

Museu Paraense Emílio Goeldi Universidade Federal do Pará Programa de Pós-Graduação em Zoologia

ANÁLISE DA VARIAÇÃO MORFOLÓGICA DE *Dipsas catesbyi* (SENTZEN, 1796) E *Dipsas pavonina* SCHLEGEL, 1837 (SERPENTES: COLUBRIDAE: DIPSADINAE)

ANA CAROLINE DE LIMA

DISSERTAÇÃO APRESENTADA AO PROGRAMA DE PÓS-GRADUAÇÃO EM ZOOLOGIA, CURSO DE MESTRADO DO MUSEU PARAENSE EMÍLIO GOELDI E UNIVERSIDADE FEDERAL DO PARÁ, COMO REQUISITO PARCIAL PARA OBTENÇÃO DO GRAU DE MESTRE EM ZOOLOGIA.

ORIENTADORA: DR^a. ANA LÚCIA DA COSTA PRUDENTE

ANA CAROLINE DE LIMA

ANÁLISE DA VARIAÇÃO MORFOLÓGICA DE *Dipsas catesbyi* (SENTZEN, 1796) E *Dipsas pavonina* SCHLEGEL, 1837 (SERPENTES: COLUBRIDAE: DIPSADINAE)

DISSERTAÇÃO APRESENTADA AO PROGRAMA DE PÓS-GRADUAÇÃO EM ZOOLOGIA, CURSO DE MESTRADO DO MUSEU PARAENSE EMÍLIO GOELDI E UNIVERSIDADE FEDERAL DO PARÁ, COMO REQUISITO PARCIAL PARA OBTENÇÃO DO GRAU DE MESTRE EM ZOOLOGIA.

ORIENTADORA: DR^a. ANA LÚCIA DA COSTA PRUDENTE

Belém-Pará 2006

In memorian, dedico a minha adorável vózinha Alzira Borges de Castro...

Agradecimentos

Agradeço ao MUSEU PARAENSE EMÍLIO GOELDI pelo apoio e ceder a infraestrutura para o trabalho. E a CAPES pelo apoio financeiro.

À minha orientadora, Dra. ANA LÚCIA DA COSTA PRUDENTE pela oportunidade de trabalhar na Amazônia, por todo seu apoio e amizade.

Ao Dr. MARINUS HOOGMOED, Dra. TERESA CRISTINA SAUER DE ÁVILA-PIRES e Dra MARIA CRISTINA SANTOS-COSTA pelas críticas e sugestões durante o desenvolvimento do trabalho.

Aos curadores das coleções e suas respectivas instituições que disponibilizaram o material de estudo, Dra. MARÍLIA COUTO S. SHIRAIWA (UFMT), Dr. FRANCISCO L. FRANCO (IBSP), Dr. HUSSAM ZAHER (MZUSP), Dr. JULIO CÉSAR DE MOURA-LEITE (MHNCI), Dr. RICHARD VOGT (INPA) e Dr. RONALDO FERNANDES (MNRJ).

As minhas queridas DOROTÉA DE FÁTIMA SILVA DE ALBUQUERQUE e ANETE CONCEIÇÃO SILVA MARQUES, pela amizade, carinho e atenção.

Aos meus colegas de mestrado, ADNA, ALEXANDRE, FRED, IVANEI, IVANEIDE, JANAINA, RODRIGO, ROSYVALDO, WILLIAM e em especial ao DARLAN TAVARES FEITOSA por sempre estar disposto a me ajudar quando eu precisava.

Agradeço a amizade do DANNI ROBERTO, TOBY GARDNER, LUCIANO MONTAG, SIDCLAY CALAÇA DIAS e também pelas sugestões durante o Encontro da Pós-Graduação.

Aos colegas e amigos da Herpetologia, ALESSANDRA, CARLA, CRISALDA FABRÍCIO, FRANCÍLIO, GABRIEL, GISELE, KLEYTON, LUIS PAULO, MÁRCIO, PEDRO e WÁLDIMA. Ao CARLOS EDUARDO YAMASHINA pela amizade e por prestigiar meus desenhos com seu talento, fazendo a arte final.

As meninas, ANA CAROLINA PIMENTA, NANCY FRANÇA LO MAN HUNG, IZAURA MUNIZ MAGALHÃES, DANIELE FÉLIX-SILVA, JULIANA SILVEIRA e aos meninos, JANAEL RICETTI, PABLO SUAREZ, JUAREZ PEZZUTI, GLEOMAR F. MASCHIO, EDUARDO MATHEUS VON MÜLLEN pela amizade, companheirismo, pelos diversos momentos de descontração, e por serem minha família em Belém.

Aos meus amigos, MARCO ANTÔNIO RIBEIRO JR. e DAVID FIGUEIREDO CANDIANI, pelos conselhos, pelas piadas, por compartilharem comigo os meus problemas. Agradeço também a gentileza, a compreensão e o estímulo que vocês oferecem naturalmente.

Agradeço todo o amor e compreensão dos meus pais MANOEL BOAVENTURA DE LIMA e MARIA ALICE DE CASTRO LIMA, que sempre me apoiaram, mesmo que minhas decisões parecessem estranhas a eles. Agradeço o carinho e os conselhos da minha irmã mais velha, ALINE LIMA e as brincadeiras e sorrisos dos meus irmãos mais novos, ANDRÉ MANOEL DE LIMA e ANA CAROLINA ALVES DA SILVA.

Em especial, agradeço uma pessoa que sempre estará presente em minha vida, FLÁVIO EDUARDO PIMENTA. Agradeço por dispor de sua experiência profissional na construção de críticas fundamentais para a realização do trabalho. Agradeço também, a amizade que, gentilmente, me permitiu desfrutar. Agradeço a sua força que, positivamente, muitas batalhas me ajudou a ganhar. Agradeço sua coragem que, bravamente, conseguiu me emprestar. Agradeço ao seu coração, por todo amor que tem me dado...

Sumário

LISTA DE FIGURAS	vii
RESUMO	viii
ABSTRACT	ix
1 INTRODUÇÃO	1
2 REFERÊNCIAS BIBLIOGRÁFICAS	4

CAPÍTULO I: ANÁLISE DA VARIAÇÃO MORFOLÓGICA DE Dipsas catesbyi (SENTZEN, 1796) E Dipsas payoning SCHLEGEL, 1837 (SERPENTES:	
COLUBRIDAE: DIPSADINAE)	6
RESUMO	7
ABSTRACT	8
1 INTRODUÇÃO	9
1.1 Objetivo Geral	13
1.2 Objetivos Específicos	13
2 MATERIAL E MÉTODOS	13
2.1 MATERIAL ANALISADO	13
2.2 DADOS MERÍSTICOS	14
2.3 DADOS MORFOMÉTRICOS	15
2.4 Padrão de Desenho e Coloração	18
2.5 SEXAGEM	18
2.6 Preparação do hemipênis	18
2.7 Ilustrações	19
2.8 Distribuição Geográfica	19
2.9 Análise das variações	19
2.10 Análise dos dados	20

3 RESULTADOS	22
3.1 Dipsas catesbyi	22
3.1.1 Lista Sinonímica	22
3.1.2 Diagnose	23
3.1.3 Descrição Geral	24
3.1.3.1 Morfologia Externa	24
3.1.3.2 Hemipênis	24
3. 1.3.2 Padrão de Desenho	26
3.1.4 Distribuição Geográfica	29
3.1.5 Variação Intraespecífica	30
3.1.5.1 Variação Geral	30
3.1.5.2 Dimorfismo Sexual	31
3.1.5.3 Variação Geográfica	37
3.2 Dipsas pavonina	38
3.2.1 Lista Sinonímica	38
3.2.2 Diagnose	38
3.2.3 Descrição Geral	39
3.2.3.1 Morfologia Externa	39
3.2.3.2 Hemipênis	40
3.2.3.3 Padrão de Desenho	41
3.2.4 Distribuição Geográfica	44
3.2.5 Variação Específica	45
3.2.5.1 Variação Geral	45
3.2.5.2 Dimorfismo Sexual	45
3.2.5.3 Variação Geográfica	48
3.3 VARIAÇÃO INTERESPECÍFICA DOS DADOS MERÍSTICOS E MORFOMÉTRICOS	48

5 REFERÊNCIAS BIBLIOGRÁFICAS	53
CAPÍTULO II: DESCRIÇÃO COMPARATIVA DAS GLÂNDULAS CEFÁLICAS DE <i>Dipsas</i> catesbyi e D. pavonina com táxons relacionados	60
RESUMO	61
ABSTRACT	62
1 INTRODUÇÃO	63
1.1 Objetivo Geral	67
1.2 Objetivos Específicos	67
2 MATERIAL E MÉTODOS	67
3 RESULTADOS	69
3.1 GLÂNDULAS CEFÁLICAS DE D. catesbyi E D. pavonina	69
3.2 COMPARAÇÃO DA MACROESTRUTURA DAS GLÂNDULAS CEFÁLICAS DE <i>Dipsas catesbyi</i> E <i>D. pavonina</i> COM ALGUNS DIPSADINAE	80
4 DISCUSSÃO E CONCLUSÕES	82
5 REFERÊNCIAS BIBLIOGRÁFICAS	84
CONCLUSÕES GERAIS	87
ANEXOS	89

LISTA DE FIGURAS (CAPÍTULO I)

Figura 1. Representação esquemática das medidas cefálicas	17
Figura 2. Vista geral de Dipsas catesbyi	23
Figura 3. Hemipênis de <i>D. catesbyi</i>	25
Figura 4. Padrão de coloração cefálico de <i>D. catesbyi</i>	27
Figura 5. Padrão de coloração corporal de <i>D. catesbyi</i>	28
Figura 6. Mapa de distribuição de <i>D. catesbyi</i>	29
Figura 7. Divisão das escamas ventrais nos Dipsadinae	30
Figura 8. Freqüência das escamas ventrais em D. catesbyi	31
Figura 9. Freqüência das escamas subcaudais em <i>D. catesbyi</i>	32
Figura 10. Freqüência das manchas da cauda em <i>D. catesbyi</i>	33
Figura 11. Freqüência do comprimento da cauda em D. catesbyi	34
Figura 12. Freqüência do comprimento total em D. catesbyi	35
Figura 13. Freqüência do comprimento do frontal em D. catesbyi	35
Figura 14. Freqüência distância do olho a borda oral em D. catesbyi	36
Figura 15. Freqüência do diâmetro do olho em D. catesbyi	36
Figura 16. Mapa dos grandes grupos populacionais de <i>D. catesbyi</i>	37
Figura 17. Vista geral de Dipsas pavonina	39
Figura 18. Hemipênis de D. pavonina	40
Figura 19. Padrão de coloração cefálico de D. pavonina	42
Figura 20. Padrão de coloração corporal de <i>D. pavonina</i>	43
Figura 21. Mapa de distribuição de <i>D. pavonina</i>	44
Figura 22. Freqüência das escamas ventrais em <i>D. pavonina</i>	46
Figura 23. Freqüência das escamas subcaudais em <i>D. pavonina</i>	46
Figura 24. Freqüência do comprimento do rostral em D. pavonina	47
Figura 25. Freqüência do comprimento do frontal em D. pavonina	47

RESUMO GERAL

A subfamília Dipsadinae engloba 22 gêneros da fauna de colubrídeos neotropicais e 24 outros considerados incertae sedis, mas com caracteres comuns aos dipsadíneos. Os gêneros Dipsas, Sibon, Sibynomorphus e Tropidodipsas formalmente compõem a tribo Dipsadini a qual é considerado um grupo monofilético bem fundamentado. A tribo é caracterizada por serpentes que apresentam um alto grau de especialização morfológica, relacionado ao modo de alimentação e adaptações ao hábitat em que vivem. O gênero Dipsas inclui aproximadamente 32 espécies, distribuídas do México até a América do Sul, é constituído por serpentes de corpo delgado e alongado, com cabeça curta e proeminente, olhos grandes, pupilas verticais e ausência de sulco mentoniano. As espécies são notavelmente variáveis na coloração, número de escamas e outros caracteres morfológicos. Essa extrema variação tem dificultado a definição dos limites entre as espécies e a interpretação de padrões de variação geográfica. A grande variação morfológica dos caracteres presentes nas espécies D. catesbyi e D. pavonina, associada à dificuldade de identificação dos táxons e à escassez de informações sobre as suas distribuições geográficas, justificam a necessidade de uma análise mais detalhada destas espécies. Para tal, o presente estudo foi dividido em dois capítulos. O primeiro capítulo corresponde à análise da variação individual, sexual e geográfica de D. catesbyi e D. pavonina, e a comparação dos caracteres morfológicos entre as duas espécies. O segundo corresponde à análise da macroestrutura das glândulas cefálicas nestas duas espécies, relacionando-as com outros táxons de Dipsadinae.

Palavras-chave: D. catesbyi, D. pavonina, caracteres morfológicos e variação.

ABSTRACT

The subfamily Dipsadinae contains about 22 genus of Neotropical fauna and 24 others considered *incertae sedis*, but with common characters to the Dipsadinae subfamily. The genus Dipsas, Sibon, Sibynomorphus and Tropidodipsas compose the Dipsadini tribe, which is considered a well-based monofiletic group. The tribe is characterized by snakes with a high degree of morphologic specialization, related to the way of feeding and to adaptations to the habitat. The Dipsas genus includes approximately 32 species, distributed from Mexico to South America, it is constituted by thin and elongated snakes, with short and prominent head, great eyes, vertical pupils and absence of mental groove. The species are visible variable in coloration, number of scales and others morphologic characters. This extreme variation has made it difficult to define the limits between the species and to interpret patterns of geographic variation. The great morphologic variation of characters in D. catesbyi and D. pavonina, associate to the difficulty to identify taxons and the lack of information on geographic distributions, justify the necessity of a detailed analysis of these species. For that, the present study was divided in two chapters. The first one corresponds to the analysis of the individual, sexual and geographic variation of D. catesbyi and D. pavonina and a comparison of characters between the two species. The second one corresponds to the analysis of the macrostructure of the cephalic glands in these two species, relating them with others taxons of Dipsadinae.

Key-words: D. catesbyi, D. pavonina, morphologic characters and variation.

1 INTRODUÇÃO GERAL

Os Dipsadinae foram considerados uma tribo integrante da subfamília Xenodontinae por DOWLING & DUELLMAN (1978) e como uma subfamília distinta por JENNER & DOWLING (1985). O estudo destes últimos autores recebeu uma maior aceitação, a partir de um consenso entre os dados morfológicos e moleculares (CADLE, 1984 a,b,c, 1985). Os trabalhos de CADLE (1984 a,b,c, 1985, 1988) foram essenciais para a compreensão das relações filogenéticas entre os gêneros de colubrídeos do Novo Mundo, sendo reconhecidos dois grupos, os centro-americanos (dipsadíneos) e sulamericanos (xenodontíneos).

Representantes da subfamília Xenodontinae estão amplamente distribuídos pela América Sul, com vários gêneros alcançando a América do Central e Caribe, enquanto que os Dipsadinae limitam-se à América do Central, com alguns representantes na América do Sul (CADLE, 1985; CADLE & GREENE, 1993).

MYERS & CADLE (1994) sugeriram o monofiletismo dos Dipsadinae baseados em três sinapomorfías hemipenianas: (1) redução ou perda da bilobação; (2) unicapitação e (3) divisão distal do sulco espermático. Entretanto, a redução ou perda da bilobação pode ser observada em outros grupos de colubrídeos, não representando uma sinapomorfía para os Dipsadinae (ZAHER, 1999).

A subfamília Dipsadinae engloba pelo menos 22 gêneros da fauna de colubrídeos neotropicais (FERNANDES, 1995) e 24 outros considerados *incertae sedis*, mas com caracteres comuns aos dipsadíneos (ZAHER, 1999).

Entre os Dipsadinae, os gêneros Dipsas, Sibon, Sibynomorphus e Tropidodipsas formalmente compõem a tribo Dipsadini (CADLE, 1984b; MYERS & CADLE, 1994), a qual é considerada um grupo monofilético bem fundamentado (PETERS, 1960; CADLE, 1984 b; WALLACH, 1995; CAMPBELL & SMITH, 1998).

As serpentes desta tribo são caracterizadas por apresentarem um alto grau de especialização morfológica, relacionado ao modo de alimentação e adaptações ao hábitat em que vivem (PETERS, 1960). As espécies de *Tropidodipsas* e *Sibynomorphus* apresentam modificações para a vida terrestre, enquanto que *Sibon* e *Dipsas* são altamente adaptados à vida arborícola (DESSAUER *et al.*, 1987).

De acordo com CADLE & GREENE (1993), a tribo Dipsadini é compostas por dois grupos distintos de dipsadíneos. O primeiro caracterizado pelo pequeno porte e escudo loreal em contato com a órbita (CADLE & GREENE, 1993), contendo os gêneros *Atractus, Geophis, Adelphicos* e *Ninia*. As serpentes do segundo agrupamento apresentam um alongamento do músculo *adductor mandibulae externus superficialis* e desenvolvimento do pulmão traqueal (PETERS, 1960; FERNANDES, 1995) e são representadas pelos gêneros *Sibynomorphus*, *Sibon* e *Dipsas*.

FERNANDES (1995), analisando a filogenia dos Dipsadinae, obteve resultados que suportam o monofiletismo dos Dipsadini, assim como já havia sido predito por outros autores (BRONGERSMA, 1958; PETERS, 1960). Seus resultados impossibilitaram o estabelecimento do monofiletismo do gênero *Dipsas*, já que o gênero *Sibynomorphus* apareceu como grupo-irmão de *D. catesbyi* e *D. pavonina*, com base na forma e posição da glândula de Harder.

PETERS (1960) definiu sete grupos de espécies para o gênero *Dipsas*, entretanto, um desses grupos (*polylepis*) foi considerado posteriormente como artificial por PETERS (1970). Devido à dificuldade de obter amostras do gênero *Dipsas*, as análises de FERNANDES (1995) não foram suficientes para estabelecer a validade dos grupos definidos por PETERS (1960). Porém, *D. catesbyi* e *D. pavonina* (membros do grupo *catesbyi*) permaneceram unidas no agrupamento de espécies, sugerindo o monofiletismo do grupo *catesbyi*.

2 REFERÊNCIAS BIBLIOGRÁFICAS

- BRONGERSMA, L. D. 1958. Some features of the Dipsadinae and Pareinae (Serpentes, Colubridae). Kon. Ned. Akad. Wet., 61 (1): 1-12.
- CADLE, J. E. 1984a. Molecular Systematics of Neotropical Xenodontine Snakes: I. South American Xenodontines. **Herpetologica**, 40 (1): 8-20.
- CADLE, J. E. 1984b. Molecular Systematics of Neotropical Xenodontine Snakes: II. Central American Xenodontines. **Herpetologica**, 40 (1): 21-30.
- CADLE, J. E. 1984c. Molecular Systematics of Neotropical Xenodontine Snakes: III. Overview of Xenodontine, Phylogeny and the History of New World Snakes. Copeia, 1984 (3): 641-652.
- CADLE, J. E. 1985. The Neotropical Colubrid Snake Fauna (Serpentes: Colubridae): linage components and biogeography. **Syst. Zool.**, 34 (1): 1-20.
- CADLE, J. E. 1988. Pylogenetic Relationships Among Advanced Snakes: a molecular perspective. Univ. California Publ. Zool., 119: 1-77.
- CADLE, J. E. & GREENE, H. W. 1993. Phylogenetic Patterns, Biogeography and the Ecological Structure of Neotropical Snake Assemblages. *In*: RICKLEFS, R. E. & SCHULTER, D. (eds.). Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press. Chicago and London, p.281-293.

- CAMPBELL, J. A. & SMITH, E. N. 1998. A new genus and species of colubrid snake from the Sierra de las Minas of Guatemala. **Herpetologica**, 54 (2): 207–220.
- DESSAUER, H. C.; CADLE, J. E. & LAWSON, R. 1987. Patterns of Snakes Evolution suggested by their proteins. Fieldiana Zoology: New Series, 34: 1-34.LLL
- DOWLING. H. G. & DUELLMAN, W. E. 1978. Systematic Herpetology: a synopsis of families and higher categories. New York: Herpetol. Inf. Search Syst., 7: 240.
- FERNANDES, R. 1995. Phylogeny of the Dipsadinae snakes. Ph. D. Dissertation. University of Texas at Arlington, Texas, USA. 115 p.
- JENNER, J. & DOWLING, H. G. 1985. Taxonomy of American Xenodontine snakes: The tribe Pseudoboini. Herpetologica, 41 (2): 161-172.
- MYERS, C. W. & CADLE, J. E. 1994. A new genus for South American snakes related to *Rhadinea* obtusa Cope (Colubridae) and resurrection of *Taeniophallus* Cope for the "*Rhadinaea*" *brevirostris* group. **Am. Mus. Novitates**, 3102: 1-33.
- PETERS, J. A. 1960. The snakes of the Subfamily Dipsadinae. Misc. Publ. Mus. Zool. Univ. Michigan, n. 114. 144 p.
- PETERS, J. A. 1970. Generic position of the South American snake *Tropidodipsas perijanensis*. **Copeia**, 1970 (2): 394-395.

- WALLACH, V. 1995. Revalidation of the genus *Tropidodipsas* Günther, with notes on the Dipsadini and Nothopsini (Serpentes: Colubridae). Journal of Herpetology, 29 (3): 476-481.
- ZAHER, H. 1999. Hemipenial Morphology of the South American Xenodontine Snakes, with a proposal for a monophyletic Xenodontine and a reappraisal of Colubroid Hemipenes. Bull. Am. Mus. Nat. Hist., 240: 8-12.

CAPÍTULO I

ANÁLISE DA VARIAÇÃO MORFOLÓGICA DE Dipsas catesbyi

(SENTZEN, 1796) E Dipsas pavonina SCHLEGEL, 1837

(SERPENTES: COLUBRIDAE: DIPSADINAE)

RESUMO

O gênero *Dipsas* inclui aproximadamente 32 espécies, distribuídas do México até a América do Sul, cujo corpo é delgado e alongado, a cabeça é curta e proeminente, os olhos são grandes, as pupilas verticais e está ausente o sulco mental. As espécies são notavelmente variáveis na coloração e no número de escamas. Essa extrema variação tem dificultado a definição dos limites entre as espécies e a interpretação de padrões de variação geográfica. A grande variação merística e morfométrica dos caracteres presentes nas espécies *D. catesbyi* e *D. pavonina*, associada à dificuldade de identificação dos táxons e à escassez de informações sobre as suas distribuições geográficas, justificam a necessidade de uma análise mais detalhada destas espécies. Para tal foram analisados 14 caracteres merísticos e 18 caracteres morfométricos de 483 exemplares de *D. catesbyi* e 129 exemplares de *D. pavonina*, além do padrão de desenho, hemipênis e distribuição geográfica. Como resultados, as duas espécies foram redescritas, assim como suas variações individuais, sexuais e geográficas. Além disso, os caracteres analisados foram comparados entre as duas espécies.

Palavras-chave: *Dipsas catesbyi*, *Dipsas pavonina*, variação, hemipênis e padrão de desenho e coloração.

ABSTRACT

The *Dipsas* genus includes approximately 32 species, distributed from Mexico to South America. This genus is represented by thin and elongated snakes, with short and prominent head, great eyes, vertical pupils and absence of mental groove. The species are visible variable in coloration and in the number of scales. This extreme variation has made difficult to define limits between the species and to interpret patterns of geographic variation. The great meristic and morphometic variation of characters in the following species, *D. catesbyi* and *D. pavonina*, associate to the difficulty to identify taxons and the lack of information on geographic distributions, justify the necessity of a detailed analysis of these species. For such 14 meristics and 18 morphometrics characters of 483 *D. catesbyi* and 129 *D. pavonina* had been analyzed, beyond the coloration pattern, hemipenis and geographic distribution. As results, a redescription of the two species was done, as well as its individual, sexual and geographic variations. Moreover, the analyzed characters had been compared between the two species.

Key-words: *Dipsas catesbyi*, *Dipsas pavonina*, variation, hemipenis and coloration pattern.

1 INTRODUÇÃO

O gênero *Dipsas* Laurenti, 1768, inclui aproximadamente 32 espécies, distribuídas do México até a América do Sul (PETERS & OREJAS-MIRANDA, 1970; KOFRON, 1982; GIRAUDO, 2001). Este gênero é constituído por serpentes de corpo delgado e alongado, com cabeça curta e proeminente, olhos grandes, pupilas verticais e ausência de sulco mental (PETERS, 1960). As espécies deste grupo são arborícolas e noturnas, sendo comumente encontradas em ambientes úmidos, onde passam o dia escondidas em bromélias e ocos de árvores (DUNN, 1951). Além disso, alimentam-se exclusivamente de lesmas e caracóis (KOFRON, 1982).

As espécies de *Dipsas* são notavelmente variáveis na coloração e número de escamas, caracteres utilizados freqüentemente na sistemática de serpentes. Essa extrema variação tem dificultado a definição dos limites entre as espécies e a interpretação de padrões de variação geográfica, especialmente em espécies que ocorrem naturalmente em baixas densidades populacionais (CADLE & MYERS, 2003).

Na mais detalhada revisão do gênero, PETERS (1960) baseou sua análise no número de escamas e no padrão de coloração, definindo sete grupos de espécies (*articulata, catesbyi, indica, oreas, polylepis, pratti e variegata*). Entretanto, o grupo *polylepis* foi posteriormente considerado artificial por não apresentar semelhanças na coloração e padrão de desenho entre as quatro espécies do grupo (*D. longicaudata*, D. *poecilolepis, D. polylepis e D. leucomelas*) (PETERS, 1970).

Os representantes do grupo *catesbyi* distribuem-se pela região amazônica, a partir das encostas dos Andes na Bolívia, Peru, Equador, Colômbia, Venezuela, Guianas e norte do Brasil (PETERS, 1960). Segundo PETERS (1960), esse grupo é constituído por quatro espécies: *D. catesbyi* (Sentzen, 1796); *D. copei* (Günther, 1872); *D. pavonina*

Schlegel, 1837 e *D. vermiculata* Peters, 1960. O padrão geral de coloração do grupo é caracterizado por manchas escuras e ovais, que freqüentemente alcançam a fileira vertebral e a margem das escamas ventrais, e dorso da cabeça normalmente unicolor, podendo ser variegado, com uma faixa transversal clara na altura dos escudos pré-frontais (PETERS, 1960). Recentemente, PASSOS *et al.* (2004) sinonimizaram *D. copei* com *D. incerta*, e afirmaram que esta espécie não está relacionada ao grupo *catesbyi* por apresentar 15 escamas dorsais e um padrão de coloração diferenciado.

Os dados disponíveis sobre a morfologia ou taxonomia de *D. catesbyi* na literatura estão concentrados em dois trabalhos (PETERS, 1956 e PETERS, 1960). Para *D. pavonina*, estes dados são ainda mais escassos, sendo encontrados em apenas um trabalho de PETERS (1960). Desde então, nenhum estudo morfológico ou taxonômico tem sido feito com essas espécies.

Dipsas catesbyi foi originalmente descrita para "America" sob o nome Coluber catesbeji (em erro tipográfico), sendo corrigido para Dipsas catesbyi por BOIE (1827), nomenclatura também utilizada por SCHLEGEL (1837). Entretanto, trabalhos posteriores utilizaram outra combinação binomial para citar a espécie. DUMÉRIL, BIBRON & DUMÉRIL (1854) descreveram o gênero Stremmatognathus, e essa espécie passou a se chamar Stremmatognathus Catesbyi, enquanto que GÜNTHER (1858), BOULENGER (1896) e BERG (1898) utilizaram o nome Leptognathus Catesbyi. BERG (1901) passou a chamar a espécie de Cochliophagus catesbyi. Posteriormente, BARBOUR & NOBLE (1920) passaram a espécie para o gênero Sibynomorphus, considerando-a como S. catesbeji. AMARAL (1926, 1929) aceitou o arranjo proposto por BARBOUR & NOBLE (1920). PARKER (1935) incluiu *D. catesbyi* em sua "Série D" de agrupamento de espécies, constituída por espécies presentes na Bacia Amazônica. PETERS (1956) analisou a variação de *D. catesbyi* a partir de 208 exemplares (103 fêmeas e 105 machos) procedentes do Peru, Equador, Bolívia e Guyana. Neste trabalho, o autor descreveu as variações individuais, populacionais, ontogenéticas e sexuais da espécie. PETERS (1960) sinonimizou *Sibynomorphus macedoi* Prado & Hoge, 1947 com *D. catesbyi*, tendo como justificativa a análise de uma série de fotografias do espécime tipo, preparadas por Hoge.

A ocorrência de *D. catesbyi* foi registrada para Colômbia (PÉREZ-SANTOS & MORENO, 1988), Bolívia, Brasil, Equador, Guyana (PARKER, 1935; BEEBE, 1946; PETERS, 1960), Peru (SCHMIDT & WALKER, 1943; DIXON & SOINI, 1977; LEHR, 2001, 2002), Suriname (ABYUS, 1983), Venezuela (ROZE, 1955; STARACE, 1998) e Guiana Francesa (CUNHA & NASCIMENTO, 1993; STARACE, 1998). A distribuição da espécie no Brasil foi ampliada para o sul do Pará, oeste do Maranhão e Rondônia conforme CUNHA *et al.* (1985). Apesar de ser uma espécie típica da Floresta Amazônica, uma população disjunta ocorre na Floresta Ombrófila Densa da Bahia (PETERS, 1960; ARGOLO, 2004).

Dipsas pavonina foi descrita a partir de uma série de exemplares procedentes das Guianas. SCHLEGEL (1837) afirmou que *D. pavonina* é muito semelhante morfologicamente a *D. catesbyi*, apesar de ser distinta em alguns aspectos de coloração e folidose. Posteriormente, *D. pavonina* é citada na literatura como pertencendo ao gênero *Leptognathus* (DUMÉRIL, BIBRON & DUMÉRIL, 1854; COPE, 1868). VON IHERING (1910) utilizou o nome *Cochliophagus pavoninus*, e mais tarde AMARAL (1926) utilizou o nome *Sibynomorphus pavoninus*. PETERS (1960) registrou *D. pavonina* para as Guianas até o Estado do Pará, Brasil, e regiões amazônicas da Colômbia, Bolívia, Equador e Peru. Mais tarde foi registrada para o Suriname (ABUYS, 1983) e Venezuela (ROZE, 1966; STARACE, 1998). Segundo CUNHA & NASCIMENTO (1993), a distribuição dessa espécie ainda não está bem definida, principalmente em áreas mais ocidentais da Amazônia brasileira e países limítrofes (Bolívia, Peru, Colômbia e Equador). DUELLMAN (1978) assinalou que *D. pavonina* é rara no Equador. Entretanto, CUNHA & NASCIMENTO (1993) questionaram essa afirmação, uma vez que *D. pavonina* é confundida freqüentemente com *D. catesbyi*.

D. vermiculata foi descrita com base em um indivíduo macho procedente do Rio Bonaza, Província de Napo-Pastaza no Equador, coletado por Ramon Olalla. Essa espécie difere das demais pela presença de escamas pré-frontais fusionadas, loreais em contato com a órbita, uma pré-ocular, sete supralabiais (somente uma em contato com a órbita) e dorso da cabeça fortemente variegado de amarelo e marrom. Segundo o autor, esta espécie relaciona-se diretamente com *D. catesbyi*, estando suas diferenças no padrão de coloração. Pode ser facilmente diferenciada das demais espécies de *Dipsas*, por apresentar manchas corporais largas, próximas e fusionadas através da fileira vertebral. Esse padrão de coloração vertebral assemelha-se às bandas completas típicas dos membros do grupo *articulata*, o que pode dificultar o reconhecimento de alguns membros do grupo. Sua ocorrência está restrita as regiões amazônicas do Equador e ao nordeste do Peru.

1.1 OBJETIVO GERAL

 Caracterizar e redescrever *Dipsas catesbyi* e *Dipsas pavonina* com base na análise comparativa de um conjunto de caracteres merísticos, morfométricos e morfológicos.

1.2 OBJETIVOS ESPECÍFICOS

- Analisar os caracteres merísticos (folidose e padrão de desenho), morfométricos (tamanho do corpo e cauda, dimensões das estruturas cefálicas) e morfológicos (hemipênis);
- Analisar comparativamente a variação de caracteres no contexto de dimorfismo sexual e interespecífico;
- Analisar comparativamente a variação intraespecífica dos caracteres no contexto geográfico;
- Registrar novas ocorrências de *D. catesbyi* e *D. pavonina*, elaborando mapas de distribuição.

2 MATERIAL E MÉTODOS

2.1 MATERIAL ANALISADO

Foram analisados 483 exemplares de *D. catesbyi* e 129 exemplares de *D. pavonina*, que se encontram listados no ANEXO I. A seguir estão listadas as instituições e museus que concederam o empréstimo do material: INSTITUTO BUTANTAN, São Paulo (IBSP); CENTRO DE ESTUDOS E PESQUISAS BIOLÓGICAS DA UNIVERSIDADE CATÓLICA DE

GOIÁS, GOIÂNIA (PUC-GO); COLEÇÃO HERPETOLÓGICA DA UNIVERSIDADE DE BRASÍLIA (CHUNB); INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA, Manaus (INPA); MUSEU DE HISTÓRIA NATURAL CAPÃO DA IMBUIA, Curitiba (MHNCI); MUSEU NACIONAL DO RIO DE JANEIRO (MNRJ); MUSEU DE ZOOLOGIA DA UNIVERSIDADE DE SÃO PAULO (MZUSP) e MUSEU PARAENSE EMÍLIO GOELDI, Belém (MPEG).

2.2 DADOS MERÍSTICOS

Foram considerados 14 caracteres merísticos, todos analisados em estereomicroscópio. A terminologia para a observação das escamas cefálicas seguiu PETERS (1960) e o método para a contagem de ventrais seguiu DOWLING (1951). As descrições destas observações estão reunidas a seguir: número de escamas ventrais (VE); número de escamas subcaudais (SC); a escama anal foi observada quanto à condição inteira ou dividida; o número de dorsais foi verificado quanto ao número de fileiras, em três regiões do corpo; número total de escamas supralabiais (SL) e quantas e quais estão em contato com a órbita (SLO); número de escamas infralabiais (IL), seguido de quantas destas estão em contato com as escamas gulares (ILG); número de escamas temporais anteriores (TA) e posteriores (TP); número de escamas pré-oculares (PO) e pós-oculares (POO), número de manchas corporais (MCO); número de manchas na cauda (MCA); a escama nasal foi observada quanto à condição inteira, dividida ou semi-dividida. A escama loreal foi observada se estava ou não em contato com a órbita. Quando algumas das escamas estavam danificadas ou a cauda estava partida, as análises relacionadas a estas partes não foram realizadas.

2.3 DADOS MORFOMÉTRICOS

Foram considerados 18 caracteres morfométricos, que correspondem às medidas (tomadas em milímetros) do corpo, cauda e estruturas cefálicas. As medidas das estruturas cefálicas (Figura 1) foram efetuadas no lado direito dos exemplares e tomadas com auxílio de paquímetro, todas realizadas sob o microscópio estereoscópico. As medidas corporais foram tomadas com um barbante e medidas em uma régua milimetrada. As medidas estão descritas a seguir:

- Comprimento rostro-cloacal (CRC): medido da extremidade anterior do escudo rostral até a extremidade posterior do escudo anal;
- Comprimento da cauda (CC): medido da extremidade posterior do escudo anal até a extremidade da cauda;
- Comprimento total (CTO): soma do comprimento rostro-cloacal com o comprimento da cauda;
- Comprimento da cabeça (Ccab): medido desde a tangente da ponta do escudo rostral até o ponto de articulação quadrado-mandibular;
- Largura da rostral (LRO): maior largura do escudo, tomada ventralmente.
- Comprimento da rostral (CRO): medido na porção mediana do rostral;
- Largura do frontal (LFR): aferida entre os ângulos externos e anteriores do frontal;
- Comprimento do frontal (**CFR**): aferido entre o ponto mais anterior (ângulo central e anterior) e o ponto mais posterior (ângulo posterior);
- Comprimento do frontal ao olho (CFR-O): medido do ângulo formado pelas supralabiais e pré-ocular até o ponto mais anterior do frontal;

- Comprimento da rostral à narina (CRO-Na): corresponde à distância entre a ponta do escudo rostral e a narina;
- Comprimento da narina ao olho (CoNa-O): medido da narina até o ângulo formado entre as supralabiais e a pré-ocular;
- Comprimento do parietal (CPA): aferido na linha média e longitudinal, formada na sutura entre os escudos parietais;
- Largura do parietal (LPA): aferida no ponto mais largo e anterior do parietal;
- Comprimento do parietal ao olho (CoPA-O): medido do ângulo formado pelas supraocular e pré-ocular até o ângulo anterior formado pelos parietais;
- Distância do olho à borda oral (DBO): medida da porção inferior da órbita à borda oral superior, na altura da última supralabial em contato com olho;
- Diâmetro vertical da órbita (HO): corresponde à altura da órbita;
- Distância entre os olhos (DO): corresponde à medida tomada na parte superior da cabeça, entre os olhos, na porção mais anterior;
- Distância entre as narinas (**DN**): corresponde à medida tomada na parte superior da cabeça, entre as narinas, na porção mais anterior.

Figura 1. Representação esquemática das medidas cefálicas (A - vista dorsal e B - vista lateral).

2.4 PADRÃO DE DESENHO E COLORAÇÃO

Devido à perda gradativa da cor dos animais conservados em álcool, foi descrito o padrão de desenho, e não o de colorido das espécies. O padrão de desenho foi verificado em indivíduos fixados e conservados no álcool. Para cada exemplar foi contabilizado o número de manchas ao longo do corpo e da cauda.

2.5 SEXAGEM

O sexo dos exemplares examinados foi determinado, quando possível, através de corte longitudinal mediano, com o uso de bisturi, na base do lado ventral da cauda de indivíduos adultos, de acordo com DI-BERNARDO (1991), com o objetivo de verificar a presença ou não de hemipênis.

2.6 PREPARAÇÃO DE HEMIPÊNIS

A preparação dos hemipênis seguiu a técnica proposta por PESANTES (1994), com algumas modificações propostas por ZAHER & PRUDENTE (1999), na qual é feito um corte mediano ventral na cauda, cortando-se em seguida o músculo *retractor penis magnus* em sua base, retirando o hemipênis, o qual recebe tratamento com hidróxido de potássio (KOH) a 2%. O órgão é imerso nessa solução por aproximadamente 24 horas, até que se torne flexível e elástico. Em seguida, o hemipênis é evertido com auxílio de uma pinça e preenchido com uma mistura de glicerina com parafina, utilizando seringa e agulha com ponta grossa. A nomenclatura utilizada para a descrição do hemipênis seguiu a proposta por ZAHER (1999).

Material analisado: *D. catesbyi* (MPEG 4619; MPEG 20085; MPEG 20090 e MPEG 21048); *D. pavonina* (MPEG 1484; MPEG 8163; MPEG 10325; MPEG 10533).

2.7 Ilustrações

As ilustrações dos hemipênis e dos escudos cefálicos foram feitas à mão, sob câmara-clara acoplada em estereo-microscópio. Material analisado: *D. catesbyi*: MPEG 20085 (escudos cefálicos); MPEG 20090 (hemipênis); *D. pavonina*: MPEG 1484 (escudos cefálicos); MPEG 8163 (hemipênis).

2.8 DISTRIBUIÇÃO GEOGRÁFICA

Os mapas de distribuição geográfica das espécies foram confeccionados a partir do programa Arcview Gis 3.3 (ESRI, 1992), onde foram plotadas as coordenadas geográficas das procedências dos exemplares analisados e dados provenientes da literatura. As coordenadas foram obtidas através de catálogos geográficos disponíveis na Internet, Geoloc (CRIA, 2006) e Global Gazetteer 2.1 (FALLING RAIN GENOMICS, 1996) e através de mapas disponíveis (IBGE, 1972), sendo listadas no ANEXO II.

2.9 ANÁLISE DAS VARIAÇÕES

Para a análise da variação intraespecífica e sexual de *D. catesbyi* foram analisados 422 exemplares. Destes, 212 fêmeas e 210 machos. Para se determinar a variação em *D. pavonina* foram utilizados 114 adultos, sendo 44 fêmeas e 70 machos.

Com o objetivo de avaliar uma possível variação geográfica de *D. catesbyi*, foram definidos e comparados dois grandes grupos populacionais ao longo de sua distribuição geográfica. A definição destes grupos foi realizada com base em critérios biogeográficos, principalmente quanto ao grau de isolamento entre estas populações por bacias hidrográficas. Através destes critérios, foi definida uma sub-amostra da Amazônia Ocidental e Central, e outra sub-amostra da Amazônia Oriental. A Amazônia Ocidental e Central somou 50 espécimes adultos, em uma razão sexual de 50% para cada sexo. Para uma amostragem equivalente, foi utilizado o mesmo número de exemplares, na mesma razão sexual, provenientes da Amazônia Oriental. Como o número de exemplares provenientes desta região é expressivamente superior ao da Amazônia Ocidental e Central, os 50 exemplares da Amazônia Oriental foram obtidos de forma randômica, mas de forma a abranger a maior área possível dentro da distribuição da espécie nesta porção da Amazônia.

2.10 ANÁLISE DOS DADOS

Os dados merísticos e morfométricos foram tratados em análises estatísticas univariadas. Análises de variância foram realizadas para detectar possíveis diferenças significativas entre as espécies e entre os sexos em uma mesma espécie. O teste de Cochran foi utilizado para checar a homogeneidade das variâncias das amostras comparadas. Quando havia normalidade e homogeneidade na distribuição das variâncias, foi aplicado diretamente o método ANOVA, através do programa Statistica 6.0 (STATSOFT, 2003). No entanto, quando o teste de COCHRAN indicava um nível de p < 0.05, os dados foram logaritmizados em log (x+1), no sentido de aumentar a normalidade da distribuição, a fim de continuar com o uso de um teste paramétrico (ANOVA). Quando este procedimento não foi suficiente para fazer com que o valor de p atingisse um nível satisfatório (p>0.05), o teste não-paramétrico de Kruskall-Wallis foi utilizado, através do programa estatístico Biostat 3.0 (AYRES & AYRES JR., 2003). As análises de variância de ambos os métodos foram realizadas através de testes de

comparações múltiplas. Estes foram os testes de Tukey e de Dunn, respectivamente para ANOVA e Kruskall-Wallis. Para a avaliação de uma possível divergência quanto à magnitude da variação específica entre as duas populações de *D. catesbyi* definidas, foram obtidos os desvios padrões respectivos para cada caráter em cada população. Posteriormente, estes foram comparados através do teste não-paramétrico de Wilcoxon para amostras pareadas. O nível de p aceitável para todos os testes foi um valor inferior a 0.05 para que se assuma a existência de diferenças estatisticamente significativas.

3 RESULTADOS

3.1 *Dipsas catesbyi*

3.1.1 Lista Sinonímica

Dipsas catesbyi (Sentzen, 1796)

Coluber catesbeji Sentzen, 1796: 66 (erro tipográfico), localidade tipo: "América".

Dipsas catesbyi - Boie, 1827: 560

Dipsas Catesbyi - Schlegel, 1837: 279

Stremmatognathus Catesbyi - Duméril, Bibron & Duméril, 1854: 522.

Leptognathus Catesbyi - Günther, 1858: 180

Leptognathus catesbyi - Boulenger, 1896: 449; Berg, 1898: 29

Cochliophagus catesbyi - Berg, 1901: 291

Sibynomorphus catesbeji - Barbour & Noble, 1920: 620

Sibynomorphus catesbyi - Amaral, 1926: 27

Sibynomorphus catesbyei - Amaral, 1929: 196

Dipsas catesbyi - Parker, 1935: 529; Beebe, 1946: 24

Sibynomorphus macedoi Prado & Hoge, 1947: 180

Dipsas catesbyi - Peters, 1956; Peters, 1960: 56; Peters & Orejas-Miranda, 1970: 86; Dixon & Soini, 1977: 43; Duellman, 1978: 237; Cunha & Nascimento, 1978: 68; Gasc & Rodrigues, 1980: 573; Abuys, 1983: 117; Cunha *et al.*, 1985: 46; Pérez-Santos & Moreno, 1988: 141; Cunha & Nascimento, 1993: 44; Starace, 1998: 165; Lehr, 2001: 131; Lehr & Lara, 2002: 35; Alves *et al.*, 2005: 573; Argôlo, 2004: 33.

3.1.2 Diagnose

A espécie *D. catesbyi* (Figura 2) difere de *D. variegata* e *D. incerta* por apresentar 13 fileiras de escamas dorsais. Difere de *D. vermiculata* por apresentar 2 ou mais pré-oculares. Difere de *D. indica* e *D. pavonina* por apresentar loreal sem contato com a órbita; temporais 1+2; presença de manchas arredondadas opostas ou alternadas, frequentemente fusionadas na fileira vertebral; corpo cilíndrico, levemente comprimido; cabeça pouco distinta do resto do corpo, não apresentando encurtamento ânteroposterior da cabeça.

Figura 2. Vista geral de *Dipsas catesbyi*. Foto: Arthur Georges, Institute for Applied Ecology, University of Canberra, Australia.

3.1.3 Descrição Geral

3.1.3.1 Morfologia Externa

D. catesbyi apresenta escamas dorsais lisas, em 13 fileiras que não sofrem redução ao longo do corpo. A fileira vertebral apresenta escamas maiores e diferenciadas que as escamas das fileiras laterais. A cabeça é pouco distinta do pescoço. O escudo rostral é mais largo do que alto, e a escama nasal é inteira na maioria dos exemplares analisados (97%, n=407). A escama loreal está em contato com a pré-ocular inferior. Estão presentes duas escamas pré-oculares, duas pós-oculares, uma temporal anterior e duas posteriores, nove escamas supralabiais, sendo a 4^a e 5^a em contato com a órbita, 11 escamas infralabiais, sendo que da 1^a até a 5^a há contato com o primeiro par de gulares. A escama cloacal é única. O número de escamas ventrais varia de 160 a 220, e as subcaudais variam de 46 a 120 escamas. O número de manchas no corpo está no intervalo de 10 a 40 manchas, e as manchas na cauda variam de 2 a 18 manchas. O comprimento total varia de 200 a 800 mm e o comprimento da cabeça varia de 7 a 17 mm.

3.1.3.2 Hemipênis

O hemipênis de *D. catesbyi* é unicapitado e levemente bilobado. O sulco espermático é profundo e centrolinear, dividindo-se na região proximal do capítulo e seguindo até a região distal dos lobos. O capítulo ocupa metade do órgão na face não sulcada, e aproximadamente 70% na face sulcada, sendo ornamentado por cálices espinhosos na região proximal. Esses cálices tornam-se maiores e papilares em direção à região distal. O sulco capitular é bem evidente em ambas as faces. O corpo é recoberto por espinhos de diferentes tamanhos e formas. Na face sulcada, os espinhos estão irregularmente dispostos, sendo os da região proximal levemente menores. Na face não
sulcada, os espinhos corporais são largos e proeminentes, estando arranjados em fileiras diagonais, enquanto que os espinhos corporais da região distal estão concentrados em fileiras transversais na região adjacente ao capítulo (Figura 3).

Figura 3. Hemipênis de *D. catesbyi* (MPEG 20090). A - face sulcada; B - face nãosulcada. Escala: 5 mm.

3.1.3.3 Padrão de Desenho

O dorso da cabeça de *D. catesbyi* é escuro, principalmente o escudo rostral, escamas internasais, segunda metade dos escudos pré-fontais, o fim dos escudos parietais, os escudos pré e pós-oculares, assim como as escamas supralabiais que estão em contato com o olho. Está presente uma fraca faixa transversal clara nos escudos préfrontais, escama loreal, e na segunda e terceira escamas supralabiais. Um colar nucal claro é bem evidente. A região gular é clara, com manchas escuras do mesmo tom que as manchas dorsais (Figura 4).

O padrão de desenho corporal de *D. catesbyi* é constituído por manchas arredondadas e pareadas, às vezes alternadas e de formato irregular, a maioria é orlada de branco. Muitas dessas manchas se fundem na fileira vertebral, podendo também alcançar a fileira de escamas ventrais (Figuras 2 e 5). As primeiras manchas do corpo (perto da cabeça) são retangulares e se fundem no do ventre. A região ventral é clara, com manchas longitudinais escuras que se intercalam com as manchas laterais do corpo. Ocorrem também pequenas manchas escuras pontuadas ao longo do ventre.

Nos jovens, as manchas corporais podem estar todas fusionadas na fileira vertebral, dando a impressão de um padrão de bandas. Estas manchas podem não ser orladas de branco. As manchas pontuais escuras que ocorrem no ventre dos adultos podem estar ausentes nos jovens.

Alguns indivíduos adultos (ambos os sexos) apresentam faixa transversal clara nos pré-frontais e colar nucal claro quase imperceptíveis, assim como as manchas do corpo, que devido à melanização (variação individual) tendem a desaparecer. Nesses indivíduos, o ventre também é claro.

Figura 4. Padrão de desenho cefálico de *D. catesbyi* (MPEG 20085). A - vista dorsal; B - vista ventral; C - vista lateral. Escala: 5 mm.

Figura 5. Padrão de coloração corporal de *D. catesbyi* (MPEG 20443). A - vista lateral; B - vista dorsal; C - vista ventral. Fotos: Flávio E. Pimenta.

3.1.4 Distribuição Geográfica

D. catesbyi distribui-se amplamente pela região amazônica, a partir dos Andes, na Bolívia, Peru, Equador, Colômbia, Venezuela, Guiana, Suriname, Guiana Francesa e Brasil (Acre, Amapá, Amazonas, Pará, Rondônia, Roraima, Maranhão, Mato Grosso e Tocantins). Além da ampla distribuição na Amazônia, apresenta representantes em diferentes porções de Mata Atlântica na Bahia (Feira de Santana, Ilhéus, Porto Seguro e Itabuna) (Figura 6).

Figura 6. Mapa de distribuição de D. catesbyi.

3.1.5 Variação Intraespecífica

3.1.5.1 Variação Geral

De acordo com as análises de freqüência, os caracteres merísticos e morfométricos de *D. catesbyi* apresentaram uma grande variação individual. No entanto, existe uma tendência da maioria dos indivíduos apresentarem condições que se situam em faixas específicas dentro da variação total de cada caráter, conforme esperado em uma distribuição normal, tanto em machos quanto em fêmeas. Estas faixas podem ser distintas ou não entre os sexos, dependendo do caráter considerado (ANEXO III e V).

Além das variações merísticas, foram observados quatro tipos de divisão de escamas ventrais definidos por PETERS (1956) (Figura 7). São eles: **tipo 1** – este tipo de divisão ocorreu geralmente na última ventral anterior à cloaca dos espécimes analisados (n=19); **tipo 6** – este padrão de divisão ocorreu ao longo do corpo (n=3); os **tipos 3 e 4** foram raros, ocorrendo em apenas um indivíduo cada. Os padrões de divisão dos tipos 2 e 5 não foram encontrados.

Figura 7. Padrão de divisão das escamas ventrais nos Dipsadinae. Modificado de PETERS (1956).

3.1.5.2 Dimorfismo Sexual

De acordo com as análises de variância, oito caracteres apresentaram dimorfismo sexual em *D. catesbyi* (ANEXO III). Destes, três são caracteres merísticos e cinco são morfométricos. Considerando os caracteres merísticos houve dimorfismo quanto ao número de escamas ventrais, que foi maior nos machos (180-190; n=140, 66%) do que nas fêmeas (170-180; n=120, 57%) (Figura 8). Assim como o número de escamas subcaudais que também foi maior nos machos (100-110; n=113, 55%) do que nas fêmeas (90-100; n=126, 64%) (Figura 9).

Figura 8. Freqüência das escamas ventrais em D. catesbyi.

Figura 9. Freqüência das escamas subcaudais em D. catesbyi.

Houve também diferenças significativas no número de manchas na cauda, embora ambos os sexos apresentem maior freqüência de manchas entre 8 e 10. A diferença sexual pode ser observada pela segunda condição mais freqüente, onde 38% dos machos (n=79) apresentam de 10 a 12 manchas na cauda e 34% das fêmeas (n=72) de 6 a 8 (Figura 10).

Figura 10. Freqüência das manchas da cauda em D. catesbyi.

Considerando-se os caracteres morfométricos, os machos apresentaram maior comprimento da cauda (115-200 mm; n=115, 56%) que as fêmeas (110-150 mm; n=97, 50%) (Figura 11). O comprimento total, valor resultante da soma dos comprimentos da cauda e rostro-cloacal, também foi maior nos machos (600-700 mm; n=73, 35%) que nas fêmeas (500-600 mm; n=77, 40%) (Figura 12). Houve também uma sutil diferença no comprimento do frontal, onde a variação 3,50-4,00 mm está presente na maioria dos machos (41%) e fêmeas (38,3%), enquanto que a segunda condição, o intervalo 3,00-3,50 mm, está presente em 69% das fêmeas e 53% dos machos (Figura 13). A diferença na distância do olho à borda oral foi demonstrada pelo intervalo de 1,00-1,25 mm, presente em 38% (n=81) dos machos e 36% (n=75) das fêmeas. A segunda condição mais freqüente foi o intervalo de 0,75-1,00 mm, que está presente em 35% (n=73) dos machos e 23% (n=49) das fêmeas (Figura 14). O diâmetro

do olho também foi maior nos machos (2,50-3,00 mm; 52%, n=110) do que em fêmeas (2,00-2,50mm; 50%, n=104) (Figura 15).

Figura 11. Freqüência do comprimento da cauda em D. catesbyi.

Figura 12. Freqüência do comprimento total em D. catesbyi.

Figura 13. Freqüência do comprimento do frontal em D. catesbyi.

Figura 14. Freqüência distância do olho a borda oral em D. catesbyi.

Figura 15. Freqüência do diâmetro do olho em D. catesbyi.

3.1.5.3 Variação Geográfica

A amplitude da variação intraespecífica diverge quando são comparadas as sub-populações da Amazônia Ocidental e Central com as sub-populações da Amazônia Oriental definidas *a priori*. Estas populações estão representadas na Figura 16. Na grande maioria dos caracteres analisados, a variação intraespecífica nas populações da Amazônia Oriental foi significativamente maior (p < 0.01), o que pode ser demonstrado pelos desvios padrões (SD) superiores das condições morfométricas e merísticas nesta população (ANEXO VI).

Figura 16. Mapa representando os dois grandes grupos populacionais de *D. catesbyi* comparados quanto à variação intraespecífica. A mancha à esquerda corresponde à população da Amazônia Ocidental e Central. À direita, está representada a população da Amazônia Oriental.

3.2 Dipsas pavonina

3.2.1 Lista Sinonímica

Dipsas pavonina Schlegel, 1837

Dipsas pavonina Schlegel, 1837: 280
Leptognathus pavoninus - Duméril, Bibron e Duméril, 1854: 474
Leptognathus catesbyi - Günther, 1858: 180
Leptognathus pavonina - Cope, 1868: 107
Cochliophagus pavoninus - Von Ihering, 1910: 330
Sibynomorphus pavoninus - Amaral, 1926: 9
Dipsas indica - Beebe, 1946: 24
Dipsas pavonina - Peters, 1960: 79; Peters, 1964: 47; Roze, 1966: 114; Peters & Orejas-Miranda 1970: 88; Dixon & Soini, 1977: 43; Cunha & Nascimento, 1978: 72; Duellman, 1978: 239; Gasc & Rodrigues, 1980: 574; Abuys, 1983: 118; Cunha et al., 1985: 48; Cunha e Nascimento, 1993: 46; Starace, 1998: 172.

3.2.2 Diagnose

A espécie *D. pavonina* (Figura 17) difere de *D. variegata* e *D. incerta* por apresentar 13 fileiras de escamas dorsais. Difere de *D. indica* e *D. vermiculata* por apresentar 2 ou mais escamas temporais anteriores. Difere de *D. catesbyi* por apresentar loreal em contato com a órbita; temporais 2+2; presença de manchas escuras em forma de sela, fusionadas na fileira vertebral; corpo fortemente comprimido; cabeça distinta do resto do corpo, apresentando um encurtamento ântero-posterior da cabeça.

Figura 17. Vista geral de Dipsas pavonina. Fonte: Fausto Starace (1998).

3.2.3 Descrição Geral

3.2.3.1 Morfologia Externa

D. pavonina apresenta escamas dorsais lisas, em 13 fileiras sem redução. A fileira vertebral possui escamas maiores e diferenciadas que as demais escamas laterais. Sua cabeça é distinta do pescoço e seus olhos são bastante conspícuos. A escama préocular está ausente ou pode ser única, o que faz com que a escama loreal esteja em contato com a órbita. O escudo rostral é mais largo do que alto, e a escama nasal é inteira em todos os exemplares analisados. Estão presentes três escamas pós-oculares, duas escamas temporais anteriores e três posteriores, 10 escamas supralabiais, sendo da 4ª a 6ª em contato com a órbita, 12 escamas infralabiais, sendo que da 1ª a 5ª há contato com o primeiro par de gulares. A escama cloacal é única. Há a presença de 70 a 130 escamas subcaudais e de 180 a 230 escamas ventrais. O comprimento total varia de 200 a 900 mm e o comprimento da cabeça de 7 a 14 mm.

3.2.3.2 Hemipênis

O hemipênis de *D. pavonina* é unicapitado, simples, cilíndrico e levemente mais largo na região distal. O sulco espermático é profundo, dividindo-se na região proximal do capítulo. O capítulo ocupa metade do órgão na face não sulcada e aproximadamente 70% na face sulcada, sendo ornamentado por cálices. Na região proximal, os cálices são espinhosos, e tornam-se papilares em direção à região distal. O sulco capitular é bem evidente em ambas as faces. A porção proximal do corpo do hemipênis apresenta espinhos largos arranjados em fileiras, sendo concentrados na porção adjacente ao capítulo. As duas faces do hemipênis possuem espículas entre os espinhos largos (Figura 18).

Figura 18. Hemipênis de *D. pavonina* (MPEG 8163). A - face sulcada; B - face nãosulcada. Escala: 5 mm.

3.2.3.3 Padrão de Desenho

O dorso da cabeça de *D. pavonina* é escuro, principalmente o escudo rostral, escamas internasais, parte dos escudos pré-frontais, os escudos parietais e as suas escamas adjacentes, podendo ocorrer pequenas manchas claras. Existe a presença de uma faixa transversal clara e estreita na altura dos escudos pré-frontais, parte dos escudos nasais e na primeira, segunda e terceira escama supralabial. Esta faixa pode estar interrompida em alguns indivíduos. A última escama supralabial em contato com o olho pode apresentar uma mancha clara arredondada. Está presente um colar nucal claro, que pode estar interrompido ou pouco evidente (Figura 19).

O corpo apresenta manchas escuras dorsais em forma de sela, orladas de branco, e fusionadas na fileira vertebral. As manchas são mais estreitas na região ventral do que na região da fileira vertebral. Geralmente, as seis primeiras manchas corporais são fusionadas no ventre. O ventre é claro, com manchas escuras irregulares de diferentes tamanhos (Figura 20).

Figura 19. Padrão de coloração cefálico de *D. pavonina* (MPEG 1484). A - vista dorsal; B - vista ventral; C - vista lateral. Escala: 5 mm.

Figura 20. Padrão de coloração corporal de *D. pavonina* (UFMT 1585). A - vista lateral; B - Vista dorsal; C - vista ventral. Fotos: Flávio E. Pimenta.

3.2.4 Distribuição Geográfica

D. pavonina distribui-se pela região amazônica da América do Sul, na Bolívia, Peru, Equador, sul da Venezuela, Guiana, Suriname, Guiana Francesa e Brasil (Pará, Rondônia, Roraima, Maranhão e Mato Grosso) (Figura 21).

Figura 21. Mapa de distribuição de D. pavonina.

3.2.5 Variação Específica

3.2.5.1 Variação Geral

De acordo com as análises de freqüência, os caracteres merísticos e morfométricos de *D. pavonina* apresentaram uma grande variação individual e sua variação intra-específica seguiu um padrão semelhante ao encontrado para *D. catesbyi* (ANEXOS IV e V).

3.2.5.2 Dimorfismo Sexual

De acordo com as análises de variância, quatro caracteres apresentaram dimorfismo sexual em *D. pavonina*. Destes, dois são caracteres merísticos e dois caracteres morfométricos (ANEXO IV). Os machos de *D. pavonina* apresentaram um número maior de escamas ventrais (200-220; n=57, 82%) em relação às fêmeas (190-210; n=37, 84%) (Figura 22). O mesmo aconteceu para as escamas subcaudais, sendo que os machos apresentaram um número maior (110-130; n=56, 83%) do que as fêmeas (100-120; n=35, 83%) (Figura 23).

Com relação aos dados morfométricos, a maioria dos machos (68%, n=47) apresentou o comprimento do escudo rostral entre 2,5-3,5 mm e a maioria das fêmeas (88%, n=37) apresentou esse comprimento entre 1,00-2,00 mm (Figura 24). O comprimento do escudo frontal também foi maior em machos, sendo que 43% (n=30) destes apresentaram esta medida entre 3,5-4,00 mm. Em fêmeas (59%, n=26) o comprimento mais freqüente foi entre 3,0-3,50 mm. (Figura 25).

Figura 22. Freqüência das escamas ventrais em D. pavonina

Figura 23. Freqüência das escamas subcaudais em D. pavonina

Figura 24. Freqüência do comprimento do rostral em D. pavonina.

Figura 25. Freqüência do comprimento do frontal em D. pavonina.

3.2.5.3 Variação Geográfica

A variação dos caracteres no contexto geográfico para *D. pavonina*, não foi realizada pelo número insuficiente de exemplares fora dos domínios da Amazônia Oriental que não permitiu a detecção de uma possível variação geográfica dentro da amostra analisada.

3.3 VARIAÇÃO INTERESPECÍFICA DOS DADOS MERÍSTICOS E MORFOMÉTRICOS

Todos os caracteres merísticos apresentaram diferenças significativas entre as duas espécies, tanto para machos quanto para fêmeas. Considerando os dados morfométricos, nove caracteres apresentaram diferenças significativas entre as fêmeas das duas espécies: comprimento total, comprimento da cauda, comprimento do rostral, comprimento do frontal ao olho, comprimento da narina ao olho, comprimento do parietal e diâmetro do parietal ao olho, distância do olho a borda oral, comprimento do parietal e diâmetro do olho. Entre os machos, sete caracteres morfométricos apresentaram diferenças significativas: comprimento da cauda, largura e comprimento do frontal, comprimento do frontal ao olho, comprimento da narina ao olho, comprimento do olho (ANEXO VII). A variação individual na divisão das escamas ventrais que ocorre em *D. catesbyi*, não foi observada em *D. pavonina*.

4 DISCUSSÃO E CONCLUSÕES

O gênero *Dipsas* apresenta hemipênis curto, levemente bilobado, unicapitado, com sulco espermático bifurcado, espinhos corporais e cálices capitulares distais (PETERS, 1960). Segundo ROZE (1966), o hemipênis de *Dipsas* pode ser simples ou bilobado, capítulo com cálices grandes e sulco espermático simples ou bifurcado.

Dipsas indica apresenta hemipênis e sulco espermático simples. O capítulo está limitado à metade distal na face sulcada e ao terço distal na face não sulcada. Os cálices capitulares são espinhosos e maiores na face não sulcada. Quanto ao hemipênis, *D. catesbyi* e *D. pavonina* apresentaram os caracteres típicos do hemipênis dos Dipsadinae, sendo unicapitados, com bilobação reduzida ou ausente, e sulco espermático dividindose na região basal do capítulo (PETERS, 1960; MYERS & CADLE, 1994).

O padrão de desenho das duas espécies analisadas segue o padrão típico do grupo *catesbyi*, apresentando manchas corporais escuras, faixa transversal clara e colar nucal. A melanização encontrada em *D. catesbyi* é rara e difunde-se por toda a amostra analisada, o que sugere que não esteja relacionada com a idade, sexo ou distribuição geográfica, representando uma variação individual da espécie.

O presente estudo demonstra que *D. catesbyi* apresenta-se amplamente distribuída na Floresta Amazônica, sendo comum em sua área de ocorrência. Sua presença também foi confirmada na Bahia, onde é encontrada com freqüência em ambientes alterados e em áreas de cacauais (ARGOLO, 2004). Apesar disso, suas populações podem estar sofrendo um declínio em virtude do desmatamento contínuo das áreas de floresta, o que pode ser observado pelo número reduzido de exemplares coletados nos últimos anos em comparação com os anos anteriores.

A distribuição de *D. pavonina* é menos conhecida, dado o baixo número de indivíduos em coleções e a baixa freqüência de coleta dessa espécie, principalmente nos últimos 10 anos. Isto pode refletir tanto uma possível tendência natural desta espécie em se apresentar em baixas densidades populacionais, quanto sugerir que esteja seriamente ameaçada devido à crescente impactação antrópica da região Amazônica nos últimos anos.

No presente estudo, as grandes variações observadas em diversos caracteres de folidose para as espécies de *Dipsas variegata* por CADLE & MYERS (2003) foram também observadas para *D. catesbyi* e *D. pavonina*. Recentemente, alguns estudos têm sido direcionados para a taxonomia de algumas espécies deste gênero, na tentativa de definir melhor os táxons e descrever a sua variação (PORTO & FERNANDES, 1996; CADLE & MYERS, 2003; PASSOS *et al.*, 2004; PASSOS *et al.*, 2005; MACCULLOCH & LATHROP, 2004). Nesses trabalhos, foi observado que variações consideradas interespecíficas eram na realidade variações dentro de uma mesma espécie, Similarmente, no presente estudo, isto também foi constatado. Esta informação é corroborada pelo presente estudo em relação a *D. catesbyi* e *D. pavonina*, para as quais os caracteres seguiram um padrão de distribuição normal, visto que existe uma seqüência gradual de modificação de um caráter para outro.

Muitas espécies apresentam dimorfismo sexual no tamanho do corpo, com fêmeas maiores que os machos em 60% dos táxons de répteis (SHINE, 1978). Entre os Dipsadinae, esta tendência é mantida na maioria das espécies. Em 19 espécies de Dipsadinae analisadas por FITCH (1981), 16 seguiram este padrão. De acordo com ALVES *et al.* (2005), *D. catesbyi* se enquadraria neste mesmo padrão. No entanto, o padrão observado nos exemplares analisados no presente estudo demonstra o contrário, tanto em *D. catesbyi* quanto em *D. pavonina*. Os machos apresentam medidas superiores às das fêmeas. Em ambas as espécies, o dimorfismo sexual se deve principalmente à variação do número de escamas ventrais e subcaudais. Em *D. catesbyi*, o comprimento da cauda diferenciado entre os sexos atribui um dimorfismo sexual significativo a esta espécie. De forma similar, embora não estatisticamente significativa, em *D. pavonina* os machos apresentaram um maior comprimento total em virtude do maior comprimento da cauda.

Em serpentes, em muitos casos, o dimorfismo sexual está associado à ação da seleção sexual (TRIVERS, 1972; SHINE, 1978; FITCH, 1981). O maior tamanho dos machos pode ser uma vantagem seletiva, que surge em decorrência do combate entre os machos para defesa do recurso sexual (SHINE, 1978). O combate sexual entre os machos é comum em serpentes, e parece existir uma alta correlação entre a existência de comportamento de combate e o tamanho do corpo em algumas espécies (SHINE, 1994). Em geral, as fêmeas crescem mais que os machos em espécies em que não ocorre o combate (SHINE, 1994). Porém, o combate entre os machos não foi registrado para nenhuma espécie de Dipsadinae (FITCH, 1981).

Com relação à ampliação do conhecimento da variação merística em comparação com os dados presentes na literatura existente até o momento (PETERS, 1956; 1960) para estas duas espécies, principalmente três fatores podem estar influenciando, sendo que um destes relacionado a questões metodológicas, e outros dois a razões biogeográficas.

Primeiramente, o número de espécimes analisados no presente estudo foi superior ao estudado por PETERS (1956, 1960). Isto significa que é mais provável que seja encontrada uma maior variação intraespecífica nos espécimes estudados do que na amostra analisada pelo autor citado acima.

O primeiro motivo relacionado a razões biogeográficas refere-se ao tamanho da área de distribuição entre os espécimes analisados por PETERS (1956, 1960) e aqueles da amostra do presente estudo. A amostra analisada por PETERS para *D. catesbyi* inclui indivíduos restritos à região leste dos Andes. Para *D. pavonina*, a amostra está restrita à Guiana, Peru e Equador. A ocorrência em uma área maior favoreceria a maior variabilidade dos caracteres em comparação com uma área menor (MACARTHUR & WILSON, 1967).

O outro fator biogeográfico que pode estar atuando refere-se ao fato de que a área de distribuição dos exemplares analisados no presente estudo está situada em uma grande bacia hidrográfica, que por este motivo, apresenta uma infinidade de barreiras hidrográficas potenciais para a dispersão. Assim, se a população apresentar-se em diversas meta-populações separadas por estas barreiras, haverá uma tendência de existir uma maior heterogeneidade intraespecífica quanto aos caracteres analisados nesta população do que quando comparada com uma população presente em uma área geograficamente mais homogênea (MACARTHUR & WILSON, 1967).

5 REFERÊNCIAS BIBLIOGRÁFICAS

- ABYUS, A.1983. The snakes of Surinam, part VII: Subfamily Xenodontinae (Genera *Clelia* and *Dipsas*). Litteratura Serpentium, 3 (4): 111-120.
- ALVES, F. Q.; ARGÔLO, A. J. S. & JIM, J. 2005. Biologia reprodutiva de *D. neivai* Amaral e *D. catesbyi* (Sentzen) (Serpentes, Colubridae) no sudeste da Bahia, Brasil. Rev. Bras. Zoologia, 22 (3): 573-579.
- AMARAL, A. 1926. Sobre o emprego do nome genérico Sibynomorphus em vez de Leptognathus, Cochliophagus, Stremmatognathus, Anholodon, etc. 2ª Nota de nomenclatura Ophiologica. Revista do Museu Paulista, 14: 7-9.
- AMARAL, A. 1929. Estudos sobre Ophidios Neotropicos XVIII. Lista remissiva dos ophidios da região neotropica. Mem. Inst. Butantan, 4: 127-271.
- ARGÔLO, A. J. S. 2004. As serpentes dos cacauais do sudeste da Bahia. Editus, Ilhéus, Bahia. p. 33.
- AYRES, M; AYRES JR., M. 2003. **BioEstat 3.0: aplicações estatísticas nas áreas das** ciências biológicas e médicas. Sociedade Civil Mamirauá, Belém, 290 p.
- BARBOUR, T. & NOBLE, G. K. 1920. Amphibians and reptiles from southern Peru collected by the Peruvian expedition of 1914-1915 under the auspices of Yale University and the National Geographic Society. Proc. U. S. Nat. Mus., 58: 609-720.

- BEEBE, W. 1946. Field Notes on the snakes of Kartabo, British Guiana, and Caripito, Venezuela. Zoologica: New York Zoological Society, 31(4): 11-52.
- BERG, C. 1898. Contribuciones al conocimiento de la fauna Argentina y de los paises limítrofes. Anal Mus. Nac. Buenos Aires, tomo VI: 28-29.
- BERG, C. 1901. Herpetological notes. Comum. Mus. Nac. Buenos Aires, 8: 289-291.
- BOIE, F. 1827. Bemerkungen über Merrem's Versuch eines Systems der Amphibien, 1. Lieferung: Ophidier. Isis van Oken, Jena, 20: 508-566.
- BOULENGER, G. A. 1896. Catalogue of the snakes in the British Museum (Natural History). London, Brit. Mus., v. 3. 448 p.
- CADLE, J. E.; MYERS, C. W. 2003. Systematics of snakes referred to *Dipsas variegata* in Panama and western South America, with revalidation of two species and notes on defensive behaviors in the Dipsadini (Colubridae). **Am. Mus. Novitates**, n.3409, 47 p.
- CAMILLERI, C. & SHINE, R. 1990. Sexual Dimorphism and dietary divergence: differences in trophic morphology between male and female snakes. Copeia, 1990 (3): 649-658.
- COPE, E. D. 1868. An examination of the Reptilia and Batrachia obtained by the Orton Expedition to Ecuador and the Upper Amazon; with notes on other species. Proc. Acad. Nat. Sci. Philadelphia, 20: 96-140

- CRIA. 2006. Species link-Geoloc. Centro de Referência em Informação Ambiental. Disponível n endereço: http://splink.cria.org.br/geoloc.
- CUNHA, O. R. & NASCIMENTO, F. P. 1978. Ofídios da Amazônia X As cobras da região leste do Pará. **Publ. Avulsas do Museu Paraense Emílio Goeldi**, Belém, 3, 218 p.
- CUNHA, O. R. & NASCIMENTO, F. P. 1993. Ofídios da Amazônia As cobras da região leste do Pará. **Boletim do Museu Paraense Emílio Goeldi**, Belém, 9 (1): 120-123.
- CUNHA, O. R., NASCIMENTO, F. P. & ÁVILA-PIRES, T. C. 1985. Os répteis da área de Carajás, Pará, Brasil (Testudines e Squamata). Publ. Avul. Mus. Para. Emílio Goeldi, Belém, 40: 9-85.
- DI-BERNARDO, M. 1991. Estudo revisivo de Natrix melanostigma Wagler, 1824 com a revalidação de Echinanthera Cope, 1824 e análise cladísticas dos táxons afins (Serpentes: Colubridae, Xenodontinae). Dissertação (Mestre em Zoologia)-Pontifícia Universidade Católica do Rio Grande do Sul, Brasil. 102 p.
- DIXON, J. R. & SOINI, P. 1977. The Reptiles of the Upper Amazon Basin, Iquitos Region, Peru. II. Crocodilians, turtles and snakes. Contribution in Biology and Geology. Milwaukee Public Museum, 12: 43-45.
- DOWLING, H. G. 1951. A proposed standard system of counting ventrals in Snakes. J. Herpetol., 1: 97-99.

- DUELLMAN, W. 1978. The Biology of an Equatorial Herpetofauna in Amazonian Ecuador. University of Kansas Publications. Miscellaneous Publication, 65:237-238.
- DUMÉRIL, A. M. C.; BIBRON, G. & DUMÉRIL, A. 1854. Erpétologie genérale ou historie naturelle complète des reptiles. Paris, vol. 7: 474–477.
- DUNN, E. R. 1951. The status of the genera *Dipsas* and *Sibon*, a problem for "quantum evolution". **Evolution**, 5: 355-358.
- ESRI. c 1992-2002. Arcview Gis 3.3. Environmental Systems Research Institute, Inc. (ESRI), Redlands, CA.
- FALLING RAIN GENOMICS. c 1996-2004. Global Gazetteer version 2.1. Disponível no endereço: http://www.fallingrain.com/world/
- FITCH, H. S. 1981. Sexual size differences in Reptiles. Misc. Publ. Mus. Nat. Hist. Univ. Kansas, 70: 1-72.
- GASC, J. P. &. RODRIGUES, M. T. 1980. Liste preliminaire des Serpents de la Guyane Française. Bull. Mus. Nat. Hist. Nat. Paris, 2: 559–598.
- GIRAUDO, A. R. 2001. Sierpentes de la Selva Paranaense y del Chaco Húmedo. LOLA, Buenos Aires, Argentina. 328 p.

- GUNTHER, A. 1858. Catalogue of the Colubrinae snakes from South America of the British Museum. British Museum of Natural History, London. 281 p.
- GÜNTHER, A. 1872. Seventh account of new species of snakes in the collection of British Museum. Ann. Mag. Nat. Hist. ser., 4 (9): 15-37.
- IBGE. 1972. Carta do Brasil ao Milionésimo. Edição Comemorativa do Sesquicentenário da Independência. Fundação IBGE & Instituto Brasileiro de Geografia.
- KOFRON, C. P. 1982. A review of the Mexican snail-eating snake, *Dipsas brevifacies* and *D. gaigeae*. J. Herpetol., 16 (3): 270-286.
- LAURENTI, J. N. 1768. Specimem medicum, exhibens synopsis reptilium emendatum cum experimentis circa venena et antidota reptilium Austriacorum. Viena: Joan Thom.1-224. 5 pls
- LEHR, E. 2001. New records for amphibians and reptiles from Departamentos Pasco and Ucayali, Peru. **Herpetological Review**, 32 (2): 130-132.
- LEHR, E. & LARA, J. 2002. Die Schlangenfauna von Pozuzo (Peru) (Reptilia: Serpentes). Faun. Abh. Mus. Tierkde, Dresden, 22 (2): 353-359.
- MACARTHUR, R. H. & WILSON, E. O. 1967. The theory of island biogeography. Princeton University Press, Princeton, New Jersey.

- MACCULLOCH, R. D. & LATHROP, A. 2004. A new species of *Dipsas* (Squamata: Colubridae) from Guyana. **Rev. Biol. Trop.**, 52 (1): 239-247.
- MYERS, C. W. & CADLE, J. E. 1994. A new genus for South American snakes related to *Rhadinea obtusa* Cope (Colubridae) and resurrection of *Taeniophallus* Cope for the *"Rhadinaea" brevirostris* group. Am. Mus. Novitates, 3102: 1-33.
- PARKER, H. W. 1935. The frogs, lizards and snakes of British Guiana. Proc. Zool. Soc. London, part 3: 505-530.
- PASSOS, P.; FERNANDES, D. S. & CARAMASCHI, U. 2004. The taxonomic status of *Leptognathus incertus* Jan, 1863, with revalidation of *Dipsas alternans* (Fischer, 1885) (Serpentes: Colubridae: Dipsadinae). Amphibia-Reptilia, 25: 381-393.
- PASSOS, P.; FERNANDES, R.; PORTO, M. 2005. Geographical variation and taxonomy of the snail-eating snake *Dipsas albifrons* (Sauvage, 1884) with comments on the systematic status of *Dipsas albifrons cavalheroi* Hoge, 1950 (Serpentes: Colubridae: Dipsadinae). **Zootaxa**, 1013: 19-34.
- PÉREZ-SANTOS, C.; MORENO, A. G. 1988. Ofidios de Colombia. Museo Regionale de Scienze Naturali. Torino. Monografia VI. 517 p.
- PESANTES, O. S. 1994. A method for preparing the hemipenis of preserved snakes. J. Herpetol., 28 (1): 93-95.
- PETERS, J. A. 1956. An analysis of variation in South American snake, *catesby's* snailsucker (*Dipsas catesbyi* Sentzen). Am. Mus. Novitates, n.1783. 40 p.

- PETERS, J. A. 1960. The snakes of the Subfamily Dipsadinae. Misc. Publ. Mus. Zool. Univ. Michigan. n. 114: 1-144 p.
- PETERS, J. A. 1964. Supplemental notes on snakes of the Subfamily Dipsadinae (Reptilia: Colubridae). Beiträge zur Neotropischen Fauna, 4: 45-50.
- PETERS, J. A. 1970. Generic position of the South American snake *Tropidodipsas* perijanensis. Copeia, 1970 (2): 394-395.
- PETERS, J. A. & OREJAS-MIRANDA, B. 1970. Catalogue of the Neotropical Squamata. Part I. Snakes. Smithsonian Institution Press, Washigton. 347 p.
- PORTO, M.; FERNANDES, R. 1996. Variation and natural history of the snail-eating snake Dipsas neivai (Colubridae: Xenodontinae). Journal of Herpetology, 30 (2): 269-271.
- PRADO, A. & HOGE, A. R. 1947. Observações sobre serpentes do Peru, com descrição de uma nova espécie. Ciência, 8 (6-9): 180.
- ROZE, J. A. 1955. Ofídios Coleccionados por la expedicion Franco-Venezolana al Alto-Orinoco: 1951-1952. Boletín del Museo de Ciencias Naturales Caracas, 1 (3/4): 179-195.
- ROZE, J. A. 1966. La taxonomia y zoogeografia de los ofidios de Venezuela. Univ. Central de Venezuela. Ediciones de la biblioteca de Caracas. 362 p.

SCHELEGEL, H. 1837. Essai sur la physionomie des serpens. Amsterdam. 2. 606 p.

- SCHMIDT, K. P. & WALKER, W. F.1943. Peruvian snakes from the University of Arequipa. Zoological series of Field Museum of Natural History, 24 (26): 279-296.
- SENTZEN, U. J. 1796. Ophiologische Fragmente. Beschreibung des Coluber catesbeji. Meyer's Zool. Arch., 6 (2): 66-74.
- SHINE, R. 1978. Sexual size dimorphism and male combat in snakes. Oecologia, 33: 269-277.
- SHINE, R. 1994. Sexual size dimorphism in snakes revisited. Copeia, 1994 (2): 326-346.
- STARACE, F. 1998. Guide des serpents et amphisbènes de Guyane Française. IBIS. Rouge Edition. 449 p.

STATSOFT. 2003. Statistica for Windows V 6.0. Tulsa, Statsoft Inc.

TRIVERS, R. L. 1972. Parental investment and sexual selection. In: B. Campbell (ed.) Sexual selection and the descent of Man. Aldine, Chicago.

VON-IHERING, R. 1910. As cobras do Brazil. Rev. Museu Paulista, 8: 273-379.
- ZAHER, H. 1999. Hemipenial morphology of the South American Xenodontinae snakes, with a proposal for a monophyletic Xenodontinae and a reappraisal of Colubroid Hemipenes. Bull. Am. Mus. Nat. Hist., 240: 8-12.
- ZAHER, H. & PRUDENTE, A. L. C. 1999. Hemipenial variation on *Siphlophis* and *Tripanurgos*. J. Herpetol., 33 (4): 698-702.

CAPÍTULO II

DESCRIÇÃO COMPARATIVA DAS GLÂNDULAS CEFÁLICAS DE

Dipsas catesbyi (SENTZEN, 1796) E Dipsas pavonina SCHELEGEL, 1837 (SERPENTES:

COLUBRIDAE: DIPSADINAE) COM TÁXONS RELACIONADOS

RESUMO

Estudos anatômicos das estruturas cefálicas fornecem uma série de informações taxonômicas. Apesar disso, existem grandes lacunas no conhecimento destas estruturas nas Serpentes, principalmente na família Colubridae. Alguns estudos enfatizaram a descrição e análise das glândulas cefálicas de colubrídeos e viperídeos, entretanto poucos analisaram a macroestrutura dessas glândulas de forma comparativa. No presente trabalho, D. catesbyi e D. pavonina foram analisadas e comparadas quanto à forma, posição e tamanho de nove glândulas cefálicas, sendo posteriormente, feita uma comparação com as glândulas cefálicas de D. indica bucephala, D. indica indica, D. variegata, S. neuwiedi, S. mikanii e S. ventrimaculatus. Os resultados indicam que D. pavonina é o táxon que apresenta o maior número de autapomorfias quando comparado com os demais táxons analisados. Além disso, os resultados indicam uma maior semelhança de D. catesbyi com as espécies de Sibynomorphus do que com as do gênero Dipsas. Estes dados sugerem que as relações filogenéticas não estariam corroborando com a taxonomia proposta até o momento para este grupo, e demonstram que estudos mais aprofundados devem ser realizados no sentido de elucidarem estas questões mal resolvidas.

Palavras-chave: descrição, glândulas cefálicas, Dipsas e Sibynomorphus.

ABSTRACT

Anatomical studies of cephalic structures provide a series of taxonomic information. Despite this, there are great gaps in the knowledge of these structures in Serpents, mainly in the Colubridae family. Some studies had emphasized the description and analysis of the cephalic glands of colubrid and viperid, but few had analyzed the macrostructure of these glands in a comparative way. In the present work, *D. pavonina* and *D. catesbyi* had been analyzed and compared in relation to the form, position and size of nine cephalic glands, later, it was compared with the cephalic glands of *D. indica bucephala*, *D. indica indica*, *D. variegata*, *S. neuwiedi*, *S. mikanii* and *S. ventrimaculatus*. For that, 12 characters had been used in the glands comparisons. The results indicate that *D. pavonina* is the one that presents the biggest number of autapomorphies when compared with the other taxons analyzed. Moreover, the results indicate a bigger similarity of *D. catesbyi* with species of genus *Sibynomorphus* than with the others species of *Dipsas* genus. These data suggest that the phylogenetic relationships is not corroborating with the taxonomy proposal until the moment for this group, and demonstrate that more studies should be carried to elucidate these questions.

Key -Words: description, cephalic glands, Dipsas and Sibynomorphus.

1 INTRODUÇÃO

As glândulas cefálicas conhecidas para as Serpentes podem ser subdivididas em duas categorias: glândulas orais e não-orais. A glândula nasal e a glândula de Harder são as únicas não orais, sendo que todas as demais (infralabial, supralabial, sublingual, supralingual, pré-maxilar, rictal ou posterior, glândula de Duvernoy e glândula de veneno) estão associadas à cavidade oral (TAUB, 1966). Nem todas as serpentes apresentam todas as glândulas. Entretanto, na maioria das espécies, estão presentes de grande parte destas glândulas (TAUB, 1966) (Figura 1).

Figura 1. Representação esquemática de algumas glândulas e musculatura cefálica de *D*. *catesbyi*.

MARX & RABB (1965) sugeriram que a glândula pré-maxilar seria um componente mucoso subcutâneo da glândula nasal. Entretanto, as análises estruturais e histológicas dessa glândula sugeriram que ela seria uma expansão anterior da glândula supralabial (TAUB, 1966).

A glândula nasal está presente em todas as serpentes e localiza-se em uma depressão delimitada pelos ossos pré-frontal, nasal e cápsula nasal, sendo parcialmente recoberta pelo processo septo-maxilar (TAUB, 1966).

As glândulas infralabiais e supralabiais são bem desenvolvidas em todas as Serpentes, estando localizadas nas áreas laterais da boca, e sendo geralmente compostas por células mucosas (TAUB, 1966). As glândulas supralabiais freqüentemente se estendem até a glândula pré-maxilar ou rostral (SMITH & BELLAIRS, 1947). Nos Dipsadinae estas glândulas são bastante desenvolvidas e compostas. Além do componente mucoso, há um componente seroso (KOCHVA, 1978; GANS, 1972). Nos gêneros *Dipsas* e *Sibynomorphus*, o componente anterior das glândulas infralabiais é mais escuro, enquanto que o posterior é mais claro. Um dos componentes é composto por células serosas e outro por células muco-serosas. Possivelmente essa composição celular das glândulas está relacionada com a presença de uma condição venenosa em glândulas infralabiais nestes gêneros (TAUB, 1966, 1967; LAPORTA-FERREIRA *et al.*, 1991).

A glândula de Harder está localizada atrás do olho, e está presente em todas as famílias de Serpentes. Sua função pode estar relacionada à fisiologia do olho (BELLAIRS, 1960) ou na lubrificação da boca (GANS, 1978). Sua estrutura é bastante variável entre os táxons. As glândulas de Duvernoy ocorrem em muitas espécies da família Colubridae, sendo responsáveis pela produção de veneno (TAUB, 1966). Podem ser pequenas, grandes ou ainda largas e lobuladas. Essas glândulas localizam-se sobre a região posterior da glândula supralabial, porém são reduzidas ou ausentes na maioria dos Dipsadinae (ZAHER & PRUDENTE in. prep.), possivelmente pelo fato de que as glândulas infralabiais assumiram a condição venenosa nessa subfamília.

De todas as glândulas conhecidas para Squamata, as glândulas sublinguais são as mais variáveis, seja na forma e/ou posição. São bastante desenvolvidas e podem estar arranjadas em dois ou mais grupos (KOCHVA, 1978).

Estudos anatômicos das glândulas cefálicas fornecem uma série de informações taxonômicas. Apesar disso, existem grandes lacunas no conhecimento destas estruturas nas serpentes, principalmente nos colubrídeos (ZAHER, 1997). Isto pode ser evidenciado pela carência de informações referentes à análise comparativa da macroestrutura das glândulas cefálicas, sendo que a maior parte da informação relativa ao estudo destas estruturas envolve apenas sua descrição e histologia (SARKAR, 1923; TAUB, 1966, 1967; UNDERWOOD, 1967; KOCHVA & WOLLBERG, 1970; KOCHVA, 1978; UNDERWOOD & KOCHVA, 1993). Dentre os trabalhos com aplicações taxonômicas e filogenéticas de destacam-se os realizados por KOCHVA *et al.* (1967), FERNANDES (1995) e WOLLBERG *et al.* (1998).

KOCHVA *et al.* (1967) examinaram a estrutura e a histologia das glândulas de veneno em *Atractaspis*, comparando com outros Viperidae e concluíram que estes caracteres glandulares eram apomorfías do gênero. FERNANDES (1995) analisou as relações filogenéticas entre os Dipsadinae. Dentre os 58 caracteres utilizados, três se referiam à morfologia de glândulas cefálicas (glândula de Harder, glândula de Duvernoy e rictal). Os resultados obtidos a partir da análise dessas três glândulas cefálicas relacionaram as espécies de *Sibynomorphus* com o agrupamento formado por *D. catesbyi* e *D. pavonina*. Essa relação entre as duas espécies de *Dipsas* com *Sibynomorphus* seria resultante da forma e posição da glândula de Harder.

WOLLBERG *et al.* (1998) descreveram e compararam a morfologia da glândula rictal nos Atractaspididae, notando a presença de uma glândula rictal inferior em *Atractaspis corpulenta*, até então desconhecida.

Devido à escassez de trabalhos relacionados à morfologia interna dos Dipsadinae, e principalmente a falta de conhecimento sobre a estrutura das glândulas cefálicas, este trabalho teve como objetivo comparar a morfologia externa das glândulas cefálicas de *D. catesbyi* e *D. pavonina* relacionando-as com *D. indica bucephala* (Shaw, 1802), *D. indica indica* Laurenti, 1768, *D. variegata* Duméril, Bibron & Duméril, 1854, *Sibynomorphus neuwiedi* (Von-Ihering, 1911), *S. mikanii* (Schelegel, 1837) e *S. ventrimaculatus* (Boulenger, 1885).

1. 1 Objetivo Geral

• Analisar comparativamente a macroestrutura das glândulas cefálicas de *D. catesbyi* e *D. pavonina*, relacionando-as com *D. indica bucephala*, *D. indica indica*, *D. variegata*, *S. neuwiedi*, *S. mikanii* e *S. ventrimaculatus*.

1. 2 Objetivos específicos

- Descrever comparativamente a forma e posição das glândulas cefálicas de *D*. catesbyi e *D*. pavonina;
- Comparar a forma e posição das glândulas cefálicas de *D. catesbyi* e *D. pavonina* com alguns táxons relacionados (*D. indica bucephala*, *D. indica indica*, *D. variegata*, *S. neuwiedi*, *S. mikanii* e *S. ventrimaculatus*);
- Verificar a relação previamente proposta por FERNANDES (1995) entre *D. catesbyi* e *D. pavonina* e as espécies de *Sibynomorphus*.

2 MATERIAL E MÉTODOS

Para o estudo das glândulas cefálicas foi retirada a pele da cabeça até a altura do pescoço de exemplares fixados e conservados em álcool. Foram analisados três exemplares dos seguintes táxons: *D. catesbyi*, *D. indica bucephala*, *D. indica indica*, *D. pavonina*, *D. variegata*, *S. neuwiedi*, *S. mikanii* e *S. ventrimaculatus*. Um total de 24 exemplares foi preparado para a análise das glândulas cefálicas, todos analisados sob microscópio estereoscópico.

O material analisado pertence ao MUSEU DE HISTÓRIA NATURAL CAPÃO DA IMBUIA (MHNCI), Curitiba-Paraná, e ao MUSEU PARAENSE EMÍLIO GOELDI (MPEG), Belém, Pará. Os exemplares analisados estão listados a seguir: *Dipsas catesbyi* (MPEG 20085, MPEG 20443, MPEG 21306); *D. indica bucephala* (MHNCI 5994, MHNCI 7247, MHNCI 10213); *D. indica indica* (MPEG 12143, MPEG 19478, MPEG 21055); *D. pavonina* (MPEG 462, MPEG 2740, MPEG 14771); *D. variegata* (MPEG 9234, MPEG 14782, MPEG 15473); *S. neuwiedi* (MHNCI 8987, MHNCI 10567, MHNCI 10992); *S. mikanii* (MHNCI 4427, MHNCI 6579, MHNCI 10948) e *S. ventrimaculatus* (MHNCI 8502, MHNCI 8522, MHNCI 8753).

A terminologia utilizada para a descrição das glândulas cefálicas seguiu TAUB (1966), KOCHVA (1978) e ZAHER (1997). As ilustrações foram feitas à mão com o auxílio de câmara-clara acoplada em microscópio estereoscópico.

Para se estabelecer relações entre os táxons estudados foram levantados 12 caracteres glandulares, baseados no tamanho, forma e posição. São estes: forma da glândula pré-maxilar; posição da glândula nasal; forma da glândula nasal; posição da glândula supralabial; posição dos componentes anteriores da glândula infralabial; posição da glândula infralabial; posição da glândula rictal; posição da glândula de Harder; tamanho do lobo pós-orbital da glândula de Harder; presença/ausência da glândula de Duvernoy; posição da glândula sublingual medial; posição das glândulas sublinguais laterais.

3 RESULTADOS

3.1 DESCRIÇÃO COMPARATIVA DAS GLÂNDULAS CEFÁLICAS DE *D. catesbyi* E *D. pavonina*

Foram analisadas e descritas, comparativamente, a forma, tamanho e posição de nove glândulas cefálicas (Pré-maxilar, Nasal, Duvernoy, Rictal, Supralabial, Infralabial, Harder, Sublingual medial e Sublingual lateral) de *D. catesbyi* e *D. pavonina*.

A glândula pré-maxilar (g. P) em *D. catesbyi* tem forma triangular, estando sua maior porção localizada frontalmente sobre o osso pré-maxilar. Sua região inferior estende-se posteriormente e suas extremidades sobrepõem a região anterior da glândula supralabial (Figuras 2 A e 3 A). Diferentemente de *D. catesbyi*, em *D. pavonina* a glândula pré-maxilar é uma estrutura par. Cada metade é afilada e localiza-se lateralmente contornando a cápsula nasal (cn). A extremidade anterior de cada parte da glândula localiza-se na região inferior do osso pré-maxilar, segue contornando a cápsula nasal, onde apenas toca a região anterior da glândula supralabial até alcançar a região inferior da glândula nasal (Figuras 2 B e 3 B).

A glândula nasal (g. N) em *D. catesbyi* é comprimida no sentido ânteroposterior e apresenta forma retangular, com o mesmo diâmetro em toda sua extensão. Esta glândula está limitada anteriormente pela cápsula nasal, posteriormente pelo préfrontal (PF), superiormente pelo nasal e inferiormente toca o maxilar (Figuras 2 A e 3 A). Em *D. pavonina* ocorre uma maior compressão da glândula nasal em sua região inferior, cujo diâmetro é menor que o da região superior. Está limitada anteriormente pela cápsula nasal e osso nasal, posteriormente pré-frontal e superiormente pelo nasal e frontal (Figuras 2 A e 3 B). Tanto em *D. catesbyi* quanto em *D. pavonina* as glândulas supralabiais (g.S) são delgadas e compridas. Em *D. catesbyi* essa glândula estende-se da extremidade posterior do osso pré-maxilar, segue ao longo de todo o maxilar até o alcançar região mediana do músculo *adductor mandibulae externus superficialis* (*adductor mandibulae externus superficialis*) (Figura 2 A). Em *D. pavonina* inicia-se abaixo da cápsula nasal, estende-se ao longo do maxilar e segue até a região anterior do *adductor mandibulae externus medialis* (*adductor mandibulae externus medialis*) (Figura 2 B).

A glândula de Duvernoy está ausente ou reduzida, sendo completamente indistinta da glândula supralabial em *D. catesbyi* e *D. pavonina*.

A glândula rictal (g.R) em *D. catesbyi* e *D. pavonina* é pequena e quase imperceptível. Em *D. catesbyi* essa glândula localiza-se na região posterior da glândula supralabial, sobre a região mediana do músculo *adductor mandibulae externus superficialis* (Figura 2 A). Em *D. pavonina* localiza-se na região posterior da glândula supralabial, sobre os músculos *adductor mandibulae externus superficialis* e *adductor mandibulae externus medialis* (Figura 2 B).

A glândula de Harder (g. H) de *D. catesbyi* é visível entre os músculos *levator angulis oris* e *adductor mandibulae externus superficialis*, enquanto que em *D. pavonina* essa glândula está visível entre o *levator angulis oris* e a órbita. Esta diferença se deve à conformação dos músculos *levator angulis oris* e *adductor mandibulae externus superficialis*. Em *D. catesbyi* os feixes musculares destes músculos divergem após sua origem, criando um espaço para acomodar a glândula de Harder (Figuras 2 A e 4 A). Em *D. pavonina* os feixes musculares do *levator angulis oris* e *adductor mandibulae externus superficialis* seguem paralelos após suas origens até atingirem a glândula supralabial, não havendo a formação do espaço como em *D. catesbyi* (Figuras 2 e 4 B).

Em *D. catesbyi* a glândula de Harder tem a forma de "L" invertido (Figura 5 A). O lobo orbital (g.H-lo) é delgado e côncavo, origina-se na região inferior da órbita e estendendo-se da região anterior próximo ao osso pré-frontal até o osso pós-ocular (Figura 5 A). O lobo pós-orbital (g.H-lpo) é maior e mais arredondado, estando limitado anteriormente pelo osso pós-orbital (PO), posteriormente pelo músculo *adductor mandibulae externus medialis*, superiormente pelo osso parietal e pelo músculo *adductor mandibulae externus profundus (aep)* e inferiormente pelo osso ectopterigóide e músculo *pterigoideus superficialis (pg1*), onde toca a região posterior do componente anterior da glândula infralabial (Figura 6 A).

O lobo orbital da glândula de Harder em *D. pavonina* é maior que o pósorbital e apresenta a forma de "U". Tem sua origem na região superior da órbita e estende-se da região anterior próximo ao osso pré-frontal até o osso pós-ocular (Figura 5 B). O lobo pós-orbital é menor e mais arredondado, estando limitado anteriormente pelo osso pós-orbital, posteriormente pelos músculos *levator angulis oris* e *adductor mandibulae externus superficialis*, superiormente pelo *aep* e inferiormente sobre o osso ectopterigóide (ect.) (Figura 5 B).

Em *D. catesbyi* e *D. pavonina* a glândula infralabial (g.i.) é uma estrutura par formada por dois componentes, que são ligados entre si por pequenos canais. Em ambas as espécies, o componente anterior (ca) é mais escuro, desenvolvido e localiza-se internamente ao componente posterior (cp); enquanto que, o posterior é mais claro, fino e localiza-se mais externamente, próximo à comissura bucal (Figuras 6 A e 6 B). Em *D. catesbyi* os componentes anteriores das glândulas infralabiais tocamse anteriormente logo abaixo do sinfisal e unem-se aos componentes posteriores através de uma série de pequenos canais ao nível do segundo e terceiro escudos infralabiais. Os componentes seguem juntos (porém levemente separados), paralelamente ao músculo *pg1* até a extremidade posterior do componente anterior atingir a glândula de Harder e do posterior o músculo *adductor mandibulae externus superficialis* (Figura 6 A).

Em *D. pavonina* os componentes anteriores das glândulas infralabiais não se tocam, uma vez que se iniciam na altura da primeira escama infralabial. Unem-se aos componentes posteriores através de uma série de pequenos canais ao nível do sétimo e oitavo infralabiais, e seguem juntos paralelamente ao músculo *pg1* até a região de contato entre os músculos *adductor mandibulae externus superficialis* e *adductor mandibulae externus medialis* (Figura 6 B).

Tanto em *D. catesbyi* quanto em *D. pavonina* a glândula sublingual medial (g. Sm) é alongada e localiza-se na região ventral da língua. É limitada anteriormente pelas glândulas sublinguais laterais (g. Sl), que são arredondadas e se inserem na membrana bucal (Figuras 7 A e 7 B). Essas glândulas são recobertas pelos músculos *intermandibularis anterior pars glandularis (iag)* e *transversus branchialis (tb)* (Figuras 7 A e 7 B).

A região anterior da glândula lingual medial em *D. catesbyi* localiza-se abaixo das duas glândulas sublinguais laterais, cujas regiões anteriores estão em contato medial (Figura 7 A). Diferentemente, a glândula sublingual medial em *D. pavonina* situa-se entre as duas glândulas sublinguais laterais, que não contatam medialmente (Figura 7 B).

LEGENDAS DAS FIGURAS:

Abreviação	Nome da estrutura
g. p	Glândula Pré-maxilar
g. N	Glândula Nasal
g. S	Glândulas Supralabiais
g. R	Glândula Rictal
g. H	Glândula de Harder
g. H-lo	Lobo orbital da glândula de Harder
g.H-lpo	Lobo pós-orbital da glândula de Harder
g. Sm	Glândula Sublingual Medial
g. Sl	Glândula Sublingual Lateral
g.i	Glândulas Infralabiais
ca	Componente anterior da Glândula Infralabial
cp	Componente posterior da Glândula Infralabial
lao	Músculo levator anguli oris
aes	Músculo adductor mandibulae externus superficialis
aem	Músculo adductor mandibulae externus medialis
aep	Músculo adductor mandibulae externus profundus
Pg1	Músculo pterigoideus superficilais
iag	Músculo intermandibularis anterior pars glandularis
iap	Músculo intermandibularis anterior pars posterior
tb	Músculo transversus branchialis
cn	Cápsula Nasal
ect	Osso ectopterigóide
PF	Osso Pré-frontal
PO	Osso pós-orbital

Figura 2. Representação das glândulas cefálicas laterais de *D. catesbyi* (A) e *D. pavonina* (B). Legenda: g. P: Glândula Pré-maxilar, g. N: Glândula Nasal, g. S: Glândulas Supralabiais, g. R: Glândula Rictal, g. H: Glândula de Harder, ca: Componente anterior da Glândula Infralabial, cp: Componente posterior da Glândula Infralabial, *lao*: Músculo *levator anguli oris, aes*: Músculo *adductor mandibulae externus superficialis, aem*: Músculo *adductor mandibulae externus medialis, aep*: Músculo *adductor mandibulae externus profundus, pg1*: Músculo *pterigoideus superficialis*, PF: Osso Pré-frontal.

Figura 3. Representação das glândulas Pré-maxilar e Nasal de *D. catesbyi* (A) e *D. pavonina* (B). Legenda: g. P: Glândula Pré-maxilar, g. N: Glândula Nasal, g. S: Glândulas Supralabiais, cn: Cápsula nasal, PF: Osso Pré-frontal.

Figura 4. Representação da glândula de Harder de *D. catesbyi* (A) e *D. pavonina* (B). Legenda: g. S: Glândulas Supralabiais, g. R: Glândula Rictal, g. H-lo: Lobo orbital da glândula de Harder; g.H-lpo: Lobo pós-orbital da glândula de Harder, PO: Osso pós-orbital, *lao*: Músculo *levator anguli oris, aes*: Músculo *adductor mandibulae externus superficialis, aem*: Músculo *adductor mandibulae externus medialis, aep*: Músculo *adductor mandibulae externus medialis, aep*: Músculo *adductor mandibulae externus profundus*.

Figura 5. Representação do lobo pós-orbital da glândula de Harder de *D. catesbyi* (A) e *D. pavonina* (B). Legenda: g. H-lo: Lobo orbital da glândula de Harder; g.H-lpo: Lobo pós-orbital da glândula de Harder, PO: Osso pós-orbital, PF: Osso pré-frontal, *aem*: Músculo *adductor mandibulae externus medialis, aep*: Músculo *adductor mandibulae externus profundus*, ect: Osso ectopterigóide.

Figura 6. Representação das glândulas infralabiais de *D. catesbyi* (A) e *D. pavonina* (B). Legenda: g. H: Glândula de Harder, ca: Componente anterior da Glândula Infralabial, cp: Componente posterior da Glândula Infralabial, *Pg1*: Músculo *pterigoideus superficilais, iag*: Músculo *intermandibularis anterior pars glandularis, iap*: Músculo *intermandibularis anterior pars glandularis, iap*: Músculo *intermandibularis anterior pars posterior, tb*: Músculo *transversus branchialis.*

Figura 7. Representação das glândulas Sublinguais Laterais e Mediais de *D. catesbyi* (A) e *D. pavonina* (B). Legenda: g. Sm: Glândula Sublingual Medial, g.Sl: Glândula Sublingual Lateral, ca: Componente anterior da Glândula Infralabial, cp: Componente posterior da Glândula Infralabial.

3.2 COMPARAÇÃO DA MACROESTRUTURA DAS GLÂNDULAS CEFÁLICAS DE *Dipsas* catesbyi E *D. pavonina* COM ALGUNS **D**IPSADINAE

A partir da análise da forma da glândula pré-maxilar, das posições das glândulas nasais, supralabiais e dos componentes anteriores das glândulas infralabiais foi possível observar que os táxons *D. indica bucephala*, *D. indica indica*, *D. variegata*, *Sibynomorphus neuwiedi*, *S. mikanii* e *S. ventrimaculatus* apresentaram as mesmas condições encontradas em *D. catesbyi* (Figuras 2 A, 3 A, 6 A). Cabe ressaltar que nesses caracteres foram encontradas condições derivadas, consideradas como autapomórficas para *D. pavonina* (Figuras 2 B, 3 B, 6 B).

Entre os táxons analisados somente *S. ventrimaculatus* não apresenta o achatamento ântero-posterior da glândula nasal, condição que confere a esta uma forma quadrada diferente dos demais táxons, cuja forma é retangular ou indefinida.

A posição das glândulas infralabiais de *S. neuwiedi, S. mikanii* e *S. ventrimaculatus* foi semelhante à encontrada em *D. catesbyi*, onde a extremidade posterior do componente anterior alcança a região inferior da glândula de Harder (Figura 6 A). Em *D. indica bucephala, D. indica indica* e *D. variegata* o componente anterior não alcança a glândula de Harder, assim como ocorre em *D. pavonina* (Figura 6 B).

A glândula rictal é pequena e quase imperceptível em todos os táxons analisados. Em *D. indica bucephala*, *D. indica indica* e *S. neuwiedi* localiza-se sobre a região posterior da glândula supralabial e região mediana do *adductor mandibulae externus superficialis*, condição também observada em *D. catesbyi* (Figura 2 A). Em *D.* *variegata, S. mikanii* e *S. ventrimaculatus* a glândula rictal localiza-se sobre a região posterior da glândula supralabial e na região de contato entre o *adductor mandibulae externus superficialis* e *adductor mandibulae externus medialis,* assim como em *D. pavonina* (Figura 2 B).

A glândula de Harder de *D. indica bucephala*, *D. indica indica*, *D. variegata*, *S. neuwiedi*, *S. mikanii* e *S. ventrimaculatus* apresenta-se totalmente recoberta pelos músculos *levator angulis oris* e *adductor mandibulae externus superficialis*, diferindo da condição encontrada em *D. catesbyi* e *D. pavonina*, cuja glândula fica exposta (Figuras 2 A e B). Além disso, o lobo pós-orbital muito desenvolvido é encontrado em *S. neuwiedi*, S. *mikanii* e *S. ventrimaculatus*, assim com em *D. catesbyi* (Figura 5 A). Em *D. indica bucephala*, *D. indica indica* e *D. variegata* o lobo pós-orbital é menos desenvolvido, assim como ocorre em *D. pavonina* (Figura 5 B).

A glândula de Duvernoy é pouco desenvolvida em todos os táxons analisados. Em *D. indica bucephala*, *D. indica indica* e *D. variegata* esta glândula localiza-se sobre a glândula supralabial (destacando-se levemente), na região pós-ocular e apresenta uma coloração mais escura do que a coloração da glândula supralabial. Nas espécies de *Sibynomorphus* analisadas foi possível verificar a presença da glândula de Duvernoy pela coloração distinta destas duas glândulas.

As glândulas sublingual medial e sublinguais laterais de *S. neuwiedi*, *S. mikanii* e *S. ventrimaculatus* são muito semelhantes quanto à forma e posição das encontras em *D. catesbyi* (Figura 7 A); enquanto que, as condições desses caracteres presentes em *D. indica bucephala*, *D. indica indica* e *D. variegata* são semelhantes as presentes em *D. pavonina* (Figura 7 B).

4 DISCUSSÃO E CONCLUSÕES

Na proposta filogenética apresentada por FERNANDES (1995) foram analisados um total de 58 caracteres morfológicos, sendo três relacionados às glândulas cefálicas (tamanho e posição do lobo pós-orbital da glândula Harder; presença e posição da glândula de Duvernoy; e presença e tamanho da glândula Rictal). Nesta proposta, *Sibon* (exceto S. *fischeri*) é um grupo monofilético e irmão do clado formado por *Dipsas* e *Sibynomorphus*, onde *S. ventrimaculatus* e *S. neuwiedi* aparecem mais relacionadas ao clado formado por *D. catesbyi* e *D. pavonina*. Segundo Fernandes (1995), este clado ((*S. ventrimaculatus, S. neuwiedi*) (*D. catesbyi* e *D. pavonina*)) é suportado pelo tamanho, forma e posição da glândula de Harder (muito grande, formato de "L", ocupando a maior parte do espaço posterior do olho).

Diferentemente dos resultados de FERNANDES (1995), o estudo de um maior número de caracteres glandulares e de exemplares de *Dipsas* e *Sibynomorphus* revelou um maior número de caracteres autapomórficos para *D. pavonina* (mantendo-a próxima as demais espécies de *Dipsas*) e uma grande semelhança entre a morfologia geral das glândulas cefálicas de *D. catesbyi* e as espécies de *Sibynomorphus* analisadas (*S. ventrimaculatus*, *S. mikanii* e *S. neuwiedi*).

Entre os caracteres analisados, *D. pavonina* apresenta os seguintes caracteres autapomórficos: glândula pré-maxilar par; posição lateral da glândula pré-maxilar; contato entre a glândula pré-maxilar e glândula nasal; deslocamento posterior da glândula supralabial e glândula de Harder visível entre o músculo *levator angulis oris* e a órbita.

Alguns caracteres como a posição da glândula infralabial, tamanho do lobo pós-orbital da glândula de Harder e posição das glândulas sublinguais mediais e laterais, sugerem uma maior proximidade entre *D. pavonina* e o clado formado por *D. variegata* e *D. indica*, conforme apresentado por FERNANDES (1995).

O monofiletismo do grupo *catesbyi* (aqui representado por *D. catesbyi* e *D. pavonina*) não é confirmado, uma vez que os resultados obtidos a partir da análise da posição da glândula infralabial, tamanho do lobo pós-orbital da glândula de Harder e posição das glândulas sublinguais mediais e laterais, sugerem que *D. catesbyi* esteja mais relacionada às espécies de *Sibynomorphus* (*S. neuwiedi*, *S. mikanii* e *S. ventrimaculatus*) do que com as demais espécies de *Dipsas* analisadas.

A hipótese de proximidade entre *D. catesbyi* e as espécies *Sibynomorphus* apresentada por FERNANDES (1995), parece estar bem fundamentada com base na análise de caracteres glandulares. Esse fato é corroborado pela morfologia externa das espécies pertencentes aos dois gêneros. Segundo PETERS (1960), as espécies de *Sibynomorphus* apresentam corpo cilíndrico e levemente comprimido, cabeça pouco distinta do resto do corpo, não apresentando encurtamento antero-posterior da cabeça. Enquanto que as espécies de *Dipsas* apresentam o corpo comprimido, cabeça fortemente destacada do resto do corpo, apresentando o encurtamento ântero-posterior da cabeça. De acordo com os resultados obtidos, os caracteres morfológicos externos analisados, sugere uma maior semelhança entre *D. catesbyi* e as espécies de *Sibynomorphus*, do que com as espécies de *Dipsas*.

Apesar dos resultados obtidos, faz-se necessário um estudo mais detalhado sobre a morfologia interna e externa das espécies de *Dipsas* e *Sibynomorphus* para verificar as relações filogenéticas entre as espécies dos dois gêneros.

5 REFERÊNCIAS BIBLIOGRÁFICAS

- BELLAIRS, d'A. 1960. **Reptiles: Life history, evolution and structure**. Harper Torchbooks/ The Science Library. Harper and Brothers, New York. 192 p.
- FERNANDES, R. 1995. **Phylogeny of the Dipsadinae snakes**. Ph. D. Dissertation. University of Texas at Arlington, Texas, USA. 115 p.
- GANS, C. 1972. Feeding in Dipsas indica and Dunn's paradox. Am. Zool., 12: 730.
- GANS, C. 1978. Reptilian Venoms: Some Evolutionary Considerations. *In*: Gans, C. & Gans, K. A. (eds.), Biology of the Reptiles. Academic Press, New York, v. 8. p. 1-42.
- KOCHVA, E. 1978. Oral glands of the Reptilia. *In*: Gans, C. & Gans, K. A. (eds.),Biology of the Reptiles. Academic Press, New York, v. 8. p. 43-161.
- KOCHVA, E. & WOLLBERG, M. 1970. The salivary glands of Aparallactinae (Colubridae) and the venom glands of *Elaps* (Elapidae) in relation to the taxonomy status of this genus. **Zool. J. Linn. Soc.**, 49: 217-224.
- KOCHVA, E.; WOLLBERG, M. & SOBOL, R. 1967. The special pattern of the venom gland in *Atractaspis* and its bearing on the taxonomic status of the genus. **Copeia**, 1967 (4): 763-772.

- LAPORTA-FERREIRA, I. L. & SALOMÃO, M. G. 1991. Morphology, Physiology and Toxicology of the oral glands of the tropical *Cochleophagus* snake, *Sibynomorphus neuwiedi* (Colubridae-Dipsadinae). **Zool. Anz.**, 3/4: 198-208.
- MARX, H.; RABB, G. 1965. Relationships and zoogeography of the Viperinae snakes (Family Viperidae). Fieldiana, 44: 161-206.
- PETERS, J. A. 1956. An analysis of variation in South American snake, *catesby's* snailsucker (*Dipsas catesbyi* Sentzen). American Museum Novitates, n.1783. 40 p.
- SARKAR, S. C. 1923. A comparative study of the buccal glands and teeth of the opistofglypha and a discussion on the evolution of the order from aglypha. Proc. Zool. Soc. Lond, p. 259-322.

SCHELEGEL, H. 1837. Essai sur la physionomie des serpens. Amsterdam. 2, 606 p.

- SENTZEN, U. J. 1796. Ophiologische Fragmente. Beschreibung des Coluber catesbeji. Meyer's Zool. Arch., 6 (2): 66-74.
- SMITH, M. A. & BELLAIRS, A. d'A. 1947. The head glands of snakes, with remarks on the evolution of parotid gland and teeth of the Opisthoglypha. J. Linn. Soc. Lond., (Zool.), 41: 351-368.

TAUB, A. M. 1966. Ophidian cephalic glands. J. Morph., 118: 529-542.

- TAUB, A. M. 1967. Comparative histological studies on Duvernoy's gland of Colubrid snakes. Bull. Amer. Mus. Nat. Hist., 138: 1-50.
- UNDERWOOD, G. 1967. A contribution to the classification of snakes. Trustees of the British Museum (Natural History), London, Publication n. 653, pp. 1-179.
- UNDERWOOD, G. & KOCHVA, E. 1993. On the affinities of the burrowing asps Atractaspis (Serpentes: Atractaspididae). Zool. J. Linn. Soc., 107: 3-64.
- WOLLBERG, M.; KOCHVA, E.; UNDERWOOD, G. 1998. On the rictal glands of some *Atractaspid* snakes. **Herpetological Journal**, 8: 137-143.

ZAHER, H. 1997. Description of the cephalic muscles and glands morphology of *Clelia plumbea* and three presumably related species (Serpentes, Xenodontinae). **Papéis Avulsos Zoologia,** 40 (2): 17-63.

CONCLUSÕES GERAIS

As espécies *D. catesbyi* e *D. pavonina* são espécies bem distintas e diferenciáveis por vários caracteres, como o hemipênis, padrão de coloração e caracteres merísticos.

A espécie *D. catesbyi* é amplamente distribuída na Floresta Amazônica, sendo comum em sua área de ocorrência. A distribuição de *D. pavonina* é menos conhecida. Há uma possível tendência natural desta última espécie em se apresentar em baixas densidades populacionais, ou estar seriamente ameaçada;

Tanto *D. catesbyi* quanto *D. pavonina* apresentaram variações individuais e sexuais, somente para *D. catesbyi* foi possível determinar a variação populacional.

Quanto ao estudo dos caracteres glandulares foi encontrado um maior número de caracteres autapomórficos para *D. pavonina*, e sua proximidade com os táxons *Dipsas indica bucephala*, *D. indica indica* e *D. variegata*.

A espécie *D. catesbyi* apresenta uma maior semelhança na morfologia geral das glândulas cefálicas com as espécies de *Sibynomorphus* analisadas (*S. ventrimaculatus, S. mikanii* e *S. neuwiedi*), do que com as espécies de *Dipsas*.

O monofiletismo do grupo *catesbyi* não é confirmado através da análise da morfologia das glândulas cefálicas.

A hipótese de proximidade entre *D. catesbyi* e as espécies *Sibynomorphus* está bem fundamentada com base na análise de caracteres glandulares, sendo corroborada pela morfologia externa das espécies pertencentes aos dois gêneros.

Apesar dos resultados obtidos, faz-se necessário um estudo mais detalhado sobre a morfologia interna e externa das espécies de *Dipsas* e *Sibynomorphus* para verificar as relações filogenéticas entre as espécies dos dois gêneros.

ANEXO I: MATERIAL ANALISADO

Dipsas catesbyi

COLÔMBIA: Colômbia (IBSP 8593), Villavicêncio (IBSP 7211), Leticia (IBSP 15024). BRASIL: ACRE: Tarauacá (IBSP 18521); AMAZONAS: (IBSP 33368), Amanã (INPA 9523, INPA 11128), Benjamim Constant (IBSP, 17209), Beruri (MZUSP 5773), Borax (MNRJ 1469), Borba (MNRJ 3009), Iauaretê (MNRJ 10852), Manaus (MZUSP 8200), Manaus: Reserva Ducke (INPA 10416, MZUSP 7641), Maraã (MPEG 17868, MPEG 18022), Mato Grosso (MNRJ 337), Nova Olinda (MZUSP 5234), Presidente Figueiredo (MPEG 17567), Reserva INPA-WWF (MZUSP 8391), Rio Ituxi (MPEG 20329), Rio Javari (MNRJ 683, MNRJ 684, MNRJ 685), Tefé (IBSP 15058, IBSP 15059, IBSP15092, MPEG 18230), Uarini: Mamirauá (MPEG 18839), Uaupés (IBSP 22148); <u>AMAPÁ:</u> Duas Bocas (IBSP 25393), Rio Tracajatuba (IBSP 25434, IBSP 25394, IBSP 25395, MPEG 60); BAHIA: Feira de Santana (IBSP 3214), Ilhéus (IBSP 41332, IBSP 58384), Itabuna (MZUSP 1288), Porto Seguro (IBSP 57215), Reserva Biológica Pau Brasil (MZUSP 9027); GOIÁS: Rio Araguaia: UHE Santa Izabel (MPEG 17193); MARANHÃO: Nova Vida (MPEG 10323, MPEG 12100, MPEG 12277, MPEG 12278, MPEG 12713, MPEG 12714, MPEG 12715, MPEG 13731, MPEG 14430, MPEG 14997, MPEG 16236), Santa Inês (MPEG 10871); Santa Luzia do Paruá (MPEG 14241, MPEG 15049), Rio Turiaçu (MPEG 16423); MATO GROSSO: Cacéres (IBSP 37381), Juína (MNRJ 212), Pontes e Lacerda (IBSP 49529, IBSP 49530, IBSP 49531, IBSP 49565, IBSP 49907), Rio Jaurú (MNRJ 686, UFMT 947), Vale de São Domingos (UFMT 1584); PARÁ: Acará (MPEG 9420, MPEG 10942, MPEG 16335), Ananindeua (MPEG 527, MPEG 16868, MPEG 18541, MPEG 18860, MPEG 19171), As Pedras, Rio Cuminá-Miri (MZUSP 5102), Augusto Correa (MPEG 807, MPEG 4547, MPEG 4551, MPEG 4599, MPEG 4698, MPEG 6733, MPEG 6734, MPEG 8998, MPEG 9918, MPEG 10007, MPEG 10758, MPEG 10759, MPEG 10760, MPEG 10761, MPEG 11666, MPEG 11667, MPEG 12462, MPEG 12463, MPEG 12465, MPEG 12466, MPEG 12472, MPEG 13068, MPEG 13069), Belém (IBSP 15040, IBSP 42274, IBSP 42276, IBSP 42279, MPEG 195, MPEG 218, MPEG 261, MPEG 262, MPEG 386, MPEG 966, MPEG 969, MPEG 15439, MPEG 16560, MPEG 17288, MPEG 17291, MPEG 18451, MPEG 18455, MPEG 18466, MPEG 18537, MPEG 18544, MPEG 18548, MPEG 18570, MPEG 18625, MPEG 19151, MPEG 20165, MPEG 20272), Belém: Mosqueiro (IBSP 54155, IBSP 54156, IBSP 54157, IBSP 54239, MPEG 3270, MPEG 3278, MPEG 5474), Benevides (MPEG 745, MPEG 746, MPEG 1094, MPEG 1853, MPEG 2070, MPEG 2071, MPEG 2076, MPEG 2610, MPEG 3975, MPEG 6031, MPEG 10361, MPEG 11845, MPEG 11846, MPEG 15478, MPEG 15480, MPEG 15487, MPEG 15489, MPEG 17615, MPEG 18517, MPEG 18547), Bragança (MPEG 6335, MPEG 7980, MPEG 8243, MPEG 8275, MPEG 8351, MPEG 9963), Capitão Poço (MPEG 6829, MPEG 772, MPEG 4945, MPEG 6106, MPEG 7223, MPEG 8153, MPEG 8157, MPEG 8173, MPEG 8184, MPEG 10660, MPEG 10662, MPEG 11050, MPEG 11015, MPEG 12149, MPEG 12186), Castanhal (MPEG 690, MPEG 691, MPEG 693, MPEG 2658, MPEG 2691, MPEG 2710, MPEG 4019, MPEG 4024, MPEG 4758, MPEG 5748, MPEG 6941, MPEG 6942, MPEG 7164, MPEG 8655, MPEG 8657, MPEG 10531, MPEG 10534, MPEG 10777, MPEG

10917, MPEG 11793), Concórdia do Pará (MPEG 12629), Conceição do Araguaia (IBSP 41180, MPEG 16951), Cumaru do Norte (MPEG 7610), Curionópolis: Cristalino (MPEG 20745), Curuçá (MPEG 4056, MPEG 4879, MPEG 4888, MPEG 4891, MPEG 5882, MPEG 5900, MPEG 5908, MPEG 7104, MPEG 7144, MPEG 7147, MPEG 7150, MPEG 7155, MPEG 7613, MPEG 7621, MPEG 7630), Dom Eliseu (MPEG 10823, MPEG 10825), Igarapé-Açú (MPEG 872, MPEG 873, MPEG 874, MPEG 875, MPEG 953, MPEG 958), Irituia (MPEG 17287), Marabá (MPEG 7477, MPEG 16478, MPEG 16490, MPEG 16494, MPEG 16658, MPEG 16698, MPEG 17128, MPEG 19375), Maracanã (MPEG 1594, MPEG 1904, MPEG 2102, MPEG 2113, MPEG 4824, MPEG 4826, MPEG 5813), Marituba (MPEG 15160), Melgaço: Caxiuanã (MPEG 18857, MPEG 19256, MPEG 19258, MPEG 19661, MPEG 19748, MPEG 20020, MPEG 20027, MPEG 20085, MPEG 20090, MPEG 20093, MPEG 20148, MPEG 20286, MPEG 20297, MPEG 20441, MPEG 20442, MPEG 20443, MPEG 20924, MPEG 21262), Obidos (IBSP 14929), Oriximiná (MPEG 19932, MPEG 19933), Ourém (MPEG 3515, MPEG 3518, MPEG 4249, MPEG 4253, MPEG 6144, MPEG 6152, MPEG 7011, MPEG 7039, MPEG 7048, MPEG 7049, MPEG 7051, MPEG 18931, MPEG 18841, MPEG 18842), Parauapebas (CHUNB 5871), Peixe-Boi (MPEG 819), Santarém (MPEG 19070), Santo Antônio do Tauá (MPEG 999, MPEG 1132, MPEG 1149, MPEG 1152, MPEG 1441, MPEG 1443, MPEG 1446, MPEG 1452, MPEG 1528, MPEG 1531, MPEG 1864, MPEG 1866, MPEG 1867, MPEG 1868, MPEG 1869, MPEG 1870, MPEG 2638, MPEG 2639, MPEG 3296, MPEG 3297, MPEG 3299, MPEG 3301, MPEG 4728, MPEG 5694, MPEG 5696, MPEG 6963, MPEG 6965, MPEG 6969, MPEG 6978, MPEG 7558, MPEG 8449), São Domingos do Capim (MPEG 5751, MPEG 8079, MPEG 8726, MPEG 9384, MPEG 10785, MPEG 10786, MPEG 10787, MPEG 10944, MPEG 12790, MPEG 13370, MPEG 14265, MPEG 15511, MPEG 16332), São Francisco do Pará (MPEG 16943), Serra de Kukoinhokren (MZUSP 10556), Tucuruí (IBSP 43434, IBSP 46528, MPEG 16716), Vigia (MPEG 3920, MPEG 3979, MPEG 3985, MPEG 4618, MPEG 4619, MPEG 4624, MPEG 4627, MPEG 4630, MPEG 4631, MPEG 4648, MPEG 4657, MPEG 4681, MPEG 4686, MPEG 5655, MPEG 5667, MPEG 5669, MPEG 5681, MPEG 5682, MPEG 6740, MPEG 6742, MPEG 6748, MPEG 6750, MPEG 6757, MPEG 6790, MPEG 6791, MPEG 6793, MPEG 6814, MPEG 6880, MPEG 6998, MPEG 7481, MPEG 7501, MPEG 7515, MPEG 7516, MPEG 7523, MPEG 7547, MPEG 8472, MPEG 8475, MPEG 8495, MPEG 8497, MPEG 8498, MPEG 8501, MPEG 8511, MPEG 8513, MPEG 9214, MPEG 9215, MPEG 9216, MPEG 9217, MPEG 9272, MPEG 9282, MPEG 9287, MPEG 9290, MPEG 9294, MPEG 9310, MPEG 10573, MPEG 10587, MPEG 11806, MPEG 11808, MPEG 11809, MPEG 11810, MPEG 11811, MPEG 11812, MPEG 11813), Viseu (MPEG 1017, MPEG 1036, MPEG 1353, MPEG 2173, MPEG 2331, MPEG 2332, MPEG 2333, MPEG 2334, MPEG 2335, MPEG 2336, MPEG 2337, MPEG 2338, MPEG 2972, MPEG 3764, MPEG 3766, MPEG 3767, MPEG 4349, MPEG 4474, MPEG 5177, MPEG 5183, MPEG 5192, MPEG 5200, MPEG 5319, MPEG 6403, MPEG 6628, MPEG 7327, MPEG 7315I, MPEG 7756, MPEG 7802, MPEG 7811, MPEG 7819, MPEG 8204, MPEG 8213, MPEG 8218, MPEG 8223, MPEG 8226, MPEG 8231, MPEG 9233, MPEG 9552, MPEG 9817, MPEG 9820, MPEG 9822, MPEG 10306, MPEG 11467, MPEG 11934, MPEG 12860, MPEG 12886, MPEG 13259, MPEG 13914, MPEG 14006, MPEG 14008, MPEG 14122, MPEG 14807, MPEG 15067, MPEG 15977MPEG 16026, MPEG 16260, MPEG 16261, MPEG 16262, MPEG 17280). RONDÔNIA: Alta

Floresta, fazenda Antarctica (INPA 1578), Antônio Lima (MZUSP 8682), Espigão d' Oeste (IBSP 41203, IBSP 71635, IBSP 71636, MPEG 21047, MPEG 21048, MPEG 21049, MPEG 21050, MPEG 21051, MPEG 21052, MPEG 21053, MPEG 21054), Guajará-Mirim (MPEG 19465, MPEG 19466, MPEG 19467), Jaci-Paraná (MPEG 17069, MPEG 17070, MPEG 17071), Monte Negro (IBSP 67618), Nova Colina (MZUSP 8512), Ouro Preto d'Oeste (MPEG 17175), Porto Velho (IBSP 42904, IBSP 55511, MPEG 17814), Santa Cruz da Serra (MZUSP 8730), Tabajara (INPA 2214), Vilhena (CHUNB 9658). <u>RORAIMA:</u> Cachoeira do Cujubim, Rio Catrimani (MZUSP 8028), Colônia do Apiaú (MZUSP 9247), Ilha de Maracá (MZUSP 9272, MZUSP 9710), Juruá, Rio Xingu (MZUSP 9349), Rio Ajarani (MPEG 19003). **PERU:** Pevas (MNRJ 2980), Ucayale (IBSP 14930, IBSP 14931, IBSP 14933).

Dipsas pavonina

BRASIL: MARANHÃO: Nova Vida (MPEG 10324, MPEG 10325, MPEG 12099, MPEG 12711, MPEG 12712, MPEG 12716, MPEG 10318, MPEG 13730, MPEG 13732, MPEG 13733, MPEG 14771); MATO GROSSO: Claudia, Fazenda Iracema (MZUSP 11243); Vale de São Domingos (UFMT 1586, UFMT 1588). PARÁ: Acará (MPEG 5750, MPEG 8080, MPEG 8088, MPEG 8091, MPEG 8683, MPEG 10943, MPEG 11678, MPEG 12789, MPEG 13373, MPEG 15510); Ananindeua (MPEG 79, MPEG 471, MPEG 528); Apeú (MPEG 462, MPEG 692, MPEG 694, MPEG 695, MPEG 1484; MPEG 2033, MPEG 2659, MPEG 2661, MPEG 2660; MPEG 2662-2664; MPEG 4754; MPEG 4760, MPEG 6927, MPEG 8587; MPEG 9446, MPEG 10533; MPEG 10535); Barcarena (MPEG 16455); Belém (MPEG 16944, IBSP 5087, IBSP 25661); Belém: Mosqueiro (MPEG 3276, MPEG 3277, MPEG 3279, MPEG 12768); Benevides (MPEG 631, MPEG 833, MPEG 2072, MPEG 2603, MPEG 2609, MPEG 6030, MPEG 8424; MPEG 10360, MPEG 14281); Bragança (MPEG 11369, MPEG 11413); Canindé, Rio Gurupí (MZUSP 4265); Capitão Poco (MPEG 1011, MPEG 1015, MPEG 3548, MPEG 4957, MPEG 6105, MPEG 7218, MPEG 8163, MPEG 8168, MPEG 8183, MPEG 8809, MPEG 8792, MPEG 11020, MPEG 12990); Castanhal (MPEG 9463, MPEG 12605); Curuçá (MPEG 2739, MPEG 2740, MPEG 2742, MPEG 4884, MPEG 5897, MPEG 7139, MPEG 7609, MPEG 7612); estrada para Maracanã (MPEG 1865, MPEG 2106, MPEG 2112, MPEG 4065, MPEG 4818, MPEG 4820); Fazenda Morelândia (IBSP 42283); Inhangapi (MPEG 1196); Marabá (MPEG 16604, MPEG 17078); Itaituba-Jcareacanga (MZUSP 7560); Novo Progresso (CHUNB 40089); Ourém (MPEG 6148, MPEG 18840, MPEG 18924); Paruá (MPEG 13649); BR 314 (MPEG 5257); Santarém Novo (MPEG 8464); Santo Antônio do Tauá (MPEG 1193); Vigia (MPEG 9320, MPEG 10588); Serra de Kukoinhokren (MZUSP 10557); Viseu (MPEG 5164, MPEG 6395, MPEG 6418, MPEG 7306, MPEG 7313, MPEG 7317, MPEG 7691, MPEG 11475, MPEG 11476, MPEG 12887, MPEG 13152, MPEG 14131, MPEG 15847); UHE Tucuruí (IBSP 46233). RONDÔNIA: Espigão d'Oeste (MPEG 21046). RORAIMA: Apiaú (MZUSP 10093). PERU: Ucayale (IBSP 14932).

ANEXO II. COORDENADAS GEOGRÁFICAS EM GRAUS DAS LOCALIDADES.

A) D. catesbyi

LOCALIDADE	Latitude	Longitude
BRASIL		
ACRE		
Manuel Urbano: Alto Rio Purus	8°52'S	69°18'W
Mato Grosso	8°07'S	71°42'W
Tarauacá	8°01'S	70°45'W
AMAZONAS		
Amanã: Boa Esperança	2°45'S	64°34'W
Benjamim Constant	4°22'S	70°12'W
Beruri	3°53'S	61°22'W
Borba	4°22'S	59°35'W
Iauaretê	0°37'S	69°12'W
Manaus: Reserva Ducke	3°06'S	60°12'W
Maraã	1°51'S	65°34'W
Nova Olinda	3°24'S	67°52'W
Presidente Figueiredo	2°18'S	60°12'W
Rio Ituxi	7°18'S	64°51W
Rio Javari	0°46'S	63°43'W
Tefé	3°21'S	64°42'W
Uarini [.] Mamirauá	2°59'S	65°06'W
Launes	0°01'S	67°12'W
Caupes	0 01 5	07 12 11
AMAPÁ		
Duas Bocas	1°25'N	50°57'W
Rio Tracajatuba	2°60'N	51°00'W
5		
BAHIA		
Feira de Santana	12°15'S	38°57'W
Ilhéus	14°46'S	39°02'W
Itabuna	14°00'S	39°16'W
Porto Seguro	16°26'S	39°03'W
Reserva Biológica Pau Brasil	16°26'S	39°03'W
-		
MARANHÃO		
Nova Vida	5°09W	44°57'W
Rio Turiaçu	1°36'S	45°16'W
Santa Inês	3°39'S	45°22'W
Santa Luzia do Paruá	2°31'S	45°46'W
MATO GROSSO		
Cáceres	16°42'S	57°40'W
Juina	11°22'S	58°44'W
Pontes e Lacerda	15°13'S	59°19'W
Rio Jauru	16°21'S	57°45'W
Vale de São Domingos	15°13'S	59°19'W
PARÁ		
Acará	1°57'S	48°11'W
Ananindeua	1°21'S	48°22'W
As Pedras, Rio Cuminá-Miri	1°19'S	55°42'W
Augusto Côrrea	1°12'S	46°37'W

Continua

Continuação

LOCALIDADE	Latitude	Longitude
PARÀ		
Belém	1°27'S	48°30'W
Benevides	1°21'S	48°14'W
Bragança	1°03'S	46°45'W
Capitão Poço	1°44'S	47°03'W
Castanhal	1°17'S	47°55'W
Conceição do Araguaia	8°15'S	49°15'W
Concórdia do Pará	2°00'S	47°54'W
Cumaru do Norte	7°49S	50°46'W
Curionópolis	6°06'S	49°35'W
Dom Eliseu	4°16'S	47°30'W
Igarape-Açu	1°07/S	47°36'W
	1°46'S	47°25'W
Itaituba	4°16'S	55°58'W
Maraba	5°21'5	49°06 W
Maritaha	0°34'5	$4/^{2}34$ W
Malagaa: Cariyanã	1.21.5	48°20 W
Obidos	1 48 5	50 42 W
Oblidos	1 34 5	55 50 W
Ourám	1 43 5	35 51 W 47º06'W
Parauanehas	6%03'S	47 00 W
Peive-Boi	1910'S	47°18'W
Santarém	2°26'S	54°42'W
Santo Antônio do Tauá	1°09'S	48°07'W
São Domingos do Canim	1°40'S	47°46'W
São Francisco do Pará	1°09'S	47°47'W
Tome-Acú	2°24'S	48°09'W
UHE Tucurui	3°45'S	49°40'W
Vigia	0°51'S	48°08'W
Viseu	1°11'S	46°08'W
^		
RONDONIA		
Espigão d'Oeste	11°31'S	61°06'W
Guajará-Mirim	10°18'S	64°33'W
Jaci-Parana	9°15'8	64°24'W
Monte Negro	10°17'S	63°19'W
Ouro Preto d'Oeste	10°39'8	62°18'W
Porto Velho Sonto Cruz do Sorro	8°45'5	63°54 W
Santa Cruz da Serra	10-13-5	63°12 W
Vilhena	0 33 5 129415	60°08'W
vimena	12 44 5	00 08 W
RORAIMA		
Cachoeira do Cujubim, Rio Catrimani	1°45'N	62°212'W
Ilha de Maracá	3°24'N	61°45'W
Rio Ajarani	1°46'N	61°24'W
TUCANTINS Die America LUIE Sente L. 1. 1	(00.00	40010037
KIO Araguaia: UHE Santa Isabel	6°06'S	48°19'W
BOLÍVIA		
Chuquisaca: Buenavista	19°55'S	64°55'W
La Paz: Espia	16°27'S	67°19'W
1		

Continuação

LOCALIDADE	Latitude	Longitude
BOLIVIA		
Beni: Huachi	14°03'S	63°30'W
Beni: Rurrenabaque	14°27'S	67°33'W
Pando: Manoa	9°39'S	65°27'W
Santa Cruz: Las Juntas	18°37'S	63°07'W
COLOMBIA Amazanas: Latiaia	101 215	60°56'W
Amazonas, Maralia	4 12 5	09 30 W
Anazonas. Morena	1 23 5	71 34 W
Dogota	4 40 N 6900'N	74 00 W
Meter Villevieweie	0 09 IN 4900/NI	75 05 W
Determination Deserts A sís	4°09'N	75°57 W
Putamayo: Puerto Asis	0°30'N	/6°29'W
EQUADOR		
Gualaquiza	3°03'S	78°00'W
Lago Agrio	0°03'N	76°52'W
Macas	2°39'S	78°00'W
Morona Santiago: Macas	2°18'S	78°06'W
Napo-Pastaza: Puerto Misahaulli	1°01'S	77°39'W
Puerto Libre	0°01'N	76°52'W
Riobamba	1°58'S	78°49'W
Santa Cecilia	0°03'N	76°55'W
GUYANA		
Georgetown	6°48'N	58°09'W
Kamakusa	5°36'N	59°52'W
Kartabo	6°39'N	59°48'W
Mahaica [·] Rio Demerara	6°48'N	58°09'W
Guyana: Paruima Mission	5°48'N	61°03'W
CUVANA EDANCESA		
Mana	5º12'N	54910'W
Pagina: Pio Oranu	J 13 N 1930'N	52°00'W
Righta. Rio Otapu Pio Camoni	4 JUIN 2012/N	52 09 W
Rio Speraine	5°16'N	52 24 W
Saul	2°26'N	52°12'W
Troits Sauts	5 50 N	JJ 12 W
Tions Suuts	2°15'N	52°52'W
PERU		
Ayacucho: Ayacucho	13°09'S	74°13'W
Ayacucho: Urubamba: Rio Comberciato	13°21'S	73°54'W
Cusco: Huadquina	13°06'S	72°39'W
Cusco: Marcapata	13°34'S	70°58'W
Cuzco	13°30'S	71°58'W
Junin: Junin	11°09'S	75°59'W
Junin: Perene	10°57'S	75°12'W
Loreto: Iquitos	3°44'S	73°14'W
Loreto: Pehas	3°19'S	71°48'W
Loreto: Requena: Rio Samiria	5.03'S	73°49'W
Loreto: Rio Ucavale	2°41'S	73°1/\W
Madre de Dios: Puerto Maldonado	12°36'S	69°10'W
Madre de Dios: Madre de Dios	12 303	70°04'W
Pasco: Oxanampa: Pozuzo	12 505	75°30'\\/
i asvo. Orapanipa. i uzuzu	10 03 3	75 50 W
B) D. pavonina

LOCALIDADE	Latitude	Longitude
BRASIL		
MARANHAO Nova Vida	5°09W	44°57'W
	5 07 11	11.57 11
PARÁ		
Acará	1°57'S	48°11'W
Ananindeua	1°21'S	48°22'W
Apeú	1°17'S	47°58'W
Barcarena	1°30'S	48°37'W
Belém	1°27'S	48°30'W
Bragança	1°03'S	46°45'W
Canindé, Rio Gurupi	2°31'S	46°30'W
Capitão Poço	1°44'S	47°03'W
Castanhal	1°17'S	47°55'W
Curuçá	0°43'S	47°50'W
Inhangapi	1°25'S	47°54'W
Itaituba-Jacareacanga	4°16'S	55°58'W
Marabá	5°21'S	49°06'W
Maracanã	0°35'S	47°35'W
Novo Progresso	7°08'S	55°22'W
Ourém	1°33'S	47°06'W
Paruá	2°31'S	45°42'W
Santarém Novo	0°55'S	47°23'W
Santo Antônio do Tauá	1°09'S	48°07'W
UHE Tucuruí	3°45'S	49°40'W
Vigia	0°51'S	48°08'W
Viseu	1°11'S	46°08'W
MATO GROSSO		
Claudia, fazenda Iracema	11°30'S	54°53'W
Vale de São Domingos	15°13'S	59°19'W
RONDÔNIA		
Espigão d' Oeste	11°31'S	61°06'W
RORAIMA		
Apiaú	2°39'N	61°09'W
PERU		
Ucayale	3°44'S	73°14'W

	Caráter	SEXO	Ν	MÉDIA	MEDIANA	MÍNIMO	MÁXIMO	SD
		Ŷ	211	179.2	179	163	200	5.4
	VE*	ð	212	187.3	188	165	213	5.8
	~~.	Ŷ	197	93.8	95	46	115	7.4
	SC*	ð	205	102.1	104	58	120	9.3
	a *	Ŷ	204	8.8	9	7	11	0.7
	SL	ð	201	8.9	9	8	11	0.6
S		Ŷ	206	10.7	11	8	13	0.8
2	IL	ð	198	10.6	11	8	14	0.9
E		Ŷ	202	1.1	1	1	3	0.3
, K	TA	ð	204	1.2	1	1	3	0.4
MB		Ŷ	202	1.9	2	1	4	0.2
SC	TP	ð	204	2.0	2	1	3	0.2
ğ		Ŷ	205	1.9	2	1	3	0.2
Õ	РО	ð	206	2.0	2	1	3	0.2
	Poo	Ŷ	204	1.9	2	1	3	0.4
	POO	ð	205	1.9	2	1	4	0.4
	MGO	Ŷ	211	18.1	17	13	37	2.9
	мсо	ð	205	19.3	19	14	32	3.2
	MOL*	Ŷ	210	9.0	9	4	16	1.9
	MCA*	8	205	10.5	11	3	18	2.1
		Ŷ	211	399.5	405.0	210.0	560.0	80.3
	CRC	ð	212	414.9	430.0	177.0	598.0	82.8
	0.0**	Ŷ	194	143.0	145.0	74.0	221.0	27.6
	CC**	ð	205	158.9	167.0	72.0	221.0	33.9
	CTTO +	Ŷ	194	541.7	550.0	295.0	766.0	104.4
	C10*	8	205	573.9	595.0	249.0	794.0	114.0
	001	Ŷ	210	11.3	11.4	7.7	16.5	1.4
	CCA	3	212	11.1	11.3	7.7	15.1	1.3
	LDO	9	206	3.0	3.0	1.8	4.1	0.4
	LKU	8	202	3.0	3.0	1.9	4.9	0.5
	CPO	Ŷ	206	1.4	1.5	0.9	2.2	0.2
	CKO	3	200	1.4	1.5	0.7	2.4	0.2
	IFR	P	210	3.3	3.4	2.3	4.6	0.4
SO	LIK	3	210	3.4	3.5	2.2	4.7	0.4
OI	CFR**	Ŷ	209	3.5	3.6	1.4	4.7	0.4
j.	UIK	ð	210	3.7	3.7	2.7	5.0	0.4
W	CoFR-O	Ŷ	211	2.5	2.6	1.7	3.4	0.3
CF O	COLKO	ð	210	2.6	2.6	1.9	3.4	0.3
Ő	CRO-Na	4	205	0.8	0.9	0.4	1.6	0.2
ž		ď	202	0.8	0.9	0.5	1.4	0.1
õ	CoNa-O	¥	210	2.4	2.5	1.4	3.3	0.3
IV		ď.	210	2.3	2.4	1.5	3.4	0.3
Η	CoPA-O	¥ 7	210	2.5	2.4	1./	3.7	0.2
		0	210	2.4	2.4	1.0	5.2	0.3
	DBO**	Ť Z	209	1.1	1.1	0.5	1.0	0.2
		0	209	3.8	3.8	0.5	1.0	0.2
	LPA	+ 2	20)	3.8	3.9	2.4	53	0.4
		Q Q	209	3.8	37	2.8	51	0.4
	CPA	*	210	3.7	3.8	2.6	4.9	0.4
		Ŷ	210	2.5	2.5	1.9	3.4	0.2
	HO**	* ~	209	2.7	2.7	1.8	4.3	0.3
		Ŷ	210	4.8	4.9	3.4	6.4	0.5
	DO	* ~	209	4.9	5.0	3.4	6.5	0.5
		Ŷ	211	3.3	3.4	2.2	4.4	0.4
	DN	8	206	3.3	3.4	2.1	4.2	0.4

ANEXO III. VARIAÇÃO DOS CARACTERES MERÍSTICOS E MORFOMÉTRICOS DE *Dipsas catesbyi*. Caracteres que apresentam dimorfismo sexual * ANOVA ** KRUSKAL-WALLIS.

	CARÁTER	SEXO	N	MÉDIA	MEDIANA	Mínimo	MÁXIMO	SD
	T/E*	Ŷ	44	198.8	200	184	211	6.3
	VE*	3	69	209.8	210	193	226	7.1
	0.0*	Ŷ	42	110.1	113	80	123	9.2
	SC*	3	67	117.5	119	87	130	8.4
	CT.	Ŷ	43	10.1	10	8	12	0.8
	SL	3	64	10.0	10	7	12	0.8
S		Ŷ	40	12.0	12	10	14	0.7
8	IL	3	63	11.9	12	10	14	0.9
IIIS	TD 4	Ŷ	41	2.2	2	1	3	0.5
SR (TA	3	65	2.0	2	1	3	0.5
ΞŪ.		Ŷ	41	2.8	3	2	3	0.4
SO	TP	3	65	2.7	3	1	3	0.5
AD	D O	Ŷ	40	0.5	1	0	2	0.5
D	РО	ð	67	0.6	1	0	2	0.5
	DOO	Ŷ	39	2.6	3	1	4	0.6
	POO	3	67	2.7	3	1	4	0.7
	Maa	Ŷ	44	23.2	23	17	29	2.5
	мсо	ð	70	23.4	23	16	34	2.9
		Ŷ	44	12.2	13	7	16	2.1
	MCA	ð	70	12.3	12	5	18	2.2
		0		2010	100.5	155.0	53 0 0	00.0
	CRC	¥ 1	44	396.9	422.5	175.0	520.0	89.0
	CAC	ď	70	439.3	453.5	180.0	570.0	83.1
	CC	¥	42	164.9	180.5	55.0	209.0	38.9
		ð	67	183.4	190.0	/5.0	245.0	38.4
	СТО	¥ 1	42	562.6	607.5	250.0	/10.0	120.7
		0	0/	620.9	045.0	255.0	815.0	120.5
	CCA	¥ 1	44	11.0	11.4	1.1	15.5	1.3
		0	10	2.0	2.0	2.7	15.5	1.5
	LRO	¥ 1	42	2.9	2.9	2.2	5.0	0.4
		0	42	3.0	5.0	2.0	4.1	0.4
	CRO*	Ť A	42	1.5	1.5	1.0	2.2	0.3
		0	44	2.1	1.5	0.9	2.1	0.3
	LFR	+ 1	60	2.2	3.2	2.5	1.2	0.4
SC		0	44	3.3	3.3	2.5	4.5	0.4
IC	CFR**	¥ 1	44	5.5	3.5	2.0	4.1	0.3
STR		0	44	3.0	3.0	2.2	4.5	0.4
MĚ	CoFR-O	Ť 1	44 60	2.4	2.4	1.7	3.1	0.3
CL O		0	42	2.4	2.5	1.7	5.0	0.5
l0F	CRO-Na	Ť 1	42	0.8	0.9	0.0	1.1	0.1
ž		0	44	0.8	0.9	0.0	1.3	0.1
õ	CoNa-O	+	44 68	1.7	1.7	1.0	2.7	0.4
DAI		0	44	2.5	2.6	1.0	3.1	0.3
-	CoPA-O	+	68	2.5	2.0	1.7	3.1	0.3
		0	44	1.2	1.2	0.6	1.8	0.3
	DBO	+	68	1.2	1.2	0.0	1.6	0.2
		0	44	3.7	3.8	27	4.9	0.2
	LPA	+	69	3.8	3.8	2.7	4.7	0.4
		Q Q	44	3.5	3.6	2.6	4.6	0.5
	CPA	+ ~	69	3.4	3 5	2.4	4 2	0.4
		Q Q	44	2 7	2.7	17	3.4	0.4
	но	+ 2	69	2.9	2.9	1.8	4.0	0.4
		Ģ	44	4.8	49	3.4	6.0	0.6
	DO	+ ~	69	49	49	3.5	6.0	0.5
		Q Q	44	3.2	32	23	4.2	0.5
	DN	+ 2	60	2.2	2.2	2.5	4 1	0.4
	DIN	0	09	3.2	3.2	2.2	4.1	0.4

ANEXO IV. VARIAÇÃO DOS CARACTERES MERÍSTICOS E MORFOMÉTRICOS DE *Dipsas pavonina*. Caracteres que apresentam dimorfismo sexual * ANOVA ** Kruskall-Wallis

ANEXO V. FREQÜÊNCIA DOS CARACTERES MERÍSTICOS E MORFOMÉTRICOS DE *D. catesbyi* E *D. pavonina*. Os valores em destaque correspondem à faixa em que se encontra a maioria (pelo menos 70%) dos indivíduos analisados quanto a cada caráter.

	Caráter	Condição	Dipsas catesbyi			Dipsas pavonina				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Calater	Condição	Fé	êmeas	Ν	Aachos	Fê	meas	М	achos
$ VE = \begin{vmatrix} 160 < x < 170 \\ 170 < x < 180 \\ 180 < x < 190 \\ 190 < x < 200 \\ 210 \\ x < 210 \\ x < 210 \\ x < 220 \\ x < 22$			Ν	%	Ν	%	Ν	%	Ν	%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$160 < x \le 170$	13	6.2	3	1.4	0	0.0	0	0.0
$ VE = \begin{matrix} 180 < x < 190 & 74 & 35.1 & 140 & 66.0 & 6 & 13.5 & 0 & 0.0 \\ 190 < x < 200 & 0 & 0.0 & 1 & 0.5 & 18 & 40.9 & 29 & 42.0 \\ 210 < x < 220 & 0 & 0.0 & 0 & 0.0 & 0 & 0.0 & 4 & 5.8 \\ 220 < x < 230 & 0 & 0.0 & 0 & 0.0 & 0 & 0.0 & 0 & 0.0 & 4 & 5.8 \\ \hline \\ x < 220 < x < 230 & 0 & 0.0 & 0 & 0.0 & 0 & 0.0 & 0 & 0.0 & 0 \\ 80 < x < 70 & 2 & 10 & 2 & 10 & 0 & 0.0 & 0 & 0.0 \\ 80 < x < 70 & 2 & 10 & 2 & 10 & 0 & 0.0 & 0 & 0.0 \\ 80 < x < 70 & 2 & 10 & 2 & 10 & 2 & 48 & 1 & 15 \\ 90 < x < 100 & 126 & 64.0 & 44 & 21.5 & 2 & 48 & 1 & 15 \\ 90 < x < 100 & 126 & 64.0 & 44 & 21.5 & 2 & 48 & 2 & 3.0 \\ 100 < x < 100 & 20 & 10.2 & 113 & 55.1 & 13 & 31.0 & 8 & 11.9 \\ 110 < x < 120 & 10 & 2 & 10 & 0 & 0 & 0 & 0 & 0 & 1 & 0.8 \\ \hline \\ SL & 9 & 109 & 53.6 & 126 & 62.9 & 1 & 1.2 & 2 & 3.9 \\ 110 < x < 100 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0.8 \\ \hline \\ SL & 9 & 109 & 53.6 & 126 & 62.4 & 14 & 20.0 & 15.4 \\ 11 & 5 & 22 & 11 & 33.10 & 8 & 11.9 \\ 110 < x < 120 & 10 & 2 & 113 & 55.1 & 12 & 31.0 & 15.4 \\ 11 & 5 & 2.2 & 11 & 33.10 & 14.4 \\ 20 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $		170 < x <= 180	120	56.9	16	7.5	0	0.0	0	0.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	VE	180 < x <= 190	74	35.1	140	66.0	6	13.5	0	0.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1 L	190 < x <= 200	4	1.9	51	24.1	19	43.2	8	11.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		200 < x <= 210	0	0.0	1	0.5	18	40.9	29	42.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		210 <x <="220</td"><td>0</td><td>0.0</td><td>1</td><td>0.5</td><td>1</td><td>2.3</td><td>28</td><td>40.6</td></x>	0	0.0	1	0.5	1	2.3	28	40.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		220 <x <="230</td"><td>0</td><td>0.0</td><td>0</td><td>0.0</td><td>0</td><td>0.0</td><td>4</td><td>5.8</td></x>	0	0.0	0	0.0	0	0.0	4	5.8
$ \begin{array}{c} \begin{array}{c} 40 < x < 50 & 1 & 0.5 & 0 & 0.0 & 0 & 0.0 & 0 & 0.0 \\ 50 < x < -70 & 2 & 1.0 & 2 & 1.0 & 0 & 0.0 & 0.0 \\ 70 < x < < 80 & 3 & 1.5 & 6 & 2.9 & 1 & 2.4 & 0 & 0.0 \\ 70 < x < < 80 & 3 & 1.5 & 6 & 2.9 & 1 & 2.4 & 0 & 0.0 \\ 90 < x < -100 & 126 & 64.0 & 44 & 21.5 & 2 & 4.8 & 1 & 1.5 \\ 90 < x < -120 & 126 & 64.0 & 44 & 21.5 & 2 & 4.8 & 2 & 3.0 \\ 1100 < x < -120 & 10 & 20 & 10.2 & 113 & 55.1 & 13 & 31.0 & 8 & 14.8 \\ 120 < x < < 120 & 1 & 0.5 & 28 & 13.7 & 22 & 52.4 & 30 & 44.8 \\ 120 < x < < 130 & 0 & 0.0 & 0 & 0.0 & 0 & 0.0 & 1 & 0.8 \\ 8 & 69 & 33.6 & 48 & 23.9 & 1 & 1.2 & 2 & 3.9 \\ 11 & 5 & 2.2 & 1 & 0.7 & 20 & 24.4 & 420 & 10 & 15.4 \\ 10 & 21 & 10.4 & 26 & 12.8 & 32 & 47.0 & 36 & 55.4 \\ 11 & 5 & 2.2 & 1 & 0.7 & 20 & 24.4 & 422.3 \\ 12 & 0 & 0.0 & 0 & 0.0 & 2 & 2.3 & 2 & 2.3 \\ 0 & 0 & 0 & 0.0 & 1 & 0.5 & 0 & 0.0 & 0 & 0.0 \\ 5 & 0 & 0.0 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 \\ 5 & 0 & 0.0 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 \\ 5 & 0 & 0.0 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 \\ 6 & 0 & 0.0 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 \\ 5 & 0 & 0.0 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 \\ 5 & 0 & 0.0 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 \\ 6 & 0 & 0.0 & 2 & 0.5 & 0 & 0.0 & 0 & 0.0 \\ 5 & 0 & 0.0 & 1 & 0.2 & 2 & 3.5 & 1 & 2.3 \\ 12 & 0 & 0.0 & 0 & 0 & 0 & 0 & 0.0 \\ 5 & 0 & 0.0 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 \\ 5 & 0 & 0.0 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 \\ 6 & 0 & 0.0 & 2 & 0.5 & 0 & 0.0 & 0 & 0.0 \\ 5 & 0 & 0.0 & 0 & 0 & 0 & 0 & 0.0 \\ 1 & 4.5 & 76 & 37.3 & 59 & 25.7 & 2 & 4.7 & 2 & 3.1 \\ 4.6 & 4.2 & 21.2 & 53 & 27.5 & 22 & 50.6 & 32 & 49.2 \\ 4.8 & 1 & 2.3 & 0 & 0.0 & 0 & 0.0 \\ 5.6 & 73 & 36.0 & 77 & 40.1 & 3 & 7.0 & 1 & 2.3 \\ 4.6 & 1 & 2.3 & 0 & 0.0 & 0 & 0.0 \\ 5.6 & 73 & 36.0 & 77 & 40.1 & 3 & 7.0 & 1 & 2.3 \\ 4.7 & 1 & 0.5 & 1 & 0.49 & 1 & 2.3 & 0 & 0.0 \\ 10 & 70 & 34.4 & 73 & 36.3 & 2 & 26.6 & 3.2 & 49.2 \\ 1.6 & 10 & 70 & 34.4 & 73 & 36.3 & 2 & 26.6 & 4 & 3.1 \\ 1.6 & 1.6 & 2.7 & 133 & 2.7 & 133 & 2.4 & 61.5 & 29 & 47.2 \\ 1.3 & 2 & 1.0 & 2 & 0.8 & 5 & 15.4 & 10 & 16.5 \\ 1.4 & 0 & 0.0 & 10 & 0 & 0.0 & 2 & 2.6 & 4 & 3.1 \\ 1.6 & 1.5 & 142 & 69.3 & 148 & 74.4 & 20 & 50.0 & 40$										
$ SC = \begin{cases} 50 < x <= 60 & 0 & 0.0 & 1 & 0.5 & 0 & 0.0 & 0 & 0.0 \\ 60 < x <= 70 & 2 & 1.0 & 2 & 1.0 & 2.0 & 0 & 0.0 & 0.0 \\ 80 < x <= 90 & 44 & 22.3 & 11 & 54 & 2 & 48 & 1 & 1.5 \\ 90 < x <= 100 & 126 & 64.0 & 44 & 21.5 & 2 & 48 & 2 & 3.0 \\ 100 < x <= 120 & 1 & 0.5 & 28 & 13.7 & 12 & 52.4 & 30 & 44.8 \\ 120 < x <= 130 & 0 & 0.0 & 0 & 0.0 & 2 & 4.8 & 26 & 38.8 \\ 120 < x <= 130 & 0 & 0.0 & 0 & 0.0 & 0 & 0.0 & 1 & 0.8 \\ 8 & 69 & 33.6 & 48 & 23.9 & 1 & 1.2 & 2 & 3.9 \\ SL & 9 & 109 & 53.6 & 126 & 62.4 & 14 & 20.0 & 10 & 15.4 \\ 11 & 5 & 2.2 & 1 & 0.7 & 20 & 29.4 & 14 & 22.3 \\ 10 & 21 & 10.4 & 26 & 12.8 & 32 & 47.0 & 36 & 55.4 \\ 11 & 5 & 2.2 & 1 & 0.7 & 20 & 29.4 & 14 & 22.3 \\ 12 & 0 & 0.0 & 0 & 1 & 0.5 & 0 & 0.0 & 0 & 0.0 \\ 6 & 0 & 0.0 & 1 & 0.5 & 0 & 0.0 & 0 & 0.0 \\ 5 & 0 & 0.0 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 \\ 5 & 0 & 0.0 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 \\ 3.4 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 & 0 & 0.0 \\ 3.4 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 & 0.0 \\ 3.4 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 & 0.0 \\ 3.4 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 & 0.0 \\ 3.4 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 \\ 3.4 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 \\ 3.4 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 \\ 3.4 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 \\ 3.4 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 \\ 3.4 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 \\ 3.4 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 \\ 3.4 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 \\ 3.4 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 \\ 3.4 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 \\ 3.4 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 \\ 5.6 & 73 & 36.0 & 77 & 40.1 & 1 & 2.3 & 0 & 0.0 \\ 5.6 & 73 & 36.0 & 77 & 40.1 & 1 & 2.3 & 0 & 0.0 \\ 5.6 & 73 & 36.0 & 77 & 40.1 & 1 & 2.3 & 0 & 0.0 \\ 5.6 & 73 & 36.0 & 77 & 40.1 & 1 & 7.3 & 12 & 23.1 \\ 1.1 & 92 & 44.8 & 79 & 39.6 & 7 & 18.0 & 19 & 28.3 \\ 1.1 & 1.1 & 92 & 44.8 & 79 & 39.6 & 7 & 18.0 & 19 & 28.3 \\ 1.1 & 1.1 & 92 & 44.8 & 79 & 39.6 & 7 & 18.0 & 19 & 28.3 \\ 1.1 & 1.1 & 92 & 44.8 & 79 & 39.6 & 7 & 18.0 & 19 & 28.3 \\ 1.1 & 1.1 & 92 & 44.8 & 79 & 39.6 & 7 & 18.0 & 19 & 28.3 \\ 1.1 & 1.1 & 92 & 44.8 & 79 & 39.6 & 7 & 18.0 & 19 & 28.3 \\ 1.1 & 1.4 & 0 & 0.0 & 1 & 0.2 & 2 & 2.6 & 5 & 4.7 \\ 1.4 & 0 & 0.0 & 1 & $		$40 < x \le 50$	1	0.5	0	0.0	0	0.0	0	0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$50 < x \le 60$	0	0.0	1	0.5	0	0.0	0	0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		60 < x <= 70	2	1.0	2	1.0	0	0.0	0	0.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SC	70 < x <= 80	3	1.5	6	2.9	1	2.4	0	0.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	50	80 < x <= 90	44	22.3	11	5.4	2	4.8	1	1.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$90 < x \le 100$	126	64.0	44	21.5	2	4.8	2	3.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$100 < x \le 110$	20	10.2	113	55.1	13	31.0	8	11.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$110 < x \le 120$	1	0.5	28	13.7	22	52.4	30	44.8
$ SL = \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$		$120 < x \le 130$	0	0.0	0	0.0	2	4.8	26	38.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_								
SL 8 69 33.6 48 23.9 1 1 1.2 2 3.9 SL 9 109 53.6 126 62.4 14 20.0 10 15.4 10 21 10.4 26 12.8 32 47.0 36 55.4 11 5 2.2 1 0.7 20 29.4 14 22.3 12 0 0.0 0 0.0 2 2.3 2 2.3 0 0 0 0.0 1 0.2 0.0 0 0 0.0 4 0 0.0 1 0.2 0 0.0 0 0.0 5 0 0.0 1 0.2 0 0.0 0 0.0 6 0 0.0 2 0.5 0 0.0 0 0.0 6 0 0.0 2 0.5 0 0.0 0 0.0 3.4 1 0.2 0 0.0 0 0 0.0 3.4 1 0.2 1 0.2 0 0.0 0 0.0 3.5 1 0.2 1 0.2 2 3.5 1 2.3 SLO 4.5 76 37.3 59 25.7 2 4.7 2 3.1 4.6 42 21.2 53 27.5 22 50.6 32 49.2 4.4 8 1 2.2 3 0 0.0 1 1 2.3 0 0.0 5.7 8 4.0 0.7 7 40.1 3 7.0 1 2.3 4.7 1 0.5 2 1.2 7 15.3 12 19.2 5.7 8 1 0.2 1 0.4 1 3 7.0 1 2.3 4.7 1 0.5 2 1.2 7 15.3 12 19.2 5.7 8 1 0.2 1 0.4 1 3 7.0 1 2.3 4.7 1 0.5 2 1.2 7 15.3 12 19.2 5.7 8 1 0.2 1 0.4 1 3 7.0 1 2.3 4.7 1 0.5 2 1.2 7 15.3 12 19.2 5.7 8 1 0.2 1 0.4 9 1 2.3 0 0.0 8 1 0.2 2 0.7 0 0.0 0 0.0 9 13 6.4 18 9.0 0 0.0 0 0.0 9 13 6.4 18 9.0 0 0.0 0 0.0 10 70 34.4 73 36.3 2 2.6 4 3.1 11.1 12 22 3.1 6.7 1 0.5 1 0.49 1 2.3 0 0.0 10 70 34.4 73 36.3 2 2.6 4 3.1 11.2 27 13.3 27 13.3 24 61.5 29 47.2 13 2 10.2 2 0.7 0 0.0 0 0.0 9 13 6.4 18 9.0 0 0.0 0 0.0 9 13 6.4 18 9.0 0 0.0 0 0.0 10 10 70 34.4 73 36.3 2 2.6 4 3.1 11.4 0 0.0 1 0.2 2 2.6 5 4.7 11.5 11.6 7 1 0.5 1 0.49 1 2.3 0 0.0 10 10 70 34.4 73 36.3 2 2.6 4 3.1 11.6 2.6 0 0.0 1 0.2 2 2.6 5 4.7 11.6 5.0 13 35.9 20 31.2 11.6 15.4 10 16.5 1 0.49 1 2.3 0 0.0 10 10 70 34.4 73 36.3 2 2.6 4 3.1 11.5 15.4 10 16.5 1 1.0 4.9 1 2.3 0 0.0 10 10 70 34.4 73 36.3 2 2.6 4 3.1 11.6 15.2 29 47.2 13 2 2 1.0 2 0.8 5 15.4 10 16.5 1.0 14 0 0.0 1 0.2 2 2.6 5 4.7 11.6 15.2 29 47.2 13 2 2.10 2 0.8 5 15.4 10 16.5 1.0 14 0 0.0 1 0.2 2 2.6 5 4.7 14 0 0.0 1 0.0 4 5.0 11 3 35.9 20 31.2 15.5 11.6 1.6 1.5 29 47.2 16.5 1.4 0 0.0 0 0.0 0.0 1.0 2 2.6 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		7	0	0.0	0	0.0	0	0.0	1	0.8
SL 9 109 53.6 126 62.4 14 20.0 10 15.4 10 21 10.4 26 12.8 32 47.0 36 55.4 11 5 2.2 1 0.7 20 29.4 14 22.3 12 0 0.0 0 0.0 2 2.3 2 2.3 12 0 0.0 0 0.0 2 2.3 2 2.3 12 0 0.0 0 0.0 2 2.3 2 2.3 14 0 0.0 1 0.2 0 0.0 0 0.0 5 0 0.0 1 0.2 0 0.0 0 0.0 6 0 0.0 2 0.5 0 0.0 0 0.0 6 0 0.0 2 0.5 0 0.0 0 0.0 3.4 1 0.2 0 0.0 0 0 0.0 3.4 1 0.2 1 0.0 0 0 0.0 0 0.0 3.4 1 0.2 1 0.2 2 3.5 1 2.3 3.6 0 0.0 0 0 0.0 1 1.2 5 7.7 SLO 4.5 76 37.3 59 25.7 2 4.7 2 3.1 4.6 42 21.2 53 27.5 22 506 33 49.2 4.8 1 2.3 0 0.0 1 2.3 0 0.0 5.6 73 36.0 77 40.1 3 7.0 1 2.3 4.4 1 0.5 2 1.0 2.1 2.3 10 0.0 5.6 73 36.0 77 40.1 3 7.0 1 2.3 4.7 1 0.5 2 1.2 7 15.3 12 19.2 5.7 8 4.0 5 3.2 5 11.8 7 11.5 5.8 1 1.2 2 3.1 1 1.2 2 3.1 6.7 1 0.44 13 2.3 0 0.0 5.6 73 36.0 77 40.1 3 7.0 1 2.3 4.7 1 0.5 2 1.2 7 15.3 12 19.2 5.7 8 4.0 5 3.2 5 11.8 7 11.5 5.8 1 1.2 2 3.1 1 1.2 2 3.1 6.7 1 0.49 1 2.3 0 0.0 10 70 34.4 73 36.3 2 2.6 4 3.1 11.2 2 3.1 1 1.5 5.8 1 0.2 2 0.7 0 0.0 0 0.0 9 13 6.4 18 9.0 0 0.0 0 0.0 9 13 6.4 18 9.0 0 0.0 0 0.0 10 70 34.4 73 36.3 2 2.6 4 3.1 11.2 12 2.7 13.3 27 13.3 24 61.5 29 47.2 13 2 1.0 2 0.8 5 15.4 10 16.5 14 0 0.0 1 0.2 2 2.6 5 4.7 14 0 0.0 1 0.2 2 2.6 0 3.1 15 1.5 142 69.3 148 74.4 20 50.0 40 60.9 16 1.5 29 47.2 17 1.5 142 69.3 148 74.4 20 50.0 3.3 9 2 3.1 1.5 1.5 1.4 10 16.5 1.4 0 0.0 1 0.2 2 2.6 5 4.7 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5		8	69	33.6	48	23.9	1	1.2	2	3.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SL	9	109	53.6	126	62.4	14	20.0	10	15.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10	21	10.4	26	12.8	32	47.0	36	55.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		11	5	2.2	1	0.7	20	29.4	14	22.3
$ILG = \begin{bmatrix} 0 & 0 & 0.0 & 1 & 0.5 & 0 & 0.0 & 0 & 0.0 \\ 4 & 0 & 0.0 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 \\ 5 & 0 & 0.0 & 2 & 0.5 & 0 & 0.0 & 0 & 0.0 \\ 3 - 4 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 & 0 & 0.0 \\ 3 - 5 & 1 & 0.2 & 1 & 0.2 & 2 & 3.5 & 1 & 2.3 \\ 3 - 6 & 0 & 0.0 & 0 & 0 & 0 & 1 & 1.2 & 5 & 7.7 \\ 4 - 5 & 76 & 37.3 & 59 & 25.7 & 2 & 4.7 & 2 & 3.1 \\ 4 - 6 & 42 & 21.2 & 53 & 27.5 & 22 & 50.6 & 32 & 49.2 \\ 4 - 8 & 1 & 2.3 & 0 & 0 & 1 & 2.3 & 0 & 0.0 \\ 5 - 6 & 73 & 36.0 & 77 & 40.1 & 3 & 7.0 & 1 & 2.3 \\ 4 - 7 & 1 & 0.5 & 2 & 1.2 & 7 & 15.3 & 12 & 19.2 \\ 5 - 7 & 8 & 4.0 & 5 & 3.2 & 5 & 11.8 & 7 & 11.5 \\ 5 - 8 & 1 & 1.2 & 2 & 3.1 & 1 & 1.2 & 2 & 3.1 \\ 6 - 7 & 1 & 0.5 & 1 & 0.49 & 1 & 2.3 & 0 & 0.0 \\ 10 & 70 & 34.4 & 73 & 36.3 & 2 & 2.6 & 4 & 3.1 \\ 12 & 27 & 13.3 & 27 & 13.3 & 24 & 61.5 & 29 & 47.2 \\ 13 & 2 & 1.0 & 2 & 0.8 & 5 & 15.4 & 10 & 16.5 \\ 14 & 0 & 0.0 & 1 & 0.2 & 2 & 2.6 & 5 & 4.7 \\ ILG & 1-6 & 2 & 1.0 & 10 & 5.0 & 13 & 35.9 & 20 & 31.2 \\ ILG & 1-6 & 2 & 1.0 & 10 & 5.0 & 13 & 35.9 & 20 & 31.2 \\ ILG & 1-6 & 2 & 1.0 & 10 & 5.0 & 13 & 35.9 & 20 & 31.2 \\ ILG & 1-6 & 2 & 1.0 & 10 & 5.0 & 13 & 35.9 & 20 & 31.2 \\ ILG & 1-6 & 2 & 1.0 & 10 & 5.0 & 13 & 35.9 & 20 & 31.2 \\ 1-5 & 142 & 69.3 & 148 & 74.4 & 20 & 50.0 & 40 & 60.9 \\ 1-6 & 2 & 1.0 & 10 & 5.0 & 13 & 35.9 & 20 & 31.2 \\ 2-5 & 0 & 0.0 & 0 & 0.0 & 0 & 0.0 & 2 & 2.6 & 2 & 3.1 \\ 1-5 & 142 & 69.3 & 148 & 74.4 & 20 & 50.0 & 40 & 60.9 \\ 1-6 & 2 & 1.0 & 10 & 5.0 & 13 & 35.9 & 20 & 31.2 \\ 2-7 & 0 & 0.0 & 0 & 0.0 & 0 & 0.0 & 2 & 2.6 & 2 & 3.1 \\ 1-5 & 12 & 27 & 0 & 0.0 & 0 & 0.0 & 2 & 2.6 & 0 & 0.0 \\ 1-6 & 2-6 & 0 & 0.0 & 0 & 0.0 & 2 & 2.6 & 0 & 0.0 \\ 1-6 & 2-6 & 0 & 0.0 & 0 & 0.0 & 2 & 2.6 & 0 & 0.0 \\ 1-6 & 2-7 & 0 & 0.0 & 0 & 0.0 & 2 & 2.6 & 0 & 0.0 \\ 1-6 & 2-7 & 0 & 0.0 & 0 & 0.0 & 2 & 2.6 & 0 & 0.0 \\ 1-6 & 2-7 & 0 & 0.0 & 0 & 0.0 & 2 & 2.6 & 0 & 0.0 \\ 1-6 & 2-7 & 0 & 0.0 & 0 & 0.0 & 2 & 2.6 & 0 & 0.0 \\ 1-6 & 2-7 & 0 & 0.0 & 0 & 0.0 & 2 & 2.6 & 0 & 0.0 \\ 1-6 & 2-7 & 0 & 0.0 & 0 & 0.0 & 0 & 0 & 0 & 0.0 \\ 1-6 & 2-7 & 0 & 0.0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$		12	0	0.0	0	0.0	2	2.3	2	2.3
$ILG = \begin{bmatrix} 0 & 0 & 0.0 & 1 & 0.3 & 0 & 0.0 & 0 & 0.0 \\ 4 & 0 & 0.0 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 \\ 5 & 0 & 0.0 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 \\ 6 & 0 & 0.0 & 2 & 0.5 & 0 & 0.0 & 0 & 0.0 \\ 3-4 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 & 0 & 0.0 \\ 3-5 & 1 & 0.2 & 1 & 0.2 & 2 & 3.5 & 1 & 2.3 \\ 3-6 & 0 & 0.0 & 0 & 0.0 & 1 & 1.2 & 5 & 7.7 \\ 4-5 & 76 & 37.3 & 59 & 25.7 & 2 & 4.7 & 2 & 3.1 \\ 4-6 & 42 & 21.2 & 53 & 27.5 & 22 & 50.6 & 32 & 49.2 \\ 4+8 & 1 & 2.3 & 0 & 0.0 & 1 & 2.3 & 0 & 0.0 \\ 5-6 & 73 & 36.0 & 77 & 40.1 & 3 & 7.0 & 1 & 2.3 \\ 4-7 & 1 & 0.5 & 2 & 1.2 & 7 & 15.3 & 12 & 19.2 \\ 5-7 & 8 & 4.0 & 5 & 3.2 & 5 & 11.8 & 7 & 11.5 \\ 5-8 & 1 & 1.2 & 2 & 3.1 & 1 & 1.2 & 2 & 3.1 \\ 6-7 & 1 & 0.5 & 1 & 0.49 & 1 & 2.3 & 0 & 0.0 \\ \end{bmatrix}$		0	0	0.0	1	0.5	0	0.0	0	0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0	0.0	1	0.5	0	0.0	0	0.0
$ ILG = \begin{bmatrix} 3 & 0 & 0.0 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 \\ 6 & 0 & 0.0 & 2 & 0.5 & 0 & 0.0 & 0 & 0.0 \\ 3.4 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 & 0 & 0.0 \\ 3.5 & 1 & 0.2 & 1 & 0.2 & 2 & 3.5 & 1 & 2.3 \\ 3.6 & 0 & 0.0 & 0 & 0.0 & 1 & 1.2 & 5 & 7.7 \\ 4.5 & 76 & 37.3 & 59 & 25.7 & 2 & 4.7 & 2 & 3.1 \\ 4.6 & 42 & 21.2 & 53 & 27.5 & 22 & 50.6 & 32 & 49.2 \\ 4.8 & 1 & 2.3 & 0 & 0.0 & 1 & 2.3 & 0 & 0.0 \\ 5.6 & 73 & 36.0 & 77 & 40.1 & 3 & 7.0 & 1 & 2.3 \\ 4.7 & 1 & 0.5 & 2 & 1.2 & 7 & 15.3 & 12 & 19.2 \\ 5.7 & 8 & 4.0 & 5 & 3.2 & 5 & 11.8 & 7 & 11.5 \\ 5.8 & 1 & 1.2 & 2 & 3.1 & 1 & 1.2 & 2 & 3.1 \\ 6.7 & 1 & 0.5 & 1 & 0.49 & 1 & 2.3 & 0 & 0.0 \\ \end{bmatrix} $		4	0	0.0	1	0.2	0	0.0	0	0.0
$ILG = \begin{bmatrix} b & 0 & 0.0 & 2 & 0.5 & 0 & 0.0 & 0 & 0.0 \\ 3.4 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 & 0 & 0.0 \\ 3.5 & 1 & 0.2 & 1 & 0.2 & 2 & 3.5 & 1 & 2.3 \\ 3.6 & 0 & 0.0 & 0 & 0.0 & 1 & 1.2 & 5 & 7.7 \\ 4.5 & 76 & 37.3 & 59 & 25.7 & 2 & 4.7 & 2 & 3.1 \\ 4.6 & 42 & 21.2 & 53 & 27.5 & 22 & 50.6 & 32 & 49.2 \\ 4.8 & 1 & 2.3 & 0 & 0.0 & 1 & 2.3 & 0 & 0.0 \\ 5.6 & 73 & 36.0 & 77 & 40.1 & 3 & 7.0 & 1 & 2.3 \\ 4.7 & 1 & 0.5 & 2 & 1.2 & 7 & 15.3 & 12 & 19.2 \\ 5.7 & 8 & 4.0 & 5 & 3.2 & 5 & 11.8 & 7 & 11.5 \\ 5.8 & 1 & 1.2 & 2 & 3.1 & 1 & 1.2 & 2 & 3.1 \\ 6.7 & 1 & 0.5 & 1 & 0.49 & 1 & 2.3 & 0 & 0.0 \\ \end{bmatrix}$		5	0	0.0	1	0.2	0	0.0	0	0.0
$ILG = \begin{bmatrix} 3.4 & 1 & 0.2 & 0 & 0.0 & 0 & 0.0 & 0 & 0.0 \\ 3.5 & 1 & 0.2 & 1 & 0.2 & 2 & 3.5 & 1 & 2.3 \\ 3.6 & 0 & 0.0 & 0 & 0.0 & 1 & 1.2 & 5 & 7.7 \\ 4.5 & 76 & 37.3 & 59 & 25.7 & 2 & 4.7 & 2 & 3.1 \\ 4.6 & 42 & 21.2 & 53 & 27.5 & 22 & 50.6 & 32 & 49.2 \\ 4.8 & 1 & 2.3 & 0 & 0.0 & 1 & 2.3 & 0 & 0.0 \\ 5.6 & 73 & 36.0 & 77 & 40.1 & 3 & 7.0 & 1 & 2.3 \\ 4.7 & 1 & 0.5 & 2 & 1.2 & 7 & 15.3 & 12 & 19.2 \\ 5.7 & 8 & 4.0 & 5 & 3.2 & 5 & 11.8 & 7 & 11.5 \\ 5.8 & 1 & 1.2 & 2 & 3.1 & 1 & 1.2 & 2 & 3.1 \\ 6.7 & 1 & 0.5 & 1 & 0.49 & 1 & 2.3 & 0 & 0.0 \\ \end{bmatrix}$		6	0	0.0	2	0.5	0	0.0	0	0.0
$ILG = \begin{bmatrix} 3-5 & 1 & 0.2 & 1 & 0.2 & 2 & 3.5 & 1 & 2.5 \\ 3-6 & 0 & 0.0 & 0 & 0.0 & 1 & 1.2 & 5 & 7.7 \\ 4-5 & 76 & 37.3 & 59 & 25.7 & 2 & 4.7 & 2 & 3.1 \\ 4-6 & 42 & 21.2 & 53 & 27.5 & 22 & 50.6 & 32 & 49.2 \\ 4-8 & 1 & 2.3 & 0 & 0.0 & 1 & 2.3 & 0 & 0.0 \\ 5-6 & 73 & 36.0 & 77 & 40.1 & 3 & 7.0 & 1 & 2.3 \\ 4-7 & 1 & 0.5 & 2 & 1.2 & 7 & 15.3 & 12 & 19.2 \\ 5-7 & 8 & 4.0 & 5 & 3.2 & 5 & 11.8 & 7 & 11.5 \\ 5-8 & 1 & 1.2 & 2 & 3.1 & 1 & 1.2 & 2 & 3.1 \\ 6-7 & 1 & 0.5 & 1 & 0.49 & 1 & 2.3 & 0 & 0.0 \\ \end{bmatrix}$ $IL = \begin{bmatrix} 8 & 1 & 0.2 & 2 & 0.7 & 0 & 0.0 & 0 & 0.0 \\ 9 & 13 & 6.4 & 18 & 9.0 & 0 & 0.0 & 0.0 \\ 10 & 70 & 34.4 & 73 & 36.3 & 2 & 2.6 & 4 & 3.1 \\ 11 & 92 & 44.8 & 79 & 39.6 & 7 & 18.0 & 19 & 28.3 \\ 12 & 27 & 13.3 & 27 & 13.3 & 24 & 61.5 & 29 & 47.2 \\ 13 & 2 & 1.0 & 2 & 0.8 & 5 & 15.4 & 10 & 16.5 \\ 14 & 0 & 0.0 & 1 & 0.2 & 2 & 2.6 & 5 & 4.7 \\ ILG = \begin{bmatrix} 1-4 & 61 & 29.7 & 41 & 20.6 & 3 & 3.9 & 2 & 3.1 \\ 1-5 & 142 & 69.3 & 148 & 74.4 & 20 & 50.0 & 40 & 60.9 \\ 1-6 & 2 & 1.0 & 10 & 5.0 & 13 & 35.9 & 20 & 31.2 \\ 2-5 & 0 & 0.0 & 0 & 0.0 & 0.0 & 4 & 5.1 & 1 & 1.6 \\ 2-6 & 0 & 0.0 & 0 & 0.0 & 0.0 & 2 & 2.6 & 2 & 3.1 \\ 2-7 & 0 & 0.0 & 0 & 0.0 & 0.0 & 2 & 2.6 & 0 & 0.0 \end{bmatrix}$		3-4	1	0.2	0	0.0	0	0.0	0	0.0
$ILG = \begin{bmatrix} 3-6 & 0 & 0.0 & 0 & 0.0 & 1 & 1.2 & 5 & 7.7 \\ 37.3 & 59 & 25.7 & 2 & 4.7 & 2 & 3.1 \\ 4-6 & 42 & 21.2 & 53 & 27.5 & 22 & 50.6 & 32 & 49.2 \\ 4-8 & 1 & 2.3 & 0 & 0.0 & 1 & 2.3 & 0 & 0.0 \\ 5-6 & 73 & 36.0 & 77 & 40.1 & 3 & 7.0 & 1 & 2.3 \\ 4-7 & 1 & 0.5 & 2 & 1.2 & 7 & 15.3 & 12 & 19.2 \\ 5-7 & 8 & 4.0 & 5 & 3.2 & 5 & 11.8 & 7 & 11.5 \\ 5-8 & 1 & 1.2 & 2 & 3.1 & 1 & 1.2 & 2 & 3.1 \\ 6-7 & 1 & 0.5 & 1 & 0.49 & 1 & 2.3 & 0 & 0.0 \\ 9 & 13 & 6.4 & 18 & 9.0 & 0 & 0.0 & 0 & 0.0 \\ 10 & 70 & 34.4 & 73 & 36.3 & 2 & 2.6 & 4 & 3.1 \\ 11 & 92 & 44.8 & 79 & 39.6 & 7 & 18.0 & 19 & 28.3 \\ 12 & 27 & 13.3 & 27 & 13.3 & 24 & 61.5 & 29 & 47.2 \\ 13 & 2 & 1.0 & 2 & 0.8 & 5 & 15.4 & 10 & 16.5 \\ 14 & 0 & 0.0 & 1 & 0.2 & 2 & 2.6 & 5 & 4.7 \\ ILG & 1-4 & 61 & 29.7 & 41 & 20.6 & 3 & 3.9 & 2 & 3.1 \\ 1-5 & 142 & 69.3 & 148 & 74.4 & 20 & 50.0 & 40 & 60.9 \\ 1-6 & 2 & 1.0 & 10 & 5.0 & 13 & 35.9 & 20 & 31.2 \\ 2-5 & 0 & 0.0 & 0 & 0.0 & 0 & 0.0 & 4 & 5.1 & 1 & 16.5 \\ 2-6 & 0 & 0.0 & 0 & 0.0 & 2 & 2.6 & 0 & 0.0 \\ 2-7 & 0 & 0.0 & 0 & 0.0 & 2 & 2.6 & 0 & 0.0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2.6 & 0 & 0.0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2.6 & 0 & 0.0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $		3-5	1	0.2	1	0.2	2	3.5	Ĩ	2.3
$ILG = \begin{bmatrix} 4.5 & 76 & 37.3 & 59 & 25.7 & 2 & 4.7 & 2 & 3.1 \\ 4.6 & 42 & 21.2 & 53 & 27.5 & 22 & 50.6 & 32 & 49.2 \\ 4.8 & 1 & 2.3 & 0 & 0.0 & 1 & 2.3 & 0 & 0.0 \\ 5.6 & 73 & 36.0 & 77 & 40.1 & 3 & 7.0 & 1 & 2.3 \\ 4.7 & 1 & 0.5 & 2 & 1.2 & 7 & 15.3 & 12 & 19.2 \\ 5.7 & 8 & 4.0 & 5 & 3.2 & 5 & 11.8 & 7 & 11.5 \\ 5.8 & 1 & 1.2 & 2 & 3.1 & 1 & 1.2 & 2 & 3.1 \\ 6.7 & 1 & 0.5 & 1 & 0.49 & 1 & 2.3 & 0 & 0.0 \\ 9 & 13 & 6.4 & 18 & 9.0 & 0 & 0.0 & 0 & 0.0 \\ 9 & 13 & 6.4 & 73 & 36.3 & 2 & 2.6 & 4 & 3.1 \\ 10 & 70 & 34.4 & 73 & 36.3 & 2 & 2.6 & 4 & 3.1 \\ 11 & 92 & 44.8 & 79 & 39.6 & 7 & 18.0 & 19 & 28.3 \\ 12 & 27 & 13.3 & 27 & 13.3 & 24 & 61.5 & 29 & 47.2 \\ 13 & 2 & 1.0 & 2 & 0.8 & 5 & 15.4 & 10 & 16.5 \\ 14 & 0 & 0.0 & 1 & 0.2 & 2 & 2.6 & 5 & 4.7 \\ \\ ILG & \begin{array}{c} 1.4 & 61 & 29.7 & 41 & 20.6 & 3 & 3.9 & 2 & 3.1 \\ 1.5 & 142 & 69.3 & 148 & 74.4 & 20 & 50.0 & 40 & 60.9 \\ 1.6 & 2.6 & 0 & 0.0 & 0 & 0.0 & 4 & 5.1 & 1 & 1.6 \\ 2.6 & 0 & 0.0 & 0 & 0.0 & 2 & 2.6 & 2 & 3.1 \\ 2.7 & 0 & 0.0 & 0 & 0.0 & 2 & 2.6 & 0 & 0.0 \\ \end{array}$	01.0	3-6	0	0.0	0	0.0	1	1.2	5	/./
$ILG = \begin{bmatrix} 4-6 & 42 & 21.2 & 53 & 27.5 & 22 & 50.6 & 32 & 49.2 \\ 4-8 & 1 & 2.3 & 0 & 0.0 & 1 & 2.3 & 0 & 0.0 \\ 5-6 & 73 & 36.0 & 77 & 40.1 & 3 & 7.0 & 1 & 2.3 \\ 4-7 & 1 & 0.5 & 2 & 1.2 & 7 & 15.3 & 12 & 19.2 \\ 5-7 & 8 & 4.0 & 5 & 3.2 & 5 & 11.8 & 7 & 11.5 \\ 5-8 & 1 & 1.2 & 2 & 3.1 & 1 & 1.2 & 2 & 3.1 \\ 6-7 & 1 & 0.5 & 1 & 0.49 & 1 & 2.3 & 0 & 0.0 \\ 9 & 13 & 6.4 & 18 & 9.0 & 0 & 0.0 & 0 & 0.0 \\ 9 & 13 & 6.4 & 18 & 9.0 & 0 & 0.0 & 0 & 0.0 \\ 9 & 13 & 6.4 & 18 & 9.0 & 0 & 0.0 & 0 & 0.0 \\ 10 & 70 & 34.4 & 73 & 36.3 & 2 & 2.6 & 4 & 3.1 \\ 12 & 27 & 13.3 & 27 & 13.3 & 24 & 61.5 & 29 & 47.2 \\ 13 & 2 & 1.0 & 2 & 0.8 & 5 & 15.4 & 10 & 16.5 \\ 14 & 0 & 0.0 & 1 & 0.2 & 2 & 2.6 & 5 & 4.7 \\ ILG & \begin{bmatrix} 1-4 & 61 & 29.7 & 41 & 20.6 & 3 & 3.9 & 2 & 3.1 \\ 1-5 & 142 & 69.3 & 148 & 74.4 & 20 & 50.0 & 40 & 60.9 \\ 1-6 & 2 & 1.0 & 10 & 5.0 & 13 & 35.9 & 20 & 31.2 \\ 2-5 & 0 & 0.0 & 0 & 0.0 & 0 & 0.0 & 2 & 2.6 & 2 & 3.1 \\ 2-7 & 0 & 0.0 & 0 & 0.0 & 2 & 2.6 & 2 & 3.1 \\ 2-7 & 0 & 0.0 & 0 & 0.0 & 2 & 2.6 & 0 & 0.0 \\ \end{bmatrix}$	SLO	4-5	76	37.3	59	25.7	2	4./	2	3.1
$ILG = \begin{bmatrix} 4.8 & 1 & 2.3 & 0 & 0.0 & 1 & 2.3 & 0 & 0.0 \\ 5.6 & 73 & 36.0 & 77 & 40.1 & 3 & 7.0 & 1 & 2.3 \\ 4.7 & 1 & 0.5 & 2 & 1.2 & 7 & 15.3 & 12 & 19.2 \\ 5.7 & 8 & 4.0 & 5 & 3.2 & 5 & 11.8 & 7 & 11.5 \\ 5.8 & 1 & 1.2 & 2 & 3.1 & 1 & 1.2 & 2 & 3.1 \\ 6.7 & 1 & 0.5 & 1 & 0.49 & 1 & 2.3 & 0 & 0.0 \\ \end{bmatrix}$		4-6	42	21.2	53	27.5	22	50.6	32	49.2
$ILG = \begin{bmatrix} 5-6 & 73 & 36.0 & 77 & 40.1 & 3 & 7.0 & 1 & 2.3 \\ 4-7 & 1 & 0.5 & 2 & 1.2 & 7 & 15.3 & 12 & 19.2 \\ 5-7 & 8 & 4.0 & 5 & 3.2 & 5 & 11.8 & 7 & 11.5 \\ 5-8 & 1 & 1.2 & 2 & 3.1 & 1 & 1.2 & 2 & 3.1 \\ 6-7 & 1 & 0.5 & 1 & 0.49 & 1 & 2.3 & 0 & 0.0 \\ \hline & & & & & & & & & & & & & & & & & &$		4-8	1	2.3	0	0.0	1	2.3	0	0.0
$ILG = \begin{bmatrix} 4-7 & 1 & 0.5 & 2 & 1.2 & 7 & 15.3 & 12 & 19.2 \\ 5-7 & 8 & 4.0 & 5 & 3.2 & 5 & 11.8 & 7 & 11.5 \\ 5-8 & 1 & 1.2 & 2 & 3.1 & 1 & 1.2 & 2 & 3.1 \\ 6-7 & 1 & 0.5 & 1 & 0.49 & 1 & 2.3 & 0 & 0.0 \\ \hline & & & & & & & & & & & & & & & & & &$		5-6	73	36.0	77	40.1	3	7.0	l	2.3
$ILG = \begin{bmatrix} 5-7 & 8 & 4.0 & 5 & 3.2 & 5 & 11.8 & 7 & 11.5 \\ 5-8 & 1 & 1.2 & 2 & 3.1 & 1 & 1.2 & 2 & 3.1 \\ 6-7 & 1 & 0.5 & 1 & 0.49 & 1 & 2.3 & 0 & 0.0 \\ \hline 8 & 1 & 0.2 & 2 & 0.7 & 0 & 0.0 & 0 & 0.0 \\ 9 & 13 & 6.4 & 18 & 9.0 & 0 & 0.0 & 0 & 0.0 \\ 10 & 70 & 34.4 & 73 & 36.3 & 2 & 2.6 & 4 & 3.1 \\ 11 & 92 & 44.8 & 79 & 39.6 & 7 & 18.0 & 19 & 28.3 \\ 12 & 27 & 13.3 & 27 & 13.3 & 24 & 61.5 & 29 & 47.2 \\ 13 & 2 & 1.0 & 2 & 0.8 & 5 & 15.4 & 10 & 16.5 \\ 14 & 0 & 0.0 & 1 & 0.2 & 2 & 2.6 & 5 & 4.7 \\ \hline ILG & \begin{array}{c} 1-4 & 61 & 29.7 & 41 & 20.6 & 3 & 3.9 & 2 & 3.1 \\ 1-5 & 142 & 69.3 & 148 & 74.4 & 20 & 50.0 & 40 & 60.9 \\ 1-6 & 2 & 1.0 & 10 & 5.0 & 13 & 35.9 & 20 & 31.2 \\ 2-5 & 0 & 0.0 & 0 & 0.0 & 4 & 5.1 & 1 & 1.6 \\ 2-6 & 0 & 0.0 & 0 & 0.0 & 2 & 2.6 & 2 & 3.1 \\ 2-7 & 0 & 0.0 & 0 & 0.0 & 2 & 2.6 & 2 & 3.1 \\ \hline \end{array}$		4-7	1	0.5	2	1.2	7	15.3	12	19.2
$ILG = \begin{bmatrix} 1 & 1 & 2 & 2 & 3.1 & 1 & 1.2 & 2 & 3.1 \\ \hline 6-7 & 1 & 0.5 & 1 & 0.49 & 1 & 2.3 & 0 & 0.0 \\ \hline 8 & 1 & 0.2 & 2 & 0.7 & 0 & 0.0 & 0 & 0.0 \\ \hline 9 & 13 & 6.4 & 18 & 9.0 & 0 & 0.0 & 0 & 0.0 \\ \hline 10 & 70 & 34.4 & 73 & 36.3 & 2 & 2.6 & 4 & 3.1 \\ \hline 11 & 92 & 44.8 & 79 & 39.6 & 7 & 18.0 & 19 & 28.3 \\ \hline 12 & 27 & 13.3 & 27 & 13.3 & 24 & 61.5 & 29 & 47.2 \\ \hline 13 & 2 & 1.0 & 2 & 0.8 & 5 & 15.4 & 10 & 16.5 \\ \hline 14 & 0 & 0.0 & 1 & 0.2 & 2 & 2.6 & 5 & 4.7 \\ \hline ILG & \begin{bmatrix} 1-4 & 61 & 29.7 & 41 & 20.6 & 3 & 3.9 & 2 & 3.1 \\ \hline 1-5 & 142 & 69.3 & 148 & 74.4 & 20 & 50.0 & 40 & 60.9 \\ \hline 1-6 & 2 & 1.0 & 10 & 5.0 & 13 & 35.9 & 20 & 31.2 \\ \hline 2-5 & 0 & 0.0 & 0 & 0.0 & 4 & 5.1 & 1 & 1.6 \\ \hline 2-6 & 0 & 0.0 & 0 & 0.0 & 2 & 2.6 & 2 & 3.1 \\ \hline 2-7 & 0 & 0.0 & 0 & 0.0 & 2 & 2.6 & 2 & 3.1 \\ \hline \end{array}$		5-7	8	4.0	5	3.2	5	11.8	7	11.5
$ILG = \begin{bmatrix} 6-7 & 1 & 0.5 & 1 & 0.49 & 1 & 2.3 & 0 & 0.0 \\ 8 & 1 & 0.2 & 2 & 0.7 & 0 & 0.0 & 0 & 0.0 \\ 9 & 13 & 6.4 & 18 & 9.0 & 0 & 0.0 & 0 & 0.0 \\ 10 & 70 & 34.4 & 73 & 36.3 & 2 & 2.6 & 4 & 3.1 \\ 11 & 92 & 44.8 & 79 & 39.6 & 7 & 18.0 & 19 & 28.3 \\ 12 & 27 & 13.3 & 27 & 13.3 & 24 & 61.5 & 29 & 47.2 \\ 13 & 2 & 1.0 & 2 & 0.8 & 5 & 15.4 & 10 & 16.5 \\ 14 & 0 & 0.0 & 1 & 0.2 & 2 & 2.6 & 5 & 4.7 \\ \end{bmatrix}$ $ILG = \begin{bmatrix} 1-4 & 61 & 29.7 & 41 & 20.6 & 3 & 3.9 & 2 & 3.1 \\ 1-5 & 142 & 69.3 & 148 & 74.4 & 20 & 50.0 & 40 & 60.9 \\ 1-6 & 2 & 1.0 & 10 & 5.0 & 13 & 35.9 & 20 & 31.2 \\ 2-5 & 0 & 0.0 & 0 & 0.0 & 4 & 5.1 & 1 & 1.6 \\ 2-6 & 0 & 0.0 & 0 & 0.0 & 2 & 2.6 & 2 & 3.1 \\ 2-7 & 0 & 0.0 & 0 & 0.0 & 2 & 2.6 & 0 & 0.0 \end{bmatrix}$		5-8	1	1.2	2	3.1	1	1.2	2	3.1
$ILG \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0-/	1	0.5	1	0.49	I	2.3	0	0.0
$ILG = \begin{bmatrix} 1 & 0.2 & 1 & 0.7 & 0 & 0.0 & 0 & 0.0 \\ 9 & 13 & 6.4 & 18 & 9.0 & 0 & 0.0 & 0 & 0.0 \\ 10 & 70 & 34.4 & 73 & 36.3 & 2 & 2.6 & 4 & 3.1 \\ 11 & 92 & 44.8 & 79 & 39.6 & 7 & 18.0 & 19 & 28.3 \\ 12 & 27 & 13.3 & 27 & 13.3 & 24 & 61.5 & 29 & 47.2 \\ 13 & 2 & 1.0 & 2 & 0.8 & 5 & 15.4 & 10 & 16.5 \\ 14 & 0 & 0.0 & 1 & 0.2 & 2 & 2.6 & 5 & 4.7 \\ \end{bmatrix}$ $ILG = \begin{bmatrix} 1-4 & 61 & 29.7 & 41 & 20.6 & 3 & 3.9 & 2 & 3.1 \\ 1-5 & 142 & 69.3 & 148 & 74.4 & 20 & 50.0 & 40 & 60.9 \\ 1-6 & 2 & 1.0 & 10 & 5.0 & 13 & 35.9 & 20 & 31.2 \\ 2-5 & 0 & 0.0 & 0 & 0.0 & 4 & 5.1 & 1 & 1.6 \\ 2-6 & 0 & 0.0 & 0 & 0.0 & 2 & 2.6 & 2 & 3.1 \\ 2-7 & 0 & 0.0 & 0 & 0.0 & 2 & 2.6 & 0 & 0.0 \end{bmatrix}$		Q	1	0.2	2	0.7	0	0.0	0	0.0
$ILG \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$		8	13	6.4	18	0.7	0	0.0	0	0.0
$IL = \begin{bmatrix} 10 & 70 & 34.4 & 73 & 30.3 & 2 & 2.6 & 4 & 3.1 \\ 11 & 92 & 44.8 & 79 & 39.6 & 7 & 18.0 & 19 & 28.3 \\ 12 & 27 & 13.3 & 27 & 13.3 & 24 & 61.5 & 29 & 47.2 \\ 13 & 2 & 1.0 & 2 & 0.8 & 5 & 15.4 & 10 & 16.5 \\ 14 & 0 & 0.0 & 1 & 0.2 & 2 & 2.6 & 5 & 4.7 \\ \end{bmatrix}$ $ILG = \begin{bmatrix} 1-4 & 61 & 29.7 & 41 & 20.6 & 3 & 3.9 & 2 & 3.1 \\ 1-5 & 142 & 69.3 & 148 & 74.4 & 20 & 50.0 & 40 & 60.9 \\ 1-6 & 2 & 1.0 & 10 & 5.0 & 13 & 35.9 & 20 & 31.2 \\ 2-5 & 0 & 0.0 & 0 & 0.0 & 4 & 5.1 & 1 & 1.6 \\ 2-6 & 0 & 0.0 & 0 & 0.0 & 2 & 2.6 & 2 & 3.1 \\ 2-7 & 0 & 0.0 & 0 & 0.0 & 2 & 2.6 & 0 & 0.0 \end{bmatrix}$		9	13	0.4 34.4	10	9.0	2	2.6	4	0.0
$ILG \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$	п	10	02	34.4 11 Q	73	30.5	7	18.0	4	3.1 28.2
$ILG = \begin{bmatrix} 12 & 27 & 13.3 & 27 & 13.3 & 24 & 01.3 & 29 & 47.2 \\ 13 & 2 & 1.0 & 2 & 0.8 & 5 & 15.4 & 10 & 16.5 \\ 14 & 0 & 0.0 & 1 & 0.2 & 2 & 2.6 & 5 & 4.7 \\ \end{bmatrix}$ $ILG = \begin{bmatrix} 1-4 & 61 & 29.7 & 41 & 20.6 & 3 & 3.9 & 2 & 3.1 \\ 1-5 & 142 & 69.3 & 148 & 74.4 & 20 & 50.0 & 40 & 60.9 \\ 1-6 & 2 & 1.0 & 10 & 5.0 & 13 & 35.9 & 20 & 31.2 \\ 2-5 & 0 & 0.0 & 0 & 0.0 & 4 & 5.1 & 1 & 1.6 \\ 2-6 & 0 & 0.0 & 0 & 0.0 & 2 & 2.6 & 2 & 3.1 \\ 2-7 & 0 & 0.0 & 0 & 0.0 & 2 & 2.6 & 0 & 0.0 \end{bmatrix}$	1L	11	74 77	12.2	עו רכ	12.2	24	61 5	20	47.2
$ILG \begin{array}{c ccccccccccccccccccccccccccccccccccc$		12	2/	10.5	21	13.5	24 5	15 4	29 10	47. 2
$ILG \begin{array}{c ccccccccccccccccccccccccccccccccccc$		15	2 0	1.0	∠ 1	0.8	3 2	13.4	5	10.5
$ILG \begin{array}{c ccccccccccccccccccccccccccccccccccc$		14	U	0.0	1	0.2	2	2.0	5	7./
$ILG \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1-4	61	29.7	41	20.6	3	3.9	2	3.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1-5	142	69.3	148	74.4	20	50.0	40	60.9
ILG $2-5$ 0 0.0 0 0.0 4 5.1 1 1.6 $2-6$ 0 0.0 0 0.0 2 2.6 2 3.1 $2-7$ 0 0.0 0 0.0 2 2.6 0 0.0		1-6	2	1.0	10	5.0	13	35.9	20	31.2
2-6 0 0.0 0 0.0 2 2.6 2 3.1 2-7 0 0.0 0 0.0 2 2.6 0 0.0	ILG	2-5	0	0.0	0	0.0	4	5.1	1	1.6
2-7 0 0.0 0 0.0 2 2.6 0 0.0		2-6	Ő	0.0	Ő	0.0	2	2.6	2	3.1
		2-7	Ō	0.0	0	0.0	2	2.6	0	0.0

Continua

Continuação

	1	181	90.07	161	78.34	2	4 81	6	9.23
ΤA	2	19	9.67	44	21.16	20	71.08	51	78.46
174	2	19	9.07	1	0.49	10	24.00	0	12.20
	3	1	0.24	1	0.48	10	24.09	0	12.50
		0	4 7 1	4	2 10	0	0	1	0.76
	1	9	4./1	4	2.18	0	0	1	0.76
ТР	2	188	93.30	195	94.89	8	19.27	21	32.30
11	3	3	1.48	6	2.91	33	80.72	44	66.92
	4	1	0.49	0	0	0	0	0	0
	0	0	0.0	0	0.0	19	49.4	30	44.4
	1	7	3.4	5	2.4	20	49.4	37	54.9
PO	2	194	94 9	192	92.5	1	12	1	0.7
	3	3	17	11	51	0	0.0	0	0.0
	5	5	1.7	11	5.1	0	0.0	0	0.0
	1	25	12.6	22	15 4	2	27	1	0.7
	1	23	12.0	52	13.4	15	3.7	1	0.7
POO	2	168	83.2	158	76.4	15	33.7	24	35.8
	3	8	4.2	16	8.0	23	57.5	36	53.0
	4	0	0.0	1	0.2	4	5.0	7	10.4
	10 <x<=15< td=""><td>21</td><td>10.0</td><td>9</td><td>4.3</td><td>0</td><td>0.0</td><td>0</td><td>0.0</td></x<=15<>	21	10.0	9	4.3	0	0.0	0	0.0
	15 <x<=20< td=""><td>153</td><td>73.5</td><td>143</td><td>69.2</td><td>4</td><td>10.2</td><td>8</td><td>11.4</td></x<=20<>	153	73.5	143	69.2	4	10.2	8	11.4
1400	20 <x<=25< td=""><td>29</td><td>13.6</td><td>40</td><td>19.1</td><td>25</td><td>56.8</td><td>49</td><td>70.0</td></x<=25<>	29	13.6	40	19.1	25	56.8	49	70.0
MCO	25 <x<=30< td=""><td>5</td><td>2.4</td><td>14</td><td>6.5</td><td>15</td><td>33.0</td><td>12</td><td>17.1</td></x<=30<>	5	2.4	14	6.5	15	33.0	12	17.1
	30 < x < = 35	1	0.2	1	0.7	0	0.0	1	14
	35 < x < = 40	1	0.2	0	0.0	Ő	0.0	0	0.0
	55 × X × 40	1	0.2	0	0.0	0	0.0	0	0.0
	2 1	2	1.0	2	1.6	0	0.0	0	0.0
	2 <x<=4< td=""><td>2</td><td>1.0</td><td>3</td><td>1.5</td><td>0</td><td>0.0</td><td>0</td><td>0.0</td></x<=4<>	2	1.0	3	1.5	0	0.0	0	0.0
	4 <x<=6< td=""><td>13</td><td>6.2</td><td>3</td><td>1.5</td><td>0</td><td>0.0</td><td>2</td><td>2.8</td></x<=6<>	13	6.2	3	1.5	0	0.0	2	2.8
	6 <x<=8< td=""><td>72</td><td>34.2</td><td>17</td><td>8.3</td><td>2</td><td>4.5</td><td>1</td><td>1.4</td></x<=8<>	72	34.2	17	8.3	2	4.5	1	1.4
MCA	8 <x<=10< td=""><td>80</td><td>38.1</td><td>81</td><td>39.0</td><td>6</td><td>13.6</td><td>10</td><td>14.3</td></x<=10<>	80	38.1	81	39.0	6	13.6	10	14.3
MCA	10 <x<=12< td=""><td>34</td><td>16.2</td><td>79</td><td>38.0</td><td>14</td><td>29.5</td><td>23</td><td>32.8</td></x<=12<>	34	16.2	79	38.0	14	29.5	23	32.8
	12 <x<=14< td=""><td>7</td><td>3.3</td><td>15</td><td>7.3</td><td>18</td><td>38.6</td><td>26</td><td>37.1</td></x<=14<>	7	3.3	15	7.3	18	38.6	26	37.1
	14 <x<=16< td=""><td>2</td><td>1.0</td><td>8</td><td>3.9</td><td>6</td><td>13.6</td><td>7</td><td>10.0</td></x<=16<>	2	1.0	8	3.9	6	13.6	7	10.0
	16 < x < = 18	0	0.0	1	0.5	2	4 5	1	14
	10 11 10	0	0.0	-	0.0	-		•	*
	100 < x < -200	0	0.0	2	1.0	2	15	2	2.0
	200 <= <= 200	0	0.0	24	1.0	2	4.5	2	2.9
CD C	200 <x<=300< td=""><td>51</td><td>14.7</td><td>24</td><td>11.5</td><td>3</td><td>11.4</td><td>2</td><td>2.9</td></x<=300<>	51	14.7	24	11.5	3	11.4	2	2.9
CRC	300 <x<=400< td=""><td>68</td><td>32.2</td><td>53</td><td>25.0</td><td>11</td><td>25.0</td><td>14</td><td>20.0</td></x<=400<>	68	32.2	53	25.0	11	25.0	14	20.0
	400 <x<=500< td=""><td>91</td><td>43.1</td><td>106</td><td>50.0</td><td>24</td><td>54.5</td><td>38</td><td>54.2</td></x<=500<>	91	43.1	106	50.0	24	54.5	38	54.2
	500 <x<=600< td=""><td>21</td><td>10.0</td><td>27</td><td>12.7</td><td>2</td><td>4.5</td><td>14</td><td>20.0</td></x<=600<>	21	10.0	27	12.7	2	4.5	14	20.0
	50 <x<=100< td=""><td>17</td><td>8.8</td><td>14</td><td>6.8</td><td>4</td><td>9.5</td><td>2</td><td>3.0</td></x<=100<>	17	8.8	14	6.8	4	9.5	2	3.0
00	100 <x<=150< td=""><td>97</td><td>50.0</td><td>60</td><td>29.3</td><td>7</td><td>16.7</td><td>11</td><td>16.4</td></x<=150<>	97	50.0	60	29.3	7	16.7	11	16.4
	150 <x<=200< td=""><td>78</td><td>40.2</td><td>115</td><td>56.1</td><td>30</td><td>71.4</td><td>27</td><td>40.3</td></x<=200<>	78	40.2	115	56.1	30	71.4	27	40.3
	200 <x<=250< td=""><td>2</td><td>1.0</td><td>16</td><td>7.8</td><td>1</td><td>2.4</td><td>27</td><td>40.3</td></x<=250<>	2	1.0	16	7.8	1	2.4	27	40.3
	200 <x<=300< td=""><td>1</td><td>0.5</td><td>4</td><td>2.0</td><td>3</td><td>71</td><td>2</td><td>3.0</td></x<=300<>	1	0.5	4	2.0	3	71	2	3.0
	300 < x < -400	23	11.0	16	2.0	6	7.1	2	3.0
	400 <x<=400< td=""><td>23</td><td>17.0</td><td>10</td><td>15 1</td><td>0</td><td>7.1</td><td>6</td><td>2.0</td></x<=400<>	23	17.0	10	15 1	0	7.1	6	2.0
СТО	400 <x<-300< td=""><td>33</td><td>17.0</td><td>51</td><td>15.1</td><td>20</td><td>7.1</td><td>14</td><td>89.0 20.0</td></x<-300<>	33	17.0	51	15.1	20	7.1	14	89.0 20.0
	500 <x<=600< td=""><td>11</td><td>39.7</td><td>58</td><td>28.2</td><td>20</td><td>26.2</td><td>14</td><td>20.9</td></x<=600<>	11	39.7	58	28.2	20	26.2	14	20.9
	600 <x<= 00<="" td=""><td>48</td><td>24.7</td><td>73</td><td>35.6</td><td>41</td><td>50.0</td><td>24</td><td>35.8</td></x<=>	48	24.7	73	35.6	41	50.0	24	35.8
	700 <x<=800< td=""><td>12</td><td>6.2</td><td>23</td><td>11.2</td><td>42</td><td>2.4</td><td>18</td><td>26.9</td></x<=800<>	12	6.2	23	11.2	42	2.4	18	26.9
	800 <x<=900< td=""><td>0</td><td>0.0</td><td>0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>1</td><td>1.5</td></x<=900<>	0	0.0	0	0.0	0.0	0.0	1	1.5
	7.00 <x<=8.00< td=""><td>1</td><td>0.5</td><td>6</td><td>2.8</td><td>3</td><td>6.8</td><td>1</td><td>1.4</td></x<=8.00<>	1	0.5	6	2.8	3	6.8	1	1.4
	8.00 <x<=9.00< td=""><td>12</td><td>5.7</td><td>13</td><td>6.1</td><td>3</td><td>6.8</td><td>4</td><td>5.7</td></x<=9.00<>	12	5.7	13	6.1	3	6.8	4	5.7
	9.00 < x < = 10.00	32	15.2	22	10.4	4	9.1	10	14.3
	10.00 < x < = 11.00	40	19.0	43	20.3	8	18.2	15	21.4
	11.00 < x < -12.00	50	22.0	75	35 4	16	36.4	26	37 1
CCA	12.00 < x < -12.00	17	23.0	27	17 4	10	20.4	10	17 1
	$12.00 \times x \le 13.00$	41/	22 .4	5/ 15	1/.4	y 1	20.4	12	1/.1
	15.00 <x<=14.00< td=""><td>23</td><td>10.9</td><td>15</td><td>/.1</td><td>1</td><td>2.3</td><td>2</td><td>2.9</td></x<=14.00<>	23	10.9	15	/.1	1	2.3	2	2.9
	14.00 <x<=15.00< td=""><td>4</td><td>1.9</td><td>0</td><td>0.0</td><td>0</td><td>0.0</td><td>0</td><td>0.0</td></x<=15.00<>	4	1.9	0	0.0	0	0.0	0	0.0
	15.00 < x < = 16.00	0	0.0	1	0.5	0	0.0	0	0.0
	16.00 <x<=17.00< td=""><td>1</td><td>0.5</td><td>0</td><td>0.0</td><td>0</td><td>0.0</td><td>0</td><td>0.0</td></x<=17.00<>	1	0.5	0	0.0	0	0.0	0	0.0

Continua

Continuação

	1.50 <x<=2.00< th=""><th>2</th><th>1.0</th><th>2</th><th>1.0</th><th>0</th><th>0.0</th><th>1</th><th>1.5</th></x<=2.00<>	2	1.0	2	1.0	0	0.0	1	1.5
	2.00 < x < = 2.50	24	11.6	27	13.4	8	19.0	8	11.8
LRO	3.00 < x <= 3.00	64	30.5 31.1	62 68	33.7	20 10	47.0 23.8	20 28	38.2 41.2
Litto	3.50 <x<=4.00< td=""><td>35</td><td>17.0</td><td>38</td><td>18.8</td><td>4</td><td>9.5</td><td>4</td><td>5.9</td></x<=4.00<>	35	17.0	38	18.8	4	9.5	4	5.9
	4.00 <x<=4.50< td=""><td>2</td><td>1.0</td><td>3</td><td>1.5</td><td>0</td><td>0.0</td><td>1</td><td>1.5</td></x<=4.50<>	2	1.0	3	1.5	0	0.0	1	1.5
	4.50 <x<=5.00< td=""><td>0</td><td>0.0</td><td>2</td><td>1.0</td><td>0</td><td>0.0</td><td>0</td><td>0</td></x<=5.00<>	0	0.0	2	1.0	0	0.0	0	0
	0.50 < v < -1.00	2	1.0	7	2.5	1	2.4	0	0.0
	1.00 < x <= 1.00	107	51.0	105	5.5 52 5	1 10	45 2	0	0.0
	1.50 < x < -2.00	91	44.2	84	42.0	18	42.9	0	0.0
CRO	2.00 < x < = 2.50	6	2.9	4	2.0	4	9.5	2	2.9
	2.50 <x<=3.00< td=""><td>0</td><td>0.0</td><td>0</td><td>0.0</td><td>0</td><td>0.0</td><td>24</td><td>34.8</td></x<=3.00<>	0	0.0	0	0.0	0	0.0	24	34.8
	3.00 <x<=3.50< td=""><td>0</td><td>0.0</td><td>0</td><td>0.0</td><td>0</td><td>0.0</td><td>23</td><td>33.3</td></x<=3.50<>	0	0.0	0	0.0	0	0.0	23	33.3
	3.50 <x<=4.00< td=""><td>0</td><td>0.0</td><td>0</td><td>0.0</td><td>0</td><td>0.0</td><td>19</td><td>27.5</td></x<=4.00<>	0	0.0	0	0.0	0	0.0	19	27.5
	4.00 <x<=4.50< td=""><td>0</td><td>0.0</td><td>0</td><td>0.0</td><td>0</td><td>0.0</td><td>1</td><td>1.4</td></x<=4.50<>	0	0.0	0	0.0	0	0.0	1	1.4
	2 00 <x<=2 50<="" td=""><td>44</td><td>21.0</td><td>33</td><td>15.7</td><td>4</td><td>91</td><td>0</td><td>0.0</td></x<=2>	44	21.0	33	15.7	4	91	0	0.0
	2.50 <x<=3.00< td=""><td>146</td><td>69.5</td><td>155</td><td>73.8</td><td>11</td><td>25.0</td><td>15</td><td>21.7</td></x<=3.00<>	146	69.5	155	73.8	11	25.0	15	21.7
LFR	3.00 <x<=3.50< td=""><td>20</td><td>9.5</td><td>22</td><td>10.5</td><td>21</td><td>47.7</td><td>27</td><td>39.1</td></x<=3.50<>	20	9.5	22	10.5	21	47.7	27	39.1
	3.50 <x<=4.00< td=""><td>0</td><td>0.0</td><td>0</td><td>0.0</td><td>8</td><td>18.2</td><td>26</td><td>37.7</td></x<=4.00<>	0	0.0	0	0.0	8	18.2	26	37.7
	4.00 <x<=4.50< td=""><td>0</td><td>0.0</td><td>0</td><td>0.0</td><td>0</td><td>0.0</td><td>1</td><td>1.4</td></x<=4.50<>	0	0.0	0	0.0	0	0.0	1	1.4
	2.00 < 2.50	0	0.0	0	0.0	0	0.0	1	1.4
	2.00 < x < = 2.50	24	0.0	0	0.0	0	0.0	1	1.4
	2.30 < x < -3.00 3.00 < x < -3.50	24 60	33.0	° 53	25 2	° 26	10.12 59 1	23	333
CFR	3.50 < x < = 4.00	80	38.3	87	23.2 41 4	9	20.4	30	43 5
erk	4.00 < x < = 4.50	31	14.8	54	25.7	1	2.23	11	16.0
	4.50 <x<=5.00< td=""><td>4</td><td>1.9</td><td>8</td><td>3.8</td><td>0</td><td>0.0</td><td>0</td><td>0.0</td></x<=5.00<>	4	1.9	8	3.8	0	0.0	0	0.0
	1.50 + + 2.00	10		0	2.0	-	11.4	7	10.1
	1.50 < x < = 2.00	12	5.7	8	3.8	5	11.4	25	10.1
COFR-O	2.00 < x <= 2.50	/0	36.0	/0	33.3 53.9	23	52.5	35	50.7
	2.30 < x < -3.00 3.00 < x < = 3.50	20	40.0 95	115	55.6 9.0	15	23	20	14
	5.00 A 5.00	20	7.0	17	2.0		2.0		
	0.25 <x<=0.50< td=""><td>4</td><td>2.0</td><td>2</td><td>1.0</td><td>0</td><td>0.0</td><td>0</td><td>0.0</td></x<=0.50<>	4	2.0	2	1.0	0	0.0	0	0.0
CRO-NA	0.25 <x<=0.50 0.50<x<=1.00< td=""><td>4 141</td><td>2.0 68.8</td><td>2 150</td><td>1.0 74.3</td><td>0 38</td><td>0.0 90.5</td><td>0 61</td><td>0.0 93.8</td></x<=1.00<></x<=0.50 	4 141	2.0 68.8	2 150	1.0 74.3	0 38	0.0 90.5	0 61	0.0 93.8
CRO-NA	0.25 <x<=0.50 0.50<x<=1.00 1.00<x<=1.50< td=""><td>4 141 59</td><td>2.0 68.8 28.8</td><td>2 150 50</td><td>1.0 74.3 24.8</td><td>0 38 4</td><td>0.0 90.5 9.5</td><td>0 61 4</td><td>0.0 93.8 6.1</td></x<=1.50<></x<=1.00 </x<=0.50 	4 141 59	2.0 68.8 28.8	2 150 50	1.0 74.3 24.8	0 38 4	0.0 90.5 9.5	0 61 4	0.0 93.8 6.1
CRO-NA	0.25 <x<=0.50 0.50<x<=1.00 1.00<x<=1.50 1.50<x<=2.00< td=""><td>4 141 59 1</td><td>2.0 68.8 28.8 0.5</td><td>2 150 50 0</td><td>1.0 74.3 24.8 0.0</td><td>0 38 4 0</td><td>0.0 90.5 9.5 0.0</td><td>0 61 4 0</td><td>0.0 93.8 6.1 0.0</td></x<=2.00<></x<=1.50 </x<=1.00 </x<=0.50 	4 141 59 1	2.0 68.8 28.8 0.5	2 150 50 0	1.0 74.3 24.8 0.0	0 38 4 0	0.0 90.5 9.5 0.0	0 61 4 0	0.0 93.8 6.1 0.0
CRO-NA	0.25 <x<=0.50 0.50<x<=1.00 1.00<x<=1.50 1.50<x<=2.00 0.50<x<=1.00< td=""><td>4 141 59 1 0</td><td>2.0 68.8 28.8 0.5 0.0</td><td>2 150 50 0</td><td>1.0 74.3 24.8 0.0 0.0</td><td>0 38 4 0</td><td>0.0 90.5 9.5 0.0 2.3</td><td>0 61 4 0</td><td>0.0 93.8 6.1 0.0 0.0</td></x<=1.00<></x<=2.00 </x<=1.50 </x<=1.00 </x<=0.50 	4 141 59 1 0	2.0 68.8 28.8 0.5 0.0	2 150 50 0	1.0 74.3 24.8 0.0 0.0	0 38 4 0	0.0 90.5 9.5 0.0 2.3	0 61 4 0	0.0 93.8 6.1 0.0 0.0
CRO-NA	0.25 <x<=0.50 0.50<x<=1.00 1.00<x<=1.50 1.50<x<=2.00 0.50<x<=1.00 1.00<x<=1.50< td=""><td>4 141 59 1 0 1</td><td>2.0 68.8 28.8 0.5 0.0 0.5</td><td>2 150 50 0 0</td><td>1.0 74.3 24.8 0.0 0.0 0.0</td><td>$\begin{array}{c} 0 \\ 38 \\ 4 \\ 0 \\ \end{array}$ 1 9</td><td>0.0 90.5 9.5 0.0 2.3 20.4</td><td>0 61 4 0 0 14</td><td>0.0 93.8 6.1 0.0 20.6</td></x<=1.50<></x<=1.00 </x<=2.00 </x<=1.50 </x<=1.00 </x<=0.50 	4 141 59 1 0 1	2.0 68.8 28.8 0.5 0.0 0.5	2 150 50 0 0	1.0 74.3 24.8 0.0 0.0 0.0	$ \begin{array}{c} 0 \\ 38 \\ 4 \\ 0 \\ \end{array} $ 1 9	0.0 90.5 9.5 0.0 2.3 20.4	0 61 4 0 0 14	0.0 93.8 6.1 0.0 20.6
CRO-NA	0.25 <x<=0.50 0.50<x<=1.00 1.00<x<=1.50 1.50<x<=2.00 0.50<x<=1.00 1.00<x<=1.50 1.50<x<=2.00< td=""><td>4 141 59 1 0 1 26</td><td>2.0 68.8 28.8 0.5 0.0 0.5 12.4</td><td>2 150 50 0 0 34</td><td>1.0 74.3 24.8 0.0 0.0 0.0 16.2</td><td>0 38 4 0 1 9 23</td><td>0.0 90.5 9.5 0.0 2.3 20.4 52.3</td><td>0 61 4 0 0 14 44</td><td>0.0 93.8 6.1 0.0 0.0 20.6 64.7</td></x<=2.00<></x<=1.50 </x<=1.00 </x<=2.00 </x<=1.50 </x<=1.00 </x<=0.50 	4 141 59 1 0 1 26	2.0 68.8 28.8 0.5 0.0 0.5 12.4	2 150 50 0 0 34	1.0 74.3 24.8 0.0 0.0 0.0 16.2	0 38 4 0 1 9 23	0.0 90.5 9.5 0.0 2.3 20.4 52.3	0 61 4 0 0 14 44	0.0 93.8 6.1 0.0 0.0 20.6 64.7
CRO-NA CONA-O	0.25 <x<=0.50 0.50<x<=1.00 1.00<x<=1.50 1.50<x<=2.00 0.50<x<=1.00 1.00<x<=1.50 1.50<x<=2.00 2.00<x<=2.50< td=""><td>4 141 59 1 0 1 26 96</td><td>2.0 68.8 28.8 0.5 0.0 0.5 12.4 45.7</td><td>2 150 50 0 0 34 96</td><td>1.0 74.3 24.8 0.0 0.0 0.0 16.2 45.7</td><td>0 38 4 0 1 9 23 10</td><td>0.0 90.5 9.5 0.0 2.3 20.4 52.3 22.7</td><td>0 61 4 0 0 14 44 10</td><td>0.0 93.8 6.1 0.0 20.6 64.7 14.7</td></x<=2.50<></x<=2.00 </x<=1.50 </x<=1.00 </x<=2.00 </x<=1.50 </x<=1.00 </x<=0.50 	4 141 59 1 0 1 26 96	2.0 68.8 28.8 0.5 0.0 0.5 12.4 45.7	2 150 50 0 0 34 96	1.0 74.3 24.8 0.0 0.0 0.0 16.2 45.7	0 38 4 0 1 9 23 10	0.0 90.5 9.5 0.0 2.3 20.4 52.3 22.7	0 61 4 0 0 14 44 10	0.0 93.8 6.1 0.0 20.6 64.7 14.7
CRO-NA CONA-O	0.25 <x<=0.50 0.50<x<=1.00 1.00<x<=1.50 1.50<x<=2.00 0.50<x<=1.00 1.00<x<=1.50 1.50<x<=2.00 2.00<x<=2.50 2.50<x<=3.00< td=""><td>4 141 59 1 0 1 26 96 79</td><td>2.0 68.8 28.8 0.5 0.0 0.5 12.4 45.7 37.6</td><td>2 150 50 0 0 34 96 72</td><td>1.0 74.3 24.8 0.0 0.0 16.2 45.7 34.3</td><td>0 38 4 0 1 9 23 10 1 0</td><td>0.0 90.5 9.5 0.0 2.3 20.4 52.3 22.7 2.3</td><td>0 61 4 0 14 44 10 0</td><td>0.0 93.8 6.1 0.0 20.6 64.7 14.7 0.0</td></x<=3.00<></x<=2.50 </x<=2.00 </x<=1.50 </x<=1.00 </x<=2.00 </x<=1.50 </x<=1.00 </x<=0.50 	4 141 59 1 0 1 26 96 79	2.0 68.8 28.8 0.5 0.0 0.5 12.4 45.7 37.6	2 150 50 0 0 34 96 72	1.0 74.3 24.8 0.0 0.0 16.2 45.7 34.3	0 38 4 0 1 9 23 10 1 0	0.0 90.5 9.5 0.0 2.3 20.4 52.3 22.7 2.3	0 61 4 0 14 44 10 0	0.0 93.8 6.1 0.0 20.6 64.7 14.7 0.0
CRO-NA CONA-O	0.25 <x<=0.50 0.50<x<=1.00 1.00<x<=1.50 1.50<x<=2.00 0.50<x<=1.50 1.00<x<=1.50 1.50<x<=2.00 2.00<x<=2.50 2.50<x<=3.00 3.00<x<=3.50< td=""><td>4 141 59 1 0 1 26 96 79 8</td><td>2.0 68.8 28.8 0.5 0.0 0.5 12.4 45.7 37.6 3.8</td><td>2 150 50 0 0 34 96 72 8</td><td>1.0 74.3 24.8 0.0 0.0 16.2 45.7 34.3 3.8</td><td>0 38 4 0 1 9 23 10 1 0 1 0</td><td>0.0 90.5 9.5 0.0 2.3 20.4 52.3 22.7 2.3 0.0</td><td>0 61 4 0 14 44 10 0 0 0</td><td>0.0 93.8 6.1 0.0 20.6 64.7 14.7 0.0 0.0</td></x<=3.50<></x<=3.00 </x<=2.50 </x<=2.00 </x<=1.50 </x<=1.50 </x<=2.00 </x<=1.50 </x<=1.00 </x<=0.50 	4 141 59 1 0 1 26 96 79 8	2.0 68.8 28.8 0.5 0.0 0.5 12.4 45.7 37.6 3.8	2 150 50 0 0 34 96 72 8	1.0 74.3 24.8 0.0 0.0 16.2 45.7 34.3 3.8	0 38 4 0 1 9 23 10 1 0 1 0	0.0 90.5 9.5 0.0 2.3 20.4 52.3 22.7 2.3 0.0	0 61 4 0 14 44 10 0 0 0	0.0 93.8 6.1 0.0 20.6 64.7 14.7 0.0 0.0
CRO-NA CONA-O	0.25 <x<=0.50 0.50<x<=1.00 1.00<x<=1.50 1.50<x<=2.00 0.50<x<=1.50 1.50<x<=2.00 2.00<x<=2.50 2.50<x<=3.00 3.00<x<=3.50 1.00<x<=1.50< td=""><td>4 141 59 1 0 1 26 96 79 8 0</td><td>2.0 68.8 28.8 0.5 0.0 0.5 12.4 45.7 37.6 3.8 0.0</td><td>2 150 50 0 0 34 96 72 8 0</td><td>1.0 74.3 24.8 0.0 0.0 16.2 45.7 34.3 3.8 0.0</td><td>0 38 4 0 1 9 23 10 1 0 0</td><td>0.0 90.5 9.5 0.0 2.3 20.4 52.3 22.7 2.3 0.0 0.0</td><td>0 61 4 0 14 44 10 0 0 0</td><td>0.0 93.8 6.1 0.0 20.6 64.7 14.7 0.0 0.0 0.0</td></x<=1.50<></x<=3.50 </x<=3.00 </x<=2.50 </x<=2.00 </x<=1.50 </x<=2.00 </x<=1.50 </x<=1.00 </x<=0.50 	4 141 59 1 0 1 26 96 79 8 0	2.0 68.8 28.8 0.5 0.0 0.5 12.4 45.7 37.6 3.8 0.0	2 150 50 0 0 34 96 72 8 0	1.0 74.3 24.8 0.0 0.0 16.2 45.7 34.3 3.8 0.0	0 38 4 0 1 9 23 10 1 0 0	0.0 90.5 9.5 0.0 2.3 20.4 52.3 22.7 2.3 0.0 0.0	0 61 4 0 14 44 10 0 0 0	0.0 93.8 6.1 0.0 20.6 64.7 14.7 0.0 0.0 0.0
CRO-NA CONA-O	$\begin{array}{c} 0.25 < x <= 0.50 \\ 0.50 < x <= 1.00 \\ 1.00 < x <= 1.50 \\ 1.50 < x <= 2.00 \end{array}$	4 141 59 1 0 1 26 96 79 8 0 19	2.0 68.8 28.8 0.5 0.0 0.5 12.4 45.7 37.6 3.8 0.0 9.0	2 150 50 0 0 34 96 72 8 0 13	1.0 74.3 24.8 0.0 0.0 16.2 45.7 34.3 3.8 0.0 6.2	0 38 4 0 1 9 23 10 1 0 0 3	0.0 90.5 9.5 0.0 2.3 20.4 52.3 22.7 2.3 0.0 0.0 6.8	0 61 4 0 14 44 10 0 0 0 2	0.0 93.8 6.1 0.0 20.6 64.7 14.7 0.0 0.0 0.0 2.9
CRO-NA CONA-O	$\begin{array}{c} 0.25 < x <= 0.50 \\ 0.50 < x <= 1.00 \\ 1.00 < x <= 1.50 \\ 1.50 < x <= 2.00 \end{array}$	4 141 59 1 0 1 26 96 79 8 0 19 118	2.0 68.8 28.8 0.5 0.0 0.5 12.4 45.7 37.6 3.8 0.0 9.0 56.2	2 150 50 0 0 34 96 72 8 0 13 110	1.0 74.3 24.8 0.0 0.0 16.2 45.7 34.3 3.8 0.0 6.2 52.4	0 38 4 0 23 10 1 0 0 3 17	0.0 90.5 9.5 0.0 2.3 20.4 52.3 22.7 2.3 0.0 0.0 6.8 38.6	0 61 4 0 14 44 10 0 0 0 2 29	0.0 93.8 6.1 0.0 20.6 64.7 14.7 0.0 0.0 0.0 2.9 42.6
CRO-NA CONA-O COPA-O	$\begin{array}{c} 0.25 < x <= 0.50 \\ 0.50 < x <= 1.00 \\ 1.00 < x <= 1.50 \\ 1.50 < x <= 2.00 \end{array}$ $\begin{array}{c} 0.50 < x <= 1.00 \\ 1.00 < x <= 1.50 \\ 1.50 < x <= 2.00 \\ 2.00 < x <= 2.50 \\ 2.50 < x <= 3.00 \\ 3.00 < x <= 3.50 \end{array}$ $\begin{array}{c} 1.00 < x <= 1.50 \\ 1.50 < x <= 2.00 \\ 2.00 < x <= 2.50 \\ 2.50 < x <= 3.00 \\ 3.00 < x <= 2.50 \\ 2.50 < x <= 2.00 \\ 2.00 < x <= 2.50 \\ 2.50 < x <= 3.00 \\ 2.00 < x <= 2.50 \\ 2.50 < x <= 3.00 \\ 2.50 < x <=$	4 141 59 1 0 1 26 96 79 8 0 19 118 70	2.0 68.8 28.8 0.5 0.0 0.5 12.4 45.7 37.6 3.8 0.0 9.0 56.2 33.3	2 150 50 0 0 34 96 72 8 0 13 110 76	1.0 74.3 24.8 0.0 0.0 16.2 45.7 34.3 3.8 0.0 6.2 52.4 36.2	0 38 4 0 23 10 1 0 3 17 23	0.0 90.5 9.5 0.0 2.3 20.4 52.3 22.7 2.3 0.0 0.0 6.8 38.6 52.3	0 61 4 0 14 44 10 0 0 2 29 32	0.0 93.8 6.1 0.0 20.6 64.7 14.7 0.0 0.0 2.9 42.6 47.1
CRO-NA CONA-O COPA-O	$\begin{array}{c} 0.25 < x <= 0.50 \\ 0.50 < x <= 1.00 \\ 1.00 < x <= 1.50 \\ 1.50 < x <= 2.00 \\ \hline \end{array}$ $\begin{array}{c} 0.50 < x <= 2.00 \\ 1.00 < x <= 1.50 \\ 1.50 < x <= 2.00 \\ 2.00 < x <= 2.50 \\ 2.50 < x <= 3.00 \\ 3.00 < x <= 3.50 \\ \hline \end{array}$ $\begin{array}{c} 1.00 < x <= 1.50 \\ 1.50 < x <= 2.00 \\ 2.00 < x <= 2.50 \\ 2.50 < x <= 3.00 \\ 3.00 < x <= 3.50 \\ \hline \end{array}$	4 141 59 1 0 1 26 96 79 8 0 19 118 70 2 1	2.0 68.8 28.8 0.5 0.0 0.5 12.4 45.7 37.6 3.8 0.0 9.0 56.2 33.3 1.0 0.5	2 150 50 0 0 34 96 72 8 0 13 110 76 11 0	1.0 74.3 24.8 0.0 0.0 16.2 45.7 34.3 3.8 0.0 6.2 52.4 36.2 5.2 0.0	0 38 4 0 23 10 1 0 3 17 23 1 0	0.0 90.5 9.5 0.0 2.3 20.4 52.3 22.7 2.3 0.0 0.0 6.8 38.6 52.3 2.3 0.0	0 61 4 0 14 44 10 0 0 0 2 29 32 5 0	0.0 93.8 6.1 0.0 20.6 64.7 14.7 0.0 0.0 2.9 42.6 47.1 7.3 0.0
CRO-NA CONA-O COPA-O	$\begin{array}{c} 0.25 < x <= 0.50 \\ 0.50 < x <= 1.00 \\ 1.00 < x <= 1.50 \\ 1.50 < x <= 2.00 \end{array}$	4 141 59 1 0 1 26 96 79 8 0 19 118 70 2 1	2.0 68.8 28.8 0.5 0.0 0.5 12.4 45.7 37.6 3.8 0.0 9.0 56.2 33.3 1.0 0.5	2 150 50 0 0 34 96 72 8 0 13 110 76 11 0	1.0 74.3 24.8 0.0 0.0 16.2 45.7 34.3 3.8 0.0 6.2 52.4 36.2 5.2 0.0	0 38 4 0 23 10 1 0 3 17 23 1 0	0.0 90.5 9.5 0.0 2.3 20.4 52.3 22.7 2.3 0.0 0.0 6.8 38.6 52.3 2.3 0.0	0 61 4 0 14 44 10 0 0 0 2 29 32 5 0	0.0 93.8 6.1 0.0 20.6 64.7 14.7 0.0 0.0 2.9 42.6 47.1 7.3 0.0
CRO-NA CONA-O COPA-O	$\begin{array}{c} 0.25 < x <= 0.50\\ 0.50 < x <= 1.00\\ 1.00 < x <= 1.50\\ 1.50 < x <= 2.00\\ \hline \end{array}$	4 141 59 1 0 1 26 96 79 8 0 19 118 70 2 1 1	2.0 68.8 28.8 0.5 0.0 0.5 12.4 45.7 37.6 3.8 0.0 9.0 56.2 33.3 1.0 0.5 0.5	2 150 50 0 0 34 96 72 8 0 13 110 76 11 0 4	1.0 74.3 24.8 0.0 0.0 16.2 45.7 34.3 3.8 0.0 6.2 52.4 36.2 5.2 0.0 1.9	$\begin{array}{c} 0 \\ 38 \\ 4 \\ 0 \\ \end{array}$ $\begin{array}{c} 1 \\ 9 \\ 23 \\ 10 \\ 1 \\ 0 \\ \end{array}$ $\begin{array}{c} 0 \\ 3 \\ 17 \\ 23 \\ 1 \\ 0 \\ \end{array}$ $\begin{array}{c} 0 \\ 0 \\ \end{array}$	0.0 90.5 9.5 0.0 2.3 20.4 52.3 22.7 2.3 0.0 0.0 6.8 38.6 52.3 2.3 0.0 0.0 0.0	0 61 4 0 14 44 10 0 0 0 2 29 32 5 0 0	0.0 93.8 6.1 0.0 20.6 64.7 14.7 0.0 0.0 2.9 42.6 47.1 7.3 0.0 0.0
CRO-NA CONA-O COPA-O	$\begin{array}{c} 0.25 < x <= 0.50\\ 0.50 < x <= 1.00\\ 1.00 < x <= 1.50\\ 1.50 < x <= 2.00\\ \hline \end{array}$	4 141 59 1 0 1 26 96 79 8 0 19 118 70 2 1 1 12	2.0 68.8 28.8 0.5 0.0 0.5 12.4 45.7 37.6 3.8 0.0 9.0 56.2 33.3 1.0 0.5 5.7	2 150 50 0 0 34 96 72 8 0 13 110 76 11 0 4 20	1.0 74.3 24.8 0.0 0.0 16.2 45.7 34.3 3.8 0.0 6.2 52.4 36.2 5.2 0.0	$\begin{array}{c} 0\\ 38\\ 4\\ 0\\ \end{array}\\ \begin{array}{c} 1\\ 9\\ 23\\ 10\\ 1\\ 0\\ \end{array}\\ \begin{array}{c} 0\\ 3\\ 17\\ 23\\ 1\\ 0\\ \end{array}\\ \begin{array}{c} 0\\ 0\\ 2\\ \end{array}$	0.0 90.5 9.5 0.0 2.3 20.4 52.3 22.7 2.3 0.0 0.0 6.8 38.6 52.3 2.3 0.0 0.0 4.5	0 61 4 0 14 44 10 0 0 2 29 32 5 0 0 2	0.0 93.8 6.1 0.0 20.6 64.7 14.7 0.0 0.0 2.9 42.6 47.1 7.3 0.0 0.0 3.0
CRO-NA CONA-O COPA-O	$\begin{array}{c} 0.25 < x <= 0.50 \\ 0.50 < x <= 1.00 \\ 1.00 < x <= 1.50 \\ 1.50 < x <= 2.00 \\ \hline \end{array}$	4 141 59 1 0 1 26 96 79 8 0 19 118 70 2 1 1 12 49	2.0 68.8 28.8 0.5 0.0 0.5 12.4 45.7 37.6 3.8 0.0 9.0 56.2 33.3 1.0 0.5 5.7 23.4	2 150 50 0 0 34 96 72 8 0 13 110 76 11 0 4 20 73	1.0 74.3 24.8 0.0 0.0 16.2 45.7 34.3 3.8 0.0 6.2 52.4 36.2 5.2 0.0 1.9 9.6 34.9	$\begin{array}{c} 0\\ 38\\ 4\\ 0\\ \end{array}\\ \begin{array}{c} 1\\ 9\\ 23\\ 10\\ 1\\ 0\\ \end{array}\\ \begin{array}{c} 0\\ 3\\ 17\\ 23\\ 1\\ 0\\ \end{array}\\ \begin{array}{c} 0\\ 0\\ 2\\ 9\\ \end{array}$	0.0 90.5 9.5 0.0 2.3 20.4 52.3 22.7 2.3 0.0 0.0 6.8 38.6 52.3 2.3 0.0 0.0 4.5 20.4	0 61 4 0 14 44 10 0 0 2 29 32 5 0 0 2 16	0.0 93.8 6.1 0.0 20.6 64.7 14.7 0.0 0.0 2.9 42.6 47.1 7.3 0.0 0.0 3.0 23.5
CRO-NA CONA-O COPA-O DBO	$\begin{array}{c} 0.25 < x <= 0.50 \\ 0.50 < x <= 1.00 \\ 1.00 < x <= 1.50 \\ 1.50 < x <= 2.00 \\ \hline \end{array}$	4 141 59 1 0 1 26 96 79 8 0 19 118 70 2 1 1 12 49 75	2.0 68.8 28.8 0.5 0.0 0.5 12.4 45.7 37.6 3.8 0.0 9.0 56.2 33.3 1.0 0.5 5.7 23.4 35.9	2 150 50 0 0 34 96 72 8 0 13 110 76 11 0 4 20 73 81 26	1.0 74.3 24.8 0.0 0.0 16.2 45.7 34.3 3.8 0.0 6.2 52.4 36.2 5.2 0.0 1.9 9.6 34.9 38.8	$\begin{array}{c} 0\\ 38\\ 4\\ 0\\ \end{array}$	0.0 90.5 9.5 0.0 2.3 20.4 52.3 22.7 2.3 0.0 0.0 6.8 38.6 52.3 2.3 0.0 0.0 4.5 20.4 36.4 36.4	0 61 4 0 14 44 10 0 0 2 29 32 5 0 0 2 16 27	0.0 93.8 6.1 0.0 20.6 64.7 14.7 0.0 0.0 2.9 42.6 47.1 7.3 0.0 0.0 3.0 23.5 39.7
CRO-NA CONA-O COPA-O DBO	$\begin{array}{c} 0.25 < x <= 0.50\\ 0.50 < x <= 1.00\\ 1.00 < x <= 1.50\\ 1.50 < x <= 2.00\\ \hline \end{array}$	4 141 59 1 0 1 26 96 79 8 0 19 118 70 2 1 1 12 49 75 44	2.0 68.8 28.8 0.5 0.0 0.5 12.4 45.7 37.6 3.8 0.0 9.0 56.2 33.3 1.0 0.5 5.7 23.4 35.9 21.0	2 150 50 0 0 34 96 72 8 0 13 110 76 11 0 4 20 73 81 29 2	1.0 74.3 24.8 0.0 0.0 16.2 45.7 34.3 3.8 0.0 6.2 52.4 36.2 5.2 0.0 1.9 9.6 34.9 38.8 13.9	$\begin{array}{c} 0\\ 38\\ 4\\ 0\\ \end{array}$	0.0 90.5 9.5 0.0 2.3 20.4 52.3 22.7 2.3 0.0 0.0 6.8 38.6 52.3 2.3 0.0 0.0 4.5 20.4 36.4 25.0	0 61 4 0 14 44 10 0 0 2 29 32 5 0 0 2 16 27 21	0.0 93.8 6.1 0.0 20.6 64.7 14.7 0.0 0.0 2.9 42.6 47.1 7.3 0.0 23.5 39.7 30.9
CRO-NA CONA-O COPA-O DBO	$\begin{array}{c} 0.25 < x <= 0.50\\ 0.50 < x <= 1.00\\ 1.00 < x <= 1.50\\ 1.50 < x <= 2.00\\ \hline \end{array}$	4 141 59 1 0 1 26 96 79 8 0 19 118 70 2 1 1 12 49 75 44 26 2	2.0 68.8 28.8 0.5 0.0 0.5 12.4 45.7 37.6 3.8 0.0 9.0 56.2 33.3 1.0 0.5 5.7 23.4 35.9 21.0 12.4 37.9 21.0 12.4 37.6 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	2 150 50 0 0 34 96 72 8 0 13 110 76 11 0 4 20 73 81 29 2 0	1.0 74.3 24.8 0.0 0.0 16.2 45.7 34.3 3.8 0.0 6.2 52.4 36.2 5.2 0.0 1.9 9.6 34.9 38.8 13.9 1.0 0.0	$\begin{array}{c} 0\\ 38\\ 4\\ 0\\ \end{array}\\ \begin{array}{c} 1\\ 9\\ 23\\ 10\\ 1\\ 0\\ \end{array}\\ \begin{array}{c} 0\\ 3\\ 17\\ 23\\ 1\\ 0\\ \end{array}\\ \begin{array}{c} 0\\ 0\\ 2\\ 9\\ 16\\ 11\\ 5\\ \end{array}$	0.0 90.5 9.5 0.0 2.3 20.4 52.3 22.7 2.3 0.0 0.0 6.8 38.6 52.3 2.3 0.0 0.0 4.5 20.4 36.4 25.0 11.4 22	0 61 4 0 14 44 10 0 0 2 29 32 5 0 0 2 16 27 21 2 0	0.0 93.8 6.1 0.0 20.6 64.7 14.7 0.0 0.0 2.9 42.6 47.1 7.3 0.0 23.5 39.7 30.9 2.9 0.0
CRO-NA CONA-O COPA-O DBO	$\begin{array}{c} 0.25 < x <= 0.50\\ 0.50 < x <= 1.00\\ 1.00 < x <= 1.50\\ 1.50 < x <= 2.00\\ \hline \end{array}$	4 141 59 1 0 1 26 96 79 8 0 19 118 70 2 1 1 12 49 75 44 26 2	2.0 68.8 28.8 0.5 0.0 0.5 12.4 45.7 37.6 3.8 0.0 9.0 56.2 33.3 1.0 0.5 5.7 23.4 35.9 21.0 12.4 1.	2 150 50 0 0 34 96 72 8 0 13 110 76 11 0 4 20 73 81 29 2 0	1.0 74.3 24.8 0.0 0.0 16.2 45.7 34.3 3.8 0.0 6.2 52.4 36.2 5.2 0.0 1.9 9.6 34.9 38.8 13.9 1.0 0.0	0 38 4 0 1 9 23 10 1 0 3 17 23 1 0 0 2 9 16 11 5 1	0.0 90.5 9.5 0.0 2.3 20.4 52.3 22.7 2.3 0.0 0.0 6.8 38.6 52.3 2.3 0.0 0.0 4.5 20.4 36.4 25.0 11.4 2.3	0 61 4 0 14 44 10 0 0 2 29 32 5 0 0 2 16 27 21 2 0	0.0 93.8 6.1 0.0 20.6 64.7 14.7 0.0 0.0 2.9 42.6 47.1 7.3 0.0 0.0 2.9 42.6 47.1 7.3 0.0 0.0 2.9 42.6 47.1 7.3 0.0 0.0 2.9 42.6 47.1 7.3 0.0 0.0 2.9 42.6 47.1 7.3 0.0 0.0 2.9 42.6 47.1 7.3 0.0 0.0 2.9 42.6 47.1 7.3 0.0 0.0 2.9 42.6 47.1 7.3 0.0 0.0 2.9 42.6 47.1 7.3 0.0 0.0 2.9 42.6 47.1 7.3 0.0 0.0 2.9 42.6 47.1 7.3 0.0 0.0 2.9 42.6 47.1 7.3 0.0 0.0 2.9 0.0 0.0 0.0 2.9 42.6 47.1 7.3 0.0 0.0 2.9 0.0 0.0 0.0 2.9 40.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
CRO-NA CONA-O COPA-O DBO	$\begin{array}{c} 0.25 < x <= 0.50\\ 0.50 < x <= 1.00\\ 1.00 < x <= 1.50\\ 1.50 < x <= 2.00\\ \hline \end{array} \\ \begin{array}{c} 0.50 < x <= 1.00\\ 1.00 < x <= 1.50\\ 1.50 < x <= 2.00\\ 2.00 < x <= 2.50\\ 2.50 < x <= 3.00\\ 3.00 < x <= 3.50\\ \hline \end{array} \\ \begin{array}{c} 1.00 < x <= 1.50\\ 1.50 < x <= 2.00\\ 2.00 < x <= 2.50\\ 2.50 < x <= 3.00\\ 3.00 < x <= 3.50\\ \hline \end{array} \\ \begin{array}{c} 0.00 < x <= 1.50\\ 1.50 < x <= 2.00\\ 2.00 < x <= 2.50\\ 2.50 < x <= 3.00\\ 3.00 < x <= 3.50\\ \hline \end{array} \\ \begin{array}{c} 0.25 < x <= 0.50\\ 0.50 < x <= 0.75\\ 0.75 < x <= 1.00\\ 1.00 < x <= 1.25\\ 1.25 < x <= 1.50\\ 1.50 < x <= 1.75\\ 1.75 < x <= 2.00\\ \hline \end{array} \\ \begin{array}{c} 2.50x <= 3.00\\ 3.00 <= 0.50\\ 0.50 < x <= 0.75\\ 0.75 < x <= 1.00\\ 1.50 < x <= 1.75\\ 1.75 < x <= 2.00\\ \hline \end{array} \\ \begin{array}{c} 2.50x <= 3.00\\ \hline \end{array} $	4 141 59 1 0 1 26 96 79 8 0 19 118 70 2 1 1 12 49 75 44 26 2 1	2.0 68.8 28.8 0.5 0.0 0.5 12.4 45.7 37.6 3.8 0.0 9.0 56.2 33.3 1.0 0.5 5.7 23.4 35.9 21.0 12.4 1. 0.5	2 150 50 0 0 34 96 72 8 0 13 110 76 11 0 4 20 73 81 29 2 0 2	1.0 74.3 24.8 0.0 0.0 16.2 45.7 34.3 3.8 0.0 6.2 52.4 36.2 5.2 0.0 1.9 9.6 34.9 38.8 13.9 1.0 0.0 1.0	$\begin{array}{c} 0\\ 38\\ 4\\ 0\\ \end{array}\\ \begin{array}{c} 1\\ 9\\ 23\\ 10\\ 1\\ 0\\ \end{array}\\ \begin{array}{c} 0\\ 3\\ 17\\ 23\\ 1\\ 0\\ \end{array}\\ \begin{array}{c} 0\\ 3\\ 17\\ 23\\ 1\\ 0\\ \end{array}\\ \begin{array}{c} 0\\ 2\\ 9\\ 16\\ 11\\ 5\\ 1\\ \end{array}\\ \begin{array}{c} 4\\ \end{array}$	0.0 90.5 9.5 0.0 2.3 20.4 52.3 22.7 2.3 0.0 0.0 6.8 38.6 52.3 2.3 0.0 0.0 4.5 20.4 36.4 25.0 11.4 2.3 9.1	0 61 4 0 14 44 10 0 0 2 29 32 5 0 0 2 16 27 21 2 0 2 2	0.0 93.8 6.1 0.0 20.6 64.7 14.7 0.0 0.0 2.9 42.6 47.1 7.3 0.0 0.0 3.0 23.5 39.7 30.9 2.9 0.0 2.9
CRO-NA CONA-O COPA-O DBO	$\begin{array}{c} 0.25 < x <= 0.50\\ 0.50 < x <= 1.00\\ 1.00 < x <= 1.50\\ 1.50 < x <= 2.00\\ \hline \end{array}$	4 141 59 1 0 1 26 96 79 8 0 19 118 70 2 1 1 12 49 75 44 26 2 1 39	2.0 68.8 28.8 0.5 0.0 0.5 12.4 45.7 37.6 3.8 0.0 9.0 56.2 33.3 1.0 0.5 5.7 23.4 35.9 21.0 12.4 1. 0.5 0.5 0.5	2 150 50 0 0 0 34 96 72 8 0 13 110 76 11 0 4 20 73 81 29 2 0 2 50 2 50 2 50 50 2 50 50 50 50 50 50 50 50 50 50	1.0 74.3 24.8 0.0 0.0 16.2 45.7 34.3 3.8 0.0 6.2 52.4 36.2 5.2 0.0 1.9 9.6 34.9 38.8 13.9 1.0 0.0 0.0	$\begin{array}{c} 0\\ 38\\ 4\\ 0\\ \end{array}\\ \begin{array}{c} 1\\ 9\\ 23\\ 10\\ 1\\ 0\\ \end{array}\\ \begin{array}{c} 0\\ 3\\ 17\\ 23\\ 1\\ 0\\ \end{array}\\ \begin{array}{c} 0\\ 3\\ 17\\ 23\\ 1\\ 0\\ \end{array}\\ \begin{array}{c} 0\\ 2\\ 9\\ 16\\ 111\\ 5\\ 1\\ \end{array}\\ \begin{array}{c} 4\\ 9\\ \end{array}$	0.0 90.5 9.5 0.0 2.3 20.4 52.3 22.7 2.3 0.0 0.0 6.8 38.6 52.3 2.3 0.0 0.0 4.5 20.4 36.4 25.0 11.4 2.3 9.1 20.4	0 61 4 0 14 44 10 0 0 2 29 32 5 0 0 2 29 32 5 0 0 2 16 27 21 2 0 2 18	0.0 93.8 6.1 0.0 20.6 64.7 14.7 0.0 0.0 2.9 42.6 47.1 7.3 0.0 0.0 2.9 42.6 47.1 7.3 0.0 0.0 2.9 42.6 47.1 7.3 0.0 0.0 2.9 2.9 2.9 0.0 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9
CRO-NA CONA-O COPA-O DBO	$\begin{array}{c} 0.25 < x <= 0.50 \\ 0.50 < x <= 1.00 \\ 1.00 < x <= 1.50 \\ 1.50 < x <= 2.00 \\ \hline \end{array} \\ \hline \begin{array}{c} 0.50 < x <= 1.00 \\ 1.00 < x <= 1.50 \\ 1.50 < x <= 2.00 \\ 2.00 < x <= 2.50 \\ 2.50 < x <= 3.00 \\ 3.00 < x <= 3.50 \\ \hline \end{array} \\ \hline \begin{array}{c} 1.00 < x <= 1.50 \\ 1.50 < x <= 2.00 \\ 2.00 < x <= 2.50 \\ 2.50 < x <= 3.00 \\ 3.00 < x <= 3.50 \\ \hline \end{array} \\ \hline \begin{array}{c} 0.00 < x <= 1.50 \\ 2.50 < x <= 3.00 \\ 3.00 < x <= 3.50 \\ 3.50 < x <= 4.00 \\ \hline \end{array} \\ \hline \begin{array}{c} 0.25 < x <= 0.50 \\ 0.50 < x <= 0.50 \\ 0.50 < x <= 0.75 \\ 0.75 < x <= 1.00 \\ 1.00 < x <= 1.25 \\ 1.25 < x <= 1.50 \\ 1.50 < x <= 1.75 \\ 1.75 < x <= 2.00 \\ \hline \end{array} \\ \hline \begin{array}{c} 2.50 x <= 3.00 \\ 3.00 < x <= 3.50 \\ 3.50 < x <= 4.00 \\ 3.00 < x <= 3.50 \\ 3.50 < x <= 4.00 \\ \hline \end{array} \\ \hline \end{array}$	4 141 59 1 0 1 26 96 79 8 0 19 118 70 2 1 1 12 49 75 44 26 2 1 39 101 101 102 102 102 102 102 102	2.0 68.8 28.8 0.5 0.0 0.5 12.4 45.7 37.6 3.8 0.0 9.0 56.2 33.3 1.0 0.5 5.7 23.4 35.9 21.0 12.4 1. 0.5 0.5 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	2 150 50 0 0 0 34 96 72 8 0 13 110 76 11 0 4 20 73 81 29 2 0 89 81 29 2 0 88 81 29 2 0 88 81 29 2 50 88 88 88 88 88 88 88 88 88 8	1.0 74.3 24.8 0.0 0.0 16.2 45.7 34.3 3.8 0.0 6.2 52.4 36.2 5.2 0.0 1.9 9.6 34.9 38.8 13.9 1.0 0.0 0.0	$\begin{array}{c} 0\\ 38\\ 4\\ 0\\ \end{array}\\ \begin{array}{c} 1\\ 9\\ 23\\ 10\\ 1\\ 0\\ \end{array}\\ \begin{array}{c} 0\\ 3\\ 17\\ 23\\ 1\\ 0\\ \end{array}\\ \begin{array}{c} 0\\ 3\\ 17\\ 23\\ 1\\ 0\\ \end{array}\\ \begin{array}{c} 0\\ 2\\ 9\\ 16\\ 111\\ 5\\ 1\\ \end{array}\\ \begin{array}{c} 4\\ 9\\ 21\\ 21\\ 21\\ \end{array}$	0.0 90.5 9.5 0.0 2.3 20.4 52.3 22.7 2.3 0.0 0.0 6.8 38.6 52.3 2.3 0.0 0.0 4.5 20.4 36.4 25.0 11.4 2.3 9.1 20.4 47.7 20.4	0 61 4 0 14 44 10 0 0 2 29 32 5 0 0 2 29 32 5 0 0 2 16 27 21 2 0 2 18 23 2 32	0.0 93.8 6.1 0.0 20.6 64.7 14.7 0.0 0.0 2.9 42.6 47.1 7.3 0.0 0.0 2.9 42.6 47.1 7.3 0.0 0.0 2.9 42.6 47.1 7.3 0.0 0.0 2.9 42.6 47.1 7.3 0.0 0.0 2.9 42.6 47.1 7.3 0.0 0.0 2.9 42.6 47.1 7.3 0.0 0.0 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9
CRO-NA CONA-O COPA-O DBO	$\begin{array}{c} 0.25 < x <= 0.50\\ 0.50 < x <= 1.00\\ 1.00 < x <= 1.50\\ 1.50 < x <= 2.00\\ \hline \end{array}$ $\begin{array}{c} 0.50 < x <= 1.00\\ 1.00 < x <= 1.50\\ 1.50 < x <= 2.00\\ 2.00 < x <= 2.50\\ 2.50 < x <= 3.00\\ 3.00 < x <= 3.50\\ \hline \end{array}$ $\begin{array}{c} 1.00 < x <= 1.50\\ 1.50 < x <= 2.00\\ 2.00 < x <= 2.50\\ 2.50 < x <= 3.00\\ 3.00 < x <= 3.50\\ \hline \end{array}$ $\begin{array}{c} 0.00 < x <= 2.50\\ 2.50 < x <= 3.00\\ 3.00 < x <= 3.50\\ 3.50 < x <= 4.00\\ \hline \end{array}$ $\begin{array}{c} 0.25 < x <= 0.50\\ 0.50 < x <= 0.50\\ 0.50 < x <= 1.50\\ 1.50 < x <= 3.50\\ 3.00 < x <= 3.50\\ 3.00 < x <= 3.50\\ 3.50 < x <= 4.00\\ 4.00 < x <= 4.50\\ 4.00 < x <= 4.50\\ \hline \end{array}$	4 141 59 1 0 1 26 96 79 8 0 19 118 70 2 1 1 12 49 75 44 26 2 1 39 101 58 0	2.0 68.8 28.8 0.5 0.0 0.5 12.4 45.7 37.6 3.8 0.0 9.0 56.2 33.3 1.0 0.5 5.7 23.4 35.9 21.0 12.4 1. 0.5 0.5 1.7 23.4 35.9 21.0 12.4 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	2 150 50 0 0 0 34 96 72 8 0 13 110 76 11 0 4 20 73 81 29 2 0 2 50 89 56 12	1.0 74.3 24.8 0.0 0.0 16.2 45.7 34.3 3.8 0.0 6.2 52.4 36.2 5.2 0.0 1.9 9.6 34.9 38.8 13.9 1.0 0.0 1.0 23.8 42.4 26.7 5.7	$\begin{array}{c} 0\\ 38\\ 4\\ 0\\ \end{array}\\ \begin{array}{c} 1\\ 9\\ 23\\ 10\\ 1\\ 0\\ \end{array}\\ \begin{array}{c} 0\\ 3\\ 17\\ 23\\ 1\\ 0\\ \end{array}\\ \begin{array}{c} 0\\ 3\\ 17\\ 23\\ 1\\ 0\\ \end{array}\\ \begin{array}{c} 0\\ 2\\ 9\\ 16\\ 111\\ 5\\ 1\\ \end{array}\\ \begin{array}{c} 4\\ 9\\ 21\\ 9\\ \end{array}$	0.0 90.5 9.5 0.0 2.3 20.4 52.3 22.7 2.3 0.0 0.0 6.8 38.6 52.3 2.3 0.0 0.0 4.5 20.4 36.4 25.0 11.4 2.3 9.1 20.4 47.7 20.4 47.7 20.4	0 61 4 0 14 44 10 0 0 2 29 32 5 0 0 2 29 32 5 0 0 2 21 2 0 2 18 23 22 4	0.0 93.8 6.1 0.0 20.6 64.7 14.7 0.0 0.0 2.9 42.6 47.1 7.3 0.0 0.0 23.5 39.7 30.9 2.9 0.0 2.9 2.9 0.0 2.9 2.9 0.0 3.0 3.3 31.9 2.9
CRO-NA CONA-O COPA-O DBO	$\begin{array}{c} 0.25 < x <= 0.50\\ 0.50 < x <= 1.00\\ 1.00 < x <= 1.50\\ 1.50 < x <= 2.00\\ \hline \end{array}$	4 141 59 1 0 1 26 96 79 8 0 19 118 70 2 1 1 12 49 75 44 26 2 1 39 101 58 9 0	2.0 68.8 28.8 0.5 0.0 0.5 12.4 45.7 37.6 3.8 0.0 9.0 56.2 33.3 1.0 0.5 5.7 23.4 35.9 21.0 12.4 1. 0.5 0.5 1.7 23.4 35.9 21.0 12.4 1. 0.5 1.7 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 	2 150 50 0 0 0 34 96 72 8 0 13 110 76 11 0 4 20 73 81 29 2 0 2 50 89 56 12 1	1.0 74.3 24.8 0.0 0.0 16.2 45.7 34.3 3.8 0.0 6.2 52.4 36.2 5.2 0.0 1.9 9.6 34.9 38.8 13.9 1.0 0.0 1.0 23.8 42.4 26.7 5.7 0.5	$\begin{array}{c} 0\\ 38\\ 4\\ 0\\ \end{array}\\ 1\\ 9\\ 23\\ 10\\ 1\\ 0\\ \end{array}\\ \begin{array}{c} 0\\ 3\\ 17\\ 23\\ 1\\ 0\\ \end{array}\\ \begin{array}{c} 0\\ 3\\ 17\\ 23\\ 1\\ 0\\ \end{array}\\ \begin{array}{c} 0\\ 2\\ 9\\ 16\\ 111\\ 5\\ 1\\ \end{array}\\ \begin{array}{c} 4\\ 9\\ 21\\ 9\\ 21\\ 9\\ 1\\ 0\\ \end{array}$	0.0 90.5 9.5 0.0 2.3 20.4 52.3 22.7 2.3 0.0 0.0 6.8 38.6 52.3 2.3 0.0 0.0 4.5 20.4 36.4 25.0 11.4 2.3 9.1 20.4 47.7 20.4 47.7 20.4 2.3 0.0	$\begin{array}{c} 0\\ 61\\ 4\\ 0\\ \end{array}\\ 0\\ 14\\ 44\\ 10\\ 0\\ 0\\ 0\\ \end{array}\\ \begin{array}{c} 0\\ 2\\ 29\\ 32\\ 5\\ 0\\ \end{array}\\ \begin{array}{c} 0\\ 2\\ 29\\ 32\\ 5\\ 0\\ \end{array}\\ \begin{array}{c} 0\\ 2\\ 21\\ 2\\ 21\\ 2\\ 0\\ \end{array}\\ \begin{array}{c} 2\\ 18\\ 23\\ 22\\ 4\\ 0\\ \end{array}$	0.0 93.8 6.1 0.0 20.6 64.7 14.7 0.0 0.0 2.9 42.6 47.1 7.3 0.0 0.0 2.9 42.6 47.1 7.3 0.0 0.0 23.5 39.7 30.9 2.9 0.0 2.9 2.6 1 33.3 31.9 5.8 0.0

Continuação

	2.0x<=250	0	0.0	0	0.0	0	0.0	1	1.4
	2.50x<=3.00	4	1.9	14	6.7	7	15.9	8	11.6
	3.00 <x<=3.50< td=""><td>50</td><td>23.9</td><td>43</td><td>20.5</td><td>12</td><td>27.3</td><td>28</td><td>40.6</td></x<=3.50<>	50	23.9	43	20.5	12	27.3	28	40.6
CPA	3.50 <x<=4.00< td=""><td>86</td><td>41.1</td><td>77</td><td>36.7</td><td>19</td><td>43.2</td><td>28</td><td>40.6</td></x<=4.00<>	86	41.1	77	36.7	19	43.2	28	40.6
	4.00 <x<=4.50< td=""><td>53</td><td>25.4</td><td>64</td><td>30.5</td><td>5</td><td>11.4</td><td>4</td><td>5.8</td></x<=4.50<>	53	25.4	64	30.5	5	11.4	4	5.8
	4.50 <x<=5.00< td=""><td>14</td><td>6.7</td><td>12</td><td>5.7</td><td>1</td><td>2.3</td><td>0</td><td>0.0</td></x<=5.00<>	14	6.7	12	5.7	1	2.3	0	0.0
	5.00 <x<=5.50< td=""><td>2</td><td>1.0</td><td>0</td><td>0.0</td><td>0</td><td>0.0</td><td>0</td><td>0.0</td></x<=5.50<>	2	1.0	0	0.0	0	0.0	0	0.0
	1.50 <x<=2.00< td=""><td>5</td><td>2.4</td><td>3</td><td>1.4</td><td>2</td><td>4.5</td><td>2</td><td>2.9</td></x<=2.00<>	5	2.4	3	1.4	2	4.5	2	2.9
	2.00 <x<=2.50< td=""><td>104</td><td>49.5</td><td>53</td><td>25.4</td><td>12</td><td>27.3</td><td>7</td><td>10.1</td></x<=2.50<>	104	49.5	53	25.4	12	27.3	7	10.1
ЧО	2.50 <x<=3.00< td=""><td>94</td><td>44.8</td><td>110</td><td>52.6</td><td>18</td><td>40.9</td><td>32</td><td>46.4</td></x<=3.00<>	94	44.8	110	52.6	18	40.9	32	46.4
110	3.00 <x<=3.50< td=""><td>7</td><td>3.3</td><td>40</td><td>19.1</td><td>12</td><td>27.3</td><td>23</td><td>33.3</td></x<=3.50<>	7	3.3	40	19.1	12	27.3	23	33.3
	3.50 <x<=4.00< td=""><td>0</td><td>0.0</td><td>2</td><td>1.0</td><td>0</td><td>0.0</td><td>4</td><td>5.8</td></x<=4.00<>	0	0.0	2	1.0	0	0.0	4	5.8
	4.00 <x<=4.50< td=""><td>0</td><td>0.0</td><td>1</td><td>0.5</td><td>0</td><td>0.0</td><td>1</td><td>1.4</td></x<=4.50<>	0	0.0	1	0.5	0	0.0	1	1.4
	3.00 <x<=3.50< td=""><td>2</td><td>1.0</td><td>1</td><td>0.5</td><td>1</td><td>2.3</td><td>0</td><td>0.0</td></x<=3.50<>	2	1.0	1	0.5	1	2.3	0	0.0
	3.50 <x<=4.00< td=""><td>9</td><td>4.3</td><td>8</td><td>3.8</td><td>3</td><td>6.8</td><td>3</td><td>4.3</td></x<=4.00<>	9	4.3	8	3.8	3	6.8	3	4.3
	4.00 <x<=4.50< td=""><td>50</td><td>23.8</td><td>49</td><td>23.4</td><td>10</td><td>22.7</td><td>13</td><td>18.8</td></x<=4.50<>	50	23.8	49	23.4	10	22.7	13	18.8
DO	4.50 <x<=5.00< td=""><td>58</td><td>27.6</td><td>55</td><td>26.3</td><td>12</td><td>27.3</td><td>26</td><td>37.7</td></x<=5.00<>	58	27.6	55	26.3	12	27.3	26	37.7
	5.00 <x<=5.50< td=""><td>58</td><td>27.6</td><td>58</td><td>27.7</td><td>10</td><td>22.7</td><td>18</td><td>26.1</td></x<=5.50<>	58	27.6	58	27.7	10	22.7	18	26.1
	5.50 <x<=6.00< td=""><td>31</td><td>14.8</td><td>32</td><td>15.3</td><td>8</td><td>18.2</td><td>7</td><td>10.1</td></x<=6.00<>	31	14.8	32	15.3	8	18.2	7	10.1
	6.00 <x<=6.50< td=""><td>2</td><td>1.0</td><td>6</td><td>2.9</td><td>0</td><td>0.0</td><td>2</td><td>2.9</td></x<=6.50<>	2	1.0	6	2.9	0	0.0	2	2.9
	2.00 <x<=2.50< td=""><td>8</td><td>3.8</td><td>9</td><td>4.4</td><td>4</td><td>9.1</td><td>2</td><td>2.9</td></x<=2.50<>	8	3.8	9	4.4	4	9.1	2	2.9
	2.50 <x<=3.00< td=""><td>39</td><td>18.5</td><td>41</td><td>19.9</td><td>11</td><td>25.0</td><td>24</td><td>34.8</td></x<=3.00<>	39	18.5	41	19.9	11	25.0	24	34.8
DN	3.00 <x<=3.50< td=""><td>87</td><td>41.2</td><td>72</td><td>34.9</td><td>19</td><td>43.2</td><td>23</td><td>33.3</td></x<=3.50<>	87	41.2	72	34.9	19	43.2	23	33.3
	3.50 <x<=4.00< td=""><td>61</td><td>28.9</td><td>72</td><td>34.9</td><td>6</td><td>13.6</td><td>19</td><td>27.5</td></x<=4.00<>	61	28.9	72	34.9	6	13.6	19	27.5
	4.00 <x<=4.50< td=""><td>16</td><td>7.6</td><td>12</td><td>5.8</td><td>4</td><td>9.1</td><td>1</td><td>1.4</td></x<=4.50<>	16	7.6	12	5.8	4	9.1	1	1.4

	CARÁTER	POPULAÇÃO*	MÉIA	MEDIANA	MÍNIMO	MÁXIMO	SD
	VE	1	182.0	182.5	167	194	6.9
	٧E	2	183.3	181.0	163	213	8.8
	80	1	92.3	92.0	67	108	8.8
	SC	2	97.6	98.0	46	118	11.4
	CT.	1	8.5	8.0	8	10	0.6
	5L	2	8.8	9.0	7	11	0.7
S	п	1	10.3	10.0	9	12	0.7
2	IL	2	10.9	11.0	9	13	0.8
LIS	TA	1	1.2	1.0	1	3	0.4
ĒRĮ	IA	2	1.3	1.0	1	2	0.4
Ā	тр	1	1.9	2.0	1	2	0.3
os	Ir	2	2.0	2.0	1	4	0.4
Q	BO	1	2.0	2.0	1	3	0.3
Ω	ro	2	2.0	2.0	1	2	0.1
	POO	1	2.0	2.0	1	3	0.5
	100	2	2.0	2.0	1	4	0.6
	MCO	1	23.0	23.0	14	37	4.7
	MCO	2	17.9	17.5	13	22	2.2
	МСА	1	11.5	12.0	3	17	3.2
	WICA	2	9.5	9.0	4	15	2.0
			421.6	451.5	210.0	500.0	95.2
	CRC	1	431.6	451.5	210.0	598.0	85.5
		2	377.3	370.0	1//.0	545.0	97.3
	CC	1	150.9	134.0	/4.0	199.0	32.7
		2	581.0	600.0	286.0	217.0	40.0
	СТО	1	510.5	517.0	230.0	762.0	136.5
		1	12.0	12.0	83	14.5	130.5
	CCA	2	10.7	10.7	77	15.1	1.5
		1	3.2	3 3	2.2	4 0	0.4
	LRO	2	2.9	2.9	19	49	0.6
	27 0	-	1.6	1.7	1.2	2.1	0.3
	CRO	2	1.4	1.4	0.7	2.2	0.3
		1	3.8	3.8	2.4	4.7	0.4
	LFR	2	3.2	3.2	2.2	4.1	0.5
SOS		1	3.9	4.0	2.8	4.7	0.4
RIC	CFR	2	3.5	3.5	2.7	4.4	0.4
ÉT	C FR O	1	2.7	2.8	2.0	3.2	0.3
No	COFR-O	2	2.5	2.5	1.9	3.2	0.4
R	CDO N-	1	1.0	1.0	0.6	1.3	0.2
Mo	CKO-Na	2	0.9	0.9	0.5	1.3	0.2
l SC	CaNa O	1	2.5	2.5	1.8	3.4	0.3
AD(Cona-O	2	2.3	2.4	1.5	3.1	0.4
Ď	CoPA	1	2.5	2.5	1.9	3.2	0.3
	COLA-O	2	2.3	2.3	1.6	3.1	0.4
	DBO	1	1.1	1.1	0.6	1.7	0.2
		2	1.1	1.0	0.5	1.8	0.3
	LPA	1	4.0	4.0	3.1	4.9	0.4
		2	3.7	3.7	3.1	4.4	0.3
	CPA	1	4.0	4.1	3.2	4.9	0.5
		2	3.7	3.6	2.8	4.9	0.5
	но	1	2.8	2.8	1.9	4.3	0.4
		2	2.5	2.5	2.0	3.6	0.4
	DO	1	5.1 4 7	5.1	4.0	6.2	0.6
		ے 1	4./	4./	3.4 2.4	0.2	0.7
	DV	1	5.5	5.5	2.4	4.2	0.4
	DN	<u>ــــــــــــــــــــــــــــــــــــ</u>	3.2	3.1	2.1	4.1	0.5

ANEXO VII. VARIAÇÃO DOS CARACTERES ENTRE OS DOIS GRANDES GRUPOS POPULACIONAIS DEFINIDOS MERÍSTICOS E MORFOMÉTRICOS DE Dipsas catesbyi.

* (1) População da Amazônia Ocidental e Central(2) População da Amazônia Oriental

		D.catesbyi x D. pavonina	D.catesbyi x D. pavonina
		8	9
	VE*	P< 0.01	P< 0.01
	SC*	P< 0.01	P< 0.01
	SL**	P< 0.01	P< 0.01
	SLO**	P< 0.01	P< 0.01
SO	IL*	P< 0.01	P< 0.01
STIC	ILG**	P< 0.01	P< 0.01
lerí	TA**	P< 0.01	P< 0.01
M SC	TP**	P< 0.01	P< 0.01
DADO	PO**	P< 0.01	P< 0.01
Η	POO**	P< 0.01	P< 0.01
	MCA*	P< 0.01	P< 0.01
	MCO**	P< 0.01	P< 0.01
	CRC * CC ** CTO * CCA * LRO **	P< 0.01 P< 0.01 ns ns	P< 0.01 ns ns ns
S	CRO **	P< 0.01	ns
RICC	LFR *	ns	P< 0.01
MÉT	CFR **	ns	P< 0.01
RFO	CoFR-O *	P< 0.01	P< 0.01
Mo	CRO-Na **	ns	ns
DOS	CoNa-O *	P< 0.01	P< 0.01
DA	CoPA-O *	P< 0.01	ns
	DBO **	P< 0.01	ns
	LPA *	ns	ns
	CPA *	P< 0.01	P< 0.01
	HO **	P< 0.01	P< 0.01
	DO *	ns	ns
	DN *	ns	ns

ANEXO VII. COMPARAÇÃO DOS DADOS MERÍSTICOS E MORFOMÉTRICOS DE *D. catesbyi* E *D. pavonina* (ns = não significativo) * ANOVA ** KRUSKAL - WALLIS.