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Abstract. The Kalman-Bucy method is here analized and applied to the solution of a specific

filtering problem to increase the signal message/noise ratio. The method is a time domain treatment

of a geophysical process classified as stochastic non-stationary. The derivation of the estimator is

based on the relationship between the Kalman-Bucy and Wiener approaches for linear systems.

In the present work we emphasize the criterion used, the model with apriori information, the

algorithm, and the quality as related to the results. The examples are for the ideal well-log

response, and the results indicate that this method can be used on a variety of geophysical data

treatments, and its study clearly offers a proper insight into modeling and processing of geophysical

problems.
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1 Introduction

A seismic signal represents the transient response of the Earth to excitation due

to natural phenomena, such as eathquakes, or due to artificial sources as used

in geophysical exploration, and it results in non-stationaty signals in noise. The

aim of the seismic processing is to improve conditions for the interpretation of

registered data. A detailed representation of a seismic signal requires a rather

complicated formulation, and the processing uses a group of techniques based

on stochastic properties of the model.
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Two types of mathematical methods for data treatment can be used to represent

a seismic signal: deterministic and stochastic. The deterministic method consists

of using physical theories of wave propagation involving solutions of integral and

differential equations satisfying contour and initial conditions. The stochastic

method takes the statistical description of time series for the expressions of

dynamic laws as statistical facts.

In this this work we apply Kalman-Bucy method to treat geophysical data.

For this, we analyze the a priori necessary conditions to transform the governing

integral equation of the first kind to linear and to non-linear ordinary differential

equations using the state space technique. We reinforce the understanding of

the limitations of the procedure for the separation of the signal message from

noise in the time domain, and we make use of the property that geophysical data

represent realizations that are strongly white non-stationary stochastic processes.

The importance of the Kalman method stems both conceptually in the formu-

lation of the solution of a fundamental geophysical problem, and also from its

versatility and applicability as an adaptative data processing. Some basic geo-

physical references followed in the present topic are Robinson (1999), Mendel

(1990, 1983), Crump (1974), Bayless and Brigham (1970) and Van Trees (1968).

Engeneering applications have available a heavy machinery on this subject for

real-time applications, and to name a few we count with Kailath (1981), Chui

and Chen (1987), Candy (1987) and Brown and Hwang (1996).

2 The Wiener-Kolmogorov problem

For motivation, consider the classical optimum time-invariant operator obtained

by using the criterion of minimum error variance between the actual output, x̂(t),

and the desired output, x(t). The model is expressed by

z(t) = x(t) + v(t), (1)

where z(t) is the measurement, and v(t) is the additive noise. The filter operation

is described by the convolution integral

x̂(t) =
∫ +∞

−∞
h(τ)z(t − τ)dτ, (2)
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where h(t) is the unknown time-invarint operator that is constrained to satisfy

the commonly referred as the Wiener-Hopf integral equation

φxz(t) =
∫ +∞

−∞
hw(τ)φzz(t − τ)dτ, (3)

where φxz(t) and φzz(t) are, respectively, the admitted known theoretical stochas-

tic crosscorrelation and autocorrelation functions. It this basic formulation, x(t)

and v(t) are stationary random processes, and together with z(t), h(t), φxz(t)

and φzz(t) are real function, continuous, time unbound, and convergent.

To specify the optimun (not necessary best) operator it is necessary to solve

the integral equation 3. This situation becomes more difficult as the complexity

of the problem increases, and when it does not satisfy strictly the characteristics

of the geophysical problem that we have in hands that has for description to be

non-stationary.

The present problem, with respect to the non-stationarity and to the data win-

dow, does not satisfy the principles underlined by the convolution integral. For

this reason the equation is rewritten in the form of a moving average according

to the commonly referred to as the Wiener-Kolmolgorov problem. The general-

ization corresponds to the integral of the Booton type, and it is expressed by the

matrix integral equation

φ
xz

(t, σ ) =
∫ t

t0

h(t, τ )φ
zz

(τ, σ )dτ, (4)

for

x̂(t) =
∫ t

t0

h(t, τ )z(τ )dτ, (5)

where x̂(t) is the estimated actual output, and h(t, τ ) is the corresponding desired

optimum time-variant operator. Again, the criterion used is the minimization of

the residue covariance expressed as

I (h) = E{[x̂(t) − x(t)]2}, (6)

that results in the normal equations between the deviations and the observations,

E{[x̂(t) − x(t)]z(t)} = 0. (7)
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Equation (4) carries the inherent difficulties of the integral equation of the first

kind. On the other hand, it is the natural representation for the treatment of mul-

tidimensional non-stationary random processes, it includes finite observations,

and it admits time-variant estimates. The problem as written under equation

(4) can be classified as an inversion identification problem, and this setting is

in general non-linear and ill-posed in the sense of Hardamard; nevertheless, the

solvability and the stability are achieved by a priori information. For a practical

solution, Kalman and Bucy (1961) proposed conversion of this integral to linear

and non-linear ordinary differential equation, which results to be more adapt-

able to numerical calculations. The optimum estimator is completely specified

and synthesized with the a priori information on the forward model, and on the

statistics of the components.

3 The state space solution

The formulation begins by expressing the original problem as an ordinary dif-

ferential equation of ordem N − 1

N−1∑
n=0

an(t)
dny(t)

dtn
= w(t), (a1 = 1) (8)

The transformation to the state variable xn(t) and ẋn(t) is achieved by substituting

the higher derivatives of y(t) in the form:

x1 = y, x2 = ẏ, x3 = ÿ, ..., xN = yN−1 (9)

ẋ1 = y, x2 = x3, ẋ3 = x4, ..., ẋN−1 = xn (10)

ẋn = −(anx1 + an−1x2 + ... + a1xn) + w (11)

The resulting dynamic state equation in the general (continuous, time-variant)

compact form are:

ẋ(t) = F(t)x(t) + G(t)w(t), (system), (12)

z(t) = H(t)x(t) + v(t), (measurement). (13)
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F(t), G(t) and H(t) are matrices with variable elements in t ; w(t) is the forcing

function that generates the state; z(t) is the selected form for the output given by

the structure of the matrix H(t); v(t) is the addtive noise present (Ogata, 1995;

Kuo, 1992).

For the development of the estimator, it is necessary to define the apriori

general stochastic properties for the processes, z(t), w(t) and v(t), and the natural

description takes into consideration average values and variances. The table of

a priori conditions is formed by the autocorrelations of white noise, and by mull

crosscorrelations in the window of definition of the governing integral equation,

and they are:

E{w(t)} = 0, φ
ww

(t, τ ) = E{w(t)wT (τ)} = W(t)δ(t − τ), (14)

E{v(t)} = 0, φ
vv

(t, τ ) = E{v(t)vT (τ ) } = V (t)δ(t − τ), (15)

φ
wz

(t, τ ) = E{w(t)zT (t)} = 0, φ
wv

(t, τ ) = E{w(t)vT (τ )} = 0, (16)

φ
xv

(t, τ ) = E{x(t)vT (t)} = 0, φ
wx

(t, τ ) = E{w(t)xT (τ )} = 0. (17)

Observe that delta functions multiplying W(t) and V (t) define the autocorre-

alation as diagonal matrices. These relations represent the strong properties of

the model, and they do not establish a specific distribution, but only a structure.

For instance, we chose red noise for our example, and the theory can be modi-

fied to account for such. F(t), G(t), H(t), w(t), φ
vv

(t), V (t) and W(t) are real,

continuous, time unbound, and convergent.

The philosophy behind this transformation is to substitute the state equations

into the integral equations, and apply the premises. We present only the main

critical steps to point out where the necessary properties are inserted.

We look at the transformation of the integral (4) by frist calculating the correla-

tions φ
zz

(t, σ ) and φ
xx

(t, σ ). With this aim, we initiate with the definition of the

crosscorrelation, φ
xz

(t, σ ), and insert the dynamic equation of the measurement;

that is

φ
xz

(t, σ ) = E{w(t)zT (σ )} = E{x(t)[H(σ)x(σ ) + v(σ )]T } (18)
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With the a priori condition of (14)

φ
xz

(t, σ ) = φ
xx

(t, σ )HT (t). (19)

The autocorrelation φ
zz

(t, σ ) is in a similar manner given by the expression

φ
zz

(t, σ ) = E{z(t)zT (σ )}
= E{[H(t)x(t) + v(t)][H(σ)x(σ ) + v(σ )]T }.

(20)

With the a priori conditions (13) and (14), the above is further simplified to

φ
zz

(t, σ ) = H(t)φ
xx

(t, σ )HT (σ ) + V (t)δ(t − σ). (21)

Substituting (16) in the original equation (4) results in that

φ
xx

(t, σ )HT (σ ) =
∫ t

t0

h(t, τ )φ
zz

(τ, σ )dτ. (22)

Equation (18) and (19) are intermediate relations to express the autocorrelations

φ
zz

(t, σ ) and φ
xx

(t, σ ), and they will be simplified in the next section and applied

to original integral equation (4).

3.1 Inserting the state equation into the stochastic model

System equation (10) is inserted through the autocorrelation as an intermediate

step for obtaining the differential equation for state estimate. For this purpose,

it is necessary to differentiate φ
xx

(t, σ ), and therefore

∂φ
xx

(t, σ )

∂t
= E

{
dx(t)

dt
xT (σ )

}
= E{[F(t)x(t) + G(t)w(t)]xT (σ )}. (23)

Applying the a priori condition (14) gives us

∂φ
xx

(t, σ )

∂t
= F(t)φ

xx
(t, σ ). (24)

Multiplying both sides by HT (σ), we have that

∂φ
xx

(t, σ )

∂t
HT (σ ) = F(t)φ

xx
(t, σ )HT (σ ). (25)
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And transposing (19) to (20) we arrive at

∂φ
xx

(t, σ )

∂t
HT (σ ) =

∫ t

t0

F(t)h
zz

(τ, σ )dτ. (26)

Differentiating equation (19) we obtain,

∂φ
xx

(t, σ )

∂t
HT (t) = h(t, t)φ

zz
(t, σ ) +

∫ t

t0

∂h(t, τ )

∂t
φ

zz
(τ, σ )dτ. (27)

Multiplying both sides of equation (18) by h(t, t), it follows that

h(t, t)φ
zz

(t, σ ) = h(t, t)H(t)φ
xx

(t, σ )HT (σ ). (28)

Substituting (19) into (24) we obtain

h(t, t)φ
zz

(t, σ ) =
∫ t

t0

h(t, t)H(t)h(t, τ )φ
zz

(τ, σ )dτ. (29)

Substituting (26) and (23) into (24), and rearranging terms we find that

∫ t

t0

[
−F(t)h(t, τ ) + h(t, t)H(t)h(t, τ ) + ∂h(t, τ )

∂t

]
φ

zz
(τ, σ )dτ = 0. (30)

Under the condition of non-vanish of φ
zz

in the integration interval, we conclude

that

∂h(t, τ )

∂t
= F(t)h(t, τ ) − h(t, t)H(t)h(t, τ ). (31)

This is the differential equation that the time-variant operator h(t, τ ) satisfies,

and it represents the result searched for in this section. Equation (28) is used in

the next section to arrive at the differential equation for the state estimate x̂(t).

The orthogonality of the correlation function (diagonality for autocorrelations

and nullity for the crosscorrelations), are necessary conditions to obtain the

above results; but the computer experiments on controlled data show that these

conditions can be weakened in practical terms.
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3.2 The gain matriz and the solution of the integral equation

In this section we define the gain matrix of the problem, and we arrive at the

solution of the integral equation (4), using relations (28), (16) and (18) defined

in the previous section, maintaining the validity conditions of the solution in the

interval (t0, t).

The application of Leibnitz rule to differentiate equation (5) is an intermediate

step for the differential of the estimated value x̂(t), and it is given by

dx̂(t)

dt
= h(t, t)z(t) +

∫ T

t0

∂h(t, τ )

∂t
z(τ )dτ. (32)

Substituting equation (28) in the above equation and rearranging terms, we obtain

dx̂(t)

dt
= h(t, t)z(t) +

∫ t

t0

F(t)h(t, τ )z(τ )

− h(t, t)H(t)

∫ t

t0

h(t, τ )z(τ )dτ,

(33)

where we use equation (5) to write

ˆ̇x(t) = F(t)x̂(t) + h(t, t)[z(t) − H(t)x̂(t)]. (34)

This is an intermediate result for the state estimate in terms of known function and

of the apriori conditions. It is still necessary to arrive at an explicit expression for

h(t, t), which means that the values of definition for the operator is coincident

with that of the data, τ = t . In this special position, we identify h(t, t) = K(t),

and K(t) is the commonly referred to as the gain matriz, and it contains the

maximum extension of data involved in the integral equation operation. We

now have the integral equation (4) transformed to the state differential equation

rewritten in the form.

ˆ̇x(t) =
[
F(t) − K(t)H(t)

]
x̂(t) + K(t)z(t), (35)

and its solution is given by knowing K(t).

The matrix K(t) is identified in the derivation of the error covariance equation

defined as P(t) = E{�x(t)�xT (σ ), and expressed in terms of the known F(t),
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G(t), H(t), V (t) and W(t), in the next section. In equation (4) the autocor-

relation represents the data model, and with (11) we write it as; φ
zz

(t, σ ) =
φ

yy
(t, σ ) + φ

yv
(t, σ ) + φ

vy
(t, σ ) + φ

vv
(t, σ ), with null crosscorrelation. The

measurement model is made as y(t) = H(t)x(t), and also condition (13) ap-

plies. In equation (4) the crosscorrelation φ
xz

(t, σ ) represents the measurement,

and we make z(t) → y(t), and φ
xz

(t, σ ) → φ
xy

(t, τ ). With these conditions

imposed on equation (4) it takes the form

φ
xy

(t, σ ) −
∫ t

t0

h(t, τ )H(τ)φ
xy

(τ, σ )dτ = h(τ, σ )V (σ ). (36)

For the case σ = t , we have that the integral is the estimate for φ
xy

(t, σ ), them

φ
xy

(t, t) − φ̂
xy

(t, t) = K(t)V (t). (37)

The measurement model gives that �y(t) = H(t)�x(t). Also, φ
xy

(t, t) =
φ

xx
(t, t)HT (t). We define φ

�x�x
(t, t) = φ

xx
(t, t) − φ̂

xx
(t, t). With these

considerations, equation (34) given the result

P(t)HT (t) = K(t)V (t). (38)

3.3 The Ricatti differential equation

We continue with the analyzes of the error autocorrelation matrix defined by

P(t) = E{�x(t)�xT (t)}. (39)

The idea is to differential P(t) and to apply the premises. Therefore,

Ṗ (t) = E

{
d�x(t)

dt
�xT (t)

}
+ E

{
�xT (t)

�x(t)

dt

}
. (40)

The next steps are to expand both of these terms, with the system error defined

by

�ẋ(t) = ẋ(t) − ˆ̇x(t). (41)
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Substituting equation (32), (10) and (11) in (37), and rearranging terms, we find

that

�ẋ(t) = [F(t) − K(t)H(t)]�x(t) − K(t)v(t) + G(t)w(t). (42)

The tarnsition matrix of �x(t), �(t, t0), is defined as

�(t, t0) = F(t) − K(t)H(t). (43)

With this definition, the solution of the differential equation (38) is given by

�x(t) = �(t, t0)�x(t0) −
∫ t

t0

�(t, τ )K(τ)v(τ )dτ

+
∫ t

t0

�(t, τ )G(τ)w(τ)dτ,

(44)

Using equation (38), we can expand the frist term of equation (36) in the following

form:

E

{
d�x(t)

dt
�xT (t)

}
= [F(t) − K(t)H(t)]E{�x(t)�xT (t)} (45)

We observe that to solve equation (41) it is necessary to find the crosscorrelations

φ
v�x

(t, t) and φ
w�x

(t, t). Frist, we consider the expression

φ
v�x

(t, t) = E{v(v)�xT (t)}. (46)

This point is important because we can not consider a priori conditions of non-

correlation due to �x(t). Substituting equation (40) in (42), and writing it with

�T (t, t0) = �(t, t0) we obtain that

φ
x�x

(t, t) = �(t, t0)E{v(t)�xT (t)} −
∫ t

t0

E{v(t)vT (τ )}KT (t)�T (t, τ )dτ

(47)

Bringing the expectation inside the integral, and applying the table of a priori

conditions of non-correlation, it simplifies to

φ
v�x

(t, t) = −
∫ T

t0

E{v(t)vT (τ )}KT ( τ)�T (t, τ )dτ (48)
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Substituting equation (13), it results in that

φ
v�x

(t, t) = −
∫ t

t0

V (t)KT (τ)�T (t, τ )δ(t − τ)dτ (49)

The integral (45) has t for upper limit. The unitary impulso can be described by

the even rectangular function
∏

(1/T ) (Barton, 1999):

δ(t) = lim
T →0

∏ (
1

T

)
,

1

T

∏ (
1

T

)
= (50)

The integration covers only half of the interval of symmetry of δ(t). Also, for

the problem under study the integrand is to be causal, and �(t, t) = I . Applying

these conditions, equation (45) simplifies to

φ
v�x

(t, t) = −1

2
V (t)KT (t). (51)

In a similar procedure we determine φw�x(t, t) by the following relations

φ
w�x

(t, t) = E{w(t)�xT (τ )}, (52)

φ
w�x

(t, t) =
∫ t

t0

E{w(t)wT (τ)}GT (t)�T (t, τ )dτ, (53)

to obtain

φ
w�x

(t, t) = 1

2
W(t)GT (t). (54)

Substituting equation (48) and (51) in (41), under the established a priori condi-

tions, and that P(t) = E{�x(t)�xT (t)} we obtain

E

{
d�x

dt
�xT (t)

}
= [F(t) − K(t)H(t)]P(t)

+ 1

2
K(t)V (t)KT (t) + 1

2
G(t)W(t)GT (t).

(55)

In an analogous form, we obtain for the second term of the expression (36)

E

{
�x(t)

d�xT

dt

}
= [F(t) − K(t)H(t)]T P (t)

+ 1

2
K(t)V (t)KT (t) + 1

2
G(t)W(t)GT (t).

(56)
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Adding equation (52) and (53) we have for equation (36) that

Ṗ (t) = [F(t) − K(t)H(t)]P(t) + P(t)[F(t) − K(t)H(t)]T + (57)

Finally, by substituting K(t) from (35) we arrive at the non-linear error covari-

ance Ricatti natrix differential equation

Ṗ (t) = F(t)P (t) + P(t)F T (t) − P(t)HT (t)R−1(t)H(t)P (t)

+ G(t)Q(t)GT (t).
(58)

This system of coupled equations, (55), (35) and (32) compose the solution of

the transformation. The function P(t) and K(t) are real, continuous, time non-

unbounded, and convergent. Our final goal is the application to synthetic and

to real data, and we describe next the model that server as an axample (Rocha,

1998).

4 Model construction and data processing

We present the model in a scalar form as by square waves, and this is meant to

correspond to ideal situations in geophysics of measurements. The signal mes-

sage x(t) is measured in the presence of the noise, v(t), with a priori conditions

of zero averege and variance σ 2
a . In this filtering simulation we look for recov-

ering the signal message in noise, what represents a frist step in the search for

the function that describes the geology of the medium.

4.1 Simulated example

This process is based on the convolution of the random function, s(t), represent-

ing the simple reflectivity of the medium, with a Heaviside function, u(t), to

generate the message, x(t), and this is expressed as:

x(t) = s(t) ∗ u(t), (without noise), (59)

z(t) = s(t) ∗ u(t) + v(t), (with noise). (60)
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Continuing with the model description, we table the white stochastic properties

as:

E{x(t)} = 0, φxx(t1, t2) = E{x(t1)x(t2)} = λσ 2
a δ(t1 − t2), (61)

E{w(t)} = 0 φww(t1, t2) = E{w(t1)w(t2)} = λσ 2
a δ(t1 − t2), (62)

E{v(t)} = 0 φvv(t1, t2) = E{v(t1)v(t2)} = σ 2
v δ(t1 − t2). (63)

Comparing the above premises with the general dynamic Kalman equations, and

adjusting the free variables as t = t1, τ = t2, we have conveniently that

Q(t) = Q = λσ 2
a , V (t) = V = σ 2

r . (64)

For the solution of the problem it is necessary to define the state variables, and

here they are selected in the following form:

x1(t) = x(t) = y(t) x2(t) = ẋ1(t) = ẋ(t) = w(t). (65)

Comparing the above expressions with (10) and (11) we have that

ẋ1 = 0 + w(t) y(t) = x1(t), (66)

and

F = 0; G = 1 H = 1. (67)

The above relation give for the Ricatti matricial differential equation

Ṗ (t) = −P(t)V −1(t)P (t) + W(t). (68)

And for the gain matrix

K(t) = P(t)HT (t)V −1(t). (69)

Substituing equation (61) and (62) in (66) and in (67), we obtain the differential

equation for erro covariance in the scalar form, P(t) → p(t), as given by

dp(t)

dt
= −p2(t)

σ 2
v

+ λσ 2
a , (70)
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and the corresponding gain by

K(t) = p(t)

σ 2
v

. (71)

In the general solution for the Ricatti equation (55) in closed form appears the

hiperbolic tangent function (Lewis, 1986; Davis, 1963),

K(t) = √
γ

[
1 − e2

√
γ t

1 + e2
√

γ t

]
, γ = λ

σ 2
a

σ 2
r

. (72)

With the gain function as defined above, we obtain the state differential equation

for estimation in the desired scalar form:

dx̂(t)

dt
= − √

γ

[
1 − exp(−2

√
γ t)

1 + exp(−2
√

γ t)

]
x̂(t)

+ √
γ

[
1 − exp(−2

√
γ t)

1 + exp(−2
√

γ t)

]
z(t).

(73)

The method used here for the numerical integration of the above equation is

of the type Runge-Kutta, second order.

The synthetics in figure 1a obeys the principles of the adopted model, which is

the convolution of the impulse response function of the medium, s(t), with the

Heaviside function, u(t), resulting in a square wave, x(t), with additive randon

noise, v(t).

The apriori conditions are displayed in figure 2, where the crosscorrelations

between the desired signal, z(t), and the noise, v(t), shows to be small, although

the theory requires it to be zero. The autocorrelation of the nessage, x(t), and of

the noise, v(t), shows that the noise attends better the requirement of the theory.

The distribuition is considered uniform in the data window.

In the present example it is necessary to define intervals (t0 = ti , t = Ti) for

the application of the sequential windows (ti ≤ τ ≤ Ti), (i = 1, 2, 3, ..., I ) for

detection of events I interpreted in the data. To simplify we considered ti and Ti

as positions immediately before and after the onset of an event interpreted by the

steps of the square wave. But, this operation can be organized as an automatic

assisted task.
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(a) - Synthetic data

S/N = 5.73

Figure 1 – (a) Simulation of a sonic profile with the signal/noise ratio = 5.73 for the filter

input. (b) A selected result of filtering with λ = 20 Sampling interval �t = 0.1.

-600 -400 -200 0 200 400 600
-0.2

-0.1

0

0.1

0.2

Index (m)

A
zv

(a) - Crosscorrelation

-600 -400 -200 0 200 400 600
-1

-0.5

0

0.5

1

Index (m)

A
xx

 e
 A

vv

(b) - Autocorrelation

Figure 2 – (a) Crosscorrelation between signal z(t) and noise v(t). (b) Autocorrelation

between x(t) and noise v(t).
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The discretizing is in the form t = n�t . The depth is related to the index n; �t

is aquispaced, and it can represent any unit dimension of the SI system; namely,

meter, kilometer, centimeter, second, etc. The signal message/noise ratio (S/N)

is simply calculated by

S

N
=

1
N

∑N
i=1(xi − x̄)2

1
N

∑N
i=1(vi − v̄)2

(74)

where x̄ and v̄ are the simples averege values.

Analyzing the performance of the processor in the several controlled experi-

ments we observe that the time-variant operator is versatile, and it can be made

more sophisticated to heve applicability in different situations of natural non-

stationarity. The algorithm appears to be numerically convergent, but in all

obtained results, we can see the influence of the transient response of the fil-

ter operator characterized by the symmetrical form of the hyperbolic tangent

function.

4.2 Real data

The operationality of the Kalman filter was verified on real data with different

characteristics from the synthetically simulated experiments. For this task we

used a published log profile of clay volume measured in a well of the Maracaibo

lake, Venezuela, as shown in figure 3. The initial stage consisted on the definition

of each interval of the sequential windows without overlap for filter application

(t0 ≤ τ ≤ Ti), which begin at points where the variance is estimated. The

sampling interval was fixed in �t = 0.1 and the parameter λ varied as λ = 10

and λ = 20.

This data does not present itself with a clear descriptive noise component,

which limits the simple comparison with the synthetic simulations. Figure 3

shows the satisfactory result demonstrated by the smoothing of noise in the data

window.

5 Conclusions

The numerical method is stable, and the algorithm satisfies the criteria of con-

vergence to the continuous case that describes the physical phenomena.
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(a) - Real data
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(b) - Processed data

Lambda=10
T=0.1

Figure 3 – (a) Data measured in a well of the Maracaibo lake, Venezuela. (b) The

processed output using numerical procedure, with parameter γ = 10 and sampling

spacing �t = 0.1.

The present method cam include sophistication through apriori knowledge in

order to describe the model in more details, what can results in a gain in resolution

in the processing of non-stationary data. On the other hand, the sophistication

may represent a loss in the practical application of the algorithm.

On real data, the filter has the possibility of being structured in an interactive

procedure with a continuous sweeping over the data using a group of control

parameters. The display on the monitor screen serves the interpreter for making

a systematic evaluation of the outputs.
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