

UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICA

FERNANDO ARACATI BOTELHO

ABSORÇÃO DO DIÓXIDO DE CARBONO POR RESÍDUO DE BAUXITA EM TORRES DE ABSORÇÃO

BELÉM

2013

FERNANDO ARACATI BOTELHO

ABSORÇÃO DO DIÓXIDO DE CARBONO POR RESÍDUO DE BAUXITA EM TORRES DE ABSORÇÃO

Dissertação apresentada ao curso de Mestrado em Engenharia Química da Universidade Federal do Pará, como parte dos requisitos necessários para obtenção do Título de Mestre em Engenharia Química.

ÁREA DE CONCENTRAÇÃO: Processos Inorgânicos

ORIENTADORES: Prof. Dr. José Antônio da Silva Souza

Prof. Dr. Emanuel Negrão Macêdo

BELÉM

Dados Internacionais de Catalogação-na-Publicação (CIP) Sistema de Bibliotecas da UFPA

Botelho, Fernando Aracati, 1978-

Absorção do dióxido de carbono por resíduo de bauxita em torres de absorção / Fernando Aracati Botelho. - 2013.

Orientador: José Antônio Silva Souza; Coorientador: Emanuel Negrão Macêdo. Dissertação (Mestrado) - Universidade Federal do Pará, Instituto de Tecnologia, Programa de Pós-Graduação em Engenharia Quí-mica, Belém, 2013.

1. Gases- absorção e adsorção. 2. Dióxido de carbono. 3. Bauxita- resíduos. I. Título.

CDD 22. ed. 660.28423

FERNANDO ARACATI BOTELHO

ESTUDO DA ABSORÇÃO DO DIÓXIDO DE CARBONO POR RESÍDUO DE BAUXITA EM TORRES DE ABSORÇÃO

Dissertação apresentada ao curso de Mestrado em Engenharia Química da Universidade Federal do Pará, como parte dos requisitos necessários para obtenção do Título de Mestre em Engenharia Química.

de Concentração: l	Processos	Inorgânicos
DA AVALIAÇÃO:	//_	

BANCA EXAMINADORA

Prof. José Antônio da Silva Souza, D.Sc. (FEQ / UFPA - Orientador)

Prof. Emanuel Negrão Macêdo, D.Sc. (FEQ / UFPA - Co-Orientador)

Prof. Célio Augusto Gomes Souza, D.Eng.

(FEQ / UFPA - Membro)

Prof. Alan Cavalcanti da Cunha, D.Eng. (UNIFAP- Membro)

et de QL

AGRADECIMENTOS

A Deus por ter me dado saúde, sabedoria e forças para concluir este trabalho.

Aos meus pais Fernando Dias e Iolanda Aracati pela dedicação e apoio incondicional dado a mim.

Ao Prof. Dr. José Antônio da Silva Souza pela orientação e dedicação prestado durante este trabalho.

Ao amigo Luis Carlos Alves Venancio pelas orientações, amizade e apoio dado durante todo o trajeto para a elaboração deste trabalho.

Aos professores e amigos da faculdade de Engenharia Química: Prof. Célio Augusto Gomes de Souza, Prof. Emanuel Negrão Macêdo, Edilson Marques Magalhães.

Aos amigos da divisão de materiais Danielly Quaresma, André Reis, Luana Santana, Diego Hildebrando, Rafael Sena, Otacílio Neto, Iara Ferreira e Gláucia César que contribuíram para realização deste trabalho.

A Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pelo auxilio financeiro.

RESUMO

Um dos problemas ambientais mais discutidos atualmente no cenário mundial são o aquecimento global e suas implicações. Apesar de o efeito estufa ser um fenômeno natural, o aumento nas emissões de gases como o CO₂ proveniente do processo de combustão, pode favorecer o seu agravamento. Seguindo essa vertente, existe o interesse na realização de pesquisas para minimizar a liberação deste gás na atmosfera. Este trabalho, tem por finalidade estudar o processo de absorção do dióxido de carbono pela fase aquosa do resíduo de bauxita (soda e íons dissolvidos em solução) em torre de aspersão e em torre de selas randômicas (ambas em escala piloto), bem como verificar a alteração do pH nesse processo de absorção para ambas as torres. Avaliar a alteração do pH e a capacidade de absorção do CO₂, considerando as seguintes variáveis: O tipo de torre de absorção, o uso do sobrenadante como meio absorvente e o uso da suspensão aquecida por resistências. Os resultados mostraram que a suspensão do resíduo de bauxita absorveu quantidade significativa de CO₂, tanto na torre de aspersão quanto na torre de selas. A taxa de absorção média ficou em torno de 8,42% para a torre de aspersão e 9,34% para a torre de selas. A capacidade de carbonatação da suspensão à 27%-p ficou em torno de 33,3 Kg CO₂ por tonelada de resíduo e houve uma redução substancial da alcalinidade do resíduo através da reação com os efluentes gasosos, com uma diminuição média de 4,0 e 3,5 unidades de pH para a torre de selas e de aspersão respectivamente.

Palavras-chaves: Absorção de CO₂, Torres de absorção, Lama vermelha.

ABSTRACT

One of the most discussed environmental problems on the world scene today is global warming and its implications. Although the greenhouse effect is a natural phenomenon, the increase in emissions of gases such as CO₂ from the combustion process may favor its aggravation. Following this line, there is interest in conducting research to minimize the release of this gas in the atmosphere. This work aims to study the process of absorption of carbon dioxide by aqueous phase of bauxite residue (soda and dissolved ions in solution) in spray tower and tower saddles random (both pilot scale), as well as check the pH change in this absorption process to both towers. Evaluate pH change and CO₂ absorption capacity by considering the following variables: the type of absorption tower, using the supernatant as the absorbent means and the use of the suspension heated by resistances. The results showed that the suspension of bauxite residue absorbed significant amount of CO₂, both the spray tower as the tower saddles. The average absorption rate was around 8.42% for the spray tower and 9.34% for the tower saddles. The ability carbonating the suspension of 27%-p was about 33.3 kg CO₂ per tonne of waste and there was a substantial reduction of the alkalinity of the residue by reaction with gaseous effluents with a mean decrease of 4.0 and 3.5 pH units for the tower saddles and sprinkler respectively.

Keywords: CO2 Absorption, absorption towers, red mud.

LISTA DE FIGURAS

Figura 2.1	Difratograma da lama vermelha	25
Figura 2.2	Neutralização do Resíduo de Bauxita por CO ₂	30
Figura 2.3	Gráfico mostrando a "Recuperação" do pH após um certo tempo	3
Figura 2.4	Planta piloto para absorção de CO ₂ por resíduo de bauxita	32
Figura 2.5	Influência do tamanho do recheio na diminuição do pH	3
Figura 2.6	Desenho esquemático do Processo de carbonatação da lama vermelha	34
Figura 2.7	Perfil de concentração na interface gás-líquido	3
Figura 2.8	Representação das concentrações em um processo com reação química instantânea segundo o modelo do duplo filme	40
Figura 2.9	Torre lavagem de gases com bicos aspersores	49
Figura 2.10	Visão esquemática dos recheios e suportes	5
Figura 3.1	Fluxograma esquemático de Blocos dos equipamentos e	
	Reatores utilizados na carbonatação da lama vermelha	54
Figura 3.2	Bico pulverizador em operação para aspersão da lama vermelha.	5
Figura 3.3	Torre de aspersão com dez bicos centrífugos em dois níveis	56
Figura 3.4	Projeto das torres de recheio fabricadas em aço inoxidável	5
Figura 3.5	Selas randômicas	5
Figura 3.6	Torre de recheio preenchida com selas	5
Figura 3.7	Analisador de gases dotado de células eletroquímicas Tempest	59
Figura 3.8	Analisador de gases por infravermelho não dispersivo MRU Delta	6
Figura 3.9	Anemômetro e sonda de medição	6
Figura 3.10	Phmetro portátil Hanna	6
Figura 3.11	Termometro digital	6
Figura 3.12	Trocador de calor de contato direto gás-névoa	6
Figura 3.13	Bico gerador de névoa montado com as conexões de ar e água .	6
Figura 3.14	Bico gerador de névoa montado no topo do trocador	6

Figura 3.15	Caldeira utilizada como fonte de geração de gáses de combustão	65
Figura3.16	Conjunto de equipamentos para o manuseio dos gases	66
Figura 3.17	Manifold (Distribuição de gases)	66
Figura 3.18	Caixa de preparação da suspensão de resíduo	67
Figura 3.19	Caixa de peneiramento destinada à remoção de areia	68
Figura 3.20	Bomba centrífuga autoescorvante, utilizada no Projeto	68
Figura 3.21	Diagrama esquemático da planta piloto para o processo de absorção de gases	71
Figura 3.22	Captador de Sobrenadante imerso na fase aquosa do resíduo de bauxita	75
Figura 3.23	Desenho esquemático (corte transversal) do tanque de resíduo	75
Figura3.24	Captador em operação trabalhando em baixa turbulência	76
Figura3.25	Resistências mergulhadas na lama vermelha	77
Figura 4.1	Gráfico da comparação das taxas de diminuição do pH	81
Figura 4.2	Gráfico da massa acumulada de CO ₂ em função do tempo	83
Figura 4.3	Diminuição do pH do sobrenadante durante o experimento	84
Figura 4.4	Comparação das taxas médias da evolução do pH de longo prazo	85
Figura 4.5	Eficiência de absorção de SO ₂ em função do tempo	88
Figura 4.6	Comparação do DRX do resíduo carbonatado e não-carbonatado	90
Figura 4.7	Planilha do Excel com dados coletados do experimento 24	91
Figura 4.8	Tabela da planilha do Excel utilizada para o cálculo do balanço de massa	92

LISTA DE TABELAS

Tabela 2.1	Composição da lama vermelha das mais importantes de	
	geração	20
Tabela 2.2	Principais componentes químicos e mineralógicos do	
	resíduo de bauxita	24
Tabela 2.3	Composição química da lama vermelha (ALUNORTE)	24
Tabela 2.4	Equações reacionais no Processo de Carbonatação	43
Tabela 2.5	Reações para formação de novas fases sólidas (cristais)	45
Tabela 3.1	Propriedades físicas do resíduo de bauxita	53
Tabela 3.2	Especificação dos recheios tipo selas	57
Tabela 3.3	Etapas para o cálculo do balanço de massa	78
Tabela 4.1	Principais dados comparativos de absorção de CO ₂ entre	
	as torres	80
Tabela 4.2	Comparação dos experimentos de absorção utilizando	
	sobrenadante e a mistura lama/água	80
Tabela 4.3	Resultados dos experimentos com injeção de SO ₂	
		87

LISTA DE ABREVIATURAS E SIGLAS

ALCOA ALUMÍNIO S.A.

ALUNORTE ALUMINA DO NORTE DO BRASIL S.A.

RB RESÍDUO DE BAUXITA

Mt MILHÕES DE TONELADAS

IAI INTERNATIONAL ALUMINIUM INSTITUTE

CE CONDUTIVIDADE ELÉTRICA

RAS RAZÃO DE ABSORÇÃO DE SÓDIO

PST PERCENTUAL DE SÓDIO TRCÁVEL

CAN CAPACIDADE DE NEUTRALIZAÇÃO ÁCIDA

PCZ PONTO DE CARGA ZERO

ASER ÁREA SUPERFICIAL ESPECÍFICA

FXR FLUORESCÊNCIA DE RAIOS X

PF PERDA AO FOGO

DRX DIFRAÇÃO DE RAIOS X

PDPRS PRODUTOS DERIVADOS DO PROCESSO DE

REMOÇÃO DE SÍLICA

TSD TOTAL DE SÓLIDOS DISSOLVIDOS

USBM UNITED STATES BUREAU OF MINES

%η_{Abs} EFICIÊNCIA DE ABSORÇÃO MÁXIMA

Ce CONCENTRAÇÃO NA ENTRADA DO REATOR

C_s CONCENTRAÇÃO NA SAÍDA DO REATOR

ABS_m ABSORÇÃO MÉDIA DE CO₂

SUMÁRIO

CAPÍTULO 1 - INTRODUÇÃO	15
1.1 - MOTIVAÇÃO E OBJETIVOS	15
1.1.1 - Motivações	15
1.1.2 - Objetivos geral	17
1.1.3 - Objetivo específico	17
1.2 - ORGANIZAÇÃO DO TRABALHO	18
CAPÍTULO 2 - REVISÃO LITERATURA	19
2.1 - RESÍDUO DO PROCESSO BAYER (LAMA VERMELHA)	19
2.1.1 - Histórico	19
2.1.2 - Propriedade físico-química e mineralógica da lama vermelha	22
2.1.3 - Utilização da lama vermelha	26
2.1.4 - A alcalinidade da lama vermelha	27
2.1.5 - Principais trabalhos utilízando a lama vermelha para sequestro	
de carbono e sua neutralização	28
2.2 - TRANSFERÊNCIA DE MASSA POR ABSORÇÃO GASOSA	34
2.2.1 - Teoria da transferência de massa por absorção física	35
2.2.2 - Teoria da transferência de massa por absorção química	38
2.3 – SEQUESTRO DE CO ₂ UTILIZANDO LAMA VERMELHA	42
2.3.1- Processo de carbonatação e neutralização da lama vermelha	42
2.3.2 – O aumento da alcalinidade após a carbonatação	45
2.4 - EQUIPAMENTOS DE SEPARAÇÃO INDUSTRIAL	47
2.4.1 - Lavador de gases – Descrição geral	47
2.4.1.1- Lavador de gases tipo torre de spray	48
2.4.1.2 - Lavador de gases tipo torre de borbulhamento	50
2.4.1.3 – Lavador de gases tipo torre de recheios	50

CAPÍTULO 3 – MATERIAIS, EQUIPAMENTOS E MÉTODOS	53
3.1 - MATERIAIS	53
3.1.1 - Descrição da matéria prima utilizada	53
3.2 - EQUIPAMENTOS	54
3.2.1 – Fluxograma esquemático da instalação da planta piloto	54
3.2.2 - Descrição dos reatores	55
3.2.2.1 - Reator torre de aspersão	55
3.2.2.2 - Reator torre de recheios tipo selas	56
3.2.3 - Descrição dos equipamentos de aferição	59
3.2.3.1- Analisadores de gases	59
3.2.3.2 - Anemômetro	60
3.2.3.3 - Phmetro	61
3.2.3.4 - Termômetro	61
3.2.4 - Descrição dos componentes da planta piloto	62
3.2.4.1 - Projeto e construção do trocador de calor	62
3.2.4.2 - Adaptação da caldeira como fonte de gases de combustão	64
3.2.4.3 – Sistemas de distribuição de gases para as torres	65
3.2.4.4 – Sistema de manuseio da suspensão de resíduo	67
3.3 - METODOLOGIA EXPERIMENTAL	69
3.3.1- Preparação da suspensão	69
3.3.2 - Preparação e calibração dos equipamentos	70
3.3.3 - Metodologia de amostragem	70
3.3.4 - Procedimento dos experimentos	72
3.3.5 - Análise química	72

3.3.6 - Difração de raios-x	73
3.3.7- Experimentos com uso de sobrenadante	73
3.3.8 - Experimentos com aquecimento do resíduo	76
3.3.9 - Experimento de absorção com uso de SO ₂	77
3.10 - Balanço de massa para o CO ₂	77
	00
CAPÍTULO 4 - RESULTADOS E DISCUSSÕES	80
4.1 – DIFERENÇA NA TAXA DE ABSORÇÃO E ESTABILIZAÇÃO DO pH ENTRE AS TORES	80
4.2 – MASSA DE CO ₂ ABSORVIDA E ACUMULADA UTILIZANDO LAMA VERMELHA	82
4.3 - EXPERIMENTOS COM USO DO SOBRENADANTE	83
4.4 - EFEITO DA TEMPERATURA	86
4.5 - EXPERIMENTOS PARA ABSORÇÃO DE SO ₂	87
4.6 - COPARAÇÃO DAS ANÁLISES DE DRX	89
4.7 - MODELO DE UMA PLANILHA UTILISADA PARA OS CÁLCULOS DO BALANÇO DE MASSA	91
CAPÍTULO 5 - CONCLUSÕES E SUGESTÕES PARA TRABALHOS	93
5.1 – CONCLUSÕES	93
5.2 – SUGESTÕES PARA TRABALHOS FUTUROS	95
REFERÊNCIAS BIBLIOGRÁFICAS	96
APÊNDICE A	102
APÊNDICE R	104

CAPÍTULO 1

1 INTRODUÇÃO

1.1 MOTIVAÇÃO E OBJETIVOS

1.1.1 Motivações

O dióxido de carbono, um gás de caráter ácido, é gerado, principalmente, a partir de processos industriais que utilizam combustíveis fósseis como sua maior fonte de combustão e um dos problemas ambientais mais discutidos atualmente no cenário mundial, é o aquecimento global e suas implicações. O aquecimento tem sido atribuído à intensificação do efeito estufa em virtude de atividades poluentes como, em particular, a queima de combustíveis fósseis. Apesar de o efeito estufa ser um fenômeno natural, o aumento nas emissões de gases como o CO₂ pode favorecer o seu agravamento. Desta forma, existe o interesse na realização de pesquisas que tratem da diminuição do CO₂ residual do processo de combustão para minimizar a liberação deste gás na atmosfera.

A enorme participação das fontes não renováveis na oferta mundial de energia coloca a sociedade diante de um desafio: a busca por fontes alternativas de energia. E isso não pode demorar a ocorrer, sob o risco de o mundo, literalmente, entrar em colapso, pelo menos se for mantida a atual matriz energética, na qual o petróleo tem uma importância vital. (Magalhães *et al.*, 2004).

O crescimento das restrições ambientais tem exigido, do setor produtivo, respostas cada vez mais eficientes aos problemas causados ao meio ambiente. O rápido adensamento industrial e o crescimento do consumo, verificado nas últimas décadas, deixaram os limites do planeta cada vez mais tangíveis à extração de matéria prima bem como o uso dos recursos naturais como corpos receptores dos resíduos. O limitado efeito de proteção ambiental oferecido pelas denominadas técnicas de fim de linha, aliados aos custos de produção, impõem a preocupação ambiental ao setor produtivo que deve buscar a solução dos problemas a partir da reavaliação do processo, propondo medidas

preventivas contra a poluição com o intuito de minimizar a geração de resíduos e recuperar os resíduos gerados para diminuir a sua disposição ao meio ambiente (LEITE, 2000).

Analisando esse contexto, no Estado do Pará está localizada a unidade industrial de Alumina do Norte do Brasil S/A (ALUNORTE) e no Maranhão a ALUMAR, ambas as indústrias de beneficiamento de alumina, onde, somente essas duas indústrias, apresentam em conjunto uma soma de produção de 9,8 milhões de toneladas por ano, e um negócio com faturamento de cerca de US\$ 2,6 bilhões por ano. Esta atividade gerará cerca de 12 milhões de toneladas/ano do resíduo conhecido como lama vermelha e 4,5 milhões de toneladas de CO₂. A lama vermelha é classificada como resíduo classe 1 de acordo com a NBR 10004/2004 devido a alta alcalinidade e é estocada em grandes lagos impermeáveis não sendo reaproveitada. Estes lagos, quando cheios de material sólido, após a remoção da umidade são eventualmente revegetados superficialmente. Entretanto terão que ser monitorados permanentemente durante décadas permanecendo como um passivo ambiental (VENANCIO,2010).

Uma proposta mostrada no presente trabalho é o sequestro de gases de exaustão pelo processo de absorção gasosa pela lama vermelha, devido à reação da soda e componentes alcalinos dentro do licor com dióxido de carbono, tornando-a propícia para ser utilizada nesse processo de absorção. A lama vermelha é um resíduo alcalino da indústria de alumínio, sendo gerada durante o refino da bauxita para a produção de alumina (Al₂O₃) através do processo Bayer. A neutralização da lama vermelha utilizada no abatimento consiste em outro benefício do processo, já que pode eliminar a necessidade de neutralização para o descarte ou a reutilização da lama numa outra aplicação. O uso dos gases de exaustão das refinarias para neutralização do resíduo de bauxita (lama vermelha) pode permitir um ganho duplo: abrir um grande leque de novas aplicações para o resíduo com a redução de sua reatividade bem como sequestrar cerca de 660.000 toneladas de CO₂ por ano além de outros gases da exaustão como SO₂ e NO_x (VENANCIO,2010).

1.1.2 Objetivo geral

Estudar o processo de absorção do dióxido de carbono utilizando lama vermelha, com objetivo de capturar e reduzir o teor de CO₂ nos gases de exaustão provenientes da queima de combustíveis fosseis, em torre *spray* e em torre de selas randômicas, bem como verificar a relevância da alteração do pH nesse processo de absorção.

1.1.3 Objetivos específicos

Verificar a capacidade de absorção do CO₂ pela suspensão e avaliar a taxa de variação do pH da suspensão de lama vermelha durante a realização dos experimentos em tempos reduzidos e a longo prazo, considerando as seguintes variáveis: O tipo de torre de absorção, o uso da fase líquida (sobrenadante) como meio absorvente e o uso da lama vermelha aquecida por resistências, com intuito de avaliar o efeito da temperatura sobre o processo.

1.2 ORGANIZAÇÃO DO TRABALHO

Para o presente capítulo deu-se ênfase as motivações e objetivos que propuseram a elaboração e ao estudo deste trabalho. Gerando dados que permitam reduzir a emissão de gases de exaustão e avaliar a variação do pH, em experimentos feitos nos lavadores de gases (torre Spray e torre com recheios tipo celas), e viabilizar o aproveitamento em larga escala da lama vermelha de modo economicamente viável.

No capítulo 2, temos uma abordagem bibliográfica, onde se mostra os princípios básicos de absorção gasosa. Também, procurou-se dar ênfase na absorção em colunas de torres tipo Spray e torres com tipos de recheios mais utilizados pelas industrias. Atentou-se para o processo de carbonatação da lama vermelha, bem como a variação da sua alcalinidade observada em estudos e resultados obtidos na literatura.

No capítulo 3, temos as metodologias e materiais utilizados; as descrições técnicas dos equipamentos de aferição (amostragem) utilizados na chaminé e dutos; caracterização e descrição do funcionamento das torres de absorção; a quantificação da área total de contato líquido/gás do recheio tipo selas, e por fim o tratamento atribuído à preparação da lama vermelha para ser utilizada no processo.

No capítulo 4, são apresentados os resultados obtidos dos levantamentos experimentais realizados nas torres de absorção, bem como, as devidas discussões sobre esses resultados.

No capítulo 5, são expostas as principais conclusões deste trabalho e também sugestões para futuros trabalhos referentes a este tema.

CAPÍTULO 2

REVISÃO DA LITERATURA

2.1 RESÍDUO DO PROCESSO BAYER (LAMA VERMELHA)

2.1.1 Histórico

A produção de alumina é feita principalmente a partir do refino da bauxita pelo processo Bayer, no qual consiste na extração do óxido de alumínio através de sua dissolução em soda cáustica e a separação dos resíduos não solúveis. O processo Bayer aplicado a bauxitos gibsíticos, como é o caso do Brasil, consiste no seguinte: o bauxito britado é moído em moinhos de bolas, a úmido; a carga do moinho contém bauxito, solução nova de hidróxido de sódio e água-mãe recirculada da cristalização de gibsita; freqüentemente cal virgem é adicionado para aumentar a alcalinidade (teor de NaOH), decompondo o carbonato de sódio porventura presente. A mistura do bauxito moído (diâmetro entre 0,80 mm e 0,06 mm) e solução de hidróxido de sódio são digeridas a 160°C e 170°C para dissolver o hidróxido de alumínio formando o aluminato de sódio segundo a reação reversível (SANTOS, 1989).

O minério de bauxita é formado em regiões tropicais e subtropicais por ação do intemperismo sobre aluminossilicatos. Os principais constituintes deste material são a gibbsita [Al(OH)₃], os polimorfos boehmita, [AlO(OH)] e diásporo [AlO(OH)₃], sendo que as proporções das três formas variam dependendo da localização geográfica do minério. As bauxitas mais ricas em boehmita são encontradas em depósitos europeus (França e Grécia) enquanto que aquelas ricas em diásporo, na China, Hungria e Romênia. As bauxitas geologicamente mais novas possuem alto conteúdo de gibbsita, ocorrem em grandes depósitos em áreas de clima tropical como Jamaica, Brasil, Austrália, Guiné, Guiana, Suriname e Índia, e são as que apresentam maior interesse comercial.

Dos 250 minerais conhecidos contendo o alumínio, são considerados minérios de alumínio: os bauxitos, as argilas cauliníticas, nefelina e alunita. O minério mais utilizado é o bauxito; dois processos são utilizados: o processo Le

Chatelier, em que o bauxito e o carbonato de sódio são calcinados para formar o aluminato de sódio, e o processo Bayer desenvolvido pelo químico Austríaco K. J. Bayer, especialmente aplicáveis aos bauxitos gibsíticos. Segundo BARRAD e GADEAU (1967), os pontos básicos essenciais do processo Bayer são primeiramente a dissolução do hidróxido de alumínio da bauxita a alta temperatura, e baixa pressão, mediante lixívia de soda concentrada. Em seguida após a separação dos resíduos insolúveis, há a precipitação parcial da alumina em solução, ao qual ocorrem mediante a diminuição da temperatura e a dissolução da lixívia de aluminato de sódio.

Há hoje uma grande preocupação com a reciclagem e reutilização do resíduo de bauxita, devido às características físico-químicas deste material. Na Tabela 2.1, são indicadas a composição química dos resíduos de bauxita utilizados em diferentes refinarias de diversos países. A perda ao fogo (PF) representa carbono orgânico, inorgânico e água que se encontram ligados quimicamente aos minerais.

Tabela 2.1 - Composição da lama vermelha das mais importantes fontes de geração.

Composto	ALUNORTE	ALCOA	CBA	ALCAN Canadá	ALCOA Austrália	ALCAN África
Al2O3	35,5	35,67	36,7	37,6	25,45	26,60
Fe2O3	37,16	33,78	29,89	32,45	34,50	48,40
SiO2	2,34	3,45	6,78	3,67	17,06	5,50
TiO2	6,18	4,56	5,67	4,12	4,90	2,80
Na2O	8,49	9,67	7,89	6,78	2,74	2,40
CaO	1,233	2,34	1,20	3,45	3,69	-
MgO	-	-	-	-	-	-
P.F.	11,19	11,24	12,35	9,80	12,90	14,60

Fonte: SILVA FILHO et al., (2007).

O processo Bayer implica na produção de uma grande quantidade de resíduo de bauxita. Segundo SUJANA *et al.* (1996); KASLIWAL e SAI (1999) são geradas em torno de 30 milhões de toneladas por ano. E, segundo COOLING *et al.*, (2002) somente a Aluminium Company of America (Alcoa) é responsável por mais de 20 milhões ton/ano deste resíduo. De acordo com DÍAZ *et al.*, (2004), no ano de 2000 foram geradas 84,1 milhões de toneladas

de resíduo de bauxita. Geralmente, a produção de 1 tonelada de alumina gera em torno de 0,7 à 2,0 toneladas de lama vermelha. Desta forma, estima-se que os fabricantes de alumínio geraram mais de 66 milhões de toneladas desse resíduo por ano segundo BONENFANT *et al.* (2008). Atualmente, cerca de 3 bilhões de toneladas de resíduo existem em áreas terrestres de armazenamento. Em alguns casos, o resíduo é parcialmente neutralizado, mas em todos os casos, as suas características químicas e físicas globais inibem o estabelecimento da vegetação e representam uma barreira para muitas possibilidades de reutilização, devido ser um resíduo altamente alcalino. Esta alcalinidade é uma consequência do tratamento sofrido, pela bauxita, ao longo do processo, tais como adição de NaOH, calor, pressão e cal, entre outros aditivos químicos. O fato é que o grande volume de resíduo de bauxita gerado anualmente é gigantesco e é da ordem de milhões de toneladas representando um sério problema ambiental.

Segundo a ABNT NBR 10004-2004, a lama vermelha é um resíduo considerado classe I, perigoso. A geração de lama vermelha através de fábricas de alumina constitui um problema ambiental de proporções consideráveis, devido às proporções de lama vermelha gerada em uma fabrica de alumina típica e sua causticidade. O resíduo de bauxita é constituído por partículas muito finas (cerca de 95 % < 44 µm, 325 mesh), apresenta uma área superficial de 13 a 22 m² por grama, e tem como principal característica uma elevada alcalinidade e, pH variando na faixa de 10 à 13 unidades de medita (PRADHAN et al., 1996), (HIND et al., 1999).

Também, dependendo da jurisdição, o resíduo de bauxita não tratado pode ser classificado como um material perigoso para o transporte para fora do local de geração. Principalmente devido à sua alcalinidade, e presença de metais pesados ou material radiotivo de ocorrencia natural (BERTOCCHI *et al.*, 2006). Sendo que estes teores irão variar com a composição da bauxita, bem como entre refinarias. É importante resaltar que os níveis de radioatividade são muito pequenos. Garantir a remoção de forma suficiente da soda e/ou a sua neutralização antes do processo de estocagem, permitiria ao resíduo ser transportado e manuseado como um matarial não perigoso e ser adequadamente designado como um subproduto.

No estado do Pará, o beneficiamento de bauxita acontece em três municípios: Município de Óbidos, com a Mineração Rio do Norte com uma produção de 16.000.000 t/ano; Município de Paragominas, com a VALE que possui uma perspectiva de produção para o ano de 2009 de 14.000.000 t/ano; e o Município de Juriti com a ALCOA, que possui uma perspectiva para o ano de 2009 de 6.000.000 t/ano de extração de bauxita bruta (PINTO, 2004).

2.1.2 Propriedade físico-química e mineralógica da lama vermelha

A composição química do resíduo de bauxita depende evidentemente da natureza da bauxita e também da técnica empregada no processo Bayer utilizado na indústria da alumina. Geralmente, a lama vermelha contém hidróxidos e óxidos de ferro e alumínio como maiores constituintes, ao passo que, os óxidos de V, Ga, P, Mn, Mg, Zn, Zr, Th, Cr, Nb, etc., estão presentes como traços no rejeito. Deste modo a composição química exata da lama vermelha varia extensamente dependendo da fonte atual (bauxita) da qual é proveniente; as maiores fases minerais identificadas incluem hematita (α - Fe₂O₃), boemita (α - Al₂O₃ . H₂O), gibsita (α - Al₂O₃ .3H₂O), goetita (α - Fe₂O₃ .H₂O ou FeO (OH)), calcita (CaCO₃) e o grupo mineral sodalita.

O resíduo de bauxita é geralmente alcalino e possui partículas sólidas muito finas. Esse resíduo é mistura sólido-líquido que varia no teor de sólidos de 20 a 80% em peso, dependendo do método de eliminação da refinaria. A abundância dos elementos nos resíduos de bauxita é Fe > Si ~ Ti > Al > Ca > Na. O comportamento da sedimentação e propriedades físicas, químicas e mineralógicas da lama vermelha é resultante do processo de produção de alumina, que podem afetar não apenas a economia de produção da alumina mas também os aspectos ambientais e a eficácia da eliminação e armazenamento (LI, 1998).

Segundo LI (1998), os resíduos de bauxita contêm em média cerca de 70% em peso para fases cristalinas e 30% em peso de materiais amorfos. A hematita está presente em todos os resíduos de bauxita com um intervalo de concentração em torno de 7% a 29%. Goetita é particularmente prevalecente em resíduos de bauxita gerados a partir de bauxitas da Jamaica.

É certo que alguns dos minerais presentes no resíduo vêm da propria bauxita, mas muitos são modificadas ou criadas durante o tratamento da bauxita, no processo Bayer. Por exenplo, o quartzo e os minerais de titânio são praticamente inalterados durante o processo Bayer. Os minerais de ferro podem ter sido alterados na composição e nas proporções existentes no minério original. Um exemplo seria a proporção da goetita original (α -FeOOH) que pode ter sido convertida em hematita (α -Fe $_2$ O $_3$), dependendo das condições específicas do processo. No resíduo teremos uma mistura de gibsita (Al (OH) $_3$) e a bohemita (γ -AlOOH) ao qual são fases minerais não digeridas da bauxita durante o processo, e material que foi re-precipitado nesse mesmo processo. A sodalita, cancrinita, dawsonita, e a maioria das fases contendo cálcio estão presentes como um resultado do Processo Bayer.

A identificação e quantidade de fases minerais presente nos resíduos de bauxita são importantes para a alcalinidade do mesmo, porque alguns destes minerais geram condições alcalinas em solução. E saber quais e quantos destes minerais estão presentes no resíduo de bauxita nos fornece informações sobre a capacidade dos resíduos de diminuir a alcalinidade conforme os minerais se dissolvem em ácido. Na Tabela 2.2, temos os valores médios das principais fases mineralógicas e componentes químicos encontradas em um "típico" resíduo de bauxita, como óxidos de ferro e alumínio, seguido por silício, cálcio, titânio e de sódio.

A lama vermelha (LV) possui partículas com tamanho médio inferior a 10 μm e algumas partículas com diâmetro maior que 20μm também estão disponíveis. É um material alcalino, tixotrópico, e possui elevada área superficial em torno de 13-16m³/g com uma densidade real de 3,30 g/cm³ (PARAMGURU et al., 2005).

Tabela 2.2 - Principais componentes químicos e mineralógicos do resíduo de bauxita.

	С	ontendo % ·	- P		
Elemento (óxidos)	Min	Média	Max	Principais fases minerais	Fórmula de célula unitária
Al ₂ O ₃	20	26 - 60	70	Gibsita	Al(OH) ₃
				Boemita	γ-ΑΙΟΟΗ
Fe_2O_3	0,5	10 - 35	65	Goetita	α-FeOOH
				Hematita	α -Fe ₂ O ₃
				Anatasio	TiO ₂
TiO ₂	0,1	2 - 4	25	Rutilo	TiO ₂
				Ilmenita	TiFeO ₃
				Caulinita	$Si_4AI_4O_{10}(OH)_8$
SiO ₂	0,1	4 - 8	15	Quartzo	SiO ₂

Fonte: BARDOSSY e ALEVA, (1990).

Na Tabela 2.3 e Figura 2.1 que se segue, mostram a análise química por fluorescência de raios-X e o difratograma do resíduo de bauxita da ALUNORTE, respectivamente. Observam-se consideráveis valores para os teores de ferro, alumínio, silício, sódio e titânio.

Tabela 2.3 - Composição química da lama vermelha (ALUNORTE).

Constituintes do Resíduo de Bauxita	(%) peso
Fe ₂ O ₃	29, 538
${ m SiO_2}$	17, 283
CaO	1, 082
$\mathrm{Al_2O_3}$	22, 539
TiO_2	4,058
Na_2O	12, 508
$ m V_2O_5$	0,280
MgO	0, 148
K_2O	0, 027
PF (Perda o Fogo)	12, 035

Fonte: Magalhães, (2012).

Como pode ser observado no difratograma do resíduo de bauxita (Figura 2.1), a calcita, cancrinita e a maioria das fases contendo cálcio estão presentes

nesse residuo, como um resultado do processo Bayer. A presença de caulinita e imogolita nos resíduos de bauxita são uma indicação de dissolução incompleta durante os processos de pré-desilicação e digestão (GRÄFE *et al.*, 2009).

A sodalita é o produto mais comum formando durante o processo de remoção de sílica, enquanto cancrinita pode formar-se na presença de Ca nos regimes de elevada temperatura durante a digestão de bauxitas boemíticas.

Baseando-se nas informações fornecidas por GRÄFE *et al.*, (2009), podemos então classificar os minerais presentes na amostra de resíduo de bauxita da Alunorte (Figura 2.1) em duas categorias, onde a primeira composta por aqueles provenientes da própria bauxita, tais como a gibsita (G), hematita (H), goetita (Go), anatásio (A), quartzo (Q), caulinita (K), e numa segunda categoria seriam aqueles formados durante o processo Bayer, tais como a sodalita (S) e a Cancrenita(C), que possivelmente seria uma espécie de zeólita.

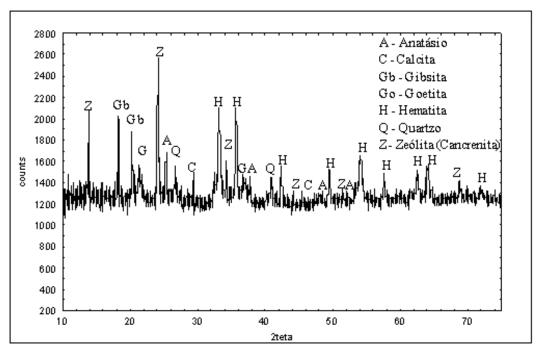


Figura 2.1 - Difratograma da lama vermelha.

Fonte: Magalhães, (2012).

2.1.3 Utilização da lama vermelha

Atualmente a crescente preocupação ambiental com a disposição aceitável de resíduos, tais como a de lama vermelha, foram motivos suficientes para se aumentar as pesquisas em torno da utilização e dos usos deste resíduo (O'CONNOR, 1988).

A lama vermelha tem varias utilizações e dentre elas temos: Utilização como matéria-prima na indústria de cimento realizado pela Mitsui Alumina (SHIMANO e KOGA, 1979), fabricação de materiais de construção, cobertura para aterramento e adsorvente desenvolvido pela Kaise Aluminum & Chemical Company(KIRKPATRIK, 1996). A lama vermelha também foi utilizada como pigmento na fabricação de ladrilhos cerâmicos de piso; na Universidade Federal do Pará, estudou-se a influência dos íons vitrificantes: Fe, Na e Ti, na produção de cerâmica vermelha (SOUZA et al., 1995), outras pesquisas foram realizadas no sentido de recuperar metais de valor como o cromo, titânio, vanádio, ferro e alumínio (PRADHAN et al. 1996) e entre outras aplicações da lama vermelha incluem-se blocos para pavimentação de estradas, aditivos de terra, tratamento de efluêntes gasosos através do processo de absorção, etc.

Também se encontram aplicações na indústria cerâmica. YALÇIN e SEVINÇ (2000) propuseram a produção de revestimentos cerâmicos (porcelanas, vítreos e eletroporcelanas) usando a lama vermelha. Outros pesquisadores propõem a utilização da lama vermelha na confecção de tijolos, telhas, isolantes, etc (NAKAMURA et al., 1969; SINGH e GARG, 2005). No tratamento de superfícies: proteção do aço contra corrosão (COLLAZO et al., 2005; DÍAZ et al., 2004) e na melhoria das características termoplásticas de polímeros (PARK e JUN, 2005). Na agricultura é utilizada como corretivo para solos ácidos, enriquecimento de solos pobres em ferro (HIND et al., 1999), no aumento da retenção de fósforo pelo solo (SUMMERS et al., 2002) e na imobilização de metais pesados em solos contaminados (LOMBI et al., 2002).

Na indústria química, as utilizações da lama vermelha têm se baseado em sua ação como catalisador em várias aplicações como a remoção de enxofre em querosene, hidrogenação do antraceno, degradação de compostos orgânicos voláteis (COV), degradação de cloreto de polivinila (PVC) em óleos combustíveis, degradação de organoclorados. As propriedades de adsorção da

lama vermelha são aproveitadas no tratamento de efluentes, sendo neste caso, necessário ativá-la. López *et al.* (1998) avaliaram as propriedades adsorventes da lama vermelha para o uso em tratamento de águas residuárias.

2.1.4 A alcalinidade da lama vermelha

As propriedades químicas e físicas da lama vermelha dependem principalmente da origem, composição química da bauxita utilizada e, para um maior ou menor grau, da maneira pela qual ela é processada (JONES *et al.*, 2006). O resíduo de bauxita é caracterizado por uma elevada alcalinidade, que está associada com a sua composição em óxidos, incluindo óxidos básicos (CaO, Na₂O), óxidos anfotéros (Al₂O₃, Fe₂O₃, TiO₂), e óxido ácido (SiO₂). Estes óxidos estão presentes em fases principais, tais como portlandita [Ca(OH)₂], carbonato de sódio (Na₂CO₃), NaAl(OH)₄, sódio-alumínio-silicato Na₆[AlSiO₄]₆, hematita cristalina (Fe₂O₃), goetita (α-FeOOH), gibsita [Al(OH)₃], boemita (γ-AlOOH), sodalita (Na₄Al₃Si₃O₁₂Cl), anatásio, rutilo, caulinita [Ca₃Al₂SiO₄(OH)₁₂], gesso (CaSO₄ • 2H₂O) e perovskita (CaTiO₃).

Segundo JONES *et al.*, (2006), a alcalinidade elevada do resíduo é em grande parte devido a presença de NaOH, Na₂CO₃ e [NaAl(OH)₄], ao qual eleva este valor para uma faixa proximo de 12,6 unidades de pH. Perovsquita (CaTiO₃) e calcita (CaCO₃) são comuns em resíduos de bauxita, devido à adição de cal, durante o processo Bayer.

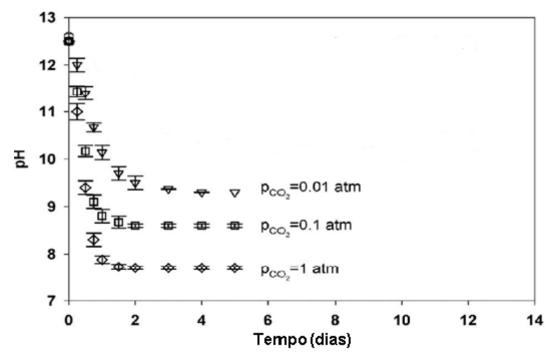
Também, Sodalita e cancrinita são sólidos característicos do processo Bayer e são eliminados com o resíduo de bauxita, e geram capacidade significativa de neutralização ácida para os resíduos como um todo, ou seja, contribuem para a alcalinidade. Mesmo depois de repetidas lavagens, o resíduo de bauxita permanece fortemente alcalino, porque grande parte da alcalinidade está na forma de fases sólidas de lenta dissolução (GRÄFE *et al.*, 2009).

Os ânions alcalinos em solução de resíduo de bauxita são: OH^- , CO_3^{2-} , HCO_3^- , $AI(OH)_4^-$, $H_2SiO_4^{2-}$ e $H_3SiO_4^-$. Estes ânions são produtos da dissolução da maior parte dos sólidos característicos do processo Bayer. A maioria das reações torna-se uma função parcial do pH e, variando-se esse pH, pode-

se mudar o sentido das reações, ou seja, variar no sentido direto ou inverso da reação. Por exemplo, $AI(OH)_{3(s)}$ é bastante estável à pH 7,5, no entanto, à pH 4,0 e a pH 13, se dissolverá prontamente, segundo GRÄFE *et al.*, (2009).

Silicatos de cálcio hidratados e aluminato tricálcio se formam em decorrência da adição de cal hidratada durante a digestão e caustificação. A formação de carbonatos de sódio na superfície dos resíduos nas áreas secas devido à evaporação enfatiza que a solução contém substancial concentração de Na⁺ e CO₃. Outros componentes minerais minoritários frequentemente encontrados em resíduos de bauxita são a ilmenita (FeTiO₃), caulinita (Al₄Si₄O₁₀[OH]₈) e em um caso incomum imogolita (Al₂SiO₃[OH]₄), (LIU et al., 2007).

Com o objetivo de diminuir a alcalinidade inerente do resíduo de bauxita, várias refinarias de alumina aplicam algum processo de redução dessa reatividade. Por exemplo, na Refinaria de Alumina de Queensland (QAL, Gladstone, Austrália) resíduos de bauxita são misturados com água do mar para bombear a lama para o depósito, o que tem o benefício colateral da redução do pH. Posteriormente a água é tratada antes de ser devolvida ao neutralização pela água do mar também na Eurallumina (Sardenha, Itália) e para o licor sobrenadante de Gove (North Territory, Austrália). Na refinaria de Kwinana (Austrália Ocidental), resíduos de bauxita são tratados com CO₂ concentrado antes da deposição para reduzir o pH, mas também para melhorar as características de sedimentação e de aquisição de resistência ao cisalhamento. Em outros casos resíduos de bauxita são dispostos como bolos de filtração de baixa umidade como, por exemplo, em Renukoot na Índia com 70% em peso sólidos (DAS et al., 2003).


2.1.5 Principais trabalhos utilizando a lama vermelha para sequestro de carbono e sua neutralização

Em seu estudo desenvolvido, KHAITAN *et al.*,(2009), mediu o grau de neutralização do resíduo de bauxita por dióxido de carbono como uma função da pressão parcial de CO₂, e também, para determinar as reações geoquímicas responsáveis pela fixação de carbono, bem como analisar a

variação do pH. O resíduo de bauxita foi exposto à diferentes pressões parciais de dióxido de carbono (CO₂). Onde ficou constatado que o tempo necessário para se atingir um pH estável (de equilíbrio) dependia da pressão parcial de CO₂ durante o tratamento, ou seja, a taxa de neutralização do resíduo de bauxita também aumentou com o aumento da pressão parcial de CO₂. Também foi observado que o pH diminuiu e estabilizou-se em escalas de tempo relativamente curtos. O tempo curto necessário para a neutralização sugere que essa neutralização trata-se de um processo de equilíbrio gás-líquido, em vez de ser devido à dissolução de minerais, que normalmente ocorre em escalas de tempo mais longos e envolve a precipitação de minerais de carbonato. Portanto, o contato em um tempo curto, do resíduo de bauxita em CO₂, diminuiu o pH devido à absorção do gás para a fase aquosa, que é prontamente reversível com alterações na pressão de CO₂.

As diferentes pressões parciais de CO₂ utilizadas nos experimentos mostraram que, só houve contribuição significativa dessas pressões (ou relação direta com elas) quando o processo de carbonatação ocorreu em tempos curtos de experimentação, ou seja, a carbonatação e neutralização, bem como a variação do pH em tempos curtos de reação, limitou-se à um processo de equilíbrio gás-liquido (reações ácido-base) da fase aquosa, e não contribuiu significamente para o processo de neutralização do pH da fase sólida. A taxa e a extensão da fase aquosa para a neutralização é diretamente proporcional à pressão parcial de dióxido de carbono, conforme é mostrado na Figura 2.2.

O referido estudo indicou que a alteração do pH durante um curto prazo carbonatação (T < 10 dias) era devido a reações do ácido carbónico e OH^- na fase aquosa. E, em um tempo de reação maior (30 dias) e à P_{CO2} = 1 atm, indicou a carbonatação de aluminato tricálcico sólido e conversão deste em calcita. A taxa de sequestro de CO_2 pela fase sólida (como formação de calcita) é limitada pela dissolução lenta de aluminato de tricálcio ($Ca_3Al_2O_{6(s)}$).

Figura 2. 2 - Neutralização do resíduo de bauxita por CO₂.

Fonte: KHAITAN et al., (2009).

Também é interessante frisar que essas simulações indicam que o carbono atmosférico é seqüestrado pelos íons provenientes das reações de dissociação (dissolução) dos diversos minerais existentes no resíduo de bauxita a pH \leq 9,9.

Outro dado importante que foi observado, é a "recuperação" do pH, onde, independentemente das pressões parciais utilizadas, o pH de todos os experimentos aumentou (retornou) à uma faixa um pouco acima de pH= 10, como pode ser observado na Figura 2.3 a seguir.

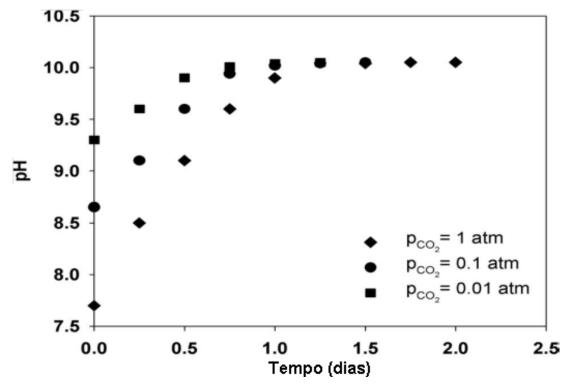


Figura 2.3 - Gráfico mostrando a "Recuperação" do pH após um certo tempo.

Fonte: KHAITAN et al., (2009).

ENICK et al., (2001), promoveram contato de dióxido de carbono líquido à 295 K e 6,7 MPa com resíduo de bauxita com um tempo de operação na faixa de 10 -15 min, e chegando à um valor do pH de equilíbrio de 9,5-10 após várias semanas exposto à atmosfera. Também, CARDILE et al.,(1994), borbulharam CO₂ gasoso através da lama vermelha em um vaso de reação para 14 h produzindo um pH de equilíbrio em torno de 8.

Outro trabalho, nessa mesma linha de pesquisa, foi desenvolvido por GUILFOYLE *et al.*, (2005), onde, foram desenvolvidos ensaios em escala piloto, com o objetivo de examinar a utilização de dióxido de carbono para neutralizar o resíduo de bauxita e investigar a possibilidade de lavagem do gás de combustão enquanto fonte de CO₂. Utilizou-se um lavador de gases com leito fixo e com recheios na forma de anéis e dispostos aleatoriamente, como é mostrado na Figura 2.4. Neste caso, foram injetados CO₂ concentrado e ar no reator. Trabalhou-se com uma suspensão espessa de resíduo. Três tipos de recheios foram testados sob equivalente condições de 9% v/v de CO2 e 1m³ de

lama vermelha em temperatura de 25 °C. A coluna foi projetada com 300 mm de diâmetro e com uma altura de 1 m de recheio embalado.

Coluna enpacotada

Alimentação de lama vermelha

LV

Soprador

Produto

Figura 2.4 - Planta piloto para absorção de CO₂ por resíduo de bauxita.

Fonte: Guilfoyle et al., (2005).

Os resultados mostram que se chegou a um valor de pH em torno de 8,5 em apenas 32 minutos de operação. Também, obteve-se uma taxa máxima de eficiência de absorção um pouco acima de 80% de transferência de massa. A Figura 2.5, mostra um gráfico sobre o efeito do tamanho dos recheios (anéis) em relação à diminuição do pH, onde, os anéis 25 mm "Dynarings" apresentaram os melhores resultados para o processo de transferência de massa. Observa-se que o processo de carbonatação da fase aquosa provocada pela absorção rápida de CO₂, induzindo à uma rápida queda na alcalinidade (pH~8,5-9,5).

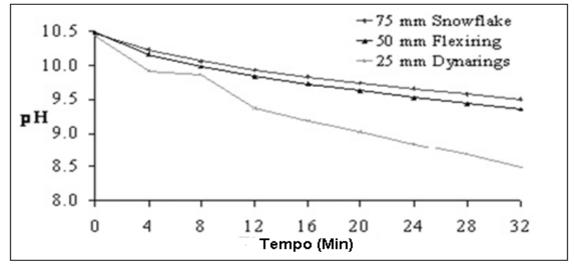
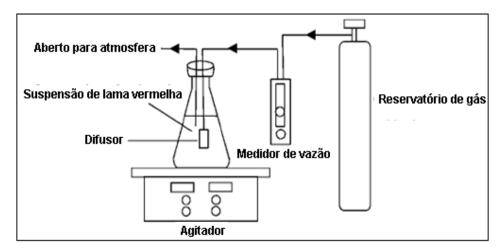


Figura 2.5 - Influência do tamanho do recheio na diminuição do pH.

Fonte: Guilfoyle et al., (2005).


Venâncio (2010) analisou a reação de uma suspensão de lama vermelha e água com os gases de exaustão do calcinador de uma refinaria em uma torre mista de *spray* que foi adaptada para o experimento. Foi obtida uma redução do pH de 11,5 para até 7,8. A influência da temperatura também foi avaliada, ficando evidenciado o aumento da velocidade de reação com o aumento da temperatura.

Experimentos desenvolvidos por JONES *et al.*, (2006), em escala laboratórial, onde foi borbulhado dioxido de carbono em suspensão de residuo de bauixita. Trabalhou-se com pressão constante de 68,9 KPa e aferições feitas ao longo de 60 minutos durante os esperimentos. Os resultados mostraram que 7,48 gramas de CO_2 foram absorvidos por 10 g de lama vermelha. Saindo de um pH inicial de 12,6, chegou-se a alcançar valores na faixa de pH \sim 8-9 durante os experimentos.

Bonenfant *et al.*, (2008), também executaram estudos com o objetivo de estudar e avaliar a capacidade de carbonatação em condições ambientais, temperatura de 20 ± 1 °C e pressão atmosférica, em suspensão aquosa de diversas amostras de lama vermelha, como mostra a Figura 2.6. Utilizou-se CO₂ concentrado (15,0% Vol. e 85,0% vol. de gás N₂ a uma taxa de 5 ml/min). Os resultados apontam para uma eficiência de sequestro de carbono em torno de 4 gramas de CO₂ por 100 gramas de lama vermelha. Estes resultados

podem ser atribuídos em grande parte, pela carbonatação da portlandita $[Ca(OH)_{2(S)}]$, Na (sódio) e outros minerais que estão presentes em solução, e que são responsáveis pela fixação do CO_2 no resíduo.

Figura 2.6 - Desenho esquemático do processo de carbonatação da LV.

Fonte: Bonenfant et al., (2008).

2.2 TRANFERÊNCIA DE MASSA POR ABSORÇÃO GASOSA

A absorção gasosa é um processo muito utilizado em plantas industriais, principalmente nos processos químicos, seja na preparação da matéria-prima para a transformação de insumos em produtos finais bem como na purificação dos produtos obtidos de tais processos, que consistem na transferência de um componente de uma mistura gasosa para um líquido absorvente devido à solubilidade e à diferença de concentração entre as fases. Além disso, a transferência de massa bem como as reações químicas envolvidas em todas as fases acontece simultaneamente e são extremamente importantes para a prática dos processos industriais (LEITE, 2005).

Esse processo é uma operação na qual uma mistura gasosa entra em contato com um líquido tendo como objetivo a dissolução preferencial na fase líquida de um ou mais componentes da mistura gasosa. Desta forma existirá transferência de massa de pelo menos um componente do gás (soluto), da fase gasosa para a fase líquida. O soluto assim transferido diz-se absorvido pelo líquido. Na dessorção gasosa a transferência de massa ocorre na direção

oposta, isto é, da fase líquida para a fase gasosa. Os princípios físico-químicos que regem ambos os sistemas são idênticos (ISEL/DEQ, 2005).

Segundo FLORES (2011), a velocidade de absorção do gás é determinada pelas condições hidrodinâmicas do sistema (vazão e geometria do equipamento) e condições físico-químicas (solubilidade do gás; difusividades do gás dissolvido e do reagente na solução; cinética da reação; viscosidade e densidade do líquido).

A separação entre as misturas em um estágio nunca é completa, pois, em equipamentos de contato reais, o estado de equilíbrio dificilmente é atingido. Entretanto, esse contato pode ser melhorado o máximo possível através da utilização de pratos ou recheio, cujo princípio básico consiste em dispersar a fase líquida e vapor de maneira a maximizar a área interfacial e facilitar a transferência de calor e massa (MAYER, 2010).

A absorção pode ser um processo puramente físico ou seguido por reações químicas, dependendo do grau de solubilidade do soluto no solvente. A absorção com reação química tem vasta aplicação industrial, principalmente para a remoção de gases ácidos, misturas inertes e hidrocarbonetos em correntes de ar. Quando utilizada, a reação química aumenta a taxa de absorção e a eficiência de transferência de massa, devido ao incremento da solubilidade decorrente da presença dos reagentes. Além disso, a manipulação dos parâmetros de processo (temperatura, pressão, vazões de alimentação, entre outros) influencia diretamente nas taxas de reação.

Como mencionado antes, existem dois tipos de processos de transferência de massa por absorção: a absorção física, e a absorção química. A seguir, descrevem-se os princípios básicos referentes à absorção física e química.

2.2.1 Teoria da transferência de massa por absorção física

Segundo TREYBAL (1981), a transferência de massa é o processo de transporte onde existe a difusão de uma ou mais espécies químicas em um determinado meio, podendo ser um sólido, um líquido ou gás. O transporte das espécies químicas pode ser feito por dois mecanismos: difusão e/ou

convecção. Por exemplo, quando a água e hidrocarbonetos são usados como absorventes, geralmente não ocorrem reações entre o absorvente e o soluto, e o processo é designado como absorção física. A absorção física de um gás em um líquido pode ser descrita em três etapas:

- Difusão/convecção do gás na direção da superfície líquida
- Solubilização no líquido
- Transporte do gás dissolvido na superfície para o seio do líquido por difusão/convecção.

Para Treybal (1981), o fluxo de massa do componente A (Soluto) que é transferido do gás para o líquido é dado por:

$$N_A = k'_G P(y_A^b - y_A^i) = k_L (C_A^i - C_A^b)$$
 (2.1)

Onde:

y_A^b e y_Aⁱ representam a fração molar do componente A no seio do gás e na interface gás-líquido, respectivamente;

 $C_{A}{}^{i}\,$ é a concentração molar do componente A na interface no lado do líquido;

 $C_A{}^b$ é a concentração molar de A dissolvido no seio do líquido;

k_G' é o coeficiente de transferência de massa individual no lado do gás;

k_⊥ o coeficiente de transferência de massa individual no lado do líquido;

P seria a pressão total do sistema.

Na maioria dos casos, o fluxo de transferência de massa é expresso em termos do coeficiente global de transferência de massa, K_G , e a fração molar do componente A (y_A^*) que estaria em equilíbrio com a fase líquida. E, sendo y_A^b e y_A^* as frações molares de A no seio do gás e em equilíbrio com o líquido, temos a expressão generalizada da equação logo abaixo:

$$N_{A} = k_{G} P (y_{A}^{b} - y_{A}^{*})$$
 (2.2)

LEWIS e WHITMAN (1924) propuseram um modelo, onde se admite a existência de dois filmes estagnados, representados na Figura 2.7. Sendo um na fase gasosa e outro na fase líquida, junto à interface gás-líquido, nos quais se considera que a transferência de massa ocorra apenas por difusão.

No filme líquido, de espessura δ_L , a concentração do gás solúvel decresce de $C_A{}^i$ até $C_A{}^b$, a partir da interface, permanecendo igual a $C_A{}^b$ no seio do líquido.

Onde;

Filme líquido de espessura δ_{L;}

Filme gasoso de espessura δ_{G} ;

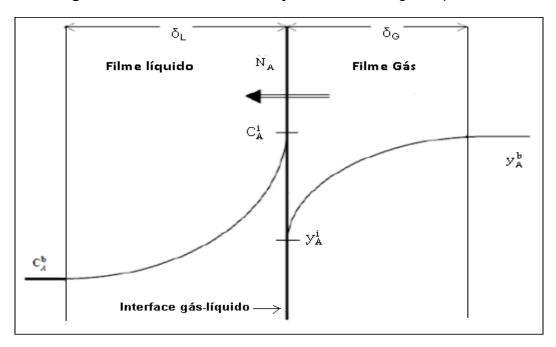


Figura 2.7 - Perfil de concentração na interface gás-líquido.

Fonte: SHERWOOD e PIGFORD (1975).

A teoria do filme indica que k_L é proporcional à difusividade de A em B, e o valor da espessura do filme (δ_L) não é previamente especificado, e caracteriza a hidrodinâmica da fase considerada. E para este modelo, o coeficiente de transferência de massa é expresso pela equação 2.3 abaixo:

$$k_L = \frac{D_{A-B}}{\delta_L} \tag{2.3}$$

2.2. 2 Teoria da transferência de massa por absorção química

Sabe-se que o efeito da reação química na fase líquida produz um aumento da velocidade de absorção do gás soluto. Para o caso de haver reação química na fase líquida com consumo do gás dissolvido, temos as seguintes etapas:

- Difusão do gás solúvel do seio da fase gasosa para a interface, onde se considera que o equilíbrio físico é imediatamente estabelecido;
- Difusão do gás dissolvido da interface para o seio do líquido, paralelamente o reagente líquido difundi-se desde o seio do líquido para a interface;
- Reação química do soluto com os reagentes presentes na fase líquida;
- Difusão dos produtos da reação, dentro da fase líquida.

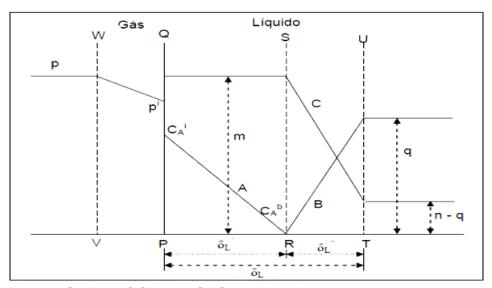
Neste caso, dependendo se existe ou não reação química entre o soluto e o solvente (absorvente), a absorção é dita química. Por exemplo, quando hidróxido de sódio aquoso (uma base forte) é usado como absorvente para dissolver um gás ácido, a absorção é acompanhada por uma rápida e irreversível reação de neutralização na fase líquida e o processo é referenciado como absorção química (ou absorção reativa). Por exemplo, quando o hidróxido de sódio aquoso (uma base forte) é usado como absorvente para dissolver um gás ácido, a absorção é acompanhada por uma rápida e irreversível reação de neutralização na fase líquida e o processo é referenciado como absorção química (ou absorção reativa).

Segundo SHERWOOD E PIGFORD (1975), no caso de uma reação química instantânea e irreversível, que ocorre na fase líquida, pode-se admitir que o soluto A é absorvido desde uma mistura de gases por uma solução líquida de uma substância B, e reagem entre si, de acordo com a seguinte reação:

$$A + B \rightarrow C \tag{2.4}$$

O componente A difundi-se até a interface, onde se dissolve. A partir daí tem-se a difusão de A no líquido, no sentido contrário à difusão de B.

Simultaneamente tem-se a formação de C que se difunde na direção do seio do líquido. O consumo rápido de B devido à reação química, na região próxima à superfície, permite que o soluto A (gás) difunda-se em uma parte do filme líquido, na qual reage rapidamente com B. Estabelece-se assim uma região onde acontece a reação entre A e B, próximo da interface gás-líquido, ocupando uma posição estacionária segundo a teoria do filme duplo, de modo que a velocidade de difusão de A é igual à velocidade de difusão de B.


Exemplos mais complexos de absorção química são os processos de absorção do CO₂ e H₂S com soluções aquosas de monoetanolamina (MEA), dietanolamina (DEA), dietilenoglicol (DEG) ou trietilenoglicol (TEG), onde ocorre uma reação química na fase líquida. As reações químicas podem aumentar a taxa de absorção, a capacidade de absorção dos solventes e a seletividade (dissolvendo preferencialmente certos componentes do gás, eventualmente convertendo substâncias nocivas em compostos inofensivos), (ISEL/DEQ, 2005).

Segundo KOHL e RIESENFELD (1985), o processo de absorção química em um solvente líquido específico é provavelmente a técnica mais importante na purificação de gases e tem uma ampla utilização na indústria, sendo empregado com bastante eficácia para separar o CO₂ a partir de uma corrente gasosa. Sistemas baseados em soluções aquosas de alcanolaminas proporcionam a remoção eficiente do CO₂ de correntes gasosas diluídas (inferior a 15% de CO₂), e em condições de operação à temperatura ambiente e pressão próxima da atmosférica.

Um esquema simplificado do perfil das concentrações dos diferentes componentes que participam da reação química, para o tal sistema genérico (A + B \rightarrow C), é mostrado na Figura 2.8. Onde, neste gráfico, o eixo da ordenada pode representar tanto a pressão ou as concentrações dos componentes A, B e C, e a abscissa representa a posição dentro do filme. PQ representa o plano da interface entre a fase do gás e a fase líquida. VW e UT definem os limites dos filmes do gás e do líquido, respectivamente. SR representa o plano da zona de reação, onde, o componente A e o componente B reagem, e, é formado o componente C. O componente A difunde-se através do filme do gás devido à força motriz (p - p^i), e pela fase líquida devido a força motriz (p - p^i), e pela fase líquida devido a força motriz (p - p^i), e pela fase líquida devido a força motriz (p - p^i), e pela fase líquida devido a força motriz (p - p^i), e pela fase líquida devido a força motriz (p - p^i), e pela fase líquida devido a força motriz (p - p^i), e pela fase líquida devido a força motriz (p - p^i), e pela fase líquida devido a força motriz (p - p^i), e pela fase líquida devido a força motriz (p - p^i), e pela fase líquida devido a força motriz (p - p^i), e pela fase líquida devido a força motriz (p - p^i), e pela fase líquida devido a força motriz (p - p^i), e pela fase líquida devido a força motriz (p - p^i), e pela fase líquida devido a força motriz (p - p^i), e pela fase líquida devido a força motriz (p - p^i) e pela fase líquida devido a força motriz (p - p^i) e pela fase líquida devido a força motriz (p - p^i) e pela fase líquida devido a força motriz (p - p^i) e pela fase líquida devido a força motriz (p - p^i) e pela fase líquida devido a força motriz (p - p^i) e pela fase líquida devido a força motriz (p - p^i) e pela face p0 e pela face p

C_A^b). A concentração CA^b é igual a zero, por causa da reação química instantânea. Simultaneamente, o componente B difunde-se desde o seio do líquido para a zona de reação, sob a influência da força motriz q; e, o produto da reação, C, difunde-se para o seio do líquido, pelo efeito da força motriz m-(n-q). O produto da reação, C, tende a difundir-se desde a zona de reação para a fase gasosa, assim como, para o seio do líquido; mas, assume-se que C é um componente não volátil, portanto, sua concentração manter-se-ia constante através da região QS do filme líquido (SHERWOOD e PIGFORD, 1975).

Figura 2.8 - Representação das concentrações em um processo com reação química instantânea segundo o modelo do duplo filme.

Fonte: SHERWOOD e PIGFORD (1975).

O fluxo molar do componente que é transferido para a fase líquida, de maneira geral, é igual ao produto do coeficiente de transferência de massa pela força motriz:

$$N_A = k_L(C_A^i - C_A^b) \tag{2.5}$$

E para uma mesma diferença de concentração na fase líquida e mesmas condições hidrodinâmicas, a relação entre a velocidade de absorção com reação química e a velocidade de absorção física é denominada "fator de aumento". E.

$$\frac{(N_{A})_{quim}}{(N_{A})_{fis}} = \frac{(k_{L})_{quim}(C_{A}^{i} - C_{A}^{b})}{(k_{l})_{fis}(C_{A}^{i} - C_{A}^{b})} = \frac{(k_{L})_{quim}}{(k_{L}^{0})_{fis}}$$
(2.6)

Onde E é expresso por:

$$E = \frac{(k_L)_{quim}}{(k_L^0)_{fis}}$$
 (2.7)

Onde, $(k_L)_{quim}$ é o coeficiente global de transferência de massa com reação química e $(k_L^0)_{fis}$ é o coeficiente global de transferência de massa para absorção física.

E o fluxo de transferência de massa, N_A, passa a ser expresso por:

$$N_A = E k_L^0 (C_A^i - C_A^b)$$
 (2.8)

O fator de aumento é uma função do processo reativo-difusivo na fase líquida, e, portanto de parâmetros tais como: concentração, constante cinética, difusividade e o coeficiente de transferência de massa (ZARZICKY e CHACUK, 1993).

Esse fator de aumento (E) indica a proporção de incremento na velocidade de transferência de massa com reação química em relação à velocidade de transferência de massa por absorção física. E na equação 2.8 o subscrito "fis" é subentendido.

Absorção química é preferida para processos com baixa ou moderada pressões parciais de CO₂, visto que o CO₂ apresenta características ácidas. A absorção química de CO₂ a partir de correntes gasosas depende das reações de neutralização usando solventes básicos. E para o presente trabalho o dióxido de carbono possivelmente é removido das correntes gasosas por absorção física seguida por uma reação química, devido à elevada alcalinidade desse resíduo pode-se considerar a lama vermelha como um solvente básico, favorecendo ao processo de absorção ocorrido.

2.3 SEQUESTRO DE CO2 UTILIZANDO LAMA VERMELHA

2.3.1 Processo de carbonatação e neutralização da lama vermelha

A produção de alumina através do processo Bayer, produz o resíduo de bauxita, contendo Ca^{2 +} e Mg^{2 +} e tendo um pH superior a 12,5. Segundo GRÄFE et al., (2009), sódio (Na) e cálcio (Ca) são dois componentes de grande importância dentro do resíduo de bauxita, pois ambos são adicionados durante o processo Bayer e são parcialmente removidos pelo processo de lavagem do resíduo em contracorrente. E com a adição de Ca na forma de cal hidratado durante a digestão e / ou caustificação, provoca a formação de contendo Ca minerais que se incorporam ao resíduo. incluindo: CaCO₃, aluminato de tricálcico, cancrinita, hidrocalumita e perovsquita.

A seguir são listados alguns dos benefícios da carbonatação do resíduo de bauxita segundo COOLING *et al.*, (2002):

- Reduz o impacto do resíduo no custo total do ciclo de vida da produção de alumínio.
- Melhora a qualidade do escoamento de água e drenagem;
- Reduz o potencial de geração de poeira;
- Captura gases de efeito estufa;
- As oportunidades para reutilização de resíduo são potencializadas.
- Reduz o risco de futura classificação do resíduo como resíduo perigoso;
- Facilita o desenvolvimento de usos produtivos para o resíduo no futuro;

A carbonatação da fase aquosa é rapida, devido ocorrer através de uma absorção rápida de dióxido de carbono e provoca uma queda no valor do pH em torno de quatro unidades de pH. As equações reacionais na Tabela 2.4, mostram as reações de carbonatação da fase aquosa, evidenciando o processo de neutralização do pH dessa fase aquosa do resíduo, onde o dióxido de carbono reage com os componentes alcalinos dentro do licor para formar espécies de carbonato. Segundo Bonefant *et al.* (2008), corroborando com o

que mostra a Tabela 2.4, o processo de carbonatação consiste em várias reações de CO₂ com a compostos alcalinos presentes em fase líquida, para formar espécies de carbonato.

Tabela 2.4 - Equações reacionais relacionadas ao Processo de Carbonatação.

Reações
$$\begin{aligned} & \text{Reações} \\ & \text{NaAl}(\text{OH})_{4(\text{aq})} + \text{CO}_{2(\text{aq})} \leftrightarrow \text{NaAlCO}_{3}(\text{OH})_{2(\text{S})} + \text{H}_2\text{O}_{(\text{I})} \\ & \text{NaOH}_{(\text{aq})} + \text{CO}_{2(\text{aq})} \leftrightarrow \text{NaHCO}_{3(\text{s})} \\ & \text{Na}_2\text{CO}_{3(\text{s})} + \text{CO}_{2(\text{aq})} + \text{H}_2\text{O}_{(\text{I})} \leftrightarrow 2\text{NaHCO}_{3(\text{s})} \\ & \text{Ca}_3\text{Al}_2(\text{OH})_{12(\text{s})} + 3\text{CO}_{2(\text{aq})} \leftrightarrow 3\text{CaCO}_{3(\text{s})} + 2\text{Al}(\text{OH})_{3(\text{s})} + 3\text{H}_2\text{O}_{(\text{I})} \\ & \text{Fonte: JONES} \textit{ et al., (2006). (Adaptado).} \end{aligned}$$

Também, adições iniciais de CO2 ao resíduo de bauxita convertem a fase aquosa alcalina, hidróxidos (Al(OH)₄ e NaOH) para carbonatos (CO₃²), aos quais predominam em valores de pH maiores do que 10,3. (KHAITAN et al., 2009).

$$2OH^{-} + CO_{2(aq)} \leftrightarrow CO_{3}^{2-} + H_{2}O$$
 (2.9)

Com a adição constante de CO₂, à fase aquosa do residuo, provoca a conversão do carbonato à bicarbonato (HCO₃⁻), que predomina agora em pH com valores inferiores a 10,3. Na Tabela 2.4, temos um resumo das reações dominantes da fase aquosa sugeridas por JONES et al., (2006).

$$CO_3^{2-} + H^+ \leftrightarrow HCO_3^-$$
 (2.10)

Também, segundo DILMORE et al. (2008), a dissolução de CO2 em água, resulta na formação de ácido carbônico (H2CO3) que se dissocia formando os íons HCO³⁻ e CO₃²⁻ (equações 2.9 e 2.10), liberando assim H⁺ para o fluido (equações 2.11 e 2.12). Dessa forma, também ocorre a redução do pH da solução. A redução do pH é ainda mais intensificada devido à

precipitação dos íons presentes na solução na forma novas fases cristalinas de carbonatos.

$$CO_2 + H_2O \leftrightarrow H_2CO_{3 \text{ (aq)}} \tag{2.11}$$

$$H_2CO_3_{(aq)} \leftrightarrow HCO_3^-_{(aq)} + H^+_{(aq)}$$
 (2.12)

De acordo com JONES *et al.*, (2006), o bicarbonato dissolvido no licor, pode ser considerado como um "armazenamento" de dioxido de carbono na solução ao qual participa nas reações subsequentes à medida que o pH diminui e os hidróxidos alcalinos são consumidos. E se essas soluções carbonatadas contiverem uma certa quantidade de bicarbonato "armazenado", este pode interagir e fornecer o dióxido de carbono aquoso para completar as reações, formando novas fases minerais.

O processo de carbonatação da parte sólida do résiduo ocorre a longo prazo e envolve reações de dissociação (dissolução) de diversos minerais e a formação de novas fases minerais que iniciam-se a pH ≈ 9,9. Essa dissolução desses minerais ocorre lentamente quando o resíduo entra em contato com carbono armazenado em solução.

A carbonatação a longo prazo ocorre da seguinte forma: Primeiramente, há o processo de carbonatação da fase aquosa do resíduo, baixando o pH do resíduo para um valor proximo de 9,9 e gerando um armazenamento de carbono na forma de bicarbonato, em seguida inícia-se o processo de dissociação (dissolução) de minerais e formação de novas fases minerais, através de reações entre o carbono armazenado e íons de aluminato, provenientes das reações de dissociação e também especíes de carbonatos.

Na Tabela 2.5, apresentamos algumas das diversas reações que ocorrem a fase sólida do resíduo de bauxita (dissolução e carbonatação). Segundo POWER *et al.*, (2009), essa liberação de íons, bem como a formação de novas fases sólidas, tais como carbonato de cálcio (calcita), dawsonita e hidróxido de alumínio (gibsita) e outros.

Tabela 2.5 - Reações para formação de novas fases sólidas (cristais).

Formação Sólida	Reações em Fase Sólida	
Boemita	$A1^{3+} + 2H_2O \leftrightarrow A1OOH(s) + 3H^+$	
Calcita	$Ca^{2+} + CO_3^{2-} \rightarrow CaCO_3(s)$	
sódio-alumínio-silicato	$Na^+ + A1^{3+} + Si(OH)_4 \leftrightarrow NaA1SiO_4(s) + 4H^+$	
Aluminato Tricálcico	$Ca_3Al_2O_6(s) + 2H^+ \leftrightarrow 3Ca^{2+} + 2Al^{3+} + 6H_2O$	
Dawsonita	$2\text{Ca}_3\text{Al}_2(\text{OH})2 + 10\text{HCO}_3^- + 4\text{Na}^+ \rightarrow$	
	4NaAl(OH) ₂ CO ₃ +6CaCO ₃ +10H ₂ O +6OH ⁻	
Gibsita	$Ca_3Al_2(OH)_{12} + 3HCO_3^- + 4Na^+ \rightarrow$	
	$2A1(OH)_3 + 3CaCO_3 + 3H_2O + 3OH^-$	

Fonte: CARDILE et al., (1994), (Adaptado).

Algumas equações reacionais, sugeridas por JONES *et al.*, (2006), estão em conformidade com COOLING *et al.*, (2002), ao qual identificou para o processo de carbonatação da lama vermelha, as seguintes reações:

$$NaOH + CO_2 \leftrightarrow NaHCO_3$$
 (2.13)

$$Na_2CO_3 + CO_2 + H_2O \leftrightarrow 2NaHCO_3$$
 (2.14)

$$NaAl(OH)_{4 (aq)} + CO_{2 (aq)} \leftrightarrow NaAl(OH)_{2}CO_{3 (s)} + H_{2}O_{(l)}$$
 (2.15)

$$Na_6[AlSiO_4]_6 \cdot 2NaOH + 2CO_2 \leftrightarrow Na_6[AlSiO_4]_6 + 2NaHCO_3$$
 (2.16)

$$3Ca(OH)_2 + 2Al(OH)_3 + 3CO_2 \leftrightarrow 3CaCO_3 + Al_2O_3 + 3H_2O$$
 (2.17)

2.3.2 O aumento da alcalinidade após a carbonatação

Este aumento do pH após o processo de carbonatação, provavelmente é devido a presença de sólidos de hidróxidos na suspensão do resíduo, que não reagem imediatamente com o dióxido de carbono, mas começam a dissolverse quando o pH da solução que eles estão em contato é reduzido. Segundo

GRÄFE *et al.*, (2009), um dos principais fatores para o aumento do pH da lama carbonatada está na capacidade dos sólidos em manterem a concentração de ânios alcalinos na solução.

A dissolução dessas fases minerais (cristais) em suspensão parcialmente neutralizada faz com que ocorra uma reversão do pH, voltando a aumentar o seu valor. Para GUSTAFSSON (2006) e STUMM (1981) apud GRÄFE *et al.*, (2009), o aumento do pH é regido pelas seguintes reações:

$$0H^{-} + H_{3}0^{+} \leftrightarrow 2H_{2}0$$
 (2.18)

$$Al(OH)_4^- + H_3O^+ \leftrightarrow Al(OH)_{3(s)}^- + 2H_2O$$
 (2.19)

$$CO_3^{2-} + H_2O \leftrightarrow HCO_3^{-} + OH^{-}$$
 (2.20)

$$HCO_3^- + H_3O^+ \leftrightarrow H_2CO_3 + OH^-$$
 (2.21)

$$H_2SiO_4^{2-} + H_2O \leftrightarrow H_3SiO_4^{-} + OH^{-}$$
 (2.22)

$$H_3SiO_4^- + H_2O \leftrightarrow H_4SiO_4 + OH^-$$
 (2.23)

$$PO_4^{3-} + H_2O \leftrightarrow HPO_4^{2-} + OH^-$$
 (2.24)

$$HPO_4^{2-} + H_2O \leftrightarrow H_2PO_4 + OH^-$$
 (2.25)

$$HPO_4^- + H_3O^+ \leftrightarrow H_3PO_4 + OH^-$$
 (2.26)

O processo de adsorção de CO_2 em resíduo de bauxita não é foco deste estudo, embora, saibamos que tal fenômeno ocorra. E para se ter resultados satisfatórios com a adsorção utilizando a lama vermelha como meio adsorvente, faz-se necessário um processo de ativação térmica ou ácida. O processo de calcinação do material adsorvente proporciona um aumento da área superficial, bem como a ativação dos sítios, ($T \ge 700^{\circ}C$). O pH tem efeito significativo, ou seja, a adsorção diminui com o aumento gradativo do pH da solução, tendo melhores resultados de adsorção em pH baixo, ($PH \le 7$). O resíduo de bauxita utilizado neste estudo está na forma "in natura", e foi posto em contato com dióxido de carbono sem pré-tratamento, apenas chegou-se a

densidade desejada de trabalho que é de 27% em peso de sólidos, com adição de água.

2.4 EQUIPAMENTOS DE SEPARAÇÃO INDUSTRIAL

2.4.1 Lavador de gases – descrição geral

Segundo LOBATO (1998), as indústrias utilizavam o princípio do processo natural de remoção de poeira em suspensão no ar: as gotas de chuva. Os primeiros lavadores de gases datam de 1890, mas somente após a segunda guerra mundial apresentaram resultados satisfatórios. O lavador de gases tem a capacidade de combinar a separação de partículas e a remoção de gases poluentes.

No lavador de gases tipo centrifugo, o gás é admitido tangencialmente na parte inferior do corpo de forma cilíndrica, onde é criado um fluxo helicoidal ascendente com velocidade entre 15 a 60 m/s, onde, ao mesmo tempo a solução absorvedora é injetada nos bicos de pulverização distribuídos ao longo de um tubo central (STRAUSS 1966).

É possível que as variáveis e os parâmetros mais importantes no projeto de um sistema de absorção sejam os mais difíceis de descrever exatamente por meio matemático. O tipo de equipamento, a estrutura interna do equipamento, a razão líquido-gás, o solvente, o diâmetro e altura da coluna são escolhidos em geral, com base em experiências obtidas da construção de outras colunas (Maddox, 1980).

Vamos agora delinear algumas características básicas de operação e rendimento dos lavadores de gases, tanto o de torre tipo *spray* e borbulhamento, quanto aqueles com recheios (estruturado e celas).

2.4.1.1 Lavador de gases tipo torre de spray

Estes lavadores de gases são utilizados quando as partículas têm características gasosas, higroscópicas, oleosidade ou quando a temperatura não permite a utilização de outros coletores. Os gases contaminados são aspirados do processo e jogados dentro do corpo do lavador onde a absorção dos gases é efetuada através do contato do fluxo gasoso com gotas de líquido através de *sprays*, colunas de enchimento ou outros equipamentos, sendo que para cada contaminante existe um neutralizante. As torres *sprays* são câmaras espaçosas dentro das quais escoam a fase gasosa, denominada fase contínua, e a líquida, que é introduzida por meio de bicos atomizadores na forma de spray, caindo por gravidade em contracorrente com o gás. A fase líquida, por ser constituída de gotas, é denominada fase dispersa (WELTY et al., 1976).

Para um melhor contato entre as fases líquido-gás quanto menor as gotas, maior a área superficial de contato, através do qual ocorre a absorção. Toda via, se as gotas forem demasiadamente pequenas, podem ser arrastadas pela corrente gasosa.

A definição do parâmetro controlando o processo de absorção é fundamental para a escolha do equipamento de separação. Podemos ter essencialmente três situações: o processo pode ser controlado pela resistência da fase gasosa, pela resistência da fase líquida ou por um misto das duas. A Figura 2.9, abaixo mostra um esquema de uma torre de *spray* em que a resistência da fase gasosa controla o processo de absorção. Trata-se de um sistema que envolve um gás altamente solúvel na fase líquida, onde temos como exemplo a absorção de NH₃ por H₂O.

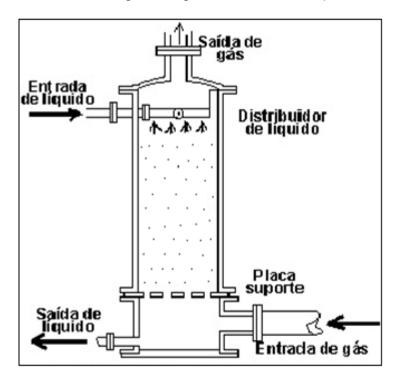


Figura 2.9 - Torre lavagem de gases com bicos aspersores.

Fonte: UFRN, 2009.

LOBATO (1998), em seu trabalho mostrou um estudo para avaliar o desempenho do lavador de gases centrífugo, em função de variáveis operacionais, tais como: a razão entre a vazão dos gases de combustão e a vazão de soda caustica circulante, também avaliou a queda de pressão do líquido através dos bicos pulverizadores, bem como a queda de pressão do gás ao atravessar o lavador e por fim, a influência no processo de absorção em relação ao tamanho médio das gotas pulverizadas. Com a finalidade de remover poluentes antropogênicos, CO2, CO e principalmente óxidos de enxofre, dos gases de combustão do óleo de baixa fluidez (BPF) tipo 1A, efetuou-se o contato da soda e gases de combustão em contracorrente em um lavador tipo torre de spray. O processo de dessulfurização por via úmida dos gases com a solução de soda permitiu a avaliação das características dos fluxos gasosos emitidos pela caldeira, onde, obteve-se uma eficiência máxima de 60% em relação à absorção de SO₂, constituindo-se assim um rendimento razoável para lavadores de gases. Segundo SALEEM, 1980 (apud LOBATO, 1998), valores obtidos acima de 90% podem ser alcançados em equipamentos otimizados e instalados em plantas industriais.

2.4.1.2 Lavador de gases tipo torre de borbulhamento

Para uma situação em que a resistência da fase líquida controla o processo, utilizam-se as torres de borbulhamento. A transferência de massa se dá na formação e movimentos das bolhas. Estas operam ao contrário das torres de aspersão. O gás é borbulhado na base da coluna e ascende em contracorrente ao líquido. A absorção se dá na superfície das bolhas em movimento (WELTY et al., 1976). Aqui a resistência da fase líquida controla o processo de absorção. Trata-se de um sistema envolvendo um gás pouco solúvel na fase líquida, onde temos como exemplo a absorção de CO₂ por H₂O.

2.4.1.3 Lavador de gases tipo torre de recheios

As colunas recheadas são muito utilizadas nos processos de separação de gases por absorção. É um dispositivo relativamente simples em relação à coluna de bandeja. Normalmente de constituição simples, essas colunas consistem em um casco cilíndrico, uma placa perfurada para suporte do recheio e distribuição do solvente. O funcionamento da coluna geralmente é em contracorrente, ou seja, o soluto (gás) entra na parte inferior da coluna, enquanto o solvente entra na parte superior, estabelecendo um contato líquido/gás numa direção contracorrente, (MAGALHÃES *et al.*, 2004).

O recheio é o principal componente da coluna recheada, cuja função é promover uma maior superfície de contato entre o líquido e o gás, aumentando a taxa de absorção do sistema. Existem diversos tipos de recheios estudados que são citados por FAIR et al., (1980). O recheio também é um fator importante no custo de construção da coluna, à medida que, as colunas com diâmetros acima de 60 cm são inviáveis quando recheadas. Os recheios são colocados nas colunas ao acaso ou ordenados, sendo constituídos de materiais como: cerâmicas, carbono, aço e polietileno (MADDOX, 1980).

Esse tipo de torre é utilizado quando as duas fases controlam o processo de absorção e operam com elevadas taxas de gás em relação ao líquido ou vice-versa. A configuração desta coluna é de um leito fixo recheado

por particulados de formas peculiares com o objetivo de aumentar a superfície de contato líquido gás.

Com o desenvolvimento da tecnologia dos recheios, nos últimos anos, as refinarias vêm substituindo seções com bandejas por leitos recheados, com a finalidade de reduzir a queda de pressão e aumentar o rendimento do processo. Na Figura 2.10 abaixo temos um esquema de uma torre de recheios, composta de suporte e recheio estruturado.

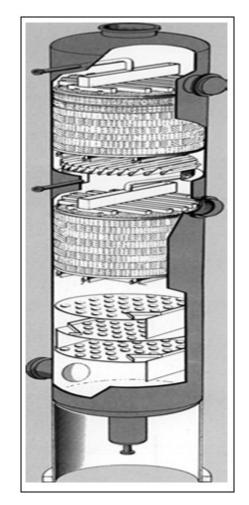


Figura 2.10 - Visão esquemática dos recheios e suportes.

Fonte: UFRN, 2009.

Um bom recheio deve possuir as seguintes características:

- Apresentar grande superfície de interface entre líquido e vapor
- Ser quimicamente inerte para os fluidos processados
- Possuir boa resistência mecânica, a fim de evitar quebras
- Ser de baixo custo

Os lavadores de gases podem receber uma variedade de tipos de recheios, dependendo da eficiência е das características do(s) contaminante(s). Nesse tipo de coluna, o líquido flui através da superfície do recheio e os gases fluem nos espaços vazios internos e entre as peças do recheio. O enchimento apóia-se numa grelha ou tela que deve ter um bom padrão de abertura para não oferecer muita resistência ao fluxo. Se a coluna for alta torna-se necessário dividir o leito em várias seções, inserindo-se no espaço vazio entre eles, pratos perfurados para redistribuir uniformemente o Existem diversos tipos de recheio, geralmente divididos em três classes: recheios randômicos, recheio estruturado e recheio de grade.

CAPÍTULO 3

MATERIAIS, EQUIPAMENTOS E MÉTODOLOGIA EXPERIMENTAL

3.1 MATERIAS

3.1.1 Descrição da matéria prima utilizada

A principal matéria prima utilizada no trabalho foi a lama vermelha, oriunda do processo de produção de alumina, que foi cedida pela ALUNORTE. As características do resíduo de bauxita utilizado neste trabalho estão expostos na Tabela 3.1. O pH das amostras utilizadas nos experimentos estão na faixa de 11,7 a 13,1. O teor de sólidos em suspensão utilizado nos experimentos foi de 27% em peso.

A fonte de gases é proveniente de uma caldeira integrante da usina de biodiesel pertencente ao ITEC-UFPA. A partir destas premissas definimos o fluxograma do processo e as instalações mostradas nos itens seguintes. Utilizou-se também 0,16 gramas de hexametafosfato de sódio como dispersante (defloculante) capaz de reduzir a decantação dos sólidos da suspensão de lama vermelha e diminuir a potência do bombeamento. Esse valor foi determinado por estudos feitos por Venâncio (2010).

Tabela 3.1 – Propriedades físicas do resíduo de bauxita.

Umidade (%-p)	Densidade real (g/cm ³)	Área superficial (m²/g)
48	2,13	13

Fonte: VENANCIO, 2010.

3.2 EQUIPAMENTOS

3.2.1 Fluxograma esquemático da instalação piloto

Fluxograma esquemático (Figura 3.1), onde foram desenvolvidos ensaios em escala piloto, com o objetivo de examinar a utilização de dióxido de carbono para neutralizar o resíduo de bauxita, bem como, o seqüestro de CO₂ pelo resíduo. Para isto, foram realizados experimentos com o resíduo do processo Bayer em névoa com fluxos de gases contendo CO₂ em certa faixa de temperatura e em concentração similar a dos gases de exaustão fornecidos por uma caldeira. Para a realização desse trabalho foram feitos quatorze experimentos, onde se variou os tipos de reatores (aspersão e selas), a fase que entrará em contato com os gases de exaustão (sobrenadante e suspensão de lama a 27% em peso) e a temperatura inicial da suspensão, com intuito de avaliar a influência de cada fator para a eficiência da absorção e alterações no valor final do pH de curto e longo prazo. A vazão média dos gases ficou em 0,02 m³/s e a vazão média da suspensão circulante ficou em 0,8 L/s.

Caixa de mistura de resíduos

Caldeira

Trocador de calor

Outribuidor

Distribuidor

Figura 3.1- Fluxograma esquemático de Blocos dos equipamentos e Reatores.

3.2.2 Descrição dos reatores

Foram construídos três reatores. Uma torre de aspersão, uma torre com recheios randômicos e uma torre com recheios tipo selas. Nosso trabalho focou-se nas reações de absorção utilizando CO₂ em contato em contracorrente com o resíduo de lama vermelha, utilizando a torre *spray* e a torre com recheios tipos selas.

3.2.2.1 Reator torre de aspersão

A torre de aspersão é mostrada na Figura 3.3 que já existia, mas foi aperfeiçoada com a instalação de aspersão em dois níveis. No topo do lavador centrífugo, se fez a aspersão do líquido absorvente (lama vermelha) através do gás CO₂ que escoa em contracorrente permitindo que sejam feitas medições de concentração inicial e final do gás. Com base nesses resultados a eficiência e a viabilidade do lavador são estudadas. A entrada de gás faz-se de forma tangencial.

A solução de lavagem do gás escoa no sistema através dos 10 bicos aspersores de pulverização fina (tipo cone oco), feitos com uma abertura de 2 mm de diâmetro. Esse tipo de bico permite que o líquido saia na forma de uma folha cônica em conseqüência do seu movimento centrífugo permitindo que o núcleo de ar se estenda até o bocal, conforme pode ser observado na Figura 3.2.

As dimensões do lavador seguiram as dimensões indicadas por PERRY e CHILTON, (1980) e CALDAS e LACERDA, (1988). Foi utilizado fibra de vidro com 10 mm de espessura na construção do lavador, que possui 2 metros de altura e 60 centímetros de diâmetro interno. "O lavador é dividido em duas partes simétricas (1 metro), unidas por um flange que é vedado com 10 parafusos de aço inox de 3/8" x 1" e uma guarnição de borracha de 1/4" de espessura. Na base do lavador estão localizadas duas janelas de entrada dos gases com 320 cm² de área, Figura 3.3.

Figura 3.3 - Torre de aspersão com dez bicos centrífugos em dois níveis.

Fonte: Autor, 2012.

3.2.2.2 Reator torre de recheios tipo selas

A coluna de absorção foi construída levando em consideração as características principais de uma coluna, no que se refere aos componentes e ao método de funcionamento de uma coluna recheada. Os materiais constituintes do protótipo da coluna de absorção seguiram os parâmetros que

envolvem segurança de operação, corrosão dos equipamentos e custos de aquisição e operação.

O cilindro vertical da coluna de absorção possui diâmetro interno de 380 mm por 1900 mm de altura total. Sua constituição é de aço inoxidável, com chapa de espessura de 2 mm. Suas características dimensionais estão na Figura 3.4. A entrada do solvente ocorreu por meio de um tubo de aço galvanizado de 20 mm de diâmetro, localizado a 300 mm do topo da coluna.

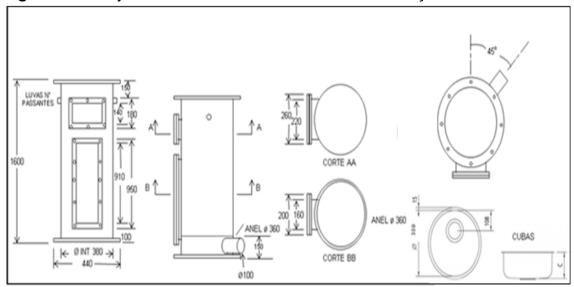


Figura 3.4 - Projeto das torres de recheio fabricadas em aço inoxidável.

Fonte: Autor, 2012.

Foi posto um número suficiente de selas para preencher toda a área destinada ao recheio. As especificações técnicas dos recheios utilizados neste trabalho estão dispostas na Tabela 3.2 abaixo. A área de transferência gásliquído desse reator é de aproximadamente 30,9 m² em 0,13 m³ de recheios, com número em torno de 17.875 peças (selas). As selas utilizadas neste trabalho podem ser vistas na Figura 3.5.

Tabela 3.2 - Especificação dos recheios tipo selas.

N°PEÇAS/m³	Área Sup. m²/m³	Coef. Vazios(%)	Densidade Kg/m ³
137500	232,7	96,5	270

Figura 3.5 - Selas randômicas.

Os materiais constituintes da coluna de absorção seguiram os parâmetros que envolvem segurança de operação, e isso pode ser observado logo abaixo na Figura 3.6.

Figuras 3.6 - Torre de recheio preenchida com selas.

3.2.3 Descrição dos equipamentos de aferição

3.2.3.1 Analisadores de gases

Um dos equipamentos utilizados nas aferições da corrente gasosa, foi o Telegan modelo Tempest 100, ao qual consiste em um analisador de gases dotado de células eletroquímicas que permitem a leitura de O_2 , NO_x e SO_2 , mostrado na Figura 3.7.

Figura 3. 7 - Analisador de gases dotado de células eletroquímicas Tempest 100.

Fonte: Autor, 2012.

E para a leitura do CO_2 foi escolhido o método de infravermelho não dispersivo. MRU modelo Delta 1600s (infravermelho não dispersivo visto na Figura 3.8).

Figura 3.8 – Analisador de gases por infravermelho não dispersivo MRU Delta.

3.2.3.2 Anemômetro

Utilizou-se um anemômetro a fim de se obter a vazão volumétrica instantânea, foi utilizado um anemômetro TSI modelo Velocicalc 9545 mostrado na Figura 3.9. Este equipamento permite a leitura direta da vazão nas tomadas de medição que foram instaladas na saída dos reatores, obedecendo à norma que preconiza um mínimo do equivalente a seis diâmetros de trecho reto a montante e a jusante do ponto de medição.

Figura 3.9 - Anemômetro e sonda de medição.

3.2.3.3 Phmetro

Utilizou-se nos experimentos um phmetro de medição portátil, qual é mostrado na Figura 3.10, o equipamento Hanna modelo pHep+. Este equipamento foi calibrado com soluções tampão de pH 7 e 4, regularmente antes do início das medições de cada dia e excepcionalmente sempre que havia algum resultado fora do padrão.

Figura 3.10 - Phmetro portátil Hanna.

Fonte: Autor, 2012.

3.2.3.4 Termômetro

Também foram feitas medições sistemáticas da temperatura, procurando-se assim, obter um resultado mais realista e confiável das medições feitas. Utilizou-se um termômetro digital FTG modelo FT – 266C, como é mostrado na Figura 3.11.

Figura 3.11 - Termômetro Digital.

3.2.4 Descrição dos componentes da planta piloto

3.2.4.1 Projeto e construção do trocador de calor

O trocador de calor utilizado no projeto tem a finalidade de resfriar os gases produzidos na caldeira de modo à mante-los em uma faixa de temperatura requerida através do contato direto gás-névoa e torna-los compatíveis com os materiais dos reatores. O controle da temperatura dos gases provenientes da caldeira é feito através do trocador de calor. Os gases antes de passar no trocador estavam acima de 200 °C e após a sua passagem pelo trocador ficaram na faixa de 50 a 70 °C durante os experimentos. O equipamento tem forma tubular e foi construído com material aço carbono de espessura de 1/8". Na parte superior do trocador ocorre geração de névoa de água com uso de um bico aspersor com ar comprimido, e na parte inferior há uma abertura para a entrada do fluxo de gases em contracorrente. O desenho esquemático do resfriador de gases pode ser visto na Figura 3.12.

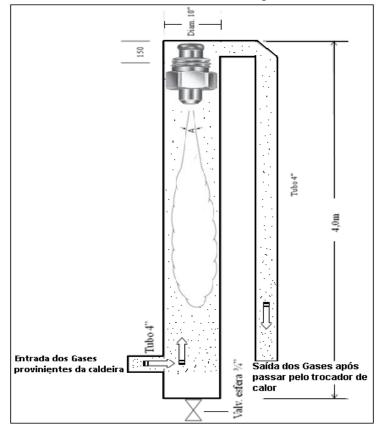


Figura 3.12 - Trocador de calor de contato direto gás-névoa em contracorrente.

O bico aspersor utilizado no trocador de calor pode ser observado na Figura 3.13. Tem como objetivo produzir névoa de água, ao qual promoverá um maior contato entre os gases provenientes da caldeira e a água.

Figura 3.13 - Bico gerador de névoa montado com as conexões de ar e água.

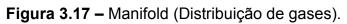
Observa-se na Figura 3.14, o bico gerador de névoa montado no topo do trocador e conectado ao regulador de pressão de ar e a alimentação de água. No mecanismo de produção de névoa de água, gás e água são injetados simultaneamente no bico aspersor.

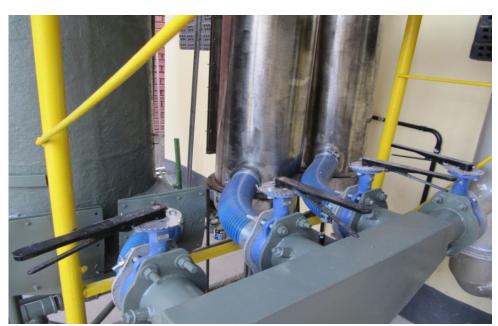
Figura 3.14 - Bico gerador de névoa montado no topo do trocador.

Fonte: Autor, 2012.

3.2.4.2 Adaptação da caldeira como fonte de gases de combustão

A caldeira GERAMATIC, modelo GV1 utilizada no projeto pode ser vista na Figura 3.15, onde se procurou buscar concentrações similares a dos gases de exaustão da calcinação das refinarias. A caldeira tem uma válvula que permite controlar a vazão de gases que entram no trocador de calor, dessa forma foi feito o ajuste baseado no teor de CO₂ presente nos gases produzidos na caldeira entre 5% e 9% pois, de acordo com Venancio (2010), a partir de 5% é possível verificar a absorção do CO₂ pela suspensão de lama vermelha, abaixo desse valor a absorção não é detectada.


Figura 3.15 - Caldeira GERAMATIC utilizada como fonte de gases de exaustão.


3.2.4.3 Sistema de distribuição de gases para as torres

O conjunto de equipamentos para o manuseio de gases pode ser visto na Figura 3.16, onde, na direita temos o trocador de calor, ao centro o ventilador centrífugo (marca ELAN e modelo VCE 08, com potência de 1,5 HP) que auxilia na alimentação do gás para atravessar o lavador e na parte superior o distribuidor de gases com as válvulas (manifold) ao qual é mostrado na Figura 3.17, já instalado e fazendo a distribuição de gases para as torres.

Figura 3.16 - Conjunto de equipamentos para o manuseio dos gases.

3.2.4.4 Sistema de manuseio da suspensão de resíduo

A suspensão de resíduo fica depositada em um reservatório (caixa) de fibrocimento de 500 L, Figura 3.18, de onde é bombeada para os lavadores, e após passar por estes, retorna ao reservatório de resíduo com uma concentração maior de gases dissolvidos em solução. Além de tubulações e válvulas de recalque e retorno.



Figura 3.18 - Caixa de preparação da suspensão de resíduo.

Fonte: Autor, 2012.

Para o processo de peneiramento da lama vermelha, confeccionou-se uma caixa em aço carbono dotada de duas telas e uma boca de vista (Figura 3.19), destinada a remoção de areia através de peneiramento pressurizado.

Figura 3.19 - Caixa de peneiramento pressurizada destinada à remoção de areia e/ou partículas grossas.

A bomba centrífuga autoescorvante marca THEBE modelo AE1, é vista na Figura 3.20. A bomba bombeia a suspensão durante o preparo para que a mesma possa passar pela caixa de peneiramento para retirada de areia e detritos grossos que possam causar entupimento dos bicos durante os experimentos. Também durante o processo de absorção, esta bomba é responsável pela circulação contínua da suspensão de lama vermelha nas torres de lavagem de gases.

Figura 3.20 - Bomba centrífuga auto-escorvante THEBE.

3.3 METODOLOGIA EXPERIMENTAL

Os procedimentos de amostragem gasosa no duto de entrada (antes do lavador), e nos dutos de saída, utilizados neste trabalho, possibilitaram a avaliação das características dos fluxos gasosos, proporcionando-se assim, fazer um levantamento de dados do processo de absorção de CO₂ e, bem como, avaliar o desempenho dos lavadores.

3.3.1 Preparação da suspensão

Trabalhou-se com uma suspensão diluída, devido termos constatado em experimentos preliminares, que o maior teor de sólidos em suspensão que o sistema permitia era de 27% em peso. Este valor foi assumido para se evitar uma decantação exagerada dos sólidos e entupimento dos bicos e válvulas dos lavadores. E para padronizar o processo de preparação da suspensão, sempre seguíamos dois passos. O primeiro consistia em adicionar 80 litros de água à caixa de resíduo o segundo, consistia na adição de lama vermelha, ao qual sempre se encontrava de forma muito espessa. O ponto de equivalência, ou seja, o ponto ideal de adição do resíduo espesso, seria quando 1 litro dessa suspensão (bem misturada) atingisse o peso de 1207± 3 g. Com o uso desta metodologia, eliminamos as variações decorrentes de diferenças do teor de umidade do resíduo de bauxita, e ao mesmo tempo eliminamos a necessidade de secagem. O volume de suspensão dentro do tanque utilizado para a circulação pelas torres foi de 102 litros de lama à 27% em pesos de sólidos. Isto equivale a 33 kg de lama seca adicionada ao tanque ao final da preparação da suspensão.

3.3.2 Preparação e calibração dos equipamentos

Antes de começarmos cada experimento, eram realizados testes preliminares de acionamento da caldeira e medições de CO₂, O₂, NO_x e SO₂. Também, eram feitas medições constantes de vazão da suspensão após passagem pela torre de absorção, com a finalidade de se padronizar essa vazão para todos os experimentos e torres utilizadas, diminuindo-se assim uma variável. Em seguida foram realizadas seis corridas para calibração do sistema piloto incluindo a determinação da vazão ótima de gases que permitia a resolução mais adequada na medição da quantidade de gases absorvidos. Com esta finalidade foram projetadas, fabricadas e testadas cinco placas de orifício com áreas de 10%, 20%, 40%, 60% e 80% destinadas a restringir a admissão de gases na entrada do ventilador e desta forma atingir a máxima resolução na diferença da composição dos gases na entrada e saída. Após estes testes, a placa de orifício selecionada foi a de 10% da área da seção transversal da tubulação de entrada do ventilador.

3.3.3 Metodologia de amostragem

Com o objetivo de estudar o processo de absorção do CO₂ pela lama vermelha, e bem como a eficiência dos lavadores (torre de pulverização com entrada tangencial de gases e torre com recheios randômicos), foi projetada e executada a instalação de uma planta piloto, ao qual seu desenho esquemático pode ser visto na Figura 3.21. Foram definidos três pontos de medição mostrado no diagrama abaixo.

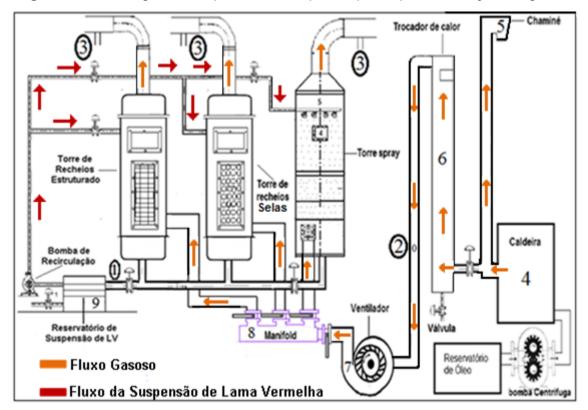


Figura 3.21 – Diagrama esquemático da planta piloto para absorção de gases.

Os gases provenientes da queima do óleo combustível foram coletados nos trechos de entrada e saída das torres de lavagem. Temos no ponto 1, o retorno da suspensão reagida à caixa, após a sua passagem pelo lavador, onde foram feitas aferições da vazão de suspensão com o uso de uma proveta e um cronômetro, e também mediu-se a temperatura da suspensão e a evolução do pH ao longo de cada corrida. No ponto 2, que consiste na saída dos gases de exaustão do trocador de calor, foram medidas a composição química %-v e a temperatura dos gases a antes de entrarem no lavador. E por fim, temos no ponto 3, a saída dos gases dos reatores, onde foram medidos a vazão, a temperatura, e a composição química dos gases.

3.3.4 Procedimento dos experimentos

A caldeira (4) queima óleo combustível. Os gases de combustão são transportados por dutos, onde certa parte é emitida através da chaminé (5) ao ar atmosférico, e outra parte segue através do trocador de calor (6), onde está localizado o ponto de amostragem dos gases (2), antes de atravessar o lavador. Um ventilador centrífugo (7) transporta os gases quentes para o interior do manifold (8) que distribui os gases para o lavador selecionado. Os gases atravessam o lavador e são emitidos através da chaminé, onde se encontra o ponto de amostragem dos gases de saída (3). O tanque de resíduo (9) alimenta a bomba centrifuga (10) de recirculação do resíduo. E por fim, temos o retorno da suspensão reagida, onde se encontra o ponto de amostragem (1), onde são feitas aferições de vazão do liquido e temperatura de saída do resíduo. A vazão média dos gases ficou em 0,02029 m³/s. e a vazão média da suspensão circulante ficou em 0,8 L/s. A temperatura de trabalho após o processo entra em regime, ficou na faixa de 45 à 47 °C.

Selecionou-se algumas variáveis no início do projeto a serem testadas, que fez parte do processo de triagem: A variável tipo de torre, o uso de sobrenadante da suspensão da lama vermelha como meio absorvente e por fim a variável aquecimento do resíduo (efeito da temperatura).

3.3.5 Análise química

A determinação da composição química da lama vermelha foi realizada por Espectrometria de Fluorescência de Raios-X, utilizando espectrômetro WDS sequencial, modelo *Axios Minerals* da marca PANallyticall, com tubo de raios X cerâmico, anodo de ródio (Rh) e máximo nível de potência 2,4 KW. E as aquisições e tratamento dos dados foram realizados através do *software SuperQ Manager* da PANallyttiicall. Dado de perda ao fogo (PF) obtido a 1000°C.

As amostras foram analisadas no seguinte modo de preparação:

- Disco Fundido: 1 g de amostra + 6 g de fundente (Tetraborato de Lítio -Li2B4O7), mistura fundida a 1000 °C por 10 min.
- 2. Pastilha Prensada: 3 g de amostra + 0,9 g de aglomerante (cera de parafina), mistura prensada com uma carga de 20 toneladas.

Dado de perda ao fogo (PF) obtido a 1000 °C.

3.3.6 Difração de raios-x

Pela análise mineralógica por Difração de raios-x, há possibilidade da identificação dos minerais presentes em um determinado material, ao qual também permite estudar as características cristalográficas destes minerais. As análises por difração de raios X (DRX) utilizaram difratômetro Philips (PW 3710), com fonte de radiação de Cu ($K\alpha$) = 1,54 e ângulo de difração (20) variando de 4 a 60°, no Centro de Geociências da UFPA.

3.3.7 Experimentos com uso de sobrenadante

Realizaram-se experimentos de absorção de CO₂ sem a fase sólida (sobrenadante da solução de lama vermelha). Este tipo de experimento trata-se de uma variável a ser testada como parte do processo de triagem elaborado no início do projeto, para verificar a influência da carbonatação do sobrenadante no valor final do pH de longo prazo, bem como, observar o comportamento da absorção do CO₂ pelo sobrenadante. Foi adicionado à solução 0,01 gramas de sulfato de alumínio (floculante) com a finalidade de promover a decantação da parte solida e conseqüentemente facilitar o transporte da fase líquida através dos reatores de absorção. Esse valor foi determinado a partir de um experimento de decantação, o qual determinou qual a melhor concentração de sulfato de alumínio para cada litro de suspensão. Como já foi dito antes, buscou-se observar o comportamento da absorção de CO₂, em contra corrente, com o sobrenadante da solução de resíduo de bauxita, atentando-se para o potencial de dióxido de carbono absorvido em relação à diminuição do pH.

No sobrenadante a captura de CO_2 ocorre basicamente através da reação do NaOH com o CO_2 . A carbonatação da fase aquosa ocorre através da absorção rápida do CO_2 que forma ácido carbónico e neutraliza o excesso de base sob a forma de NaOH, $NaCO_3$, e Al($OH)_4$. A carbonatação da solução cáustica ocorre primeiramente de acordo com as seguintes equações:

$$NaOH + CO_2 \leftrightarrow NaHCO_3 \tag{3.1}$$

$$CO_2 + H_2O \leftrightarrow H_2CO_3^0$$
 (3.2)

$$H_2CO_3^0 \leftrightarrow HCO_3^- + H^+$$
 (3.3)

$$HCO_3^- \leftrightarrow CO_3^{2-} + H^+$$
 (3.4)

Essas equações prevalecem no início do processo de absorção e baixam o pH até 9.9. Neste processo ocorre tanto absorção física quanto química. E, o parâmetro que evidência esse processo de captura de CO₂ é a rápida diminuição do pH no início dos experimentos.

Os experimentos de absorção com uso do sobrenadante eram realizados aproximadamente 24 horas após o preparo da suspensão para que fosse possível captar apenas o sobrenadante. Na Figura 3.22, podemos observar o captador de sobrenadante. O mesmo está imerso na parte aquosa da solução do resíduo, onde, buscou-se succionar somente esta fase líquida.

As reações representadas pelas equações 3.1, 3.2, 3.3 e 3.4, caracterizam-se por ocorrer preferencialmente na fase aquosa da suspensão do resíduo e apresentarem uma alta tendência à reversibilidade (reações reversíveis).

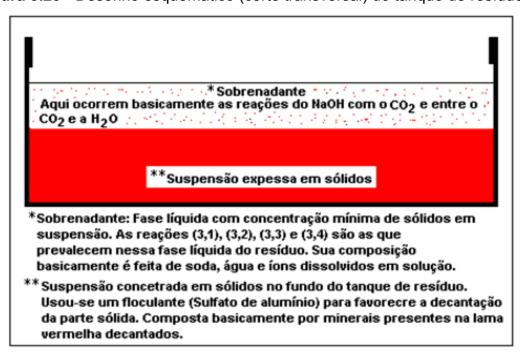


Figura 3.22 - Captador de sobrenadante imerso na fase aquosa do resíduo.

Fonte: Autor, 2012.

A Figura 3.23, é um desenho esquemático representativo da Figura 3.22, em corte transversal do tanque de resíduo. A parte líquida (sobrenadante) é succionada e recirculada através das torres de absorção, em quanto que, a suspensão expessa em sólidos permanece em sua grande parte depositada no fundo do tanque.

Figura 3.23 - Desenho esquemático (corte transversal) do tanque de resíduo.

Fonte: Autor, 2012.

Na Figura 3.24, temos o captador em operação trabalhando em baixa turbulência, succionando grande parte da fase líquida (sobrenadante) para dentro do reator.

Figura 3.24 - Captador em operação trabalhando em baixa turbulência.

Fonte: Autor, 2012.

3.3.8 Experimento com aquecimento do resíduo

Foram realizados experimentos com o aquecimento do resíduo. Este tipo de experimento trata-se de mais uma variável a ser testada como parte do processo de triagem elaborado no início do projeto, para ferificar a relevância do efeito da temperatura no pH de longo prazo. Também foi realizado em função do processo Bayer envolver calor e o resíduo de bauxita porder ser introduzido no processo em temperatura maior que a ambiente.

Foram utilizadas resistências com capacidade total de aquecimento de 8,4 kW (Figura 3.25), após um certo tempo de contato foi determinada a temperatura inicial de equilíbrio e então dado início ao processo de absorção, e a temperatura atingida variou entre 56 e 75°C. Aqui as resistências foram mergulhadas dentro do tanque de resíduo para o aquecimento da lama.

Figura 3.25 - Resistências mergulhadas na lama vermelha.

Fonte: Autor, 2012.

3.3.9 Experimento de absorção com uso de SO₂

Objetivando-se avaliar a capacidade de absorção de SO₂ pela suspensão de lama vermelha, foram realizados experimentos com adição de SO₂ engarrafado injetado no tubo de entrada. As quantidades de SO₂ injetado variaram de 100 a 700 PPM e as torres apresentaram um bom desempenho.

3.3.10 Balanço de massa para o CO₂

Para o cálculo do balanço de massa de cada corrida foram realizadas seis etapas, as quais podem ser vistas na Tabela 3.3. Estas etapas foram programadas em uma planilha Excel de modo a fazer o cálculo da massa total de CO₂ absorvida em cada corrida, bem como o balanço de massa total dos gases. O referido balanço de massa é realizado em função da % em massa de CO₂ absorvido.

I	II	III	IV	V	VI
[kg/s]	[kg/s]	[m ³ /s]	[kg/s]	[kg/s]	[kg]
m _{CO_{2sai}}	$\dot{m}_{N_{2sai}}$	Q _{ent}	m _{CO_{2ent}}	$\dot{m}_{CO_{2abs}}$	$\int_{t_1}^{t_2} \dot{m}_{\rm CO_{2abs}} dt$

Tabela 3.3 - Etapas para o cálculo do balanço de massa.

Fonte: Autor, 2012.

I – O cálculo da vazão mássica de CO_2 na saída: Este valor é calculado a partir do percentual de CO_2 aferido com equipamentos nos dutos de saída, da vazão volumétrica na saída e da temperatura dos gases também na saída. E consultando a Tabela A de densidades dos gases para cada temperatura (Apêndice A) podemos obter o valor da vazão mássica na saída, utilizando a equação abaixo. A vazão dos gases de saída ($\dot{\mathbf{Q}}_{sai}$) foi aferida diretamente na tubulação de saída dos reatores através dos equipamentos de medição.

$$\dot{\mathbf{m}}_{\mathrm{CO}_{2\mathrm{sai}}} = \%\mathrm{CO}_{2\mathrm{sai}} \times \dot{\mathbf{Q}}_{\mathrm{sai}} \times \rho_{\mathrm{(T)CO}_{2\mathrm{sai}}} \tag{3.5}$$

II – Cálculo da vazão mássica de N_2 na saída: Desprezando-se o volume dos demais gases, subtraímos da vazão volumétrica da saída (aferida com equipamentos) a soma dos percentuais na saída de CO_2 e do O_2 (medidos) e consultando a tabela de densidades, obtemos:

$$\dot{m}_{N_{2sai}} = \left(1 - \frac{\%CO_{2sai} + \%O_{2sai}}{100}\right) \times \dot{Q}_{sai} \times \rho_{(T)N_{2sai}}$$
 (3.6)

III – Calculo da vazão volumétrica de entrada: Como N_2 não participa da reação, e, a partir da vazão mássica de N_2 na saída (calculado no item II), dos percentuais de CO_2 e O_2 e da temperatura na entrada, calculamos a vazão volumétrica na entrada utilizando a equação abaixo.

$$\dot{Q}_{ent} = \frac{\dot{m}_{N_{2sai}}}{\left(1 - \frac{\%CO_{2ent} + \%O_{2ent}}{100}\right) \times \rho_{(T)N_{2ent}}}$$
(3.7)

IV – Cálculo da vazão mássica de CO₂ na entrada: A partir da vazão volumétrica na entrada (calculada no item III), do percentual de CO₂ na entrada e da temperatura dos gases na entrada (medida), consultando uma Tabela A de densidades de gases (Anexo A) obtemos através da equação abaixo o valor da vazão mássica.

$$\dot{m}_{CO_{2ent}} = \%CO_{2ent} \times \dot{Q}_{ent} \times \rho_{(T)CO_{2ent}}$$
 (3.8)

V – Cálculo da vazão mássica de CO₂ absorvida no reator: Subtraímos a vazão mássica de CO₂ na saída (obtida no item I) da vazão mássica de CO₂ na entrada (obtida no item IV).

$$\dot{m}_{\text{CO}_{2abs}} = \dot{m}_{\text{CO}_{2ent}} - \dot{m}_{\text{CO}_{2sai}} \tag{3.9}$$

VI – Cálculo da integral da vazão mássica absorvida ao longo da corrida: Consiste em calcularmos a média aritmética da vazão mássica de CO₂ absorvida em cada intervalo de tempo multiplicado pelo tempo de cada intervalo.

$$m_{\text{CO}_{2abs}} = \sum_{1} \frac{\dot{m}_{\text{CO}_{2abs1}} + \dot{m}_{\text{CO}_{2abs2}}}{2} \times (t_2 - t_1)$$
 (3.10)

CAPÍTULO 4

RESULTADOS E DISCUSSÃO

4.1 DIFERENÇA NA TAXA DE ABSORÇÃO E ESTABILIDADE DO pH ENTRE AS TORRES

Na Tabela 4.1, estão expostos os principais dados comparativos de absorção de CO₂ entre as torres. Como pode ser observado, a torre de selas apresentou uma melhor eficiência na absorção do CO₂, pois esta obteve uma diferença de 1,2 % a mais na absorção média (ABS_m) em tempos iguais de experimentação em comparação à torre de aspersão (Ver Tabela 4.1). Também, constatou-se que quando utilizamos a torre de selas, a diminuição média do pH é ainda maior, para um limite de tempo de 100 minutos para todos os experimentos selecionados.

Tabela 4.1 - Principais dados comparativos de absorção de CO₂ entre as torres.

Tipo de Torre	ABS _m (%)	Taxa média de absorção(m³ de CO₂/h)	Diminuição média do pH (Para 100min)	pH Longo prazo(média)
Spray	10,8	8,42	12,5 até 9,0	10,2
Selas	12	9,84	12,5 até 8,5	10,2

Fonte: Autor, 2011.

Comparando as corridas da torre de aspersão e recheios de selas, levando-se em consideração a diminuição do pH durante os experimentos, observamos os seguintes resultados para o pH ao final das corridas: aspersão, média 9,0 (desvio padrão 0,45); recheios selas, média 8,5 (desvio padrão 0,59). Estes resultados indicam, entretanto que as reações ocorrem mais rapidamente na torre de recheio de selas do que na de aspersão, devido à torre de selas apresentar uma maior área de contato gás-líquido, mostrando que essa taxa de diminuição do pH ao longo dos experimentos é mais acentuada na torre de selas. E essa evolução é melhor visualizada na Figura 4.1.

Entretanto, este fato não apresenta significância no pH de longo prazo, provavelmente devido esse pH está sendo determinado pela liberação lenta de determinados íons da parte sólida do resíduo de bauxita. E onde observamos os seguintes resultados de pH de longo prazo: aspersão, média 10,2 (desvio padrão 0,4); recheios de selas, média 10,2 (desvio padrão 0,7) (ver Tabela 4.1). Essa diferença entre as médias (taxas de diminuição do pH) obtidas para cada tipo de torre não apresenta relevância significativa, quando levando-se em conta o pH de longo prazo, pois o valor do pH de longo prazo independe do tipo de torre utilizado nos experimentos.

Apesar do melhor rendimento na absorção ter sido apresentado pela torre de recheio randômico (selas), a torre de aspersão teria maior preferência na escolha, pois do ponto de vista envolvendo custo benefício, a torre de aspersão apresenta em geral menor custo de capital para construção, além de operação e manutenção muito mais simples. Além de apresentar a vantagem de não necessitar de limpeza química, o que evita a geração de novos resíduos.

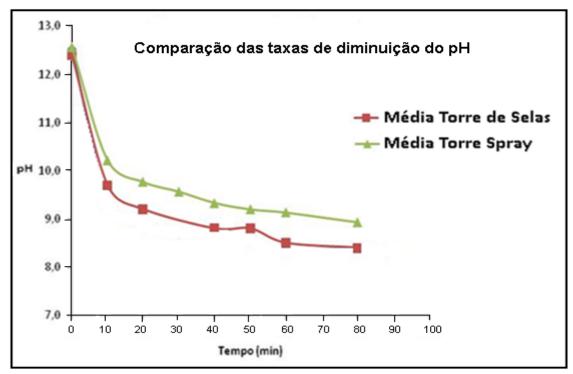


Figura 4.1 - Gráfico da comparação das taxas de diminuição do pH.

Fonte: Autor, 2011.

Os resultados encontrados neste trabalho, assemelham-se com os apresentados por GUILFOYLE et al.,(2005), onde, esses autores promoveram ensaios em escala piloto, utilizando um lavador de gases com recheios de anéis dispostos aleatoriamente. Observa-se que nas corridas realizados nas torres de absorção (spray e selas randômicas), em um curto período de tempo o pH da solução apresentou uma queda rápida, confirmando que no início do processo de carbonatação da lama, absorção ocorre inicialmente na fase aquosa do resíduo (NaOH e íons dissolvidos), com diminuição do pH ficando estável na faixa de 8,5 a 9,5, conforme podemos observar no gráfico comparativo dos experimentos (Figura 4.1) e na Figura 2.5, fornecida por GUILFOYLE et al.,(2005).

4.2 MASSA DE CO₂ ABSORVIDA E ACUMULADA UTILIZANDO LAMA VERMELHA

Na Figura 4.2, temos o gráfico do processo de absorção do CO₂ (em gramas) em função do tempo (cinética de absorção). O gráfico nós mostra o comportamento da absorção durante os experimentos. Nos primeiros cem minutos (trecho A do gráfico), o que prevalece é uma absorção rápida ocasionada principalmente pela reação NaOH e CO₂ (Ver equações 3.1, 3.2, 3.3 e 3.4), onde a massa absorvida, neste trecho, ficou um pouco acima de 1350 gramas. Para os cem minutos seguintes (trecho B), prevalece um misto do processo de absorção e adsorção do CO₂ por parte dos sólidos. Neste mesmo trecho, a absorção diminui gradativamente devido a lama começar a sofrer um processo de saturação pelo dióxido de carbono, e a percetagem de absorção diminuiu quase que pela metade. No terceiro trecho (trecho C) e o tempo subsequente do experimento, prevalece um processo de adsorção do CO₂. Aqui a quantidade de CO₂ capturado é ainda menor, devido o efeito da adsorção pela fase sólida ser um processo lento. Para a formação deste gráfico, realizou-se uma correlação via balanço de massa por unidade de tempo dos experimentos. O coeficiente de correlação, R², deu próximo de 1, o que indica um ajuste considerado como sendo ótimo com os dados da curva de

absorção e uma forte relação entre variáveis independentes e as quantidades de massa de CO₂ absorvida.

Massa de CO₂ acumulada pela lama vermelha em função do tempo $y = 5E-05x^3 - 0.0458x^2 + 18.016x + 16.938$ $R^2 = 0.9992$ 3000 2700 Massa de CO, acumulada (g) 2400 2100 1800 Pontos experimentais 1500 Série polinômial 1200 900 600 300 0 100 150 300 400 250 350 Tempo (Min)

Figura 4.2 – Gráfico da massa acumulada de CO₂ em função do tempo.

Fonte: Autor, 2011.

4.3 EXPERIMENTOS COM USO DO SOBRENADANTE

Observou-se que nos experimentos sem a fase sólida (sobrenadante), o pH de longo prazo voltou ao ponto inicial após os experimentos (Tabela 4.2). A alcalinidade da solução voltou ao seu ponto inicial em um período curto de 10 dias após os experimentos, demonstrando claramente que parte da redução da alcalinidade é devido à fase sólida, onde os sólidos presentes na suspensão participam das reações de absorção. Neste experimento, foi reduzido o pH apenas do sobrenadante da suspensão, e constatou-se que quando o sobrenadante utilizado no experimento é misturado com a parte da suspensão sedimentada o valor do pH volta a aumentar. Por isso, uma análise mais detalhada é necessária para avaliar a contribuição dos sólidos na fase líquida para a redução do pH. Também os experimentos evidenciaram que o processo de absorção do CO₂ com a circulação da mistura lama/água 27% em peso apresentou melhor eficiência no sequestro de carbono, em comparação quando o material circulante é somente a fase líquida, ou seja, a ausência da

fase sólida diminui a quantidade de CO₂ sequestrado, pois o processo de absorção de CO₂ durante o procedimento experimental se dá basicamente pela reação do CO₂ com a NaOH existente na lama vermelha na fase líquida. A mistura lama/água (27% em peso de sólidos) consiste no resíduo totalmente misturado e bem homogêneo, devido ao sistema de agitação dentro do tanque de resíduo.

Nos experimentos com a recirculação do sobrenadante como principal meio absorvente de CO₂, podemos observar na Figura 4.3, que o pH do sobrenadante diminui rapidamente. Em torno de 20 minutos o pH da solução baixou de um valor próximo de 13 para um valor estável e próximo de 8. Este fato é devido ocorrerem reações de carbonatação preferencialmente no sobrenadante, ocasionada principalmente pelas reações entre o NaOH e CO₂, ao qual se caracterizam-se por ser reações reversiveis (ver equações 3.1, 3.2, 3.3 e 3.4).

De acordo com o gráfico (Figura 4.3), o pH do sobrenadante apresentou uma queda eficiênte em seu valor (pH \approx 8,2) em poucos minutos, porém, em contra partida o pH dessa solução (sobrenadante novamente misturada à parte sólida do resíduo) voltou a aumentar e estabilizar-se em um valor de pH igual ao ponto de partida (pH \approx 13) em um curto periodo de tempo, conforme pode ser observado e comparado ao gráfico da Figura 4.4.

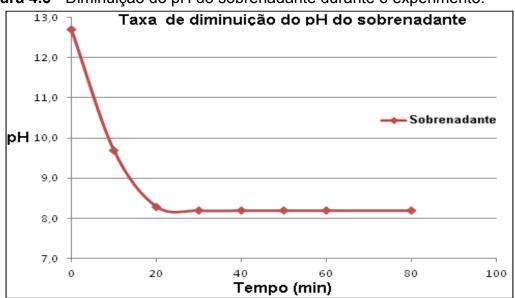


Figura 4.3 - Diminuição do pH do sobrenadante durante o experimento.

Fonte: Autor, 2012.

O gráfico da Figura 4.4, mostra a comparação das taxas de evolução do pH, com recirculação da fase sólida (suspensão 27% em peso) e sem o uso dessa fase sólida (recirculação do sobrenadante). Fazendo-se uma análise dos dados do pH de longo prazo constatamos que em todos os experimentos o pH voltou a aumentar, porém, esse aumento é mais acentuado nos experimentos sem a circulação da fase sólida (sobrenadante) em poucos dias. Já para os experimentos com a suspensão (27% em peso) o pH manteve-se estável em uma faixa mais baixa, evidenciando que os sólidos presentes na suspensão participam das reações de absorção.

Taxa de aumento do pH de longo prazo

14,0

13,0

12,0

PH 11,0

10,0

9,0

100

200

Tempo (dias)

Figura 4.4- Comparação das taxas médias da evolução do pH de longo prazo.

Fonte: Autor, 2012.

No final de cada experimento, foram coletadas amostras da suspensão de LV utilizada. E nos experimentos realizados com sobrenadante, ao final, o sobrenadante foi misturado com a parte sedimentada e então coletada uma amostra em um recipiente, para medição dos valores do pH de longo prazo. A mistura dessas fases, líquida e sólida provoca um efeito reverso no valor do pH em um curto período de tempo, ou seja, o pH volta a aumentar consideravelmente. Este fato é devido ter-se reduzido basicamente somente o pH do sobrenadante.

Os números a seguir também evidenciam estes fatos: O valor do pH aumentou em média 4,4 pontos (desvio padrão 0,3) após os experimentos com sobrenadante comparado com 1,5 pontos (desvio padrão 0,5) nos experimentos com a suspensão de lama.

Tabela 4.2 - Comparação dos experimentos de absorção utilizando sobrenadante e a mistura lama/água.

Tipo de mistura	Massa CO ₂ absorvido(kg/h)	Aumento da absorção(%)	pH inícial	pH final	pH longo prazo
sobrenadante	1,26	44.0	12,8	8,4	12,9
Lama/água	1,40	11,0	12,5	8,7	10,5

Fonte: Autor, 2012.

Por tanto, de acordo com os dados coletados, constatou-se que os experimentos realizados com sobrenadante deixam evidente que a alcalinidade da lama vermelha se deve em sua maioria à parte sólida, pois quando o sobrenadante era misturado novamente com a parte sólida o pH aumentava significativamente em poucos dias, dessa forma é mais vantajoso realizar o procedimento experimental com a suspensão de lama vermelha à 27% em peso de sólidos.

4.4 EFEITO DA TEMPERATURA

Embora a solubilidade do CO₂ em meio aquoso reduza com o aumento da temperatura, torna-se necessário avaliar o comportamento da absorção do CO₂ pela fase sólida em temperaturas maiores que a ambiente, para tal foram realizados experimentos com circulação do resíduo aquecido, tanto na torre de *spray* quanto na torre de recheio randômico (selas), e que tem como objetivo testar essa variável selecionada através de um processo de triagem elaborado no início do projeto, para verificar a relevância desse aquecimento no pH de longo prazo. A temperatura de operação alcançada no resíduo ficou na faixa de 56 à 75 °C. Analisando os valores médios obtidos, os experimentos com aquecimento apresentaram uma média para o pH ao final da corrida de 9,1 e o

pH de longo prazo igual a 10,4 (desvio padrão de 0,28). Já os valores do pH para o uso do resíduo não aquecido, incluindo as duas torres, ficou com uma média do pH ao final da corrida de 8,9 e o pH de longo prazo igual a 10,1 (desvio padrão de 0,22). Isto demonstra a pouca influência da temperatura nos resultados comparativos, tanto na questão da absorção do CO₂ quanto na avaliação do pH logo ao final das corridas e no pH de longo prazo. As comparações realizadas entre os experimentos mostram que a variação de pH é pouco sensível à variação de temperatura, visto que a diferença entre as variações de pH dos experimentos comparados não era muito acentuada. Portanto, o efeito da temperatura não apresentou nenhuma relevância para a questão do pH de longo prazo, pois os seus resultados assemelham-se aos encontrados pelo uso do resíduo não aquecido.

4.5 EXPERIMENTOS PARA ABSORÇÃO DE SO₂

Foram realizados alguns experimentos para avaliar a absorção de SO₂ em paralelo à absorção de CO₂ nas corridas 19 e 21, utilizando as torres de *spray* e de selas randômicas respectivamente. Foi injetado na tubulação de entrada SO₂ engarrafado em quantidades variando de 100 a 700 PPM. Podemos observar que a torre *spray* apresentou uma melhor eficiência na absorção de SO₂ em comparação à torre com recheios (Tabela 4.3).

Tabela 4.3 - Resultados dos experimentos com injeção de SO₂.

	Tipo de Torre	SO ₂ médio na entrada (PPM)	l	SO ₂ médio na saída do Reator (PPM)	Desvio padrão Saída (PPM)	Absorção média SO₂(%)
Exp 19	Spray	246	88	15	5	93,9
Exp 21	Selas	333	188	61	26	81,7

Fonte: Autor, 2011.

Em comparação com estudos feitos por LOBATO (1998), os resultados aqui apresentados estão condizentes aos encontrados por este autor, onde o mesmo promoveu a remoção de dióxido de enxofre através da absorção reacional com solução alcalina de soda cáustica em torre de aspersão e

chegou a obter uma eficiência máxima acima de 60% na absorção de SO_2 . Neste trabalho, a eficiência máxima de absorção de SO_2 é chegou próximo de 85% (ver Figura 4.5). A eficiência de absorção máxima (% η_{Abs}) consiste no cálculo da diferença entre as concentrações de entrada (C_e) e de saída (C_s), dividida pela concentração de entrada (C_e), conforme a equação 4.1.

$$\%\eta_{\text{Abs}} = \left[\frac{(C_e - C_s)}{C_e}\right] X \, 100 \tag{4.1}$$

Esta eficiência máxima consiste em ser um pico máximo de absorção alcançado no início dos experimentos. Em seguida, o processo de absorção vai decrescendo até chegar a um ponto de saturação. Os dados completos dos experimentos 19 e 21 estão expostos no apêndice B (9.B e 11.B respectivamente).

A Figura 4.5, mostra um gráfico do comportamento da absorção do SO₂ pela suspensão de lama vermelha, durante os experimentos. Observamos que a absorção começa em um pico máximo de absorção no início dos experimentos e vai diminuindo conforme prossegue-se o andamento dos experimentos. Essa diminuição na eficiência de absorção do SO₂ provavelmente é devida à suspensão de lama vermelha apresentar um quadro progressivo de saturação por SO₂ acumulado na lama vermelha.



Figura 4.5- Eficiência de absorção de SO₂ em função do tempo.

Fonte: Autor, 2012.

4.6 COMPARAÇÕES DAS ANÁLISES DE DRX

Foram realizadas análises por difração de raios X em amostras de lama vermelha reagida com o CO_2 e a não reagida. No difratograma comparativo (Figura 4.6), podemos observar a diminuição na intensidade dos picos característicos do aluminato de tricálcio, identificado pelos picos em 41º 2θ [2,19855Å], 47.6° 2θ [1,91098Å], 33.2° 2θ e principalmente o pico \sim 20° 2θ . Este fato indica possiveis reações de dissociações (dissolução) do aluminato de tricálcio durante o processo de carbonatação (liberação de íons e formação de novas fases minerais). Observamos também o aumento dos picos referentes a dawsonita em picos \sim 18º e $34,4^{\circ}$ e carbonato de cálcio(calcita) $29,4^{\circ}$ 2θ [3,04034 Å] mostrando a formação destes cristais. A Dawsonita [NaAlCO₃(OH)₂] é um componente importante na composição da lama vermelha, pois esse mineral tem sua formação a parti de sódio (Na) e carbono, sendo um excelente sequestrador de carbono de forma estável.

Segundo KHAITAN *et al.*,(2009a), em seu estudo sobre absorção de CO_2 por resíduo de bauxita, o aluminato tricálcico (C3A) foi identificado pelos picos em 33,2°; 41° e 47,6° 2 θ . Já para o carbonato de cálcio o pico foi identificado em 29,4° 2 θ . E, de acordo com o gráfico (Figura 4.6), os respectivos picos também foram identificados nas duas amostras. Também, o estudo feito por SMITH *et al.*,(2003), mostrou claramente o desaparecimento de C3A (picos em ~ 20° e 23° 2 θ) e formação de dawsonita (~18° 2 θ), para um residuo de bauxita carbonatado. O mesmo foi observado para os resultados apresentados na Figura 4.6 (resíduo carbonatado).

Podemos observar na Figura 4.6, que no DRX para o resíduo carbonatado, o mesmo apresenta um aumento na intensidade dos picos referentes a Dawsonita, quando comparados ao DRX do resíduo não carbonatado. Este fato pode ser explicado por um possivel aumento na concentração deste mineral no resíduo carbonatado.

O ligeiro aumento da concentração de dawsonita pode estar relacionado com parte da absorção do Na (sódio) na fase sólida do resíduo carbonatado, o que pode também explicar a estabilidade adquirida pela suspensão quando o

pH é medido para tempos muito longos. Uma vez que compostos a base de Ca (cálcio) e sílico aluminatos tem a tendência de reter Na (sódio) em sua estrutura com muita facilidade.

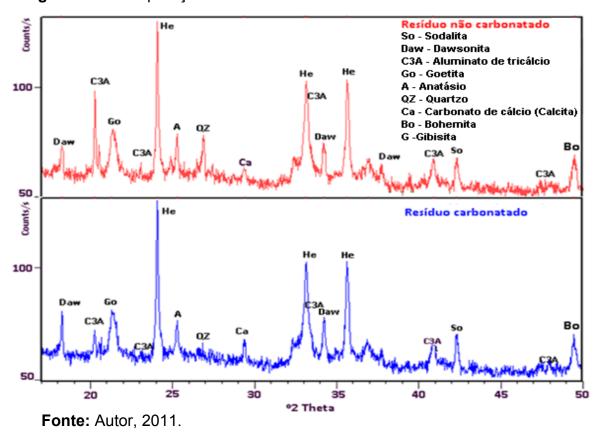


Figura 4.6 - Comparação do DRX do resíduo carbonatado e não-carbonatado.

O referido DRX mostra que a lama vermelha é composta por minerais provenientes da própria bauxita, tais como a gibsita (G), hematita (He), goetita (Go), anatásio (A), quartzo (QZ) e minerais que seriam formados durante o

processo Bayer, tais como a sodalita (So).

Por tanto, a análise mineralógica realizada no resíduo de bauxita antes e após a carbonatação (Figura 4.6), tem por objetivo identificar os minerais que participam do processo de carbonatação à longo prazo (solidos do resíduo), ao qual envolve prinipalmente reações de dissociação de minerais (dissolução) e consequentemente a formação e precipitação de novas fases sólidas que sequestrão o carbono de forma estável, como exemplo a dawsonita, e a maioria das fases contendo cálcio, que estão presentes como um resultado do Processo Bayer.

4.7 MODELO DE UMA PLANILHA UTILISADA PARA OS CÁLCULOS DO BALANÇO DE MASSA

Nas Figuras 4.7 e 4.8, temos um modelo de uma planilha do Excel contendo todos os dados coletados durante o experimento, bem como todos os resultados obtidos. Estes valores são utilizados para o cálculo do balanço de massa e obtenção dos gráficos.

Figura 4.7 - Planilha do Excel com dados coletados do experimento 24.

$\overline{}$		Nout	ralizacă	a da Dasíd	uas da P) a mita can	o Coniio	stra da (`arb				
\vdash	Data	31 / 05 / 20				ios randôm		stro de Carb pH inícial: 12,8					
⊢		27% em pe				ıra ambien		pH final: 8,6					
-,													
_ <u></u>	azao g	ás : 0,0150	/ m3/s	Vazao IIq	uiao: v,8	L/S = 8.10**	s = 8.10 ⁻⁴ m ³ /s Distrib. líq. na entrada: Livre; tubo						
╙			<u>ENTRA</u>			SAÍDA							
L	E	quipamen	to de afe	rição: MRU	<u> </u>	Equ	uipamen	to de afe	rição: MRU		Hanna		
Tem	npo(min)	%CO2	%O2	%NO2	T (°C)	Tempo (min)	%CO2	%O2	%NO2	T (°C)	pH		
╙	0	8,7	8,87	82,43	47	0	7,6	9,56	82,8	28	12,8		
	10	8,4	9,22	82,38	47	10	7,3	9,95	82,8	31	10,1		
	20	8,2	9,47	82,33	48	20	7,3	10,23	82,5	33	9,4		
	40	8,3	9,34	82,36	49	40	7,2	10,05	82,8	38	9,0		
	60	8,4	8,92	82,68	49	60	7,4	10,11	82,5	41	8,7		
	80	8,1	9,31	82,59	48	80	7,7	9,78	82,5	44	8,5		
	100	7,7	10,19	82,11	49	100	7,2	10,37	82,4	45	8,6		
	120	8,6	8,77	82,63	50	120	7,6	9,91	82,5	45	8,5		
	140	8,1	9,30	82,60	50	140	7,7	9,8	82,5	46	8,6		
	160	7,4	10,29	82,31	49	160	7,0	10,83	82,2	46	8,5		
	180	7,7	10,07	82,23	49	180	7,2	10,37	82,4	47	8,5		
	200	7,7	9,77	82,53	49	200	7,3	10,28	82,4	48	8,5		
	220	7,9	9,42	82,68	51	220	7,6	9,9	82,5	49	8,6		
	240	7,6	9,80	82,60	50	240	7,5	10,01	82,5	49	8,5		
_	260	7,2	10,37	82,43	51	260	6,9	10,86	82,2	49	8,5		
_	280	7,9	9,44	82,66	53	280	7,6	9,78	82,6	51	8,5		
	300	7,5	10,13	82,37	51	300	7,2	10,46	82,3	50	8,5		
-	320	7,4	10,01	82,59	50	320	7,2	10,22	82,6	49	8,5		
-	340	7,4	9,95	82,65	51	340	7,2	10,25	82,6	49	8,5		
-	360	7,4	10,78	81,82	50	360	7,2	11,02	81,8	47	8,5		
-	380	7,6	10,46	81,94	50	380	7,3	10,7	82,0	47	8,5		
<u>_</u>	400	7,8	10,23	81,97	51	400	7,8	10,3	81,9	46	8,6		
		_				10.	5	Taxa de	aumento d	о рН			
	12	Taxa	a de dimin	uição do pH		10,							
	13						. —				-		
	12					_					-		
	١.					9,	5						
	11					-	/			— рН Э	(Tempo		
pН				-	← pH X Ten	npo PH				—— p	· rempo		
	10					-	1/						
	9					8,	5 /						
		A01144		••••									
	8, —	F0	150 211	250 222		_ '	0 20	0 40	60 80	100 120	140		
	0	50 100	150 200 Tempo		350 400	450	. 20		Tempo (dias)	100 120	140		

Fonte: Autor, 2012.

Nesta planilha, encontram-se valores de entrada e saída das temperaturas e dos teores, em percentagem, de CO₂, O₂ e NO₂ presentes nos gases de exaustão do experimento 24. Os demais dados dos outros experimentos utilizados para elaboração deste trabalho encontram-se no apêndice B.

E, com auxilio da Tabela (Figura 4.8), pôde-se calcular a massa de CO₂ absorvida no decorrer do experimento em função do tempo e a massa total absorvida ao final do experimento. Os cálculos foram feitos com auxilio das duas tabelas da planilha do Excel (Figura 4.8 e 4.9) mais a tabela de densidade dos gases em função da temperatura (Apêndice A).

Figura 4.8 - Tabela da planilha do Excel utilizada para o cálculo do balanço de massa.

T ([kg/s]	[kg/s]	[m³/s]	[kg/s]	[kg/s]	[kg]
Tempo (min)	mi CO₂sai	m' N ₂ sai	Q ent	m¹CO₂ent	m' CO ₂ abs	∫∆MCO₂∗mir
0	0,002049	0,01415	0,0161	0,002356	0,00030679	0
10	0,001948	0,014	0,01594	0,002251	0,00030259	0,1828144
20	0,001936	0,01386	0,01584	0,002177	0,0002413	0,1631682
40	0,001878	0,01368	0,01568	0,002174	0,0002964	0,3226211
60	0,001912	0,01351	0,01542	0,002164	0,00025274	0,3294843
80	0,00197	0,01338	0,01525	0,00207	0,00010029	0,2118162
100	0,001836	0,01333	0,01532	0,001971	0,00013489	0,1411078
120	0,001938	0,01334	0,01528	0,002189	0,00025095	0,2315037
140	0,001958	0,0133	0,01524	0,002056	9,893E-05	0,2099271
160	0,00178	0,01324	0,01519	0,001878	9,8297E-05	0,1183361
180	0,001825	0,01324	0,0152	0,001956	0,00013131	0,1377627
200	0,001844	0,0132	0,0151	0,001943	9,8382E-05	0,1378141
220	0,001914	0,01317	0,01513	0,001985	7,109E-05	0,1016835
240	0,001889	0,01317	0,0151	0,001911	2,2583E-05	0,0562038
260	0,001738	0,01313	0,01513	0,001809	7,1253E-05	0,0563016
280	0,001902	0,01311	0,01516	0,001976	7,3995E-05	0,0871489
300	0,001807	0,01311	0,01511	0,001882	7,4556E-05	0,0891304
320	0,001813	0,01318	0,01512	0,001863	5,009E-05	0,0747873
340	0,001813	0,01318	0,01515	0,001861	4,7992E-05	0,058849
360	0,001825	0,01314	0,0152	0,001874	4,9576E-05	0,0585407
380	0,00185	0,01317	0,01522	0,001927	7,7239E-05	0,0760892
400	0,001983	0,0132	0,01529	0,001981	2,0224E-06	0,0451302
			Ma	assa de CO	₂ absorvida	2,9 kg

Fonte: Autor, 2012.

CAPÍTULO 5

CONCLUSÕES E SUGESTÕES PARA TRABALHOS FUTUROS

5.1 - CONCLUSÕES

O pH de longo prazo para os experimentos com circulação somente da fase líquida (sobrenadante) voltou ao ponto inicial em um curto período de tempo, e o processo de absorção do CO₂ com a circulação da mistura lama/água 27% em peso apresentou melhor eficiência no sequestro de carbono, em comparação quando o material circulante é só o sobrenadante. A presença da fase sólida do resíduo nos experimentos aumenta a quantidade de CO₂ sequestrado.

Por tanto, os experimentos realizados com sobrenadante deixam evidente que a alcalinidade da lama vermelha está concentrada em sua maioria na parte sólida, demonstrado que é mais vantajoso o uso da circulação da suspensão de lama (27% em peso).

Quando realizamos os experimentos com o resíduo aquecido, observamos que dentro das faixas de temperatura pesquisadas, não foi observada influência significativa nos resultados comparativos das médias obtidas, tanto na questão da absorção do CO₂ (quantidade de massa de CO₂ absorvida/tempo), quanto na avaliação do pH de longo prazo, pois o pH voltou a subir, e os seus resultados assemelham-se aos encontrados pelo uso do resíduo não aquecido (temperatura ambiente), provavelmente causado pela reversão das reações de carbonatação. Portanto, os resultados dos testes da variável com uso do resíduo aquecido, demonstraram ser ineficaz e sem efeito significativo sobre o pH de longo prazo.

As torres de absorção apresentaram um desempenho satisfatório na remoção do SO₂, capturando o gás de maneira bastante eficiente. A suspensão de resíduo de bauxita apresentou grande capacidade de absorção do SO₂,

devido reações com a soda presente na própria suspensão, onde a absorção média de SO_2 ficou em torno de 93,9% para a torre de aspersão e 81,7% para a torre de selas. Portanto, a suspensão de resíduo de bauxita pode ser utilizada para remoção de SO_2 em fluxos gasosos em substituição de outras soluções alcalinas.

A torre de aspersão apresentou os melhores resultados na captura de SO₂, do que a torre de selas randômicas. No entanto, para a questão do sequestro de carbono, a torre de selas apresentou um melhor rendimento, tanto na absorção do CO₂ quanto na taxa de redução do pH logo após o final de cada experimento.

Constatou-se que a suspensão do resíduo apresentou uma redução eficiente do pH para ambas as torres, onde essa absorção é mais acentuada no início da cada experimento, devido a reação do dióxido de carbono com a soda e íons alcalinos em solução. No entanto, observa-se que a redução da alcalinidade deu-se de forma mais eficiente na torre de selas, evidenciando que há uma evolução mais rápida na reação na torre de recheio de selas, devido esta apresentar uma maior área de contato gás-líquido.

A suspensão do resíduo de bauxita absorveu quantidade significativa de CO₂. A capacidade de carbonatação da suspensão a 27% em peso ficou em torno de 33,3 Kg CO₂ por tonelada de resíduo (3,3 g CO₂/100g de lama vermelha), sendo considerado como um ótimo rendimento e com resultados condizentes aos encontrados na literatura, onde, por exemplo, no trabalho de Enick *et al.* (2001), cerca de 2,3 g de CO₂ foram sequestrados para cada 100 gramas e Bonefant *et al.* (2008), em seu trabalho a capacidade de carbonatação obtida para a suspensão de lama vermelha, ficou em torno de 4,15 g de CO₂/100 g de lama vermelha.

O processo de carbonatação a longo prazo envolve diversas reações onde há liberação lenta de determinados íons da parte sólida do resíduo de bauxita e em seguida a formação de novos compostos estáveis na lama vermelha carbonatada, que iniciam-se a pH ≈ 9,9.

Constatou-se que ambas as torres apresentaram ótimos rendimentos, porém, levando-se em relação o custo de capital, operação e manutenção, deve-se priorizar a escolha da torre de aspersão. Do ponto de vista ambiental apresenta a vantagem de não necessitar limpeza química, o que evita a geração de novos resíduos.

O uso da carbonatação do resíduo do processo Bayer pode ser uma solução vantajosa, por amenizar os problemas associados tanto com o armazenamento desse resíduo, quanto na diminuição da emissão de poluentes gasosos pelas refinarias de alumínio, e de acordo com os dados coletados, comprovou-se que é vantajosa a carbonatação da lama vermelha, pois se reduziu substancialmente a alcalinidade e como ganho adicional há a redução da emissão de dióxido de carbono e dióxido de enxofre.

5.2- SUGESTÕES PARA TRABALHOS FUTUROS

Verificar a parcela de CO₂ adsorvido pela lama vermelha em função da temperatura de operação das torres.

Correlacionar a eficiência de absorção do CO₂ pela lama vermelha em corrente gasosa com parâmetros operacionais (variação da vazão da suspensão e do gás circulante) do lavador de gases.

Promover experimentos com a adição de cálcio (Ca) para se verificar a precipitação de fases minerais estáveis e consequentemente avaliar o processo de carbonatação.

REFERÊNCIAS BIBLIOGRÁFICAS

BARRAD, P., GADEAU, R., 1967, "Production del aluminio". In: **Bilbao, U.,** *Enciclopédia do Alumínio*.

BARDOSSY, G.; ALEVA, G. J. J., 1990, *Lateritic Bauxites*. Elsevier: Amsterdam, 1990.

BERTOCCHI, A.; GHIANI, M.; PERETTI, R.; ZUCCA, A., 2006, Red mud and fly ash for remediation of mine sites contaminated with As, Cd, Cu, Pb and Zn. **Journal of Hazardous Materials**, 134, (1-3), 112-119.

BONENFANT, D.; KHAROUNE, L.; SAUVÉ, S.; HAUSLER, R.; NIQUETTE, P.; MIMEAULT, M. & KHAROUNE, M. CO2 Sequestration by Aqueous Red Mud Carbonation at Ambient Pressure and Temperature. **Industrial & Engineering Chemistry Research**, v. 47, p. 7617 – 7622, 2008.

CARDILE, C. M., Hughes, C. A., and Summers, K. J. -1994. "Evaluation of carbon dioxide treatment of red mud." **Proc., 6th AusIMM Extractive Metallurgy Conf.**, 317–320.

COLLAZO, A. Et al. Evaluation of red mud as surface treatment for carbon steel painting, **Process in Organic Coating**, n. 52. pp.351-358, 2005.

COOLING, D. J.; Hay, P. S.; Guilfoyle, L. Carbonation of bauxite residue. In *Proceeding of the 6th International Alumina Quality Workshop* **2002**, *185*, 190.

CREMASCO, MARCO AURÉLIO, **Fundamentos de Transferência de Massa**, 2ª edição, Editora da Unicamp, 2002.

DAS, P.; ROY, D.; BRAHMA, R. 2003, Experience with thickened disposal of red mud. In **Light Metals**, Crepeau, P. N., Ed. TMS: Vancouver,; pp 133-135.

DIAZ, B. Et al. Passivity of iron in red mud's water solutions, **Eletrochimica Acta,** n. 49, pp. 3039-3048, 2004.

DILMORE, R.; LU, P.; ALLEN, D.; SOONG, Y.; HEDGES, S.; FU, J.; DOBBS, C.; DEGALBO, A.; ZHU, C., 2008, Sequestration of CO2 in **mixtures of bauxite residue and saline wastewater.** Energy & Fuels, 22, (1), 343-353.

ENICK, R. M., BECKMAN, E. J., Shi, C. M., Xu, J. H., and CHORDIA, L. _2001_. "Remediation of metal-bearing aqueous waste streams via direct carbonation." **nergy Fuels**, 15_2_, 256–262.

FAIR, J.R. *et al.* Sistema líquido/gás. In: **PERRY, R.H.; CHILTON C. H. (Ed.)** *Manual de Engenharia Química.* **5. ed**. Traduzido por: H. Macedo, L. M. Barbosa e P. E. de F. Barbosa. Rio de Janeiro: Guanabara Dois S. A., 1980. Original inglês.

FLORES, H. A. R, 2011., "Absorção de dióxido de carbono em soluções aquosas de aminas em uma coluna de parede molhada com promotor de película", Tese de Mestrado, USP,.

GRÄFE, M.; POWER, G.; KLAUBER, C., 2009, Literature **review of bauxite residue alkalinity and associated chemistry**; DMR-3610; CSIRO-Minerals: Waterford; p 19.

GUILFOYLE, L.; HAY, P.; COOLING, D., 2005, Use of flue gas for carbonation of bauxite residue. In **Proceedings of the 7th International Alumina Quality Workshop**, McKinnon, A., Ed. AQW Inc.: Perth; pp 218-220.

GUSTAFSSON, J. P., Visual MINTEQ, 2.53; KTD, Dep Land and water Resource Engineering: Estocolmo, 2006.

HIND, A. R.; Bhargava, S. K.; Grocotte, S. C. The surface chemistry of Bayer process solids: a review. **Colloids Surf., A: Physicochem. Eng. Aspects 1999**, *146* (1-3), 359–374.

ISEL/DEQ - INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA DEPARTAMENTO DE ENGENHARIA QUÍMICA. **MSUP** - "Modelação e Simulação de Unidades Processuais: Extracção Líquido-Líquido e Absorção Gasosa" Secção 10 — Tecnologia Industrial, Lisboa, Setembro 2005.

JONES, G.; JOSHI, G.; CLARK, M.; MCCONCHIE, D., 2006, Carbon capture and the aluminium industry: Preliminary studies. **Environ. Chem.**, 3, (4), 297-303.

KASLIWAL, P, SAI, P.S.T., "Enrichment of titanium dioxide in red mud: a kinetic study", *Hydrometallurgy*, n. 53, pp. 73–87, 1999.

KIRKPATRICK, D.B., "Red mud product development", The Minerals, Metals & Materials Society, 1996.

KOHL, A,; RIESENFELD, F. Alkanolamines for hydrogen sulfide and carbon dioxide removal. In: **Gas purification.** 4 ed. Houston: Gulf Publishing, 1985, p.29 – 109.

KHAITAN, S., Dzombak, D., and Lowry, G. (2009a). "Chemistry of the acid neutralization capacity of bauxite residue." *Environ. Eng. Sci.*, in press.

KHAITAN, S.; Dzombak, D. A.; Lowry, G. V., (2009b), Mechanisms of neutralization ofbauxite residue by carbon dioxide. *J. Environ Eng. - ASCE*, accepted for publication.

LEITE, A. B., BERTOLI, S. L., BARROS, A. A. C., **Processo de Absorção de Gases na minimízação da Poluição Atmosferica -** 2000, Disponível em: < http://www.bvsde.paho.org/bvsaidis > Acesso em: 26/03/2012.

LEITE, A. B., BERTOLI, S. L., BARROS, A. A. C., **Absorção química de dióxido de nitrogênio (NO₂) – 2005, Artigo Técnico ,** Eng. Sanit. Ambient. vol.10 no.1 Rio de Janeiro Jan./Mar. 2005.

LEWIS, W. K.; WHITMAN, G. Principles of Gas Absorption. **Industrial and Enginnering chemistry,** washington, V. 16, n. 12, p, 1215 – 1220, Dec., 1924.

LI, L., 1998, Properties of red mud tailings produced under varying process conditions. **J. Environ. Eng.-ASCE**, 124, (3), 254-264.

LIU, Y.; LIN, C.; WU, Y., 2007, Characterization of red mud derived from a combined Bayer Process and bauxite calcination method. **J. Haz. Mat.,** 146, (1-2), 255-261.

LOBATO, I. C. Estudo do Lavador de Gases Centrífugo no Controle das Emissões de SO₂. Belém. 1998. Dissertação de Mestrado apresentada ao curso de Engenharia Química do Centro Tecnológico da Universidade Federal do Pará. 1998.

LOMBI, E., ZHAO, F. J., ZHANG, G., SUN, B., FITZ, W., ZHANG, H., McGRATH, S. P., "In situ fixation of metals in soils using bauxite residue: chemical assessment", Environmental Pollution, n. 118, pp.435–443, 2002.

LOPEZ, E.; SOTO, B.; ARIAS, M.; NUNEZ, A.; RUBINOS, D.; BARRAL, M., 1998, Adsorbent properties of red mud and its use for wastewater treatment. **Water Res**., 32, (4), 1314-1322.

MADDOX, R. N. **Absorção de gases.** In. PERRY, R. H.; CHILTON C. H. (Ed.) *Manual de Engenharia Química*. 5. ed. Traduzido por: H. Macedo, L. M. Barbosa e P. E. de F. Barbosa. Rio de Janeiro: Guanabara Dois S. A., 1980. Original inglês.

MAGALHÃES, E. M., Estudo da extração de compostos de ferro da lama vermelha visando a extração e/ou recuperação de compostos de titânio, tese de Doutorado, UFPA, Belém, 2012.

MAGALHÃES, E. A., SOUZA, S.N.M., AFONSO, A. D. L., RICIERI, R. P., 2004. "Confecção e Avaliação de um Sistema de Remoção do CO₂ Contido no Biogás", Acta Scientiarum.Technology.Maringá, V. 26, no. 1, p. 11-19, 2004.

NAKAMURA, H. H., BORTZ S. A E SCHWARTZ, M. A., "Use of Bauxite wastes for lighweigth nuilding products", In: **71st Annual Meeting of the American Ceramic Society**, pp. 248-250, Washington, D. C., Estados Unidos, 1969.

O'CONNOR, D. J. Alumina extraction from non bauxite materials. **Aluminum – verlag Gmbh.** Disseldorf, 1988.

PARAMGURU, R.; RATH, P.; MISRA, V., 2005, Trends in red mud utilization - A review. Min. Process. **Extract. Metall.** Rev., 26, (1), 1-29.

PARK, S., JUN, B., "Improvement of red mud polymer-matrix nanocomposites by red mud surface treatment", **Journal of Colloid and Interface**, n. 284, pp. 204-209, 2005.

PERRY, R: CHILTON, C. H. **Manual de Engenharia Química, 5^a ed.**, Rio de Janeiro, Ed. Guanabara Dois, UFRJ, 1980.

PINTO, L. F., 2004, "Minérios: O Pará é o Mundo", **Jornal Pessoal**, Belém, 07 de Junho.

POWER, G.; GRÄFE, M.; KLAUBER, C., 2009, Review of Current Bauxite Residue Management, Disposal and Storage: Practices, **Engineering and Science; CSIRO-Minerals: Waterford**,; p 44.

PRADHAN, J.; DAS, S. N.; DAS, J.; RAO, S. B.; THAKUR, R. S., 1996, Characterisation of Indian red muds and recovery of their metal values. **In Light Metals**, Hale, W., Ed. TMS: Anaheim; pp 87-92.

SALEEM, A. Spray tower: the workhorse of flue – gas dessulfurization. **Power, oct.** 1980.

SANTOS, P. S., 1989, *Ciência e Tecnologia de Argilas*. 2ª edição, São Paulo, Edgard Blucher.

SERMAT CALDEIRARIA E MONTAGEM. **Disponível em: <** http://www.sermatmon.com.br > Acesso em: 18/05/2012.

SILVA FILHO, E. B., ALVES, M. C. M., DA MOTTA, M., 2007, "Lama vermelha da indústria de beneficiamento de alumina: produção, características, disposição e aplicações alternativas", *Revista Matéria*, v. 12, pp. 322-338.

SINGH, M., GARG, M., "Study on anhydrite plaster from waste phosphogypsum for use in polymerized flooring composition", **Construction and Building Materials**, n. 19, pp. 25-29, 2005.

SOUZA, J. A. S., NEVES, R. F., 1995, "Possibilidade de remoção dos compostos de Fe e Ti em caulins sedimentares procedentes do Morro do Felipe no Amapá". In: *XXXV Congresso Brasileiro de Química*, v. 1, pp. 23-32, Salvador, BA, Brasil.

SUJANA, M. G. et al. Effect of calcination and physico-chemical properties of red mud, **Light Metals**, 1996.

SUMMERS, R. N., RIVERS. M. R., CLARKE, M. F. The use of bauxite residue to control diffuse phosphorus pollution in Western Australia: a win-win-win outcome. In: *6th* **INTERNATIONAL ALUMINA QUALITY WORKSHOP**, pp. 262-269, Brisbane. Australia, 2002.

SHERWOOD, T; PIGFORD, R. Transfer of Material between Phases. In: **Absorption and Extraction,** New York: McGraw-Hill, 1975, p.51-114.

STUMM, W., MORGAN, J.J., Aquatic Chemistry: An introduction emphasizing chemical equilibria waters. 2and ed.: John Wiley & Sons: New York, 1981.

SHIMANO, S., KOGA, T., "Utilization of red mud as raw material for the cement industry". **Light Metals**, pp.53-68, 1979.

SMITH, P. G., Pennifold, R. M., Davies, M. G., and Jamieson, E. J. (2003). "Reactions of carbon dioxide with tri-calcium aluminate." *Proc., 5th Int. Symp. Honouring Professor Ian M. Ritchie*, C. Young, A. Alfantazi, C. Anderson, A.

STRAUSS, W. **Industrial gas cleaning.** New York, Pergamon Press, 2 ed, p. 271 – 273, 306, 406, 1972.

TREYBAL, R. E. Mass Transfers Operations in: **Mass-Transfer Operations.** 3. ed. New York: McGraw-Hill, 1981, p. 50 - 88.

UFRN/ Dpto. Engenharia química – Apostila de operações unitárias – 2009. Disponívelem: http://www.ufrnet.ufrn.br/~lair/Pagina-OPUNIT/Packed_Column_Desig. > Acesso em: 10/07/2012.

Venancio, L. C. A., **Processo de Neutralização de Resíduo de Bauxita com Sequestro de Carbono.** 2010, 69p.:II. Dissertação (Mestrado em Engenharia de Materiais) – PPGEM, Instituto Federal de Educação, Ciência e Tecnologia do Maranhão.

WELTY, J. R., WILSON, R. E., WICKS, C. G., Fundamentals of Momentum, heat and mass transfer, 2ªedição, New York, John Wiley, 1976.

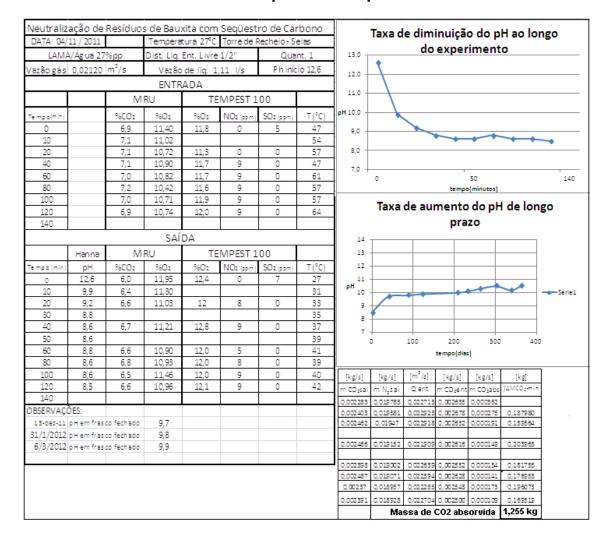
YALÇIN, N., SEVINÇ, V., "Utilization of bauxite waste in ceramic glazes", *Ceramics International*, n 26, pp. 485-493, 2000.

ZARZYCKI, R; CHACUK, A., 1993, **Absorption, Fundamentals and applications.** Oxford, New York, Pergamon Press, p. 205-307.

APÊNDICE - A

Tabala A – Tabela de Densidade dos Gases. (thermofluids.net).

		m³/kg				
T(°C)	CO ₂	O ₂	N ₂	CO ₂	O ₂	N_2
23	0,54952	0,75882	0,86753	1,81977	1,31784	1,15270
24	0,55141	0,76139	0,87047	1,81353	1,31339	1,14880
25	0,55329	0,76396	0,87341	1,80737	1,30897	1,14494
26	0,55518	0,76653	0,87635	1,80122	1,30458	1,14110
27	0,55706	0,76911	0,87928	1,79514	1,30020	1,13729
28	0,55895	0,77168	0,88222	1,78907	1,29587	1,13350
29	0,56084	0,77425	0,88516	1,78304	1,29157	1,12974
30	0,56272	0,77682	0,88810	1,77708	1,28730	1,12600
31	0,56461	0,77939	0,89103	1,77113	1,28305	1,12230
32	0,56648	0,78196	0,89397	1,76529	1,27884	1,11861
33	0,56836	0,78453	0,89691	1,75945	1,27465	1,11494
34	0,57024	0,78711	0,89985	1,75365	1,27047	1,11130
35	0,57212	0,78968	0,90278	1,74789	1,26634	1,10769
36	0,57400	0,79225	0,90572	1,74216	1,26223	1,10409
37	0,57588	0,79482	0,90866	1,73647	1,25815	1,10052
38	0,57776	0,79738	0,91160	1,73082	1,25411	1,09697
39	0,57964	0,79995	0,91453	1,72521	1,25008	1,09346
40	0,58152	0,80252	0,91747	1,71963	1,24607	1,08995
41	0,58339	0,80509	0,92041	1,71412	1,24210	1,08647
42	0,58527	0,80766	0,92335	1,70861	1,23814	1,08301
43	0,58715	0,81023	0,92628	1,70314	1,23422	1,07959
44	0,58903	0,81279	0,92922	1,69771	1,23033	1,07617
45	0,59091	0,81536	0,93215	1,69231	1,22645	1,07279
46	0,59279	0,81793	0,93508	1,68694	1,22260	1,06943
47	0,59467	0,82050	0,93802	1,68160	1,21877	1,06608
48	0,59655	0,82307	0,94095	1,67631	1,21496	1,06276
49	0,59843	0,82563	0,94388	1,67104	1,21120	1,05946
50	0,60031	0,82820	0,94682	1,66581	1,20744	1,05617
51	0,60219	0,83077	0,94975	1,66061	1,20370	1,05291
52	0,60407	0,83334	0,95268	1,65544	1,19999	1,04967
53	0,60595	0,83591	0,95562	1,65030	1,19630	1,04644
54	0,60783	0,83848	0,95855	1,64520	1,19263	1,04324
55	0,60971	0,84104	0,96148	1,64012	1,18900	1,04006
56	0,61159	0,84361	0,96442	1,63508	1,18538	1,03689
57	0,61346	0,84618	0,96735	1,63010	1,18178	1,03375
58	0,61534	0,84875	0,97028	1,62512	1,17820	1,03063
59	0,61722	0,85132	0,97322	1,62017	1,17465	1,02752
60	0,61910	0,85388	0,97615	1,61525	1,17112	1,02443
61	0,62098	0,85645	0,97908	1,61036	1,16761	1,02137


Tabela A - Tabela de Densidade dos Gases (Continuação).

62 0,62286 0,85902 0,98202 1,60550 1,16412 1,01831 63 0,62474 0,86159 0,98495 1,60067 1,16064 1,01528 64 0,62661 0,86416 0,98788 1,59512 1,15378 1,00227 65 0,63037 0,86929 0,99375 1,58637 1,15036 1,00629 67 0,63225 0,87186 0,99668 1,58165 1,14697 1,00333 68 0,63412 0,87403 0,99962 1,57699 1,14360 1,00038 69 0,63600 0,87700 1,00255 1,57233 1,14025 0,99746 70 0,63785 0,88213 1,00842 1,56311 1,13362 0,99165 71 0,6375 0,88213 1,00842 1,55333 1,13033 0,98878 73 0,64163 0,88771 1,01428 1,55383 1,13033 0,98878 73 0,64954 0,88727 1,01428 1,55363 1,13690	Tabela	A - Tabei	a de Den	isidade d	ios Gases	(Continu	ıaçao).
64 0,62661 0,86416 0,98788 1,59589 1,15719 1,01227 65 0,62849 0,86672 0,99082 1,59112 1,15378 1,00927 66 0,63037 0,86929 0,99375 1,58637 1,15036 1,00629 67 0,63225 0,87186 0,99681 1,58165 1,14697 1,00338 68 0,63412 0,87403 0,99962 1,57699 1,14360 1,00038 69 0,63600 0,87700 1,00548 1,56769 1,13692 0,99455 70 0,63788 0,87957 1,00548 1,56769 1,13692 0,99455 71 0,63975 0,88213 1,00842 1,56311 1,13362 0,99165 72 0,64163 0,88727 1,01428 1,55398 1,12705 0,98592 74 0,64358 0,88984 1,01722 1,54497 1,12380 0,98302 74 0,64526 0,88924 1,02015 1,54497 1,12056	62	0,62286	0,85902	0,98202	1,60550	1,16412	1,01831
65 0,62849 0,86672 0,99082 1,59112 1,15378 1,00927 66 0,63037 0,86929 0,99375 1,58637 1,15036 1,00629 67 0,63225 0,87186 0,9968 1,58165 1,14697 1,00333 68 0,63400 0,87700 1,00255 1,57699 1,14360 1,00038 69 0,63600 0,87700 1,00548 1,56769 1,13692 0,99455 70 0,63378 0,87957 1,00548 1,56769 1,13362 0,99165 71 0,63378 0,87727 1,01428 1,55331 1,13332 0,99165 72 0,64163 0,88470 1,01428 1,55398 1,12705 0,98878 73 0,64538 0,88984 1,01722 1,54947 1,12380 0,9807 74 0,64538 0,88941 1,02205 1,5497 1,12056 0,98025 76 0,64914 0,89491 1,02602 1,53165 1,11146	63	0,62474	0,86159	0,98495	1,60067	1,16064	1,01528
66 0,63037 0,86929 0,99375 1,58637 1,15036 1,00629 67 0,63225 0,87186 0,99668 1,58165 1,14697 1,00333 68 0,63412 0,87443 0,99962 1,57699 1,14360 1,00038 69 0,63600 0,87700 1,00255 1,57233 1,14025 0,99746 70 0,63978 0,88213 1,00842 1,56769 1,13692 0,99455 71 0,64163 0,88470 1,01135 1,55853 1,13033 0,98878 73 0,64351 0,88727 1,01428 1,55398 1,12705 0,98552 74 0,64538 0,88984 1,01722 1,54497 1,12056 0,98025 75 0,64726 0,89421 1,02015 1,54497 1,12056 0,98025 76 0,64914 0,89497 1,02308 1,54050 1,11736 0,97744 77 0,65101 0,89754 1,02602 1,53607 1,11416	64	0,62661	0,86416	0,98788	1,59589	1,15719	1,01227
67 0,63225 0,87186 0,99668 1,58165 1,14697 1,00333 68 0,63412 0,87443 0,99962 1,57699 1,14360 1,00038 69 0,63600 0,87700 1,00255 1,57233 1,14025 0,99746 70 0,63788 0,87957 1,00548 1,56769 1,13692 0,99455 71 0,63975 0,88213 1,00842 1,56311 1,13362 0,99165 72 0,64163 0,88470 1,01135 1,555398 1,12705 0,98872 73 0,64531 0,88727 1,01428 1,55398 1,12705 0,98592 74 0,64538 0,88984 1,01722 1,54497 1,12056 0,98025 75 0,64726 0,89497 1,02308 1,5450 1,11736 0,97744 77 0,65101 0,89754 1,02602 1,53607 1,11416 0,97464 78 0,65289 0,90011 1,02895 1,53165 1,11038	65	0,62849	0,86672	0,99082	1,59112	1,15378	1,00927
68 0,63412 0,87443 0,99962 1,57699 1,14360 1,00038 69 0,63600 0,87700 1,00255 1,57233 1,14025 0,99746 70 0,63788 0,87957 1,00548 1,56769 1,13692 0,99455 71 0,63975 0,88213 1,00842 1,56311 1,13362 0,99165 72 0,64163 0,88470 1,01135 1,55853 1,13033 0,98878 73 0,64538 0,88984 1,01722 1,54947 1,12280 0,98025 74 0,64538 0,88984 1,02015 1,54497 1,12056 0,98025 76 0,64914 0,89497 1,02308 1,54050 1,11736 0,97744 77 0,65289 0,90011 1,02895 1,53165 1,11098 0,97186 79 0,65477 0,90268 1,03188 1,52725 1,10467 0,96635 81 0,65649 0,90525 1,03482 1,552290 1,10467	66	0,63037	0,86929	0,99375	1,58637	1,15036	1,00629
69 0,63600 0,87700 1,00255 1,57233 1,14025 0,99746 70 0,63788 0,87957 1,00548 1,56769 1,13692 0,99455 71 0,63975 0,88213 1,00842 1,56311 1,13362 0,99165 72 0,64163 0,88470 1,01135 1,55853 1,13033 0,98878 73 0,64351 0,88727 1,01428 1,55398 1,12705 0,98592 74 0,64538 0,88984 1,01722 1,54947 1,12380 0,98307 75 0,64726 0,89241 1,02015 1,54497 1,12256 0,98025 76 0,64914 0,89497 1,02308 1,54050 1,11736 0,97744 77 0,65101 0,89754 1,02602 1,53607 1,11416 0,97464 78 0,65289 0,90011 1,02895 1,53165 1,10781 0,9691 80 0,65647 0,90252 1,03482 1,52290 1,10467	67	0,63225	0,87186	0,99668	1,58165	1,14697	1,00333
70 0,63788 0,87957 1,00548 1,56769 1,13692 0,99455 71 0,63975 0,88213 1,00842 1,56311 1,13362 0,99165 72 0,64163 0,88470 1,01135 1,55853 1,13033 0,98878 73 0,64351 0,88727 1,01428 1,55398 1,12705 0,98292 74 0,64538 0,88984 1,01722 1,54947 1,12380 0,98307 75 0,64726 0,89241 1,02015 1,54497 1,12056 0,98025 76 0,64914 0,89497 1,02308 1,54050 1,11736 0,97744 77 0,65101 0,89754 1,02602 1,53607 1,11416 0,97464 78 0,65289 0,90011 1,02895 1,53165 1,11098 0,97186 79 0,65477 0,90268 1,03188 1,52725 1,10467 0,96635 81 0,65852 0,90782 1,03775 1,51856 1,10154	68	0,63412	0,87443	0,99962	1,57699	1,14360	1,00038
71 0,63975 0,88213 1,00842 1,56311 1,13362 0,99165 72 0,64163 0,88470 1,01135 1,55853 1,13033 0,98878 73 0,64351 0,88727 1,01428 1,55398 1,12705 0,98592 74 0,64538 0,88984 1,01722 1,54947 1,12380 0,98307 75 0,64726 0,89241 1,02015 1,54497 1,12056 0,98025 76 0,64914 0,89497 1,02308 1,54050 1,11736 0,97744 77 0,65101 0,89754 1,02602 1,53607 1,11416 0,97464 78 0,65289 0,90011 1,02895 1,53165 1,11098 0,97186 79 0,65477 0,90268 1,03188 1,52725 1,10467 0,96635 81 0,65852 0,90782 1,03775 1,51856 1,10154 0,96062 82 0,66040 0,91038 1,04068 1,51423 1,09844	69	0,63600	0,87700	1,00255	1,57233	1,14025	0,99746
72 0,64163 0,88470 1,01135 1,55853 1,13033 0,98878 73 0,64351 0,88727 1,01428 1,55398 1,12705 0,98592 74 0,64538 0,88984 1,01722 1,54947 1,12380 0,98307 75 0,64726 0,89241 1,02015 1,54497 1,12056 0,98025 76 0,64914 0,89497 1,02308 1,54050 1,111736 0,97744 77 0,65101 0,89754 1,02602 1,53607 1,111416 0,97464 78 0,65289 0,90011 1,02895 1,53165 1,11098 0,97186 79 0,65477 0,90268 1,03188 1,52725 1,10781 0,96910 80 0,65664 0,90525 1,03482 1,52290 1,10467 0,96635 81 0,65852 0,90782 1,03775 1,51856 1,10154 0,96362 82 0,66040 0,9138 1,04068 1,51423 1,09844	70	0,63788	0,87957	1,00548	1,56769	1,13692	0,99455
73 0,64351 0,88727 1,01428 1,55398 1,12705 0,98592 74 0,64538 0,88984 1,01722 1,54947 1,12380 0,98307 75 0,64726 0,89241 1,02015 1,54497 1,12056 0,98025 76 0,64914 0,89497 1,02308 1,54050 1,111736 0,97744 77 0,65101 0,89754 1,02602 1,53607 1,111416 0,97464 78 0,65289 0,90011 1,02895 1,53165 1,11098 0,97186 79 0,65477 0,90268 1,03188 1,52725 1,10781 0,96910 80 0,65664 0,90525 1,03482 1,52290 1,10467 0,96635 81 0,65852 0,90782 1,03775 1,51856 1,10154 0,96362 82 0,66040 0,91038 1,04668 1,51423 1,09844 0,96091 83 0,66227 0,91255 1,04655 1,50966 1,09535 <td>71</td> <td>0,63975</td> <td>0,88213</td> <td>1,00842</td> <td>1,56311</td> <td>1,13362</td> <td>0,99165</td>	71	0,63975	0,88213	1,00842	1,56311	1,13362	0,99165
74 0,64538 0,88984 1,01722 1,54947 1,12380 0,98307 75 0,64726 0,89241 1,02015 1,54497 1,12056 0,98025 76 0,64914 0,89497 1,02308 1,54050 1,11736 0,97744 77 0,65101 0,89754 1,02602 1,53607 1,11416 0,97464 78 0,65289 0,90011 1,02895 1,53165 1,11098 0,97186 79 0,65477 0,90268 1,03188 1,52725 1,10781 0,96910 80 0,65664 0,90525 1,03482 1,52290 1,10467 0,9635 81 0,65852 0,90782 1,03775 1,51856 1,10154 0,96362 82 0,66040 0,91038 1,04668 1,51423 1,09844 0,96091 83 0,66227 0,91295 1,04655 1,50568 1,09228 0,95552 85 0,66603 0,91809 1,04948 1,50143 1,08922	72	0,64163	0,88470	1,01135	1,55853	1,13033	0,98878
75 0,64726 0,89241 1,02015 1,54497 1,12056 0,98025 76 0,64914 0,89497 1,02308 1,54050 1,11736 0,97744 77 0,65101 0,89754 1,02602 1,53607 1,11416 0,97464 78 0,65289 0,90011 1,02895 1,53165 1,11098 0,97186 79 0,65477 0,90268 1,03188 1,52725 1,10781 0,96910 80 0,65664 0,90525 1,03482 1,52290 1,10467 0,96635 81 0,65852 0,90782 1,03775 1,51856 1,10154 0,96362 82 0,66040 0,91038 1,04068 1,51423 1,09844 0,96091 83 0,66227 0,91295 1,04362 1,50996 1,09535 0,95820 84 0,66415 0,91552 1,04655 1,50568 1,09228 0,95552 85 0,66603 0,91809 1,04948 1,50143 1,08618	73	0,64351	0,88727	1,01428	1,55398	1,12705	0,98592
76 0,64914 0,89497 1,02308 1,54050 1,11736 0,97744 77 0,65101 0,89754 1,02602 1,53607 1,11416 0,97464 78 0,65289 0,90011 1,02895 1,53165 1,11098 0,97186 79 0,65477 0,90268 1,03188 1,52725 1,10781 0,96910 80 0,65664 0,90525 1,03482 1,52290 1,10467 0,9635 81 0,65852 0,90782 1,03775 1,51856 1,10154 0,96362 82 0,66040 0,91038 1,04068 1,51423 1,09844 0,96091 83 0,66227 0,91295 1,04655 1,50996 1,09535 0,95820 84 0,66415 0,91552 1,04655 1,50996 1,09535 0,95820 85 0,66603 0,91809 1,04655 1,50568 1,09228 0,95552 86 0,66791 0,92066 1,05242 1,49721 1,08618	74	0,64538	0,88984	1,01722	1,54947	1,12380	0,98307
77 0,65101 0,89754 1,02602 1,53607 1,11416 0,97464 78 0,65289 0,90011 1,02895 1,53165 1,11098 0,97186 79 0,65477 0,90268 1,03188 1,52725 1,10781 0,96910 80 0,65664 0,90525 1,03482 1,52290 1,10467 0,96352 81 0,65852 0,90782 1,03775 1,51856 1,10154 0,96362 82 0,66040 0,9138 1,04068 1,51423 1,09844 0,96091 83 0,66227 0,91295 1,04362 1,50996 1,09535 0,95820 84 0,66415 0,91552 1,04655 1,50568 1,09228 0,95582 85 0,66603 0,91809 1,04948 1,50143 1,08618 0,95552 86 0,66791 0,92066 1,05242 1,49721 1,08618 0,95019 87 0,66978 0,92322 1,05535 1,49303 1,08317	75	0,64726	0,89241	1,02015	1,54497	1,12056	0,98025
78 0,65289 0,90011 1,02895 1,53165 1,11098 0,97186 79 0,65477 0,90268 1,03188 1,52725 1,10781 0,96910 80 0,65664 0,90525 1,03482 1,52290 1,10467 0,96635 81 0,65852 0,90782 1,03775 1,51856 1,10154 0,96362 82 0,66040 0,91038 1,04068 1,51423 1,09844 0,96091 83 0,66227 0,91295 1,04362 1,50996 1,09535 0,95820 84 0,66415 0,91552 1,04655 1,50568 1,09228 0,95552 85 0,66603 0,91809 1,04948 1,50143 1,08618 0,95019 87 0,66978 0,92322 1,05535 1,49303 1,08618 0,95019 87 0,66978 0,92579 1,05828 1,48885 1,08016 0,94493 89 0,67354 0,92836 1,06122 1,48469 1,07717	76	0,64914	0,89497	1,02308	1,54050	1,11736	0,97744
79 0,65477 0,90268 1,03188 1,52725 1,10781 0,96910 80 0,65664 0,90525 1,03482 1,52290 1,10467 0,96635 81 0,65852 0,90782 1,03775 1,51856 1,10154 0,96362 82 0,66040 0,91038 1,04068 1,51423 1,09844 0,96091 83 0,66227 0,91295 1,04362 1,50996 1,09535 0,95820 84 0,66415 0,91552 1,04655 1,50568 1,09228 0,95552 85 0,66603 0,91809 1,04948 1,50143 1,08922 0,95285 86 0,66791 0,92066 1,05242 1,49721 1,08618 0,95019 87 0,66978 0,92322 1,05535 1,49303 1,08317 0,94755 88 0,67166 0,92579 1,05828 1,48885 1,08016 0,94493 89 0,67354 0,92836 1,06122 1,48469 1,07717	77	0,65101	0,89754	1,02602	1,53607	1,11416	0,97464
80 0,65664 0,90525 1,03482 1,52290 1,10467 0,96635 81 0,65852 0,90782 1,03775 1,51856 1,10154 0,96362 82 0,66040 0,91038 1,04068 1,51423 1,09844 0,96091 83 0,66227 0,91295 1,04362 1,50996 1,09535 0,95820 84 0,66415 0,91552 1,04655 1,50568 1,09228 0,95552 85 0,66603 0,91809 1,04948 1,50143 1,08922 0,95285 86 0,66791 0,92066 1,05242 1,49721 1,08618 0,95019 87 0,66978 0,92322 1,05535 1,49303 1,08317 0,94755 88 0,67166 0,92579 1,05828 1,48885 1,08016 0,94493 89 0,67354 0,92836 1,06122 1,48469 1,07717 0,94231 90 0,67541 0,93093 1,06415 1,48058 1,07419	78	0,65289	0,90011	1,02895	1,53165	1,11098	0,97186
81 0,65852 0,90782 1,03775 1,51856 1,10154 0,96362 82 0,66040 0,91038 1,04068 1,51423 1,09844 0,96091 83 0,66227 0,91295 1,04362 1,50996 1,09535 0,95820 84 0,66415 0,91552 1,04655 1,50568 1,09228 0,95552 85 0,66603 0,91809 1,04948 1,50143 1,08922 0,95285 86 0,66791 0,92066 1,05242 1,49721 1,08618 0,95019 87 0,66978 0,92322 1,05535 1,49303 1,08317 0,94755 88 0,67166 0,92579 1,05828 1,48885 1,08016 0,94493 89 0,67354 0,92836 1,06122 1,48469 1,07717 0,94231 90 0,67541 0,93093 1,06415 1,48058 1,07419 0,93714 92 0,67917 0,93606 1,07002 1,47239 1,06831	79	0,65477	0,90268	1,03188	1,52725	1,10781	0,96910
82 0,66040 0,91038 1,04068 1,51423 1,09844 0,96091 83 0,66227 0,91295 1,04362 1,50996 1,09535 0,95820 84 0,66415 0,91552 1,04655 1,50568 1,09228 0,95552 85 0,66603 0,91809 1,04948 1,50143 1,08922 0,95285 86 0,66791 0,92066 1,05242 1,49721 1,08618 0,95019 87 0,66978 0,92322 1,05535 1,49303 1,08317 0,94755 88 0,67166 0,922579 1,05828 1,49303 1,08016 0,94493 89 0,67354 0,92836 1,06122 1,48469 1,07717 0,94231 90 0,67541 0,93093 1,06415 1,48058 1,07419 0,93972 91 0,67729 0,93350 1,06708 1,47647 1,07124 0,93714 92 0,67917 0,93606 1,07022 1,47239 1,06831	80	0,65664	0,90525	1,03482	1,52290	1,10467	0,96635
83 0,66227 0,91295 1,04362 1,50996 1,09535 0,95820 84 0,66415 0,91552 1,04655 1,50568 1,09228 0,95552 85 0,66603 0,91809 1,04948 1,50143 1,08922 0,95285 86 0,66791 0,92066 1,05242 1,49721 1,08618 0,95019 87 0,66978 0,92322 1,05535 1,49303 1,08317 0,94755 88 0,67166 0,92579 1,05828 1,48885 1,08016 0,94493 89 0,67354 0,92836 1,06122 1,48469 1,07717 0,94231 90 0,67541 0,93093 1,06415 1,48058 1,07419 0,93972 91 0,67729 0,93350 1,06708 1,47647 1,07124 0,93714 92 0,67917 0,93606 1,07022 1,47239 1,06831 0,93456 93 0,68104 0,93863 1,07295 1,46834 1,06538	81	0,65852	0,90782	1,03775	1,51856	1,10154	0,96362
84 0,66415 0,91552 1,04655 1,50568 1,09228 0,95552 85 0,66603 0,91809 1,04948 1,50143 1,08922 0,95285 86 0,66791 0,92066 1,05242 1,49721 1,08618 0,95019 87 0,66978 0,92322 1,05535 1,49303 1,08317 0,94755 88 0,67166 0,92579 1,05828 1,48469 1,07717 0,94231 89 0,67354 0,92836 1,06122 1,48469 1,07717 0,94231 90 0,67541 0,93093 1,06415 1,48058 1,07419 0,93972 91 0,67729 0,93350 1,06708 1,47647 1,07124 0,93714 92 0,67917 0,93606 1,07002 1,47239 1,06831 0,93456 93 0,68104 0,93863 1,07295 1,46834 1,06538 0,93201 94 0,68291 0,94120 1,07588 1,46432 1,06247	82	0,66040	0,91038	1,04068	1,51423	1,09844	0,96091
85 0,66603 0,91809 1,04948 1,50143 1,08922 0,95285 86 0,66791 0,92066 1,05242 1,49721 1,08618 0,95019 87 0,66978 0,92322 1,05535 1,49303 1,08317 0,94755 88 0,67166 0,92579 1,05828 1,48885 1,08016 0,94493 89 0,67354 0,92836 1,06122 1,48469 1,07717 0,94231 90 0,67541 0,93093 1,06415 1,48058 1,07419 0,93972 91 0,67729 0,93350 1,06708 1,47647 1,07124 0,93714 92 0,67917 0,93606 1,07002 1,47239 1,06831 0,93456 93 0,68104 0,93863 1,07295 1,46834 1,06247 0,92947 95 0,68479 0,94377 1,07588 1,46432 1,05670 0,92443 97 0,68853 0,94891 1,08468 1,45237 1,05384	83	0,66227	0,91295	1,04362	1,50996	1,09535	0,95820
86 0,66791 0,92066 1,05242 1,49721 1,08618 0,95019 87 0,66978 0,92322 1,05535 1,49303 1,08317 0,94755 88 0,67166 0,92579 1,05828 1,48885 1,08016 0,94493 89 0,67354 0,92836 1,06122 1,48469 1,07717 0,94231 90 0,67541 0,93093 1,06415 1,48058 1,07419 0,93972 91 0,67729 0,93350 1,06708 1,47647 1,07124 0,93714 92 0,67917 0,93606 1,07002 1,47239 1,06831 0,93456 93 0,68104 0,93863 1,07295 1,46834 1,06538 0,93201 94 0,68291 0,94120 1,07588 1,46432 1,06247 0,92947 95 0,68479 0,94377 1,07882 1,46030 1,05958 0,92694 96 0,68666 0,94634 1,08175 1,45632 1,05670	84	0,66415	0,91552	1,04655	1,50568	1,09228	0,95552
87 0,66978 0,92322 1,05535 1,49303 1,08317 0,94755 88 0,67166 0,92579 1,05828 1,48885 1,08016 0,94493 89 0,67354 0,92836 1,06122 1,48469 1,07717 0,94231 90 0,67541 0,93093 1,06415 1,48058 1,07419 0,93972 91 0,67729 0,93350 1,06708 1,47647 1,07124 0,93714 92 0,67917 0,93606 1,07002 1,47239 1,06831 0,93456 93 0,68104 0,93863 1,07295 1,46834 1,06538 0,93201 94 0,68291 0,94120 1,07588 1,46432 1,06247 0,92947 95 0,68479 0,94377 1,07882 1,46030 1,05958 0,92694 96 0,68866 0,94634 1,08175 1,45632 1,05670 0,92443 97 0,68853 0,94891 1,08762 1,44841 1,05101	85	0,66603	0,91809	1,04948	1,50143	1,08922	0,95285
88 0,67166 0,92579 1,05828 1,48885 1,08016 0,94493 89 0,67354 0,92836 1,06122 1,48469 1,07717 0,94231 90 0,67541 0,93093 1,06415 1,48058 1,07419 0,93972 91 0,67729 0,93350 1,06708 1,47647 1,07124 0,93714 92 0,67917 0,93606 1,07002 1,47239 1,06831 0,93456 93 0,68104 0,93863 1,07295 1,46834 1,06247 0,92947 94 0,68291 0,94120 1,07588 1,46432 1,06247 0,92947 95 0,68479 0,94377 1,07882 1,46030 1,05958 0,92694 96 0,68666 0,94634 1,08175 1,45632 1,05670 0,92443 97 0,68853 0,94891 1,08468 1,45237 1,05384 0,92193 98 0,69041 0,95147 1,08762 1,44841 1,05101	86	0,66791	0,92066	1,05242	1,49721	1,08618	0,95019
89 0,67354 0,92836 1,06122 1,48469 1,07717 0,94231 90 0,67541 0,93093 1,06415 1,48058 1,07419 0,93972 91 0,67729 0,93350 1,06708 1,47647 1,07124 0,93714 92 0,67917 0,93606 1,07002 1,47239 1,06831 0,93456 93 0,68104 0,93863 1,07295 1,46834 1,06538 0,93201 94 0,68291 0,94120 1,07588 1,46432 1,06247 0,92947 95 0,68479 0,94377 1,07882 1,46030 1,05958 0,92694 96 0,68666 0,94634 1,08175 1,45632 1,05670 0,92443 97 0,68853 0,94891 1,08468 1,45237 1,05384 0,92193 98 0,69041 0,95147 1,08762 1,44841 1,05101 0,91697 100 0,69416 0,95661 1,09348 1,44059 1,04536	87	0,66978	0,92322	1,05535	1,49303	1,08317	0,94755
90 0,67541 0,93093 1,06415 1,48058 1,07419 0,93972 91 0,67729 0,93350 1,06708 1,47647 1,07124 0,93714 92 0,67917 0,93606 1,07002 1,47239 1,06831 0,93456 93 0,68104 0,93863 1,07295 1,46834 1,06538 0,93201 94 0,68291 0,94120 1,07588 1,46432 1,06247 0,92947 95 0,68479 0,94377 1,07882 1,46030 1,05958 0,92694 96 0,68666 0,94634 1,08175 1,45632 1,05670 0,92443 97 0,68853 0,94891 1,08468 1,45237 1,05384 0,92193 98 0,69041 0,95147 1,08762 1,44841 1,05101 0,91697 100 0,69416 0,95661 1,09348 1,44059 1,04536 0,91451 101 0,69603 0,95918 1,09642 1,43672 1,04256 <td>88</td> <td>0,67166</td> <td>0,92579</td> <td>1,05828</td> <td>1,48885</td> <td>1,08016</td> <td>0,94493</td>	88	0,67166	0,92579	1,05828	1,48885	1,08016	0,94493
91 0,67729 0,93350 1,06708 1,47647 1,07124 0,93714 92 0,67917 0,93606 1,07002 1,47239 1,06831 0,93456 93 0,68104 0,93863 1,07295 1,46834 1,06538 0,93201 94 0,68291 0,94120 1,07588 1,46432 1,06247 0,92947 95 0,68479 0,94377 1,07882 1,46030 1,05958 0,92694 96 0,68666 0,94634 1,08175 1,45632 1,05670 0,92443 97 0,68853 0,94891 1,08468 1,45237 1,05384 0,92193 98 0,69041 0,95147 1,08762 1,44841 1,05101 0,91697 100 0,69416 0,95661 1,09348 1,44059 1,04536 0,91451 101 0,69603 0,95918 1,09642 1,43672 1,04256 0,91206 102 0,69790 0,96175 1,09935 1,43287 1,03701 <td>89</td> <td>0,67354</td> <td>0,92836</td> <td>1,06122</td> <td>1,48469</td> <td>1,07717</td> <td>0,94231</td>	89	0,67354	0,92836	1,06122	1,48469	1,07717	0,94231
92 0,67917 0,93606 1,07002 1,47239 1,06831 0,93456 93 0,68104 0,93863 1,07295 1,46834 1,06538 0,93201 94 0,68291 0,94120 1,07588 1,46432 1,06247 0,92947 95 0,68479 0,94377 1,07882 1,46030 1,05958 0,92694 96 0,68666 0,94634 1,08175 1,45632 1,05670 0,92443 97 0,68853 0,94891 1,08468 1,45237 1,05384 0,92193 98 0,69041 0,95147 1,08762 1,44841 1,05101 0,91944 99 0,69228 0,95404 1,09055 1,44450 1,04817 0,91697 100 0,69416 0,95661 1,09348 1,44059 1,04536 0,91451 101 0,69603 0,95918 1,09642 1,43672 1,04256 0,91206 102 0,69790 0,96175 1,09935 1,43287 1,03701 <td>90</td> <td>0,67541</td> <td>0,93093</td> <td>1,06415</td> <td>1,48058</td> <td>1,07419</td> <td>0,93972</td>	90	0,67541	0,93093	1,06415	1,48058	1,07419	0,93972
93 0,68104 0,93863 1,07295 1,46834 1,06538 0,93201 94 0,68291 0,94120 1,07588 1,46432 1,06247 0,92947 95 0,68479 0,94377 1,07882 1,46030 1,05958 0,92694 96 0,68666 0,94634 1,08175 1,45632 1,05670 0,92443 97 0,68853 0,94891 1,08468 1,45237 1,05384 0,92193 98 0,69041 0,95147 1,08762 1,44841 1,05101 0,91944 99 0,69228 0,95404 1,09055 1,44450 1,04817 0,91697 100 0,69416 0,95661 1,09348 1,44059 1,04536 0,91451 101 0,69603 0,95918 1,09642 1,43672 1,04256 0,91206 102 0,69790 0,96175 1,09935 1,43287 1,03977 0,90963 103 0,69978 0,96431 1,10522 1,42521 1,03425 </td <td>91</td> <td>0,67729</td> <td>0,93350</td> <td>1,06708</td> <td>1,47647</td> <td>1,07124</td> <td>0,93714</td>	91	0,67729	0,93350	1,06708	1,47647	1,07124	0,93714
94 0,68291 0,94120 1,07588 1,46432 1,06247 0,92947 95 0,68479 0,94377 1,07882 1,46030 1,05958 0,92694 96 0,68666 0,94634 1,08175 1,45632 1,05670 0,92443 97 0,68853 0,94891 1,08468 1,45237 1,05384 0,92193 98 0,69041 0,95147 1,08762 1,44841 1,05101 0,91944 99 0,69228 0,95404 1,09055 1,44450 1,04817 0,91697 100 0,69416 0,95661 1,09348 1,44059 1,04536 0,91451 101 0,69603 0,95918 1,09642 1,43672 1,04256 0,91206 102 0,69790 0,96175 1,09935 1,43287 1,03977 0,90963 103 0,69978 0,96431 1,10228 1,42902 1,03701 0,90721 104 0,70165 0,96688 1,10522 1,42521 1,03425<	92	0,67917	0,93606	1,07002	1,47239	1,06831	0,93456
95 0,68479 0,94377 1,07882 1,46030 1,05958 0,92694 96 0,68666 0,94634 1,08175 1,45632 1,05670 0,92443 97 0,68853 0,94891 1,08468 1,45237 1,05384 0,92193 98 0,69041 0,95147 1,08762 1,44841 1,05101 0,91944 99 0,69228 0,95404 1,09055 1,44450 1,04817 0,91697 100 0,69416 0,95661 1,09348 1,44059 1,04536 0,91451 101 0,69603 0,95918 1,09642 1,43672 1,04256 0,91206 102 0,69790 0,96175 1,09935 1,43287 1,03977 0,90963 103 0,69978 0,96431 1,10228 1,42902 1,03701 0,90721 104 0,70165 0,96688 1,10522 1,42521 1,03425 0,90480	93	0,68104	0,93863	1,07295	1,46834	1,06538	0,93201
96 0,68666 0,94634 1,08175 1,45632 1,05670 0,92443 97 0,68853 0,94891 1,08468 1,45237 1,05384 0,92193 98 0,69041 0,95147 1,08762 1,44841 1,05101 0,91944 99 0,69228 0,95404 1,09055 1,44450 1,04817 0,91697 100 0,69416 0,95661 1,09348 1,44059 1,04536 0,91451 101 0,69603 0,95918 1,09642 1,43672 1,04256 0,91206 102 0,69790 0,96175 1,09935 1,43287 1,03977 0,90963 103 0,69978 0,96431 1,10228 1,42902 1,03701 0,90721 104 0,70165 0,96688 1,10522 1,42521 1,03425 0,90480	94	0,68291	0,94120	1,07588	1,46432	1,06247	0,92947
97 0,68853 0,94891 1,08468 1,45237 1,05384 0,92193 98 0,69041 0,95147 1,08762 1,44841 1,05101 0,91944 99 0,69228 0,95404 1,09055 1,44450 1,04817 0,91697 100 0,69416 0,95661 1,09348 1,44059 1,04536 0,91451 101 0,69603 0,95918 1,09642 1,43672 1,04256 0,91206 102 0,69790 0,96175 1,09935 1,43287 1,03977 0,90963 103 0,69978 0,96431 1,10228 1,42902 1,03701 0,90721 104 0,70165 0,96688 1,10522 1,42521 1,03425 0,90480	95	0,68479	0,94377	1,07882	1,46030	1,05958	0,92694
98 0,69041 0,95147 1,08762 1,44841 1,05101 0,91944 99 0,69228 0,95404 1,09055 1,44450 1,04817 0,91697 100 0,69416 0,95661 1,09348 1,44059 1,04536 0,91451 101 0,69603 0,95918 1,09642 1,43672 1,04256 0,91206 102 0,69790 0,96175 1,09935 1,43287 1,03977 0,90963 103 0,69978 0,96431 1,10228 1,42902 1,03701 0,90721 104 0,70165 0,96688 1,10522 1,42521 1,03425 0,90480	96	0,68666	0,94634	1,08175	1,45632	1,05670	0,92443
99 0,69228 0,95404 1,09055 1,44450 1,04817 0,91697 100 0,69416 0,95661 1,09348 1,44059 1,04536 0,91451 101 0,69603 0,95918 1,09642 1,43672 1,04256 0,91206 102 0,69790 0,96175 1,09935 1,43287 1,03977 0,90963 103 0,69978 0,96431 1,10228 1,42902 1,03701 0,90721 104 0,70165 0,96688 1,10522 1,42521 1,03425 0,90480	97	0,68853	0,94891	1,08468	1,45237	1,05384	0,92193
100 0,69416 0,95661 1,09348 1,44059 1,04536 0,91451 101 0,69603 0,95918 1,09642 1,43672 1,04256 0,91206 102 0,69790 0,96175 1,09935 1,43287 1,03977 0,90963 103 0,69978 0,96431 1,10228 1,42902 1,03701 0,90721 104 0,70165 0,96688 1,10522 1,42521 1,03425 0,90480	98	0,69041	0,95147	1,08762	1,44841	1,05101	0,91944
101 0,69603 0,95918 1,09642 1,43672 1,04256 0,91206 102 0,69790 0,96175 1,09935 1,43287 1,03977 0,90963 103 0,69978 0,96431 1,10228 1,42902 1,03701 0,90721 104 0,70165 0,96688 1,10522 1,42521 1,03425 0,90480	99	0,69228	0,95404	1,09055	1,44450	1,04817	0,91697
102 0,69790 0,96175 1,09935 1,43287 1,03977 0,90963 103 0,69978 0,96431 1,10228 1,42902 1,03701 0,90721 104 0,70165 0,96688 1,10522 1,42521 1,03425 0,90480	100	0,69416	0,95661	1,09348	1,44059	1,04536	0,91451
103 0,69978 0,96431 1,10228 1,42902 1,03701 0,90721 104 0,70165 0,96688 1,10522 1,42521 1,03425 0,90480	101	0,69603	0,95918	1,09642	1,43672	1,04256	0,91206
104 0,70165 0,96688 1,10522 1,42521 1,03425 0,90480	102	0,69790	0,96175	1,09935	1,43287	1,03977	0,90963
	103	0,69978	0,96431	1,10228	1,42902	1,03701	0,90721
105 0,70352 0,96945 1,10815 1,42142 1,03151 0,90240	104	0,70165	0,96688	1,10522	1,42521	1,03425	0,90480
	105	0,70352	0,96945	1,10815	1,42142	1,03151	0,90240

1.B – Dados Completos do Experimento 05.

ngo do	oH ao long			Taxa		bono	ro de Car	Seqüest	kita com	s de Baux	Resíduos	ação de	Neutraliz
	to	xperimen	e		13,0		pray	Torre de S	tura 27°C	Temperat		10 / 2011	DATA 31/
						nt. 10	Quar	•	Bicos	Dist. Liq.	%рр	/Água 27	LAMA
					12,0	io 12,5	Ph info	1,03 l/s	de lig. 1	Vazão	m³/s	0,02593	Vazão gás
				_	11,0				ADA	ENTR			
		-			pH10,0		00	MPEST 1	TE	RU	М		
	*		*		9,0	T(°C)		Non	%O2	%O2	2/00-		Tempo(min)
							SO ₂ (ppm) 55	NO2 (ppm)			%CO2		
					8,0	40 47	30	0	12,9 12,5	12,76 12,02	6,0 6,2		10
					7.0								
140		50				60 66	21 27	0	12,8	12, 15 12, 05	6,2		20 40
		npo(minutos)	ten		Ļ	67	27	0	12,8	11.92	6.2		60
	lo nH	ımento d	axa de au	T		64	34	0	13, 3	12,55	5,8		80
_	ріі		and at at		14 —	64			13, 4				
							35	0		12,56	5,7		100
\dashv					13 -	55 58	32 30	0	12,8	12,20	5,9		120
\dashv					12 -	58	30	0		12,17	5,8		140
					11				DA	SAÍ			
	• • •	***		-	рн 10		00	MPEST 1	TE	М	Hanna		
→ S					1 /	T (°C)	SO _{2 (ppm)}	NO _{2 (ppm)}	%O ₂	%O ₂	%CO2	рН	Tempo (min)
					9 🐇	32	53	0	13,6	13, 22	5,6	12,5	0
\dashv					8 -	34	30		13,0	12,39	5,8	10,6	10
_					7 ⊢	36	19	0	13, 2	12,58	5,8	10,2	20
400	00 40			10		38						9,9	30
		o(dias)	tempo		-	40	27	0	13, 2	12,57	5,8	9,6	40
[kg]	[kg/s]	[kg/s]	[m³/s]	[kg/s]	[kg/s]	40						10,0	50
os JΔMCO ₂	m CO ₂ abs	m CO₂ent	Q ent	mi N _z sai	m CO _z sai	39	27	0	13, 1	12,50	5,7	9,9	60
36	0,00018036	0,0027437	0,026592	0,023547	0,0025633	39	31	0	13,6	12,67	5,7	9,6	80
	0,00018178					39	41	0	13,8	13, 10	5,3	9, 2	100
	0,00018178			0,023574	0,0026374	40	33	0	13,4	12,65	5,6	9,0	120
0,10780	0,00017756	0,0027977	0,0279361	0,023367	0,0026201	40	31	0	13,4	12,61	5,7	8,9	140
11 0,2098	0,00017211	0,0027583	0,0280446	0,023071	0,0025862								
59 0,2344	0,00021859	0,0027685	0,028232	0,023193	0,002550								
	4,2112E-05		0,0280029	0,023145	0,0025499								
62 0,1288	0,00017262	0,0025436	0,027962	0,023136	0,0023709								
_	0,00012768		0,0271241	0,023105	0,002497								
	3,2416E-05			0,023088	0,0025416								
1,22216 [bsorvida	de CO2 al	Massa										

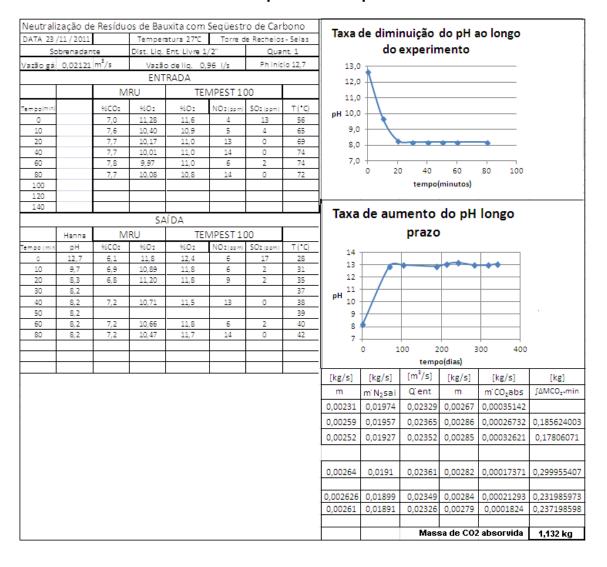
2.B - Dados Completos do Experimento 06.

3.B – Dados Completos do Experimento 07.

DATA 18/	11 / 2011		s de Baux Temperati					- Ta	axa de o	diminui	ção do p	H ao long	0
	adante 1,5	5596 nn	Dist. Liq. B				nt. 10	1		do exp	eriment	0	
Vazão gás				de liq. 1			io 12,8	1				_	
vazao gas	0,02236	111 /3	ENTR/		,1 I/3	PHILIP	10 12,0	14,0	T				
						20		13,0					
		IV	IRU	I E	MPEST 1	.00		12.0	<u></u>				
Tempo(min)		96 C O2	9602	96 O 2	NO2(ppm)	5O2 (ppm)	T (°C)		1				
0		8,8	8,92	10,9	1	2	58	pH 11,0	+			———Séri	-1
10		8,2	9,52	10,5	5	2	63	10,0	\perp				61
20		7,2	1,73	11,5	2	2	66						
40		7,3	10,49	11,3	9	0	65	9,0	_			_	
60		7,3	10,37	11,4	5	2	69	8,0	-				
80		7,4	10,28	11,2	9	0	78	1	0 20	40	60 80	100	
100		<u> </u>						4		tempo(n	ninutos)		
120		<u> </u>						4			•		
140		<u> </u>	پــــــــــــــــــــــــــــــــــــــ		L		<u> </u>	-					
			SAÍ	DA				1	Taxa de	e aume	nto do	pH de lor	ngo
	Hanna	N	1RU	TE	MPEST 1	.00					raza	-	_
Tempo (min)	рН	%C 02	96O2	96 O 2	NO2(ppm)	SO2 (ppm)	T (°C)	1		þ	razo		
0	12,8	6,8	11,24	11,7	1	2	29	14 —					
10	9,9	7,2	10,48	12,2	0	4	34	13 +	~ -				
20	9,2	6,4	11,51	12,5	1	3	36	12 -	•	`	*		
30	8,5						38	11 -	/			-	
40	8,4	6,5	11,50	12,5	11	0	39	_ Hq					
50	8,4						39	10 +				_ →Série1	
60	8,4	6,7	11,24	12,1	1	2	40	9 -					
80	8,3	6,8	10,95	12,2	9	0	40	- s ‡	•				
90	8,4						41						
								-	10	0 20	0 300	400	
OBSER VAC	Šer.							-		tempo(n			
obsekvaçı pH em frası		sobrenad	13/dez	10,5				-		rempolii			
pHem frasc			31/1/2012	10,0				ď					
pH em fraso			6/3/2012	10.0				[kg/s]	[kg/s]	[m³/s]	[kg/s]	[kg/s]	[kg]
		total	2,2,2322	-20,0				m'CO _z sai	m' N ₂ sai	Q'ent	m'CO ₂ ent	m'CO _z abs	[ΔMCO,+mi
pH em frasc	co fechado		13/dez	12,6	1				III IV25d1	a, c.i.e	iii cozent	002003	
pH em frasc			31/jan	12,6				0.000705	0.00000	0.00460	0.0005000	0.00070740	
pHem frasc	co fechado		6/mar	12,8				0,002735	0,02089	0,02463	0,0035228	0,00078749	
								0,002848	0,02064	0,02471	0,0032427	0,00039423	0,3545153
								0,002515	0,02045	0,02231	0,0025484	3,3038E-05	0,1281804
								0.00253	0.02023	0.02438	0.0028317	0.00030187	0.2009442
								0,00233	0,02020	0,02400	3,0020011	5,000001	3,2003-142
								0,002599	0,02018	0,02457	0,0028203	-	0,313736
								0,002638	0,02022	0,025280	0,0028653	0,00022721	0,4034071
										Ma	ssa de CO	2 absorvida	1,40 kg
								+					,

4.B – Dados Completos do Experimento 08.

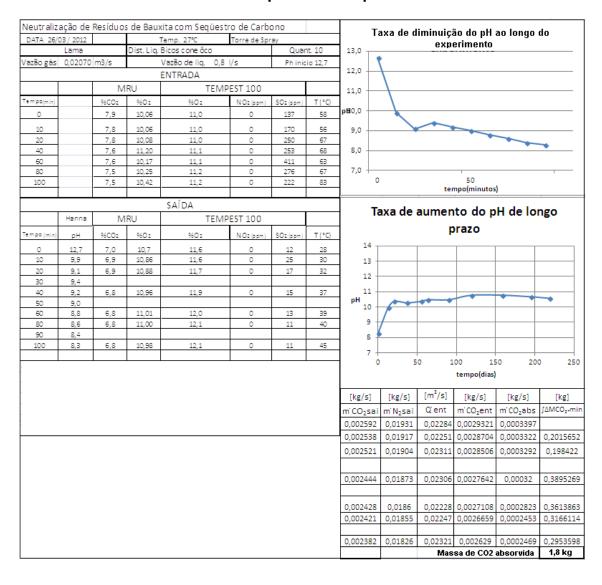
	ização de 5/11/2011	e Resídu		uxita con 48-57°C	n Seqües				Taxa			do pH ao lo	ngo
	/11/2011 IA/Água 21	79/ nn		Bicos 1ní		orre de spr	ay nt. 10	45.0		d	o experi	mento	
	0,0274							13,0 —					
vazao ga	0,0274	m/s		o de liq. 1,	,26 1/5	Ph in io	io 12,3	12,0	^				
				RADA									
		M	RU	TE	MPEST 1	.00		11,0 +	-				
Tempo(min)		96CO2	96 Oz	96O z	NO2 (ppm)	SO ₂ (ppm)	T(°C)	pH10,0	•	*			
0		7,2	10,84	11, 5	4	9	48	pm10,0			1		
10		7,6	9,92	11,0	4	0	48	9,0 🗕			_		
20		7,5	9,92	10, 9	4	0	48	1				,	
40		8,1	8,89	10, 2	5	0	63	8,0 +					
60	-	6,8	10,84	11, 5	4	14	63	1					
80	-	7,2	10,57	11,7	4	10	65	7,0 +	0		50		140
100	-	7,4	10,42	11,5	5	10	65	1	U		tempo(min	utos)	14
140								1					
170			SA	ÍDA				1	Taxa de	e aumen	to do pH	de longo p	razo
	Hanna	М	RU	TE	MPEST 1	.00		14 -					
Tempo (min	рН	96CO2	96 Oz	96O2	NO2 (ppm)	SO ₂ (ppm)	T(°C)	13 -					
0	12,3	6,1	11,27	12, 2	1	10	48	l					
10	10,5	6,6	10,98	11,8	4	0	52	12 -					
20	10,2	6,5	10,71	11,7	4	0	54	11 -					
30	10,0						55	pH			-+-	-	
40	9,7	7,2	8,92	10, 9	1	1	56	10 -	/				
50	9,2						56	9 7				-——Série1 -	
60	9,3	6,3	11,35	12, 4	4	13	56	8 -					
80	9,0	6,4	11,16	12, 3	4	10	56	1					
100	8,9	6,6	11,2	12,0	4	10	57	7 -		100	200	300	400
120 140								٩	,	100	200	300	400
170	1			l	1			1			empo(dias)		
								[kg/s]	[kg/s]	[m³/s]	[kg/s]	[kg/s]	[kg]
								m'CO₂sai	m' N ₂ sai	Q ent	m'CO₂ent	m'CO _z abs	∫∆MCO₂+mir
								0,002802	0,02406	0,02762	0,003334	0,00053227	
								0,002994	0,0237	0,02704	0,003445	0,00045156	0,295149
								0,00293	0,02367	0,02697	0,00339	0,00046006	0,273486
								0,003226	0,02383	0,02828	0,003666	0,00044048	0,540323
								0,002822	0,0234	0,027980	0,003045	0,000223	0,398085
								0,002867	0,02342	0,02822	0,003233	0,00036583	0,353299
								0,002948	0,02328	0,028072	0,003305	0,00035735	0,348211
										Ma	eea de CO	2 absorvida	2,208 kg


5.B – Dados Completos do Experimento 09.

Neutraliz		Resíduo					rbono	1				lo pH a	0
DATA 12/	12 / 2011 NÁgua 27	19/nn		Bicos 2 ni	Torre de s		nt. 10	ł	long	o do e	xperim	ento	
Vazão gás								13,0					
Vazao gas	0,0228	m /s	ENTR	de liq. 0),/4 I/S	Ph iníci	10 12,3	12,0	\				
		M	IRU		MPEST 1	.00		11,0	\perp				
Te mp o(min)		%CO2	%O2	96 Oz	NO2 (ppm)	SO ₂ (ppm)	T(*C)	1	-	-			
0		6,4	12.12	12,5	0 0	45	55	pH10,0 +			$\overline{}$		
10		6,5	12.02	12,5	0	29	56	9.0				-	
20		6, 3	11,95	12,7	0	39	58	1 ,,					
40		7, 2	10,64	11,6	4	2	60	8,0					
60		7, 1	10,75	11,5	4	9	65	1					
80		7,0	11,07	11,6	0	11	64	7,0 +			-		
100		6, 2	12,16	12,9	4	43	63]	0		50		100
120		7,6	8,31	8,1	3	4085	63	1		te	mpo(minuto	s)	
								Taxa	de aun	nento (do pH d	le longo	prazo
			SAÍ					14 7					
	Hanna		IRU		MPEST 1			13 -					
Tempo (min)	рН	%CO2	96O2	96 Oz	NO2 (ppm)	SO ₂ (ppm)	T (*C)	1					
0	12,3	5, 7	12,67	13,1	0	46	30	12 -					
10	10,6	5, 7	12,52	12,9	0	31	34	11 -				•	
20	10,4	5, 7	12,69	13,2	0	29	35	pH		-	+-		
30 40	10,3 10,1	6,4	11.51	42.2	4	3	37 38	10					
50	9,8	6,4	11,51	12,2	4	3	39	9 🖣				_ Série	1
60	9,7	6, 4	11,53	12,4	4	3	41	8 -					
80	9,4	6, 3	11,61	12,4	3	9	46	1					
100	9,2	5, 6	12,73	13,1	4	24	47	7 -		100	200	300	400
120	9,1	6, 8	9,18	10,1	0	3378	47	ľ			tempo(dias)	300	-00
					1			[kg/s]	[kg/s]	[m³/s]	[kg/s]	[kg/s]	[kg]
								m CO₂sai	miN₂sai	Qent	m CO₂ent	m CO ₂ abs	JΔMCO₂·mii
								0,002309	0,020957	0,02 4 73	0,002596	0,000286	
								0,002279	0,020721	0,02 4 53	0,002607	0,000328	0,18416436
								0,002272	0,020611	0,02 44 6	0,002505	0,000233	0,16817982
								0,002526	0,020532	0,02439	0,002837	0,000311	0,32659192
								0,002501	0,02033	0,024520		0,000269	0,3480631
								0,002423	0,020016	0,02413	0,002696	0,000273	0,32507272 0,29909858
								0,002147	0,019851	0.023950	0,002377	0,00023	0,29909858
								0,002001			e CO2 ab:		1,97 kg
											202 30		.,9

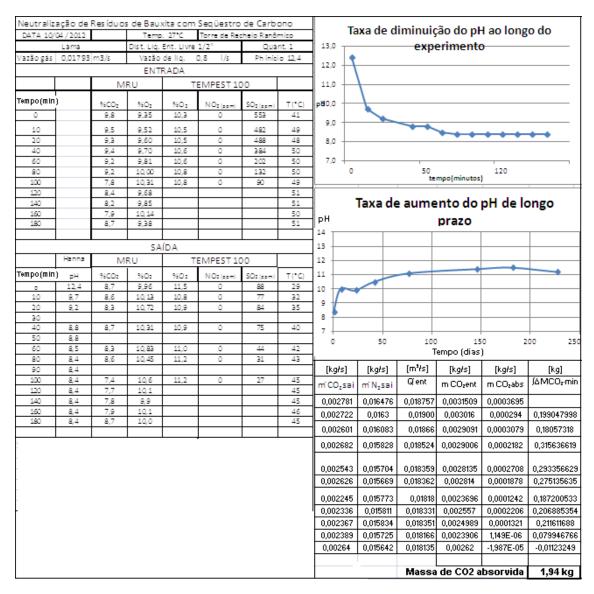
6.B – Dados Completos do Experimento 10.

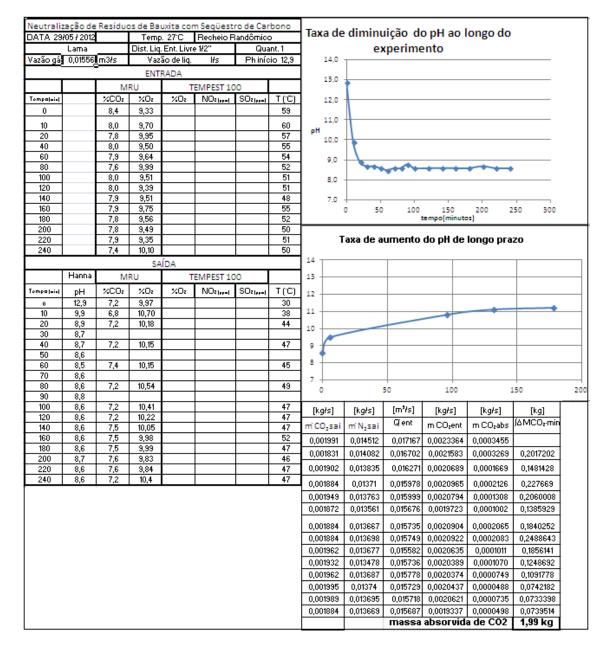
o do	pH ao long	_		iaxa de	1	utralização de Resíduos de Bauxita com Seqüestro de Carbono TA 13/12 / 2011 Temp 40-50°C Torre de Spray									
	nto	perimer	ex		13,0 —		rre de Spr Quan			Dist. Liq. I	10	orenadant			
				†	15,0		Ph iníd		de lig. 0				/azão gás		
				\		10 12,8	Ph Inic	,281/5		ENTR	111 / 5	0,02031	azao gas		
					12,0										
				\		MRU TEMPEST 100					M				
				-	11,0 +	T (*C)	SO ₂ (ppm)	NO2 (ppm)	96O2	96 O 2	96 C O2		empo(min)		
				\	1	53	10	9	12,6	10,75	7,2		0		
				-	pH 10,0	58	10	9	12,9	12,58	5,7		10		
				•		66				12,24	5,8		20		
					9,0 4	56	2	9	12,7	11,74	6,2		40		
-						76	10	9	12,5	11,48	6,4		60		
						75	9	9	12,3	11,34	6,7		80		
					8,0 +								100		
													120		
	1				7,0 +								140		
	50			0	1				DA	SAÍ					
	utos)	tempo(mini					00	MPEST 1	TEI	RU	M	Hanna			
gn.	pH de lon	nto do	aumer	Taya de		T (*C)	SO ₂ (ppm)	NO2 (ppm)	96O2	96O2	%CO2	рН	empo (min)		
BO	pri de ioi			IUAU UC		43	11	9	12,5	11,82	6,1	12,8	0		
		orazo	1		1	43	11	4	14,7	12,96	5,3	9,8	10		
					14 -	43				11,10	6,8	9, 5	20		
					1	44						9, 3	30		
	+	-	/	-	13 +	46	2	9	13,4	12,47	5,7	9, 0	40		
						48 50	_	_	45.5	42.24		8,8	50		
					12 +	47	9 10	9	13,3 13,0	12,24 12,03	5,8 6,0	8, 7 8, 7	60 80		
					11 -	47	10		15,0	12,03	0,0	8,8	90		
	1			/	рН	47						0,0	30		
	– 🛶 Série 1 –				10 +										
	1				1					-		-			
					9 🖠										
					8										
					"										
					7										
10	300 40	00	00 2	10	0										
		o(dias)	temp												
[kg]	[kg/s]	[kg/s]	[m³/s]	[kg/s]	[kg/s]										
JΔMC0 _{z*} mi	m' CO ₂ abs	m	Q'ent		m										
,				m N ₂ sai	0,00211										
		0,00249	0,02096	0,018											
0,1555397	0,00013789	0,00197	0,02128	0,01792	0,00183										
-0,061810	-0,0003439	0,00201	0,02183	0,018	0,00235										
-0.107555	0.00015455	0.00212	0.00000	0.01777	0.00105										
-0,107556		0,00212	0,02089	0,01777	0,00195										
0,2171060	-	0,00216	0,0219	0,01758	0,001962										
0,3912179	0,00023751	0,00229	0,02209	0,01775	0,00205										
0.01															
0,6 kg)2 absorvida	ssa de CO	Ma		1										


7.B - Dados Completos do Experimento 11.

8.B – Dados Completos do Experimento 12.

do	ao longo	o do pH	tament	Compor		rbono	tro de Ca	Seqües	ıxita com	os de Bau	e Residuo	zação de	Neutrali		
	_	riment]	- Selas	e Recheio:	Torre d	stura 56°C	Tempera		/11/2011	DATA 29/		
		i i i i i i i i i i i i i i i i i i i	EXPE		13,0 —	nt. 1	Qua	1/2"	Ent. Livre :	Dist. Liq.	7%рр	A/Água 27	LAM		
					12,0	io 12,6	Ph inío	,91 l/s	de liq. 0	Vazão	m3/s	0,02545	Vazão gá:		
				\	12,0		ENTRADA								
				$\overline{}$	11,0 +	1RU TEMPEST 100					M				
				7	l	T (°C)	SO _{2 (ppm)}	NO _{2 (pp m)}	96O2	96O2	96CO2		empo(min)		
				A	pH10,0 +	46	10	4	11,7	10,98	7,1		0		
	-	-	-		9,0 4	46	4	5	11,6	11,15	7,0		10		
					J 5,0 T	48	2	5	12,0	11,24	6,8		20		
					8,0 4	48	4	5	12,0	11,25	6,8		40		
					,,,,	53	9	6	12,0	11,19	6,7		60		
					7,0 1	46	10	5	12,1	11,23	6,8		80		
'		50	'		1 ',"								100		
		o(minutos)	temp		1								120		
													140		
	H longo	to do p	aumen	axa de	-		00	10 FOT 1	DA				1		
		ZO	pra		1	T(°C)		MPEST 1	96O ₂	RU %0₂	96CO ₂	Hanna pH	empo (min)		
					14 -	56	302 (ppm)	4 4	12,3	11.92	5,9	12,6	0 (min)		
					1	56	4	5	12,3	11,66	6,0	10,2	10		
					13 -	56	2	6	12,4	11,70	6,0	9,8	20		
					12 -	57		- ŭ	12,7	11,70	0,0	9,3	30		
	-				11 -	57	4	5	12,4	11,75	6,1	9,3	40		
		• •			pH 10 -	56	-	-	, -	22,72	0,2	9,2	50		
					9 1	56	4	6	12,6	11,66	6,2	9,3	60		
					1	56	10	5	12,5	11,77	6,1	9,2	80		
					8 -	56						9,2	90		
		-	-		7 -							Ĺ			
400	300	200	100	1	1 (
		mpo(dias)	te		1										
[kg]	[kg/s]	[kg/s]	[m³/s]	[kg/s]	[kg/s]										
∫ΔMCO₂•mir	m'CO _z abs		Q ent	m'N ₂ sai	m'CO ₂ sa										
-	0,0005097			0,02169	0,002455										
0,28326792	0,0004345	0,002931	0,024823	0,02173	0,002496										
0,23397353	0,0003454	0,002842	0,024934	0,02172	0,002496										
0,38608181	0,0002981	0,002829	0,024816	0,02161	0,002530										
0.2044520	0.0000004	0.003700	0.025227	0.02160	0.003500										
0,30446392	0,0002094	0,002789		0,02168	0,002580										
0,45638769	0,0002977	0,002836	0,024724	0,02167	0,002538										
0,17864451	L														
1,842 kg	absorvida	sa de CO2	Mass	l	1										


9.B - Dados Completos do Experimento 19.


10.B – Dados Completos do Experimento 20.

ngo do	pH ao lo	iicão do	dimin	Tava da)	Carbono	üestro de	com Seq	e Bauxita	iduos de	ação de Res	Neutraliza	
ngo uo	-	-		idad üt		âmico	heio Rand	Torre de Rec	27°C	Temp.		/03 / 2012	DATA 28	
	ito	cperimer	ex	· ·	13,0	nt. 1	Qua	1/2"	Ent. Livre	Dist. Liq. 8		Lama		
				\	12,0	o 13,1	Phiníci	0,8 I/s	de lig.	Vazão	m3/s	0,01808	/azão gás	
				\		ENTRADA								
				$\overline{}$	11,0		0	EMPEST 10	TE	RU	M			
					pH10,0	T (°C)	SO ₂ (pp m)	NO2 (ppm)	96O2	96O z	%CO2		Tempo(min)	
					9,0	48	17	0	10,8	10,00	8,0		0	
→					9,0 —	50			10,1	10,05	7,9		10	
	-/-	- N			8,0	50	101	0	10,9	9,90	8,0		30	
	V				7,0	47	209	0	10,7	9,86	8,0		40	
100		50		0		49	128	0	10,9	9,88	7,9		60	
		mpo(minutos)	ter			49	99	0	11,1	9,86	7,8		80	
	H de lon	ام ماء مه		va da :	т.	48	249	0	10,9	10,10	7,8		100	
igo	n de loi			axa ue d	16									
		razo	р							/-				
					14 -				A	SAÍD				
					13 -		10	EMPEST 10	T	RU	M	Hanna		
					12 -	T (°C)	SO ₂ (pp m)	NO2 (ppm)	96O2	96O 2	96CO2	рН	Tempo (min)	
					11 -	28	31	0	11,4	7,67	6,9	13,1	0	
-	+ +	+	*	-	pH 10 -	32				10,80	6,9	10,2	10	
				<i>p</i>	9 -	35	12	0	11,4	10,62	7,1	9,4	20	
				•	ll 1							9,0	30	
					8 -	39	27	0	11,3	10,37	7,3	8,7	40	
25	0 200	00 150	0 10	5(7 +							8,3	50	
23	0 200	tempo(dias)			ľ	41	8	0	10,9	10,42	7,3	7,8	60	
		tempo(dias)					40		44.5	40.40		7,3	70	
[kg]	[kg/s]	[kg/s]	[m³/s]	[kg/s]	[kg/s]	43	10	0	11,5	10,48	7,2	9,0 8,9	80 90	
ίΔΜΟΟ₂∙π	m CO ₂ abs	m CO₂ent	Qent	mi N ₂ sai	miCO ₂ sai	43	39	0	11,4	10,56	7,2	8,7	100	
	0,0004623	0,0026942	0,02009	0,017508	0,002232									
0,236309	0,0003254	0,0025276	0,019207	0,016645	0,002202									
0,1842558	0,0002888	0,0025325	0,019004	0,016478	0,002244									
0,1536879	0,0002235	0,0025005	0,018587	0,016276	0,002277									
0,246349	0,0001871	0,0024494	0,018555	0,016163	0,002262									
0,222444	0,0001837		0,018419	0,016068	0,002217									
0,223273	0,0001884	0,0024055	0,018398	0,016052	0,002217									
1,3 kg	bsorvida	de CO2 al	Massa											

11.B - Dados Completos do Experimento 21.

12.B - Dados Completos do Experimento 23.

13.B – Dados Completos do Experimento 25.

Neutrali:	zação de	Resíduo	s de Bau	xita cor	n Seqüestr	o de Car	bono	ŀ,	Tava da	diminui	são do n	II oo longo	do
DATA 06	2012 f 3012				Torre Spray			l '	axa de		-	H ao longo	ao
	Lama	7 /-	_	Ent. Livre		_	nt. 1	ł		exp	eriment	0	
Vazao gas	0,02035	m3/s		de liq. RADA	0,8 I/s	Phinic	oio 12,7	12,0	Т				
		M			EMPEST 10	20		11,5	+				
Tempo(min)		%C0≥	%Oz	%O2	NO2(sem)	SO2(ppm)	T('C)	11,0	+				
0		7,3	10,80	7100	14000000	0000	45	10,5					
10		7.7	10,14				49	pH 10,0	1				
20		7,6	10,13				51	9,5					
40		7,5	10,31				51	9,0	- 3				
60		6,5	11,75				48	8,5	-	***	*****	*******	**
100		7,1	10,90 10,52				49 49	8,0	-	, ,	-		
120		7,3	10,52				49	İ	0 1	00 20	0 300	400 5	00 600
140		7,6	10,01				49	İ			tempo(minu	itos)	
160		7,9	9,74				49	<u> </u>					
180	-	8,0	9,40			_	49		Tava de	alime	nto do	pH de lon	7 0
200		7,5 7,9	10,07 9,76				52 52	ł	I GAG G	- aume		pii de ioii	50
240		6,9	11,09				51	1			prazo		
260		6,8	11,27				49	14 —		I			
280		6,9	11,08				49	13					
300 320		6,8 7,1	10,73				49 49						
340		7,1	11,07				49	12					
360		6,4	12,15				49	11			-		•
380		6,5	12,12				48	10	4			*	
400		6,6	11,95			_	48						
420 440	-	6,3	12,34			_	48 47	9 🧗					
460		6,0	12,89				47	8					
480		5,7	13,16				45	7 -					
500		6,2	12,57				46	0	5	0	100	150	200
520		5,3	13,86				44	[kala]	[kalc]	[m³/s]	[kala]	[kala]	[kal
	Hanna			ÍDΑ				[kg/s]	[kg/s]	Q ent	[kg/s]	[kgłs] m CO₂abs	[kg] ∫ΔMCO₂·min
	rialilia	M	RU	Т	EMPEST 10	00		miCO ₂ sai	mi N ₂ sai		m CO₂ent		
Tempo (min)	pH	%C02	%0z	%0z	NO2(ppm)	SO2(ppm)	T(°C)	0,002359	0,018836	0,021438	0,0026484	0,000289917	0
10	12,7	6,5 7,1	11,57				29 32	0,002551	0,018716	0,021502	0,0027666	0,000216065	0,15179457
20	10,0	7,1	10,62				38	0,002501	0,018368	0,021204	0,0026761	0,000175321	0,11741553
30	9,7							0,002387	0,018318	0,021167	0,0026363	0,000248926	0,2545479
40	9,5	6,8	10,88			_	39	0,002093	0,018099	0,020832	0,0022699	0,000176926	0,25551115
50 60	9,4	6,0	12,14				41	0,002295	0,018101	0,020835	0,002472	0,000177158	0,21245033
70	9,2	0,0	12,14					0,002391	0,018063	0,020722	0,0024931	0,000101642	0,16727973
80	9,1	6,6	11,27				42	0,002426	0,018066	0,020747	0,0025308	0,000104685	0,12379586
90	8,9							0,002384	0,018026	0,020651	0,0026227	0,000238819	0,20610259
100	8,8	6,9	10,88				43	0,002557	0,018063	0,020701	0,0027328	0,000176229	0,24902924
120	8,7	7,0	10,77				43	0,002669	0,018127	0,020714	0,0027691	0,000100383	0,16596743
140	8,7	6,9	10,79				44	0,002472	0,017972	0,020771	0,0025789	0,000107149	0,12451956
160	8,9	7,4	10,12				44	0,002609 0,002266	0,017917	0,020731	0,0027111	0,000102108	0,12555452
180	8,8	7.7	9,79			_	43	0,002266	0,017859	0,020582	0,0023698	0,000104038	0,12368768
200 220	8,7 8,7	7,2 7,6	10,22		 		46 46	0,002137	0,017887	0,020582	0,0023387	7,33249E-05	0,12897655
240	8,7	6,6	11,34				46	0,002231	0,01793	0,020522	0,0023134	0,000100484	0,1042855
260	8,7	6,4	11,51				46	0,002334	0,017924		0,0024439	0,000109563	0,12602838
280	8,7	6,7	11,11				46	0,002327	0,017751	0,020475	0,0024292	0,000102182	0,12704729
300	8,7	6,5	11,11		-		46	0,002094	0,017732	0,020549	0,0021977	0,000103572	0,12345253
320 340	8,7 8,7	6,8	10,84				46	0,002142	0,017818	0,020602	0,0022448	0,000102776	0,12380835
360	8,7	6,1	12,42				46	0,002177	0,017829		0,0022787	0,000102203	0,12298698
380	8,7	6,2	12,44				44	0,002107	0,017827	0,020617	0,0021773	6,98587E-05	0,10323689
400	8.7	6,3	12,29				44	0,002004	0,017789	0,020558	0,0020742	7,04137E-05	0,08416342
420 440	8,7 8,7	6,1 5,8	12,5				44	0,001976	0,017791	0,020575	0,0020759	0,000100371	0,10247058
460	8,7	5,7	13,32				43	0,001919	0,017922	0,020589	0,0019861	6,75396E-05	0,10074612
480	8,7	5,5	13,44				41	0,002093	0,017931	0,020641		6,59334E-05	0,08008376
500	8,7	6,0	12,9				41	0,001855	0,01792	0,020598		-1,34382E-06	0,03875373
520	8,7	5,3	13,91				40	Ļ		Mas	sa de CO	2 absorvida	3,79 kg