que a partir de determinados tempos de operação, alguns componentes são esgotados, enquanto outros iniciam seu processo de extração. Influenciando na relação do fluxo de transferência de massa na interface sólido-fluido, J(X, Y), e na função da solubilidade dos componentes no solvente (Si).

$$J(X,Y) = \sum_{i=1}^{n} S_i$$
(75)

Este modelo é uma adaptação do modelo proposto por França e Meireles (2000), onde é substituída a função Si a partir da equação de logística de Verhust, que descreve o comportamento do crescimento de populações, expressa na equação 76.

$$S_{i} = \frac{A_{i}b_{i}\exp[b_{i}(t_{mi}-t)]}{\{1+\exp[b_{i}(t_{mi}-t)]\}^{2}}$$
(76)

Para o balanço material na fase fluida é usada a equação 77, cujas condições de contorno estão nas equações 78 e 79:

$$u\frac{\partial Y}{\partial h} = \frac{J(X,Y)}{\varepsilon}$$
(77)

$$Y(h=0,t) = 0 (78)$$

$$Y(h = H_B, t = 0) = 0 (79)$$

A partir da integração da equação 77 sob uso das condições de contorno e a função S_i da equação 76, é resultada a razão mássica do soluto no solvente na saída do extrator (equação 80):

$$Y(h=H) = \frac{H_B}{u\varepsilon} \sum_{i=1}^n S_i$$
(80)

A partir da integração da equação 80, usando-se condições de contorno se tem a equação característica do modelo de Martínez *et al.* (2003) para a construção das curvas de rendimentos globais de extração.

$$m = \frac{X_0 F_0}{\exp(b_i t_{mi})} \left\{ \frac{1 + \exp(b_i t_{mi})}{1 + \exp[b_i (t_{mi} - t)]} - 1 \right\}$$
(81)

Em que:

X₀ - Rendimento global (-);

F₀ - Massa de alimentação do leito (M);

b_i - Parâmetro ajustável do modelo (T⁻¹).

t_{mi} - Parâmetro ajustável do modelo (T).

De acordo com Martínez *et al.* (2003) os parâmetros ajustáveis de seu próprio modelo ainda precisam ser definidos porque eles não possuem significado físico. De acordo com os mesmos autores, o significado físico dos parâmetros ajustáveis para qualquer modelo é importante para o entendimento e para a discussão da aplicabilidade dos modelos para determinadas condições operacionais.

Esses autores modelaram dados de extração da oleoresina de gengibre comparando-o com o modelo de Sovová (1994) dizendo que o modelo apresentado proporciona menores desvios médios quadráticos que o modelo de Sovová (1994), representando melhor as curvas globais de extração para essa matéria prima.

3.5.2.4 Modelo de Goto et al. (1993)

O modelo de Goto *et al.* (1993) apresenta diferença em relação aos demais modelos apresentados, no que diz respeito às partículas que constituem o leito, pois considera que as partículas nem sempre podem ser tratadas como partículas esféricas, como por exemplo, na extração de óleo volátil de folhas.

Mediante esta consideração, os autores consideraram o leito formado por partículas com geometria de uma placa plana, como meio poroso, que tem espessura desprezível em relação às demais dimensões, de forma que a transferência de massa ocorra preferencialmente entre as duas maiores superfícies da placa.

No tratamento deste modelo é dito que o sólido poroso apresenta duas razões mássicas a serem consideradas: a razão mássica nas folhas e nos poros. A descrição do fluxo de massa interfacial é dada como foi descrito por Sovová (1994): Para X>X_K:

$$J(X,Y) = K_{Ya}(Y^* - Y)$$
(82)

O balanço de massa na fase sólida é expresso pelas equações 83 e 84, mostradas a seguir:

$$\beta \frac{\partial C_i}{\partial t} + (1 - \beta) \frac{\partial C_s}{\partial t} = D_{EF} \frac{\partial^2 C_i}{\partial y^2}$$
(83)

$$\frac{\partial C_s}{\partial t} = k_{des} \left(C_i - \frac{C_s}{K} \right)$$
(84)

Em que:

y - Coordenada da partícula (-);

- β Porosidade da folha (-);
- C_i Razão mássica de soluto nos poros da folha (-);
- C_s Razão mássica de soluto na folha (-);
- D_{EF} Difusividade efetiva entre as partículas (MT⁻¹);
- K Constante de equilíbrio de dessorção (T⁻¹);
- k_{des} Coeficiente de dessorção (T⁻¹).

A transferência de massa da folha para os poros é tratada neste modelo como um processo de dessorção (equação 82). Para a fase fluida do sistema o balanço de massa é dado pela equação 85:

$$\varphi \frac{\partial C}{\partial t} + \frac{C}{\tau} = -(1 - \varepsilon)k_f a_p (C - C_i \Big|_{y=e})$$
(85)

 τ - Tempo de residência do solvente no leito (T);

k_f - Coeficiente volumétrico de transferência de massa (L⁻³);

- e Meia espessura da folha (M);
- a_p Área específica de transferência de massa (L²).

As condições iniciais (equações 86 e 87) e de contorno (equação 88), serão utilizadas para resolução das equações de balanço de massa:

$$C(y,t=0) = C_{s0}$$
(86)

$$C_{s}(y,t=0) = C_{i}(y,t=0) = 0$$
(87)

$$D_{EF}\left(\frac{\partial C_i}{\partial y}\right)_{y=e} = k_f a_p (C - C_i \big|_{y=e})$$
(88)

A solução analítica do balanço de massa representa o modelo de Goto *et al* (1993) para obtenção da curva de extração (equação 89):

$$m = \frac{A\left[\beta/K + (1-\beta)\right]X_0\rho_s Q_{CO_2}}{\rho} \left\{ \frac{\tau}{a_1} \left[\exp\left(a_1 \frac{t}{\tau}\right) - 1 \right] + \frac{\tau}{a_2} \left[1 - \exp\left(a_2 \frac{t}{\tau}\right) \right] \right\}$$
(89)

Em que:

$$a_1 = \frac{1}{2} \left(-b + \sqrt{b^2 - 4c} \right) \tag{90}$$

$$a_2 = \frac{1}{2} \left(-b - \sqrt{b^2 - 4c} \right) \tag{91}$$

$$A = \frac{(1-\varepsilon)\phi}{\left[\beta + (1-\beta)K\right]\varepsilon(a_1 - a_2)}$$
(92)

$$b = \frac{\phi}{\left[\beta + (1 - \beta)K\right]} + \frac{1}{\varepsilon} + \frac{\phi(1 - \varepsilon)}{\varepsilon}$$
(93)

$$c = \frac{\phi}{\left[\beta + (1 - \beta)K\right]\varepsilon}$$
(94)

$$\phi = k_p a_p \tau \tag{95}$$

O modelo de Goto *et al.* (1993), portanto, pode ser aplicado a dados experimentais de extração com fluido supercrítico com dois parâmetros ajustáveis, ϕ (coeficiente global de trasnferência de massa) e K (constante adsortiva de equilíbrio). O coeficiente k_p, que expressa a transferência de massa combinado, é dado em função do coeficiente de transferência de massa na fase fluida (equação 96):

$$k_p = \frac{3k_f}{3+Bi} \tag{96}$$

Onde Bi é o número de Biot.

3.5.2.5 Modelo de Esquível et al. (1999)

Este modelo, originalmente representado pela equação 97, se enquadra numa categoria de modelos que depende da forma hiperbólica das OECs, usando funções hiperbólicas para ajustá-lo (ROSA *et al.*, 2009).

A teoria do modelo de Esquível *et al.* (1999) se trata do uso da equação cinética de crescimento microbiano proposto por Monod para representar o rendimento da extração em função do tempo de extração.

$$e = e_{\lim} \left(\frac{t}{b+t} \right) \tag{97}$$

Onde:

e - Razão entre a massa de óleo recuperada em função do tempo (T) e a massa
 inicial (M) de carga livre de soluto;

 e_{lim} - Parâmetro ajustável, que representa o valor de '´e´´ para um tempo infinito de extração.

b - Parâmetro ajustável dependente da vazão mássica, temperatura e pressão, e não possui significado físico.

O parâmetro e_{lim} pode presumidamente depender apenas do material a ser extraído, desde que este seja igual ao conteúdo inicial de óleo do mesmo, e, ao se plotar a curva de rendimento (e) pelo tempo, a divisão *``e_{lim}/b`´* representa a inclinação inicial da curva de extração. A equação 98 representa o modelo de Esquível *et al.* (1999) modelo adaptado por Martínez (2005) para o processo de extração com fluido supercrítico:

$$m = X_0 F_0 \left(\frac{t}{b+t}\right)$$

m - massa extraída (M)

t - tempo de extração (T)

X₀ - Rendimento global (-),

F₀ - Massa de alimentação do leito (M);

b - Parâmetro ajustável do modelo (T).

Quispe-Condori (2005) relatou que a relação dos parâmetros ajustáveis do modelo de Esquível *et al.* (1999) e sua relação com outras variáveis ainda deve ser estudada, da mesma forma como o modelo de Martínez *et al.* (2003).

3.5.2.6 Modelo de Crank (1975)

Adaptado por Reverchon (1993) este modelo é uma aplicação da 2ª Lei de Fick da Difusão, no qual cada partícula sólida é considerada um corpo quente que perde calor em função do tempo e do meio, e se supõe que as substâncias a serem extraídas encontram-se uniformemente no interior da partícula sólida. Neste caso, a partícula sólida esférica é o sólido que contém o óleo a ser extraído e o meio é o solvente supercrítico.

$$\frac{\partial C}{\partial t} = D \left(\frac{\partial^2 C}{\partial r^2} + \frac{2}{r} \frac{\partial C}{\partial r} \right)$$
(99)

As condições inicial e de contorno são dadas pelas equações 100, 101 e 102:

$$C = C_0, t = 0, \ 0 < r < R \tag{100}$$

$$\frac{\partial C}{\partial r} = 0, t > 0, r = 0 \tag{101}$$

$$C = Y^*, t > 0, \ r = R \tag{102}$$

A resolução do balanço de massa na superfície interna da partícula está na equação 103 (uma equação de solução numérica), que representa a massa de uma substância que se difunde através de uma partícula:

$$m = F_0 \left[1 - \frac{6}{\pi^2} \sum_{n=1}^{\infty} \exp\left(\frac{-n^2 \pi^2 D.t}{r^2}\right) \right]$$
(103)

(98)

m - Massa Extraída (M);

F₀ - Massa da Alimentação (M);

n - Número de termos da série (número inteiro);

D - Coeficiente difusivo (L^2T^{-1}) ;

- r Raio da partícula (L);
- t Tempo (T);

π - 3,1415.

3.5.2.7 Modelo de Cocero e García (2001)

O modelo considera um extrator de leito fixo com um modo distributivo. As equações de balanço envolvem o extrato acumulado variando com o tempo, direção radial e axial (dispersão radial e axial), considerando o equilíbrio na superfície e a transferência de massa entre o leito e o fluido. A fim de ajustar os dados experimentais, este modelo é simplificado para dois parâmetros ajustados, o coeficiente de equilíbrio e o parâmetro de transferência de massa.

A resolução matemática das equações requer o método descritivo, como diferenças finitas. As equações de balanço material em termos da concentração nas fases fluida, sólida e equilíbrio, considerando a variação do tempo, dispersão axial e radial e coeficiente de transferência de massa aplicado ao processo de adsorção: Dispersão Axial:

$$\varepsilon \frac{\partial C}{\partial t} = D_{az} \frac{\partial^2 C}{\partial z^2} - u_z \frac{\partial C}{\partial z} - (k_B a).(C - C^*)$$
(104)

Dispersão Radial:

$$(1-\varepsilon)\frac{\partial C_s}{\partial t} = D_r \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial C_s}{\partial r}\right)$$
(105)

Coeficiente de Transferência de Massa:

$$C^* = f(C_S) \tag{106}$$

As condições iniciais e de contorno estão nas equações 107 a 111:

$$t = 0 \rightarrow C - 0, C_s = 0 \tag{107}$$

$$z = 0 \rightarrow C - C_0 \tag{108}$$

$$z = L \to (C|_{L^+} - C|_{L^+})u = -D_{az} \left(\frac{\partial C}{\partial t}\right)_{z=L}$$
(109)

$$r = 0 \longrightarrow \frac{\partial C_s}{\partial r} = 0 \tag{110}$$

$$r = R \to D_r \frac{\partial C_s}{\partial r} = (k_B a)(C - C^*)$$
(111)

 ε - Porosidade do leito (-);

C - Concentração na fase fluida (ML⁻³);

C_s - Concentração na fase sólida (ML⁻³);

C* - Concentração na superfície de equilíbrio (ML⁻³);

C₀ - Concentração inicial (ML⁻³);

z - Comprimento na direção axial (L);

L - Altura do Leito (L);

- r Comprimento na direção radial (L);
- R Raio do leito (L);

$$D_{ax}$$
 - Dispersão axial (L²T⁻¹);

 D_r - Dispersão radial (L² T⁻¹);

*k*ga - Coeficiente de transferência de massa (T^{-1}) ;

u - Velocidade (LT⁻¹)

h - Parâmetro de equilíbrio (-)

O modelo é simplificado negligenciando-se as dispersões axial e radial, devido à versatilidade do ajuste com dois parâmetros, o pequeno volume do extrator experimental e o diâmetro da partícula. Esta simplificação não reduz a validação deste modelo pois as dispersões axial e radial introduzem dois novos parâmetros, e, desta forma, um melhor ajuste. Os autores recomendam trabalhar em variáveis adimensionais para resolver o modelo numericamente, sendo que o tempo adimensional não é requerido. A transformação é dada a partir da forma:

$$x = \frac{z}{L}$$
(112)
$$y = \frac{c}{c_0}$$
(113)

$$y_s = \frac{c_s}{c_0} \tag{114}$$

O modelo adimensional é expresso pelas equações 115, 116 e 117, cas condições inicial e de contorno estão nas equções 118 e 119:

$$\varepsilon \frac{\partial y}{\partial t} = -\frac{u_z}{L} \frac{\partial y}{\partial x} - (k_g a)(y - y^*)$$
(115)

$$(1-\varepsilon)\frac{\partial y_s}{\partial t} = (k_g a)(y - y^*)$$
(116)

$$y_s = f(y^*) \tag{117}$$

$$t = 0 \rightarrow y = 0, y_s = 0 \tag{118}$$

$$x = 0 \rightarrow y = 1 \tag{119}$$

Na fase de equilíbrio é adotada a consideração:

$$y_s = hy^* \tag{120}$$

Uma solução numérica é precisa pois as equações 115 a 120 possuem uma solução semianalítica com a Transformada de Laplace. Transformando as condições impostas nas equações 121 e 122:

$$t = 0 \rightarrow Y(s) = 0, Y^{*}(s) = 0$$
 (121)

$$x = 0 \to Y(s) = 1 \tag{122}$$

Transformando as equações 104 e 105 de balanço de massa:

$$\frac{\varepsilon L}{u}Y(s)\frac{\partial Y(s)}{\partial z} = -\frac{(k_g a)}{u} \Big[Y(s) - Y^*(s)\Big]$$
(123)

$$Y^{*}(s) = \frac{(k_{g}a)}{h(1-\varepsilon)} \Big[Y(s) - Y^{*}(s) \Big]$$
(124)

Nomeando-se os termos:

$$g_0 = \left(\frac{\varepsilon L}{u}\right) \tag{125}$$

$$g_1 = \frac{(k_g a)L}{u} \tag{126}$$

$$b = \frac{(k_g a)}{h(1-\varepsilon)} \tag{127}$$

Substituindo estes termos na equação 124 para a condição imposta na equação 128, é obtida a equação 129.

$$x = 0 \rightarrow Y(s) = 1 \tag{128}$$

$$\frac{dY(s)}{dx} = -\left(g_0 + \frac{g_1}{s+b}\right)sY$$
(129)

Resolvendo a equação 130, tem-se o modelo de Cocero e Garcia (2001):

$$Y(s) = \exp\left(-\left(g_0 + \frac{g_1}{s+b}\right)sx\right)$$
(130)

Cocero e Garcia (2001) usaram o algoritimo Runge-Kutta para resolver a dependência com o tempo. De acordo com os autores a solução no domínio de 's' pode ser transformada para o domínio do tempo através da Transformada de Fourier, em que a principal vantagem desse método é o baixo tempo de computação (1 - 5 segundos).

3.6 APLICAÇÃO DA MODELAGEM MATEMÁTICA PARA O PROCESSO DE EXTRAÇÃO SUPERCRÍTICA

A simulação de um processo é uma alternativa interessante de se investigá-lo por diminuir o tempo de desenvolvimento da sua projeção, bem como custos experimentais. A EFSC possui vasta aplicabilidade na indústria, como a extração de fármacos, corantes, retirada de produtos tóxicos, esterilização e inativação de virus, além de fracionamento da gordura do leite e óleos de peixe. Apesar das enormes utilidades em potencial, poucos são os exemplos do processo de EFSC em escala comercial e certamente, tais aplicações não vão além a menos que haja uma estimação de um processo confiável. Tal estimação pode ser feita através do estudo de escala, o qual faz uso de modelos matemáticos que simulem o processo desejado (ALBUQUERQUE; MEIRELES, 2012; PERRUT, 2012; SERIN *et al.*, 2010; CYGNAROWICZ-PROVOST, 1996).

O projeto de engenharia dos processos de EFSC e a otimização de suas técnicas exigem conhecimento dos parâmetros de processo de transferência de massa tais como rendimento e solubilidade. Alguns modelos matemáticos utilizam a solubilidade experimental e dados experimentais de transferência de massa para se estimar parâmetros para o equilíbrio e equações de balanço de massa que descrevem o processo (AGUIAR, 2011; SILVA *et al.*, 2009; CORSO, 2008; FERREIRA; MEIRELES, 2002; CYNAROWICZ-PROVOST, 1996).

Vários modelos aplicados à transferência de massa com fluidos supercríticos estão registrados na literatura como os de Tan e Liou (1989) e Sovová (1994). Para descrever a cinética de extração do óleo pode-se empregar modelos difusivos ou modelos empíricos de cinética de extração.

Os modelos difusivos, empregados por alguns autores para representar a cinética de extração, requerem que sejam conhecidas a geometria da fase sólida e a porosidade da matriz sólida (microporos ou macroporos). Além disso, nos modelos difusivos o esforço computacional para a resolução das equações é grande, em virtude da necessidade de se determinar o perfil de concentração do óleo na partícula (CORSO, 2008).

Hatami *et al.* (2012) ao extrair componentes bioativos das flores de macela realizaram o tratamento de dados usando um modelo baseado nos balanços de massa que estimem o rendimento da extração em função do tempo, e um algoritimo

genético (implementado pelo software MATLAB) aplicado para determinar os parâmetros ajustáveis desse modelo, onde seus valores ótimos foram encontrados por meio do método tentativa e erro.

Lemos *et al.* (2011) realizaram a modelagem matemática das curvas cinéticas de extração do óleo de pariparoba usando CO₂ supercrítico por meio de um modelo empírico de segunda ordem, em cujo ajuste foi utilizado o método numérico implementado num programa computacional em linguagem FORTRAN, obtendo resultados satisfatórios.

Silva *et al.* (2009) investigaram o comportamento das cinéticas de extração do óleo de carqueja através da modelagem das curvas globais utilizando o software SAS 8.2. para os modelos de Tan e Liou (1989), Sovová (1994) e Esquível *et al.* (1999) e o software MATLAB R12 para o modelo formulado por Brunner (1994), onde três valores de X₀ foram estimados, sendo que os modelos de Sovová (1994) e Esquível *et al.* (1999) foram os que melhor representaram as curvas globais de extração para o óleo de carqueja.

Para a utilização de determinados modelos matemáticos, serão necessárias informações acerca das condições experimentais, que não podem ser medidas fisicamente, estas informações requeridas, por exemplo, são b_{mi} e t_{mi}, para modelo de Martinez *et al.* (2003), b, para Esquível *et al.* (1999), t_{CER}, t_{FER}, k_{Xa} e k_{Ya}, para Sovová (1994), \$\overline\$ e k, para Goto *et al.* (1993), K_d para Tan e Liou (1989). Estes cinco modelos serão trabalhados nesta dissertação.

A metodologia pioneira para a modelagem de experimentos aplicados à extração supercrítica, apresentada por Rodrigues *et al.* (2000) e usada em trabalhos posteriores como os de Pasquel *et al.* (2000), consistiu no cálculo das curvas globais de extração (OEC), a partir do ajuste de um spline usando duas linhas retas, onde a primeira era identificada como o período de taxa constante de extração (CER). Do spline a taxa de extração do período CER (M_{CER}) foi computada como o tempo correspondente à intercepção de duas linhas (t_{CER}), tais ajustes foram realizados pelos autores através do uso de ferramentas computacionais PROC REG e PROC LIN do programa SAS, versão 6.12.

A metodologia de Povh *et al.* (2001) para o tratamento de dados de extração da oleoresina de camomila (*Matricaria recutita* [L.] Rauschert) com auxílio do software SAS 6.12 acerca da estimação de parâmetros ajustáveis para o modelo de Sovová

(1994) adaptado por Povh (2000), tem obtido resultados satisfatórios. Esta metodologia tem sido utilizada nesses últimos doze anos de forma diversificada (no que diz respeito aos atributos computacionais) em uma gama numerosa de trabalhos como os de Silva *et al.* (2009), que utilizaram o software MATLAB R12 para modelar curvas globais de extração do óleo de carqueja, Michielin (2009), usou o programa Mass Transfer para a obtenção do extrato de erva baleeira.

O programa Tecanalysis foi utilizado comumente por muitos autores como Quispe-Condori (2005), o qual ajustou cinéticas de artemisia, alfavaca, erva baleeira e funcho e Carvalho Jr. (2005), que modelou cinéticas de alecrim. Talansier *et al.* (2008), ao estudarem a extração das raízes de vetiver com CO₂ supercrítico, Aguiar *et al.* (2011), que estimaram custos na extração de lipídios de pescada-olhuda com o auxílio deste programa.

3.7 AMPLIAÇÃO DE ESCALA PARA PROCESSOS DE MATRIZ SÓLIDA

A EFSC foi estudada extensivamente em escala laboratorial. O estudo dos critérios de ampliação de escala é importante para estabelecer uma metodologia que possa predizer o comportamento do processo em escala industrial, considerando as diferenças observadas em processos conduzidos em equipamentos com significantes diferenças entre tamanhos (PRADO *et al.*, 2011; CYGNAROWICZ-PROVOST, 1996)

Eggers e Sievers (1989) apresentaram algumas formas de ampliação de escala como manter constantes as variáveis: pressão, temperatura, tipo de solvente, características e pré-tratamento da matéria-prima, e aumentar a vazão de solvente e massa de sólido, preservando a proporção entre ambos de forma a manter constante a velocidade do solvente no leito. Porém, estes autores não visaram à reprodução do processo, e sim a avaliação da viabilidade técnica e econômica do aumento de escala com os critérios escolhidos.

Cunha *et al.* (2008), investigando a influência das características do leito fixo e parâmetros de processo (em termos de massa acumulada e tempo de extração) na extração do resíduo sólido das sementes de andiroba relataram que para fins econômicos a extração deve ser feita sob as configurações de 10 cm de altura e vazão de dióxido de carbono de 7 l/min.

Martínez, Rosa e Meireles (2007) aplicaram uma correlação para o aumento de escala em processos de EFSC do óleo de cravo-da-índia e de vetiver, conservando a proporção entre massa de alimentação e vazão de solvente. Como resultado, os autores obtiveram curvas globais semelhantes para um aumento de 20 vezes na escala.

Outra forma do estudo de ampliação de escala foi mostrada por Carvalho Jr. *et al.* (2005) e Moura *et al.* (2005) que estudaram as correlações de ampliação de escala realizando ensaios de extrações supercríticas em dois extratores de tamanhos diferentes para a obtenção dos extratos de funcho e alecrim, respectivamente, preservando as condições operacionais e geometria do leito.

3.8 MATÉRIAS-PRIMAS

Neste trabalho serão modelados os dados cinéticos obtidos com dióxido de carbono em estado supercrítico, medidos no Laboratório de Engenharia Química (LEQ-UFPA) referentes a extração dos óleos de açaí, dados de Souza (2006) e buriti, dados de Cunha *et al.* (2012b) e de Rüster (1997), e da oleoresina da cúrcuma, dados de Chassagnez-Méndez (1998). Um breve relato a respeito dessas matérias primas é mostrado nos três subtópicos que se seguem.

3.8.1 Açaí

Açaí (*Euterpe oleracea*) é um fruto conhecido pela elevada concentração de antioxidantes, baixo teor de açúcar, além de possuir níveis significativos de lipídios. O fruto também é caracterizado pela cor vermelho escuro ou arroxeada e exerce papel importante na alimentação na forma de bebidas e doces. Até os dias de hoje não há na literatura disponibilidade de isolar o óleo do açaí e simulteneamente, capturar os compostos químicos de valor (TALCOTT, 2007).

3.8.2 Buriti

O buriti (*Mauritia flexuosa*) é um fruto típico de extrema importância para os mercados formal e informal da Amazônia (SHANLEY; MEDINA, 2005). Em um experimento em ratos, Yuyuama *et al.* (1998) concluíram que o buriti revelou-se uma fonte de vitamina A concentrada e altamente biodisponível, com a vantagem de possuir alto teor de lipídios, importantes no carreamento da vitamina A.

Além da vitamina A, a polpa do buriti possui elevadas concentrações carotenóides e também é rica em óleo vegetal, podendo ser aplicada na indústria sob as formas de: óleo comestível, aditivo na área tecnológica de polímeros, cremes e loções e combustível (FRANÇA *et al.*, 1999; BARBOSA; LIMA; MOURÃO JR., 2009).

Os pesquisadores de palmeiras descobriram que o fruto de buriti pode produzir 2 tipos de óleos vegetais amplamente usados nas indústrias química e alimentícia. Da polpa dos frutos são extraídos óleos oléicos (similares aos óleos vegetais obtidos da maioria das culturas anuais), das sementes, são os óleos láuricos. Estima-se que com a densidade de 150 plantas femininas por hectare, o buriti pode produzir 3,6 toneladas por hectare de óleos oléicos. Essa quantidade é bem superior à produção dos óleos utilizados no mundo, tais como soja, girassol e amendoim, porém, é inferior à do dendê (SHANLEY; MEDINA, 2005).

3.8.3 Cúrcuma

Cúrcuma (*Curcuma longa L.*) é uma especiaria importada da Índia de cor amarelo-alaranjada, usada na culinária do oriente por milhares de anos. O rizoma da curcuma é uma fonte importante de pigmentos naturais que utilizados na indústria alimentícia como substitutos para os corantes sintéticos, tais como tartrazina. Além disso, investigações farmacológicas têm mostrado que a curcumina atua como um agente bactericida e anti-inflamatório (EVANS, 2012; CHASSAGNEZ-MÉNDEZ *et al.*, 1997; CHASSAGNEZ-MÉNDEZ *et al.*, 2000).
4 METODOLOGIA

Os dados obtidos a partir dos extratos das matérias-primas gengibre, cravo-daíndia (dados de Rodrigues, 2002), artemisia (dados de Quispe-Condori, 2005), funcho (dados de Moura, 2004), buriti (dados de Cunha *et al.*, 2012b, Rüster, 1997,) cúrcuma (dados de Chassagnez-Mendez), açaí (dados de Souza, 2006).

Os dados de gengibre e cravo-da-índia foram escolhidos para a avaliação dos aplicativos em excel referentes aos ajustes de duas e três retas, pois nos anexos do trabalho de Rodrigues (2002), constam os relatórios gerados pelo programa SAS para os ajustes de duas retas, em que os dados de gengibre foram tratados, e de três retas, no qual foram ajustados os dados cinéticos de cravo-da-índia.

Houve a seleção dos dados cinéticos referentes a extração de artemisia e funcho porque foram tratados para os modelos de transferência de massa, sendo que para a artemisia houve o ajuste para cinco modelos e para o funcho, o ajuste foi para três modelos da literatura. Os ajustes dos modelos de transferência de massa obtidos para essas matérias-primas por seus autores serão comparados aos ajustes obtidos pelo programa Origin, pelos aplicativos em excel para os modelos de transferência de massa e pelo ambiente computacional para o modelo de Sovová (1994) a fim de se verificar a confiança da ferramentas computacionais avaliadas neste trabalho.

Os dados de buriti, cúrcuma e açaí (medidos no Laboratório de Extração Supercrítica, prentencente ao Laboratório de Engenharia Química, da UFPA) foram escolhidos por haverem poucas informações publicadas na literatura referente à utilização desses materiais com fluido supercrítico e principalmente com relação ao tratamento de dados para vários modelos.

Quatro tópicos serão abordados nesta seção, visando gerar as informações necessárias para responder aos objetivos específicos.

- a) Avaliação dos aplicativos computacionais em Excel com módulos em visual basic para aplicação (VBA), desenvolvidos por Santos (2007) para os ajustes de duas e três retas;
- b) Avaliação de ferramentas computacionais em Excel com módulos em visual basic para aplicação (VBA) mediante auxílio da ferramenta solver, desenvolvidos por Santos (2007), utilizando os modelos matemáticos de

transferência de massa de Tan e Liou (1989), Goto *et al.* (1993), Esquível *et al.* (1999) e Martínez *et al.* (2003);

- c) Desenvolvimento e avaliação de aplicativo computacional em Excel, referente ao modelo de Sovová (1994) a partir de um de um procedimento numérico, baseado na metodologia de Povh *et al.* (2001);
- d) Validação das ferramentas computacionais desenvolvidas no Laboratório de Simulação de Processos e Termodinâmica Aplicada (TERM@ - UFPA) através do tratamento de dados cinéticos (massa acumulada de óleo versus tempo de extração) obtidos no Laboratório de Engenharia Química (UFPA) a partir das matérias primas em estudo.

4.1 AVALIAÇÃO DOS APLICATIVOS DE DUAS E TRÊS RETAS

Neste tópico serão avaliados os aplicativos em Excel, desenvolvidos por Santos (2007), aplicados as cinéticas de extração para a determinação dos parâmetros do período de taxa de extração constante (CER), t_{CER}, M_{CER}, Y_{CER} e pelo período de taxa decrescente de extração (t_{FER}).

O aplicativo de duas retas ajusta em um spline de duas retas os dados experimentais das curvas globais de extração. O ponto de encontro das duas retas determina o final do período de taxa constante de extração (t_{CER}) e a inclinação da primeira reta representa a taxa de extração constante (M_{CER}).

O aplicativo de três retas ajusta em um spline de três retas as curvas de extração onde a intersecção entre as duas primeiras retas determina o término do período CER (t_{CER}) e a intersecção entre a segunda e a terceira reta determina o final do período FER (t_{FER}), onde a partir deste ponto se inicia a etapa difusional.

Ambos aplicativos utilizam a função PROJ.LIN para a determinação do ponto de encontro das retas associado a um algoritmo implementado em Visual Basic para Aplicações no Excel (VBA) para a busca exaustiva (entre o tempo de extração zero até o tempo final) dos melhores t_{CER} (para duas retas) e t_{CER} e t_{FER} (para três retas), obedecendo ao critério do algoritmo de encontrar o melhor coeficiente de correlação obtido pela função PROJ. LIN

Na utilização deste aplicativo é necessário o fornecimento das informações experimentais vazão de solvente, massa de alimentação, os intervalos de tempo de coleta do produto e as massas acumuladas em cada tempo. O programa gera um gráfico plotado em termos da razão entre a massa de extrato e a massa inicial de alimentação versus a razão entre a massa de solvente e a massa inicial de alimentação.

Os ajustes são realizados considerando a vazão do solvente no cálculo referente às equações de duas e três retas (equações 131 e 132) para minimizar a influência na determinação de Y_{CER}.

$$m_{ext} = F_0 \left[b_0 + \frac{Q_{CO2}}{F_0} (b_1 \cdot t + b_2 \cdot AL_1) \right]$$
(131)

$$m_{ext} = F_0 \left[b_0 + \frac{Q_{CO2}}{F_0} \left(b_1 \cdot t + b_2 \cdot AL_1 + b_3 \cdot AL_2 \right) \right]$$
(132)

75

Em que:

- AL₁ Parâmetro dependente de t_{CER} (-);
- AL₂ Parâmetro dependente de t_{FER} (-);
- b₀ Parâmetro ajustável à reta (-);
- b1 Parâmetro ajustável à reta (-);
- b₂ Parâmetro ajustável à reta (-);
- b3 Parâmetro ajustável à reta (-);
- F₀ Massa de alimentação (M);
- m_{ext} Massa extraída, ou de extrato (M);

Q_{CO2} - Vazão do solvente dióxido de carbono (MT⁻¹).

Figura 3: Fluxograma do processo empregado em ambiente computacional para a determinação dos parâmetros cinéticos ajustado por duas retas.

Figura 4: Fluxograma do processo empregado em ambiente computacional para a determinação dos parâmetros cinéticos ajustado por três retas.

As figuras 5 e 6 mostram as interfaces do ambiente computacional, formulado por Santos (2007) para os ajustes de duas e três retas, respectivamente, para determinação do tempo de duração de cada etapa, das taxas de extração constante, decrescente e difusional, assim como o cálculo da taxa de transferência de massa (M_{CER}) e a razão mássica de soluto no solvente (Y_{CER}) .

	А	В	С	D	E	F	G	Н	1	J	K
1		PROG	RAMA PARA	AJUSTE NÃO	LINEAR PARA	DUAS RETAS					
2	Modelo: me	xt/malim = b() + b1*tmin*(Qso	l/malim) + b2*AI 1	*(Qsol/malim)				Entre co	om os passos par	a o aiuste
3	AL1 = max(t	min - KNOT1)		,	(,				STEP		1
4	DES	CRIÇÃO DO S	ISTEMA:	A1 - SISTEMA GE	NGIBRE+ CO2 SUPE	RCRÍTICO [RODRIC	GUES, 2002]		b2	b1	b0
5		P	ARÂMETROS DA	EXTRACÃO		-		- 1	-0.0007535	0.002176392	-0.001628992
6		Pressa	ăo de Extração =	100			6,6818E-05	4,53253E-05	0,000107568		
7		Amostra	Inicial (malim) =	80	g	Sobre a Planilh	а		0,99923884	9,15026E-05	
8			Amostra Final =	79,2256	g	_	_		5907,56194	9	
9		Temperatu	ra de Extração =	30				9,8925E-05	7,53545E-08		
10			rho(sólido) =		g/cm3	GRAFICO					
11		Vazão de S	olvente (Qsol) =	1,3	g/min				KNOT		192,00
12	Legenda: Os	dados são dig	itados em celulas (de cor					R^2		0,999238844
13	У	x		у'	X'	x"	ycal	b0			-0,001628992
14	mext (g)	t (min)	AL1	mext/malim	tmin*Qsol/malim	AL1*Qsol/malim	Rendimento		b1		0,002176392
15	0,0453	60	0	0,00056625	0,975	0	0,00049299		b2		-0,000753462
16	0,1107	90	0	0,00138375	1,4625	0	0,001553981		(mCO2/malir	m)cer	3,12
17	0,22	120	0	0,00275	1,95	0	0,002614972				
18	0,29	150	0	0,003625	2,4375	0	0,003675963				
19	0,3797	180	0	0,00474625	2,925	0	0,004736954				
20	0,4402	210	18	0,0055025	3,4125	0,2925	0,005577557			Executar	
21	0,5051	240	48	0,00631375	3,9	0,78	0,006271235				
22	0,5632	270	/8	0,00704	4,3875	1,2675	0,006964913				
23	0,6097	300	108	0,00762125	4,875	1,755	0,007658592		0000 (4.0
24	0,6694	330	138	0,0083675	5,3625	2,2425	0,00835227		QCO2 (g/min	1)	1,3
20	0,7271	300	100	0,00906675	0,00	2,73	0,009045946		Mcer (g/min)	0,002629309
20	0,7744	330	190	0,00900	0,0070	3,2175	0,005739020		Vcer (devt/d	(02) = b1	0.002176392
28									reer (gext/g	0021-01	0,002110332
29											
30											

Figura 5: Interface computacional gerada para o ajuste de duas retas.

	Α	В	С	D	E	F	G	H		J K	L	М	N	
1			PROGR	AMA PA	RA AJUSTI	E NÃO LINEAR	PARA TRÊS R	ETAS						
2	Modelo:									Entre com o	s passos par	a o ajuste		
3	mext/malir	n = b0 + b1*	tmin*(Qso	ol/malim)	+ b2*AL1*(Qs	ol/malim) + b3*A	L2*(Qsol/malim)			STEP		1		
4	AL1 = max	(tmin - KNO	۲ 1); AL2 =	max(tmii	1 - KNOT2)									
5	DESCRI	ÇÃO DO SIS	TEMA:	CRAVO E)a india + Co	2 Supercrítico [F	RODRIGUES, 2002]			b3	b2	b1	b0	
6		P	ARÂMETR	OS DA EX	TRAÇÃO					-0,03772954	-0,032319	0,237301	-0,0021654	
7	Pressão de Operação = 100 bar SORDEA DI ANULHA									0,002140325	0,0017034	0,0008472	0,000132568	
8		Tempera	atura de E	xtração =	30	°C	SUDREA	PLANILITA		0,999965704	0,0002068			
9		Amost	tra Inicial	(malim) =	204,65	<u>q</u>				194380,9542	20			
10	Amostra Final = 182,367200 g GRÁFICO									0,024937978	8,553E-07			
11		Den	sidade do	Sólido =										
12	Vazāo de Solvente (Qsol) = 0,91 g/min													
13	Legenda: O	s dados digita	idos estão	em celula:	s de col					KNOT1		52,00		
14	У	<u>x</u>			<u>y</u> .	X'	X"	X'''	ycal	KNO12		87,00		
15	mext (g)	t (min)	AL1	AL2	mext/malim	tmin*Qsol/malim	AL1*Qsol/malim	AL2*Qsol/malin	Rendimento	R^2		0,9999657		
10	0,676600	5	0	0	0,0033	0,0222	0,0000	0,0000	0,0031	00		-0,002165		
17	1,673200	10	0	0	0,0062	0,0445	0,0000	0,0000	0,0064	D1		0,237301		
10	2,775200	10	0	0	0,0130	0,0007	0,0000	0,0000	0,0137	b2		-0,032319		
19	3,044500	20	0	0	0,0100	0,0009	0,0000	0,0000	0,0169	US (mCO2/malin	alaar	-0,03773		
20	4,953500	20	0	0	0,0242	0.1334	0,0000	0,0000	0,0242	(mCO2/malin	n)fer	0,231224		
22	7 162900	35	ő	0	0.0350	0,1556	0,0000	0,0000	0.0348	Incozman	lijiei	0,000000		
23	8 215600	40	ő	ő	0.0401	0 1779	0,0000	0,0000	0,0340					
24	9 276100	45	ő	ő	0.0453	0 2001	0,0000	0,0000	0.0453		Executar			
25	10 29470	50	ő	ŏ	0.0503	0 2223	0,0000	0,0000	0.0506		Excountar.			
26	11,29860	55	3	ő	0.0552	0.2446	0.0133	0,0000	0.0554					
27	12.27880	60	8	Ō	0.0600	0.2668	0.0356	0.0000	0.0600	QCO2 (a/min)	0.91		
28	13,24060	65	13	0	0.0647	0.2890	0.0578	0.0000	0.0646	Mcer (g/min)		0.2159439		
29	14,18730	70	18	0	0,0693	0,3113	0,0800	0,0000	0,0691	tcer (min)		52.00		
30	15,11890	75	23	0	0,0739	0,3335	0,1023	0,0000	0,0737	tfer (min)		87,00		
31	16,01400	80	28	0	0,0783	0,3557	0,1245	0,0000	0,0782	Ycer (gext/g	CO2) = b1	0,237301		
32	16,88260	85	33	0	0,0825	0,3780	0,1467	0,0000	0,0828					
33	17,70450	90	38	3	0,0865	0,4002	0,1690	0,0133	0,0868					
34	18,53060	95	43	8	0,0905	0,4224	0,1912	0,0356	0,0906					
35	19,32700	100	48	13	0,0944	0,4447	0,2134	0,0578	0,0943					

Figura 6: Interface computacional gerada para o ajuste de três retas.

Os aplicativos foram avaliados a partir do uso de seis cinéticas de extração dos óleos voláteis das matérias primas gengibre e cravo-da-índia (tabela 4) pertencentes ao trabalho de Rodrigues (2002), que usou um spline de duas ou três linhas através dos procedimentos PROCREG e PROC NLIN, pertencentes ao software SAS, versão 6.12.

Esse trabalho foi escolhido por conter em seus anexos os relatórios gerados pelos programa SAS, possibilitando a avaliação e consequente validação dos aplicativos de 2 e 3 retas gerados por Santos (2007). O critério de seleção de cada experimento baseou-se no diferencial entre as matérias-primas e as condições de temperatura e pressão de cada experimento.

As equações 133 e 134 são correspondentes aos ajustes de 2 e 3 retas pertencentes à rotina do programa SAS.

Além da comparação entre as curvas resultantes dos aplicativoos em excel com as resultantes do SAS, será realizada uma avaliação estatística em função dos termos coeficiente de correlação (R²) erro médio relativo, faixa de erro e desvio padrão para com os resultados gerados por ambos os programas em cada cinética.

$$m_{ext} = b_0 + b_1 t + b_2 A L_1 \tag{133}$$

$$m_{ext} = b_0 + b_1 t + b_2 A L_1 + b_3 A L_2$$
(134)

Em que:

AL₁ - Parâmetro dependente de t_{CER} (-);

AL₂ - Parâmetro dependente de t_{FER} (-);

b₀ - Parâmetro ajustável à reta (-);

b₁ - Parâmetro ajustável à reta (-);

b₂ - Parâmetro ajustável à reta (-);

b₃ - Parâmetro ajustável à reta (-).

m_{ext} - massa de extrato (M)

Matéria prima	Ajuste	Condições	Referências
	2 Retas	100 bar 30°C	Experimento 01
			RODRIGUES, 2002
			p.159 e 199
Gengibre	2 Retas	100 bar 40°C	Experimento 04
			RODRIGUES, 2002,
			p.162 e 202
	2 Retas	300 bar 30°C	Experimento 08
			RODRIGUES, 2002
			p.166 e 206
	3 Retas	100 bar 35°C	Experimento 14A
			RODRIGUES, 2002,
			p.251
Cravo-da-Índia	3 Retas	100 bar 35°C	Experimento 29A
			RODRIGUES, 2002
			p.253
	3 Retas	66 bar 15°C	Experimento 40A
			RODRIGUES, 2002,
			p.212

Tabela 4: Relação dos ajustes das cinéticas experimentais usadas para a avaliaçãodos aplicativos de 2 e 3 retas.

4.2 AVALIAÇÃO DOS APLICATIVOS PARA MODELOS DE TRANSFERÊNCIA DE MASSA

Nesta etapa, os modelos de transferência de massa de Tan e Liou (1989), Goto *et al.* (1993), Esquível *et al.* (1999) e Martínez *et al.* (2003) foram implementados nos aplicativos computacionais em Excel a partir da rotina Solver (Pacote Office XP), o qual otimiza os parâmetros ajustáveis desdes modelos.

O Microsoft Excel Solver usa o código de otimização não linear de gradiente reduzido genérico (GRG2), desenvolvido por Leon Lasdon, da Universidade do Texas em Austin e Allan Waren, da Universidade Estadual de Cleveland (OFFICE, 2013).

Para a avaliação dos aplicativos em excel mediante determinação dos parâmetros ajustáveis dos modelos de transferência de massa, foram selecionadas três cinéticas de artemisia, obtidas por Quispe-Condori (2005) e três de funcho, obtidas por Moura (2004). Ambos autores utilizaram o programa Tecanalysis para ajustar os parâmetros dos modelos de transferência de massa.

Os dados destes autores (cujas referências estão na tabela 5) foram escolhidos porque nos anexos constam as informações referentes aos pontos experimentais, dados de configuração do leito e parâmetros ajustáveis calculados para cada modelo. Os critérios de seleção dessas cinéticas foram a diferenciação entre as matérias-primas e as condições de temperatura, pressão, vazão de solvente e alimentação inicial.

Em seguida, foi realizada uma comparação entre os resultados obtidos entre os parâmetros ajustáveis gerados pelos aplicativos computacionais em Excel com os gerados pelo software comercial Origin 8.0. e com os obtidos a partir do Tecanalysis.

A avaliação baseada nessas comparações será útil para a análise da viabilidade dos aplicativos em Excel. Os parâmetros estatísticos avaliados para verificar a adequação dos modelo serão: erro médio relativo, desvio padrão e faixa de erro baseado nos resultados gerados pelos três recursos comparativos para cada experimento.

Matéria prima	Condições	Referências
	0,05 kg, 200 bar,	QUISPE-CONDORI (2005)
	50°C e 5,5x10⁻⁵ kg/s	p. 120 e 234,
Artemisia	0,05 kg, 400 bar,	QUISPE-CONDORI (2005)
(Artemisia annua)	50°C e 5,5 x10⁻⁵ kg/s	p. 120 e 234
	0,05 kg, 400 bar,	QUISPE-CONDORI (2005)
	30°C e 1,11 x10 ⁻⁵ kg/s	p. 120 e 235
	0,03 kg, 250 bar,	MOURA (2004)
	30ºC e 8,33x10⁻⁵ kg/s	p.111
Funcho	0,06 kg 250 bar, 30°C	MOURA (2004)
(Foeniculum vulgare)	e 8,33x10 ⁻⁵ kg/s	p.115
	0,03 kg 250 bar, 30°C	MOURA (2004)
	e 13,3x10⁻⁵ kg/s	p.124

Tabela 5: Relação das cinéticas experimentais usadas para a avaliação dos aplicativos para modelagem de transferência de massa.

4.3 AMBIENTE COMPUTACIONAL PARA O MODELO DE SOVOVÁ (1994)

O ambiente computacional desenvolvido neste trabalho é baseado em um aplicativo em Excel elaborado no LASEFI/FEA/UNICAMP, o qual utiliza o procedimento proposto por Povh *et al.* (2001).

Além dos parâmetros de configuração do leito, é necessária a inserção dos valores dos parâmetros de transferência de massa calculados pelo aplicativo em Excel de três retas, validado neste trabalho: t_{CER} , solubilidade e M_{CER} , onde o valor de t_{CER} (calculado pelo aplicativo de três retas) será usado como estimativa inicial para o cálculo de um valor ajustado de t_{CER} , o qual será utilizado para o tratamento de dados.

A figura 7 mostra a interface do ambiente computacional do modelo de Sovová (1994), que foi desenvolvido neste trabalho. As etapas de utilização do aplicativo constam nos anexos deste trabalho.

	H U	0	0			0			v .	15	- to	121	14
1	DADOS EXPERIMENTAIS PARA A. annua - (QUISPE-CONDORI, 2005))											
2			mext (t <tcer)< td=""><td>zw</td><td>mext(tcerststfer)</td><td>mext (t2tfer)</td><td></td><td></td><td></td><td>DADOS</td><td>EXPERIM</td><td>IENTAIS</td><td></td></tcer)<>	zw	mext(tcerststfer)	mext (t2tfer)				DADOS	EXPERIM	IENTAIS	
3			Y.[1-exp(-Z)].Qco2.t	Z(Y?W.X0).h(X0.exp([W.	Y*[t-tcer.exp[aw-Z].Q-	N(X0-Y'W.In(1+[exp(W.X	0(11)-1)						
4		t (seg)		(t-tcer)-XMX0-Xk]		*exp[[W.Gco2/N[tcer-t]]	mext total(g)	t(min)		t (min)	mext		
5	T(oC)	30 0	0,00E+00)			0,00E+00	0		6,5	0,2812		
6	P(bar) 4	30 00	6,27E-05				6,27E-02	1,3625		10	0,6676		
7	p002(kg/m3) 388	31 164	1.25E-04				1.25E-01	2.725		15	0.8831		
8	Gco2(kg/s) 1.11E-1	5 245	1.88E-04				1.88E-01	4.0875		20	1.0764		
9	Mcer(ka/s) 7.67000E-	323	2.51E-04				2.51E-01	5.45		30	1.3484		
10	Ycer (ka/ka) 0.0	81 572	4 39E-04	0.0000E+00	4.39E-04		4.39E-01	9.5375		40	15031		
11	tcer estimado 3.54E+1	0 357	,	6.6356E-01	7.33E-04		7.33E-01	15.95319338		50	1.6267		
12	Mext (ka) 0.0022026	1343	2	1.3104E+00	1.02E-03		1.02E+00	22.36888676		60	1,7206		
13	1° (kolis) evo	1723	,	1.9424E+00	1.30E-03		1 30E+00	28 78458014		70	17678		
14	N 4.80F	2112	,	2 5613E+00	157E-03		157E+00	35 20027352		80	1.8564		
15	AY exp 6595-	243	,	3 1685E+00	1.80E-03		1 80F+00	41 6159669		30	18782		
16	W (definition and a second sec	14 0000		3 7654E±00	1.99E-03		1 99E+00	48.03166028		110	19647		
17	N () () () () () () () () () () () () ()	4 2002	,	4.3529E+00	2.09E=03		2.09E+00	54 44735366		130	2.0338		
18	Aller Control			4,3529E+00	2.09E=03	2.0937E=03	2,09E+00	54 44735366			2,0000		
19	Accel			4,00202100	2,002 00	2 16965-02	2 17E+00	67 52620214					
20	Adv.	4002 4002				2,000E-00	2.24E+00	90 60525262					
21	Later (also)	F F60	,			2,2931E-03	2,24E+00	93 68420209					
22	ccer softer (min) 0.00202	9 6406				2,200 E-00	2,23E+00	106 7631516					
22						2,04002,00	2,346+00	119 942101					
24	· · · · · · · · · · · · · · · · · · ·	710				2,00012-00	2,332+00	102,042,101					
24	rcor-tcer 5,452-	n (875	, ,			2,42542-03	2,4200	102,0210000					
26	rcor-meit I,0	a 0100	,			2,40000-00	2,401400	140					
27	7 4 2529552	-											
20	2 •,328322												
20	616(5-1) 3,11/0E-	14	IVI	assa Extraída X	empo								
20	al (Serie-	2	.50										
21	N 0,0200-	20											
32	Veral Andrea	20											
32	4,0300E	2	.00	_	• •								
24	April 1,2010C	-			-								
25													
30	* 0,000E	·	.50 🧕 👤										
27	6,4000E-	IS E	•										
00	6X 7,7383E-	<u>12</u>											
38	tfer (min) 3,2668E+1	3 5 1	.00			EXP							
33			•										
40	noim(ig) 0.	2	•/										
41	E umr(-) 0,6	78 0	,50										
42	P.444 (kg/m*3) 3	50											
43	Volume do leito (m^3) 1,63E-)4											
44		0	.00 *										
45			U	50	100	150							
H ·	tcer autor / tcer tfer solver / tcer solver / ajuste /	2											
Pro	into								_	_			

Figura 7: Interface computacional gerada para o modelo de Sovová.

4.4 DETERMINAÇÃO DOS PARÂMETROS DE TRANSFERÊNCIA DE MASSA PARA EFSC DO BURITI, CÚRCUMA E AÇAÍ

Com o auxílio do software Origin, foram tratados os dados de massa acumulada derivada da extração supercrítica da oleoresina da cúrcuma (CHASSAGNEZ-MÉNDEZ, 1998) e dos óleos de buriti (RÜSTER, 1997 e CUNHA *et al.*, 2012b), e açaí (SOUZA, 2006) medidos no Laboratório de Extração Supercrítica, da Faculdade de Engenharia Química (UFPA), os quais não foram descritos pela maioria dos modelos de transferência de massa descritos neste trabalho até o presente momento.

O programa Origin, versão 8.0, é um pacote estatístico comercial que utiliza o algoritimo de Levenberg-Marquardt para ajustar parâmetros em procedimento iterativo. Este algoritmo combina o método Gauss-Newton e o método de fase estacionária (que é uma extensão do método de Laplace por aproximar uma integral onde a mesma se deforma para uma integral num plano complexo, próximo de um ponto estacionário) e funciona para a maioria das aplicações (ORIGINLAB, 2013).

As curvas de extração dessas matérias primas foram obtidas através da massa extraída em função do tempo para os modelos de Tan e Liou (1989), Goto *et al.* (1993), Sovová (1994), Esquível *et al.* (1999) e Martínez *et al.* (2003). Os dados de configuração dos leitos extrativos de cada autor estão nas tabelas de 6 a 9.

Neste trabalho os valores de densidade do dióxido de carbono foram calculados de acordo com a equação de estado de Span-Wagner (1996), numa planilha em Excel, disponibilizada pela TUHH (Alemanha), utilizado por Gast (2006).

Os valores de rendimento foram obtidos através da massa total extraída dividida pela massa de alimentação. Os valores de rendimento global, X₀, que é informação de entrada de todos os modelos usados aqui, foram calculados através da extrapolação das curvas de extração, para um tempo de extração infinito (± de 60000 segundos=1000 minutos), a partir do uso do spline de duas retas.

Parâmetro		Experime	ntos	
Massa de Alimentação	20g	165g	180g	220 g
T (°C)	60	60	60	60
P (bar)	150/200/250	250	250	150/200/250
Altura (cm)	14,80	16,50	18,00	22
Diâmetro (cm)	2,65	5,90	5,90	5,9
Área superficial (cm ²)	5,50	27,34	27,34	27,34
Volume do leito (cm ³)	81,40	601,47	601,47	601,47
Q _{CO2} (I/min)	10,00	10,00	10,00	10,00
ρ _{CO2} (g/cm ³)	0,66/0,72/0,8	0,8	0,8	0,66/0,72/0,8
ρ _{sólido} (g/cm ³)	0,60	0,72	0,72	0,72
ε _b (-)	0,72	0,61	0,61	0,61
ε _p (-)	0,4	0,4	0,4	0,4
Rendimento (%)	0,062/0,239/0,281	0,116	0,094	0,011/0,037/0,141
X ₀ (g _{EXTRATO} /kg _{CO2})	0,196/0,686/0,573	0,415	5,556	0,017/23,346/0,860

Tabela 6: Parâmetros de processo para a extração de óleo de buriti, dados de Cunha et al. (2012b).

Parâmetro			Exp	erimentos					
	Expll	ExpIII	ExplV	ExpV	ExpVII	Exp VIII	Exp XI	ExpXIII	ExpXV
T (°C)	50	50	50	50	50	70	50	50	70
P (bar)	250	250	250	250	250	250	250	300	250
Altura (m)	0,044	0,044	0,044	0,044	0,044	0,044	0,044	0,044	0,044
Diâmetro (m)	0,029	0,029	0,029	0,029	0,029	0,029	0,029	0,029	0,029
H/D (-)	1,52	1,52	1,52	1,52	1,52	1,52	1,52	1,52	1,52
Área superficial (m ²)	6,61x10 ⁻⁴	6,61x10 ⁻⁴	6,61x10 ⁻⁴	6,61x10 ⁻⁴	6,61x10 ⁻⁴	6,61x10 ⁻⁴	6,61x10 ⁻⁴	6,61x10 ⁻⁴	6,61x10 ⁻⁴
Volume do leito (m ³)	2,91x10 ⁻⁵	2,91x10 ⁻⁵	2,67x10 ⁻⁵	2,91x10 ⁻⁵	2,91x10 ⁻⁵	2,91x10 ⁻⁵	2,91x10 ⁻⁵	2,91x10 ⁻⁵	2,91x10 ⁻⁵
F ₀ (kg)	0,171	0,07	0,015	0,024	0,024	0,024	0,024	0,024	0,024
Q _{CO2} (kg/s)	2,89 x10 ⁻⁴	3,09 x10⁻⁴	3,11x10 ⁻⁴	3,06x10 ⁻⁴	1,528x10 ⁻⁴	2,78x10 ⁻⁴	2,78x10 ⁻⁴	2,97x10 ⁻⁴	3,00x10 ⁻⁴
u (m/s)	5,25x10 ⁻⁴	5,60x10 ⁻⁴	5,64x10 ⁻⁴	5,56x10 ⁻⁴	2,77x10 ⁻⁴	5,05x10 ⁻⁴	5,05x10 ⁻⁴	5,17x10 ⁻⁴	6,08x10 ⁻⁴
$ ho_{ m CO2}$ (kg/m ³)	834,19	834,19	834,19	834,19	834,19	736,917	834,19	870,43	736,917
$ ho_{ m sólido}$ (kg/m ³)	883	555,6	555,6	883	883	883	883	883	883
D _p (m)	6,10x10 ⁻⁴	4,84x10 ⁻⁴	6,10x10 ⁻⁴	6,10x10 ⁻⁴	6,10x10 ⁻⁴	6,10x10 ⁻⁴	6,10x10 ⁻⁴	6,10x10 ⁻⁴	6,10x10 ⁻⁴
ε _p (-)	0,523	0,523	0,465	0,523	0,523	0,523	0,523	0,523	0,523
ε _b (-)	0,477	0,477	0,534	0,477	0,477	0,477	0,477	0,477	0,477
Rendimento (%)	0,08	0,186	0,217	0,089	0,077	0,083	0,082	0,071	0,073
X ₀ (g _{EXTRATO} /kg _{CO2})	2,309	1,531	0,724	0,215	0,545	0,216	0,261	0,615	0,387

Tabela 7: Configuração do leito para extração do óleo de buriti, dados de Rüster (1997).

Parâmetro	Experimentos										
	1A	1B	2A	2B	3A	3B	4A	4B	5A	6A	6B
T (°C)	45	45	45	45	45	45	45	45	45	45	45
P (bar)	200	200	200	200	300	300	250	250	300	250	250
Altura (m)	0,198	0,198	0,198	0,198	0,198	0,198	0,198	0,198	0,198	0,198	0,198
Diâmetro (m)	0,018	0,018	0,018	0,018	0,018	0,018	0,018	0,018	0,0176	0,0176	0,0176
H/D (-)	11,25	11,25	11,25	11,25	11,25	11,25	11,25	11,25	11,25	11,25	11,25
Área superficial (m ²)	2,43x10 ⁻⁴	2,43x10 ⁻⁴	2,43x10 ⁻⁴	2,43x10 ⁻⁴	2,43x10 ⁻⁴	2,43x10 ⁻⁴	2,43x10 ⁻⁴	2,43x10 ⁻⁴	2,43x10 ⁻⁴	2,43x10 ⁻⁴	2,43x10 ⁻⁴
Volume do leito (m ³)	4,82x10 ⁻⁵	4,82x10 ⁻⁵	4,82x10 ⁻⁵	4,82x10 ⁻⁵	4,82x10 ⁻⁵	4,82x10 ⁻⁵	4,82x10 ⁻⁵	4,82x10 ⁻⁵	4,82x10 ⁻⁵	4,82x10 ⁻⁵	4,82x10 ⁻⁵
F ₀ (kg)	0,019	0,019	0,02	0,021	0,02	0,02	0,022	0,021	0,02	0,02	0,019
Q _{CO2} (kg/s)	2,44x10⁻⁴	1,952x10⁻⁴	1,49x10⁻⁴	1,63x10⁻⁴	1,87x10⁻⁴	1,51x10 ⁻⁴	1,89x10⁻⁴	2,44x10 ⁻⁴	2,21x10 ⁻⁴	2,44x10 ⁻⁴	2,44x10 ⁻⁴
u (m/s)	1,36x10 ⁻³	1,09x10 ⁻³	1,08x10 ⁻³	9,11x10 ⁻⁴	9,73x10⁻⁴	9,65x10⁻⁴	1,37x10⁻³	1,77x10 ⁻³	1,41x10 ⁻³	1,36x10 ⁻³	1,36x10 ⁻³
$ ho_{ m CO2}$ (kg/m ³)	812,687	812,687	812,687	812,687	890,325	890,325	857,141	857,141	890,325	857,141	857,141
$ ho_{s \circ lido}$ (kg/m ³)	421	392,1	425,3	421,1	411,5	400,3	447,4	433,9	416,6	414,8	399,2
D _p (m)	2,07 x10 ⁻⁴	6,10 x10 ⁻⁴	2,14 x10 ⁻⁴	2,14 x10 ⁻⁴	2,07x10 ⁻⁴	2,14x10 ⁻⁴	2,07x10⁻⁴	2,14x10 ⁻⁴	2,14x10 ⁻⁴	2,07x10 ⁻⁴	2,07x10 ⁻⁴
ε _p (-)	0,39	0,39	0,39	0,39	0,39	0,39	0,39	0,39	0,39	0,39	0,39
ε _b (-)	0,44	0,44	0,43	0,44	0,44	0,44	0,44	0,43	0,43	0,44	0,44
Rendimento (%)	0,071	0,061	0,049	0,031	0,065	0,055	0,045	0,045	0,053	0,06	0,071
X ₀ (g _{EXTRATO} /kg _{CO2})	0,185	0,194	0,229	0,188	0,156	0,488	0,211	0,195	0,164	0,116	0,182

Tabela 8: Configuração do leito para extração da oleoresina de cúrcuma.

Parâmetro	etro Experimentos											
	200 ba	r/40°C	200 bar/50°C		250 ba	r/40°C	250 ba	r/50°C	300 ba	ar/40°C	300 ba	r/50°C
	Exp1	Exp2	Exp1	Exp2	Exp1	Exp2	Exp1	Exp2	Exp1	Exp2	Exp1	Exp2
T (°C)	40	40	50	50	40	40	50	50	40	40	50	50
P (bar)	200	200	200	200	250	250	250	250	300	300	300	300
Altura (m)	0,33	0,33	0,33	0,33	0,33	0,33	0,33	0,33	0,33	0,33	0,33	0,33
Diâmetro (m)	0,022	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02
H/D (-)	15,00	16,50	16,50	16,50	16,50	16,50	16,50	16,50	16,50	16,50	16,50	16,50
Área superficial (m²)	3,80 x10 ⁻⁴	3,14 x10 ⁻⁴	3,14 x10 ⁻⁴	3,14 x10 ⁻⁴	3,14x10 ⁻⁴	3,14x10 ⁻⁴	3,14x10 ⁻⁴	3,14x10 ⁻⁴	3,14x10 ⁻⁴	3,14x10 ⁻⁴	3,14x10 ⁻⁴	3,14x10 ⁻⁴
Volume do leito (m ³)	1,25 x10 ⁻⁴	1,04 x10 ⁻⁴	1,04 x10 ⁻⁴	1,04 x10⁻⁴	1,04x10 ⁻⁴							
F_0 (kg)	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05
Q _{CO2} (kg/s)	2,22x10 ⁻⁴	2,22x10 ⁻⁴	2,22x10⁻⁴	2,22x x10 ⁻⁴	2,22x10 ⁻⁴	2,22x10 ⁻⁴	2,22x10⁻⁴	2,22x10 ⁻⁴				
u (m/s)	6,96x10⁻⁴	8,42x10⁻⁴	9,01x10 ⁻⁴	9,01x x10 ⁻⁴	8,03x10 ⁻⁴	8,04x10 ⁻⁴	8,47x10 ⁻⁴	8,47x10 ⁻⁴	7,77x10⁻⁴	7,77x10⁻⁴	8,18x10⁻⁴	8,11x10 ⁻⁴
$ ho_{ m CO2}$ (kg/m ³)	839,81	839,81	784,29	784,29	879,48	879,49	834,19	834,19	909,89	909,89	863,9	863,9
$ ho_{ m sólido}~(m kg/m^3)$	1432	1432	1432	1432	1432	1432	1432	1432	1432	1432	1432	1432
D _p (m)	4,86x10 ⁻⁴	4,86x10 ⁻⁴	4,86x10 ⁻⁴	4,86x10⁻⁴	4,86x10 ⁻⁴	4,86x10⁻⁴	4,86x10 ⁻⁴					
ε _p (-)	0,86	0,306	0,86	0,86	0,86	0,306	0,86	0,306	0,86	0,306	0,86	0,306
ε _b (-)	0,86	0,86	0,86	0,86	0,86	0,86	0,86	0,86	0,86	0,86	0,86	0,86
Rendimento (%)	0,06	0,063	0,065	0,065	0,076	0,074	0,055	0,065	0,064	0,069	0,072	0,078
X ₀ (g _{EXTRATO} /kg _{CO2})	0,133	0,118	0,175	0,187	0,176	0,164	0,137	0,178	0,132	0,130	0,163	0,169

Tabela 9: Configuração do leito para extração de óleo de açaí.

4.5 ANÁLISE DOS RESULTADOS

Foram considerados os seguintes parâmetros estatísticos na análise dos resultados da modelagem matemática: erro médio relativo (E_m), desvio padrão (S) e faixa de erro (F_E) expressos nas equações de 135 a 138.

$$E_m = \frac{1}{N} \sum_{i} e \tag{135}$$

$$S = \left[\frac{1}{N-1}\sum_{i}(e-E_{m})^{2}\right]^{\frac{1}{2}}$$
(136)

$$F_E = e_{\max} - e_{\min} \tag{137}$$

Em que:

e - erro relativo, mostrado na equação 138.

1 /

$$e = \frac{m_{cal} - m_{exp}}{m_{totalext}}$$
(138)

Onde:

 m_{cal} - Massa calculada;

 $m_{\rm exp}$ - Massa medida experimentalmente;

 $m_{totalext}$ - Massa total extraída;

N - Número de pontos

$e_{\rm max}$ - Erro máximo

 e_{\min} - Erro mínimo

Considerando os ajuste dos modelos de transferência de massa calculados apenas pelo programa Origin serão avaliados também o coeficiente de correlação, R^2 (mostrado na equação 139) e qui-quadrado, χ^2 (equação 140) - a função objetivo minimizada - gerados por esse software.

O qui-quadrado revela em que medida os valores observados se desviam do valor esperado (ajustado pelo modelo), caso as duas variáveis não estivessem correlacionadas. Quanto maior o valor de χ^2 e menor o valor de R² maior será a diferença entre as frequências observadas e preditas pelos modelos.

Desta forma, o modelo que melhor se ajusta ao modelo é aquele com os menores valores de χ^2 e maiores valores de R².

$$R^{2} = \frac{SQ_{cal}}{SQ_{total}} = 1 - \frac{SQ_{residuos}}{SQ_{total}}$$
(139)

$$\chi^{2} = \sum \frac{(m_{\exp} - m_{cal})^{2}}{m_{cal}}$$
(140)

Em que:

- $m_{\rm exp}$ Massa experimentalmente;
- m_{cal} Massa calculada pelo modelo;
- SQ_{cal} Soma dos quadrados dos ponntos calculados pelo modelo;
- SQ_{total} Soma total dos quadrados;
- $SQ_{residuos}$ Soma dos quadrados dos resíduos

5 RESULTADOS E DISCUSSÃO

Nesta seção do trabalho estarão os resultados e a discussão dos mesmos referentes à validação dos aplicativos em Excel para o ajuste de duas, três retas, e para os modelos de trasnferência de massa e à modelagem matemática dos dados de buriti, açaí e cúrcuma, tratados com o auxílio do software Origin.

5.1 RESULTADOS GERADOS PELOS APLICATIVOS DE DUAS E TRÊS RETAS

A tabela 10 mostra a comparação entre os valores calculados para os aplicativos de duas e três retas, os quais estão ilustrados nas figuras de 8 a 13.

Na maioria dos resultados de Rodrigues (2002), os melhores ajustes do SAS foram obtidos na primeira iteração gerada por esse programa, sendo que no ajuste do experimento 40 A (de cravo-da-índia), a terceira iteração obtida pela autora obteve o melhor resultado, sendo usada neste trabalho para fins comparativos.

As figuras e tabelas comparativas entre as curvas geradas pelo aplicativo de duas e três retas e as demais iterações processadas pelo software usado por Rodrigues (2002) constam nos anexos.

100 bar e 30°C (EXP 01) - 2 RETAS			100 bar 4	0°C (EXP 04) - 2 F	RETAS	300 bar e 3	0°C (EXP 08) - 2	3) - 2 RETAS	
	RODRIGUES	ESTE		RODRIGUES	ESTE		RODRIGUES	ESTE	
	(2002)	TRABALHO		(2002)	TRABALHO		(2002)	TRABALHO	
t _{CER} (min)	192,407	192	t _{CER} (min)	278,665	285	t _{CER} (min)	136,242	139	
b ₀	-0,130	-0,002	b ₀	-0,260	-0,003	b ₀	-0,356	-0,004	
b₁	0,003	0,002	b ₁	0,002	0,002	b ₁	0,009	0,005	
b ₂	-9,8 x10 ⁻⁴	-7 x10 ⁻⁴	b ₂	-3x10 ⁻⁴	-3x10 ⁻⁴	b ₂	-0,008	-0,004	
Erro Médio	0,007	0,007	Erro Médio	0,011	0,012	Erro Médio	0,017	0,011	
Desvio Padrão	o 0,005	0,005	Desvio Padrão	0,009	0,009	Desvio Padrão	0,010	0,009	
Faixa de Erro	0,016	0,017	Faixa de Erro	0,017	0,028	Faixa de Erro	0,041	0,024	
R ²	0,999	0,999	R ²	0,997	0,998	R ²	0,997	0,998	
100 bar e	e 30°C (EXP 14A) -	3 RETAS	100 bar e	÷ 35°C (EXP 29A) -	- 3 RETAS	66 bar e 15	[°] C(EXP 40A) - 3	RETAS	
	RODRIGUES	ESTE		RODRIGUES	S ESTE		RODRIGUES	ESTE	
	(2002)	TRABALHO		(2002)	TRABALHO)	(2002)	TRABALHO	
t _{CER} (min)	9	52	t _{CER} (min)	9	44	t _{CER} (min)	10	62	
t _{FER} (min)	64,989	87	t _{FER} (min)	64,488	73	t _{FER} (min)	64,723	97	
b ₀	-0,394	-0,002	b ₀	-0,96	-0.003	b	-0.269	-0.001	
h					-)	0	0,200	0,001	
D ₁	0,214	0,237	b ₁	0,351	0,180	b ₁	0,063	0,157	
b ₁ b ₂	0,214 -0,001	0,237 -0,032	b ₁ b ₂	0,351 -0,081	0,180 -0,037	b ₁ b ₂	0,063 -0,003	0,157 -0,049	
b ₁ b ₂ b ₃	0,214 -0,001 -0,049	0,237 -0,032 -0,037	b ₁ b ₂ b ₃	0,351 -0,081 -0,134	0,180 -0,037 -0,065	b ₁ b ₂ b ₃	0,063 -0,003 -0,002	0,157 -0,049 -0,026	
b ₁ b ₂ b ₃ Erro Médio	0,214 -0,001 -0,049 0,004	0,237 -0,032 -0,037 0,001	b₁ b₂ b₃ Erro Médio	0,351 -0,081 -0,134 0,007	0,180 -0,037 -0,065 0,012	b₁ b₂ b₃ Erro Médio	0,063 -0,003 -0,002 0,043	0,157 -0,049 -0,026 0,003	
b ₁ b ₂ b ₃ Erro Médio Desvio Padrão	0,214 -0,001 -0,049 0,004 0,003	0,237 -0,032 -0,037 0,001 0,002	b₁ b₂ b₃ Erro Médio Desvio Padrão	0,351 -0,081 -0,134 0,007 0,005	0,180 -0,037 -0,065 0,012 0,007	b ₁ b ₂ b ₃ Erro Médio Desvio Padrão	0,063 -0,003 -0,002 0,043 0,055	0,157 -0,049 -0,026 0,003 0,003	
b ₁ b ₂ b ₃ Erro Médio Desvio Padrão Faixa de Erro	0,214 -0,001 -0,049 0,004 0,003 0,01	0,237 -0,032 -0,037 0,001 0,002 0,003	b₁ b₂ b₃ Erro Médio Desvio Padrão Faixa de Erro	0,351 -0,081 -0,134 0,007 0,005 0,02	0,180 -0,037 -0,065 0,012 0,007 0,025	b ₁ b ₂ b ₃ Erro Médio Desvio Padrão Faixa de Erro	0,063 -0,003 -0,002 0,043 0,055 0,175	0,157 -0,049 -0,026 0,003 0,003 0,01	

 Tabela 10: Ajuste das cinéticas de Rodrigues (2002) a partir dos aplicativos de duas e três retas.

Figura 8: Comparação entre os ajustes dos dados de gengibre para duas retas a 30°C e 100 bar (EXP 01).

Figura 9: Comparação entre os ajustes dos dados de gengibre para duas retas a 40°C e 100 bar (EXP 04).

Figura 10: Comparação entre os ajustes dos dados de gengibre para duas retas a 30°C e 300 bar (EXP 08).

Figura 11: Comparação entre os ajustes dos dados de cravo da índia para três retas a 30°C e 100 bar (EXP 14A).

Figura 12: Comparação entre os ajustes dos dados de cravo da índia para três retas a 35°C e 100 bar (EXP 29A).

Figura 13: Comparação entre os ajustes dos dados de cravo da índia para três retas a 15°C e 66 bar (EXP 40A).

Os valores de " t_{CER} " calculados pelo aplicativo de duas retas estiveram próximos aos obtidos por Rodrigues (2002). Para o aplicativo de três retas os valores diferem. Nos períodos que sucedem os valores de t_{CER} para o cravo-da-índia percebe-se que a massa de extrato aumenta até chegar no período representado pelo valor de t_{FER} para cada experimento, permanecendo constante após esse período.

Os resultados de t_{FER} calculados pelo aplicativo de três retas estiveram relativamente próximos aos de Rodrigues (2002). Vale lembrar que em torno de 70% da massa extraível é obtida na etapa CER. Rodrigues (2002) não discutiu os resultados de t_{CER} pelo spline de três retas em relação ao cravo-da-índia acerca desta constatação da literatura, visto que, com menos de 10 minutos de extração ela obteria quase todo o rendimento para esta matéria-prima. Mesomo *et al.* (2012) na obtenção do extrato de gengibre atráves de CO₂ supercrítico e propano comprimido observaram que a partir dos primeiros 60 minutos de experimentos a maior parte do óleo era extraída para ambos os solventes.

Para o experimento 40 A, a curva calculada neste trabalho descreveu melhor os pontos experimentais do que a curva calculada por Rodrigues (2002); apresentando maior valor de R^2 calculado, o que indica um melhor ajuste da curva. As diferenças entre esses coeficientes de correlação podem estar relacionadas ao procedimento de busca exaustiva dos parâmetros t_{CER} e t_{FER}, inclusos no aplicativo de três retas.

5.2 RESULTADOS GERADOS PELOS APLICATIVOS PARA MODELAGEM DE TRANSFERÊNCIA DE MASSA

Para a otimização das condições operacionais em processos que envolvem EFSC é necessária a determinação experimental de diferentes variáveis de processo, que são acopladas aos modelos de transferência de massa.

Nesta etapa do trabalho avaliou-se os aplicativos em Excel para os modelos de transferência de massa. Os resultados obtidos por este aplicativo foram comparados aos resultados obtidos pelo programa Origin 8.0 e aos valores publicados pelos autores Quispe-Condori (2005), Quispe-Condori *et al.* (2005) e Moura (2004) para os modelos de transferência de massa de Tan e Liou (1989), Goto *et al.* (1993), Esquível *et al.* (1999) e Martínez *et al.* (2003). Os dois últimos modelos não foram trabalhados por Moura (2004), portanto neste tópico, apresentam-se apenas os parâmetros ajustáveis referentes aos modelos de Tan e Liou (1989) e Goto *et al.* (1993).

Nas tabelas 11, 12 e 13 estão os dados experimentais, os de configuração do leito e os parâmetros ajustáveis para descrever a extração do óleo essencial de *Artemisia annua* (artemisia) em três diferentes condições (dados de Quispe-Condori, 2005). Nas tabelas 14, 15 e 16 estão os parâmetros estatísticos erro médio relativo, desvio padrão e faixa de erro calculados para os modelos de transferência de massa e algumas das curvas calculadas para cada modelo estão nas figuras de 14 a 21

Nas tabelas de 17, 18 e 19 estão os dados experimentais, os de configuração do leito e os parâmetros ajustáveis para os modelos de Tan e Liou (1989) e Goto *et al.* (1993) usados por Moura (2004) para tratar os dados cinéticos de *Foenicullum vulgare* (funcho), e na tabela 20, encontram-se os parâmetros estatísticos calculados para cada modelo. Algumas das curvas calculadas estão nos gráficos referentes às figuras de 22 a 26.

As figuras e tabelas comparativas entre as curvas geradas pelo aplicativo em Excel dos modelos de trasnferência de massa as pelo software usado por Quispe-Condori (2005) e Moura (2004) estão nos anexos.

97

Dados Experin	nentais		_ Dados da Configuração do Sistema					
t(s)	m(kg)							
6,5	0,1871		T (°C)		50			
10	0,2596		P (bar)		400			
15	0,3453		Altura (m)		0,07			
20	0,4256		Diâmetro (m)	0,0545				
30	0.5615		H/D (-)	1,28				
40	0,6857		Área superficial (m	1 ²)	2,33 x10 ⁻³			
50	0,7832		Volume do leito (m	1 ³)	1,63 x10 ⁻⁴			
60	0,9105		F ₀ (kg)	0,050				
70	1,0334		Q _{CO2} (kg/s)		5,50 x10 ⁻⁵			
80	1,1439		u (m/s)		2,55 x10 ⁻⁵			
90	1,2679		$\rho_{\rm CO2}$ (kg/m ³)		923,32			
110	1,4648		$ ho_{ m sólido}~(m kg/m^3)$		950			
130	1,6636		D _p (m)		6,10 x10⁻⁴			
			ε _p (-)		0,54			
			ε _b (-)		0,678			
			X ₀ (-)		0,065			
Modelos		Parâme	tros Ajustáveis		Valores			
			Este Tra	balho	Quispe-Condori			
			Excel	Origin	(2005)			
Tan e Liou (1989)		K _d (s⁻¹)	8,42 x10 ⁻⁵	9x10⁻⁵	8,50 x10 ⁻⁵			
		φ(-)	0,1251	1,771	1,415			
Goto et al. (1993)		K (-)	0,3771	0,010	9,68 x10 ⁻³			
Esquível et al. (1999)		b (s)	8473,070	8451,841	8473,200			
		t _{mi} (s⁻¹)	-1,2627x10 ⁻³	1,9 x10 ⁻⁴	-187835,400			
Martínez et al. (2003)		b _i (s)	9,31 x10 ⁻³	1,6 x10 ⁻⁴	9,333 x10 ⁻⁵			

Tabela 11: Dados experimentais para cinética de artemisia a 0,05 kg, 400 bar, 50° C e 5,5x10⁻⁵ kg/s.

Dados Expe	erimentais		Dados da Configuração do Sistema					
t(s)	m(kg)							
6,5	0,124		T (°C)			50		
10	0,2525		P (bar)			200		
15	0,3711		Altura (0,07				
20	0,4593		Diâmet	0,0545				
30	0,5777		H/D (-)	1,28				
40	0,7226		Área su	2,33 x10 ⁻³				
50	0,7634		Volume	e do leito (m ³)		1,63 x10⁻⁴		
60	0.869		F ₀ (kg)			0,050		
70	0,9757		Q _{CO2} (k	g/s)		5,50 x10⁻⁵		
80	1,0266		u (m/s)			3,01 x10⁻⁵		
90	1,1151		$ ho_{\rm CO2}$ (kg	g/m ³)		784,29		
110	1,253		$ ho_{ m sólido}$ (k	kg/m ³)		950		
130	1,364	D _p (m)				4,92 x10 ⁻⁴		
			ε _p (-)			0,54		
			ε _b (-)			0,678		
			X ₀ (-)			0,04934		
Modelos	S	Parâm	netros A	justáveis		Valores		
				Este Tra	balho	Quispe-Condori		
				Excel	Origin	(2005)		
Tan e Liou (198	39)	K _d (s⁻¹)		1,045 x10 ⁻⁴	1,1 x10⁻⁴	1,033 x10⁻⁴		
		φ(-)		0,125	0,012	2,830		
Goto <i>et al</i> . (199	K (-)		0,377	0,007	1,921			
Esquível et al.	b (s) 6317,490			6197,972 6428,4				
	t _{mi} (s⁻¹))	-1,263x10 ⁻³	1,7x10 ⁻⁴	-268636,8			
Martínez et al.	b _i (s)		0,011	2 x10 ⁻⁴	1,150 x10 ^{-₄}			

Tabela 12: Dados experimentais para cinética de artemisia a 0,05 kg, 200 bar, 50° C e 5,5x10⁻⁵ kg/s.

Dados Experimentais		Dados da Configuração do Sistema				
t(s)	m(kg)					
6,5	0,2812	T (°C)		30		
10	0,6676	P (bar) 400				
15	0,8831	Altura (m) 0,07				
20	1,0764	Diâmetro (m)	Diâmetro (m) 0,0545			
30	1,3484	H/D (-) 1,28				
40	1,5031	Área superficial (m	Área superficial (m ²) 2,33 x			
50	1,6267	Volume do leito (m ³)		1,63 x10 ⁻⁴		
60	1,7206	F ₀ (kg)	0,050			
70	1,7678	Q _{CO2} (kg/s)		1,11 x10 ⁻⁵		
80	1,8564	u (m/s)	u (m/s)			
90	1,8782	$ ho_{\rm CO2}$ (kg/m ³)	$\rho_{\rm CO2}$ (kg/m ³)			
110	1,9647	ρ _{sólido} (kg/m ³) 950				
130	2,0338	D _p (m)	D_{p} (m) 4,92 x10 ⁻⁴			
		ε _p (-)		0,54		
		ε _b (-)		0,678		
	X ₀ (-)			0,05529		
Modelos	Parâmetr	s Ajustáveis		Valores		
		Este Trabalho		Quispe-Condori		
		Excel	Origin	(2005)		
Tan e Liou (1989)	K _d (s⁻¹)	1,024 x10 ⁻⁴	1,10 x10 ⁻⁴	2,116 x10 ⁻⁴		
	φ(-)	128611,071	0,29	2,935		
Goto et al. (1993)	K (-)	0,285	4,014 x10 ⁻⁷	1,003		
Esquível et al. (1999)	b (s)	1638,3	2214,358	2173,38		
	t _{mi} (s⁻¹)	-0,001	-70295,332	-268636,8		
Martínez et al. (2003)	b _i (s)	0,024	2,9 x10⁻⁴	1,150 x10⁻⁴		

Tabela 13: Dados experimentais para cinética de artemisia a 0,05 kg, 400 bar, 30° C e 11,1x10⁻⁵ kg/s.

	Tan e Liou (1989)			Goto <i>et al.</i> (1993)			
	Este Trabalho		Quispe-Condori	Este Trabalho		Quispe-Condori	
	Excel	Origin	(2005)	Excel	Origin	(2005)	
Erro Médio	0,026	0,04	0,028	0,083	0,061	0,064	
Desvio Padrão	0,019	0,018	0,013	0,048	0,056	0,052	
Faixa de Erro	0,052	0,066	0,041	0,143	0,108	0,092	
	Esquível <i>et al.</i> (1999)			Martínez <i>et al.</i> (2003)			
	Este Trabalho		Quispe-Condori	Este Trabalho		Quispe-Condori	
	Excel	Origin	(2005)	Excel	Origin	(2005)	
Erro Médio	0,026	0,026	0,026	0,04	0,042	0,025	
Desvio Padrão	0,017	0,017	0,017	0,024	0,025	0,017	
Faixa de Erro	0,064	0,066	0,064	0,064	0,040	0,044	

Tabela 14: Ajuste dos modelos de transferência de massa para artemisia a 400 bar, e 50°C e 5,5x10⁻⁵ kg/s.

	Tan e Liou (1989)					
	Este Trabalho		Quispe-Condori	Este Trabalho		Quispe-Condori
	Excel	Origin	(2005)	Excel	Origin	(2005)
Erro Médio	0,052	0,052	0,052	0,103	0,055	0,055
Desvio Padrão	0,032	0,036	0,033	0,069	0,078	0,084
Faixa de Erro	0,084	0,113	0,087	0,177	0,104	0,141
	Esquível <i>et al.</i> (1999)				Martínez et al. (2003)	
	Este Trabalho		Quispe-Condori	Este Trabalho		Quispe-Condori
	Excel	Origin	(2005)	Excel	Origin	(2005)
Erro Médio	0,022	0,025	0,056	0,068	0,048	0,067
Desvio Padrão	0,014	0,011	0,055	0,039	0,022	0,025
Faixa de Erro	0,047	0,035	0,12	0,103	0,059	0,093

Tabela 15: Ajuste dos modelos de transferência de massa para artemisia a 200 bar, 50°C e 5,5x10⁻⁵ kg/s.

	Tan e Liou (1989)			Goto <i>et al.</i> (1993)			
	Este Trabalho		Quispe-Condori	Este Trabalho		Quispe-Condori	
	Excel	Origin	(2005)	Excel	Origin	(2005)	
Erro Médio	0,126	0,119	0,361	0,124	0,093	1,568	
Desvio Padrão	0,074	0,077	0,237	0,072	0,067	1,278	
Faixa de Erro	0,19	0,268	0,67	0,211	0,159	1,562	
	Esquível <i>et al.</i> (1999)			Martínez <i>et al.</i> (2003)			
	Este Trabalho		Quispe-Condori	Este Trabalho		Quispe-Condori	
	Excel	Origin	(2005)	Excel	Origin	(2005)	
Erro Médio	0,498	0,487	0,392	0,110	0,259	0,023	
Desvio Padrão	0,144	0,141	0,125	0,060	0,122	0,013	
Faixa de Erro	0,510	0,500	0,416	0,183	0,331	0,038	

Tabela 16: Ajuste dos modelos de transferência de massa para artemisia a 400 bar, 30°C e 11,1x10⁻⁵ kg/s.

Figura 14: Comparação entre os ajustes dos dados de artemisia para o modelo de Tan e Liou (1989) a 400 bar, 50°C e 5,5x10⁻⁵ kg/s.

Figura 15: Comparação entre os ajustes dos dados de artemisia para o modelo de Goto *et al.* (1993) a 400 bar, 50°C e 5,5x10⁻⁵ kg/s.

Figura 16: Comparação entre os ajustes dos dados de artemisia para o modelo de Esquível *et al.* (1999) a 400 bar, 50° C e 5,5x 10^{-5} kg/s.

Figura 17: Comparação entre os ajustes dos dados de artemisia para o modelo de Martínez *et al.* (2003) a 400 bar, 50°C e 5,5x10⁻⁵ kg/s.

Figura 19: Comparação entre os ajustes dos dados de artemisia para o modelo de Esquível *et al.* (1999) a 200 bar, 50° C e 5,5x 10^{-5} kg/s.

Figura 20: Comparação entre os ajustes dos dados de artemisia para o modelo de Martínez *et al.* (2003) a 200 bar, 50°C e 5,5x10⁻⁵ kg/s.

Figura 21: Comparação entre os ajustes dos dados de artemisia para o modelo de Esquível *et al.* (1999) a 400 bar, 30°C e 11,1x10⁻⁵ kg/s.

O modelo de Goto *et al.* (1993) não foi capaz de descrever os pontos experimentais para os recursos usados neste trabalho para a cinética de artemisia medida a 400 bar, 50°C e 5,5x10⁻⁵ kg/s. O modelo de Tan e Liou (1989), a partir das massas calculadas pela ferramenta computacional em Excel e pelo programa Origin, também descreveu bem duas das três cinéticas que tinham em comum o valor de vazão em sua condição operacional.

Os maiores erros e desvios padrão calculados concentraram-se nos pontos calculados para a cinética da condição 400 bar, 30°C e 11,1x10⁻⁵ kg/s para os três recursos com relação aos modelos de Tan e Liou (1989), Goto *et al.* (1993) e Martínez *et al.* (2003), cujas curvas ajustadas apresentaram enormes desvios para com os dados experimentais.

Os menores erros e desvios padrão concentraram-se nos pontos da condição 400 bar, e 50°C e 5,5x10⁻⁵ kg/s, para Tan e Liou (1989) e Esquível *et al.* (1999), onde o aplicativo em Excel descreveu melhor a cinética para o modelo de Tan e Liou (1989).
Dados Exper	imentais	Dados da C	Configuração	o do Sistema
t(s)	m(kg)			
1200	0,001083	T (°C)		30
2400	0,001853	P (bar)		250
3000	0,00214	Altura (m)		0,0749
3600	0,002375	Diâmetro (m)		0,0339
4200	0,002567	H/D (-)		2,21
4800	0,002736	Área superficial (m ²)		9,02 x10 ⁻⁴
5400	0,002888	Volume do leito (m ³)		6,76 x10 ⁻⁵
6000	0.00304	F ₀ (kg)		0,03
6600	0.003138	Q _{CO2} (kg/s)		8,33x10 ⁻⁵
7200	0,003235	u (m/s)		9,99 x10 ⁻⁵
7800	0,003324	$\rho_{\rm CO2}$ (kg/m ³)		923
8400	0,003399	ρ _{sólido} (kg/m³)		973
9000	0,003479	D _p (m)		6,10x10 ⁻⁴
9600	0,003567	$\varepsilon_{\rm p}$ (-)		0,54
10200	0,003615	ε _b (-)		0,54
10800	0,003676	X ₀ (-)		0,125
11400	0,003704			
Modelos	Parâme	etros Ajustáveis		Valores
		Este Tra	Ibalho	Moura (2004)
	1	Excel	Origin	Α
Tan e Liou (1989)	$K_{d}(s^{-1})$	6,658x10 ⁻⁴	6,8 x10 ⁻⁴	2,35 x10 ⁻⁴
	φ(-)	0,232	851,618	0,17
Goto et al. (1993)	K (-)	0,409	3 x10 ⁻⁵	0,40

Tabela 17: Dados experimentais para cinética de funcho a 0,03 kg, 250 bar, 30° C e 8,33x 10^{-5} kg/s.

Dados Exp	erimentais	Dados da Configu	uração do Sistema
t(s)	m(kg)		
1200	0,001643	T (°C)	30
2400	0,00272	P (bar)	250
3600	0,003626	Altura (m)	0,1498
4800	0,004271	Diâmetro (m)	0,0339
6000	0,00481	H/D (-)	4,42
7200	0,005295	Área superficial (m ²)	9,03x10 ⁻⁴
8400	0,005687	Volume do leito (m ³)	1,35x10⁻⁵
9600	0,006003	F ₀ (kg)	0,06
10800	0,006319	Q _{CO2} (kg/s)	8,33x10 ⁻⁵
12000	0,006558	u (m/s)	6,17 x10 ⁻⁵
13200	0,00678	$ ho_{ m CO2}$ (kg/m ³)	923
14400	0,006899	$ ho_{ m sólido}$ (kg/m ³)	973
		D _p (m)	6,10x10 ⁻⁴
		ε _p (-) ε _b (-)	0,54 0,54
		X ₀ (-)	0,125

Tabela 18: Dados experimentais para cinética de funcho a 0,06 kg 250 bar, 30° C e 8,33x 10^{-5} kg/s.

	Valores			
		Este Traba	Moura (2004)	
		Excel	Origin	. ,
Tan e Liou (1989)	K _d (s⁻¹)	1,498x10 ⁻⁴	1,5 x10 ⁻⁴	1,28x10 ⁻⁴
	φ(-)	0,155	1202,725	0,153
Goto <i>et al</i> . (1993)	K (-)	0,448	6 x10 ⁻⁵	0,476

Dados Expe	rimentais		Dados da Confi	iguração do Sis	stema			
t(s)	m(kg)	-						
1200	0,002065	T	(°C)		30			
2400	0,003092	Р	(bar)	:	250			
3600	0,00355	Al	tura (m)	0,	0288			
4800	0,003723	Di	âmetro (m)	0,	0545			
		H/	D (-)	(0,53			
		Ár	ea superficial (m ²)	2,3	3x10 ⁻³			
		Vo	olume do leito (m ³)	6,7	2x10 ⁻⁵			
		Fo	(kg)	(0,03			
		Q	_{CO2} (kg/s)	13,3x10 ⁻⁵				
		u	(m/s)	6,1	6,18 x10⁻⁵			
		$ ho_{ m C}$. _{O2} (kg/m ³)		923			
		$ ho_{ m s}$	_{ólido} (kg/m ³)		973			
		Dp	, (m)	6,1	6,10x10 ⁻⁴			
		ε _p	(-)	(0,54			
		ε _b	(-)	(0,54			
		X ₀	(-)	0	,125			
		Parâme	etros Ajustáveis		Valores			
			Este Trat	balho	Moura (2004)			
		4	Excel	Origin				
Tan e Liou (198	9) I	$K_d(s^{-1})$	2,431x10 ⁻⁴	2,5 x10 ⁻⁴	2,24x10 ⁻⁴			
	(φ(-)	0,09	1325,433	0,108			
Goto <i>et al</i> . (199	3) I	K (-)	0,394	7x10 ⁻⁵	0,437			

Tabela 19: Dados experimentais para cinética de funcho a 0,03 kg 250 bar, 30° C e 13,3x10⁻⁵ kg/s.

Tabela 20: Parâmetros estatísticos para as cinéticas de funcho.

		0,03 kg, 250) bar, 30°C e 8,33x10 ⁻³	⁵ kg/s		
		Tan e Liou (1989)			Goto <i>et al.</i> (1993	3)
	Este 1	rabalho	Moura (2004)	Este	Trabalho	Moura (2004)
	Excel	Origin		Excel	Origin	
Erro Médio	0,011	0,011 0,012		0,013	0,133	0,007
Desvio Padrão	0,007	0,006	0,013	0,008	0,121	0,006
Faixa de Erro	0,023	0,020	0,037	0,027	0,197	0,016
		0,06 kg 250	bar, 30°C e 8,33x10 ⁻⁵	⁵ kg/s		
		Tan e Liou (1989))		Goto <i>et al.</i> (1993	3)
	Este 1	rabalho	Moura (2004)	Este Trabalho		Moura (2004)
	Excel	Origin		Excel	Origin	
Erro Médio	0,029	0,027	0,106	0,028	0,055	0,013
Desvio Padrão	0,02	0,014	0,065	0,020	0,041	0,016
Faixa de Erro	0,054	0,043	0,094	0,048 0,088		0,019
		0,03 kg 250	bar, 30°C e 13,3x10 ⁻⁵	[°] kg/s		
		Tan e Liou (1989))		Goto <i>et al.</i> (1993	3)
	Este 7	rabalho	Moura (2004)	Este	Trabalho	Moura (2004)
	Excel	Origin		Excel	Origin	
Erro Médio	0,049	0,050	0,456	0,035	0,048	0,700
Desvio Padrão	0,041	0,037	0,581	0,026	0,033	0,770
Faixa de Erro	0,057	0,04	0,220	0,003	0,299	0,105

Figura 22: Comparação entre os ajustes dos dados de funcho para o modelo de modelo de Tan e Liou (1989) a 0,03 kg, 250 bar, 30°C e 8,33x10⁻⁵ kg/s.

Figura 23: Comparação entre os ajustes dos dados de funcho para o modelo de modelo de Goto *et al.* (1993) a 0,06 kg, 250 bar, 30°C e 8,33x10⁻⁵ kg/s.

Figura 24: Comparação entre os ajustes dos dados de funcho para o modelo de modelo de Tan e Liou (1989) a 0,06 kg 250 bar, 30°C e 8,33x10⁻⁵ kg/s.

Figura 25: Comparação entre os ajustes dos dados de funcho para o modelo de Goto *et al.* (1993) a 0,06 kg 250 bar, 30° C e 8, 33×10^{-5} kg/s.

Figura 26: Comparação entre os ajustes dos dados de funcho para o modelo de Goto *et al.* (1993) a 0,03 kg 250 bar, 30°C e 13,3x10⁻⁵ kg/s.

Para a cinética de funcho nas condições de 0,03 kg, 250 bar, 30°C e 8,33x10⁻⁵ kg/s e de 0,06 kg 250 bar, 30°C e 8,33x10⁻⁵ kg/s os menores valores de erros e desvios foram atribuídos aos valores de massa extraída calculada a partir dos parâmetros gerados por Moura (2004) para o modelo de Goto *et al.* (1993), enquanto que a 0,03 kg, 250 bar, 30°C e 13,3x10⁻⁵ kg/s, foram encontrados os maiores valores de erro médio relativo e desvio padrão, porém, para esta mesma condição os menores valores de erro e desvio padrão foram atribuídos aos dados calculados pelo aplicativo em Excel para o modelo.

Os menores valores de erro médio relativo foram atribuídos pelo aplicativo em Excel, seguido do programa Origin para o modelo de Tan e Liou (1989), para os dados de funcho na condição de 0,03 kg, 250 bar, 30°C e 8,33x10⁻⁵ kg/s e para o modelo de Goto *et al.* (1993) para os pontos da condição 0,03 kg, 250 bar, 30°C e 13,3x10⁻⁵ kg/s.

Em todas as condições para o modelo de Tan e Liou (1989) os parâmetros estatísticos obtidos a partir das massas extraídas calculadas a partir dos valores de

K_d divulgado por Moura (2004) foram os que obtiveram os maiores valores de erro e desvio-padrão.Os ajustes obtidos para os modelos de Tan e Liou (1989) e Goto *et al.* (1993) descreveram satisfatoriamente as cinéticas de funcho em relação as ferramentas em Excel e ao programa Origin usadas neste trabalho. Porém, algumas das curvas calculadas a partir dos parâmetros ajustáveis de Moura (2004) não reproduziram os pontos experimentais com a mesma precisão que as ferramentas usadas neste trabalho.

Os modelos de transferência de massa, em especial os de Tan e Liou (1989), Goto *et al.* (1993) e Sovová (1994) requerem maiores informações para serem resolvidos no objetivo de descrever o processo, portanto, são muito dependentes das informações referentes aos parâmetros que constituem o tanto leito extrativo, (como a vazão de solvente) e aos que constituem a matriz sólida (como o rendimento global).

5.3 RESULTADOS GERADOS PELO AMBIENTE COMPUTACIONAL PARA O MODELO DE SOVOVÁ (1994)

O modelo original de Sovová (1994), apesar de necessitar de um parâmetro ajustável, foi adaptado neste trabalho a partir da metodologia empregada por Povh *et al.* (2001) com quatro parâmetros ajustáveis, t_{CER} (gerado pelo aplicativo de três retas), t_{FER} (calculado a partir da equação 57), k_{Xa} e k_{Ya} .

Nesta seção do trabalho foram calculados os parâmetros t_{CER} , t_{FER} , k_{Xa} e k_{Ya} , para o modelo de Sovová (1994), usando o aplicativo computacional em Excel desenvolvido neste trabalho. Na tabela 21 estão os parâmetros desse modelo calculados pelo aplicativo em Excel e os calculados por Quispe-Condori (2005) para descrição do comportamento de extração do óleo essencial de artemisia.

Na tabela 22 estão os parâmetros estatísticos erro médio relativo, desvio padrão e faixa de erro calculados a partir dos parâmetros gerados pelo aplicativo desenvolvido neste trabalho e dos parâmetros calculados pelo autor. Nas figuras 30, 31 e 32 estão as comparações entre os ajustes realizados com os dados de Moura (2004) para o funcho.

		Parâr	netros Ajus	táveis				
	40	0bar, 50°C e 5,5x1	2	200bar, 50°C e 5,5x10⁻⁵ kg/s				
	t _{CER} (s)	t _{FER} (s)	k _{Xa} (s⁻¹)	k _{Ya} (s⁻¹)	t _{CER} (s)	t _{FER} (s)	k _{Xa} (s⁻¹)	k _{Ya} (s⁻¹)
Este Trabalho	4205,4	7761,6	2,8 x10 ⁻³	2,64x10 ⁻⁷	⁴ 840	3088,86	1,8 x10 ⁻⁵	1,09 x10 ⁻³
Quispe-Condori	2094	13561,02	5,9 x10 ⁻⁵	3,4 x10⁻′	⁴ 474	3165,84	1,8 x10 ⁻⁵	1,8 x10 ⁻³
		400 bar, 3	60°C e e 11,1	lx10 ⁻⁵ kg/s				
	t _{CER} (s)	t _{FER} (s)	k,	(a (S ⁻¹)	k _{Ya} (s⁻¹)			
Este Trabalho	1050	3266,82	5,5	5 x10⁻⁴	2,99 x10 ⁻⁴			
Quispe-Condori	630	2125,44	6,4	4 x10 ⁻⁵	8,2 x10 ⁻⁴			
		Parâme	tros Estatís	ticos				
	400bar, 50°C	e 5,5x10 ⁻⁵ kg/s	200ba	ır, 50°C e 5,	,5x10 ⁻⁵ kg/s	400 bar, 30)°C e 11,1x1	0 ⁻⁵ kg/s
	Este Trabalho	Quispe-Condori (2005)	Este Tra	abalho Q	uispe-Condori (2005)	Este Trabalho	Quispe (2	-Condori 005)
Erro Médio	0,045	0,120	0,07	76	0,095	0,078	0,	,078
Desvio Padrão	0,062	0,045	0,09	99	0,072	0,101	0,	,101
Faixa de Erro	0,024	0,013	0,04	40	0,041	0,049	0,	,049

Tabela 21: Parâmetros ajustáveis e estatíscos do modelo de Sovová (1994) para artemisia.

		Parâ	metros Aj	justáveis						
	0,03	3 kg, 250 bar, 30°C	e 8,33x10	⁻⁵ kg/s	0,06 kg	g 250 bar, 30	°C e 8,33x	10 ⁻⁵ kg/s		
	t _{CER} (s)	t _{FER} (s)	k _{Xa} (s⁻¹)	$k_{Xa}(s^{-1})$ $k_{Ya}(s^{-1})$		t _{FER} (s)	k _{Xa} (s⁻¹)	k _{Ya} (s ⁻¹)		
Este Trabalho	4410	4474	4 x10 ⁻⁴	2,229x10 ^{-€}	⁵ 4410	4474	4 x10 ⁻⁴	2,229x10⁻⁵		
Moura (2004)	2298	4327	3 x10 ⁻⁴	0,066	3085,2	11031	0,014	0,083		
0,03 kg 250 bar, 30°C e 13,3x10⁻⁵ kg/s										
	t _{CER} (s)	t _{FER} (s)		k _{Xa} (s⁻¹)	k _{Ya} (s⁻¹)					
Este Trabalho	2457	10347		1,4 x10 ⁻⁴	2,418x10 ⁻³					
Moura (2004)	2167,2	3385		0,02	0,047					
		Parân	netros Est	atísticos						
	0,03 kg, 250 bar, 3	0°C e 8,33x10⁻⁵ kg/s	0,06 kg,	250 bar, 30°C e	e 8,33x10⁻⁵ Kg/s	0,03 kg, 250	bar, 30°C e	13,3x10⁻⁵ kg/s		
	Este Trabalho	Moura (2004)	Este Tr	abalho	Moura (2004)	Este Traba	lho M	oura (2004)		
Erro Médio	0,049	0,128	0,0)49	0,043	0,140		0,140		
Desvio Padrão	0,057	0,103	0,0)57	0,059	0,128		0,152		
Faixa de Erro	0,115	0,07	0,1	15	0,201	0,489		0,525		

 Tabela 22: Parâmetros ajustáveis e estatíscos do modelo de Sovová (1994) para funcho.

Figura 27: Comparação entre os ajustes dos dados de artemisia para o modelo de Sovová (1994) a 400 bar, 50°C e 5,5x10⁻⁵ kg/s.

Figura 28: Comparação entre os ajustes dos dados de artemisia para o modelo de Sovová (1994) a 200 bar, 50°C e 5,5x10⁻⁵ kg/s.

Figura 29: Comparação entre os ajustes dos dados de artemisia para o modelo de Sovová (1994) a 400 bar, 30° C e 11,1x10⁻⁵ kg/s.

Figura 30: Comparação entre os ajustes dos dados de funcho para o modelo de Sovová (1994) a 0,03 kg, 250 bar, 30°C e 8,33x10⁻⁵ kg/s.

Figura 31: Comparação entre os ajustes dos dados de funcho para o modelo de Sovová (1994) a 0,06 kg 250 bar, 30°C e 8,33x10⁻⁵ kg/s.

Figura 32: Comparação entre os ajustes dos dados de funcho para o modelo de Sovová (1994) a 0,03 kg 250 bar, 30° C e 13,3x10⁻⁵ kg/s.

Para a artemisia os valores de k_{Xa} obtidos foram idênticos para ambos os recursos comparativos na cinética da segunda condição estudada de 200 bar, 50°C e 5,5x10⁻⁵ kg/s. Os valores de k_{Ya} calculados se aproximaram aos do autor para as duas primeiras condições; na terceira condição estudada, os valor desse coeficiente calculado se distanciou um pouco mais do coeficiente obtido pelo autor, apesar de estarem na mesma grandeza.

Para a cinética a 400 bar, 30° C e $11,1x10^{-5}$ kg/s os valores de k_{Xa} e k_{Ya} calculados diferiram dos obtidos por Quispe-Condori (2005) em aproximadamente uma ordem de grandeza.

Os valores de t_{CER} obtidos por Quispe-Condori (2005) foram menores que os calculados, enquanto que os valores de t_{FER} foram maiores. Na cinética do gráfico 25 as curvas calculadas apresentaram o mesmo comportamento para o modelo de Sovová (1994).

As massas extraídas calculadas a partir dos parâmetros ajustáveis calculados pelo Excel estiveram próximos dos dados experimentais e dos dados resultantes dos parâmetros ajustáveis de Quispe-Condori (2005) para cada modelo.

Com relação ao funcho, os parâmetros do modelo de Sovová (1994) calculados por Moura (2004) foram menores que os aqui calculados. Os k_{Ya} calculados neste trabalho para o funcho diferiram Moura (2004) em três ordens de grandeza nas duas primeiras condições, enquanto que na terceira, em uma. O coeficiente k_{Xa} estimado neste trabalho esteve na mesma grandeza do calculado por Moura, na primeira condição, enquanto que nas duas últimas diferiram em duas ordens de grandeza.

Os parâmetros estatísticos calculados a partir do Excel foram menores nas cinéticas de 0,03 kg, 250 bar, 30° C e 8,33x 10^{-5} kg/s e 0,06 kg 250 bar, 30° C e 8,33x 10^{-5} kg/s.

5.4 DETERMINAÇÃO DOS PARÂMETROS DE TRANSFERÊNCIA DE MASSA PARA EFSC DO BURITI, CÚRCUMA E AÇAÍ

Nesta etapa do trabalho foi utilizado o programa Origin 8.0. para a modelagem das cinéticas de extração do buriti, da cúrcuma e do açaí que foram medidos no Laboratório de Extração Supercrítica da Universidade Federal do Pará.

5.4.1 Buriti (Cunha et al., 2012b)

Na tabela 24 estão os valores dos parâmetros ajustáveis dos modelos de transferência de massa calculados pelo programa Origin e nas tabelas 25 e 26 estão os valores dos parâmetros cinéticos calculados pelas planilhas de duas e três retas para as cinéticas de extração do buriti. Na tabela 26 estão os valores de χ^2 (qui quadrado) e R² (coeficiente de correlação) calculados pelo programa Origin e nas tabelas 27 e 28 estão os valores de erro médio, desvio-padrão e faixa de erro calculados pelas equações 135, 136 e 137.

As comparações entre os ajustes obtidos pelo Origin e pelo aplicativo em Excel relacionados aos ajustes obtidos para esta matéria-prima para todos os modelos estão nos anexos.

Os pontos experimentais de massa acumulada versus tempo refletem o tipo II das curvas de extração (salvo para a cinética realizada a 20g de alimentação na pressão de 250 bar, ilustrada na figura 37). Comportamento semelhante foi notado nos pontos cinéticos de um experimento de Galvão (2009) para a extração do óleo de linhaça.

Os pontos ajustados para o modelo de Tan e Liou (1989) foram capazes de descrever a maioria das cinéticas apesar do comportamento linear. Para o modelo de Sovová (1994) o parâmetro t_{FER} foi equivalente a t_{CER} para todas as cinéticas, além de apresentar baixos valores de k_{Xa} em relação aos de k_{Ya}, indicando que para as cinéticas de Cunha *et al.* (2012b) não existe etapa difusional. Com relação aos valores de t_{CER} e t_{FER} obtidos pelos aplicativos de duas e três retas houve muita diferença para com os valores de t_{CER} e t_{FER} calculados a partir do ambiente computacional para o modelo de Sovová (1994).

Os menores valores de erro médio, desvio padrão e faixa de erro, foram atribuídos aos modelos de Goto *et al.* (1993), Sovová (1994) e Martínez *et al.* (2003). Conforme Weinhold *et al.* (2008) cujos dados cinéticos da oleoresina de *Polygala*

cyparissias também foram ajustados a esses modelos, o melhor desempenho ocorreu provavelmente devido a presença de dois parâmetros ajustáveis cada.

Os modelos de Goto *et al.* (1993), Martínez *et al.* (2003) e Esquível *et al.* (1999) apresentaram os maiores valores de R^2 e os menores valores de χ^2 , para todas as cinéticas de Cunha *et al.* (2012b).

Carvalho Jr. (2004), na modelagem das cinéticas de alecrim obteve melhores resultados para os modelos de Sovová (1994), Esquível *et al.* (1999) e Goto *et al.* (1993). Segundo o autor, os parâmetros ajustáveis do modelo de Goto *et al.* (1993) não estão diretamente relacionados aos coeficientes de transferência de massa e a geometria do leito que possibilitem o aumento de escala, enquanto que o coeficiente de transferência de massa na fase fluida, k_{Ya}, do modelo de Sovová (1994) está correlacionado às condições operacionais e geometria do leito que são utilizados para o estudo do aumento de escala.

Martínez (2005) afirmou que as taxas de extração observadas nas curvas de rendimento versus tempo refletem-se nos valores calculados dos coeficientes de transferência de massa: maiores valores de k_{Ya} e k_{Xa} resultam em maiores taxas de EFSC. Como neste trabalho não está sendo sendo abordada essa questão de rendimento, mas de massas extraídas ilustradas em curvas massa versus tempo, considera-se que as massas extraídas calculadas para cada modelo exercem influência nos valores calculados dos coeficientes.

Tabela 2	23:	Valores	dos	parâmetros	ajustáveis	dos	modelos	de	transferência	de	massa	das	cinéticas	de	buriti	(Cunha	et al.,
2012b).																	

Pressão (bar)	Alimentação(g)	Martínez <i>et al.</i> (2003)		Tan e Liou (1989)	Goto <i>et al</i> . (1993)		
		b _i (min ⁻¹)	t _{mi} (min)	K _d (min⁻¹)	φ (-)	К (-)	
150	20g	1,56 x10 ⁻³	-12688,089	0,017	9x10 ⁻⁵	1,210x10 ⁻³	
	220g	3,57x10 ⁻³	-4910,149	9,7x10 ⁻⁴	-0,0144	-1,318x10 ⁻⁹	
200	20g	1,75x10 ⁻³	-10048,643	4,5x10 ⁻⁴	-2,60x10 ⁻⁴	-8,245x10 ⁻⁸	
	220g	1,74x10 ⁻³	-10063,288	5,8x10 ⁻⁴	-287,822	-1,012x10 ⁻⁶	
250	20g	5 x10 ⁻³	-3842,118	6,3x10 ⁻⁴	-0,107	-2 x10 ⁻⁵	
	165g	1,28 x10 ⁻³	-15576,888	6,4x10 ⁻⁴	0,0876	1,274x10 ⁻⁷	
	180g	8x10 ⁻⁵	-179383,804	1,964x10 ⁻⁶	2,870	1,086x10 ⁻⁷	
	220g	3 x10 ⁻³	477,614	3,6x10 ⁻⁴	77,907	5,60x10 ⁻⁴	
Pressão (bar)	Alimentação (g)		Sovová (199	94)		Esquível et al.(1999)	
		t _{CER} (min)	t _{FER} (min)	k _{Xa} (min⁻¹)	k _{Ya} (min⁻¹)	b (min)	
150	20g	81,6	81,6	2,4x10 ⁻³	2,31x10 ⁻⁴	565,876	
	220g	130	130	1,316x10 ⁻⁵	2,355x10⁻⁴	219,883	
200	20g	235,95	235,95	9x10⁻⁵	0,055	500,219	
	220g	237,6	237,6	7,278x10 ⁻⁶	1,777x10⁻⁴	495,038	
250	20g	86,9	86,9	3x10⁻⁵	1,02x10 ⁻³	152,283	
	165g	239,37	239,37	2,304x10 ⁻⁴	0,024	709,859	
	180g	239,4	239,4	6,6x10 ⁻⁴	1,56x10 ⁻³	12800,468	
	220g	227,5	227,5	6,66x10 ⁻⁵	2,52x10 ⁻³	495,038	

Alimentação		20g		165g	180g		220g	
Pressão	150 bar	200 bar	250 bar	250 bar	250 bar	150 bar	200 bar	250 bar
M _{CER} (g/min)	7,458x10 ⁻³	2,168x10 ⁻²	6,06x10 ⁻²	9,48 x10 ⁻²	8,959 x10 ⁻²	1,541 x10 ⁻²	6,977x10 ⁻²	1,176x10 ⁻¹
t _{CER} (min)	68	143	79	47	57	31	31	108
Y_{CER} (g _{EXT} /g _{CO2})	8,784 x10 ⁻⁴	2,554x10 ⁻³	7,143x10 ⁻³	1,112x10 ⁻²	1,055 x10 ⁻²	1,182 x10 ⁻³	8,218x10 ⁻³	1,139x10 ⁻²
Q _{CO2} (L/min)	10	10	10	10	10	10	10	10

Tabela 24: Valores dos parâmetros cinéticos calculados pela planilha de duas retas para o buriti (Cunha et al,. 2012b).

Tabela 25: Valores dos parâmetros cinéticos calculados pela planilha de três retas para o buriti (Cunha et al,. 2012b).

Alimentação		20g		165g	180g		220g	
Pressão	150 bar	200 bar	250 bar	250 bar	250 bar	150 bar	200 bar	250 bar
M _{CER} (g/min)	7,604x10 ⁻³	2,672x x10 ⁻²	6,145 x10 ⁻²	9,943 x10⁻²	6,742x10 ⁻²	1,428 x10 ⁻²	1,428 x10 ⁻²	1,172 x10 ⁻¹
t _{CER} (min)	58	33	72	37	0	42	42	120
t _{FER} (min)	102	152	112	169	1	98	98	202
$Y_{CER}(g_{EXT}/g_{CO2})$	8,957x10 ⁻⁴	3,147x10 ⁻³	7,238x10 ⁻³	1,171x10 ⁻²	7,941x10 ⁻³	1,682x10 ⁻³	1,682x10 ⁻³	1,381x10 ⁻³
Q _{CO2} (L/min)	10	10	10	10	10	10	10	10

Pressão (bar)	Alimentação (g)	Martínez <i>et al.</i> (2003)		Tan e Liou	(1989)	Goto <i>et al.</i> (1993)
		χ^2	R^2	χ^2	R^2	χ^2	R^2
150	20g	0,005	0,986	0,034	0,908	7,5x10⁻⁴	0,998
	220g	0,004	0,993	7,76x10 ⁻³	0,986	3,87x10 ⁻³	0,994
200	20g	0,005	0,996	0,015	0,989	0,001	0,999
	220g	0,067	0,96	0,096	0,943	0,018	0,99
250	20g	0,069	0,968	0,159	0,922	0,004	0,998
	165g	0,009	0,998	0,019	0,996	0,005	0,999
	180g	0,042	0,991	0,044	0,99	0,004	0,999
	220g	7,75x10 ⁻⁴	0,999	0,06	0,993	0,008	0,999
Pressão (bar)	Alimentação (g)	E	squível <i>et al.</i> (1	999)			
			χ^2	R^2			
150	20g		0,002	0,994			
	220g		0,009	0,983			
200	20g		0,001	0,999			
	220g		0,035	0,979			
250	20g		0,038	0,982			
	165g		0,006	0,999			
	180g		0,039	0,992			
	220g		0,125	0,987			

Tabela 26: Valores de χ^2 e R² dos dados de cinética de extração do buriti (Cunha *et al.*, 2012b).

		Martínez	<i>et al.</i> (2003)	Tan e Liou (1989)			
Pressão (bar)	Alimentação (g)	Erro Médio	Faixa de Erro	Desvio Padrão	Erro Médio	Faixa de Erro	Desvio Padrão
150	20g	0,048	0,107	0,048	0,145	0,403	0,168
	220g	0,031	0,054	0,026	0,033	0,055	0,022
200	20g	0,024	0,085	0,094	0,043	0,045	0,138
	220g	0,057	0,042	0,127	0,072	0,146	0,064
250	20g	0,064	0,170	0,063	0,094	0,236	0,093
	165g	0,012	0,014	0,104	0,019	0,044	0,016
	180g	0,032	0,038	0,095	0,033	0,084	0,032
	220g	0,012	0,052	0,156	0,037	0,083	0,034
		Goto et	t al. (1993)		·	Sovová (1994)	
Pressão (bar)	Alimentação (g)	Erro Médio	Faixa de Erro	Desvio Padrão	Erro Médio	Faixa de Erro	Desvio Padrão
150	20g	0,015	0,031	0,010	0,020	0,080	0,082
	220g	0,025	0,011	0,011	0,005	0,019	0,003
200	20g	0,009	0,014	0,005	0,104	0,138	0,037
	220g	0,026	0,066	0,019	0,062	0,074	0,021
250	20g	0,009	0,023	0,006	0,007	0,002	0,004
	165g	0,008	0,017	0,004	0,025	0,010	0,041
	180g	0,008	0,013	0,004	0,007	0,044	0,006
	220g	0,009	0,040	0,009	0.002	0.008	0.001

Tabela 27: Valores de erro médio, faixa de erro e desvio-padrão dos modelos de Martínez *et al.* (2003), Tan e Liou (1989), Goto *et al.* (1993) e Sovová (1994) para o buriti, dados de Cunha *et al.* (2012b).

Tabela 28: Valores de erro médio, faixa de erro e desvio-padrão do modelo de Esquível et al. (1999) para o buriti, dados de Cunh
<i>et al.</i> (2012b).

	Esquível <i>et al.</i> (1999)							
Pressão (bar)	Alimentação (g)	Erro Médio	Faixa de Erro	Desvio Padrão				
150	20g	0,096	0,278	0,084				
	220g	0,047	0,151	0,045				
200	20g	0,009	0,002	0,006				
	220g	0,003	0,023	0,085				
250	20g	0,046	0,089	0,023				
	165g	0,011	0,007	0,032				
	180g	0,023	0,015	0,06				
	220g	0,043	0,092	0,029				

Figura 33: Comparação entre os ajustes dos dados do buriti (Cunha *et al.*, 2012b) para os modelos de transferência de massa a 20 g e 150 bar.

Figura 34: Comparação entre os ajustes dos dados do buriti (Cunha *et al.*, 2012b) para os modelos de transferência de massa a 220 g e 150 bar.

Figura 35: Comparação entre os ajustes dos dados do buriti (Cunha *et al.*, 2012b) para os modelos de transferência de massa a 20 g e 200 bar.

Figura 36: Comparação entre os ajustes dos dados do buriti (Cunha *et al.*, 2012b) para os modelos de transferência de massa a 220 g e 200 bar.

Figura 37: Comparação entre os ajustes dos dados do buriti (Cunha *et al.*, 2012b) para os modelos de transferência de massa a 20 g e 250 bar.

Figura 38: Comparação entre os ajustes dos dados do buriti (Cunha *et al.*, 2012b) para os modelos de transferência de massa a 165 g e 250 bar.

Figura 39: Comparação entre os ajustes dos dados do buriti (Cunha *et al.*, 2012b) para os modelos de transferência de massa a 180 g e 250 bar.

Figura 40: Comparação entre os ajustes dos dados do buriti (Cunha *et al.*, 2012b) para os modelos de transferência de massa a 220 g e 250 bar.

5.4.2 Buriti (Rüster, 1997)

Na tabela 29 estão os parâmetros ajustáveis dos modelos de transferência de massa calculados pelo programa Origin e nas tabelas 30 e 31 estão os valores dos parâmetros cinéticos calculados pelas planilhas de duas e três retas para as cinéticas de buriti. Na tabela 32 estão os valores de χ^2 (qui quadrado) e R² (coeficiente de correlação) calculados pelo programa Origin e nas tabelas 33 e 34 estão os valores de erro médio, desvio-padrão e faixa de erro calculados pelas equações 135, 136 e 137.

Os experimentos III e IV deste autor foram realizados com a polpa do buriti, enquanto que os outros foram realizado com a casca. As comparações entre os ajustes obtidos pelo Origin e pelo aplicativo em Excel relacionados aos ajustes obtidos para esta matéria-prima para todos os modelos estão nos anexos deste trabalho.

A falta de regularidade para alguns parâmetros de configuração do leito entre os experimentos (por exemplo, vazão de solvente, temperatura, pressão, densidades do solvente e do sólido e massa de alimentação - F₀), dificultou o tratamento de dados para o ajuste dos modelos e consequentemente o entendimento do fenômeno de extração do óleo de buriti para com os dados deste autor.

Sabe-se que o modelo de Tan e Liou (1989), é dependente dos valores de vazão de solvente, altura do leito, porosidade do leito, X₀, densidades do sólido e do solvente para que ele possa descrever com maior precisão a OEC. Além dos valores de X₀, os outros parâmetros contribuíram para que este modelo não viesse a descrever as OECs do óleo de buriti para os dados de Rüster (1997) por apresentar os maiores desvios em relação aos dados experimentais e os maiores valores de erro médio, faixa de erro, desvio padrão e qui quadrado e os menores valores do coeficiente de determinação.

Dentre todos os modelos, o de Goto *et al.* (1993) foi o que melhor ajustou os dados cinéticos de Rüster (1997) para o buriti, tornando-se satisfatório ao correlacionar os dados experimentais apresentando valores de R² acima de 0,99 para a maioria dos dados experimentais e desvio máximo de 9,3%.

No experimento XIII estão os menores valores de t_{CER} e t_{FER}, mostrando que a maior parte do óleo foi extraída no início do processo. Na maioria das curvas é

perceptível as distinções entre as etapas CER e FER. Em algumas, a massa acumulada aumenta de forma aparentemente linear até o final da extração. Para Martínez (2002) as falhas no ajuste da primeira etapa de extração (período CER) eram compensadas no ajuste dos demais períodos.

Os parâmetros cinéticos t_{CER} e t_{FER} calculados pelos aplicativos de duas e três retas os valores foram próximos aos valores de t_{CER} e t_{FER} calculados pelo ambiente computacional para o modelo de Sovová (1994) para algumas cinéticas.

Experimento	Martínez <i>et al.</i> (2003)		Tan e Liou (1989)	ι e Liou Goto <i>et al.</i> 1989) (1993)		Esquível <i>et a</i> (1999)) <i>I.</i>	Sovová (1994)		
	b _i (s ⁻¹)	t _{mi} (s)	K _d (s⁻¹)	φ(-)	K (-)	b (s)	t _{CER} (s)	t _{FER} (s)	k _{Xa} (s⁻¹)	K _{Ya} (s⁻¹)
II	3x10⁻⁵	-586879,034	2,2x10 ⁻⁴	-2,41x10 ⁻³	-1x10⁻⁵	467,371	9135	13554	1x10 ⁻⁸	0,061
III	8x10⁻⁵	-8900,653	5,8x10 ⁻⁴	1,2x10 ⁻⁴	3,82x10 ⁻³	13443,883	9778	11921	9x10 ⁻⁸	1,487 x10⁻³
IV	5x10⁻⁵	-345885	0,023	5,59x10 ⁻⁶	3,8 x10 ⁻⁴	16199,303	548	554	7x10 ⁻⁵	1,001x10 ⁻⁴
V	1,1x10 ⁻⁴	-214010,386	1,54x10 ⁻³	2,9x10 ⁻⁴	0,004	7469,313	2280	2910	9,5x10 ⁻⁶	45,338
VII	2x10⁻⁵	-837776,578	3x10 ⁻⁵	2,10x10 ⁻⁶	2,7x10 ⁻⁴	45699,003	6570	6574	1x10 ⁻¹⁰	1,654x10 ⁻⁴
VIII	9x10⁻⁵	-189189,262	1,2x10 ⁻³	1,7x10 ⁻⁴	2,65x10 ⁻³	8911,771	3200	3827	1x10 ⁻⁹	2,091x10 ⁻³
XI	1x10⁻⁵	6,4x10 ⁻⁴	1,13x10 ⁻³	9,6x10 ⁻⁴	0,02	11459,073	3010	4346	1x10 ⁻⁹	7,080x10 ⁻³
XIII	1,5x10 ⁻³	1307,989	3,71x10 ⁻³	2,1x10 ⁻⁴	4,1x10 ⁻³	27585,332	1266	1549,5	8,00x10 ⁻⁵	1,563x10 ⁻³
XV	4,1x10 ⁻⁴	2376,415	1,29x10 ⁻³	7x10 ⁻⁵	3,32x10 ⁻³	39607,399	1782	7125,5	4,00x10 ⁻⁵	1,42x10 ⁻²

Tabela 29: Valores dos parâmetros ajustáveis dos modelos de transferência de massa das cinéticas do buriti (Rüster, 1997).

Tabela 30: Valores dos parâmetros cinéticos calculados pela planilha de duas retas para o buriti (Rüster, 1997).

	EXP II	EXP III	EXP IV	EXP V	EXP VII	EXP VIII	EXP XI	EXP XIII	EXP XV
M _{CER} (kg/s)	1,016x10 ⁻⁶	1,171x10 ⁻⁶	4,366x10 ⁻²	5,998x10 ⁻⁷	2,745x10 ⁻⁷	5,195x10 ⁻⁷	5,52x10 ⁻⁷	6,103x10 ⁻⁷	2,5x10 ⁻⁷
t _{CER} (s)	8340	9660	3780	2700	5400	3060	2940	2160	3420
Y _{CER} (g _{EXT} /kg _{CO2})	3,512x10 ⁻³	3,795 x10 ⁻³	2,342x10 ⁻³	1,958x10 ⁻³	1,796x10 ⁻³	1,865x10 ⁻³	1,98x10 ⁻³	2,055x10 ⁻³	9,429x10 ⁻⁴
Q _{CO2} (kg/s)	2,89 x10 ⁻⁴	3,09 x10 ⁻⁴	3,11x10 ⁻⁴	3,06x10 ⁻⁴	1,528x10 ⁻⁴	2,78x10 ⁻⁴	2,78x10 ⁻⁴	2,97x10 ⁻⁴	3,00x10 ⁻⁴

	EXP II	EXP III	EXP IV	EXP V	EXP VII	EXP VIII	EXP XI	EXP XIII	EXP XV
M _{CER} (kg/s)	1,109x10 ⁻⁶	1,239x10 ⁻⁶	-4,662x10 ⁻⁶	6,158x10 ⁻⁷	2,805x10 ⁻⁷	5,397x10 ⁻⁷	5,825x10 ⁻⁷	1,056x10 ⁻⁶	1,722x10 ⁻⁷
t _{CER} (s)	5220	6780	60	2280	4380	2640	2340	60	660
t _{FER} (min)	10800	11340	3600	4500	6720	4800	4020	2100	3240
Y _{CER} (kg _{EXT} /kg _{CO2})	3,835 x10 ⁻³	4,015 x10 ⁻³	-0,15	2,011 x10 ⁻³	1,835 x10 ⁻³	1,041 x10 ⁻³	2,088 x10 ⁻³	-3,556 x10 ⁻³	6,535 x10 ⁻⁴
Q _{CO2} (kg/s)	2,89 x10 ⁻⁴	3,09 x10 ⁻⁴	3,11x10 ⁻⁴	3,06x10 ⁻⁴	1,528x10 ⁻⁴	2,78x10 ⁻⁴	2,78x10 ⁻⁴	2,97x10 ⁻⁴	3,00x10 ⁻⁴

 Tabela 31: Valores dos parâmetros cinéticos calculados pela planilha de três retas para o buriti (Rüster, 1997).

Tabela 32: Valores de χ^2 e R² dos dados de cinética de extração do buriti (Rüster, 1997).

Experimento	Martínez et al. (200		Tan e Liou (1989)		Goto <i>et al.</i>	(1993)	Esquível <i>et al.</i> (1999)	
	χ²	R ²	χ²	R ²	χ²	R ²	χ²	R ²
II	3x10 ⁻⁵	0,994	7,4x10 ⁻⁴	0,83	1,096x10 ⁻⁶	0,999	4x10 ⁻⁵	0,949
III	5x10 ⁻⁵	0,992	0,003	0,379	6,158x10 ⁻⁶	0,999	1,5x10 ⁻⁴	0,971
IV	4,36x10 ⁻⁶	0,995	8x10 ⁻⁴	0,045	1,739x10 ⁻⁶	0,998	1,8x10 ⁻⁴	0,784
V	3x10 ⁻⁵	0,966	4x10 ⁻⁴	0,451	1,736x10 ⁻⁶	0,998	9,795x10 ⁻⁶	0,986
VII	3,41x10 ⁻⁶	0,994	2,52x10 ⁻⁶	0,996	1,622x10 ⁻⁶	0,998	2,027x10 ⁻⁶	0,996
VIII	4x10 ⁻⁵	0,956	3,5x10 ⁻⁴	0,546	1,266x10 ⁻⁶	0,999	2x10 ⁻⁵	0,978
XI	1x10 ⁻⁵	0,984	2,9x10 ⁻⁴	0,546	2,907x10 ⁻⁷	0,999	3x10 ⁻⁵	0,960
XIII	3,93x10 ⁻⁵	0,995	5,9x10 ⁻⁴	0,077	1,569x10 ⁻⁷	0,999	2x10 ⁻⁵	0,968
XV	2,78x10 ⁻⁶	0,996	5,5x10 ⁻⁴	0,11	9,736x10 ⁻⁷	0,999	2x10 ⁻⁵	0,968

Tabela 33: Valores de erro médio, faixa de erro e desvio-padrão dos modelos de Martínez *et al.* (2003), Tan e Liou (1989) e Goto*et al.* (1993) para o buriti, dados de Rüster (1997).

	Mar	tínez <i>et al.</i> (2003))	Та	Tan e Liou (1989)			Goto <i>et al.</i> (199	3)
Experimento	Erro Médio	Faixa de Erro	Desvio	Erro Médio	Faixa de Erro	Desvio	Erro Médio	Faixa de Erro	Desvio
			Padrão			Padrão			Padrão
II	0,025	0,067	0,008	0,263	0,565	0,211	0,004	0,014	0,004
III	0,025	0,08	0,01	1,319	2,603	1,036	0,013	0,038	0,011
IV	0,0698	0,011	0,048	0,864	1,500	0,604	0,013	0,028	0,011
V	0,061	0,165	0,061	0,808	1,58	0,456	0,012	0,032	0,010
VII	0,013	0,094	0,011	0,021	0,08	0,022	0,034	0,103	0,027
VIII	0,06	0,191	0,035	0,732	1,337	0,545	0,012	0,011	0,007
XI	0,079	0,017	0,071	0,601	1,155	0,482	0,005	0,01	0,003
XIII	0,048	0,025	0,105	2,27	4,345	1,844	0,003	0,007	0,003
XV	0,039	0,043	0,183	1,051	1,889	0,733	0,011	0,027	0,01

Tabela 34: Valores de erro médio, faixa de erro e desvio-padrão dos modelos de Sovová (1994) e Esquível *et al.* (1993) para o buriti, dados de Rüster (1997)

		Sovová (1994)		Esquível <i>et al.</i> (1999)				
Experimento	Erro Médio	Faixa de Erro	Desvio Padrão	Erro Médio	Faixa de Erro	Desvio Padrão		
II	0,011	0,013	0,013	0,012	0,027	0,007		
III	0,061	0,113	0,036	0,041	0,113	0,041		
IV	0,009	0,096	0,096	0,039	0,079	0,04		
V	0,038	0,204	0,055	0,039	0,007	0,032		
VII	0,017	0,025	0,025	0,019	0,07	0,019		
VIII	0,031	0,039	0,039	0,038	0,13	0,045		
XI	0,047	0,057	0,057	0,062	0,14	0,051		
XIII	0,061	0,063	0,067	0,043	0,042	0,037		
XV	0,034	0,015	0,030	0,02	0,041	0,016		

Figura 41: Comparação entre os ajustes dos dados do buriti (Rüster, 1997) para os modelos de transferência de massa a 250 bar e 50°C (EXP II).

Figura 42: Comparação entre os ajustes dos dados do buriti (Rüster, 1997) para os modelos de transferência de massa a 250 bar e 50°C (EXP III).

Figura 43: Comparação entre os ajustes dos dados do buriti (Rüster, 1997) para os modelos de transferência de massa a 250 bar e 50°C (EXP IV).

Figura 44: Comparação entre os ajustes dos dados do buriti (Rüster, 1997) para os modelos de transferência de massa a 250 bar e 50°C (EXP V).

Figura 45: Comparação entre os ajustes dos dados do buriti (Rüster, 1997) para os modelos de transferência de massa a 250 bar e 50°C (EXP VII).

Figura 46: Comparação entre os ajustes dos dados do buriti (Rüster, 1997) para os modelos de transferência de massa a 250 bar e 70°C (EXP VIII).

Figura 47: Comparação entre os ajustes dos dados do buriti (Rüster, 1997) para os modelos de transferência de massa nas condições de 250 bar e 70°C (EXP XI).

Figura 48: Comparação entre os ajustes dos dados do buriti (Rüster, 1997) para os modelos de transferência de massa a 300 bar e 50°C (EXP XIII).

Figura 49: Comparação entre os ajustes dos dados do buriti (Rüster, 1997) para os modelos de transferência de massa a 250 bar e 70°C (EXP XV).

5.4.3 Cúrcuma (Chassagnez-Méndez, 1998)

Na tabela 35 estão os parâmetros ajustáveis dos modelos de transferência de massa calculados pelo programa Origin e nas tabelas 36 e 37 estão os valores dos parâmetros cinéticos calculados pelas planilhas de duas e três retas para as cinéticas de buriti. Na tabela 38 estão os valores de χ^2 (qui quadrado) e R² (coeficiente de correlação) calculados pelo programa Origin e nas tabelas 39 e 40 estão os valores de erro médio, desvio-padrão e faixa de erro calculados pelas equações 135, 136 e 137.

As curvas reproduzidas pelo programa Origin para os modelos de transferência de massa estão apresentadas nas figuras de 50 a 60. As comparações entre os ajustes obtidos pelo Origin e pelo aplicativo em Excel relacionados aos ajustes obtidos para esta matéria-prima para todos os modelos estão nos anexos.

Notou-se que para todas as cinéticas estudadas a variação dos parâmetros do leito exerceu influência no processamento de dados. Os modelos de Tan e Liou (1989), Esquível *et al.* (1999), Martínez *et al.* (2003) não foram capazes de ajustar os dados de cúrcuma para a maioria das cinéticas, enquanto que os modelos de Goto *et al.* (1993) e Sovová (1994) ajustaram essas cinéticas porque foram sensíveis em relação aos parâmetros do leito.

Conforme Martínez (2005), para os modelos de dois parâmetros ajustáveis, menores erros são apresentados quando comparados com apenas um parâmetros ajustável, como nos caso dos modelos de Tan e Liou (1989) e Esquível *et al.* (1999), que apresentaram os maiores valores de erro médio relativo, desvio padrão, faixa de erro e χ^2 , além de valores de R² distantes da unidade. Porém, o modelo de Martínez, apesar de possuir dois parâmetros ajustáveis não descreveu a maioria das cinéticas, apresentando elevados desvios aos dados experimentais.

Oliveira (2010), em cujo trabalho o modelo de Tan e Liou apresentou o maior erro médio quadrático, relatou que esta deficiência no ajuste aos dados experimentais pode estar ligada ao fato de que os autores trataram a constante de dessorção (K_d) como um parâmetro dependente apenas da temperatura do processo, quando na verdade essa constante de dessorção representa a transferência de massa interfacial na qual a taxa de extração é proporcional à concentração de soluto na fase sólida e às características do solvente e uma interpretação válida para essa constante seria atribuir a ela uma relação com alguns parâmetros de processo como a solubilidade (Y*) e as restrições à transferência de massa (k_{Ya} e k_{Xa}).

Segundo Quispe-Condori *et al.* (2005), no modelo de Esquível *et al.* (1999), os efeitos termodinâmicos e de transferência de massa são representados por um único parâmetro ajustável (b) e, desta forma, não é possível verificar a influência dos diferentes mecanismos de transferência de massa na descrição da curva de extração e além disso, como o referente modelo é empírico, ele só pode ser usado para ajustar curvas cinéticas de extração para a faixa experimental na qual o parâmetro b foi estimado. Provavelmente, por causa disso esse modelo não apresentou bons resultados para descrever os dados experimentais de cinética para a cúrcuma.

Os valores de t_{CER} e t_{FER} calculados pelos aplicativos de duas e três retas (tabelas 43 e 44) se aproximaram dos valores de t_{CER} e t_{FER} calculados pelo ambiente computacional para o modelo de Sovová (1994) para algumas cinéticas. O parâmetro k_{Ya} do modelo de Sovová (1994) apresentou valores maiores que os de k_{Xa} na maioria das cinéticas, mostrando o predomínio do mecanismo convectivo na extração da oleoresina da cúrcuma.

O modelo de Goto *et al.* (1993) foi o que melhor ajustou os pontos experimentais de cúrcuma, seguido do modelo de Sovová (1994).

Experimento	Martínez <i>et al.</i> (2003)		Tan e Liou (1989)	Goto <i>et al</i> . (1993)		Esquível <i>et al.</i> (1999)	Esquível <i>et al.</i> (1999)		Sovová (1994)	
	b _i (s ⁻¹)	t _{mi} (s)	K _d (s⁻¹)	φ (-)	К (-)	b (s)	t _{cer} (s)	t _{FER} (s)	k _{xa} (s⁻¹)	K _{Ya} (s⁻¹)
1A	1x10 ⁻⁴	-173963,454	2,4x10 ⁻⁴	1,783x10 ⁻⁶	1,1x10 ⁻⁴	7723,607	1728	1864	6,654x10 ⁻⁴	3,204x10 ⁻⁴
1B	9x10⁻⁵	-203787,704	1,9x10 ⁻⁴	0,078	2,418x10 ⁻⁸	9441,336	1372	1374	3,120x10 ⁻⁵	5,434x10 ⁻⁶
2A	6x10⁻⁵	-561294,117	1,1x10 ⁻⁴	0,074	2,633 x10 ⁻⁸	15354,244	1512	1541	1,890x10 ⁻⁵	6,310x10 ⁻⁵
2B	6x10 ⁻⁵	0,001	6x10⁻⁵	0,037	5,234x10 ⁻⁸	28177,062	2340	5488	4,8x10 ⁻⁹	3,470x10 ⁻³
3A	1x10 ⁻⁴	-181146,21	4,7x10 ⁻⁴	0,408	1,519x10 ⁻⁷	4100,327	1226	1872	1,5x10 ⁻⁸	1,538x10 ⁻³
3B	2x10 ⁻⁵	-739713,291	4x10 ⁻⁵	0,027	3,384 x10 ⁻⁷	46523,023	3312	3337	5,0x10 ⁻⁵	2,172x10⁻⁵
4A	6x10⁻⁵	-384275,311	1,2x10 ⁻⁴	-7,7x10 ⁻⁴	-6,015x10 ⁻⁹	14569,538	1800	3887	9,540x10 ⁻⁹	4,616x10 ⁻³
4B	5x10 ⁻⁵	-426233,219	1,1 x10 ⁻⁴	6,8x10 ⁻⁴	6,684x10 ⁻⁹	15928,140	1890	3723	4,507x10 ⁻⁹	2,178x10 ⁻³
5A	9x10⁻⁵	-267519,439	2x10 ⁻⁴	-8,5x10 ⁻⁴	-5,266x10 ⁻⁹	9458,111	2332	2773	1,29x10 ⁻⁸	8,06x10 ⁻⁴
6A	1,9x10 ⁻⁴	-112656,526	6,2x10 ⁻⁴	9,3x10 ⁻⁴	-4,211x10 ⁻⁹	3438,725	1880	2367	5,4x10 ⁻⁹	1,057x10 ⁻³
6B	1,2x10 ⁻⁴	-158797,731	2,9x10 ⁻⁴	-7,4 x10 ⁻⁴	-4,897 x10 ⁻⁹	6327,725	1350	3061	9,54x10 ⁻⁶	5,256x10 ⁻³

 Tabela 35:
 Valores dos parâmetros ajustáveis dos modelos de transferência de massa das cinéticas de cúrcuma.

	EXP 1A	EXP 1B	EXP 2A	EXP 2B	EXP 3A	EXP 3B	EXP 4A	EXP 4B	EXP 5A	EXP 6A	EXP 6B
M _{CER} (kg/s)	3,785x10 ⁻⁷	3,147x10 ⁻⁷	3,189x10 ⁻⁷	1,372x10 ⁻⁷	5,342x10 ⁻⁷	2,395x10 ⁻⁷	2,73x10 ⁻⁷	1,997x10 ⁻⁷	4,198x10 ⁻⁷	5,457x10 ⁻⁷	3,802x10 ⁻⁷
t _{CER} (s)	1980	2460	2100	4440	1260	2700	2400	3180	1860	1860	2400
Y_{CER}	2,068x10 ⁻³	1,611x10 ⁻³	2,135x10 ⁻³	8,398 x10 ⁻⁴	2,862 x10 ⁻³	1,585 x10 ⁻³	1,447 x10 ⁻³	8,182 x10 ⁻⁴	1,899 x10 ⁻³	2,223 x10 ⁻³	1,697 x10 ⁻³
(kg _{EXT/} kg _{CO2})											
Q _{CO2} (kg/s)	2,44x10 ⁻⁴	1,952x10 ⁻⁴	1,49x10 ⁻⁴	1,63x10 ⁻⁴	1,87x10 ⁻⁴	1,51x10⁻⁴	1,89x10 ⁻⁴	2,44x10 ⁻⁴	2,21x10 ⁻⁴	2,44x10 ⁻⁴	2,44x10 ⁻⁴

 Tabela 36:
 Valores dos parâmetros cinéticos calculados pela planilha de duas retas para a cúrcuma.

 Tabela 37: Valores dos parâmetros cinéticos calculados pela planilha de três retas para a cúrcuma.

	EXP 1A	EXP 1B	EXP 2A	EXP 2B	EXP 3A	EXP 3B	EXP 4A	EXP 4B	EXP 5A	EXP 6A	EXP 6B
M _{CER} (kg/s)	5,658x10 ⁻⁷	4,2x10 ⁻⁷	2,203x10 ⁻⁷	1,09x10 ⁻⁶	5,313x10 ⁻⁷	2,483x10 ⁻⁷	3,08x10 ⁻⁷	3,017x10 ⁻⁷	4,147x10 ⁻⁷	5,499x10 ⁻⁷	5x10 ⁻⁷
t _{CER} (s)	1440	1260	1260	1800	1140	2760	1500	1080	1740	1680	1200
t _{FER} (s)	3000	3360	2280	3180	2880	4260	3120	3600	3360	2640	3120
\mathbf{Y}_{CER}	2,596 x10 ⁻³	2,154 x10 ⁻³	2,459x10 ⁻³	6,675 x10 ⁻⁴	2,846 x10 ⁻³	1,645 x10 ⁻³	1,632 x10 ⁻³	1,234 x10 ⁻³	1,877 x10 ⁻³	2,253 x10 ⁻³	2,234 x10 ⁻³
(kg _{EXT/} kg _{CO2})											
Q _{CO2} (kg/s)	2,44x10 ⁻⁴	1,952x10 ⁻⁴	1,49x10 ⁻⁴	1,63x10 ⁻⁴	1,87x10 ⁻⁴	1,51x10 ⁻⁴	1,89x10 ⁻⁴	2,44x10 ⁻⁴	2,21x10 ⁻⁴	2,44x10 ⁻⁴	2,44x10 ⁻⁴

Experimento	Martínez et	<i>al.</i> (2003)	Tan e Liou	(1989)	Goto <i>et al</i> .	(1993)	Esquível et a	a <i>l.</i> (1999)
	χ²	R ²	χ²	R ²	χ ²	R ²	χ²	R ²
1A	9x10 ⁻⁵	0,648	4x10 ⁻⁵	0,868	2,417x10 ⁻⁷	0,999	4x10 ⁻⁵	0,789
1B	6x10 ⁻⁵	0,796	3x10 ⁻⁵	0,661	1,111x10 ⁻⁶	0,997	3x10 ⁻⁵	0,878
2A	4x10 ⁻⁵	0,798	4x10 ⁻⁵	0,686	9,592x10 ⁻⁷	0,997	4x10 ⁻⁵	0,776
2B	4,298x10 ⁻⁶	0,982	8x10 ⁻⁵	0,811	4,904x10 ⁻⁶	0,985	3,143x10⁻⁵	0,985
3A	3,7x10 ⁻⁴	-0,472	7x10 ⁻⁵	0,244	7,352x10 ⁻⁶	0,976	8x10 ⁻⁵	0,546
3B	8,105x10 ⁻⁶	0,980	7,046x10 ⁻⁶	0,982	8,124x10 ⁻⁶	0,986	6,096x10 ⁻⁶	0,987
4A	3x10 ⁻⁵	0,973	2x10 ⁻⁵	0,901	1,61x10 ⁻⁶	0,996	2x10 ⁻⁴	0,914
4B	4x10 ⁻⁵	0,832	2x10 ⁻⁵	0,867	2,424x10 ⁻⁶	0,992	2x10 ⁻⁵	0,883
5A	6x10 ⁻⁵	0,831	3x10 ⁻⁵	0,903	2,293x10 ⁻⁶	0,995	3x10 ⁻⁵	0,896
6A	7x10 ⁻⁵	0,786	5,41x10 ⁻⁶	0,981	4,901x10 ⁻⁶	0,990	2x10 ⁻⁵	0,916
6B	9x10 ⁻⁵	0,677	3x10 ⁻⁵	0,609	2,309x10 ⁻⁶	0,995	4x10 ⁻⁵	0,829

Tabela 38: Valores de χ^2 e R² dos dados de cinética de extração da cúrcuma.

Tabela 39: Valores de erro médio, faixa de erro e desvio-padrão dos modelos de Martínez *et al.* (2003), Tan e Liou (1989) e Goto*et al.* (1993) para a cúrcuma.

	Martínez <i>et al.</i> (2003)			Tai	n e Liou (1989	9)	Goto <i>et al.</i> (1993)		
Experimento	Erro Médio	Faixa de	Desvio	Erro Médio	Faixa de	Desvio	Erro Médio	Faixa de	Desvio
		Erro	Padrão		Erro	Padrão		Erro	Padrão
1A	0,137	0,075	0,241	0,106	0,059	0,174	0,008	0,006	0,016
1B	0,111	0,065	0,230	0,086	0,055	0,142	0,012	0,011	0,019
2A	0,107	0,07	0,209	0,114	0,061	0,093	0,013	0,011	0,034
2B	0,042	0,042	0,113	0,039	0,027	0,064	0,033	0,020	0,047
3A	0,335	0,14	0,330	0,123	0,075	0,211	0,047	0,02	0,065
3B	0,042	0,037	0,063	0,038	0,034	0,051	0,027	0,019	0,059
4A	0,091	0,054	0,139	0,076	0,047	0,140	0,012	0,010	0,024
4B	0,098	0,053	0,133	0,081	0,052	0,181	0,022	0,013	0,034
5A	0,118	0,076	0,246	0,094	0,061	0,172	0,008	0,005	0,011
6A	0,136	0,072	0,221	0,05	0,025	0,058	0,028	0,016	0,033
6B	0,123	0,067	0,242	0,084	0,054	0,170	0,013	0,011	0,034

Tabela 40: Valores de erro médio, faixa de erro e desvio-padrão dos modelos de Sovová (1994) e Esquível et al. (1993) para a cúrcuma.

		Sovová (1994)	Esquível <i>et al.</i> (1999)					
Experimento	Erro Médio	Faixa de Erro	Desvio Padrão	Erro Médio	Faixa de Erro	Desvio Padrão		
1A	0,069	0,576	0,068	0,112	0,207	0,065		
1B	0,093	0,068	0,037	0,089	0,057	0,192		
2A	0,135	0,086	0,062	0,114	0,060	0,197		
2B	0,005	0,041	0,004	0,04	0,027	0,065		
3A	0,07	0,116	0,392	0,135	0,082	0,227		
3B	0,04	0,026	0,023	0,037	0,034	0,099		
4A	0,031	0,027	0,004	0,077	0,047	0,138		
4B	0,032	0,026	0,027	0,081	0,052	0,137		
5A	0,031	0,037	0,028	0,099	0,065	0,202		
6A	0,021	0,023	0,023	0,093	0,06	0,167		
6B	0,035	0,036	0,021	0,094	0,056	0,183		

Figura 50: Comparação entre os ajustes dos dados da cúrcuma para os modelos de transferência de massa a 250 bar e 45°C (EXP 1A).

Figura 51: Comparação entre os ajustes dos dados da cúrcuma para os modelos de transferência de massa a 200 bar e 45°C (EXP 1B).

Figura 52: Comparação entre os ajustes dos dados da cúrcuma para os modelos de transferência de massa a 200 bar e 45°C (EXP 2A).

Figura 53: Comparação entre os ajustes dos dados da cúrcuma para os modelos de transferência de massa a 200 bar e 45°C (EXP 2B).

Figura 54: Comparação entre os ajustes dos dados da cúrcuma para os modelos de transferência de massa a 300 bar e 45°C (EXP 3A).

Figura 55: Comparação entre os ajustes dos dados da cúrcuma para os modelos de transferência de massa a 300 bar e 45°C (EXP 3B).

Figura 56: Comparação entre os ajustes dos dados da cúrcuma para os modelos de transferência de massa a 250 bar e 45°C (EXP 4A).

Figura 57: Comparação entre os ajustes dos dados da cúrcuma para os modelos de transferência de massa a 250 bar e 45°C (EXP 4B).

Figura 58: Comparação entre os ajustes dos dados da cúrcuma para os modelos de transferência de massa a 250 bar e 45°C (EXP 5A).

Figura 59: Comparação entre os ajustes dos dados da cúrcuma para os modelos de transferência de massa a 250 bar e 45°C (EXP 6A).

Figura 60: Comparação entre os ajustes dos dados da cúrcuma para os modelos de transferência de massa a 250 bar e 45°C (EXP 6B).

5.4.4 Açaí (Souza, 2006)

Nas tabelas 41 e 42 estão os parâmetros ajustáveis dos modelos de transferência de massa e nas tabelas 43 e 44 estão os valores dos parâmetros cinéticos calculados pelas planilhas de duas e três retas para as cinéticas de açaí. Na tabela 45 estão os valores de χ^2 (qui quadrado) e R² (coeficiente de correlação) e nas tabelas 46, 47 e 48 estão os valores de erro médio, desvio-padrão e faixa de erro calculados pelas equações 135, 136 e 137. As comparações entre os ajustes obtidos pelo Origin e pelo aplicativo em Excel relacionados aos ajustes obtidos para esta matéria-prima para todos os modelos estão nos anexos.

Apenas os modelos de Tan e Liou (1989), Goto *et al.* (1993) e Sovová (1994) puderam ajustar os pontos experimentais das cinéticas de açaí, por apresentarem os menores valores de χ^2 e R² - calculados pelo programa Origin para os modelos de Tan e Liou (1989) e Goto *et al.* (1993) - e os menores valores de erro médio, faixa de erro e desvio-padrão.

Para alguns experimentos observou-se que após atingir a etapa CER as curvas apresentam pequenos desvios em relação aos dados experimentais para todos os modelos estudados. Desvios muito grandes para as curvas ajustadas pelo modelo de Sovová (1994) foram reportados por Kitzberger (2005) após o período na extração do óleo de shiitake e, segundo a autora, este comportamento se deve a complexidade dos mecanismos de transferência de massa que atuam nesta etapa de extração e pelo fato desse cogumelo ter apresentado baixo conteúdo de extrato.

De acordo com Sousa *et al.* (2005), no modelo de Martínez *et al.* (2003), o parâmetro t_{mi} corresponde ao instante em que a taxa de extração é máxima, porém este parâmetro apresentou valor negativo em seis das doze cinéticas estudadas perdendo o seu significado físico. Para Martínez (2002), neste caso, a taxa de extração é decrescente e, portanto o seu valor máximo é atingido no instante inicial, ou seja, no tempo igual a zero.

Os valores de t_{CER} e t_{FER} calculados pelos aplicativos de duas e três retas (tabelas 43 e 44) se aproximaram dos valores de t_{CER} e t_{FER} calculados pelo ambiente computacional para o modelo de Sovová (1994) para todas cinéticas.

Observou-se na tabela 42 que, para o açaí, os valores de k_{Xa} calculados foram menores que os valores de k_{Ya} para todas as cinéticas, salvo para as referentes ao experimento 1 nas condições de 250 bar e 50°C e ao experimento 2 a 300 bar e

 50° C, onde os valores de k_{Xa} superam os de k_{Ya}. O fato de k_{Ya} ser maior que k_{Xa} revela que o efeito da convecção no solvente é mais importante que o efeito da difusão na matriz sólida para a maioria das cinéticas de açaí. Essa relação entre os resultados de k_{Xa} e k_{Ya} havia sido reportada por Martínez *et al.* (2003) para o ajuste dos dados de extração da oleoresina de gengibre, onde os valores de k_{Ya} superaram os de k_{Xa}.

Como relatado anteriormente, as curvas correspondentes ao experimento 1 nas condições de 250 bar e 50° C e ao experimento 2 a 300 bar e 50° C, a 300 bar e 50° C, os valores de k_{Xa} foram mais altos que os de k_{Ya} . Igualmente, Martínez (2005), na extração do óleo de cravo-da-índia, obteve esse mesmo comportamento entre os valores desses coeficientes para todas cinéticas dessa matéria-prima, que revelaram a predominância da transferência de massa por difusão.

Em geral, a temperatura e a pressão não exercem efeito significante sobre os coeficientes k_{Ya} e k_{Xa} , porém o coeficiente de transferência de massa na fase fluida (k_{Ya}) é dependente das condições de processo e das características do leito, que são usadas para estudo do aumento de escala (QUISPE-CONDORI, 2005).

Pressão	Temperatura	Experimento	Martínez <i>et al.</i> (2003)		Tan e Liou (1989)	89) Goto <i>et al</i> . (1993)		Esquível <i>et al.</i> (1999)
(bar)	(°C)		b _i (s ⁻¹)	t _{mi} (s)	K _d (s ⁻¹)	φ(-)	K (-)	b (s)
200	40	1	1,2x10⁻⁴	2x10⁻⁵	1,8x10 ⁻⁴	-5,686x10⁻ ⁶	-3x10⁻⁵	11141,258
		2	1x10 ⁻⁴	-193449,840	4,2x10 ⁻⁴	-4 x10⁻⁵	-1 x10⁻⁵	7199,847
250	40	1	8x10 ⁻⁴	-233713,690	3,4x10 ⁻⁴	-6,80x10 ⁻⁴	-1,98x10 ⁻⁶	9388,955
		2	9x10 ⁻⁵	-246464,706	3,9x10 ⁻⁴	0,509	1,05x10 ⁻⁶	8446,363
300	40	1	1,4x10 ⁻⁴	1,8x10 ⁻⁴	6,2x10 ⁻⁴	-1,70x10 ⁻²	-1,15x10⁻ ⁶	8394,702
		2	1,2x10 ⁻⁴	-141732,302	6,2x10 ⁻⁴	4,56 x10⁵	4,70x10 ⁻³	5472
200	50	1	9x10 ⁻⁵	1,8 x10 ⁻⁴	1,9x10 ⁻⁴	4,25 x10⁵	6,26 x10 ⁻³	12280,778
		2	8x10 ⁻⁵	2x10 ⁻⁴	1,7x10 ⁻⁴	0,008	0,006	17165,194
250	50	1	6x10 ⁻⁵	-295497,305	2,1x10 ⁻⁴	-1,80 x10 ⁻⁴	-1,72 x10⁻ ⁶	12840,503
		2	1x10 ⁻⁴	1,8 x10⁻⁴	2,7x10 ⁻⁴	0,47	1,05 x10⁻ ⁶	12275,099
300	50	1	9x10⁻⁵	-387738,718	4,9x10 ⁻⁴	3,23	2,42	7846,735
		2	1,5x10 ⁻⁴	1,8x10 ⁻⁴	6,1x10 ⁻⁴	-1,97x10 ⁻²	-5,87x10 ⁻⁷	6795,981

Tabela 41: Valores dos parâmetros ajustáveis dos modelos de Martínez *et al.* (2003), Tan e Liou (1989), Goto *et al.* (1993) e Esquível *et al.* (1999) das cinéticas do açaí.

Pressão	Temperatura	Experimento		Sovov	á (1994)	
(bar)	(°C)		t _{CER} (s)	t _{FER} (s)	k _{Xa} (s⁻¹)	k _{Ya} (s⁻¹)
200	40	1	3498	4825	4,9x10 ⁻⁵	4,168x10 ⁻⁴
		2	2178	3608	7,81x10 ⁻⁵	7,302x10 ⁻³
250	40	1	2827	4726	9x10 ⁻⁸	7,336x10 ⁻⁴
		2	2394	3925	9x10 ⁻⁸	7,06x10⁻⁴
300	40	1	3117	3286	5x10 ⁻⁵	5,581x10 ⁻⁵
		2	2520	4632	1,90x10 ⁻⁷	8,786x10 ⁻⁴
200	50	1	3774	3938	2,124x10 ⁻⁵	5,2x10 ⁻⁵
		2	2205	3176	2,9x10 ⁻⁵	5,02x10 ⁻⁴
250	50	1	1728	1736	1,1x10 ⁻⁵	5,1x10 ⁻⁶
		2	1056	2281	3x10 ⁻⁵	1,2x10 ⁻³
300	50	1	1966	2026	2x10 ⁻⁵	3,79x10 ⁻⁵
		2	1890	2519	2x10 ⁻⁵	6,51x10 ⁻⁶

Tabela 42: Valores dos parâmetros ajustáveis do modelo de Sovová (1994) das cinéticas do açaí.

	200 bar/40°C		200 ba	200 bar/50°C		250 bar/40°C		250 bar/50°C		300 bar/40°C		300 bar/50°C	
	EXP 1	EXP 2	EXP 1	EXP 2	EXP 1	EXP 2	EXP 1	EXP 2	EXP 1	EXP 2	EXP 1	EXP 2	
M _{CER} (kg/s)	4,293x10 ⁻²	3,171 x10⁻⁵	2,777 x10 ⁻²	3,435 x10 ⁻²	4,999 x10 ⁻²	4,989 x10 ⁻²	3,996x10 ⁻²	4,997 x10 ⁻²	3,746x10 ⁻²	4,547 x10 ⁻²	5,836 x10 ⁻²	6,456 x10 ⁻²	
t _{CER} (s) Y _{CER}	3180 5,367x10 ⁻⁸	3960 5,282x10 ⁻⁹	3060 3,465x10 ⁻⁸	3180 4,293x10 ⁻⁸	3120 6,248x10 ⁻⁸	3060 6,238x10 ⁻⁸	3060 4,96x10 ⁻⁸	2280 5,7978x10 ⁻⁸	3960 4,683x10 ⁻⁸	3120 5,685x10 ⁻⁸	2280 7,297x10 ⁻⁸	2160 8,073x10 ⁻⁸	
(kg _{EXT/} kg _{CO2}) Q _{CO2} (kg/s)	2,22x10 ⁻⁴	2,22x10 ⁻⁴	2,22x10 ⁻⁴	2,22x x10 ⁻⁴	2,22x10 ⁻⁴	2,22x10 ⁻⁴	2,22x10 ⁻⁴	2,22x10 ⁻⁴	2,22x10 ⁻⁴	2,22x10 ⁻⁴	2,22x10 ⁻⁴	2,22x10 ⁻⁴	

 Tabela 43:
 Valores dos parâmetros cinéticos calculados pela planilha de duas retas para o açaí.

Tabela 44: Valores dos parâmetros cinéticos calculados pela planilha de três retas para o açaí.

	200 bar/40°C		200 bar/50°C		250 ba	250 bar/40°C		ar/50°C	300 bar/40°C		300 bar/50°C	
	EXP 1	EXP 2	EXP 1	EXP 2	EXP 1	EXP 2	EXP 1	EXP 2	EXP 1	EXP 2	EXP 1	EXP 2
M _{CER} (kg/s)	4,171x10 ⁻²	5,717x10 ⁻²	3,379 x10 ⁻²	3,923 x10 ⁻²	5,799 x10 ⁻²	6,345x10 ⁻²	4,999x10 ⁻²	6,479x10 ⁻²	4,171 x10 ⁻²	5,717 x10 ⁻²	7,997 x10 ⁻²	9,038 x10 ⁻²
t _{CER} (s)	3120	2100	2040	2100	2280	2100	2160	1320	3120	2100	1260	1260
t _{FER} (s)	6480	5400	5040	3840	5340	5280	6420	3300	6480	5400	3180	2940
Y _{CER} (kg _{EXT/} kg _{CO2})	5,188x10 ⁻⁸	7,148x10 ⁻⁸	4,225x10 ⁻⁸	4,905 x10 ⁻⁸	7,55x10 ⁻⁸	7,933 x10 ⁻⁸	6,252x10 ⁻⁸	8,102 x10 ⁻⁸	5,215x10 ⁻⁸	7,148x10 ⁻⁸	9,998 x10 ⁻⁸	1,13x10 ⁻⁷
Q _{CO2} (kg/s)	2,22x10 ⁻⁴	2,22x10 ⁻⁴	2,22x10 ⁻⁴	2,22x x10 ⁻⁴	2,22x10 ⁻⁴	2,22x10 ⁻⁴	2,22x10 ⁻⁴	2,22x10 ⁻⁴	2,22x10 ⁻⁴	2,22x10 ⁻⁴	2,22x10 ⁻⁴	2,22x10 ⁻⁴

Pressão	Temperatura	Experimento	Martínez et al. (2003)		Tan e Liou	(1989)	Goto <i>et al</i> .	(1993)	Esquível <i>et al.</i> (1999)	
(bar)	(°C)		χ²	R ²	χ ²	R ²	χ²	R ²	χ²	R ²
200	40	1	1x10 ⁻³	0,918	4x10 ⁻⁵	0,961	4,565x10 ⁻⁶	0,997	4x10 ⁻⁴	0,960
		2	8x10 ⁻⁵	0,884	3x10 ⁻⁵	0,959	3,486x10 ⁻⁷	0,999	2x10 ⁻⁵	0,974
250	40	1	1,9x10 ⁻⁴	0,775	1,313x10 ⁻⁶	0,998	1,956x10 ⁻⁶	0,998	7x10 ⁻⁵	0,901
		2	2x10 ⁻⁴	0,75	3,576x10 ⁻⁶	0,995	4,603x10 ⁻⁶	0,996	8x10 ⁻⁵	0,891
300	40	1	1,5x10⁻⁴	0,824	2x10 ⁻⁵	0,955	1x10 ⁻⁵	0,989	2x10 ⁻⁵	0,967
		2	2,1x10 ⁻⁴	0,638	2x10 ⁻⁵	0,955	4,409 x10 ⁻⁸	0,999	6x10 ⁻⁵	0,874
200	50	1	1,7x10 ⁻⁴	0,739	7x10 ⁻⁵	0,939	2,584 x10 ⁻⁶	0,997	1,7x10 ⁻⁴	0,355
		2	1,8x10 ⁻⁴	0,735	2x10 ⁻⁵	0,958	2,385x10 ⁻⁶	0,997	7x10 ⁻⁵	0,887
250	50	1	1x10 ⁻⁴	0,923	8x10 ⁻⁵	0,935	1x10 ⁻⁴	0,944	7x10 ⁻⁵	0,939
		2	3,5x10 ⁻⁴	0,268	5x10 ⁻⁵	0,887	6,928 x10 ⁻⁶	0,989	1,5x10 ⁻⁴	0,645
300	50	1	2,3x10 ⁻⁴	0,452	1x10 ⁻⁵	0,967	7,338x10 ⁻⁶	0,982	1,8x10 ⁻⁴	0,51
		2	6x10 ⁻⁴	-0,709	1x10 ⁻⁵	0,961	7,487x10 ⁻⁶	0,984	2,3x10 ⁻⁴	0,255

Tabela 45: Valores de χ^2 e R² dos dados de cinética de extração do açaí.

Pressão	Temperatura	Experimento	N	lartínez <i>et al.</i> (200	3)	Tan e Liou (1989)				
(bar)	(°C)		Erro Médio	Faixa de Erro	Desvio Padrão	Erro Médio	Faixa de Erro	Desvio Padrão		
200	40	1	0,089	0,143	0,056	0,046	0,062	0,035		
		2	0,082	0,186	0,031	0,075	0,167	0,054		
250	40	1	0,084	0,244	0,072	0,01	0,018	0,006		
		2	0,112	0,245	0,07	0,014	0,032	0,013		
300	40	1	0,079	0,228	0,075	0,071	0,09	0,033		
		2	0,093	0,239	0,076	0,069	0,129	0,052		
200	50	1	0,182	0,333	0,083	0,088	0,098	0,040		
		2	0,114	0,206	0,066	0,057	0,102	0,034		
250	50	1	0,087	0,176	0,053	0,063	0,051	0,05		
		2	0,151	0,227	0,08	0,078	0,062	0,035		
300	50	1	0,129	0,24	0,086	0,041	0,064	0,023		
		2	0,165	0,305	0,1	0,039	0,072	0,025		

Tabela 46: Valores de erro médio, faixa de erro e desvio-padrão dos modelos de Martínez *et al.* (2003) e Tan e Liou (1989) para oaçaí.

Pressão	Temperatura	Experimento	Goto <i>et al.</i> (1993)		Sovová (1994)			
(bar)	(°C)		Erro Médio	Faixa de Erro	Desvio Padrão	Erro Médio	Faixa de Erro	Desvio Padrão
200	40	1	0,022	0,005	0,017	0,050	0,076	0,063
		2	0,006	0,011	0,060	0,029	0,160	0,037
250	40	1	0,01	0,016	0,01	0,051	0,044	0,115
		2	0,014	0,025	0,01	0,042	0,084	0,035
300	40	1	0,025	0,049	0,02	0,029	0,008	0,065
		2	0,007	0,013	0,004	0,283	0,284	0,119
200	50	1	0,144	0,131	0,05	0,092	0,251	0,093
		2	0,017	0,035	0,013	0,068	0,069	0,048
250	50	1	0,054	0,002	0,030	0,042	0,199	0,050
		2	0,028	0,063	0,021	0,037	0,052	0,033
300	50	1	0,034	0,061	0,016	0,033	0,188	0,073
		2	0,029	0,060	0,019	0,056	0,066	0,073

Tabela 47: Valores de erro médio, faixa de erro e desvio-padrão dos modelos de Goto et al. (1993) e Sovová (1994) para o açaí.

Pressão	Temperatura	Esquível <i>et al.</i> (1999)						
(bar)	(°C)	Experimento	Erro Médio	Faixa de Erro	Desvio Padrão			
200	40	1	0,055	0,113	0,035			
		2	0,043	0,104	0,032			
250	40	1	0,056	0,168	0,057			
		2	0,082	0,17	0,054			
300	40	1	0,051	0,134	0,061			
		2	0,077	0,154	0,028			
200	50	1	0,119	0,166	0,049			
		2	0,081	0,169	0,036			
250	50	1	0,066	0,085	0,038			
		2	0,115	0,207	0,071			
300	50	1	0,122	0,166	0,077			
		2	0,114	0,228	0,133			

 Tabela 48: Valores de erro médio, faixa de erro e desvio-padrão do modelos de Esquível et al. (1993) para o açaí.

Figura 61: Comparação entre os ajustes dos dados do açaí para os modelos de transferência de massa a 40°C e 200 bar (EXP 1).

Figura 62: Comparação entre os ajustes dos dados do açaí para os modelos de transferência de massa a 200 bar e 40°C (EXP 2).

Figura 63: Comparação entre os ajustes dos dados do açaí para os modelos de transferência de massa a 250 bar e 40°C (EXP 1).

Figura 64: Comparação entre os ajustes dos dados do açaí para os modelos de transferência de massa a 250 bar e 40°C (EXP 2).

Figura 65: Comparação entre os ajustes dos dados do açaí para os modelos de transferência de massa a 300 bar e 40°C (EXP 1).

Figura 66: Comparação entre os ajustes dos dados do açaí para os modelos de transferência de massa a 300 bar e 40°C (EXP 2).

Figura 67: Comparação entre os ajustes dos dados do açaí para os modelos de transferência de massa a 200 bar e 50°C (EXP 1).

Figura 68: Comparação entre os ajustes dos dados do açaí para os modelos de transferência de massa a 200 bar e 50°C (EXP 2).

Figura 69: Comparação entre os ajustes dos dados do açaí para os modelos de transferência de massa a 250 bar e 50°C (EXP 1).

Figura 70: Comparação entre os ajustes dos dados do açaí para os modelos de transferência de massa a 250 bar e 50°C (EXP 2).

Figura 71: Comparação entre os ajustes dos dados do açaí para os modelos de transferência de massa a 300 bar e 50°C (EXP 1).

Figura 72: Comparação entre os ajustes dos dados do açaí para os modelos de transferência de massa a 300 bar e 50°C (EXP 2).

6 CONCLUSÕES

Foram validados aplicativos computacionais em Excel desenvolvidos no Laboratório de Simulação de Processos e Termodinâmica Aplicada (TERM@ -- UFPA) e no LASEFI/FEA/UNICAMP, mediante comparação com dados da literatura, os quais tiveram capacidade de ajustar satisfatoriamente os dados de Rodrigues (2002), Quispe-Condori (2005) e Moura (2004).

Houve a avaliação dos modelos de transferência de massa para descrição das cinéticas de extração com dióxido de carbono supercrítico do buriti (*Mauritia flexuosa*), açaí (*Euterpe oleraceae*) e cúrcuma (*Curcuma longa L.*), medidas no Laboratório de Extração Supercrítica, pertencente ao Laboratório de Engenharia Química (UFPA) a fim de se elaborar uma base de dados dos parâmetros de processo de extração de matrizes sólidas de matérias-primas amazônicas, visando contribuir para futuros estudos de aumento de escala de produção e servindo de base para as indústrias que utilizam essas matérias-primas em seus processos produtivos.

Ao se fazer uma EFSC é necessário estebelecer um objetivo claro em se estudar as cinéticas, especialmente na determinação das variáveis de processo a serem usadas, pois elas poderão contribuir para o entendimento do fenômeno. Foi perceptível que alguns autores não tiveram o cuidado de estabelecer alguns parâmetros do leito fixos a fim de se observar o comportamento da variação de outros no comportamento das cinéticas.

Algumas informações de configuração do leito foram estimadas para as matérias primas estudadas neste trabalho porque não foram determinadas pelos respectivos autores, o que pode ter favorecido ou prejudicado a descrição dos modelos para com os dados experimentais. Portanto, é fundamental que haja a obtenção cuidadosa de cada parâmetro referente ao leito extrativo e às matérias primas a serem processadas a fim de que os modelos não sirvam apenas como uma mera ferramenta matemática usada para ajustar parâmetros. Os modelos servem para dar um indicativo da realidade do processo, seja em pequena ou larga escala.

Os modelos de transferência de massa, em especial os de Tan e Liou (1989) e Goto *et al.* (1993) e Sovová (1994) requerem maiores informações para serem resolvidos no objetivo de descrever o processo, portanto, são muito dependentes das informações referentes aos parâmetros que constituem tanto o leito extrativo,

(como a vazão de solvente) e aos que constituem a matriz sólida (como o rendimento global).

A partir dos parâmetros estatísticos calculados foi possível notar comportamentos diversos para cada cinética estudada. A dificuldade do modelo de Tan e Liou (1989) em descrever as cinéticas de buriti (dados de Rüster, 1997) e cúrcuma (dados de Chassagnez-Méndez, 1998) foi atribuída aos parâmetros de configuração dos leitos extrativos dessas matérias primas que exerceram forte influência na modelagem matemática para esses modelos. O modelo de Esquível *et al.* (1999) não foi capaz de descrever as cinéticas de cúrcuma porque esse modelo possui um único parâmetro ajustável.

De forma geral, os modelos de Goto *et al.* (1993), Sovová (1994) apresentaram as melhores previsões para a maioria dos pontos experimentais das matérias-primas buriti, açaí e cúrcuma tratadas em função dos menores valores de qui quadrado, erros relativo, faixa de erro e desvios padrão e valores de R² próximos da unidade.

Diante de 40 cinéticas (sendo maioria inéditas) medidas com diferentes equipamentos de extração, configurações de leito, tipos de matérias primas, preparo dos materiais e parâmetros de processo (com destaque ao rendimento global e a vazão de solvente), foi construído um panorama dos resultados acerca da capacidade dos modelos de transferência de massa em descrever as mais diferentes curvas globais de extração.

7 REFERÊNCIAS

AGUIAR, A.C. Extração de Lipídios de Resíduos de Filetagem de Pescada-Olhuda (*Cynoscion striatus*) Utilizando Tecnologia Supercrítica. Dissertação (Mestrado) - Programa de Pós Graduação em Engenharia de Alimentos. Centro Tecnológico. Universidade Federal de Santa Catarina. Florianópolis, 2011.

AGUIAR, A.C.; VISENTAINER, J.V.; MARTÍNEZ, J. Extraction from striped weakfish (*Cynoscion striatus*) Wastes with Pressurized CO₂: Global Yield, Composition, Kinetics and Cost Estimation, **The Journal of Supercritical Fluids**, v. 71, 2012.

ALBUQUERQUE, M.L.S.; GUEDES, I.; ALCANTARA JR., P.; MOREIRA, S.G.C. Infrared Absorption Spectra of Buriti (*Mauritia flexuosa L.*) Oil. **Vibrational Spectroscopy**, n.33, p.127-131, 2003.

ALBUQUERQUE, C.L.C; MEIRELES, M.A.A. Deffating of Annatto Seeds Using Supercritical Carbon Dioxide as a Pretreatment for theProduction of Bixin: Experimental, Modelling, and Economic Evaluation of the Process. **The Journal of Supercritical Fluids**, Article in Press, 2012.

ANDRADE, K.S. **Avaliação das Técnicas de Extração e do Potencial Antioxidante dos Extratos Obtidos a Partir da Casca e da Borra do Café (***Coffea arábica L.***). Dissertação (Mestrado em Engenharia de Alimentos). Universidade Federal de Santa Catarina. Florianóplolis, 2011.**

AZEVEDO, F.F.M.; CUNHA, M.A.E.; NEVES, R.F.; FRANÇA, L.F.; ARAÚJO, M.E.; MACHADO, N.T. Enriching of Carotenes from Palm Oil by Batch Adsorption and Supercritical CO₂ Desorption. **International Review of Chemical Engineering (I.RE.CHE.)**, v.3., n.3, 2011.

BARBOSA, R.I; LIMA, A.D.; MOURÃO JR, M. Biometria de frutos do Buriti (*Mauritia flexuosa L.*f. – *Arecaceae*): Estimativas de Produtividade de Polpa e Óleo Vegetal

em um Área de Savana em Roraima. **Relatório de Pesquisa**. Instituto Nacional de Pesquisas da Amazônia. Boa Vista, 2009.

BISCAIA, D. Comparação Entre Tecnologia Supercrítica e Tecnicas Convencionais de Extração para Obtenção de Extração de Própolis Avaliados Através de Suas Atividades Biológicas. Dissertação (Mestrado) - Programa de Pós Graduação em Engenharia de Alimentos. Centro Tecnológico. Universidade Federal de Santa Catarina. Florianópolis, 2007.

BRUNNER, G. Gas extraction: An Introduction to fundamentals of supercritical Fluids and the Application to Separation Process. 1^a. Ed. Darmstadl, Alemanha: Steinkopff, 1994. 387p.

BRUNNER, G. Supercritical Fluids: Technology and Application to Food Processing. **Journal of Food Engineering**, n. 67, p. 21-33, 2004.

CARVALHO, P.H.P.; MOURA, B.S.; CATUNDA JÚNIOR, F.E.A.; MENDES, M.F. Avaliação do Rendimento de Extração do Óleo Essencial das Folhas de *Piptadenia gonoacantha e Piptadenia rígida* Utilizando Extração com CO₂ Supercrítico. In: VIII Congresso Brasileiro de Engenharia Química em Iniciação Científica, 2009.

CARVALHO JR., R.N. Obtenção de Extrato de Alecrim (*Rosmarinus officinalis*) por Extração Supercrítica: Determinação do Rendimento Global, de Parâmetros Cinéticos e de Equilíbrio e Outras Variáveis do Processo. Tese (Doutorado em Engenharia de Alimentos). Universidade de Campinas, 2004.

CARVALHO JR., R. N.; MOURA, L.S.; ROSA, P.T.V.; MEIRELES, M.A.A. Supercritical Fluid Extraction from Rosemary (*Rosmarinus officinalis*): Kinetic data, Extract's Global Yield, Composition, and Antioxidant Activity. **The Journal of Supercritical Fluids**, v.35, p.197-204, 2005. CHASSAGNEZ MÉNDEZ, A. L. Extração de Produtos de Cúrcuma (*Curcuma longa L.*) com CO₂ supercrítico. Dissertação (Mestrado em Engenharia Química). Universidade Federal do Pará, Belém, 1998.

CHASSAGNEZ-MENDEZ, A.L.; CORRÊA, N.C.F.; MEIRELLES, M.A.A. Extração de Oleoresina da Cúrcuma com CO₂ Supercrítico. **Ciência e Tecnologia de Alimentos**, v.17, n.4, 1997.

CHASSAGNEZ-MÉNDEZ, A.L.; MACHADO, N.T.; ARAÚJO, M.E.; MAIA, J.G.; MEIRELES, M.A.A. Supercritical CO₂ Extraction of Curcumis and Essential Oil from the Rhizomes of Tumeric (*Curcuma longa L.*). Industrial Engineering Chemical Resources, v.39, p. 4729-4733, 2000.

CHEUNG, P.C.K. Temperature and Pressure Efects on Supercritical Carbon Dioxide Extraction of n-3 Fatty Acids from Red Seaweed. **Food Chemistry**, v.65, p.399-403, 1999.

CHRASTIL, J., Solubility of Solids and Liquids in Supercritical Gases. **The Journal of Physical Chemistry**, v. 86, n. 15, 3016 (1982).

CHUANG, M.H. Enrichment of Vitamin E and Provitamin A from Crude Palm Oil with Supercritical Fluids. Tese (Doutorado). Technische Universität Hamburg-Hamburg, 2007.

COCERO, M.J.; GARCÍA, J. Mathematical Model of Supercritical Extraction Aplied to Oil Seed Extraction by CO₂ + Saturated Alcohol - I. Desorption Model. **The Journal of Supercritical Fluids,** v.20. p.229-243. 2001.

CORSO, M.P. Estudo da Extração de Óleo de Sementes de Gergelim (Sesamun indicum L.) Empregando os Solventes Dióxido de Carbono Supercrítico e N-Propano Pressurizado. Dissertação (Mestrado em Engenharia Química). Universidade Estadual do Oeste do Paraná, Toledo, 2008. CUNHA, M.A.E.; CORRÊA, N.C.F.; FRANÇA, L.F.; MACHADO, N.T. Analysis of the Extent of Saturation Region of Porous Solid Matrix in Fixed Bed by SFE: Influence of Fixed Bed Height and Solvent Flow Rate on the Mass Transfer Kinetics. **XVII** Congresso Brasileiro de Engenharia Química. 2008.

CUNHA, M.A.E.; BATISTA, C.C.; FREITAS, S.P.; FRANÇA, L.F.; ARAÚJO, M.E.; MACHADO, N.T. Solubility of Buriti Oil (*Mauritia Flexuosa, Mart.*) in Supercritical Carbon Dioxide: Experimental Methods and EOS Modeling. **International Review of Chemical Engineering (I.RE.CH.E.)**, v.03, n.3, 2011.

CUNHA, M.A.E.; SANTANA, Á.L.; FRANÇA, L.F.; ARAÚJO, M.E.; MACHADO, N.T. Tecnologia Supercrítica Aplicada – Adsorção de Constituintes de Óleo Vegetal em Alumina Ativada. **XIX Congresso Brasileiro de Engenharia Química - COBEQ 2012.** Búzios, 2012a.

CUNHA, M.A.E.; SANTANA, Á.L.; AZEVEDO, F.F.M.; FRANÇA, L.F.; ARAÚJO, M.E.; MACHADO, N.T. Tecnologia Supercrítica Aplicada – Cinética de Extração e Ampliação de Escala. XIX Congresso Brasileiro de Engenharia Química - COBEQ 2012. Búzios, 2012b.

CYGNAROWICZ-PROVOST, M. Designs and Economic Analysis of Supercritical Fluid Extraction Processes. In: KING, J.W.; LIST, G.R. (Ed.). Oil and Lipid Chemistry. AOCS Press. USA, 1996.

DIAS, A.M.A.; SANTOS, P.; SEABRA, I.J.; CARVALHO JR., R.N.C.; BRAGA, M.E.M.; SOUSA, H.C. Spilanthol from *Spilanthes acmella* flowers, leaves and stems obtained by selective supercritical carbon dioxide extraction. **Journal of Supercritical Fluids**. v.61, p.62-70, 2012.

DÖKER, O.; SALGIN, U.; YILDIZ, N.; AYDOĞMUS, M.; ÇALIMLI, A. Extraction of Sesame Seed Oil Using Supercritical CO₂ and Mathematical Modeling. **Journal of Food Engineering**. v.97, p.360-366, 2010.

EGGERS, R.; SIEVERS U., Processing Oilseed with Supercritical Carbon Dioxide, **Journal of Chemical Engineering of Japan.** v. 22, n. 6, 641, 1989.

ESQUÍVEL, M.M.; BERNARDO-GIL, M.G.; KING, M.G. Mathematical Models for Supercritical Extraction of Olive Husk Oil. **The Journal of Supercritical Fluids**, v.16, n.1, p. 43-58, 1999.

EVANS, A. The amazing health benefits of turmeric Disponível em: http://www.mnn.com/food/healthy-eating/stories/the-amazing-health-benefits-of-turmeric - Acesso em: 21.06.2012.

FERREIRA, S.R.S. **Cinética de Transferência de Massa na Extração Supercrítica de Óleo Essencial de Pimenta-do-Reino**. Tese (Doutorado em Engenharia de Alimentos). Universidade de Campinas. Campinas, 1996.

FRANÇA, L.F.; MEIRELES, M.A.A. Modeling the Extraction of Carotene and Lipids From Pressed Palm Oil (*Elaes guineensis*) Fibers Using Supercritical CO₂. **Journal** of Supercritical Fluids. v.18, p. 35–47, 2000.

FRANÇA, L.F.; REBER, G.; MEIRELES, M.A.A; MACHADO, N.T.; BRUNNER, G. Supercritical Extraction of Carotenoids and Lipids from Buriti (*Mauritia flexuosa*), a Fruit From the Amazon Region. **The Journal of Supercritical Fluids**, n. 14, p. 247–256. 1999.

GALVÃO, E.L. Extração Supercrítica do Óleo de Linhaça: Construção do Extrator, Estudo de Parâmetros de Processo, Avaliação Química e Antioxidante do Produto. Tese (Doutorado em Engenharia Química). Universidade Federal do Rio Grande do Norte. Natal, 2009.

GAST, K. Enrichment of Vitamin E and Provitamin A from Palm Oil Derivates with Supercritical Fluids. Berichte aus der Verfahrenstechnik. TUHH. Shaker Verlag. Aachen, 2006.
GENENA, A.K. Extração e Caracterização do Extrato de Alecrim (*Rosmarinus officinalis* L.): Estudo de sua Ação Antioxidante. Dissertação (Mestrado em Engenharia de Alimentos). Universidade Federal de Santa Catarina. Florianópolis, 2005.

GOODRUM, J.W.; KILGO, M.K.; SANTERRE, C.R. **Oilseed Solubility and Extraction Modelling.** In: KING, J.W.; LIST, G.R. (Ed.). Oil and Lipid Chemistry. AOCS Press. USA, 1996.

GOTO, M., SATO, M., HIROSE, T. Extraction of Peppermint Oil by Supercritical Carbon Dioxide. Jornal of Chemical Engineering of Japan, v. 26, 401-407, 1993.

HATAMI, T.; CAVALCANTI, R.N.; TAKEUCHI, T.; MEIRELES, M.A.A. Supercritical Fluid Extraction of Bioactive Compounds from Macela (Achyrocline satureioides) Flowers: Kinetic, Experiments and Modelling. **Journal of Supercritical Fluids**, v. 65, p.71-77, 2012.

IVANOVIC, J.; ZIZOVIC, I.; RISTIC, M.; STAMENIC, M.; SKALA, D. The Analysis of Simultaneous Clove/Oregano and Clove/Thyme Supercritical Extraction. **Journal of Supercritical Fluids**, v.55, p. 938-991, 2011.

KITZBERGER, C.S.G. **Obtenção de Extrato de Cogumelo Shiitake** (*Lentinula edodes*) com CO₂ a Alta Pressão. 2005. Dissertação (Mestrado em Engenharia de Alimentos). Universidade Federal de Santa Catarina, Florianópolis, 2005.

LANGA, E.; CACHO, J.; PALAVRA, A.M.F.; BURILLO, J.; MAINAR, A.M.; URIETA, J.S. The Evolution of Hyssop Oil Composition in the Supercritical Extraction Curve Modeling of the Extraction Process. **Journal of Supercritical Fluids**, v. 49, p.37-44, 2009.

LEMOS, C.O.; GARCIA, V.A.S.; GONÇALVES, R.M.; SILVA, E.A.; CABRAL, V.F. Avaliação dos Processos de Extração Convencionais com A Extração Supercrítica do Óleo de Pariparoba (*Piper regnellii* var. *pallescens*). In: **III Encontro Paranaense de Engenharia de Alimentos** - EPEA, 2011.

MACIÁS-SÁNCHEZ, M.D.; FERNANDEZ-SEVILHA, J.M.; ACIÉN-FERNÁNDEZ, M.C.; CERÓN-GARCÍA, M.C.; MOLINA GRIMA, E. Supercritical Fluid Extraction of Carotenoids from Scenedesmus almeriensis. **Food Chemistry**, v.123, p.928-935, 2010.

MACHADO, N.T.; RÜSTER, J.; FRANÇA, L.F.; ARAÚJO, M.E. Supercritical CO₂ Extraction of Buriti (*Mauritia flexuosa*) Oil with Different Fixed Bed. In: **4th Brazilian Meeting on Supercritical Fluids**, 2001.

MARTÍNEZ, J. Estudo de Modelos de Transferência de Massa na Interface Sólido-Fluido durante Processos de Extração Supercrítica. Dissertação (Mestrado em Engenharia de Alimentos). Universidade Estadual de Campinas. Campinas, 2002.

MARTÍNEZ, J. Extração de Óleos Voláteis e Outros Compostos com CO₂ Supercrítico: Desenvolvimento de uma Metodologia de Aumento de Escala a partir da Modelagem Matemática do Processo e Avaliação dos Extratos Obtidos. Tese (Doutorado em Engenharia de Alimentos). Universidade Estadual de Campinas. Campinas, 2005.

MARTÍNEZ, J. ROSA, P.T.V.; MEIRELES, M.A.A. Extraction of Clove and Vetiver Oils with Supercritical Carbon Dioxide: Modeling and Simulation. **The Open Chemical Engineering Journal**, v.1, p. 1-7, 2007.

MARTINEZ, J.; MONTEIRO, A. R.; ROSA, P. T. V.; MARQUES, M. O. M.; MEIRELES, M. A. A. Multicomponent model to describe extraction of ginger oleoresin with supercritical carbon dioxide. **Industrial Engineering of Chemistry Research**, v. 42, p. 1057-1063, 2003.

MARTÍNEZ, J.; MARTÍNEZ, J.M. Fitting the Sovová's Supercritical Fluid Extraction Model by Means of a Global Optimization Tool. **Computers and Chemical Engineering**, v.32, p.1735-1745, 2007.

MARTINEZ-CORREA, H.A.; CABRAL, F.A.; MAGALHÃES, P.M.; QUEIROGA, C.L.; GODOY, A.T.; SÁNCHEZ-CAMARGO, A.P.; PAVIANI, L.C. Extracts from the Leaves of *Baccharis dracunculifolia* Obtained by a Combination of Extraction Processes with Supercritical CO₂, Ethanol and Water. **Journal of Supercritical Fluids**, p.31-39, 2012.

MC HUGH, M.; KRUKONIS, V.; Supercritical Fluid Extraction, Principles and **Practice.** 2^a ed., Butterworth-Heinemann: Stoneham, MA,1994.

MEIRELES, M. A. A. Supercritical Extraction from Solid: Process Design Data (2001 - 2003).
Current Opinion in Solid State and Materials Sceince, n. 7, p. 321 - 330, 2003.

MESOMO, M.C.; AOTO, A.; SCHEER, A.P.; CORAZZA, M.L. Obtenção de Extrato de Gengibre com CO₂ Supercrítico e Propano Comprimido. **XIX Congresso Brasileiro de Engenharia Química - COBEQ 2012.** Búzios, 2012.

MEZZOMO, N. Óleo de Amêndoa de Pêssego: Avaliação da Técnica de Extração, da Qualidade dos Extratos e Parâmetros para Ampliação de Escala. Dissertação (Mestrado em Engenharia de Alimentos). Universidade de Santa Catarina, Florianópolis, 2008.

MEZZOMO, N.; MARTÍNEZ, J.; FERREIRA, S.R.S. Supercritical Fluid Extraction of Peach (*Prunus persica*) Almond Oil: Kinetics, Mathematical Modeling and Scale-Up. **Journal of Supercritical Fluids**, v. 51, p.10-16, 2009.

MEZZOMO, N.; PAZ, E.; MARASCHIN, M.; MARTÍN, A.; COCERO, M.J.; FERREIRA, S.R.S. Supercritical Anti-Solvent Precipitation of Carotenoid Fraction

from Pink Shrimp Residue: Effect of Operational Conditions on Encapsulation Efficiency. **Journal of Supercritical Fluids**, v. 66, p.342-349, 2012.

MICHIELIN, E.M.Z. Avaliação do Processo de Extração com Fluido Supercrítico da Oleoresina de Cavalinha (*Equisetum arvense*). Dissertação (Mestrado em Engenharia de Alimentos). Universidade Federal de Santa Catarina. Florianópolis, 2002.

MICHIELIN, E.M.Z. Obtenção de Extrato de Erva Baleeira (*Cordia verbenacea* D.C.) por Diferentes Técnicas: Medida da Atividade Biológica, Modelagem Matemática e Determinação Do Equilíbrio de Fases. Tese (Doutorado em Engenharia de Alimentos). Universidade Federal de Santa Catarina. Florianópolis, 2009.

MICHIELIN, E.M.Z.; BRESCIANI, L.F.V.; DANIELSKI, L.; YUNES, R.; FERREIRA, S.R.S. Composition Profile of Horsetail (*Equisetum giganteum L.*) Oleoresin: Comparing SFE and Organic Solvents Extraction. **Journal of Supercritical Fluids**, v. 33, p. 131-138. 2005.

MONGKHOLKHSORNSILP, D.; DOUGLAS, S.; DOUGLAS, P.L.; ELKAMEL, A.; TEPPAITOON, W.; PONGAMPHAI, S. Supercritical CO₂ Extraction of Nimbin from Neem Seeds - a Modelling Study. **Journal of Food Engineering.** v.71, p.331-340, 2005.

MOURA, L.S. Obtenção por Extração Supercrítica do Extrato de Funcho (*Foeniculum vulgare*): por Determinação das Isotermas de Rendimento Global, de Parâmetros Cinéticos, e do Equilíbrio de Fases. Tese (Doutorado em Engenharia de Alimentos). Universidade Estadual de Campinas, Campinas, 2004.

MOURA, L.S.; CARVALHO JR., R.N.; STEFANINI, M.B.; MING, L.C.; MEIRELES, M.A.A. Supercritical Fluid Extraction from Fennel (*Foeniculum vulgare*): Global Yield, Composition and Kinetic Data. **Journal of Supercritical Fluids**, v.35, p.212-219. 2005.

MUSTAPA, A.N.; MANAN, Z.A.; MOHD AZIZI, C.Y.; SETIANTO, W.B.; MOHD OMAR, A.K. Extraction of β-Carotenes from Palm Oil Mesocarp Using Sub-Critical R314a. **Food Chemistry.** Elsevier, n. 125, p.262-267, 2011.

OFFICE. Disponível em: <http://office.microsoft.com>. Acesso em 28.02.2013.

OLIVEIRA, D.A.O. Caracterização Fitoquímica e Biológica de Extratos Obtidos de Bagaço de Uva (*Vitis vinifera*) das Variedades Merlot e Syrah. Dissertação (Mestrado em Engenharia de Alimentos). Universidade Federal de Santa Catarina. Florianópolis, 2010.

ORIGINLAB – Origin and Origin Pro – Data Analysis and Graphing Software. Disponível em:<http://www.originlab.com/>. Acesso em 28.01.2013

PENDERSSETTI, M.A. Análise dos Efeitos da Temperatura e Pressão na Extração Supercrítica do Óleo Essencial de Canola com Dióxido de Carbono Supercrítico e n-Propano Pressurizado. Dissertação (Mestrado em Engenharia Química). Universidade Estadual do Oeste do Paraná. Toledo, 2008.

PEREIRA, C.G.; MEIRELES, M.A.A. Supercritical Fluid Extraction of Bioactive Compounds: Fundamentals, Applications and Economic Perspectives. **Food Bioprocess Technology.** v.3, p.340-372, 2010.

PERRUT, M. Sterilization and Virus Inactivation by Supercritical Fluids (A Review). **Journal of Supercritical Fluids**, v. 66, p. 359-371, 2012.

POVH, N. Obtenção do Óleo Essencial da Camomila (*Matricaria recutita L. Rauschert*) por Diferentes Métodos: Destilação por Arraste a Vapor, Extração com Solventes Orgânicos e Extração com Fluido Supercrítico. Tese (Doutorado em Engenharia de Alimentos). Universidade Estadual de Campinas, Campinas, 2000. POVH, N.; MEIRELES, M.A.A.; MARQUES, M.O.M. Supercritical CO₂ Extraction of Essential Oil and Oleoresin from Chamomile (*Chamomilla recutita* [L.] Rauschert). **The Journal of Supercritical Fluids.** v. 21. p.245-256. 2001.

QUISPE-CONDORI, S. Determinação de Parâmetros de Processo nas Diferentes Etapas da Extração Supercrítica de Produtos Naturais: Artemisia annua, Cordia verbenaceae, Ocimum selloi e Foeniculum vulgare. Tese (Doutorado em Engenharia de Alimentos). Universidade Estadual de Campinas, Campinas, 2005.

QUISPE-CONDORI, S.; SÁNCHEZ, D.; FOGLIO, M.A.; ROSA, P.T.V.; ZETZL, C; BRUNNER, G.; MEIRELES, M.A.A. Global Yield Isotherms and Kinetic of Artemisinin Extraction from *Artemisia annua* L Leaves Using Supercritical Carbon Dioxide. **Journal of Supercritical Fluids.** v. 36. p.40-48. 2005.

QUISPE-CONDORI, S.; FOGLIO, M.A.; ROSA, P.T.V.; MEIRELES, M.A.A. Obtaining β-caryophyllene from Cordia verbenaceae de Candolle by Supercritical Fluid Extaction. **Journal of Supercritical Fluids**, v. 46, p.27-32, 2008.

REVERCHON, E.; DE MARCO, I. **Essential Oils Extraction and Factionation Using Supercritical Fluids.** In: Supercritical Fluid Extraction of Nutraceuticals and Bioactive Compounds. CRC Press. Boca Raton, 2008.

RODRIGUES, V.M. Efeitos da Vazão do Solvente na Cinética de Extração e na Qualidade do Óleo de Cravo da Índia (*Eugenia caryophyllus*) Obtido com CO₂ Liquefeito. Dissertação (Mestrado em Engenharia de Alimentos). Universidade Estadual de Campinas, Campinas, 1996.

RODRIGUES, V.M. Determinação da Solubilidade em Sistemas Pseudo-Ternários: Cravo da Índia (*Eugenia caryophyllus*) +CO₂, Gengibre (*Zingiber officinale*) + CO₂ e Erva Doce (*Pimpinella anisum*) + CO₂. Tese (Doutorado em Engenharia de Alimentos). Universidade Estadual de Campinas, Campinas, 2001. RODRIGUES, V.M.; SOUSA, E.M.B.D.; MONTEIRO, A.R.; CHIAVONE-FILHO, O.; MARQUES, M.O.M.; MEIRELES, M.A.A. Determination of Solubility of Extracts from Vegetable Raw Material in Pressurizes CO₂: A Pseudo-Ternary Mixture Formed by Cellulosic Structure + Solute+ Solvent. **The Journal of Supercritical Fluids**, v.22. p.21-36. 2002.

ROSA, P.T.V.; PARAJÓ, J.C.; DOMÍNGUEZ, H.; MOURE, A.; DÍAZ-REINOSO, B.; SMITH JR.; R.; TOYOMIZU, M.; FLORUSSE, L.J.; PETERS, C.J.; GOTO, M.; LUCAS, S.; MEIRELES, M.A.A. **Supercritical and Pressurized Fluid Extraction Applied to the Food Industry.** In: Extractig Bioactive Compounds for Food Products: Theory and Applications. CRC Press. Boca Raton, 2009.

RÜSTER, J. Extraction of Natural Substances from Plant Materials of *Mauritia flexuosa* (Buriti) by Means of Supercritical Carbon Dioxide. Arbeitsbereich Thermische Verfahrenstechnik. Universidade Federal do Pará, UFPA; Technische Universität Harburg-Hamburg. Belém, 1997

SAENGCHAROENRAT, C; GUYER, D. Effects of Supercritical Carbon Dioxide Conditions on Onion Oil Dessorption. **Journal of Food Engineering**, n. 63, p. 33-37, 2004.

SANTOS, J.L. **Projeto de uma Unidade de Extração Supercrítica Empregando Simulador de Processos.** Dissertação (Mestrado em Engenharia Química). Universidade Federal do Pará. Belém, 2007.

SANTOS JÚNIOR, L.C.O. **Obtenção do Óleo Rico em Ácidos Graxos Poliinsaturados A Partir de Resíduos de Sardinha do Litoral Catarinense**. Dissertação (Mestrado em Engenharia de Alimentos). Universidade Federal de Santa Catarina, Florianópolis, 2010.

SERIN, J.P.; JAY, S.; CÉZAC, P.; CONTAMINE, F.; MERCADIER, J.; ARRABIE, C.; LEGROS-ADRIAN, J.M. Experimental Studies os Solubility of Elemental Sulphur in

Supercritical Carbon Dioxide. **The Journal of Supercritical Fluids**, v. 53, p. 12-16, 2010.

SILVA, D.C.M.N. Determinação Experimental de Parâmetros de Processo na Extração Supercrítica de Óleo Essencial de Carqueja (*Baccharis trimera* Less). Dissertação (Mestrado em Engenharia de Alimentos). Universidade Federal de Santa Catarina, Florianópolis, 2004.

SILVA, D.C.M.N.; BRESCIANI, L.F.V.; DALAGNOL, R.L.; DANIELSKI, L.; YUNES, R.A.; FERREIRA, S.R.S. Supercritical Extraction of Carqueja (*Baccharis trimera*) Oil: Process Parameters and Composition Profiles. **Food and Bioproducts Processing**, v. 87, p. 317-326, 2009.

SHANLEY, P.; MEDINA, G. (ed.). Frutíferas e Plantas Úteis na Vida Amazônica. Belém: CIFOR, Imazon, 2005.

SOUSA, E.M.D.B.; CHIAVONE-FILHO, O.; MORENO, M.T.; SILVA, D.N.; MARQUES, M.O.M..; MEIRELES, M.A.A. Experimental Results for the Extraction of Essential Oil from Lippia sidoides Cham. using Pressurized Carbon Dioxide. **Brazilian Journal of Chemical Engineering**, v.19, n.2, p.229-241, 2002.

SOUSA, E.M.D.B.; MARTÍNEZ, J.; CHIAVONE-FILHO, O.; ROSA, P.T.V.; DOMINGOS, T.; MEIRELES, M.A.A. Extraction of Volatile Oil from *Croton zehntneri* Pax et Hoff with Pressurized CO₂: Solubility, Composition and Kinetics. **Journal of Food Engineering**, v. 69, p.325-333, 2005.

SOUZA, A.P.; SANTOS, J.P.; CABRAL, F.A.; SILVA, G.F. Modelagem Termodinâmica na Extração de ω -3 com CO₂ Supercrítico. **Revista Brasileira de Produtos Agroindustriais**, v.4, n.2, p.135-140, 2002

SOUZA, R.S. Estudo da Cinética de Extração do Óleo da Polpa do Açaí (*Euterpe oleraceae* Mart.) com Dióxido de Carbono a Altas Pressões. Trabalho

de Conclusão de Curso (Graduação em Engenharia de Alimentos). Universidade Federal do Pará, Belém, 2006.

SOVOVÁ, H. Rate of the Vegetable Oil Extraction with Supercritical CO₂. I. Modeling of Extraction Curves. **Chemical Engineering. Science**, v. 49, 409-414, 1994.

SOVOVÁ, H.; GALUSHKO, A.A.; STATEVA, R.P.; ROCHOVÁ, K.; SAJFRTOVÁ, M. Supercritical Fluid Extraction of Minor Components of Vegetable Oils: β-Sitosterol. **The Journal of Food Engineering**, n. 101, p. 201-209, 2010.

SPAN, R.; WAGNER, W. A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple Point Temperature to 11000 K at Pressures up to 800 MPa. **J. Phys. Chem. Ref. Data**, v. 25, p.1509-1596, 1996.

STEFANNI, E. Modelagem Matemática do Processo de Extração Supercrítica de Óleo Essencial de Ho – Sho (*Cinnamomum camphora* Nees & Eberm var. *linaloolifera* Fujita) Utilizando CO₂. Tese (Doutorado em Engenharia Química).Universidade Federal de Santa Catarina. Florianópolis, 2003.

TALANSIER, E.; BRAGA, M.E.M.; ROSA, P.T.V.; PAOLUCCI-JEANJEAN, D.; MEIRELES, M.A.A. Supercritical Fluid Extraction of Vetiver Roots: A study of SFE Kinetics. **The Journal of Supercritical Fluids**, v. 47, p. 200-208, 2008.

TALCOTT, S. A Phytochemical-Rich Oil from Açaí Fruit. Disponível em: <http://nfscfaculty.tamu.edu/talcott/Commodities/Talcott%20and%20Acai%20Oi I.pdf> - Acesso em 21.06.2012

TAN, C., LIOU, D. Modelling of Desorption at Supercritical Conditions. **AiChe Journal**, v. 35, n.6, 1029-1031 1989.

TAYLOR, L.T. **Supercritical Fluid Extraction**. Canada: John Wiley & Sons, Inc. 1996.

TEMELLI, F.; GLÜÇÜ-ÜNSTÜNDAĞ, Ö. **Supercritical Technologies for Further Processing of Edible Oils.** In: SHAHIDI, F. (Ed.). Bailey's Industrial Oil and Fat Products. 6ed. John Wiley & Sons, Inc. Canada, 2005.

TEMELLI, F. SEIFRIED, B. **Bioseparation of Nutraceuticals Using Supercritical Carbon Dioxide.** In: AGUILERA, J.M.; BARBOSA-CÁNOVAS, G.V.; SIMPSON, R.; WELTI-CHANES; BERMÚDEZ-AGUIRRE (Ed). Food Engineering Interfaces. Springer. New York, 2011.

VASCONCELLOS, C.M.C. Extração Supercrítica dos Óleos Voláteis de *Achyrocline satureioides* (Macela) e *Vetiveria zizanioides* (Vetiver): Determinação da Cinética de Extração e Estimativa de Custos de Manufatura. Dissertação (Mestrado em Engenharia de Alimentos). Universidade de Campinas. Campinas, 2007.

WEINHOLD, T.S. BRESCIANI, L.F.V.; TRIDAPALLI, C.W.; YUNES, R.A.; HENSE, H.; FERREIRA, S.R.S. Polygala cyparissias oleoresin: Comparing CO₂ and Classical Organic Solvent Extractions. **Chemical Engineering and Processing**, v.47, p. 109-117, 2008.

YUYUAMA, L.K.O.; YONEKURA, L.; AGUIAR, J.P.L.; SOUSA, R.F.S. Biodisponibilidade dos Carotenóides do Buriti (*Mauritia flexuosa L.*) em Ratos. **ACTA Amazônica**, v.28; n.4; p.409-415, 1998.

8 ANEXOS

8.1 ROTEIRO DE UTILIZAÇÃO DO SOFTWARE ORIGIN 8.0

8.1.1 Ajuste de Parâmetros

Para a otimização de sistemas que fazem uso à tecnologia supercrítica é essencial a modelagem a fim de que haja a determinação de parâmetros referentes aos modelos de Transferência de Massa existentes na literatura, como os de Tan e Liou (1989) e Martinez *et al.* (2003).

Os ajustes serão efetuados no software estatístico ORIGIN [®] 8.0. Antes de se chegar ao procedimento propriamente dito, é recomendável que o leitor tenha conhecimento prévio dos modelos a ajustar. Nos tópicos seguintes serão abordados os modelos de Tan & Liou (1989) e Martinez *et a*l (2003) e em seguida, o roteiro para o ajuste desses modelos no programa Origin 8.0.

8.1.1.1 Modelo de Tan e Liou (1989)

Esse modelo cinético de primeira ordem representa a transferência de massa, a partir de um balanço de massa ao longo do leito de extração. A curva de extração a ser obtida pelo modelo deve apresentar a massa de óleo na saída do extrator em função do tempo de extração. Esta massa pode ser obtida a partir da equação abaixo:

$$m = \frac{A}{k_d} \left[1 - \exp(k_d B) \left[\exp(-k_d t) - 1 \right] \right]$$

8.1.1.2 Modelo de Martínez et al (2003)

Segundo Martínez (2002) este modelo proposto pode ser aplicado a quaisquer dados experimentais considerando o óleo como um único pseudocomponente. A equação abaixo refere-se ao modelo de Martínez *et al* (2003):

$$m = \frac{X_0 F_0}{\exp(b_i t_{mi})} \left\{ \frac{1 + \exp(b_i t_{mi})}{1 + \exp[b_i (t_{mi} - t)]} - 1 \right\}$$

Para maiores informações sobre este modelo, bem como os modelos de Tan e Liou (1989), Goto *et al.* (1993), e Esquível *et al.* (1999), consultar os tópicos 3.5.2.3, 3.5.2.4, 3.5.2.4., e 3.5.2.5 desta dissertação.

8.1.2 Procedimento

Após abrir o programa, aparecerá uma planilha com o título "Book1" (figura 11). Inserir nessa planilha os dados da cinética de extração (tabela 1), na coluna A(X) estarão os valores medidos do tempo em segundos e na coluna B(Y), estarão os valores das massas extraídas em kg (figura 12).

Tabela 1 : Cinética da extração do óleo de Cúrcuma seca a 70°C e configuração do leito de extração(dados de Chassagnez-Méndez, 1998)

Tempo (s)	Massa Extraída (kg)
300	0,00028
900	0,00058
1500	0,00080
2100	0,00097
2700	0,00110
3900	0,00124
5100	0,00130
6300	0,00133

Book1			
	A(X)	B(Y)	
Long Name			
Units			
Comments			=
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
▲ ► \ Sheet1			

Eook1			
	t(X)	m(Y)	*
Long Name			
Units	S	kg	
Comments			=
1	300	2,8E-4	
2	900	5,8E-4	
3	1500	8E-4	
4	2100	9,7E-4	
5	2700	0,0011	
6	3900	0,00124	
7	5100	0,0013	
8	6300	0,00133	
9			-
▲ ► \ Sheet1	/		

Figura 2: Planilha com os dados inseridos

Após inserir os dados, clicar no botão "Scatter" (Figura 3) para abrir a janela 'Plot Setup: Select Data to Create New Plot' (Figura 4)., selecione a coluna A(X) [ou t] e clique no quadrado referente ao X e clique no quadrado referente ao Y para a coluna B(Y) [ou m]. adicione a planilha clicando em "Add". Em seguida, clique em 'OK' para gerar o gráfico da cinética (Figura 5).

Figura 3: Botão Scatter

·**·** ·

Plot Type: Dia [B	look1]Sheet1						
Line	Y vEr	L Column	Long Name	1st Data Valu	e		Position
Scatter		E t			300		1
Line + Symbol		m		2.8	3E-4		2
Column / Bar							
Area							
Fill Area							
High - Low - Close							
Floating Column							
XYAM Vector							
XYXY Vector							
Bubble							
Color Mapped							
Bubble + Color Mapped							
Pie							
Bar							
Stacked Column / Bar							
Stacked Bar							
XYZ Contour							
Mattick data fish ask on to consider a	late an eight allals for all					Ad	
Flot List, drag 1st coldmin to reorder p	ilots, of fight click for our	ier operations			1		
Plot	Range		She	w Plot Type	Legend		
Laver 1	Hescale	0.2054.444	0.00100	C II	a		
W [Book I]Sheet I ! ((X), m(T)	[1::8"] 300 < X < 630	U;2,8E-4 < 1 <	0,00133 💌	Scatter	(Kg)		
🖙 🎦 Style Holder				Text			
				OK		ancel	Apply

Figura 4: Janela Plot Setup: Select Data to Create New Plot"

Figura 5: Gráfico da cinética

No painel de controle selecione "Analysis \rightarrow Fitting \rightarrow Non-linear Curve Fit \rightarrow Advanced Fitting Tool (ou Open Dialog)". Na janela ''NLFit (Gauss)/Function Selection' selecione "Category -> New", digite o nome da nova categoria ''Transferência de Massa'' (figura 6).

NLFit (Gauss)	-		_	
Dialog Theme <factory defau<="" td=""><td>lt></td><td></td><td></td><td></td></factory>	lt>			
Settings Code Parameter	s Bounds			
Function Selection			,	
Data Selection	Category	Origin Basic Functions 🔷 🔻		
Fitted Lurves	Function	Origin Basic Functions		
Auvanceu		Exponential		
	Description	Growth/Sigmoidal	stion	
	File Name(.FDF)	Logarithm	rigin8\fitfunc\Gauss.fdf	
		Peak Functions		
		Polynomial Power		
		Rational		
		Bu Field		
	ļ	Chromatography		
		Electrophysiology		
		Spectroscopy	P/ S/ X *+ +++	
		Statistics Iser Defined		
Fit Curve Formula Sample	Curve Messages F	Transferência de Massa		
	• m	= (146992	1	
0,0015 -	- Ft Curve 1			
0,0010				
Ē				
0,0005 -				
•				
0,0000	6000			
t (5)	*000			

Figura 6: Janela NLFit (Gauss).

Em 'Fitting Function Organizer' selecione 'New' (Figuras 7 e 8), digite o nome da equação ('Tan e Liou', por exemplo). Em 'Function Type, selecione 'User-Defined' (porque os parâmetros serão definidos pelo usuário).

Em seguida, escreva a variável independente (Y – se não for nomeada ou t – se for nomeada), e a dependente (X ou m). Escreva os parâmetros em ''Parameter Names'' e a equação, em ''Function''. Selecione a opção Y-Script em "Function Form".

Figura 7: Ferramenta "Function Selection".

Dialog Theme <pre>Factory default></pre>	
Settings Code Parameters Bounds	
Function Selection Data Selection Fitted Curves Advanced Function Descripti File Name	Transferência de Massa V (New) (.New) (.FDF) C:\Users\MANCIO\Documents\Origin User Files\fitfunc\TANLIOU.fdf

Fitting Function Organizer				<u>S</u> ave
🕀 🧰 Exponential		Function Name	TanLiou	
🗄 🧰 Growth/Sigmoidal		File Name(.FDF)	C:\Users\MANCIO\Documents\Origin User Files\fitfunc\TanLio	New <u>Category</u>
🕀 🛄 Hyperbola			-	New Function
🖽 🛄 Logarithm		Brief Description		
Peak Functions		Function Type	User-Defined 🔻	Duplicate
Bational		ndependent variables		<u>A</u> aa
		Dependent Variables	m	Remove
🗄 🧰 Surface Fitting	=	Parameter Names	A B Kd	
🚞By Field				Cancel
🕀 🧰 Chromatography		Function Form	Y-Script 🔻	ПК
🗄 🧰 Electrophysiology		Derivatives		
🕀 🧰 Pharmacology		Function		Simulate
E Spectroscopy				Devel
H Statistics		m=(A/Kd)*(exp(Kd*B)+exp	(-Kd*t)-exp[Kd*B]*exp[-Kd*t]-1)	<u>n</u> eset
Transferância de Masea			· · · · -	
Taniselencia de Massa				
Equation Sample Curve Hints				
Define the function with the form of Y-3 Example: //Gauss function. temp1 = A/(w*sqt([PI/2])); temp2 = -2*((x-xc)/w)^2;	Script. T	his should follow LabTalk syn	itax.	E
*				+

Figura 8: Opção 'Fitting Function Organizer'

Clique em 'Save' para salvar o modelo no programa do seu computador. Depois, clique em 'OK'. Na tabela 2 estão as fórmulas na escrita do programa referentes aos modelos de transferência de massa. **Tabela 2:** Modelos de Transferência de Massa escritos na linguagem do programaOrigin 8.0.

MODELO	Parâmetros	Var.	Var.	FÓRMULA
		Ind.	Dep.	
Tan & Liou (1989)	A, B, Kd	t	М	m=(A/Kd)*(exp(Kd*B)+exp(-Kd*t)-
				exp(Kd*B)*exp(-Kd*t)-1)
Martinez et al	X0, F0, bi,	t	М	m=(X0*F0/exp(bi*tmi))*((1+exp(bi*tmi))/(1+exp(
(2003)	tmi			bi*(tmi-t)))-1)
Esquível et al	X0, F0, b	t	М	m=X0*F0*(t/(b+t))
(1999)				
Goto et al (1993)	φ(Fi), K,	t	М	m=(((((1-E1)*Fi)/((a1-a2)*E1*(E2+(1-
	$\epsilon_{LEITO}(E1),$			E2)*K)))*X0*R1*Q*((E2/K)+(1-
	ε _{partícula} (E2)			E2)))/R2)*(((((E1*H)/u)/a1)*(EXP(a1*(t/((E1
	, X0,			*H)/u)))-1))+((((E1*H)/u)/a2)*(1-
	$ ho_{\text{S} \acute{O} \text{L} \text{I} \text{D} O}(\text{R}1),$			EXP(a2*(t/((E1*H)/u)))))
	$\rho_{\text{SOLVENTE}}(R2)$			
	,a1, a2,			
	$Q_{SOLVENTE}(Q),$			
	H, u			
Brady et al (1993)	MOA, Q,	t	М	m=MOA*(1-exp((-Q/(Kd*MYA))*t))
	MYA, Kd			
Brady modificada	MOA, C, Kd	t	М	m=MOA*(1-exp((-C/(Kd))*t))

Depois de inseridas todas as fórmulas, selecione o modelo. Na Janela 'NLFit (Modelo (User))*', comece na opção 'Parameters' (Figura 19), onde serão clicados apenas os quadradinhos referentes aos parâmetros que já possuem um valor fixo.

Ao lado dos quadrados selecionados, escreva em 'Value' os valores desses parâmetros. Quanto ao parâmetro que será ajustado, como no caso de 'Kd' (em Tan e Liou), será necessário colocar um dado de entrada aleatório (geralmente um número pequeno, mas se sugere usar '0,1' como estimativa inicial) a fim de que o ajuste seja executado.

NLFit (Ta	anLiou (User))*		-				
)ialog T <u>h</u> en	ne <factory del<="" td=""><td>fault></td><td></td><td></td><td></td><td></td><td></td></factory>	fault>					
Settings	Code Parame	eters Bounds					
Param	Meaning Fi	ixed Value	Error	Dependency	Lower Conf Limits	Upper Conf Limits	Significant Digits
A	? [✓ 4,84937E-5			-	-	Free
K d	2	68,112			-	-	Free
Fit Curve	Formula Samp	ple Curve Message	s Funci	tion File Residua	f 🗞 🔚	<u> </u>	⁷ _μ ⁴ _μ Fit Cancel
0,0015 -		Ft C	ave 1				
0,0010 - 19 - 10 - 10 - 10 - 10 - 10 -							
0,0000	¢.	2000 4000 t (5)					

Figura 9: Janela 'NLFit (TanLiou (User))*'',

Na Opção ´´Settings→Data Selection´´ selecionar ´´Statistical ´´ na opção ´Weights´´ (figura 10).

Figura 10: Opção 'Data Selection' em 'Settings'.

NLFit (TanLiou (User))*				
Dialog Theme <factory defau<="" td=""><td>Ь</td><td></td><td></td><td>- 🖬 🖬</td></factory>	Ь			- 🖬 🖬
Settings Code Parameter	s Bounds			
Function Selection	s bounds			
Data Selection	Weights	Statistical 🔹		
Fitted Curves	🖂 InputData	[Graph1] aver111"m"		
Advanced				···· / /
	(±) Hangel	[[Graph1]Layer1!1"m"		
J				
			🚜 🖬 กก 🤉 🕺 🐔	Fit Cancel
Fit Curve Formula Samola		Eurotion File Residual Hints		
The same Tollinua Sample	cuive messages			
0,0015	Ft Curve	.1		
0,0010				
· ·				
0,0005				
0 5000 t	6000			

Em ''Advanced \rightarrow Iterations \rightarrow Max.Number of Iterations'' escolher ''500'' como o número máximo de iterações (Figura 11).

NLFit (TanLiou (User))*			• X
Dialog Theme <	lt>		- 8 6
Settings Code Parameter	s Bounds		
Function Selection			
Data Selection	Recalculate	Manual 🔻	
Fitted Curves			
Auvanceu	Fit Lontrol		
	Max. Number of Iterations	400	
		2	
	l olerance	5	
	🛨 Derivative Delta	20	
	Parameters' CI Computation Method	30 mmetry based ▼ 50	~
			Lancel
		400 500	
Fit Curve Formula Sample	Curve Messages Function File Residual Hi	nts	
	• m		
0,0015			
	• • •		
0,0010			
0,0005 -			
0,0000			
0 9000 t	6000		
<u> </u>			

Figura 11: Opção 'Max.Number of Iterations'

Verifique novamente em 'Parameters' todos os valores dos parâmetros, caso algum falte (geralmente os valores dos parâmetros a ajustar), reescrever tal valor. Após isso, clicar em 'Fit' para gerar o ajuste (figura 12).

Figura 12: Ajuste obtido dos dados da Tabela 94.

8.1.3 Referências

BRADY, B.O.; KAO, C.P.C.; DOOLEY, K.M.; KNOPF, F.C. Supercritical Extraction of Toxic Organics from Soils. **American Chemical Society**, v.26, n.2, 1987.

CHASSAGNEZ-MÉNDEZ, A.L.; CORREA, N.C.F.; MEIRELES, M.A.A. Extração de Oleoresina de Cúrcuma (*Curcuma longa* L) com CO₂ Supercrítico. *Ciência e Tecnologia de Alimentos*, vol.17, n.4, p. 399-404, 1997.

MARTÍNEZ, J. Estudo de Modelos de Transferência de Massa na Interface Sólido-Fluido durante Processos de Extração Supercrítica. Dissertação de Mestrado. Campinas, 2002.

OriginLab – Origin and Origin Pro – Data Analysis and Graphing Software. Disponível em:<http://www.originlab.com/>

TAN, C.S.; LIOU, D.C. Modelling of Desorption at Supercritical Conditions. **AiChe Journal**, vol. 35, n.6, p. 1029-1031, 1989.

8.2 RESULTADOS DOS AJUSTES REALIZADOS NESTE TRABALHO

8.2.1 Resultados 2 e 3 Retas

		Este			
	Iteração 0	Iteração 1	Iteração 2	Iteração 3	Trabalho
t _{CER} (min)	180	188,919	192,583	192,407	192
b ₀	-0,136	-0,129	-0,130	-0,130	-0,002
b ₁	0,003	0,003	0,003	0,003	0,002
b ₂	-9,9x10 ⁻⁴	-9,3 x10⁻⁴	-9,8 x10⁻⁴	-9,8 x10 ⁻⁴	-7 x10 ⁻⁴
Erro Médio Absoluto	0,008	0,007	0,007	0,007	0,007
Desvio Padrão	0,005	0,005	0,005	0,005	0,005
Faixa de Erro	0,016	0,016	0,016	0,016	0,017

Tabela 3: Ajustes de 2 retas para o gengibre a 30°C e 100 bar (EXP 01).

Gráfico 1: Cinética comparativa de gengibre para duas retas a 30°C e 100 bar (EXP 01).

		Este			
	Iteração0	Iteração 1	Iteração 2	Iteração 3	Trabalho
t _{CER} (min)	300	273,849	279,021	278,665	285
b ₀	-0,252	-0,261	-0,260	-0,260	-0,003
b 1	0,002	0,002031	0,002029	0,002	0,002
b ₂	-3x10 ⁻⁴				
Erro Médio Absoluto	0,012	0,012	0,011	0,011	0,012
Desvio Padrão	0,009	0,009	0,009	0,009	0,009
Faixa de Erro	0,01	0,018	0,014	0,017	0,028

Tabela 4: Ajustes de 2 retas para o gengibre a 40°C e 100 bar (EXP 04).

Figura 13: Cinética comparativa de gengibre para duas retas a 40°C e 100 bar (EXP 04).

RODRIGUES (2002)					Este
	lteração 0	Iteração	o 1 Itera	ção 2	Iteração 3
Trabalho	-	-		-	-
t _{CER} (min)	135	136,054	136,242	136,242	139
b ₀	-0,374	-0,367	-0,356	-0,356	-0,004
b ₁	0,009	0,009	0,009	0,009	0,005
b ₂	-0,008	-0,008	-0,008	-0,008	-0,004
Erro Médio Absoluto	o 0,012	0,012	0,0168	0,017	0,665
Desvio Padrão	0,009	0,009	0,354	0,010	0,203
Faixa de Erro	0,032	0,0118	0,02	0,041	0,611

Tabela 5: Ajustes de 2 retas para o gengibre a 30°C e 300 bar (EXP 08).

Figura 14: Cinética comparativa de gengibre para duas retas 30°C e 300 bar (EXP 08).

	R	Este		
	lteração 0	lteração 1	Iteração 2	Trabalho
t _{CER} (min)	9	9	9	52
t _{FER} (min)	65	64,989	64,989	87
b ₀	-0,394	-0,394	-0,394	-0,002
b ₁	0,214	0,214	0,214	0,237
b ₂	-0,001	-0,001	-0,001	-0,032
b ₃	-0,049	-0,049	-0,049	-0,037
Erro Médio Absoluto	0,004	0,004	0,004	0,001
Desvio Padrão	0,003	0,003	0,003	0,0024
Faixa de Erro	0,009	0,01	0,01	0,003

Tabela 6: Ajustes de 3 retas	para o cravo-da-índia a 30°	C e 100 bar (EXP 14/	4).
------------------------------	-----------------------------	----------------------	-----

Figura 15: Cinética comparativa de cravo-da-índia para três retas a 30°C e 100 bar (EXP 14A).

RODRIGUES (2002)							
	Iteração	Iteração	Iteração	lteração	lteração	Iteração	Este
	0	1	2	3	4	5	Trabalho
t _{CER} (min)	9	9	9	9	9	9	44
t _{FER} (min)	55	56,086	60,337	64,664	64,488	64,488	73
b ₀	-0,679	-0,727	-0,841	-0,96	-0,96	-0,96	-0,003
b ₁	0,294	0,304	0,327	0,351	0,351	0,351	0,180
b ₂	-0,010	-0,023	-0,052	-0,082	-0,082	-0,081	-0,037
b ₃	-0,126	-0,124	-0,128	-0,134	-0,134	-0,134	-0,065
Erro Médio							
Absoluto	0,009	0,009	0,008	0,007	0,007	0,007	0,012
Desvio Padrão	0,009	0,008	0,007	0,005	0,005	0,005	0,007
Faixa de Erro	0,024	0,025	0,029	0,02	0,02	0,02	0,025

Tabela 7: Ajustes de 3 retas para o cravo-da-índia nas condições de 35°C e 100 bar (EXP 29A).

Figura 16: Cinética comparativa de cravo-da-índia para três retas a 35°C e 100 bar (EXP 29A).

		RODRIG	UES (2002)		Este
	lteração 0	Iteração 1	Iteração 2	Iteração 3	Trabalho
t _{CER} (min)	10	10	10	10	62
t _{FER} (min)	65	64,723	64,723	64,723	97
b ₀	-0,270	-0,269	-0,269	-0,269	-0,001
b ₁	0,063	0,063	0,063	0,063	0,157
b ₂	-0,003	-0,003	-0,003	-0,003	-0,049
b ₃	-0,002	-0,002	-0,002	-0,002	-0,026
Erro Médio					
Absoluto	0,043	0,043	0,043	0,043	0,003
Desvio					
Padrão	0,054	0,055	0,055	0,055	0,003
Faixa de Erro	0,175	0,175	0,176	0,175	0,01

Tabela 8: Ajustes de 3 retas para *o* cravo-da-índia a 15°C e 66 bar (EXP 40A).

Figura 17: Cinética comparativa de *cravo-da-índia* para três retas a 15°C e 66 bar (EXP 40A).

8.2.2 Determinação dos Parâmetros de Transferência de Massa para EFSC do Buriti, Cúrcuma e Açaí gerados pelos programas Origin e Excel

8.2.2.1 Buriti (dados de Cunha et al (2012b)

Tabela 9: Ajuste da cinética Origin/Excel de buriti (Cunha *et al.,* 2012b) a 20g e150bar.

Modelos		Parâmetros Estatísticos			
		Erro Médio	Desvio Padrão	Faixa de Erro	
Tan e Liou (1989)	EXCEL	0,266	0,255	0,702	
	ORIGIN	0,145	0,168	0,403	
Goto <i>et al</i> . (1993)	EXCEL	0,073	0,063	0,143	
	ORIGIN	0,015	0,01	0,031	
Esquível et al. (1999)	EXCEL	0,049	0,039	0,093	
	ORIGIN	0,096	0,084	0,278	
Martínez et al. (2003)	EXCEL	0,099	0,098	0,257	
	ORIGIN	0,048	0,048	0,107	
Sovová (1994)	Aplicativo	0,01	0,006	0,009	

Figura 18: Cinética comparativa Origin/Excel de buriti (Cunha *et al.*, 2012b) a 20g e 150 bar.

Modelos		Parâmetros Estatísticos			
		Erro Médio	Desvio Padrão	Faixa de Erro	
Tan e Liou (1989)	EXCEL	0,096	0,072	0,213	
	ORIGIN	0,033	0,022	0,055	
Goto <i>et al.</i> (1993)	EXCEL	0,089	0,067	0,219	
	ORIGIN	0,011	0,011	0,025	
Esquível et al. (1999)	EXCEL	0,054	0,064	0,182	
	ORIGIN	0,047	0,045	0,151	
Martínez et al. (2003)	EXCEL	0,035	0,029	0,026	
	ORIGIN	0,031	0,026	0,054	
Sovová (1994)	Aplicativo	0,005	0,003	0,019	

Tabela 10: Ajuste da cinética Origin/Excel de buriti (Cunha *et al.,* 2012b) a 220g e 150 bar.

Modelos		Parâmetros Estatísticos			
		Erro Médio	Desvio Padrão	Faixa de Erro	
Tan e Liou (1989)	EXCEL	0,067	0,094	0,248	
	ORIGIN	0,043	0,138	0,045	
Goto <i>et al</i> . (1993)	EXCEL	0,009	0,006	0,002	
	ORIGIN	0,009	0,005	0,014	
Esquível et al. (1999)	EXCEL	0,017	0,013	0,037	
	ORIGIN	0,009	0,006	0,002	
Martínez et al. (2003)	EXCEL	0,029	0,037	0,121	
	ORIGIN	0,024	0,094	0,085	
Sovová (1994)	Aplicativo	0,105	0,037	0,138	

Tabela 11: Ajuste da cinética Origin/Excel de buriti (Cunha *et al.,* 2012b) a 20g e 200 bar.

Modelos		Parâmetros Estatísticos			
		Erro Médio	Desvio Padrão	Faixa de Erro	
Tan e Liou (1989)	EXCEL	0,165	0,133	0,412	
	ORIGIN	0,072	0,064	0,146	
Goto <i>et al</i> . (1993)	EXCEL	0,126	0,103	0,329	
	ORIGIN	0,026	0,019	0,066	
Esquível et al. (1999)	EXCEL	0,072	0,041	0,129	
	ORIGIN	0,003	0,085	0,023	
Martínez et al. (2003)	EXCEL	0,130	0,105	0,263	
	ORIGIN	0,057	0,127	0,042	
Sovová (1994)	Aplicativo	0,062	0,021	0,074	

Tabela 12: Ajuste da cinética Origin/Excel de buriti (Cunha *et al.,* 2012b) a 220g e 200 bar.

Modelos		Parâmetros Estatísticos			
		Erro Médio	Desvio Padrão	Faixa de Erro	
Tan e Liou (1989)	EXCEL	0,119	0,120	0,414	
	ORIGIN	0,094	0,093	0,236	
Goto <i>et al</i> . (1993)	EXCEL	0,123	0,125	0,444	
	ORIGIN	0,009	0,006	0,023	
Esquível et al. (1999)	EXCEL	0,047	0,030	0,085	
	ORIGIN	0,046	0,023	0,089	
Martínez et al. (2003)	EXCEL	0,165	0,163	0,099	
	ORIGIN	0,064	0,063	0,170	
Sovová (1994)	Aplicativo	0,005	0,003	0,001	

Tabela 13: Ajuste da cinética Origin/Excel de buriti (Cunha *et al.,* 2012b) a 20g e 250 bar.

Figura 22: Cinética comparativa Origin/Excel de buriti, dados de Cunha *et al.* (2012b) para 20g e 250 bar.

Modelos		Parâmetros Estatísticos			
		Erro Médio	Desvio Padrão	Faixa de Erro	
Tan e Liou (1989)	EXCEL	0,067	0,045	0,039	
	ORIGIN	0,019	0,016	0,044	
Goto <i>et al</i> . (1993)	EXCEL	0,042	0,034	0,109	
	ORIGIN	0,008	0,004	0,017	
Esquível et al. (1999)	EXCEL	0,011	0,009	0,033	
	ORIGIN	0,011	0,032	0,007	
Martínez et al. (2003)	EXCEL	0,056	0,059	0,249	
	ORIGIN	0,012	0,104	0,014	
Sovová (1994)	Aplicativo	0,007	0,005	0,011	

Tabela 14: Ajuste da cinética Origin/Excel de buriti (Cunha *et al.,* 2012b) a 165g e 250 bar.

Tabela	15: Ajuste	da	cinética	Origin/Excel	de	buriti	(Cunha	et	al.,	2012b)	а	180g	е
250 bar													

Modelos		Parâmetros Estatísticos								
		Erro Médio	Desvio Padrão	Faixa de Erro						
Tan e Liou (1989)	EXCEL	0,013	0,074	0,022						
	ORIGIN	0,033	0,032	0,084						
Goto <i>et al</i> . (1993)	EXCEL	0,057	0,051	0,162						
	ORIGIN	0,008	0,004	0,013						
Esquível <i>et al.</i> (1999)	EXCEL	0,054	0,048	0,151						
	ORIGIN	0,023	0,06	0,015						
Martínez <i>et al.</i> (2003)	EXCEL	0,095	0,078	0,235						
	ORIGIN	0,032	0,095	0,038						
Sovová (1994)	Aplicativo	0,007	0,0063	0,044						

Figura 24: Cinética comparativa Origin/Excel de buriti (Cunha *et al.*, 2012b) a 180g e 250 bar.

Modelos		Parâmetros Estatísticos								
		Erro Médio	Desvio Padrão	Faixa de Erro						
Tan e Liou (1989)	EXCEL	0,065	0,076	0,134						
	ORIGIN	0,037	0,034	0,083						
Goto et al. (1993)	EXCEL	0,047	0,056	0,1378						
	ORIGIN	0,009	0,009	0,04						
Esquível et al. (1999)	EXCEL	0,075	0,085	0,136						
	ORIGIN	0,043	0,029	0,092						
Martínez et al. (2003)	EXCEL	0,023	0,068	0,054						
	ORIGIN	0,012	0,156	0,052						
Sovová (1994)	Aplicativo	0,002	0,001	0,008						

Tabela 16: Ajuste da cinética Origin/Excel de buriti (Cunha *et al.,* 2012b) a 220g e 250 bar.

Figura 25: Cinética comparativa Origin/Excel de buriti (Cunha *et al.*, 2012b) a 220g e 250 bar.

	150 bar				200 bar					250 bar					
20g		220g		20g		220g		20g		165g		180g		220g	
Tempo	Massa	Tempo	Massa	Tempo	Massa	Tempo	Massa	Tempo	Massa	Tempo	Massa	Tempo	Massa	Tempo	Massa
(min)	(g)	(min)	(g)	(min)	(g)	(min)	(g)	(min)	(g)	(min)	(g)	(min)	(g)	(min)	(g)
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0,022	5	0,07	5	0,1387	5	0,28	5	0,1895	5	0,37	5	0,51	5	0,55
10	0,041	10	0,15	10	0,2072	10	0,7	10	0,44	10	0,91	10	1,02	10	1,11
15	0,0816	15	0,24	15	0,3695	15	1,08	15	0,7374	15	1,47	15	1,52	15	1,7
20	0,1383	20	0,32	20	0,5341	20	1,41	20	1,0453	20	2,02	20	2	20	2,28
25	0,1769	25	0,39	25	0,6668	25	1,77	25	1,3683	25	2,5	25	2,44	25	2,8
30	0,2111	30	0,45	30	0,7834	30	1,99	30	1,6898	30	2,96	30	2,89	30	3,36
35	0,2613	35	0,5	35	0,9043	35	2,18	35	2,0079	35	3,36	35	3,35	35	3,93
40	0,2953	40	0,56	40	1,0277	40	2,32	40	2,3462	40	3,77	40	3,75	40	4,54
45	0,3248	45	0,61	45	1,1238	45	2,43	45	2,6784	45	4,13	45	4,18	45	5,23
50	0,3627	50	0,67	50	1,228	50	2,53	50	3,0293	50	4,57	50	4,54	50	5,91
55	0,3933	55	0,72	55	1,334	55	2,66	55	3,3385	55	4,97	55	4,91	55	6,5
60	0,4331	60	0,76	60	1,4146	60	2,81	60	3,59	60	5,38	60	5,29	60	7,07
65	0,4593	65	0,8	65	1,5112	65	2,98	65	3,8659	65	5,71	65	5,67	65	7,66
70	0,4797	70	0,83	70	1,6152	70	3,11	70	4,0962	70	6,05	70	5,98	70	8,25
75	0,5001	75	0,86	75	1,7135	75	3,23	75	4,3082	75	6,4	75	6,37	75	8,85
80	0,531	80	0,9	80	1,8173	80	3,34	80	4,4798	80	6,74	80	6,71	80	9,37
85	0,5549	85	0,93	85	1,9214	85	3,49	85	4,6094	85	7,08	85	7,05	85	9,97
90	0,5751	90	0,96	90	2,0396	90	3,64	90	4,7284	90	7,45	90	7,38	90	10,6
95	0,5956	95	1,01	95	2,1507	95	3,78	95	4,8389	95	7,79	95	7,74	95	11,05
100	0,6185	100	1,06	100	2,2586	100	3,93	100	4,9417	100	8,17	100	8,07	100	11,57
105	0,6388	105	1,1	105	2,3649	105	4,08	105	5,0232	105	8,53	105	8,45	105	12,15
110	0,6548	110	1,13	110	2,4702	110	4,18	110	5,0954	110	8,89	110	8,79	110	12,76
115	0,6793	115	1,18	115	2,5847	115	4,34	115	5,1772	115	9,26	115	9,16	115	13,39

 Tabela 17: Dados experimentais de buriti (dados de Cunha et al., 2012b).

120	0,6989	120	1,22	120	2,6936	120	4,48	120	5,2302	120	9,64	120	9,54	120	14,03
125	0,7192	125	1,28	125	2,8083	125	4,61	125	5,2796	125	10,03	125	9,84	125	14,86
130	0,7275	130	1,31	130	2,9034	130	4,74	130	5,3226	130	10,39	130	10,22	130	15,68
135	0,7482	135	1,36	135	2,9837	135	4,86	135	5,3597	135	10,73	135	10,56	135	16,48
140	0,764	140	1,4	140	3,062	140	5,03	140	5,3996	140	11,08	140	10,9	140	17,27
145	0,783	145	1,46	145	3,1511	145	5,2	145	5,4375	145	11,38	145	11,24	145	18,02
150	0,8083	150	1,49	150	3,2408	150	5,31	150	5,474	150	11,78	150	11,57	150	18,74
155	0,8208	155	1,53	155	3,3312	155	5,46	155	5,5101	155	12,09	155	11,91	155	19,51
160	0,8299	160	1,58	160	3,4072	160	5,59	160	5,5454	160	12,5	160	12,28	160	20,26
165	0,8532	165	1,63	165	3,4742	165	5,7	165	5,5724	165	12,87	165	12,59	165	21,08
170	0,8758	170	1,67	170	3,5481	170	5,81	170	5,5934	170	13,22	170	12,89	170	21,91
175	0,8947	175	1,71	175	3,603	175	5,92	175	5,6132	175	13,51	175	13,21	175	22,69
180	0,925	180	1,74	180	3,6728	180	6,01	180	5,6272	180	13,88	180	13,57	180	23,51
185	0,9464	185	1,78	185	3,7425	185	6,11			185	14,21	185	13,91	185	24,36
190	0,9643	190	1,83	190	3,8198	190	6,2			190	14,54	190	14,21	190	25,24
195	0,9845	195	1,9	195	3,8827	195	6,29			195	14,88	195	14,52	195	26,05
200	0,9944	200	1,94	200	3,9441	200	6,38			200	15,26	200	14,86	200	26,82
205	1,0044	205	2,02	205	4,0029	205	6,49			205	15,59	205	15,16	205	27,34
210	1,0249	210	2,06	210	4,0549	210	6,6			210	15,9	210	15,48	210	27,87
215	1,0422	215	2,1	215	4,1083	215	6,72			215	16,26	215	15,76	215	28,43
220	1,0638	220	2,13	220	4,1546	220	6,85			220	16,58	220	16,06	220	29
225	1,0811	225	2,16	225	4,2055	225	6,95			225	16,88	225	16,39	225	29,51
230	1,0964	230	2,19	230	4,2594	230	7,06			230	17,19	230	16,68	230	29,98
235	1,1094	235	2,22	235	4,3254	235	7,18			235	17,51	235	16,96	235	30,47
240	1,116	240	2,25	240	4,3821	240	7,33			240	17,84	240	17,29	240	30,94
8.2.2.2 Buriti (dados de Rüster, 1997)

Modelos		Parâmetros Estatísticos			
		Erro Médio	Desvio Padrão	Faixa de Erro	
Tan e Liou (1989)	EXCEL	0,323	0,265	0,105	
	ORIGIN	0,263	0,565	0,211	
Goto et al. (1993)	EXCEL	0,556	0,325	0,732	
	ORIGIN	0,013	0,011	0,122	
Esquível <i>et al.</i> (1999)	EXCEL	0,046	0,028	0,097	
	ORIGIN	0,012	0,007	0,027	
Martínez et al. (2003)	EXCEL	0,049	0,016	0,107	
	ORIGIN	0,067	0,008	0,263	
Sovová (1994)	Aplicativo	0,01	0,01	0,02	

Tabela 18: Ajuste da cinética Origin/Excel de buriti (Rüster, 1997) - EXP II.

Modelos		Parâmetros Estatísticos				
		Erro Médio	Desvio Padrão	Faixa de Erro		
Tan e Liou (1989)	EXCEL	0,361	0,343	0,98		
	ORIGIN	1,319	1,036	2,603		
Goto <i>et al.</i> (1993)	EXCEL	0,045	0,034	0,099		
	ORIGIN	0,009	0,006	0,015		
Esquível <i>et al.</i> (1999)	EXCEL	0,051	0,035	0,135		
	ORIGIN	0,041	0,041	0,113		
Martínez et al. (2003)	EXCEL	0,03	0,01	0,09		
	ORIGIN	0,025	0,01	0,08		
Sovová (1994)	Aplicativo	0,051	0,066	0,009		

Tabela 19: Ajuste da cinética Origin/Excel de buriti (Rüster, 1997) - EXP III.

Figura 27: Cinética comparativa Origin/Excel de buriti (Rüster, 1997) - EXP III.

Modelos		Parâmetros Estatísticos				
		Erro Médio	Desvio Padrão	Faixa de Erro		
	EXCEL	0,049	0,029	0,076		
Tan e Liou (1989)						
	ORIGIN	0,864	0,604	1,50		
Goto ot al. (1003)	EXCEL	0,045	0,034	0,099		
Gold <i>et al.</i> (1993)	ORIGIN	0,009	0,006	0,015		
	EXCEL	0,058	0,036	0,106		
Esquível <i>et al.</i> (1999)	ORIGIN	0,039	0,04	0,079		
	EXCEL	0,243	0,188	0,111		
Martínez <i>et al.</i> (2003)	ORIGIN	0,069	0,048	0,011		
Sovová (1994)	Aplicativo	0,051	0,066	0,009		

Tabela 20: Ajuste da cinética Origin/Excel de buriti (Rüster, 1997) - EXP IV.

Figura 28: Cinética comparativa Origin/Excel de buriti (Rüster, 1997) - EXP IV

Modelos		Parâmetros Estatísticos					
		Erro Médio	Desvio Padrão	Faixa de Erro			
Tan e Liou (1989)	EXCEL	0,369	0,258	0,884			
	ORIGIN	0,808	0,456	1,58			
Goto <i>et al.</i> (1993)	EXCEL	0,021	0,015	0,032			
	ORIGIN	0,012	0,01	0,028			
Esquível <i>et al.</i> (1999)	EXCEL	0,039	0,031	0,099			
	ORIGIN	0,039	0,032	0,07			
Martínez et al. (2003)	EXCEL	0,075	0,046	0,169			
	ORIGIN	0,061	0,061	0,165			
Sovová (1994)	Aplicativo	0,068	0,037	0,133			

Tabela 21: Ajuste da cinética Origin/Excel de buriti (Rüster, 1997) - EXP V.

Figura 29: Cinética comparativa Origin/Excel de buriti (Rüster, 1997) - EXP V.

Modelos		Parâmetros Estatísticos					
		Erro Médio	Desvio Padrão	Faixa de Erro			
Tan e Liou (1989)	EXCEL	0,021	0,021	0,075			
	ORIGIN	0,021	0,022	0,08			
Goto <i>et al.</i> (1993)	EXCEL	0,015	0,011	0,002			
	ORIGIN	0,014	0,010	0,042			
Esquível <i>et al.</i> (1999)	EXCEL	0,019	0,019	0,068			
	ORIGIN	0,019	0,019	0,07			
Martínez et al. (2003)	EXCEL	0,027	0,021	0,092			
	ORIGIN	0,013	0,011	0,094			
Sovová (1994)	Aplicativo	0,017	0,024	0,0815			

Tabela 22: Ajuste da cinética Origin/Excel de buriti (Rüster, 1997) - EXP VII.

Figura 30 Cinética comparativa Origin/Excel de buriti (Rüster, 1997) - EXP VII.

Modelos		Parâmetros Estatísticos					
		Erro Médio	Desvio Padrão	Faixa de Erro			
Tan e Liou (1989)	EXCEL	0,385	0,27	0,864			
	ORIGIN	0,732	0,545	1,337			
Goto <i>et al.</i> (1993)	EXCEL	0,022	0,015	0,053			
	ORIGIN	0,010	0,007	0,017			
Esquível <i>et al.</i> (1999)	EXCEL	0,050	0,041	0,119			
	ORIGIN	0,038	0,045	0,13			
Martínez et al. (2003)	EXCEL	0,085	0,058	0,185			
	ORIGIN	0,06	0,035	0,191			
Sovová (1994)	Aplicativo	0,031	0,035	0,013			

Tabela 23: Ajuste da cinética Origin/Excel de buriti (Rüster, 1997) - EXP VIII.

Figura 31: Cinética comparativa Origin/Excel de buriti (Rüster, 1997) - EXP VIII.

Modelos		Parâmetros Estatísticos				
		Erro Médio	Desvio Padrão	Faixa de Erro		
Tan e Liou (1989)	EXCEL	0,391	0,267	0,769		
	ORIGIN	0,601	0,482	1,155		
Goto <i>et al.</i> (1993)	EXCEL	0,03	0,019	0,064		
	ORIGIN	0,004	0,003	0,011		
Esquível <i>et al.</i> (1999)	EXCEL	0,065	0,048	0,116		
	ORIGIN	0,062	0,051	0,14		
Martínez et al. (2003)	EXCEL	0,087	0,069	0,17		
	ORIGIN	0,079	0,071	0,017		
Sovová (1994)	Aplicativo	0,047	0,165	0,039		

Tabela 24: Ajuste da cinética Origin/Excel de buriti (Rüster, 1997) - EXP XI.

Figura 32: Cinética comparativa Origin/Excel de buriti (Rüster, 1997) - EXP XI.

Modelos		Parâmetros Estatísticos				
		Erro Médio	Desvio Padrão	Faixa de Erro		
Tan e Liou (1989)	EXCEL	0,031	0,029	0,009		
	ORIGIN	2,27	1,844	4,345		
Goto et al. (1993)	EXCEL	0,046	0,038	0,0350		
	ORIGIN	0,003	0,003	0,005		
Esquível <i>et al.</i> (1999)	EXCEL	0,043	0,036	0,092		
	ORIGIN	0,043	0,037	0,042		
Martínez et al. (2003)	EXCEL	0,053	0,044	0,111		
	ORIGIN	0,048	0,105	0,025		
Sovová (1994)	Aplicativo	0,020	0,074	0,024		

Tabela 25: Ajuste da cinética Origin/Excel de buriti (Rüster, 1997) - EXP XIII.

Figura 33: Cinética comparativa Origin/Excel de buriti (Rüster, 1997) - EXP XIII.

Modelos		Parâmetros Estatísticos					
		Erro Médio	Desvio Padrão	Faixa de Erro			
Tan e Liou (1989)	EXCEL	0,106	0,089	0,268			
	ORIGIN	1,051	0,733	1,889			
Goto et al. (1993)	EXCEL	0,037	0,029	0,004			
	ORIGIN	0,009	0,007	0,012			
Esquível <i>et al.</i> (1999)	EXCEL	0,021	0,014	0,042			
	ORIGIN	0,02	0,016	0,041			
Martínez et al. (2003)	EXCEL	0,046	0,034	0,073			
	ORIGIN	0,039	0,183	0,043			
Sovová (1994)	Aplicativo	0,055	0,046	0,129			

Tabela 26: Ajuste da cinética Origin/Excel de buriti (Rüster, 1997) - EXP XV.

Figura 34: Cinética comparativa Origin/Excel de buriti (Rüster, 1997) - EXP XV.

EXF	>	EXF	2	EXF	P IV	EXI	۶V	EXF	P VII	EXP	VIII	EXF	י XI	EXP	XIII
Tempo	Massa														
(S)	(Kg)	(S)	(K <u></u> g)												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
647,17	4,1 x10 ⁻⁴	465,0567	2,5 x10 ^{-⁴}	850,9442	3,2 x10 ⁻⁴	261,5125	1,3 x10 ⁻⁴	359,8691	1x10 ⁻⁴	260,7914	1 x10 ⁻⁴	381,7693	1,4 x10 ⁻⁴	298,6907	8 x10⁻⁵
1245,476	0,00116	1062,204	0,00102	1153,616	5,8 x10 ⁻⁴	790,3156	4,7 x10 ⁻⁴	928,7241	2,4x10 ⁻⁴	1005,036	5,3 x10 ⁻⁴	992,636	5,3 x10⁻⁴	860,2291	4,6 x10 ⁻⁴
1868,473	0,00187	1733,971	0,0019	1581,953	9,6 x10 ⁻⁴	1324,929	7,9 x10 ⁻⁴	1543,969	4,1x10 ⁻⁴	1717,482	9,3 x10 ⁻⁴	1539,845	8,7 x10 ⁻⁴	1379,951	8,2 x10 ⁻⁴
2429,914	0,00235	2457,407	0,00289	2035,815	0,00141	1830,49	0,00112	2089,597	5,7 x10 ⁻⁴	2353,597	0,00124	2087,053	0,00118	1857,856	0,00108
3064,876	0,00324	2985,64	0,00368	2655,612	0,0018	2370,914	0,0014	2681,679	7,4 x10 ⁻⁴	2875,18	0,00144	2672,457	0,00141	2538,871	0,00135
3797,499	0,00412	3709,076	0,00444	3072,521	0,00211	2905,528	0,00158	3273,697	9,2 x10 ⁻⁴	3409,532	0,00159	3595,123	0,00164	3243,781	0,00155
4408,046	0,00476	4208,622	0,00503	4054,828	0,00257	3451,763	0,00172	4202,421	0,00117	4363,669	0,00174	4517,753	0,00178	3960,638	0,00168
5030,801	0,00536	4731,086	0,00568	4923,09	0,00283	4329,206	0,00195	5061,461	0,00136	5190,612	0,00186	6000,323	0,00189	EXP	VXV
														Tempo	Massa
5824,496	0,0059	5259,319	0,00633	6150,773	0,00299	5177,628	0,00204	5641,897	0,00149	6380,144	0,00194	6302,977	0,0019	(S)	(kg)
6264,069	0,00648	5804,797	0,00696	7144,474	0,00311	5741,295	0,00209	6303,599	0,00162	6901,727	0,00196			0	0
6929,429	0,00696	7079,417	0,00837	7801,255	0,00317	6299,151	0,0021	7000,174	0,00173					355,4488	6,00E-05
7515,666	0,00754	8118,671	0,00941					7499,346	0,00179					1039,57	2,10E-04
8138,421	0,00797	9255,494	0,01043					8103,01	0,00183					1985,234	4,80E-04
8724,519	0,00843	10444,02	0,01136											3058,331	7,50E-04
9286,202	0,00883	11058,38	0,0117											3970,43	9,10E-04
9890,628	0,00927	11844,96	0,01216											4862,465	0,00105
10562,21	0,00971	12476,56	0,01237											6002,617	0,00123
11282,66	0,01014	13027,75	0,0125											7370,822	0,00142
11966,46	0,01057	13596,18	0,01262											8618,306	0,00161
12491,52	0,01086	14244,96	0,01277											9362,731	0,00172
13132,56	0,0112	15002,85	0,01293												
13688,16	0,01151														
14304,8	0,01182														
14878,69	0,0121														

 Tabela 27: Dados experimentais de buriti (dados de Rüster, 1997).

15635,76	0,01231
16234,06	0,01264
16173,03	0,01283
16734,71	0,01309
17461,24	0,01328
17998,51	0,01345

8.2.2.3 Açaí (dados de Souza, 2006)

Modelos		Parâmetros Estatísticos					
		Erro Médio	Desvio Padrão	Faixa de Erro			
Tan e Liou (1989)	EXCEL	0,039	0,0240	0,071			
	ORIGIN	0,046	0,035	0,062			
Goto <i>et al.</i> (1993)	EXCEL	0,023	0,016	0,023			
	ORIGIN	0,022	0,017	0,005			
Esquível <i>et al.</i> (1999)	EXCEL	0,054	0,032	0,0932			
	ORIGIN	0,055	0,113	0,035			
Martínez et al. (2003)	EXCEL	0,091	0,062	0,182			
	ORIGIN	0,089	0,056	0,143			
Sovová (1994)	Aplicativo	0,05	0,063	0,076			

Tabela 28: Ajuste da cinética Origin/Excel de açaí a 40 °C e 200 bar (EXP 1).

Figura 35: Cinética comparativa Origin/Excel de açaí a 40 °C e 200 bar (EXP 1).

Modelos	Parâmetros Estatísticos				
		Erro Médio	Desvio Padrão	Faixa de Erro	
Tan e Liou (1989)	EXCEL	0,075	0,054	0,167	
	ORIGIN	0,07	0,212	0,189	
Goto et al. (1993)	EXCEL	0,066	0,056	0,133	
	ORIGIN	0,006	0,060	0,011	
Esquível <i>et al.</i> (1999)	EXCEL	0,073	0,039	0,11	
	ORIGIN	0,043	0,032	0,104	
Martínez <i>et al.</i> (2003)	EXCEL	0,070	0,04	0,142	
	ORIGIN	0,082	0,031	0,186	
Sovová (1994)	Aplicativo	0,03	0,037	0,160	

 Tabela 29: Ajuste da cinética Origin/Excel de açaí a 40 °C e 200 bar (EXP 2).

Figura 36: Cinética comparativa Origin/Excel de açaí a 40 °C e 200 bar (EXP 2).

Modelos		Pa	râmetros Estatís	ticos	
		Erro Médio	Desvio Padrão	Faixa de Erro	
Tan e Liou (1989)	EXCEL	0,01	0,006	0,016	
	ORIGIN	0,01	0,006	0,018	
Goto <i>et al.</i> (1993)	EXCEL	0,021	0,021	0,019	
	ORIGIN	0,01	0,010	0,016	
Esquível <i>et al.</i> (1999)	EXCEL	0,072	0,048	0,158	
	ORIGIN	0,056	0,057	0,168	
Martínez <i>et al.</i> (2003)	EXCEL	0,402	0,157	0,437	
	ORIGIN	0,084	0,072	0,244	
Sovová (1994)	Aplicativo	0,051	0,115	0,045	

Tabela 30: Ajuste da cinética Origin/Excel de açaí a 40 °C e 250 bar (EXP 1).

Figura 37: Cinética comparativa Origin/Excel de açaí a 40 °C e 250 bar (EXP 1).

Modelos		Pa	râmetros Estatís	ticos	
		Erro Médio	Desvio Padrão	Faixa de Erro	
Tan e Liou (1989)	EXCEL	0,013	0,012	0,036	
	ORIGIN	0,014	0,013	0,032	
Goto <i>et al.</i> (1993)	EXCEL	0,728	0,299	0,823	
	ORIGIN	0,014	0,01	0,025	
Esquível <i>et al.</i> (1999)	EXCEL	0,585	0,198	0,594	
	ORIGIN	0,082	0,054	0,17	
Martínez <i>et al.</i> (2003)	EXCEL	0,394	0,151	0,413	
	ORIGIN	0,112	0,07	0,245	
Sovová (1994)	Aplicativo	0,043	0,035	0,084	

Tabela 31: Ajuste da cinética Origin/Excel de açaí a 40 °C e 250 bar (EXP 2).

Figura 38: Cinética comparativa Origin/Excel de açaí a 40 °C e 250 bar (EXP 2).

Modelos		Pa	râmetros Estatís	ticos	
		Erro Médio	Desvio Padrão	Faixa de Erro	
Tan e Liou (1989)	EXCEL	0,059	0,038	0,059	
	ORIGIN	0,071	0,033	0,09	
Goto et al. (1993)	EXCEL	0,016	0,014	0,041	
	ORIGIN	0,025	0,02	0,049	
Esquível <i>et al.</i> (1999)	EXCEL	0,053	0,034	0,118	
	ORIGIN	0,051	0,061	0,134	
Martínez <i>et al.</i> (2003)	EXCEL	0,108	0,066	0,216	
	ORIGIN	0,079	0,075	0,228	
Sovová (1994)	Aplicativo	0,029	0,065	0,008	

Tabela 32: Ajuste da cinética Origin/Excel de açaí a 40 °C e 300 bar (EXP 1).

Figura 39: Comparação entre os resultados Origin/Excel da cinética, de extração do óleo do açaí a 40 °C e 300 bar (EXP1).

Modelos		Parâmetros Estatísticos				
		Erro Médio	Desvio Padrão	Faixa de Erro		
Tan e Liou (1989)	EXCEL	0,069	0,044	0,123		
	ORIGIN	0,067	0,052	0,129		
Goto <i>et al.</i> (1993)	EXCEL	0,028	0,019	0,065		
	ORIGIN	0,007	0,004	0,013		
Esquível <i>et al.</i> (1999)	EXCEL	0,081	0,039	0,161		
	ORIGIN	0,077	0,028	0,154		
Martínez et al. (2003)	EXCEL	0,108	0,069	0,134		
	ORIGIN	0,093	0,076	0,239		
Sovová (1994)	Aplicativo	0,283	0,119	0,284		

Tabela 33: Ajuste da cinética Origin/Excel de açaí a 40 °C e 300 bar (EXP 2).

Figura 40: Cinética comparativa Origin/Excel de açaí a 40 °C e 300 bar (EXP 2).

Modelos		Pa	Parâmetros Estatísticos				
		Erro Médio	Desvio Padrão	Faixa de Erro			
Tan e Liou (1989)	EXCEL	0,083	0,045	0,074			
	ORIGIN	0,088	0,040	0,098			
Goto <i>et al.</i> (1993)	EXCEL	0,068	0,051	0,099			
	ORIGIN	0,144	0,05	0,131			
Esquível <i>et al.</i> (1999)	EXCEL	0,122	0,057	0,175			
	ORIGIN	0,119	0,049	0,166			
Martínez <i>et al.</i> (2003)	EXCEL	0,455	0,197	0,549			
	ORIGIN	0,182	0,083	0,333			
Sovová (1994)	Aplicativo	0,092	0,093	0,251			

Tabela 34: Ajuste da cinética Origin/Excel de açaí a 50 °C e 200 bar (EXP 1).

Figura 41: Cinética comparativa Origin/Excel de açaí a 50 °C e 200 bar (EXP 1).

Modelos		Parâmetros Estatísticos					
		Erro Médio	Desvio Padrão	Faixa de Erro			
Tan e Liou (1989)	EXCEL	0,057	0,03	0,078			
	ORIGIN	0,057	0,034	0,102			
Goto <i>et al.</i> (1993)	EXCEL	0,025	0,016	0,051			
	ORIGIN	0,017	0,013	0,035			
Esquível <i>et al.</i> (1999)	EXCEL	0,085	0,046	0,126			
	ORIGIN	0,081	0,036	0,169			
Martínez <i>et al.</i> (2003)	EXCEL	0,458	0,198	0,006			
	ORIGIN	0,087	0,053	0,176			
Sovová (1994)	Aplicativo	0,068	0,048	0,07			

Tabela 35: Ajuste da cinética Origin/Excel de açaí a 50 °C e 200 bar (EXP 2).

Figura 42: Cinética comparativa Origin/Excel de açaí a 50 °C e 200 bar (EXP 2).

Modelos		Parâmetros Estatísticos					
		Erro Médio	Desvio Padrão	Faixa de Erro			
Tan e Liou (1989)	EXCEL	0,0215	0,033	0,109			
	ORIGIN	0,063	0,05	0,051			
Goto <i>et al.</i> (1993)	93) EXCEL (0,018	0,060			
	ORIGIN	0,054	0,030	0,002			
Esquível <i>et al.</i> (1999)	EXCEL	0,064	0,029	0,120			
	ORIGIN	0,066	0,038	0,085			
Martínez <i>et al.</i> (2003)	EXCEL	0,106	0,611	0,189			
	ORIGIN	0,087	0,053	0,176			
Sovová (1994)	Aplicativo	0,035	0,020	0,064			

Tabela 36: Ajuste da cinética Origin/Excel de açaí a 50 °C e 250 bar (EXP 1).

Figura 43: Cinética comparativa Origin/Excel de açaí a 50 °C e 250 bar (EXP 1).

Modelos		Pa	râmetros Estatís	ros Estatísticos			
		Erro Médio	Desvio Padrão	Faixa de Erro			
Tan e Liou (1989)	EXCEL	0,078	0,027	0,043			
	ORIGIN	0,078	0,035	0,062			
Goto <i>et al.</i> (1993)	EXCEL	0,047	0,026	0,071			
	ORIGIN	0,028	0,021	0,063			
Esquível <i>et al.</i> (1999)	EXCEL	0,117	0,056	0,182			
	ORIGIN	0,115	0,071	0,207			
Martínez <i>et al.</i> (2003)	EXCEL	0,464	0,186	0,505			
	ORIGIN	0,151	0,08	0,227			
Sovová (1994)	Aplicativo	0,037	0,033	0,052			

Tabela 37: Ajuste da cinética Origin/Excel de açaí a 50 °C e 250 bar (EXP2).

Figura 44: Cinética comparativa Origin/Excel de açaí a 50 °C e 250 bar (EXP 2).

Modelos		Pa	râmetros Estatís	ticos	
		Erro Médio	Desvio Padrão	Faixa de Erro	
Tan e Liou (1989)	EXCEL	0,041	0,020	0,062	
	ORIGIN	0,041	0,023	0,064	
Goto <i>et al.</i> (1993)	EXCEL	0,045	0,023	0,079	
	ORIGIN	0,034	0,016	0,061	
Esquível <i>et al.</i> (1999)	EXCEL	0,126	0,064	0,185	
	ORIGIN	0,122	0,077	0,166	
Martínez et al. (2003)	EXCEL	0,44	0,155	0,428	
	ORIGIN	0,129	0,086	0,24	
Sovová (1994)	Aplicativo	0,033	0,073	0,188	

Tabela 38: Ajuste da cinética Origin/Excel de açaí a 50 °C e 300 bar (EXP 1).

Figura 45: Cinética comparativa Origin/Excel de açaí a 50 °C e 300 bar (EXP 1).

Modelos		Parâmetros Estatísticos				
		Erro Médio	Desvio Padrão	Faixa de Erro		
Tan e Liou (1989)	EXCEL	0,039	0,025	0,066		
	ORIGIN	0,039	0,025	0,072		
Goto <i>et al.</i> (1993)	EXCEL	0,05	0,026	0,081		
	ORIGIN	0,029	0,019	0,06		
Esquível <i>et al.</i> (1999)	EXCEL	0,137	0,071	0,199		
	ORIGIN	0,114	0,133	0,228		
Martínez <i>et al.</i> (2003)	EXCEL	0,394	0,158	0,427		
	ORIGIN	0,165	0,1	0,305		
Sovová (1994)	Aplicativo	0,056	0,073	0,066		

Tabela 39: Ajuste da cinética Origin/Excel de açaí a 50 °C e 300 bar (EXP 2).

Figura 46: Cinética comparativa Origin/Excel de açaí a 50 °C e 300 bar (EXP2).

	200 bar/40°C)		200 bar/50°C				250 bar/40°C				250 bar/50°C			
E	(P 1	ΕX	(P 2	E	XP 1	EX	(P 2	E	XP 1	ΕX	(P 2	E	(P 1	ΕX	(P 2
Tempo	Massa	Tempo	Massa	Tempo	Massa	Tempo	Massa	Tempo	Massa	Tempo	Massa	Tempo	Massa	Tempo	Massa
(s)	(kg)	(s)	(kg)	(s)	(kg)	(s)	(kg)	(s)	(kg)	(s)	(kg)	(s)	(kg)	(s)	(kg)
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
600	0,000484	600	0,000837	600	0,001089	600	0,000438	600	0,000654	600	0,000639	600	0,000107	600	0,000767
1200	0,000746	1200	0,001474	1200	0,001445	1200	0,00085	1200	0,001317	1200	0,001376	1200	0,000689	1200	0,001414
1800	0,001243	1800	0,001977	1800	0,001761	1800	0,001221	1800	0,001823	1800	0,001919	1800	0,001103	1800	0,001759
2700	0,001903	2700	0,002438	2700	0,002056	2700	0,001651	2700	0,002408	2700	0,002425	2700	0,001517	2700	0,002147
3600	0,002263	3600	0,002758	3600	0,002273	3600	0,001979	3600	0,002784	3600	0,002742	3600	0,001824	3600	0,002435
4800	0,002576	4800	0,003033	4800	0,002535	4800	0,002148	4800	0,003107	4800	0,003087	4800	0,002041	4800	0,002571
6000	0,002792	6000	0,003222	6000	0,002691	6000	0,002378	6000	0,003335	6000	0,003283	6000	0,002296	6000	0,002733
7200	0,002949	7200	0,003357	7200	0,002859	7200	0,00255	7200	0,003509	7200	0,003424	7200	0,002468	7200	0,002903
9000	0,003137	9000	0,00342	9000	0,003043	9000	0,002734	9000	0,003711	9000	0,003599	9000	0,002643	9000	0,003097
10800	0,003198	10800	0,003473	10800	0,003238	10800	0,00295	10800	0,003822	10800	0,003722	10800	0,002765	10800	0,003229
					300 bar/40°C				300 bar/50°C	;					
				E	XP 1	Ε>	(P 2	E	XP 1	Ε>	(P 2				
				Tempo	Massa	Tempo	Massa	Tempo	Massa	Tempo	Massa				
				(s)	(kg)	(s)	(kg)	(s)	(kg)	(s)	(kg)				
				0	0	0	0	0	0	0	0				
				600	0,000484	600	0,000837	600	0,001067	600	0,001361				
				1200	0,000746	1200	0,001474	1200	0,001865	1200	0,002258				
				1800	0,001243	1800	0,001977	1800	0,002228	1800	0,002648				
				2700	0,001903	2700	0,002438	2700	0,002695	2700	0,003114				

Tabela 40: Dados experimentais de açaí.

3600	0,002263	3600	0,002758	3600	0,002923	3600	0,003242
4800	0,002576	4800	0,003033	4800	0,003091	4800	0,003412
6000	0,002792	6000	0,003222	6000	0,003241	6000	0,003562
7200	0,002949	7200	0,003357	7200	0,003362	7200	0,003683
9000	0,003137	9000	0,00342	9000	0,003489	9000	0,0038
10800	0,003198	10800	0,003473	10800	0,003589	10800	0,00391

Modelos Parâmetros Estatísticos					
		Erro Médio	Desvio Padrão	Faixa de Erro	
Tan e Liou (1989)	EXCEL	0,107	0,058	0,181	
	ORIGIN	0,106	0,059	0,174	
Goto <i>et al.</i> (1993)	EXCEL	0,01	0,009	0,028	
	ORIGIN	0,008	0,006	0,016	
Esquível <i>et al.</i> (1999)	EXCEL	0,109	0,058	0,179	
	ORIGIN	0,112	0,065	0,207	
Martínez et al. (2003)	EXCEL	0,165	0,073	0,160	
	ORIGIN	0,137	0,241	0,075	
Sovová (1994)	Aplicativo	0,068	0,058	0,068	

8.2.2.4 Cúrcuma (dados de Chassagnez-Méndez, 1998)

 Tabela 41: Ajuste da cinética Origin/Excel de cúrcuma a 45 °C e 250 bar (EXP 1A).

Figura 47: Cinética comparativa Origin/Excel de cúrcuma a 45 °C e 250 bar (EXP 1A).

Modelos		Parâmetros Estatísticos				
		Erro Médio	Desvio Padrão	Faixa de Erro		
Tan e Liou (1989)	EXCEL	0,089	0,046	0,158		
	ORIGIN	0,085	0,055	0,172		
Goto <i>et al.</i> (1993)	EXCEL	0,013	0,014	0,035		
	ORIGIN	0,012	0,011	0,019		
Esquível <i>et al.</i> (1999)	EXCEL	0,0958	0,045	0,151		
	ORIGIN	0,112	0,065	0,207		
Martínez et al. (2003)	EXCEL	0,138	0,057	0,1476		
	ORIGIN	0,106	0,241	0,075		
Sovová (1994)	Aplicativo	0,093	0,068	0,037		

Tabela 42: Ajuste da cinética Origin/Excel de cúrcuma a 45°C e de 200 bar (EXP 1B).

Figura 48: Cinética comparativa Origin/Excel de cúrcuma temperatura de 45°C e pressão de 200 bar (EXP 1B).

Modelos	Modelos Parâmetros Estatísticos					
		Erro Médio	Desvio Padrão	Faixa de Erro		
Tan e Liou (1989)	EXCEL	0,118	0,058	0,159		
	ORIGIN	0,114	0,06	0,109		
Goto <i>et al.</i> (1993)	EXCEL	0,012	0,016	0,048		
	ORIGIN	0,013	0,011	0,034		
Esquível <i>et al.</i> (1999)	EXCEL	0,118	0,058	0,156		
	ORIGIN	0,114	0,197	0,06		
Martínez <i>et al.</i> (2003)	EXCEL	0,147	0,069	0,146		
	ORIGIN	0,107	0,209	0,07		
Sovová (1994)	Aplicativo	0,135	0,086	0,062		

 Tabela 43: Ajuste da cinética Origin/Excel de cúrcuma a 45°C e 200 bar (EXP 2A).

 Modelos
 Parâmetros Estatísticos

Figura 49: Cinética comparativa Origin/Excel de cúrcuma a 45°C e 200 bar (EXP 2A).

Modelos		Pa	Parametros Estatísticos			
		Erro Médio	Desvio Padrão	Faixa de Erro		
Tan e Liou (1989)	EXCEL	0,039	0,026	0,068		
	ORIGIN	0,039	0,027	0,064		
Goto et al. (1993)	EXCEL	0,042	0,059	0,179		
	ORIGIN	0,033	0,020	0,047		
Esquível <i>et al.</i> (1999)	EXCEL	0,858	0,277	0,762		
	ORIGIN	0,04	0,065	0,027		
Martínez et al. (2003)	EXCEL	0,883	0,573	1,641		
	ORIGIN	0,042	0,113	0,042		
Sovová (1994)	Aplicativo	0,049	0,041	0,004		

 Tabela 44: Ajuste da cinética Origin/Excel de cúrcuma a 45°C e 200 bar (EXP 2B).

 Modelos
 Parâmetros Estatísticos

Modelos Parâmetros Estatísticos				
		Erro Médio	Desvio Padrão	Faixa de Erro
Tan e Liou (1989)	EXCEL	0,120	0,072	0,180
	ORIGIN	0,121	0,07	0,189
Goto et al. (1993)	EXCEL	0,048	0,030	0,091
	ORIGIN	0,046	0,023	0,065
Esquível <i>et al.</i> (1999)	EXCEL	0,139	0,079	0,216
	ORIGIN	0,135	0,227	0,082
Martínez et al. (2003)	EXCEL	0,201	0,081	0,194
	ORIGIN	0,335	0,33	0,14
Sovová (1994)	Aplicativo	0,066	0,116	0,392

 Tabela 45: Ajuste da cinética Origin/Excel de cúrcuma a 45°C e 300 bar (EXP 3A)

 Modelos
 Parâmetros Estatísticos

Figura 51: Cinética comparativa Origin/Excel de cúrcuma a 45°C e 300 bar (EXP 3A).

Modelos Parâmetros Estatísticos				
		Erro Médio	Desvio Padrão	Faixa de Erro
Tan e Liou (1989)	EXCEL	0,036	0,036	0,106
	ORIGIN	0,038	0,034	0,099
Goto et al. (1993)	EXCEL	0,031	0,016	0,050
	ORIGIN	0,027	0,019	0,059
Esquível <i>et al.</i> (1999)	EXCEL	0,043	0,044	0,127
	ORIGIN	0,037	0,099	0,034
Martínez et al. (2003)	EXCEL	0,047	0,040	0,052
	ORIGIN	0,042	0,063	0,037
Sovová (1994)	Aplicativo	0,04	0,026	0,023

 Tabela 46: Ajuste da cinética Origin/Excel de cúrcuma a 45°C e 300 bar (EXP 3B).

 Modelos
 Parâmetros Estatísticos

Figura 52: Cinética comparativa Origin/Excel de cúrcuma a 45°C e 300 bar (EXP 3B).

Modelos		Parâmetros Estatísticos					
		Erro Médio	Desvio Padrão	Faixa de Erro			
Tan e Liou (1989)	EXCEL	0,081	0,037	0,115			
	ORIGIN	0,123	0,087	0,231			
Goto <i>et al.</i> (1993)	EXCEL	0,012	0,013	0,037			
	ORIGIN	0,012	0,010	0,024			
Esquível <i>et al.</i> (1999)	EXCEL	0,081	0,037	0,062			
	ORIGIN	0,077	0,138	0,047			
Martínez et al. (2003)	EXCEL	0,107	0,052	0,159			
	ORIGIN	0,091	0,139	0,054			
Sovová (1994)	Aplicativo	0,031	0,027	0,004			

Tabela 47: Ajuste da cinética Origin/Excel de cúrcuma a 45°C e 250 bar (EXP 4A).

Figura 53: Cinética comparativa Origin/Excel de cúrcuma a 45°C e 250 bar (EXP 4A).

Modelos Parâmetros Estatísticos					
		Erro Médio	Desvio Padrão	Faixa de Erro	
Tan e Liou (1989)	EXCEL	0,088	0,034	0,107	
	ORIGIN	0,08	0,052	0,181	
Goto <i>et al.</i> (1993)	EXCEL	0,019	0,016	0,047	
	ORIGIN	0,022	0,013	0,034	
Esquível <i>et al.</i> (1999)	EXCEL	0,105	0,033	0,105	
	ORIGIN	0,081	0,137	0,052	
Martínez et al. (2003)	EXCEL	0,117	0,043	0,122	
	ORIGIN	0,098	0,133	0,053	
Sovová (1994)	Aplicativo	0,032	0,026	0,027	

 Tabela 48: Ajuste da cinética Origin/Excel de cúrcuma a 45°C e 250 bar (EXP 4B).

 Modelos
 Parâmetros Estatísticos

Figura 54: Cinética comparativa Origin/Excel de cúrcuma a 45°C e 250 bar (EXP 4B).

Modelos Parâmetros Estatísticos				
		Erro Médio	Desvio Padrão	Faixa de Erro
Tan e Liou (1989)	EXCEL	0,096	0,059	0,176
	ORIGIN	0,094	0,06	0,172
Goto et al. (1993)	EXCEL	0,013	0,009	0,016
	ORIGIN	0,008	0,005	0,011
Esquível <i>et al.</i> (1999)	EXCEL	0,100	0,061	0,179
	ORIGIN	0,099	0,202	0,065
Martínez et al. (2003)	EXCEL	0,145	0,074	0,183
	ORIGIN	0,118	0,246	0,076
Sovová (1994)	Aplicativo	0,031	0,037	0,029

 Tabela 49: Ajuste da cinética Origin/Excel de cúrcuma a 45°C e 250 bar (EXP 5A).

 Modelos
 Parâmetros Estatísticos

Figura 55: Cinética comparativa Origin/Excel de cúrcuma a 45°C e 250 bar (EXP 5A).

Tabela 50: Aju	iste da	cinética	Origin/Excel	de cúrcuma	a 45°C e	pressão	de 250	bar
(EXP 6A).								

Modelos		Parâmetros Estatísticos				
		Erro Médio	Desvio Padrão	Faixa de Erro		
Tan e Liou (1989)	EXCEL	0,049	0,024	0,071		
	ORIGIN	0,05	0,025	0,074		
Goto <i>et al.</i> (1993)	EXCEL	0,032	0,015	0,042		
	ORIGIN	0,028	0,016	0,033		
Esquível <i>et al.</i> (1999)	EXCEL	0,097	0,056	0,168		
	ORIGIN	0,093	0,167	0,06		
Martínez et al. (2003)	EXCEL	0,162	0,089	0,261		
	ORIGIN	0,136	0,221	0,072		
Sovová (1994)	Aplicativo	0,021	0,023	0,023		

Figura 56: Cinética comparativa Origin/Excel de cúrcuma a 45°C e 250 bar (EXP 6A).

Tabela 51: Ajuste	da cinética	Origin/Excel	de cúrcuma	a 45°C e	pressão d	de 250	bar
(EXP 6B).							

Modelos		Parâmetros Estatísticos				
		Erro Médio	Desvio Padrão	Faixa de Erro		
Tan e Liou (1989)	EXCEL	0,088	0,043	0,151		
	ORIGIN	0,084	0,054	0,17		
Goto <i>et al.</i> (1993)	EXCEL	0,012	0,016	0,048		
	ORIGIN	0,013	0,011	0,034		
Esquível <i>et al.</i> (1999)	EXCEL	0,098	0,049	0,181		
	ORIGIN	0,094	0,183	0,056		
Martínez et al. (2003)	EXCEL	0,152	0,062	0,183		
	ORIGIN	0,123	0,242	0,067		
Sovová (1994)	Aplicativo	0,035	0,036	0,021		

Figura 57: Cinética comparativa Origin/Excel de cúrcuma a 45°C e 250 bar (EXP 6B).
EXP	'1A	EXP	1B	EXF	2A	EXF	2B	EX	P 3A	EX	P 3B
Tempo	Massa	Tempo	Massa	Tempo	Massa	Tempo	Massa	Tempo	Massa	Tempo	Massa
(s)	(kg)	(s)	(kg)	(s)	(kg)	(s)	(kg)	(s)	(kg)	(s)	(kg)
0	0	0	0	0	0	0	0	0	0	0	0
600	3,80x10 ⁻⁴	300	0,0002	600	0,00027	300	0,00003	300	0,00054	300	4x10 ⁻⁵
1200	7,20x10 ⁻⁴	900	0,00045	1200	0,00049	900	0,00011	900	0,00086	900	1,9x10 ⁻⁴
1800	9,20x10 ⁻⁴	1500	0,00066	1800	0,00065	1500	0,00016	1500	0,00103	1500	3x10⁻⁴
2400	0,00103	2100	0,00076	2400	0,00078	2100	0,00026	2100	0,00112	2100	4,8x10⁻⁴
3600	0,00116	2700	0,0009	3600	0,00085	2700	0,00038	2700	0,00119	2700	6,4x10 ⁻⁴
4800	0,00123	3900	0,00105	4800	0,00095	3900	0,00051	3900	0,00125	3900	7,3x10 ⁻⁴
6000	0,00127	5100	0,00112	6000	0,00101	5100	0,00061	5100	0,00129	5100	8,9x10 ⁻⁴
		6300	0,00116			6300	0,00065			6300	0,00108
EXP	4A	EXP	94B	EXF	9 5A	EXF	9 6 A	EX	P 6B		
Tempo	Massa	Tompo	Massa	Tempo	Massa	Tempo	Massa	Tempo	Massa		
rompo	Massa	rempo									
(s)	(kg)	(s)	(kg)	(s)	(kg)	(s)	(kg)	(s)	(kg)		
(s) 0	(kg) 0	(s) 0	(kg) 0	(s) 0	(kg) 0	(s) 0	(kg) 0	(s) 0	(kg) 0		
(s) 0 300	(kg) 0 0,00016	(s) 0 300	(kg) 0 0,00015	(s) 0 300	(kg) 0 0,00013	(s) 0 300	(kg) 0 0,00021	(s) 0 300	(kg) 0 0,00028		
(s) 0 300 900	(kg) 0 0,00016 0,00033	(s) 0 300 900	(kg) 0 0,00015 0,00033	(s) 0 300 900	(kg) 0 0,00013 0,00041	(s) 0 300 900	(kg) 0 0,00021 0,00053	(s) 0 300 900	(kg) 0 0,00028 0,00058		
(s) 0 300 900 1500	(kg) 0 0,00016 0,00033 0,00053	(s) 0 300 900 1500	(kg) 0 0,00015 0,00033 0,00045	(s) 0 300 900 1500	(kg) 0 0,00013 0,00041 0,00063	(s) 0 300 900 1500	(kg) 0 0,00021 0,00053 0,00087	(s) 0 300 900 1500	(kg) 0 0,00028 0,00058 0,0008		
(s) 0 300 900 1500 2100	(kg) 0 0,00016 0,00033 0,00053 0,00064	(s) 0 300 900 1500 2100	(kg) 0 0,00015 0,00033 0,00045 0,00055	(s) 0 300 900 1500 2100	(kg) 0 0,00013 0,00041 0,00063 0,00078	(s) 0 300 900 1500 2100	(kg) 0 0,00021 0,00053 0,00087 0,00103	(s) 0 300 900 1500 2100	(kg) 0 0,00028 0,00058 0,0008 0,00097		
(s) 0 300 900 1500 2100 2700	(kg) 0 0,00016 0,00033 0,00053 0,00064 0,00076	(s) 0 300 900 1500 2100 2700	(kg) 0 0,00015 0,00033 0,00045 0,00055 0,00064	(s) 0 300 900 1500 2100 2700	(kg) 0 0,00013 0,00041 0,00063 0,00078 0,00086	(s) 0 300 900 1500 2100 2700	(kg) 0 0,00021 0,00053 0,00087 0,00103 0,00112	(s) 0 300 900 1500 2100 2700	(kg) 0 0,00028 0,00058 0,0008 0,00097 0,0011		
(s) 0 300 900 1500 2100 2700 3900	(kg) 0 0,00016 0,00033 0,00053 0,00064 0,00076 0,00089	(s) 0 300 900 1500 2100 2700 3900	(kg) 0 0,00015 0,00033 0,00045 0,00055 0,00064 0,0008	(s) 0 300 900 1500 2100 2700 3900	(kg) 0 0,00013 0,00041 0,00063 0,00078 0,00086 0,00096	(s) 0 300 900 1500 2100 2700 3900	(kg) 0 0,00021 0,00053 0,00087 0,00103 0,00112 0,00113	(s) 0 300 900 1500 2100 2700 3900	(kg) 0 0,00028 0,00058 0,0008 0,00097 0,0011 0,00124		
(s) 0 300 900 1500 2100 2700 3900 5100	(kg) 0 0,00016 0,00033 0,00053 0,00053 0,00064 0,00076 0,00089 0,00097	(s) 0 300 900 1500 2100 2700 3900 5100	(kg) 0 0,00015 0,00033 0,00045 0,00045 0,00055 0,00064 0,0008 0,00087	(s) 0 300 900 1500 2100 2700 3900 5100	(kg) 0 0,00013 0,00041 0,00063 0,00078 0,00086 0,00096 0,00102	(s) 0 300 900 1500 2100 2700 3900 5100	(kg) 0 0,00021 0,00053 0,00087 0,00103 0,00112 0,00113 0,00117	(s) 0 300 900 1500 2100 2700 3900 5100	(kg) 0 0,00028 0,00058 0,0008 0,00097 0,0011 0,00124 0,0013		

 Tabela 52: Dados experimentais de cúrcuma.

8.3 ROTEIRO DE UTILIZAÇÃO DO AMBIENTE COMPUTACIONAL PARA O MODELO DE SOVOVÁ

8.3.1 Primeira etapa

Inicialmente serão inclusos os dados de entrada primários, mostrados na figura 6, que estão compreendidos no intervalo das cédulas B5 a B10, na célula B30 e no intervalo das cédulas B40 a B43.

	A	В		
1	DADOS EXPERIMENTAIS PARA A.annua -(QUISPE-CONDORI, 2005)			
2				
3				
4				
5	T (0C)	30		
6	P (bar)	400		
7	ρCO2 (kg/m3)	988,31		
8	QCO2(kg/s)	1,11E-05		
9	Mcer (kg/s)	7,67000E-07		
10	Ycer (kg/kg)	0,0081		
30	Xo	5.52	290E-02	
40	malim (kg)	0,05		
41	E 11170 (-)	0,678		
42	ρ _{sólido} (kg/m^3)	950		
43	Volume do leito (m^3)	1,63E-04		

Figura 58: Dados de Entrada Primários.

Estes dados serão medidos experimentalmente, por abordarem a configuração do leito de extração, como porosidade e volume do leito, dados referentes ao próprio experimento em si como os dados de vazão e densidade do fluido supercrítico usado na cinética, e dados calculados pelo aplicativo em Excel para ajuste de três retas (t_{CER}, M_{CER} e Y_{CER}). O aplicativo de três retas foi utilizado por representar com maior fidelidade o modelo de Sovová (1994) por calcular os tempos de extração t_{CER} e t_{FER}.

8.3.2 Segunda etapa

Nesta etapa serão inseridos os dados entrada secundários (figura 7), compreendidos entre os intervalos nas células B13 a B17 e B21 a B25. Dentre estes dados, estão os termos k_{Ya} e k_{Xa} , dois dos três parâmetros ajustáveis ao modelo de Sovová (1994), além de outros modelos calculados a partir das equações acessórias para esse modelo, dados medidos experimentalmente e dados calculados a partir do aplicativo de três retas, como no caso de t_{CER}, e valores estimados, como no caso do termo ´´fcortcer´´

13	Y* (kg/kg) exp	0,07
14	N	4,80E-02
15	ΔY exp	6,59E-02
16	kYa (s^-1) ajuste	8,20E-04
17	kXa (s^-1) ajuste	0,000064
21	tcer solver (min)	17,5
22	mextrato-total (kg)	0,0020338
24	fcor-tcer	5,45E-01
25	fcor-mext	1,083

Figura 59: Dados de entrada secundários

O termo ''fcor-t_{CER}'' (figura 60) é um fator de correção cujo valor numérico é estimado baseado no método tentativa e erro, o qual a partir dele, será calculado o parâmetro '' t_{CER} estimado''. A partir desse valor de ''t_{CER} estimado'' e de t_{FER} (calculado pela equação 61), serão calculados os tempos de extração para o modelo de Sovová (1994).

Figura 60: Diferencial nos ajustes em função de ''fcortcer''.

Dependendo da magnitude existente entre os dados cinéticos, os valores de t_{CER} , M_{CER} e Y_{CER} calculados pelo aplicativo de três retas e as informações de configuração do leito, o valor do termo ''fcor- t_{CER} '' sofrerá variação no que diz respeito à obtenção precisa do ajuste de dados.

No caso desta cinética, para um valor de ''fcortcer'' de 0,35, o modelo mostrou-se aplicável, enquanto que para um valor de 0,01 o modelo não ajustou dados experimentais.

8.3.3 Terceira etapa

Foram calculados os dados de entrada terciários, compreendidos nas cédulas B11, B12, B18, B19, B20, B27, B28, B29, e do intervalo entre as cédulas B31 e B38 (figura 9). Estes parâmetros compreendem dados medidos experimentalmente e dados calculados pelas equações acessórias do modelo de Sovová (1994). Estes dados de entrada tercidários possuem uma dificuldade considerável porque a maioria deles são dependentes uns dos outros.

11	tcer estimado	6,13E+00
12	Mext (kg)	0,002202605
18	Δtcer	53
19	∆tcertfer	264
20	∆tfer	798
27	Z	4,352855257
28	kYa (s^-1)	3,1178E-04
29	ΔΥ	1,5271E-02
31	Xk	2,9377E-02
32	Xp=X0-Xk	2,5913E-02
33	Xp/X0	4,6867E+01
35	W	7,3811E-01
36	Кха (s^-1)	5,5000E-05
37	ΔΧ	9,0058E-02
38	tfer (min)	2,2145E+03

Figura 61: Dados de Entrada Terciários.

8.3.4 Quarta etapa

Serão calculados os tempos de extração (calculados a partir de $(t_{CER} estimado)$ e (t_{FER}) , o parâmetro (z_w) e as massas extraídas calculadas pelas equações do modelo de Sovová (1994). O resumo desta etapa está representado na figura 10, e explicado nos subtópicos a seguir.

	С	D	E	F	G	н	1
1							
2		mext (t <tcer)< th=""><th>zw</th><th>mext(tcer≤t≤tfer)</th><th>mext (t≥tfer)</th><th></th><th></th></tcer)<>	zw	mext(tcer≤t≤tfer)	mext (t≥tfer)		
3		Y.[1-exp(-Z)].Qco2.t	Z.(Y*/W.X0).ln((X0.exp[(W	Y*[t-tcer.exp(zw-Z).Qco2	N{X0-Y*/N.ln{1+[exp(W.X0/Y*)-1]		
4	t (seg)		*(t-tcer)-Xk/X0-Xk))		*exp[(W.Qco2/N)(tcer-t)].XK/X0}}	mext total(g)	t(min)
5	0	0,00E+00				0,00E+00	0
6	53	4,03E-05				4,03E-02	0,875
7	105	8,05E-05				8,05E-02	1,75
8	158	1,21E-04				1,21E-01	2,625
9	210	1,61E-04				1,61E-01	3,5
10	368	2,82E-04	0,0000E+00	2,82E-04		2,82E-01	6,125
11	631		7,0048E-01	4,83E-04		4,83E-01	10,52252324
12	895		1,3691E+00	6,81E-04		6,81E-01	14,92004648
13	1159		2,0098E+00	8,73E-04		8,73E-01	19,31756972
14	1423		2,6260E+00	1,05E-03		1,05E+00	23,71509296
15	1687		3,2203E+00	1,22E-03		1,22E+00	28,1126162
16	1951		3,7953E+00	1,35E-03		1,35E+00	32,51013944
17	2214		4,3529E+00	1,44E-03		1,44E+00	36,90766268
18	2214		4,3529E+00	1,44E-03	1,4351E-03	1,44E+00	36,90766268
19	3012				1,5732E-03	1,57E+00	50,20656801
20	3810				1,6973E-03	1,70E+00	63,50547334
21	4608				1,8083E-03	1,81E+00	76,80437868
22	5406				1,9075E-03	1,91E+00	90,10328401
23	6204				1,9959E-03	2,00E+00	103,4021893
24	7002				2,0744E-03	2,07E+00	116,7010947
25	7800				2,1441E-03	2,14E+00	130
26							
27							
20	1						

Figura 62: Dados de tempo e massa calculados.

8.3.4.1 Inserção dos tempos de extração

Para a coluna de cálculo dos tempos de extração é necessário inserir os valores de zero, na célula C5, de $(t_{CER} = stimado)$ (multiplicado por 60, para conversão de unidades) na célula C10 e t_{FER} na célula C18.

Entre as cédulas correspondentes aos valores de zero e de t_{CER}, calcular a soma entre tempo anterior com o valor de $``\Delta t_{CER}``$ (célula B18) mantido fixo até a célula ``C9``: Para a célula ``C6``, por exemplo, escreve-se ``C5+\$B\$18``.

Entre as células correspondentes aos valores de t_{CER} e de t_{CER} , será feita a soma entre tempo anterior e o valor de $\Delta t_{CER} t_{FER}$ (célula B19) mantido fixo, até a célula ΓT , por exemplo, faz-se ΓT) e assim successivamente até a célula C17.

A partir da célula C19, fazer a soma do tempo anterior com o valor fixo de $`\Delta t_{FER}``$ (célula B20) até a célula C25. Por exemplo, para a célula ``C19`` escrevese no excel a forma ``C18+\$B\$20`` e assim sucessivamente até a célula C25.

8.3.4.2 Inserção das massas extraídas

Para a coluna de cálculo das massas calculadas, deve-se inserir primeiramente a equação de Sovová (1994) adaptada por Povh (2000), referente a massa extraída no período anterior à taxa constante de extração nas células D5 a D10. No aplicativo essa equação será escrita na forma, ´´\$B\$13*(1-EXP(-\$B\$27))*C5*\$B\$8´´ (na cédula D5, como exemplo) mantendo fixos os valores de solubilidade (célula B13), vazão (célula B8), Z (célula B27) e variando o tempo calculado em cada ponto (cédula C5).

Inserir nas cédulas E10 a E18 a equação de Sovová (1994) referente ao Z_w. No aplicativo parâmetro essa equação será escrita da forma: ``\$B\$27*(\$B\$13/(\$B\$35*\$B\$30))*LN((\$B\$30*EXP((\$B\$35*\$B\$8/\$B\$14)*(C14-\$B\$11*60))-\$B\$31)/(\$B\$30-\$B\$31)) ((exemplo na cédula E14) mantendo fixos os valores de vazão de solvente (célula B8), solubilidade (célula B13), W (célula B35), X_0 (célula B30), t_{CER} estimado (célula B11), N (célula B14) e X_K (célula B31) e variando o tempo.

Nas cédulas F10 a F18 serão calculadas as massas extraída no período entre as taxas constante e decrescente de extração através da equação de Sovová (1994), adaptada por Povh (2000), que será escrita no aplicativo como '\$B\$13*(C14-\$B\$11*60*EXP(E14-\$B\$27))*\$B\$8'´ (exemplo na célula F15), mantendo fixos os valores de vazão de solvente (célula B8), solubilidade (célula B13), t_{CER} estimado (célula B11), Z (célula B27). e variando os valores de z_w e de tempo de extração em cada ponto da curva.

A equação de Sovová referente a massa extraída no período maior ou igual à taxa decrescente de extração será inserida nas células G18 a G25 e escrita como (\$B\$14*(\$B\$30-(\$B\$13/\$B\$35)*LN(1+(EXP(\$B\$35*\$B\$30/\$B\$13)-

1)*EXP((B35*B8/B14)*(B11*60-C24))*(B31/B30)))´´, (exemplo na cédula G24, mantendo fixos os valores de vazão de solvente (célula B8), solubilidade (célula B13), t_{CER} estimado (célula B11), W (célula B35), X₀ (célula B30), t_{CER} estimado (célula B11), N (célula B14) e X_K (célula B31), variando apenas o tempo de extração calculado.

8.3.4.3 Inserção das massas e tempos de extração nas devidas unidades

Foram inseridos os valores de massas obtidos nas cédulas D5 a D10 multiplicados por ''1000'' (para conversão de unidades de massa) no intervalo compreendido nas células H1 a H10. Nas cédulas de H11 a H18, foram inclusos os valores de massas calculados nas células F11 a F18 e multiplicados por ''1000''. Nas células de H19 a H25, os valores de massas calculados nas células G19 a G25 foram inclusos e multiplicados por ''1000''.

Na coluna '1' os tempos de extração calculados na coluna C serão inseridos e divididos por '60', para conversão de unidades a fim de que coincidam com as unidades de dados experimentais, os quais são muito expressos na literatura em termos de grama versus minuto.

A partir desses valores de massa e tempo separados, é plotado um gráfico de massa versus tempo dos dados calculados pelo aplicativo e dos dados cinéticos experimentais (figura 63). Os dados experimentais utilizados para se plotar o gráfico referente a figura 63 estão na tabela 56.

Figura 63: Ajuste obtido a partir do aplicativo baseado no modelo de Sovová (1994).

Tempo (min)	Massa extraída (g)
6,5	0,2812
10	0,6676
15	0,8831
20	1,0764
30	1,3484
40	1,5031
50	1,6267
60	1,7206
70	1,7678
80	1,8564
90	1,8782
110	1,9647
130	2,0338

Tabela 53: Dados cinéticos de artemisia 400 bar e 30° C e $5,5x10^{-5}$ kg/s.

Fonte: Quispe-Condori, 2005.