
UNIVERSIDADE FEDERAL DO PARÁ

INSTITUTO DE TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

A Comparison between RS+TCM and LDPC
FEC schemes for the G.fast standard

Marcos Yuichi Takeda

DM 04/2016

UFPA / ITEC / PPGEE

Campus Universitário do Guamá

Belém - Pará - Brasil

2016

UNIVERSIDADE FEDERAL DO PARÁ

INSTITUTO DE TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

A Comparison between RS+TCM and LDPC
FEC schemes for the G.fast standard

Autor: Marcos Yuichi Takeda

Orientador: Aldebaro Barreto da Rocha Klautau Júnior

Dissertação submetida à Banca Examinadora do

Programa de Pós-Graduação em Engenharia Elétrica

da Universidade Federal do Pará para obtenção do

Grau de Mestre em Engenharia Elétrica. Área de

concentração: Telecomunicações.

UFPA / ITEC / PPGEE

Campus Universitário do Guamá

Belém, PA

2016

UNIVERSIDADE FEDERAL DO PARÁ

INSTITUTO DE TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

A Comparison between RS+TCM and LDPC FEC schemes for the

G.fast standard

AUTOR(A): MARCOS YUICHI TAKEDA

DISSERTAÇÃO DE MESTRADO SUBMETIDA À AVALIAÇÃO DA BANCA EX-

AMINADORA APROVADA PELO COLEGIADO DO PROGRAMA DE PÓS-

GRADUAÇÃO EM ENGENHARIA ELÉTRICA, DA UNIVERSIDADE FED-

ERAL DO PARÁ E JULGADA ADEQUADA PARA A OBTENÇÃO DO GRAU

DE MESTRE EM ENGENHARIA ELÉTRICA NA ÁREA DE TELECOMUNI-

CAÇÕES.

Prof. Dr. Aldebaro Barreto da Rocha Klautau Júnior

(Orientador - UFPA / ITEC)

Prof. Dr. Evaldo Gonçalves Pelaes

(Membro - UFPA / PPGEE)

Profa. Dra. Valquíria Gusmão Macedo

(Membro - UFPA / ITEC)

Acknowledgement

I would like to thank every colleague, friend, professor that I had contact at this 3

years of master degree program. The year of 2015 was a life changer year for me, as I was

diagnosed with cancer. This result in almost a year of delay due to cancer treatment, namely

chemotherapy and radiotherapy. Fortunately, the treatment worked well and now I could

finally write this disseratation thesis.

Thus I want to truly thank everyone who gave me support during the heavy cancer

treatment. My family, Kazuo, Maria and Akira Takeda, in first place, and friends from

LaPS, and in special my advisor Prof. Aldebaro Klautau, which was very comprehensive, my

former coadvisor Fernanda Smith, which took my place at a paper presentation when I was

at treatment. Special thanks to Pedro Batista, Bruno Haick, Francisco Muller, Ana Carolina,

Silvia Lins, Igor Almeida, Leonardo Ramalho, Joary Fortuna, Igor Freire, Kelly Souza, and

many others from LaPS.

Also, I would want to thank friends outside UFPA and LaPS, that were invaluable

during my treatment.

I would like to thank Prof. Evaldo Pelaes and Prof. Valquíria Macedo for reading and

evaluating this dissertation.

Abstract

The need for increasing internet connection speeds motivated the creation of a new standard,

G.fast, for digital subscriber lines (DSL), in order to provide fiber-like performance using

short twisted pair copper wires. This dissertation focuses in the two former candidate codes

for the forward error correction (FEC) scheme, namely Reed-Solomon (RS) with trellis-coded

modulation (TCM), from previous DSL standards, and low density parity check (LDPC)

codes, from the G.hn standard for home networking. The main objective is to compare both

schemes, in order to evaluate which of them performs better, considering metrics such as error

correction performance and computational cost. Even though the selected code for G.fast was

RS with TCM, it is believed that this choice was biased, as a more recent iterative code like

LDPC is known to have a better error correction performance.

Resumo

A necessidade de velocidades de conexão a internet cada vez maiores motivou a criação de

um novo padrão, G.fast, para DSL (linha digital do assinante), de modo a prover performance

semelhante a fibra usando par trançado de fios de cobre. Esta dissertação foca em dois

prévios candidatos a esquemas de correção de erro, sendo eles codigos Reed-Solomon com

modulaçao codificada em treliça (TCM), de padrões DSL anteriores, e códigos de verificação

de paridade de baixa densidade (LDPC), do padrão G.hn para redes residenciais. O objetivo

principal é comparar os dois esquemas, de modo a avaliar qual deles tem melhor performance,

considerando métricas como poder de correção de erro e custo computacional. Embora o

código selecionado para o G.fast já tenha sido RS+TCM, acredita-se que esta decisão foi

tendenciosa, já que é sabido que códigos mais recentes como LDPC possuem maior poder

correção.

Contents

List of Figures iv

List of Tables vi

List of Symbols vii

Introduction 1

1 Fundamentals of channel coding 4

1.1 Channel Coding . 4

1.1.1 Block codes . 5

1.1.2 Convolutional codes . 6

1.2 Reed-Solomon codes . 9

1.2.1 Finite fields . 11

1.2.2 Encoding . 13

1.2.3 Decoding . 14

1.3 Trellis-coded modulation . 15

1.3.1 Encoding/Mapping . 16

1.3.2 Decoding/Demapping . 16

1.4 Low-Density Parity-Check codes . 17

1.4.1 Encoding . 17

1.4.2 Decoding . 18

2 Standards Overview 19

2.1 G.fast forward error correction . 19

2.1.1 Reed-Solomon . 19

i

2.1.1.1 Encoding . 19

2.1.1.2 Decoding . 20

2.1.1.3 Shortening . 22

2.1.1.4 Unshortening . 24

2.1.2 Interleaving . 24

2.1.2.1 Deinterleaving . 26

2.1.3 Trellis-coded modulation . 26

2.1.3.1 Bit extraction . 26

2.1.3.2 Encoding . 27

2.1.3.3 QAM modulation . 28

2.1.3.4 QAM demodulation . 29

2.1.3.5 Decoding . 31

2.2 G.hn forward error correction . 35

2.2.1 LDPC . 36

2.2.1.1 Encoding . 37

2.2.1.2 Puncturing . 39

2.2.1.3 Constellation Mapper . 39

2.2.1.4 Demapper . 41

2.2.1.5 Depuncturing . 41

2.2.1.6 Decoding . 42

3 Results 46

3.1 Error correction performance . 46

3.1.1 Metrics . 46

3.1.2 Simulation . 48

3.1.3 Results . 50

3.2 Complexity . 52

3.2.1 Metrics . 52

3.2.2 Results . 53

3.2.2.1 G.fast complexity . 53

3.2.2.2 G.hn complexity . 56

3.2.2.3 Remarks . 58

ii

4 Conclusion 59

4.1 Future works . 60

Bibliography 61

iii

List of Figures

1.1 Systematic codeword generation by a block code. 6

1.2 Representation of a convolutional code as parities on a sliding window. 7

1.3 State diagram. 8

1.4 Trellis diagram. 8

2.1 Reed-Solomon Encoding Filter. 21

2.2 Decoder blocks. 21

2.3 Shortening process. 23

2.4 Each step of Reed-Solomon encoding. 23

2.5 Each step of Reed-Solomon decoding. 24

2.6 Interleaver matrix and the values for each index. 25

2.7 Finite state machine form of the trellis code. 27

2.8 Relation of û with v̂ and ŵ. 28

2.9 Modulation algorithm. 29

2.10 2-dimensional cosets in a QAM constellation. 29

2.11 2D and 4D distance metrics. 31

2.12 Relation between 2D and 4D cosets, from G.fast standard. 32

2.13 Trellis diagram from G.fast. 33

2.14 Viterbi algorith diagram example. 36

2.15 Encoding process. 40

2.16 Depuncturing process. 42

2.17 Check-node processing. 43

2.18 Bit-node processing. 43

2.19 Initialization. 44

2.20 A posteriori LLR calculation. 44

iv

3.1 RS+TCM vs LDPC on 64-QAM. 51

3.2 RS+TCM vs LDPC on 1024-QAM. 51

3.3 Comparison to Shannon capacity. 52

v

List of Tables

1.1 Addition and multiplication tables. 12

1.2 Three different views of GF(4). 13

1.3 Addition and multiplication tables for GF(4). 13

2.1 Distance by 4-D cosets. 35

2.2 Summary of G.hn parity check matrices . 38

2.3 Dimensions of sub-blocks (in compact form). 38

2.4 Puncturing Patterns. 41

vi

List of Symbols

ACS Add-compare-select

API Application Programming Interface

AWGN Additive White Gaussian Noise

BCH Bose-Chaudhuri-Hocquenghem

BER Bit error rate

BLER Block error rate

BMU Branch metric unit

CD Compact disc

DMT Discrete multitone

DSL Digital subscriber line

DVB Digital video broadcasting

GF Galois Field

LDPC Low-density parity-check

LLR Log-likelihood ratio

LSB Least significant bit

MSB Most significant bit

OFDM Orthogonal frequency division multiplexing

vii

PAM Pulse amplitude modulation

PMU Path metric unit

QAM Quadrature amplitude modulation

QC-LDPC-BC Quasi-cylic low-density parity-check block code

RS Reed-Solomon

SNR Signal-to-noise ratio

TBU Traceback unit

TCM Trellis-coded modulatin

VDSL2 Very-high-bit-rate digital subscriber line 2

XOR Exclusive or

viii

Introduction

In light of the new G.fast standard for fiber-like speeds over twisted pair copper wires,

there was a discussion at which forward error correction scheme would be used in the physical

layer. The two main candidate schemes were Reed-Solomon codes with trellis-coded modu-

lation, repeated from previous DSL standards like VDSL2, and LDPC codes, from the G.hn

standard for home networks.

G.fast

The G.fast [1] standard was devised to provide up to 1 Gbps aggregated (uplink and

downlink) rate over short twister pair copper wires. The motivation is to provide cabled

infrastructure at a lower cost than using optical fiber. A deployment scenario example is a

building, where the fiber reaches the base level and the network is further spread up using

copper.

Technology

G.fast uses discrete multitone modulation (DMT), which can be viewed as a special

case of orthogonal frequency division multiplexing (OFDM). DMT divides the channel into

smaller non-overlapping sub-channels, transmitting a variable amount of bits depending on the

conditions of each sub-channel. G.fast uses QAM in each sub-channel, with each sub-carrier

using up to 4096-QAM (12 bits).

The use of DMT incur in a bitloading algorithm with channel estimation. This calcu-

lates precisely how many bits can be transmitted at each sub-channel, resulting in a efficient

adaptation to the channel. As seen later, the use of a bitloading table plays a important role

on using trellis-coded modulation on DMT systems.

1

2

Reed-Solomon with trellis-coded modulation

Reed-Solomon code [2] is a classical code with its main characteristic of having absolute

control over its error correction properties. Also, they are used in a variety of applications

as CDs, Blu-rays, barcodes, QR codes and secret sharing schemes as well. Basically, a Reed-

Solomon code can correct half the number of the redundancy it inserts at a system.

Trellis-coded modulation [3] is also a classical scheme developed first for old telephone

modems. Trellis-coded modulation introduction was revolutionary at the time, as it provided

a way to jump from rates of 14 kbps to 33 kbps. It improved systems by increasing the number

of bits per symbol instead of using more bandwidth.

LDPC

In the other hand, LDPC codes were discovered at 1963 [4], but remained forgotten

for more than 30 years, because at the time the computational cost was not practical. With

its rediscovery 30 years later, it gained rapid popularity as it managed to surpass the recent

discovered Turbo codes. LDPC and Turbo codes belong to a class of codes called capacity ap-

proaching. In fact, LDPC codes, when used with very long codeword sizes, could achieve error

correction curves within 0.0045dB in Eb/N0 of the Shannon limit on AWGN channels, which

is the theoretical limit of reliable transmission [5]. LDPC works by using long codewords and

sparse parity check matrices. Its design can be pseudo-random, and its exact error correction

performance is difficult to calculate. Generally, we measure the average behaviour of a LDPC

code, as opposed to Reed-Solomon code, where we do not even need to measure, as the error

correction performance is fixed at the design. Also, LDPC decoders use probabilities instead of

bits, avoiding early loss of information caused by the hard decisions caused by demodulation.

State of art

A comparison between these codes was already made, but with another purpose. Necke-

broek [6] showed that when considering impulse noise, Gaussian noise, with retransmissions.

They showed that under these conditions, retransmissions result in better performance than

FEC due to shorter symbol durations in G.fast, and thus impulse noise affecting an entire sym-

bol at once. Retransmissions are better with short symbol durations as a rapid retransmission

is possible, incurring on low latency.

3

Comparison motivation

In the end, the scheme of Reed-Solomon with trellis-coded modulation was chosen for

the G.fast 100 MHz profile. Although this decision was already made, it is believed that it was

biased to remain unchanged, and thus favoring existing implementations. At AWGN channel

tests, the error correcting performance of Reed-Solomon with trellis-coded modulation was

lower than that of LDPC. One may argue with computational cost and complexity, but this

remains as a very difficult question, as specialized hardware exist for both schemes.

Outline

This work is divided as follows: Chapter 1 gives an quick overview of each code, Chapter

2 gives a detailed explanation of the codes used for each standard, Chapter 3 shows the

comparison results for both schemes and Chapter 4 concludes with some final remarks.

Chapter 1

Fundamentals of channel coding

This chapter contains a brief review of the fundamentals of channel coding, with em-

phasis on the codes used on this works, namely Reed-Solomon codes, trellis-coded modulation

and LDPC. This work will not assess all the details of coding theory, as there are a number

of references which contain them [7–9].

1.1 Channel Coding

Channel coding is a way to improve efficiency in telecommunications systems. We can

only get close to the so-called Shannon’s channel capacity by using it. The channel can be

anything: a cable, air, vacuum or even a media CD or hard drive. When information is

sent/written to, or received/read from a channel, noise may corrupt data. The main concept

of channel coding is to add controlled redundancy data to the information data in order to

protect this information from such noise. Noise is anything undesirable, and out of our control

that corrupts data such as thermal noise on cables or scratches on the CD surface.

A code can be defined as a set of codewords. A codeword is a representation of an array

of symbols. A symbol can be one or more bit. When we use a bit as a symbol the code is said

binary. The main motivation behind using a set of codewords to represent data is that we can

expand the “space” between valid sequences. An analogy can be made with digital modulation:

When dealing with modulation, the values are continuous, so to “open space” we just scale

the constellation by a factor greater than 1, increasing the distance between points. In a code,

the values are discrete and finite, so we need to map these values to a “bigger space” in order

to make room for possible errors that may occur. The mapping procedure is called encoding,

and the resulting values on which the original are mapped into form the code. The decoding

4

CHAPTER 1. FUNDAMENTALS OF CHANNEL CODING 5

procedure can be also seen as an analogy to modulation: the decoder receives a value, which

is not necessarily valid, so we need to find the “nearest” valid value to the received value. The

process of finding this nearest is called decoding.

The main objective of channel coding in telecommunications is to achieve transmission

rates near the channel capacity. The channel capacity [10] for AWGNis calculated by

C = log2(1 + SNR), (1.1)

where C is the channel capacity in bits per channel use. Shannon proved in the noisy-channel

coding theorem that we can get arbitrarily close to C using an appropriate code. The main

problem is finding such a code. Also, for practical reasons, it is preferred that this code has

manageable computational complexity for encoding and decoding. The word “redundancy”

may sound as something that is not entirely necessary, but in channel coding it is the key to

achieve optimal rates of transmissions in noisy channels.

Channel coding may be divided in two categories: Block codes and Convolutional codes.

1.1.1 Block codes

Block codes use fixed lengths for both data and redundancy. A Hamming(7,4) code is

an example of a block code. It takes 4 information bits and creates more 3 bits of redundancy,

comprising a codeword with 7 bits. Note that the new codeword may not resemble the original

information at first glance, as we can further classify a code which maintain the original

information in the codeword as systematic, and a code which does not as non-systematic. But

this does not mean that non-systematic codes are not usable, as the original information can

be recovered by using proper decoding algorithms. Nevertheless, the codes in this work are

all from telecommunications standards, which use mostly systematic codes, justified by the

fact that if a codeword is not corrupted, then we can just remove the redundancy and retrieve

information more easily.

A linear block code is defined by a k×n matrix G, called generator matrix, or (n−k)×n

matrix H, called parity-check matrix. We need just one of them, as given one, it is possible to

calculate the other. The rows of G define a base of a k-dimensional vectorial subspace. Any

vector in this subspace is called a codeword. The rows of H define the null space of the rows

of G, such that GHT = 0, meaning that any codeword ĉ multiplied with HT results in 0. The

code rate of a linear block code is Rblock = k/n.

Figure 1.1 shows how a systematic codeword is generated by a block code. The in-

formation of size k is concatenated to n − k bits in order to generate a n bit codeword. In

CHAPTER 1. FUNDAMENTALS OF CHANNEL CODING 6

Information

Information Parity

Encoding

k

n

n− k

Figure 1.1: Systematic codeword generation by a block code.

this case the left side of G is an identity matrix, as the code is systematic. To return to the

original information, we simply drop the parity the bits.

In order to decode a codeword, usually we use H first to verify if the received codeword

is a valid codeword. Considering the received vector as r̂ = ĉ+ ê, where ê represents the error

caused by the channel, we calculate the so called syndrome ŝ = r̂HT . If ŝ is an all-zero vector,

then r̂ is a codeword. This does not directly imply that r̂ is correct, but in general we assume

this is true. This is because for r̂ to be a codeword different of ĉ, the transmitted codeword,

the error vector ê must be a codeword, as r̂HT = ĉHT + êHT = 0, and ĉHT = 0, so we have

that ê is a codeword indeed. This case can be neglected as in practice we adopt codes where

the minimum codeword weight is high, preventing that a low number of errors could confuse

the decoder. When a non-zero syndrome is produced, we detect that an error has occurred,

and try to correct these errors, if possible. This is where different types of codes differ. It is

desirable that codes have efficient decoding algorithms, and that these algorithms can correct

more errors with less redundancy.

1.1.2 Convolutional codes

Convolutional codes use a potentially infinite length of data as their input and produce

an output with length larger than the input. A convolutional code acts similarly to a digital

filter from signal processing. In other words, it has a combination of coefficients and memories

that given an input, produce an output. The main differences are that, in a binary code,

the coefficients can only be 0 or 1, which reduces to indicating only the presence or not of a

connection, and that there is not only one input signal and one output signal, at each time

step, the code receives k inputs and produces n outputs, from which we can calculate the code

CHAPTER 1. FUNDAMENTALS OF CHANNEL CODING 7

rate R = k/n.

The convolutional encoder can be seen as a sliding window calculating n different

parities in parallel. The sliding window receives a stream of bits as its input and calculates

the outputs, as shown in Figure 1.2. In this example, there are 3 red squares, where the first

reads the actual value x[n], and the next 2 squares read the delayed values x[n−1] and x[n−2].

Thus, there are two binary memories.

1 0 0 01

+ +

10 …… 1

0 1

Figure 1.2: Representation of a convolutional code as parities on a sliding window.

As the memory elements inside a binary convolutional code are limited only to the

values 0 and 1, the code can be described as a finite state machine with 2m states, m being

the number of memory registers. This representation leads to a trellis diagram that can be

used at the decoding procedure. The finite state machine can be described by a state diagram

as shown in Figure 1.3. This diagram represents the same code of Figure 1.2, where each

state is represented by the bits of the first memory and the second, in this order. A dashed

line is an input bit 0 and a solid line is an 1. The outputs are represented by the two bits

y1[n] = x[n] + x[n− 1] and y2[n] = x[n− 1] + x[n− 2], labeled next to the transitions. In this

diagram, it is hard to read a sequence of states along the evolution of time. A trellis diagram

can represent time better, as it shows both all previous and next states at once. Figure 1.4

shows the same code as a trellis diagram.

One of the advantages of convolutional codes is that one can encode a large amount of

CHAPTER 1. FUNDAMENTALS OF CHANNEL CODING 8

00 01

10 11

00

10

01

11

11

00

01

10

Figure 1.3: State diagram.

00

01

00

10

11

01

10

11

00

10

01

11

11

01

10

00

00

01

11

10

10

11

01

00

Figure 1.4: Trellis diagram.

CHAPTER 1. FUNDAMENTALS OF CHANNEL CODING 9

data in a stream-like fashion, generating just one big codeword. Furthermore, the decoding

can also be performed in the same fashion, which can reduce the latency caused by waiting

the full codeword to be received.

1.2 Reed-Solomon codes

Reed-Solomon codes are a powerful class of error correction and detection non-binary

codes. The main focus of Reed-Solomon is to have control over the error correction capabilities

of the code. It operates on polynomials over finite fields.

In order to generate a Reed-Solomon code, one must define a finite field. A finite field

can only have a prime power as its number of elements, so typically 2 is used as the base

prime, resulting in fields of order q = 2m. In this work, m = 8 is conveniently used, in order

to make a field with 256 elements, which we can represent using 8 bits, a byte.

After setting the finite field, the codeword length of the code is NRS = q−1 symbols. A

symbol can be any element from the field. Now we must set the number of parity symbols MRS.

By construction, a Reed-Solomon code can correct up to half the number of parity symbols

in a codeword. The number of information symbols is KRS = NRS −MRS. For example, we

can use MRS = 32 parity symbols resulting in a codeword of KRS = 255 − 32 = 223, so that

we have a (255,223) Reed-Solomon code.

A Reed-Solomon code can be viewed as an interpolation problem, as follows: given two

different polynomials with KRS coefficients, we evaluate them at the same NRS points. Now

these points agree in at most KRS − 1 points. This is because if they agree in KRS points,

one could interpolate them and generate the same polynomial, contradicting the premise

that they are different. If they agree in at most KRS − 1 points, they disagree in at least

NRS − (KRS − 1), resulting in a minimum distance of d = NRS − KRS + 1, so that we can

correct up to t = ⌊d−1
2
⌋ = ⌊NRS−KRS

2
⌋ erroneous symbols. In this case, the decoding algorithm

must find a way to find the errors such that the interpolation of the values can return the

polynomial. The evaluation points usually are taken as consecutive powers of a primitive

element α: α0, α1, α2, . . . , because this leads to interesting mathematical properties.

Another view, adopted from BCH codes, is that a Reed-Solomon codeword itself is

a polynomial of NRS coefficients. The requirement is that this codeword is divisible by the

generator polynomial G(X) of NRS−KRS+1 coefficients. The generator polynomial is defined

CHAPTER 1. FUNDAMENTALS OF CHANNEL CODING 10

by having consecutive powers of a primitive element α as its roots, as follows

G(X) =

NRS−KRS∏

i=1

(X − αi) =

NRS−KRS∑

i=0

giX
i , (1.2)

where a codeword is any polynomial with NRS coefficients divisible by G(X). In other words,

a codewords has at least the same roots of G(X). A systematic encoding algorithm finds a

codeword that starts by the given message and calculates the rest by making the codeword

divisible by G(X). In order to do this, one should fill the coefficients of the codeword from the

highest order coefficients, leaving the lower ones as zeros, then after calculation of the remain-

der of the polynomial division, we subtract this remainder and thus generate a polynomial

divisible by G(X).

(1.4) shows the equation for this method, where M(X) is the message polynomial,

with its coefficients conveying the information, R(X) is the parity polynomial, and C(X) is

the codeword constructed by the concatenation of M(X) and −R(X).

R(X) = M(X)XNRS−KRS mod G(X) (1.3)

C(X) = M(X)XNRS−KRS −R(X) (1.4)

Both views seems very different as in the first we evaluate a polynomial to obtain

the values as a codeword, and in the second the codeword is a polynomial itself. If we

consider that we evaluate the polynomial of the first view at consecutive powers of α,αi,

i = 0, 1, 2, . . . , NRS − 1 , we can relate both views by the finite field Fourier transform. From

the first view, we have a polynomial

c(X) = c0 + c1X + c2X
2 + · · ·+ cKRS−1X

KRS−1 (1.5)

and then we evaluate c(X) at αj, in order to calculate the codeword Cj = c(αj), resulting in

a familiar formula

Cj =

NRS−1∑

i=0

ciα
ij, (1.6)

also, the inverse transform is valid, ci = 1
NRS

C(α−i) = 1
NRS

C(αNRS−i), resulting in

ci =
1

NRS

NRS−1∑

j=0

Cjα
−ij =

1

NRS

NRS−1∑

j=0

Cj(α
NRS−i)j, (1.7)

where 1/NRS is the reciprocal of

NRS
︷ ︸︸ ︷

1 + 1 + · · ·+ 1, which, in the binary case, equals to 1, and

alsoαN
RS = 1. From (1.5) and (1.7) we can note that ci = 0 for i = KRS, KRS + 1, . . . , NRS − 1,

so that C(αNRS−i) = 0 for the same i’s, or equivalently, C(αk) = 0 for k = 1, 2, . . . , NRS−KRS.

This last part indicates that C(X) is also a codeword according to the second view, having

consecutive powers of α as its roots.

CHAPTER 1. FUNDAMENTALS OF CHANNEL CODING 11

1.2.1 Finite fields

The definition of a finite field, in a few words, is a kind of “interface” (from program-

ming languages), that is, it is a set that satisfies some requirements (methods or function, in

a programming language), so that these requirements are sufficient for us to use other tools.

Basically, a finite field is a finite set with two operations, namely addition and multiplication,

and both are invertible inside the field. The most notable (non-finite) field would be the ratio-

nals Q representing fractions of integers, on which can be performed the four basic arithmetic

operations.

The requirements of a field enable us to use all the mathematical knowledge that already

works on sets such as C, R and Q on other sets, even sets we define ourselves. For example,

algebra tools used for system of equations, polynomials, matrices and vectors can be used on

finite fields with minimal or no changes.

Formally a finite field is a set of elements, equipped with two operations, namely "addi-

tion" and "multiplication". The quotation marks indicates that they are not the conventional

addition and multiplication. They can be any operation, usually defined conveniently to serve

a purpose. A finite field requires closure of both operations, in other words, the "addition"

and "multiplication" of two elements must result in another element in the set. Also, both

operations have a identity element, namely "0" and "1" (note the quotation marks again),

where "0" is an element such that a+ 0 = a and "1" is an element such that a · 1 = a. Also,

both operations have the associativity and commutative properties, meaning that the order

each operation is carried does not matter. Another required property is that the "multiplica-

tion" is distributive over "addition", a · (b + c) = aḃ + aċ. And the last requirement is what

differs a field from a commutative ring, which is the presence of inverses for both operations,

as a commutative ring requires inverses only for "addition". An inverse of a element for an

operation is another element which when applied the operation gives a identity element. For

example, for "addition" b is the additive inverse of a when a + b = 0, usually we explicitly

name b as b = −a, such that a+ (−a) = 0. The same goes for "multiplication", c · d = 1, and

we express d as d = 1
c
, such that c · 1

c
= 1. An exception for the inverse requirement is "0",

which has no multiplicative inverse. The field we usually learn first is the set of rationals Q,

where we can divide any number. The reals R and complexes C are also fields.

A finite field is a field with a finite number of elements. Considering that the "0"

and "1" are different, 0 6= 1, the smallest finite field we can construct is using addition and

multiplication modulo 2, making a field with 2 elements, 0 and 1. Addition modulo 2 is

equivalent to a binary XOR operation, and multiplication modulo 2 is binary AND, as shown

in Table 1.1. We can note from the addition table that, for this binary field, addition and

CHAPTER 1. FUNDAMENTALS OF CHANNEL CODING 12

Table 1.1: Addition and multiplication tables.

+ 0 1

0 0 1

1 1 0

× 0 1

0 0 0

1 0 1

subtraction are equal, as 1 + 1 = 0.

It is possible to construct any finite field with a prime number of elements using the same

method of considering addition and multiplication modulo p, where p is prime. Furthermore,

it is possible to construct finite fields with its number of elements equals to a prime power pn,

but using a different method. This method uses primitive polynomials over base prime fields

instead of prime integers, such that the field elements are now represented by polynomials.

Primitive polynomials are the minimal polynomials of primitive elements. Primitive elements

are generators of the field multiplicative group, which is cyclic (excluding 0). In other words,

if we take one root of a primitive polynomial and apply consecutive powers to it, we obtain

the entire multiplicative group, generating the entire field.

As an example, to generate the finite field of 4 elements, we use polynomials with two

coefficients from the binary finite field. The primitive polynomial is given as X2 +X +1, and

the elements of the field are calculated modulo this polynomial. This results in four possible

polynomials, with degree up to 1. The polynomials are 0, 1, X and X + 1. Considering α as

one of the roots of X2 +X + 1, then

α2 + α + 1 = 0 (1.8)

α2 = α + 1 (1.9)

and the field is {0, 1, α, α2}, or equivalently, {0, 1, α, α+1}, or in binary form {00, 01, 10, 11}.
One can note that α can be both X or X + 1, but this does not matter, the field operations

will behave the same. We showed three different views of this field, resumed in Table 1.2

To perform addition, we just use the polynomial view and add coefficients of same

degree. This is also equivalent to a XOR operation between their vector representations. In

the other side, for multiplication, we use the power representation and just add the exponents

modulo 3 (the exponents can be only 0, 1 or 2, in this example). This said, Table 1.3 shows

both addition and multiplication tables, proving that this construction is indeed a field, as

this set is closed under both operations, and each line and column has the respective identity

element, indicating the presence of inverses.

The same procedures can be used to construct a field with more elements, just by

CHAPTER 1. FUNDAMENTALS OF CHANNEL CODING 13

Table 1.2: Three different views of GF(4).

Index Power Polynomial Vector

0 0 00

1 α0 1 01

2 α1 α 10

3 α2 α + 1 11

Table 1.3: Addition and multiplication tables for GF(4).

+ 0 1 α α2

0 0 1 α α2

1 1 0 α2 α

α α α2 0 1

α2 α2 α 1 0

× 0 1 α α2

0 0 0 0 0

1 0 1 α α2

α 0 α α2 1

α2 0 α2 1 α

selecting a higher degree primitive polynomial.

1.2.2 Encoding

Reed-Solomon [2] encoding can be performed in numerous ways. Using the interpola-

tion view, we assume that the information to be encoded is a polynomial and evaluate this

polynomial of degree up to KRS − 1 at NRS different points. The evaluation points usually are

taken at consecutive powers {α1, α2, . . . } of a primitive element α as this leads to interesting

mathematical properties. This leads to a non-systematical encoding, where the information is

not directly available on the codeword.

A way to encode systematically, using the same interpolation view, is to directly set

the first values of the codeword as the information to be encoded, in other words, forcing

the codeword to be systematic. To calculate the remaining parity values, we interpolate the

KRS information symbols in order to make a polynomial and evaluate this polynomial at the

remaining NRS −KRS positions. This method implies more cost due to the interpolation, but

on the other hand it results in a systematic encoding procedure.

Using the BCH [11] view, we have a generator polynomial G(X), and a codeword is

any polynomial with at least the same roots of G(X). By this definition a simple encoding

CHAPTER 1. FUNDAMENTALS OF CHANNEL CODING 14

method is to do

C(X) = M(X)G(X), (1.10)

where C(X) is guaranteed to be a multiple of G(X). Again, this does not yield a systematic

encoding.

For a systematic encoding using the BCH view, one must force the first coefficients of

C(X) to be the information symbols by doing M(X)X(NRS−KRS), this leaves the coefficients

of smaller degree set to 0. Now, to make a codeword, C(X) must be a multiple of G(X), so

we have to subtract the amount it needs to be a multiple, thus we subtract the remainder

of the polynomial division of M(X)X(NRS−KRS) by G(X). As a result we have that C(X) =

M(X)X(NRS−KRS) − (M(X)X(NRS−KRS) mod G(X)). One can make an analogy to integers,

for example, if we want a multiple of 7, we could take any number, say 52, and then take

52 mod 7 = 3, then we just subtract 52 − 3 = 49, which is a multiple of 7. Note that this is

the very definition of remainder of division.

1.2.3 Decoding

Reed-Solomon decoding, ideally, could be made using interpolation, as one can inter-

polate all the combinations of the received NRS values, taken KRS at a time, and then create

a ranking counting which polynomial appears more frequently, this would be the decoded

polynomial. While the idea is simple, it is costly due to the combinatorics explosion even on

smaller codeword lengths.

In order to decode efficiently, a syndrome decoding method was devised. This greatly

reduces the cost, as we work only with syndromes, ignoring the codeword entirely. The

syndrome sizes are as big as the redundancy sizes, so usually their lengths are only small

fractions of the codeword lengths.

Assuming T (X) is the transmitted polynomial, R(X) is the received polynomial, and

E(X) is the error polynomial, such that

R(X) = T (X) + E(X), (1.11)

we have that T (X) is codeword, thus T (X) have at least the same roots as the generator

polynomial G(X), resulting that T (αi) = 0 for i = 1, 2, . . . , NRS − KRS. Knowing this, we

have that

Si = R(αi) = T (αi) + E(αi) for i = 1, 2, NRS −KRS (1.12)

Si = R(αi) = E(αi) (1.13)

CHAPTER 1. FUNDAMENTALS OF CHANNEL CODING 15

where Si represents the syndrome for each value of i. Now, considering polynomial E(X)

having only t errors, we have

Sj = E(αj) =
t∑

k=1

eik(α
j)ik , (1.14)

where ik is a index at E(X) where coefficient eik is non-zero. Considering Zk = αik as the

error locations and Yk = eik as the error values, we have Sj =
t∑

k=1

YkZ
j
k, which can be seen as

a system of equations:

Z1 Z2 . . . Zt

Z2
1 Z2

2 . . . Z2
t

...
...

. . .
...

Zn−k
1 Zn−k

2 . . . Zn−k
t

Y1

Y2

...

Yt

=

S1

S2

...

Sn−k

. (1.15)

The main decoding problem is to find the Zk, corresponding to the leftmost matrix. Note that

this is a overdetermined system, which can lead to multiple solutions. The true solution is the

one which minimizes t, in other words, which assume a minimal number of errors.

Finding the error locations Zk are by far the most complex part of decoding. This can

be done by using the Berlekamp-Massey [12,13] algorithm. This algorithm is used to calculate

the error locator polynomial, which is defined as polynomial Λ(X) which has the reciprocals

Z−1
k as its roots:

Λ(X) =
t∏

k=1

(1−XZk), (1.16)

and Λ(Z−1
k) = 0. Using the algorithm, we find Λ(X), and then we can calculate its roots by

exhaustive search, which is feasible as it is a polynomial over a finite field. This exhaustive

search is done efficiently by an algorithm called Chien search. With Zk calculated one can

finally calculate Yk by solving (1.15). Again, there is a efficient algorithm called Forney

algorithm which calculates Yk. With both Zk and Yk, we construct E(X) and recover T (X)

by just subtracting T (X) = R(X)− E(X).

1.3 Trellis-coded modulation

Trellis-coded modulation is a technique that mixes both a convolutional code and a

modulation scheme. The key concept of this technique is to replace conventional Hamming

distances between sequences of bits by Euclidean distances between sequences of constellation

points. A typical trellis-coded modulation is done by using a convolutional code of rate k
k+1

.

CHAPTER 1. FUNDAMENTALS OF CHANNEL CODING 16

This can be viewed as expanding the modulation order by one bit, for example, if a code with

rate 2/3 is used with PAM modulation, then it means that a 4-PAM constellation is expanded

to a 8-PAM constellation. Considering an uncoded modulation, this expansion would reduce

the distance between any two neighboring points, assuming the same transmission power. The

advantage of coded modulation is that we do not consider the neighborhood anymore as the

code design ensures that the only possible points are farther than the closest neighbors, thus

increasing the distance.

In practice, trellis-coded modulation uses uncoded and coded bits. For example, using

a 256-QAM modulation, each symbol contains 8 bits. Using a hierarchical constellation map-

ping, we could assign different importances to each bit. In other words, it means that some

bits are more susceptible to noise than others. As an example if a bit is the only difference

between two neighbor points, then this bit is very fragile to noise, as opposed to the situation

where a bit defines the quadrant or the sign of a constellation point. The strategy used by

trellis-coded modulation is to protect fragile bits using convolutional codes, and leave more

robust bits uncoded. This leads to a very efficient scheme where we can produce coding gains

by sacrificing just one bit as redundancy. For a concrete example, Chapter 2 has a detailed

implementation of a trellis-coded modulation scheme.

1.3.1 Encoding/Mapping

The encoding of trellis-coded modulation is pretty straightforward: we just feed the

input bits to the convolutional encoder to generate the output bits, then these bits are mapped

to the respective points in the constellation. These steps have no difference from a non-coded

modulation scheme, as the difference lies in the fact that the design of the code is fully aware

of the mapping of the constellation points, thus taking in account which output bit pattern

generates each point. The design is made by maximizing the (Hamming) distance between

sequences of bits, and then each bit pattern is mapped accordingly into the constellation in or-

der to maximize the (Euclidean) distance between points, in other words a good convolutional

code may not have the same performance when used for trellis-coded modulation, because it

depends on the modulation scheme used.

1.3.2 Decoding/Demapping

The decoding of trellis-coded modulation is basically the same as the decoding of a

convolutional code, but with distance metrics being distances between constellation points as

opposed to distance between bit sequences. The optimal algorithm in the sense of maximum

CHAPTER 1. FUNDAMENTALS OF CHANNEL CODING 17

likelihood decoding is well-known as the Viterbi algorithm. The Viterbi algorithm finds the

best sequence of constellation points that minimizes the overall Euclidean distance checking

all possible sequences in a clever way that greatly reduces the complexity. The main decoding

scheme is made in a similar way as of a conventional convolutional code, which is composed

by three parts. The first one is the branch metric unit, which, in the trellis-coded modulation,

calculates the branch metrics for each output pattern by looking at the constellation and

returning the Euclidean distance metric. Then, the second part is the path metric unit, which

uses the Viterbi algorithm to determine the sequence of states and branches that minimize the

path total Euclidean distance. Finally, the last part is the traceback unit, which just follow

the trellis backwards from the last state, backtracking the path with minimum distance and

returning the input that generated this path. The input is then the decoded message.

1.4 Low-Density Parity-Check codes

Low-Density Parity-Check (LDPC) [4, 14, 15] codes are iterative block codes, used as

an error correcting code. LDPC codes are defined by a parity check matrix, which represents

a bipartite graph. The main characteristic is that the parity check matrix has to be sparse,

that is, it contains a low number of non-zero values.

As a linear code, an LDPC code has message length k and codeword length n, defining

a (n, k) LDPC code. The parity-check matrix H is a (n− k)× n sparse matrix. A codeword

is any vector v̂ that satisfies v̂HT = 0.

The design of a LDPC code is generally done using random or pseudo-random tech-

niques to generate H.

1.4.1 Encoding

LDPC codes can be encoded, in general, as a linear code, multiplying the message vector

by a generator matrix. To find a systematic encoding procedure, one can apply Gaussian

elimination on H in order to obtain an identity matrix at the right side of H. With H in the

form [P In−k], we find generator matrix G using G = [Ik −P T]. Although this method

works for all full rank matrices, the storage of G, and the multiplication ûG are problems as

G is not guaranteed to be sparse.

Another method, proposed by Richardson-Urbanke [16], tries to reorganize the matrix

in a way to produce a lower triangular matrix at the right side of H using only row and column

swaps (no additions between rows). This method achieve almost linear encoding complexity

CHAPTER 1. FUNDAMENTALS OF CHANNEL CODING 18

with respect to n.

1.4.2 Decoding

Decoding is the difference between classical codes and iterative codes. LDPC decoding

is done by receiving information from the channel and improving this information iteratively,

until convergence to a valid codeword.

Decoding represents H with a Tanner graph, where each row is check-node, and each

column is a bit-node. Initial information from the channel enters the bit-nodes and flows

through the connections of the graph to the check-nodes. Then the check node calculates new

messages that flow back over the connections to the bit-nodes. The bit-nodes gather these

messages and produces new messages again. This process is done until the messages converge

to a valid codeword or the number of iterations is exceeded. This algorithm is called message

passing, and it has a number of variants.

The most popular variant is the sum-product algorithm, which uses a probabilistic

setting to exchange information between nodes. The information is represented by probabilities

instead of bits, so that the decoder works on soft information, which provides much more

information on the channel than hard information. The sum-product algorithm has a variant

which reduces complexity by sacrificing some error correction performance called min-sum

algorithm. Also, when dealing with hard information, one can use the bit-flip algorithm

variant.

Chapter 2

Standards Overview

This chapter provides a more detailed view of each code’s implementation on this work

based on their respective standards.

2.1 G.fast forward error correction

The G.fast standard establishes new directives for broadband transmission on copper

wires, allowing for connections speeds of up to 1Gbps. The FEC scheme for G.fast was chosen

to be a combination of Reed-Solomon and trellis-coded modulation, which is a similar scheme

to that of previous DSL standards [17].

2.1.1 Reed-Solomon

G.fast uses a Reed-Solomon code over GF(256). The codeword size NRS has a maximum

value of 255 bytes, which represents the code without shortening. With the use of shortening,

the minimum NRS is 32 bytes. The redundancy size RRS can assume any even values from 2

to 16. The standard uses the primitive binary polynomial x8 + x4 + x3 + x2 + 1 to perform

the arithmetic operations on GF(256).

2.1.1.1 Encoding

The encoding procedure seeks to implement

C(X) = M(X)XRRS mod G(X), (2.1)

19

CHAPTER 2. STANDARDS OVERVIEW 20

where G(X) is the generator polynomial, M(X) is the message polynomial and C(X) is the

check polynomial.

The multiplication by XRRS is used only to ‘make room’ for the RRS redundancy sym-

bols. As any codeword is divisible by G(X), we take M(X)XRRS and calculate the remainder

of the polynomial division C(X). Then M(X)XRRS +C(X) is divisible by G(X), which guar-

antees that it is also a codeword. Note that the codeword is just a concatenation of M(X) and

C(X), resulting in a systematic encoding procedure. Systematic codes are preferred as, after

the syndrome calculation at the decoder, if there are no errors, one should just drop C(X) to

recover the transmitted message.

The implementation basically is focused on the calculation of the polynomial division

remainder. This can be done by using a digital filter over GF(256) in direct form II transposed,

on which the remainder will be located at the filter memory. The division B(X)/A(X) can

be calculated by finding the impulse response of a digital filter H(X) = B(X)/A(X). In

this implementation, we exchange the positions of the impulse and the numerator, so we use

H(X) = 1/A(X) and the input are the coefficients of B(X). Also, each polynomial is read

from the greatest order coefficient, so that the trailing zeros of B(X) can be ignored and

A(X) first coefficient is 1. This can be done considering a temporary change of variables like

X = Y −1. The resulting encoding filter is shown in Figure 2.1. The message polynomial is the

input x[n], the generator polynomial coefficients are multipliers, and the result is found at the

memories of the delay line represented by the square blocks. Also, normally, the coefficients

of G(X) should have changed their signs, but for finite fields with characteristic 2 we know

that a = −a for any a.

2.1.1.2 Decoding

The decoding procedure has, by far, the most computational cost. It is the decoder

that has the intelligence of the code. The decoder has to decide whether errors are present

or not, and, if there are errors, decide again whether the codeword can be corrected or not.

If the number of errors exceeds the error correction capabilities of the code, then the decoder

does not try to correct anything and return an error code.

The decoder is implemented by the following main parts: syndrome calculation,

Berlekamp-Massey algorithm, Chien search, error evaluator polynomial and error correction,

as shown in Figure 2.2.

The decoding algorithm starts with syndrome calculation, which simply verifies if the

received polynomial is divisible by the generator polynomial G(X). This is done by evaluating

CHAPTER 2. STANDARDS OVERVIEW 21

z
−1

z
−1

z
−1

z
−1

z
−1

z
−1

++

++

++

gRRS−1gRRS−1

gRRS−2gRRS−2

g0g0

x[n]x[n]

Figure 2.1: Reed-Solomon Encoding Filter.

Syndrome
Calculation

Berlekamp-
Massey

Algorithm

Chien Search
Error Evaluator

Polynomial
Calculation

Error
Correction

Figure 2.2: Decoder blocks.

the received polynomial at each root of G(X). G(X) is defined in a way that its roots

are consecutive powers of the primitive element α of the Galois field. All the polynomial

CHAPTER 2. STANDARDS OVERVIEW 22

evaluations are made at the same time, using previous results in the calculations of the new

ones, reducing the number of calculations in a fashion similar to Chien search. As the result we

have the syndrome polynomial S(X), on which each coefficient is the value obtained for each

root. If all coefficients are zero, S(X) = 0, then the received polynomial is a valid codeword

and the algorithm stops, returning it as the decoded codeword. If S(X) 6= 0, then at least one

coefficient is non-zero, which means that at least an error occurred somewhere.

After knowing that at least an error exists, we must determine three things: the quantity

of errors, the location of errors and the value of errors. The Berlekamp-Massey algorithm

calculates the error locator polynomial Λ(X) which has as its roots the reciprocal of the errors

locations, so that finding the roots of the polynomial results in finding the error locations.

To solve the Λ(X) polynomial, we must find all possible roots. This is accomplished

by testing all possible values and looking for the ones that results in 0. This testing procedure

can be implemented using Chien search to reduce the number of calculations. Chien search

then returns the locations of errors.

As this code is not binary, one also needs to calculate the values of the errors, which

is done by firstly calculating the error evaluator polynomial Ω(X). Ω(X) is calculated by

Ω(X) = S(X)Λ(X) mod XRRS , which means that each coefficient from Ω(X) is obtained by

convolution of the coefficients of Λ(X) and S(X), up to the (RRS − 1)-th degree coefficient.

Having access to Λ(X), to its roots and to Ω(X), we can use Forney algorithm to find

the values of the errors using

ej =
rj

−1Ω(rj)

Λ′(rj)
(2.2)

where ej is error value, rj is the root associated to ej and Λ′(X) is the formal derivative of

Λ(X). The formal derivative in a field of characteristic 2 is quite simple, as the coefficients λ′

i

are determined by:

λ′

i =

λi+1 if i is even

0 if i is odd
(2.3)

then, finally, to apply the correction we just add each error value ej on its respective location

rj
−1. This completes the decoding process returning a corrected message as its result.

2.1.1.3 Shortening

The shortening procedure is used to reduce the fixed codeword size of 255 by inserting

zeros as information bytes. For NRS bytes we have an amount of zeros A0 = 255−NRS. The

redundancy size RRS is not modified, so effectively the code rate drops as we are reducing

the information part. The shortening process sizes are shown in Figure 2.3. The zeros part is

CHAPTER 2. STANDARDS OVERVIEW 23

not transmitted, as the receiver already know that this part is zeros. The main advantage of

shortening is that we can change the code rate using exactly the same Reed-Solomon code.

Information Parity

Zeros

Original RS codeword

Shortened RS codeword Parity

ParityTransmitted RS codeword

Information

Information

Figure 2.3: Shortening process.

Figure 2.4 shows each step of shortening. At first, we receive KRS bytes to be encoded.

As the Reed-Solomon encoder uses 255−RRS bytes, we have to fill the difference with zeros.

The encoding process then calculates RRS parity bytes to form a full Reed-Solomon codeword

with 255 bytes. At the last step, we remove the zeros to transmit only relevant information.

Zeros

Parity

Parity

Information

Information

Information

R
S

E

n
c
o

d
e

A
d

d

z
e
ro

s

Zeros Information

R
e
m

o
v
e

z
e
ro

s

Data

Data + Zeros to fill
the RS information size

Full RS codeword

Shortened RS codeword

Figure 2.4: Each step of Reed-Solomon encoding.

CHAPTER 2. STANDARDS OVERVIEW 24

2.1.1.4 Unshortening

Unshortening does the reverse process of shortening, adding the zeros to reconstruct a

full codeword. This procedure turns shortening invisible to the decoder, which interprets the

zeros as information as well. The steps are shown in Figure 2.5.

Zeros

Parity

Parity

Information

Information

Information

R
S

D

e
c
o

d
e

A
d

d

z
e
ro

s

Zeros Information

R
e
m

o
v
e

z
e
ro

s

Shortened RS codeword

Full RS codeword

Decoded data + Zeros

Decoded data

Figure 2.5: Each step of Reed-Solomon decoding.

2.1.2 Interleaving

Interleaving is used to control error bursts. Error bursts are a sequence of errors

occurring next to each other that easily overwhelm the error correcting capacity of the Reed-

Solomon code. One of the main sources of error bursts is the trellis-coded modulation, given

that the Viterbi decoder often produce this kind of errors. Interleaving is done by shuffling

data in a way that bytes located near to each other before shuffling are located in different

Reed-Solomon codewords after shuffling. The effect is that the errors are spread across several

codewords, decreasing the probability of decoding failure on the Reed-Solomon decoder.

G.fast uses a block interleaver which is implemented using a matrix. This matrix has D

rows, representing the codewords, and NRS columns, representing the bytes of each codeword.

D is called interleaver depth and D = 1 means no interleaving.

The interleaver operates writing the input row-wise and reading the output column-

wise in the matrix. If we use indexes i from 0 to D − 1 and j from 0 to NRS − 1, we can

CHAPTER 2. STANDARDS OVERVIEW 25

calculate the output position l using

l = j ×D + i, (2.4)

where l vary from 0 to NRS ×D−1. i and j can be calculated from the input position k using

i = k/NRS, (2.5)

where / is integer division, and

j = k mod NRS, (2.6)

such that k = i × NRS + j. Figure 2.6 shows the interleaving matrix with values for i , j ,

k and l. We can easily note that k increases following a row-wise fashion and, on the other

hand l increases following a column-wise fashion.

. . .

. . .

. . .

. . .

...
...

...
...

. . .
...

. . .

NRS

D

j = 0

j = 0

j = 0

j = 0

j = 0

j = 1

j = 1

j = 1

j = 1

j = 1

j = 2

j = 2

j = 2

j = 2

j = 2

j = 3

j = 3

j = 3

j = 3

j = 3

j = NRS − 1

j = NRS − 1

j = NRS − 1

j = NRS − 1

j = NRS − 1

i = 0 i = 0 i = 0 i = 0 i = 0

i = 1 i = 1 i = 1 i = 1 i = 1

i = 2 i = 2 i = 2 i = 2 i = 2

i = 3 i = 3 i = 3 i = 3 i = 3

i = D − 1 i = D − 1 i = D − 1 i = D − 1 i = D − 1

k = 0 k = 1 k = 2 k = 3 k = NRS − 1

k = NRS

k = 2NRS

k = 3NRS

k = 3NRS − 1
k = 2NRS + 1 k = 2NRS + 2 k = 2NRS + 3

k = 2NRS − 1k = NRS + 3k = NRS + 2k = NRS + 1

k = (D − 1)NRS k = (D − 1)NRS + 1 k = (D − 1)NRS + 2 k = (D − 1)NRS + 3 k = DNRS − 1

k = 3NRS + 1 k = 3NRS + 2 k = 3NRS + 3 k = 4NRS − 1

l = 0

l = 1

l = 2

l = 3

l = D − 1

l = D l = 2D l = 3D l = (NRS − 1)D

l = D + 1

l = D + 2

l = D + 3

l = 2D − 1 l = 3D − 1 l = 4D − 1

l = 2D + 1

l = 2D + 2

l = 2D + 3

l = 3D + 1

l = 3D + 2

l = 3D + 3

l = (NRS − 1)D + 1

l = (NRS − 1)D + 2

l = (NRS − 1)D + 3

l = NRSD − 1

Figure 2.6: Interleaver matrix and the values for each index.

CHAPTER 2. STANDARDS OVERVIEW 26

2.1.2.1 Deinterleaving

Deinterleaving just does the inverse process of interleaving using the same matrix, but

this time we write the input bytes column-wise and read them row-wise. The output position

l can be calculated into a similar way as the interleaver, using indexes i and j:

l = j ×NRS + i (2.7)

and also, i and j can be calculated from the input index k using

i = k/D, (2.8)

where / is integer division, and

j = k mod D (2.9)

such that k = i×D + j.

2.1.3 Trellis-coded modulation

G.fast trellis-coded modulation is the same as previous DSL standards, which use a

Wei’s 16-state 4-dimensional trellis code.

2.1.3.1 Bit extraction

Bit extraction is the way we take bits in order to apply trellis-coded modulation given

a bit allocation table (bitload). In this work, we used only modulations with an even number

of bits, so that the bitload is limited to even values. This is because these constellations

mapping algorithms are easier. G.fast uses a 4-dimensional trellis code, which in turn uses

2 2-dimensional (QAM) constellations, meaning that the trellis code sees two sub-carriers as

one. This has the effect that the bitload is read in pairs formed by consecutive entries in the

bitload.

In order to fit the bitload exactly, for each sub-carrier pair (x, y), we extract z = x+y−1

bits. The 1 bit difference accounts for the redundancy bit introduced later by the encoder.

For the last two pairs, only z = x + y − 3 bits are extracted. These 2 extra bits are used to

force the encoder to return to its initial all-zero state.

The z bits form a binary word û, which can be represented in two forms, according to

the two cases above: if the pair is not one of the last two pairs, then û = {d1, d2, . . . , dz}. If

it is one of the last two, then û = {b1, b2, d1, d2, . . . , dz}, where dk are the extracted data bits,

CHAPTER 2. STANDARDS OVERVIEW 27

and b1 and b2 are the extra bits mentioned above. Note that the length (len) of û changes in

each case, being len(û) = z in the first case and len(û) = z + 2 in the second case.

There is a special case when the bitload has a odd number of entries. In this case

we insert a dummy entry with value 0 to make the number of entries even. Also, û =

{0, d0, 0, d1, d2, . . . , dz − 1} to fill the dummy sub-carrier with zeros.

2.1.3.2 Encoding

G.fast uses a convolutional code described in the finite state machine of Figure 2.7.

This representation is useful for the encoding operations, as we can just implement the state

machine with XOR and AND operations on the input bits.

D D D D+ +

u1

u2

u1

u2

u0

S0S1S2 S3

Figure 2.7: Finite state machine form of the trellis code.

The rate 2/3 systematic recursive convolutional code takes 2 inputs u1 and u2 and gen-

erates a parity bit u0 based on the inputs and its internal memory. As the code is systematic,

the input bits are repeated at the output as well.

The encoder receives the binary word û, adds 1 bit at the beginning (u0) and calculates

two binary words v̂ and ŵ, with lengths x and y, respectively. To calculate u0, we take only

the first two bits u1 and u2 and input them on the convolutional encoder. Then, to calculate

v̂ and ŵ, we take the three bits from the output of the convolutional encoder plus an extra

uncoded bit u3 and input them to the bit converter, which produces four bits (v0, v1) and

(w0, w1). These are the first two bits for each binary word, the other bits are uncoded bits

taken directly from û. The bits from v2 to vlen(û)−y are taken from u4 to ulen(û)−y+2. The bits

from w2 to wy−1 are taken from ulen(û)−y+3 to ulen(û). These relations are shown in Figure 2.8.

CHAPTER 2. STANDARDS OVERVIEW 28

Convolutional

encoder

v1 = u1 ⊕ u3

v0 = u3

w1 = u0 ⊕ u1 ⊕ u2 ⊕ u3

w0 = u2 ⊕ u3
w0

w1
u1

u2

u3

u0

u1

u2

u3

u4

...

...
ulen(û)−y+2

ulen(û)−y+3

ulen(û)

vlen(û)−y

wy−1

w2

...

...

v0

v2

v1

bit conversion

Figure 2.8: Relation of û with v̂ and ŵ.

2.1.3.3 QAM modulation

Although QAM modulation is not an error correction code, we had to implement it in

order to have a baseline system. G.fast QAM design has trellis-coded modulation taken in

consideration, so that it is not Gray-coded, for example. In other words, these constellations

are best used with trellis-coded modulation, and have suboptimal bit error rates otherwise.

The modulation algorithm is simple for even number of bits b = log2(M), where M is

the modulation order. To calculate integer coordinates x and y one should just assign bits

alternately to x and y. The MSBs are interpreted as the sign bit, and the other bits are

interpreted assuming a two’s complement form. Assuming v̂ = {vb−1, vb−2, . . . , v0} are the

bits to be modulated, x̂ = {vb−1, vb−3, . . . , v1, 1} and ŷ = {vb−2, vb−4, . . . , v0, 1} are the binary

representations in two’s complement form of x and y, respectively. For example, if we are

considering 16-QAM, then b = 4 bits, supposing these 4 bits are v̂ = {1, 0, 1, 1}, we have that

x̂ = {1, 1, 1} = −1 and ŷ = {0, 1, 1} = 3, forming the point (−1, 3). Figure 2.9 shows an

example for b = 8.

This algorithm makes the two LSBs of each point form 4 grids with minimal distance

of 4 instead of 2 if we are measuring distances only from the same grid. Figure 2.10 shows

these grids. Each grid is called a 2-dimensional coset. These 2D cosets are controlled by the

two LSBs, which in turn, are controlled by the bit conversion, according to Figure 2.8, as both

pairs (v0, v1) and (w0, w1) are generated there.

CHAPTER 2. STANDARDS OVERVIEW 29

v0v1v2v3

v4

v5v6v7

v7 v5 v3 v1 v6 v2 v0

v4

1 1

b = 8 bits

x̂ ŷ

odd

even

Figure 2.9: Modulation algorithm.

1 3 1 3 1 3 1 3

0 2 0 2 0 2 0 2

1 3 1 3 1 3 1 3

0 2 0 2 0 2 0 2

1 3 1 3 1 3 1 3

0 2 0 2 0 2 0 2

1 3 1 3 1 3 1 3

0 2 0 2 0 2 0 2

4

2

Figure 2.10: 2-dimensional cosets in a QAM constellation.

2.1.3.4 QAM demodulation

QAM demodulation is made differently, as the constellations are trellis-coded. For each

received coordinate, we calculate the distance for each 2D coset, resulting in 4 distances. For

each pair combination of 2D coset we calculate the 4D cosets distance, resulting in 16 distances.

As we have 8 4D cosets, we choose only the smaller distance of the two for each coset. This

CHAPTER 2. STANDARDS OVERVIEW 30

choice occurs because each 4D coset is formed by the union of two Cartesian product between

two 2D cosets. For example, C0
4D = (C0

2D × C0
2D) ∪ (C3

2D × C3
2D), which means that the 4D

coset with index 0 C0
4D is formed by the union two Cartesian products. The first is between

the 2D coset of index 0 for the first subcarrier with the 2D coset of index 0 for the second

subcarrier. The second product is between the 2D coset of index 3 for the first subcarrier and

the 2D coset of index 3 for the second subcarrier. To calculate the distance metric for this 4D

coset, we have to do the following. Calculate the 2D distance from the received coordinates

of the first subcarrier to the nearest points that belongs to cosets 0 and 3. The same is done

for the second subcarrier coordinates. Then, to calculate the 4D distances we sum the 2D

distances from coset 0 for both subcarriers, and the same for coset 3. Finally, we choose the

smaller 4D distance as the candidate. Note that the distances are squared euclidean distances,

which allows us to sum 2D distances to obtain 4D distances. Also, we should mention that

the Cartesian product corresponds to a sum of distances, while the union corresponds to a

choice for the minimum. We must pair each distance with its respective bits. These bits are

obtained by reversing the process described in Figure 2.9. This is basically “shuffling” the bits

from the binary representation of the coordinates, putting the bits of x coordinate in the odd

positions and bits of y in the even positions.

Given that a received point has coordinates R = (xr, yr), then to calculate the 2D

squared euclidean distances to each 2D coset we just have to calculate the distance for the 4

nearest points, as shown in Figure 2.11. (xk, yk) is a point in 2D coset k and dk is the 2D

squared distance to 2D coset k, with k = 0, 1, 2, 3. To calculate the 4D metrics, we need a

pair of received points, thus the superscript < i > indicates which element of the pair we are

taking, 1 or 2. This generates 8 different distances, 4 for the first point, 4 for the second.

Then we have to add distances from the first point with distance from the second, resulting in

a 4D distance metric. These 4D metrics, with their respective possible candidate points, are

passed to the Viterbi path metric unit.

The 4D cosets are formed according to the convolutional code, summarized in Figure

2.12.

From the above, we can summarize the demodulation steps as:

1. Receive coordinates as inputs

2. Find the 4 nearest points of each input, one for each 2D coset.

3. Calculate 2D square euclidean distances to 4 nearest constellation points

4. Considering pairs, calculate 4D distances by adding 2D distance from each pair, resulting

in 4× 4 = 16 possible combinations.

CHAPTER 2. STANDARDS OVERVIEW 31

0

1

2

3. . .

...

0

1

00 2

d0

d1

d2

d3

...

. . .

0

1

2

3. . .

...

0

1

00 2
d0

d1

d2

d3

...

. . .

First subcarrier Second subcarrier

d
<1>
0

d
<1>
1

d
<1>
2

d
<1>
3

d
<2>
0

d
<2>
1

d
<2>
2

d
<2>
3

D0 = min(d<1>
0 + d<2>

0 , d<1>
3 + d<2>

3)

D1 = min(d<1>
0 + d<2>

2 , d<1>
3 + d<2>

1)

D2 = min(d<1>
2 + d<2>

2 , d<1>
1 + d<2>

1)

D3 = min(d<1>
2 + d<2>

0 , d<1>
1 + d<2>

3)

D4 = min(d<1>
0 + d<2>

3 , d<1>
3 + d<2>

0)

D5 = min(d<1>
0 + d<2>

1 , d<1>
3 + d<2>

2)

D6 = min(d<1>
2 + d<2>

1 , d<1>
1 + d<2>

2)

D7 = min(d<1>
2 + d<2>

3 , d<1>
1 + d<2>

0)

dk = (xr − xk)
2
+ (yr − yk)

2

2D metrics

4D metrics

Figure 2.11: 2D and 4D distance metrics.

5. Take the minimum, according to the relations between 2D and 4D cosets summarized

in Figure 2.12, also choosing the respective point from step 2.

6. The demodulator returns the possible pairs, with theirs respective 4D metrics, as its

output.

The demodulator receives the coordinates for each subcarrier as its input and, with

the bitload, calculates the demodulation candidates for each pair of subcarriers along with

its distance from the received coordinate. The information that is forwarded to the Viterbi

decoder is the sequence of distances, in order to calculate the which of the candidate point of

the constellation should be used, and their respective candidate points.

2.1.3.5 Decoding

To decode this trellis code, the optimal algorithm, given that the code has only 16 states

and it always starts and ends in the all-zero state, is the Viterbi algorithm, as it provides the

CHAPTER 2. STANDARDS OVERVIEW 32

Figure 2.12: Relation between 2D and 4D cosets, from G.fast standard.

best result in a manageable complexity.

The Viterbi decoder is divided in three units: the branch metric unit (BMU), the path

metric unit (PMU) and the traceback unit (TBU). The BMU is simply the demodulator, which

calculates the squared Euclidean distances (metrics). The PMU searches for the best path in

a trellis, calculating the path metrics by summing and comparing the branch metrics provided

by the BMU, and also saving each of the decisions in the TBU. The TBU calculates the best

path by using the best path metric and then backtracking each decision in order to form the

best sequence of outputs (cosets) of the convolutional code. With the coset sequence, we can

finally choose the correct candidates to obtain the binary sequence.

The trellis formed by the convolutional code is described in Figure 2.13. It has 16

states, labeled by a single hexadecimal digit. The trellis diagram represents an before-after

relationship, with previous states on the column on the left, and next states on the right. A

straight line represents a transition. Each state has 4 transitions, one for each possible input

(two binary digits gives 4 different possibilities), resulting in a total of 64 transitions. The

labels near each states are the output cosets for each transitions. They could be written near

their respective lines, but this would result in a bad visualization, so the leftmost coset label

represents the uppermost transition. The cosets are represented using a decimal representation

of three binary numbers, thus they go from 0 to 7. Also, as the code is systematic, one can

retrieve the inputs by just dropping the last bit, or, equivalently, by performing integer division

by 2, so a label 6(110) or 7(111) was generated both by input 3(11), with the last bit taken

CHAPTER 2. STANDARDS OVERVIEW 33

from the encoder’s state machine.

Figure 2.13: Trellis diagram from G.fast.

The viterbi algorithm operates over the trellis to obtain the optimal path. Naively, one

could search all possible paths and select one with minimal summed metrics, but this would

result in a complexity exponential with the number of pairs. The viterbi algorithm solves this

by applying dynamic programming in order to reduce the number of paths to be analyzed.

The main concept of dynamic programming is to divide the problem into smaller, recursive

sub-problems. Note that this differs from traditional divide-and-conquer strategies, as the

CHAPTER 2. STANDARDS OVERVIEW 34

recursion makes the sub-problems somewhat dependent on each other.

In order to implement a Viterbi decoder, one must calculate the path with the minimal

accumulated metric, so we define a state metric which represents the best metric until this

state. These metrics are initialized with zeros. Then, recursively, these state metrics are

updated at each step by the recursion formula

Sj[t+ 1] = min
i
(Sp(j,i)[t] + Bj,i[t]), (2.10)

where Sj[t] is the state metric for state j at step t, Bj,i[t] is the branch metric calculated at the

demodulator for state j and input i at step t and p(j, i) is a state such that when we are at state

p(j, i) and receive input i, we end in state j, in other words, state p(j, i) transitions to state

j when given an input i. Clearly, function p(j, i) is defined by the design the convolutional

code, and can be taken from Figure 2.13 as well. For example, p(2, 1) = C, as when on state

C, and receive input 1, result in state 2. To see the input, we just take the integer division by

2 of the labels, so that input 1 is label 2, which is the fourth transition from top, connecting

C to 2.

With just the state metrics, we can only calculate the best path metric, but we can

not reconstruct the path itself. So we need to store the decisions at each step as well. This is

done by

Dj[t+ 1] = argmin
i

(Sp(j,i)[t] + Bj, i[t]), (2.11)

where Dj[t] is the decision at step t which lead to state j. Note that (2.11) is similar with

(2.10), with the only difference being a argmin instead of a min.

The Viterbi algorithm runs for all step, and for each step it runs for all states. In the

end we will have a state metric Sj for each final step j and a table of decisions Dj[t] along each

step t. With the best final state metric we can finally find the best sequence by calculating

it backwards. This is done by the traceback unit, which sets the final state by taking the

minimum state metric. However this is not necessary in our case, as the encoding procedure

guarantees that the sequence always start and finish at state zero. From the final state we

just recursively traceback the decisions in order to find previous states and inputs by

s[t− 1] = p(s[t], Ds[t][t]), (2.12)

where sequence Ds[t][t] will retrieve the inputs, and sequence s[t] is the sequence of states.

With this information one can finally choose the best sequence of constellation points and

truly demodulate points into bits, thus removing the redundancy of convolutional coding.

For example, supposing we have Table 2.1 as the algorithm input. In Figure 2.14

we have a Viterbi algorithm trellis diagram illustrating how the algorithm works. In this

CHAPTER 2. STANDARDS OVERVIEW 35

Table 2.1: Distance by 4-D cosets.

P0 P1 P2 P3

Coset Dist. Labels Dist. Labels Dist. Labels Dist. Labels

0 13 (11, 3) 15 (52, 4) 7 (15, 19) 5 (4, 0)

1 7 (11, 1) 5 (52, 6) 5 (8, 18) 3 (15, 1)

2 1 (9, 1) 15 (54, 6) 3 (10, 18) 5 (5, 1)

3 7 (9, 3) 9 (49, 7) 5 (10, 24) 3 (14, 0)

4 13 (11, 0) 7 (52, 7) 3 (15, 24) 1 (15, 0)

5 7 (8, 1) 17 (51, 6) 1 (15, 18) 7 (4, 1)

6 13 (9, 2) 7 (49, 6) 3 (13, 18) 5 (5, 2)

7 7 (9, 0) 17 (49, 4) 5 (13, 24) 3 (5, 0)

example, only the survivors paths are shown for simplicity. A survivor path is a path that was

not discarded in the min/argmin process. The red path shows the traceback from final state

0. This diagram was constructed for a sequence of four pairs, thus there are four columns of

transitions and five columns of states. The numbers above each state are the states metrics

for each state at each step. We can note that possibly an error occurred in the second pair, as

there is a sudden increase in all state metrics. By returning to state zero we could avoid an

error at the final state, as without this information we would choose for final state 2 instead

of 0, as the former has smaller accumulated state metric.

We can see directly that the sequence state is {0, 1, 5, 4, 0}, and with help of Figure

2.13, we can find the respective 4D cosets as {2, 3, 5, 4} and thus find the nearest pair of points

to these 4D cosets, thus completing the demodulation/decoding.

2.2 G.hn forward error correction

G.hn [18] is a standard for home network technology which aims for rates of up to

1 Gbps over power lines, telephone copper wires and coaxial cables. G.hn FEC uses LDPC as

its code.

CHAPTER 2. STANDARDS OVERVIEW 36

1

2

3

4

5

0

6

7

8

A

B

C

D

E

F

9

1

2

3

4

5

0

6

7

8

A

B

C

D

E

F

9

1

2

3

4

5

0

6

7

8

A

B

C

D

E

F

9

1

2

3

4

5

0

6

7

8

A

B

C

D

E

F

9

13

13

13

1

28

28

20

20

6

10

18

18

28

28

20

22

18

30

30

20

9

9

13

9

11

15

15

15

21

21

21

23

23

19

21

21

1

2

3

4

5

0

6

7

8

A

B

C

D

E

F

9

12

14

10

14

12

12

16

12

18

16

18

14

12

12

12

16

Figure 2.14: Viterbi algorith diagram example.

2.2.1 LDPC

G.hn LDPC uses a quasi-cyclic LDPC block code (QC-LDPC-BC). The standard use

6 codes for data transmission: 3 “short” codes with information size of 120 bytes and 3 “long”

codes with information size of 540 bytes. Three rates are used for each size: 1/2, 2/3, 5/6.

CHAPTER 2. STANDARDS OVERVIEW 37

Also, rates of 8/9 and 20/21 are achieved by means of puncturing. Puncturing erase both

information and redundancy bits at pre-determined positions in order to change the code rate

without the need to change the decoder.

The codes are defined by their parity check matrix. Each matrix is composed by an

array of r × c square sub-matrices Ai,j.

H =

A1,1 A1,2 A1,3 . . . A1,c

A2,1 A2,2 A2,3 . . . A2,c

...
...

...
. . .

...

Ar,1 Ar,2 Ar,3 . . . Ar,c

(2.13)

Each Ai,j has dimensions b × b and is either a identity matrix with a right column shift or

an all-zero matrix. This property ensures that we have a sparse matrix. Each parity check

matrix is represented in a compact form using an integer ai,j for each sub-matrix. ai,j = −1

means a zero matrix, ai,j = 0 means an identity matrix and when ai,j is a positive integer

means a right column shifted identity matrix.

For example, the parity check matrix in compact form for code (5/6)S, with r = 4,

c = 24, rate 5/6 and b = 48 is:

−1 13 32 47 41 24 −1 25 22 40 1 31 8 15 20 15 42 30 13 3 −1 0 −1 −1

25 46 15 43 45 29 39 47 23 38 39 12 −1 21 −1 38 33 0 0 −1 39 0 0 −1

35 45 45 38 14 16 6 11 −1 18 7 41 35 17 32 45 41 −1 18 17 0 −1 0 0

9 32 6 22 26 31 9 8 22 32 40 4 18 40 36 −1 −1 23 31 41 39 20 −1 0

We can note that the code rate R can be calculated as R = c−r
r

, and the codeword size is

N = c × b, which in this case is N = 24 × 48 = 1152 bits. Also, the information size is

K = (c− r)× b, resulting in K = (24− 4)× 48 = 960 bits.

Table 2.2 shows all parameters for each parity check matrix. Note that rate 8/9 and

20/21 are not shown because they are obtained via puncturing of rate 5/6 codes.

2.2.1.1 Encoding

The encoding procedure makes use of the quasi-cyclic structure to reduce complexity.

This is a variant of the method described in [19]. H is further sub-divided in blocks:

H =

A B T

C D E

 , (2.14)

CHAPTER 2. STANDARDS OVERVIEW 38

Table 2.2: Summary of G.hn parity check matrices

Code r c b N K

(1/2)S 12 24 80 1920 960

(1/2)L 12 24 360 8640 4320

(2/3)S 8 24 60 1440 960

(2/3)L 8 24 270 6480 4320

(5/6)S 4 24 48 1152 960

(5/6)L 4 24 216 5184 4320

Table 2.3: Dimensions of sub-blocks (in compact form).

Sub-matrix Dimensions

A (r − 1)× (c− r)

B (r − 1)× 1

T (r − 1)× (r − 1)

C 1× (c− r)

D 1× 1

E 1× (r − 1)

with dimensions given in Table 2.3.

With this format we can use these two equations to calculate parity:

pT1 = ET−1AsT + CsT (2.15a)

TpT2 = AsT + BpT1 , (2.15b)

where the codeword was divided as a row-vector
[

s p1 p2

]

, with p1 and p2 having lengths

of b and (r − 1)b, respectively. The codeword is divided as follows: :s is the systematic part,

p1 and p2 are the parity parts.

The encoding algorithm calculates both p1 and p2 as follows:

1. Calculate AsT

2. Calculate CsT

3. Calculate ET−1AsT =
[

(X + I) I I . . . I
]

AsT =
[

X 0 0 . . . 0
]

AsT +

CHAPTER 2. STANDARDS OVERVIEW 39

[

I I . . . I
]

AsT , where X is the matrix at the beginning of E and I is an identity

matrix.

4. Calculate pT1 from (2.15a)

5. Calculate pT2 from (2.15b) using back substitution

Items 1 and 2 are multiplications of a permutation matrix and a column vector, thus we have

just to cyclically rotate blocks to left inside the vector and then apply the XOR operation to

sum. Item 3 is done by block-wise sum of AsT plus a cyclically rotated version of the first

block. Item 4 is a direct sum. Item 5 can be seen as a system of equations that we can solve

easily by back substitution due to the double diagonal structure.

Figure 2.15 shows the relations between the sub-matrices used in the encoding process.

The double diagonal form of T is given emphasis. Also, T−1 is a lower triangular matrix

composed only by identity matrices.

With both pT1 and pT2 , we can form the parity and concatenate it with the information,

thus forming a codeword.

2.2.1.2 Puncturing

Puncturing of LDPC codes is used to obtain codes with higher rates from existing codes

by omitting some bits of a codeword. Puncturing in G.hn is applied only to the codes with

rate 5/6, in both sizes: S and L. It is done using a pre-defined pattern, removing always bits

from the same positions from a codeword.

There are 4 patterns shown in Table 2.4. The pp(i)
T notation denotes that the length

of the input is T and i bits are erased in total. The overall procedure of puncturing is just

a copy of predetermined parts of the codeword to the output. These parts are the positions

where the puncturing pattern is equal to 1.

2.2.1.3 Constellation Mapper

G.hn uses gray-coded QAM constellations. The algorithm for calculating the integers

coordinates (I,Q) uses a recursive definition. In this work we used only constellations with

order m being an even power of 2, in other words, only square constellations were used.

The mapper receives b bits and generates the coordinates (I,Q). The data is represented as

d = [d0 d1 . . . db−1]. The algorithm is: if b = 0, then I = 0 and Q = 0, else I = sgnI×valI
and Q = sgnQ × valQ, where sgnI = 2d0 − 1, valI = |Ib−2 − 2b/2−1|, sgnQ = 2db/2 − 1,

CHAPTER 2. STANDARDS OVERVIEW 40

H =

A B T

C D E

As
T =

× =
CsT =

× =

ET
−1 =

×

= +

ET
−1

As
T = + × =

p
T

1 = ET
−1

As
T
+ Cs

T = + =

×

TpT2 = AsT +BpT1

× =

Bp
T

1 = × =

+

s
T

s p1 p2

(r − 1)bb(c− r)b

(r − 1)b

b

(c− r)b

1

codeword

Figure 2.15: Encoding process.

valQ = |Qb−2 − 2b/2−1|. The notation Ib−2 and Qb−2 means calculating I and Q removing d0

and db/2, using a new d = [d1 d2 . . . db/2−1 db/2+1 . . . db−1]. This algorithm provides

gray-coded QAM constellations, ensuring minimal bit errors between neighbor points.

CHAPTER 2. STANDARDS OVERVIEW 41

Table 2.4: Puncturing Patterns.

Puncturing Pattern

pp(72)
1152 [1 1 · · · 1

︸ ︷︷ ︸

720

0 0 · · · 0
︸ ︷︷ ︸

36

1 1 · · · 1
︸ ︷︷ ︸

360

0 0 · · · 0
︸ ︷︷ ︸

36

]

pp(324)
5184 [1 1 · · · 1

︸ ︷︷ ︸

3240

0 0 · · · 0
︸ ︷︷ ︸

162

1 1 · · · 1
︸ ︷︷ ︸

972

0 0 · · · 0
︸ ︷︷ ︸

162

1 1 · · · 1
︸ ︷︷ ︸

648

]

pp(144)
1152 [1 1 · · · 1

︸ ︷︷ ︸

720

0 0 · · · 0
︸ ︷︷ ︸

48

1 1 · · · 1
︸ ︷︷ ︸

240

0 0 · · · 0
︸ ︷︷ ︸

96

1 1 · · · 1
︸ ︷︷ ︸

48

]

pp(648)
5184 [0 0 · · · 0

︸ ︷︷ ︸

216

1 1 · · · 1
︸ ︷︷ ︸

4320

0 0 · · · 0
︸ ︷︷ ︸

432

1 1 · · · 1
︸ ︷︷ ︸

216

]

2.2.1.4 Demapper

The constellation demapper receives coordinates R = (x, y) which were subject to

noise from the channel. A common QAM demapper would calculate the nearest constellation

coordinate and return the bits associated with it, but as we are using LDPC, we need that the

demapper returns more information in the form of log-likelihood ratios (LLRs), representing

the probability of each bit being 0 or 1 in a different way. The formula for calculating the

exact LLR is

LLRbi = ln

(
Pr(bi = 0|R = (x, y))

Pr(bi = 1|R = (x, y))

)

= ln

∑

s∈S0

exp
(
− 1

σ2 ((x− sx)
2 + (y − sy)

2)
)

∑

s∈S1

exp
(
− 1

σ2 ((x− sx)2 + (y − sy)2)
)

 , (2.16)

where S0 and S1 represent subsets where bi is equal to 0 and 1, respectively. Although (2.16)

provides the exact result, it is computationally expensive as it requires summing through all the

exponentials of each distance from constellation points. An alternative to this is recognizing

that log
∑

exp(−a) ≈ −min(a), resulting in

LLRbi ≈ − 1

σ2

(

min
s∈S0

((x− sx)
2 + (y − sy)

2)−min
s∈S1

((x− sx)
2 + (y − sy)

2)

)

, (2.17)

which have reduced complexity, as we need only to look for the two nearest coordinates, one

for bi = 0 and one for bi = 1. Also, this approach eliminates ln and exp functions, avoiding

the possibility of numeric overflow and underflow.

2.2.1.5 Depuncturing

Depuncturing accomplishes the reverse process of puncturing, but it takes in account

the fact that the input from the demapper are LLRs, not bits. Actually, this fact turns

CHAPTER 2. STANDARDS OVERVIEW 42

depucturing much more easier, as an erasure is easily represented by using a LLR with value

0, meaning that there is no information whether the bit is 0 or 1 (remember that a positive

value indicates 0 and a negative value indicates 1). Figure 2.16 shows the depuncturing

process. The zigzag pattern represents that the codeword was subject to noise and data is

represented with LLRs instead of bits. A solid fill represents decoded data free of noise, with

data represented in bits.

Information Parity

00 0

Received punctured
codeword

subject to noise

Depuncturing

Decoded codeword

Add LLRs with value 0

Decoding

Figure 2.16: Depuncturing process.

2.2.1.6 Decoding

LDPC decoding is, by far, the most computational expensive part. LDPC decoding

method is not specified by the standard, so we use the sum-product algorithm. The sum-

product algorithm is composed by 2 main parts: the check-node calculation and the bit node

calculation [15].

Check-node calculation receives LLRs from the bit-nodes and calculates the check-to-bit

messages using

Ej,i =

(
∏

i′

sgn(Mj,i)

)

φ

(
∑

i′

φ(|Mj,i|)
)

, (2.18)

where Ej,i is the message from check-node j to bit-node i, the index i′ means every bit-node

connected except the bit-node i, φ(x) = − ln tanh x
2
= ex+1

ex−1
. Figure 2.17 shows how a check

node generates messages for each bit node connected to it.

Bit-node calculation receives LLRs from both the demapper and check-nodes in order

CHAPTER 2. STANDARDS OVERVIEW 43

Cj

B1

B2

B3

Mj,2

Mj,3

Cj

B1

B2

B3

M1,i

Mj,3

Ej,1 = sign(Mj,2) sign(Mj,3)φ (φ(|Mj,2|) + φ(|Mj,3|))

Ej,1

Cj

B1

B2

B3

M1,i

Mj,2

Ej,3

Ej,2

Ej,2 = sign(Mj,1) sign(Mj,3)φ (φ(|Mj,1|) + φ(|Mj,3|)) Ej,3 = sign(Mj,1) sign(Mj,2)φ (φ(|Mj,1|) + φ(|Mj,2|))

Figure 2.17: Check-node processing.

to calculate bit-to-check messages using

Mj,i = Ri +
∑

j′

Ej′,i, (2.19)

where Ri is the a priori LLR from the demapper, the index j′ means every check-node con-

nected except check-node j and Ej,i the bit-to-check message. Figure 2.18 shows an example

of how a bit-node calculates each message.

Bi

C1

C2

C3

E2,i

E3,i

Bi

C1

C2

C3

E1,i

E3,i

M1,i = Ri + E2,i + E3,i

M1,i

Bi

C1

C2

C3

E1,i

E2,i

M3,i

M2,i

M2,i = Ri + E1,i + E3,i M3,i = Ri + E1,i + E2,i

Ri

Demapper Demapper

Ri Ri

Demapper

Figure 2.18: Bit-node processing.

Besides the two main parts, there are initialization and verification calculations. Ini-

tialization can be seen as a special case of the bit-to-check message, when there are no previous

check-to-bit messages, so that each Mj,i = Ri as is shown in Figure 2.19.

Verification calculates a posteriori LLRs from a priori LLRs plus check-to-bit LLRs,

in a similar fashion of Figure 2.18 and (2.19). Figure 2.20 shows how a bit-node generates a

posteriori LLR Li.

CHAPTER 2. STANDARDS OVERVIEW 44

Bi

C1

C2

C3

M2,i

M3,i

M1,i = Ri

M2,i = Ri

M3,i = Ri

M1,i

Ri

Demapper

Figure 2.19: Initialization.

Bi

C1

C2

C3

E2,i

E3,i

Li = Ri + E1,i + E2,i + E3,i

E1,iRi

Demapper

bi

Li

Figure 2.20: A posteriori LLR calculation.

From Li we can update the values for each bit bi using

bi =

0 if Li ≥ 0

1 if Li < 0

, (2.20)

which is used to verify the parity check equations. This final step is a sparse binary matrix-

CHAPTER 2. STANDARDS OVERVIEW 45

binary vector multiplication, which is implemented easily using just XOR functions.

The decoding algorithm stops if a valid codeword is reached or if the maximum number

of iterations is reached. Either way the decoder stops and returns whatever improvements it

could make. In the case when a valid codeword was not achieved, it signals that there was a

decoder failure and thus the data is certainly wrong and must be discarded by its receiver.

Chapter 3

Results

This chapter contains the comparison between the RS+TCM scheme from G.fast and

the LDPC scheme from G.hn. Comparison is made taking in account both error correction

performance and implementation complexity.

3.1 Error correction performance

Error correction performance is measured using metrics related to error rates. An error

correction code reduce the error rates by using redundancy bits. Furthermore, the error rates

depend on noise levels of the channel. The more noisy a channel is, the bigger are the error

rates.

3.1.1 Metrics

The error metric used in this work is the block error rate (BLER), instead of the

traditional bit error rate (BER). This is done because BLER is more easily calculated as

BLER =
number of blocks with error

total number of blocks
(3.1)

and

BER =
number of bit errors
total number of bits

, (3.2)

from which we can see that BER calculation requires bit-by-bit verification by comparison

of transmitted and received sequences, whereas BLER calculation can be done simply by

verifying the decoder results, in other words, if the decoder declares a decoding error, the

46

CHAPTER 3. RESULTS 47

entire block is already in error so that it is not necessary to compare it with the transmitted

block. A block is defined as a sequence of N bits.

Also, if we assume the bits are statistically independent one can convert BLER into

BER and vice-versa by using

BLER = 1− (1− BER)N (3.3)

BER = 1− N
√
1− BLER. (3.4)

For simulations using complex symbols (QAM) we have

Es

N0

= SNRL (3.5)

where L is the oversampling factor, which is given in samples per symbol. Considering a

symbol-based simulation we have that L = 1 (a sample is a symbol) so Es

N0

= SNR. Also we

have that

Es = REb, (3.6)

where R is given in information bits per symbol. R is calculated as R = RmRc, where

Rm = log2 M is the number of bits per QAM symbol and Rc is the code rate from the channel

coding scheme used, giving the proportion of information bits by total bits.

Joining (3.5) and (3.6), we have

Es

N0

= SNR =
Eb

N0

R (3.7)

and then, converting to dB, we have

Eb

N0

(dB) = −10 log1 0(R) + SNR(dB) (3.8)

where the schemes with the highest R = RmRc are favored, as their curves are moved to the

left the most.

In order to simulate, we must set the SNR at the channel in each simulation, this is

done by setting Es to a fixed value, and, knowing that σ2
complex = N0, we have that

σ2
complex =

Es

SNR
(3.9)

where σ2
complex is the variance of the complex Gaussian noise. Note that the noise level on each

in-phase and quadrature component is still
σ2

complex

2
= σ2

I = σ2
Q = N0

2
. After the simulation we

can just convert the SNR axis to a Eb

N0

axis using (3.8).

CHAPTER 3. RESULTS 48

3.1.2 Simulation

Simulation was performed for both standards, G.hn and G.fast. The main focus of

simulation is to assess the error correction performance for each code, without resorting to

direct evaluation of error probabilities from the code structure. Instead we take a Monte Carlo

approach in order to simplify this evaluation, as evaluating LDPC codes can be troublesome

due to its longer codewords and its pseudo-random design. Monte Carlo method disadvantage

is that it evaluates only average behaviour of codes, ignoring worst and best cases.

Simulation is done by following these steps:

Generate random data This is done by a linear feedback shift register pseudo random

number generation. A 48-bit register is used.

Encode data To encode data, we use one of interleaved RS or LDPC. Random data is

encoded with redundancy and sent to the slicer block. Interleaved RS encodes multiple

codewords and then interleave them before sending. LDPC just encodes a codeword.

Slice encoded data according to bitload Slicing has two options. A common slicer,

which slices the bitstream according to the bitload, and a TCM slicer, which convo-

lutionally encodes the bitstream while slicing the bits. The TCM slicer still respects the

bitload by calculating the number of redundancy bits in prior and taking less bits from

the input, so that the resulting number of bits complies with the bitload.

Map sliced data according to bitload Mapping is done in two ways, G.fast and G.hn.

G.fast mapping takes in account the TCM scheme, resulting in a non-Gray coded con-

stellation. G.hn uses a common Gray-coded scheme to map data to constellations.

Send symbols through AWGN channel We add Gaussian noise to the constellation

points in order to emulate a AWGN channel. Noise is also pseudo randomly gener-

ated by the same linear feedback shift register to create uniformly distributed samples,

then using a Box-Muller transform we generate two Gaussian distributed samples from

two uniform ones.

Demap data Demapping can be LLR demapping, for soft-decoding of LDPC codes, which

calculates the probabilities of each bit being 0 or 1 inside a constellation point. Or it

can be Viterbi demapping, which return the most probable point by taking in account

the finite state machine created by the convolutional code.

Deslice data Deslicing, as its slicing counterpart, also is done in two ways. A common

deslicer, which combines separated bits (LLRs) into a bitstream again, according to the

CHAPTER 3. RESULTS 49

bitload, while a TCM deslicer performs a similar task, but it drops the parity bits added

by the convolutional encoder.

Decode data Interleaved RS decoder deinterleaves data prior to RS decoding, spreading

possible error bursts. LDPC decoder receives LLRs as its inputs and decodes iteratively,

resulting in a codeword formed by bits.

Generate statistics After decoding, errors are counted using the data at the decoder output.

The simulator generates BLER for each SNR value inputted, given a configuration of

coding and modulation scheme. Also, we can set parameters like a range of SNRs, number of

points to simulate, maximum number of simulations and maximum number of errors.

The range of SNRs is crucial to define where the plotted curve will lay, and it is

necessary to plot the most important part of a error versus noise curve called waterfall region,

which shows at which SNR levels a scheme starts to produce errors.

The number of points to simulate is decided after we manage to discover where the

waterfall region lies, as an increased number of points results in long simulation times. A low

number of points may not show properly the waterfall region, so there is a trade-off. These

points are in a equally spaced assuming that SNR is in decibels.

The maximum number of simulation limits the simulation time, as when we try to

estimate a very low BLER (say, 10−20) would require an enormous simulation time. In other

words, we limit how low a BLER can be estimated in order to save time.

The maximum number of errors is used for stopping the simulation early and reduce

simulation time. In the estimation of BLER we divide the number of errors by the total

number, so that a low number of errors results in a poor estimation. In th other hand, if the

simulation already reached a good number of errors, we stop the simulation and starts the

next.

The simulator and all the blocks were implemented in C programming language. The

simulator uses OpenMP to parallelize simulation of different points with a dynamic schedule,

which implements a task queue to perform the simulation, where each task is the simulation

of BLER for a given SNR.

Simulations were run on a cluster with 8 computers with 8 cores each. The configuration

used was 16 points, 100 errors and 100000 simulations.

CHAPTER 3. RESULTS 50

3.1.3 Results

To make the comparison, we must first set similar conditions for both codes, so we used

RS with 135 bytes of information plus 16 of redundancy and a interleaver with depth D = 4,

and the longer (L) matrices for LDPC. This is because we end with the same block size for

both codes, so that we can compare their BLER, as the BLER depends on the block size.

In this case, the information block size is 540 bytes for both codes. At first, this may seem

unfair for RS by considering four codewords as one, but one must recall that after interleaving

there is the TCM encoder, which will encode bits from different codewords together, due to

the interleaving.

The comparison is made here with 64-QAM in all sub-carriers. A (135, 151) Reed-

Solomon code with interleaver depth D = 4 and trellis-coded modulation on 2048 sub-carriers

is used, resulting in a overall rate of 135
151

2048×6−(2048/2+4)
2048×6

= 0.8192. The LDPC codes used are

the larger codes with 540 bytes of information, with rate varying from 1/2 to 20/21, according

to its standard.

Error correction curves generally have the same trend, exhibiting a non convergence

region in low signal to noise ratios, and a waterfall region where the error probability suddenly

drops. The main objective is to make curves to

Figure 3.1 shows that, if we consider only the sheer amount of error correction per-

formance, all LDPC codes outperform the RS+TCM scheme, excepting the LDPC with rate

20/21. This is somewhat unfair, as for example, LDPC with rate 1/2 uses 540 bytes of parity

along with 540 bytes of information, while the RS+TCM scheme uses less than 120 bytes of

redundancy. Comparing codes with similar rates can give a better view, for example, LDPC

with rate 5/6 = 0.8333, thus a higher rate (less redundancy) still outperforms RS+TCM

scheme by about 2 dB in Eb/N0. Another comparison is possible with LDPC codes with rate

16/18 = 0.8889 as it performs slightly better, about 0.75 dB,than RS+TCM and uses less

than 68 bytes of redundancy, against 120 of RS+TCM. In other words, RS+TCM uses 76%

more redundancy than LDPC and it is still outperformed.

Another case is shown in Figure 3.2, now for 1024-QAM on all sub-carriers. Now the

RS+TCM has the code rate of 0.8492, using less than 96 bytes of redundancy. As the same

of the 64-QAM case, LDPC with rate 16/18 outperforms the RS+TCM scheme by more than

1 dB, with RS+TCM using 41% more redundancy.

Figure 3.3 shows the Shannon capacity for the BLER of 10−3 with different modulation

orders. Each marker in a curve represents a QAM of order 4, 16, 64, 256, 1024. We can see

directly that the LDPC curves are closer than the RS+TCM, with the difference becoming

CHAPTER 3. RESULTS 51

6 7 8 9 10 11 12 13 14 15
10

−4

10
−3

10
−2

10
−1

10
0

Eb/N0 (dB)

B
lo

ck
 E

rr
or

 R
at

e

540 byte block, 64−QAM

LDPC rate 1/2
LDPC rate 2/3
LDPC rate 5/6
LDPC rate 16/18
LDPC rate 20/21
RS+TCM D=4

Figure 3.1: RS+TCM vs LDPC on 64-QAM.

12 14 16 18 20 22 24
10

−4

10
−3

10
−2

10
−1

10
0

Eb/N0 (dB)

B
lo

ck
 E

rr
or

 R
at

e

540 byte block, 1024−QAM

LDPC rate 1/2
LDPC rate 2/3
LDPC rate 5/6
LDPC rate 16/18
LDPC rate 20/21
RS+TCM D=4

Figure 3.2: RS+TCM vs LDPC on 1024-QAM.

more apparent at higher SNRs. G.fast is expected to deal with SNRs higher than 30dB,

in which LDPC is more effective than RS+TCM. For example, LDPC 5/6 1024-QAM and

RS+TCM 1024-QAM have similar information rates, but LDPC has an advantage of 3 dB in

SNR.

CHAPTER 3. RESULTS 52

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

SNR (dB)

In
fo

rm
at

io
n

bi
ts

 p
er

 c
ha

nn
el

 u
se

BLER 10−3

Shannon Capacity for AWGN
LDPC rate 1/2
LDPC rate 2/3
LDPC rate 5/6
LDPC rate 16/18
LDPC rate 20/21
RS(151,135) + TCM D=4

Figure 3.3: Comparison to Shannon capacity.

3.2 Complexity

Another important point of view is the computational complexity of both schemes.

Computational complexity may represent a lot of concepts. For example, when designing

hardware, a very complex function may require lots of circuitry, increasing the cost of the

project. Another example is when dealing with a software implementation, a complex function

may consume resources like cache, memory and processor cycles.

3.2.1 Metrics

Measuring computational complexity a in fair way is not trivial. One must bring all

operations in a algorithm to a common denominator, for example, number of additions and

multiplications, or number of cycles spent on processing. But none of them is perfect, as an

operation can be implemented directly in some hardwares, and is unavailable in others, thus

benefiting the former in number of cycles, for example. Also, there are subtleties that are

ignored at first, then prove themselves to be troublesome, like memory and cache accesses in

a software implementation. In this work we assume different operations for different schemes,

thus resulting in a somewhat heterogeneous comparison.

CHAPTER 3. RESULTS 53

3.2.2 Results

Here we calculate the complexity costs for each scheme. We present the complexity by

counting operations and memory required for each algorithm. In order to simplify, we do not

count memory accesses and we also assume worst case situations.

3.2.2.1 G.fast complexity

Reed-Solomon RS complexity is concentrated at the decoder. The decoder only has com-

plexity comparable to the encoder when there are no errors.

Encoder The encoder implements a digital filter in direct form II transposed. This

results in a time complexity of:

KRS((NRS −KRS − 1)(GFMULT + GFADD) + GFMULT)

where GFMULT is Galois Field multiplication, GFADD is Galois Field addition, which

is simply a XOR operation. The encoding algorithm uses (NRS − KRS) bytes as

the filter memory.

Decoder The RS decoder has a lot of steps, as follows:

Syndrome Syndrome calculation is done by evaluating NRS−KRS polynomials of

NRS coefficients. This is can be done using Horner’s method repeatedly, with

a time complexity of:

(NRS −KRS)NRS(GFMULT + GFADD)

using (NRS −KRS) bytes of memory.

Berlekamp-Massey In order to find the error locator polynomial, the Berlekamp-

Massey algorithm works by constructing a polynomial incrementally, increasing

its degree at each step. In the worst case, we have (NRS − KRS)/2 errors,

resulting in a polynomial of degree (NRS −KRS)/2. The time complexity is:

(NRS −KRS)

2
(
(NRS−KRS

2
− 1)

2
(GFMULT + GFADD)+

(NRS −KRS)

2
(GFMULT + GFADD)+

(NRS −KRS)

2
(GFMULT + GFRECIP))

and the space complexity is 3(NRS−KRS)
2

.

CHAPTER 3. RESULTS 54

Chien Search Chien search finds the roots of the error locator polynomial by

exhaustive search. This results in the evaluation of NRS polynomials of degree
(NRS−KRS)

2
in the worst case. This leads to a time complexity of

NRS

(NRS −KRS)

2
(GFMULT + GFADD)

using a space complexity of (N −K) bytes.

Error evaluator polynomial The error evaluator polynomial is calculated by a

partial convolution of the syndrome polynomial and the error locator polyno-

mial up to (N−K)
2

coefficients. The time complexity is:

N −K

2

((N−K)
2

− 1)

2
(GFMULT + GFADD)

The space complexity is (N−K)
2

bytes.

Error correction The error correction step uses the Forney algorithm to correct

errors. It requires a evaluation of the error evaluator polynomial, a evaluation

of the formal derivative of the error evaluator polynomial, two multiplications

and a division. Thus the time complexity is:

NRS −KRS

2
(
NRS −KRS

2
(GFMULT + GFADD)+

NRS −KRS

4
(GFMULT + GFADD)+

2GFRECIP + 2GFMULT + GFADD)

and the space complexity is 0, as the error corrections are applied directly.

Interleaving Interleaving has only two parts, one in transmission, and one in reception,

namely interleaver and deinterleaver.

Interleaver The interleaver expends most of its computational costs on memory, as

it has store D entire codewords at each transmission. If done in software, the

interleaver time complexity is just the calculation of the interleaved indices from

the non-interleaved indices, resulting in:

NRSD(INTDIV + INTMOD)

where INTDIV is the complexity of an integer division and INTMOD is the com-

plexity of an integer division remainder. In some systems both operations can be

accomplished together at once. The space complexity is NRSD bytes.

CHAPTER 3. RESULTS 55

Deinterleaver The deinterleaver performs the reverse of the interleaver, resulting in

same time complexity:

NRSD(INTDIV + INTMOD)

and same space complexity NRSD bytes.

Trellis-coded modulation Trellis coded modulation has several parts, as follows:

Convolutional Encoder The convolutional encoder is a binary digital filter, which is

implemented simply only using XOR on bits. This results in a time complexity of

NPairs3XOR

where NPairs is half the number of subcarriers and XOR is bit exclusive OR. The

convolutional encoder have 4 binary delay units, resulting in a space complexity of

4 bits.

Bit conversion The bit-conversion maps 8 4-D cosets on 4×4 2-D cosets. This is done

by 4 binary equations which uses only XOR, resulting in a time complexity of

NPairs5XOR

and 4 bits space complexity only to store the results.

Constellation mapper The constellation mapper can use pre-calculated values, re-

sulting in just a read from memory. This causes the time complexity to be just the

memory read complexity and the space complexity is the order of the QAM scheme.

If implemented without pre-calculated values, the time complexity is approximately

Blength(E[bx]2(SHIFT + ADD + OR) + SUB + SHIFT + MULT),

where Blength is the bitload length omitting subcarriers with zeros, E[bx] is the

expected value of the number of bits per sub-carrier bx. SHIFT, ADD, SUB, OR

and MULT, represent the complexity of bit shift, addition, subtraction, logical OR,

and multiplication operations. The advantage is that this approach does not need

to store any values, thus having no memory complexity.

Constellation demapper The constellation demapper calculates the 2D euclidean dis-

tance metrics to the four nearest points. This means a squared euclidean distance

calculation repeated 4 times for each sub-carrier. This results in a time complexity

of

Blength(2FLOOR + ADD + SHIFT + 4(2SUB + 2MULT + ADD)),

and memory complex of the order of the QAM constellation, as the demodulator

has supply the respective labels for each constellation point.

CHAPTER 3. RESULTS 56

Viterbi decoder The Viterbi decoder is divided in three parts:

BMU To calculate the branch metrics one should find the 4D cosets distance

metrics. Basically this is accomplished by add two 2D coset metrics and then

calculating the minimum. Also, we want to know which labels results in the

minimum metrics, so instead of a minimum, we calculate argmin. This results

in a time complexity of

Npairs8(2ADD + ARGMIN)

and no memory complexity.

PMU Path metric calculation is done by the so called Add-Compare-Select (ACS)

butterfly. As its name suggests, it accumulates the branch metrics (add), find

the minimum (compare), and also find the argmin(select). This is done for

every state, resulting in

Npairs16(4ADD + ARGMIN[4]),

where ARGMIN[4] is the complexity of calculating argmin of 4 numbers at a

time. The memory complexity of PMU is 16 integers for state metrics and

4Npairs decisions to be stored for the TBU.

TBU Traceback is done simply and has time complexity of

(Npairs − 1)(OR + SHIFT + AND)

Bit deconversion This is step is inverse process of bit conversion and has the same

computational costs. The time complexity is

Npairs5XOR

and no memory complexity.

3.2.2.2 G.hn complexity

LDPC The LDPC is divided in two parts:

Encoder The encoder uses the QC-LDPC-BC structure to efficiently encode data. The

main operation is the right cyclic shift. We can further divide the encoding process

in several parts:

CHAPTER 3. RESULTS 57

AsT Direct multiplication by matrix A, resulting in a time complexity of

(M − 1)K(RCS[L] + XOR[L]),

where M is the parity size, K is the information size, RCS[L] is a right col-

umn shift of L bits and XOR[L] is a XOR operation on L bits. The memory

complexity is zero as the algorithm can run in place.

CsT Direct multiplication by matrix C, resulting in a time complexity of

K(RCS[L] + XOR[L]),

again with no memory complexity.

ET−1As+ CsT This calculates the first part of the parity pT1 . Its time complexity

is

MXOR[L] +RCS[L],

with no memory complexity.

TpT2 = AsT + BpT1 Solving this system of equation returns the other part of the

parity. Its time complexity is

(M − 1)RCS[L] + (2M − 3)XOR[L], ,

with operations that can be calculated in place.

Decoder The LDPC decoder runs a sum-product algorithm in order to decode cor-

rupted codewords, divided in three parts: bit-to-check messages, check-to-bit mes-

sages and parity check.

Check-to-bit message Check-to-bit messages are the most computational expen-

sive, this is because the calculation of the φ() function can be challenging as

φ(x) = − log(tanh(x/2)). The time complexity of check-to-bit message is

ITERME[Clinks](2PHI + ABS + ADD + SIGN + 2XOR + SUB),

where PHI is the complexity of the φ() function, SIGN is the signum function,

and E[Clinks] is the average number of links from any check nodes to their

respective bit nodes. ITER is the number of iterations used in the decoder.

The memory complexity is ME[Clinks] LLRs storage size.

Bit-to-Check message Bit-to-check messages are simpler, but as bit nodes exist

in bigger numbers, they have modest complexity. The time complexity is

ITERN(E[Blinks](ADD + SUB) + SIGN),

CHAPTER 3. RESULTS 58

where E[Blinks] is the average number of links from any bit nodes to their

respective check nodes. The memory complexity is NE[Blinks] LLRs storage

sizes.

Parity check The parity check simply implements HvT , which is a sparse binary

matrix by binary vector multiplication. The time complexity is

ITERME[Clinks]XOR,

and the memory complexity is M syndrome bits.

Constellation mapper Gray-coded QAM mapper The constellation mapper for G.hn

has time complexity of

BlengthE[bx](2(AND+SHIFT+SUB)+2(SHIFT+SUB+ABS+MULT)), (3.10)

and requires no memory.

LLR constellation demapper The LLR calculation can be very costly, having a time

complexity of

Blength(2
E[bx](2SUB+2MULT+ADD) +E[bx] ∗ (2 ∗MIN [2(E[bx]− 1)]), , (3.11)

this is because we have to compare every point in the constellation to find the

minimum for both 0 and 1. This could be alleviated if an algorithm could find

these minimum in a clever way without testing all the points. Such an algorithm

exists, but it was not implemented. Although there is a term which is exponential

to E[bx], bx can be at most 12, limiting the exponential growth of complexity.

3.2.2.3 Remarks

A fair comparison is not well defined for complexity as we have suppose weights for each

function. For example, when doing Galois Field multiplications in software, a processor may

have a instruction to implement Galois Field multiplications directly, or when the instruction is

not present, one may implement it in terms of another functions, for example using logarithm

tables for finite fields. Thus the cost could be one instruction or many, depending on the

hardware. This is also valid for different functions. In some systems, a addition may have

lower cost than a multiplication, in other they may have the same cost, and so on.

Chapter 4

Conclusion

This work provides a comparison of two standards forward error correction schemes,

RS+TCM and LDPC, as former candidates for the G.fast standard. It was shown that con-

sidering sheer error correction, RS+TCM falls behind most LDPC codes proposed in G.hn.

Even when considering LDPC codes with similar codes rates, RS+TCM is outperformed in all

cases, with the difference getting larger at higher SNRs, where G.fast is expected to function.

LDPC is also more flexible in terms of decoding, with a variety of decoding algorithms.

Basically the difference among different algorithms is that they trade-off complexity for error

correction performance. More complex algorithms produces better results. Even maintaining

the same decoding algorithm, one can adjust the decoder complexity and performance by

just adjust the maximum number of decoder iterations. The more the iterations, the more

complexity and performance. This freedom of choice has to be considered as an advantage, as

vendors have to compete to offer the best trade-off.

In the other hand, the classical RS+TCM has some adjustable parameters, like parity

size, shortening size and interleaver depth, but the decoding algorithm is just the same. For

example, shortening decreases the code rate by inserting zeros, but this does not reduce the

decoder complexity. The error correcting performance of RS is the same despite the decoding

algorithm. Trellis-coded modulation is fixed, and the optimum algorithm is already the Viterbi

algorithm, leaving no opening for any trade-off. The advantage of this lack of freedom is that

it is more easy to develop specialized hardware or instructions to implement them.

One may argue that LDPC does not include interleaving and thus is more vulnerable

to noise bursts than RS+TCM. This is not a great problem as G.fast foresees the use of

retransmissions. As G.fast symbol rate is 12 times faster than VDSL2 (48k symbols/s vs 4k

symbols/s), its symbols have the shorter duration of approximately 20 µs against 250 µs of

VDSL2. This incur in more vulnerability to impulse noise, with the possibility of losing entire

59

CHAPTER 4. CONCLUSION 60

symbols at once. With higher symbol rates, the retransmission rates are higher too, resulting

in lower latencies, which is the major concern of retransmissions, as described in [6].

As technology advanced, LDPC, that was once considered too computationally expen-

sive, is now affordable and it is used in a vast amount of today standards, including Wi-Fi’s

802.11 family of standards, digital video broadcasting DVB-S2 and more. In these standards,

LDPC are implemented to efficiently to run on rates of over 1 Gbps, thus there is no complexity

concern on LDPC for G.fast.

Additionally, this work can be used educationally in channel coding teaching, as its is a

major overview of practical of both block codes and convolutional codes, and also both classical

and modern approaches. Reed-Solomon are classical block codes, LDPC is a modern capacity-

approaching block code. Trellis-coded modulation is the concept of convolutional coding mixed

with modulation. But of course this does not mean that this is a complete overview of channel

coding, it just provide some concrete examples and implementations of some of the major

codes. The implementation was written in a accessible programming language, C, although it

is not fully optimized, it could run simulations without major concerns. The program is even

capable of multi-thread simulation using several cores at once.

4.1 Future works

In order to fully evaluate the complexity of each scheme, an optimized implementation

in hardware would be necessary. Then we could evaluate the trade-off of complexity versus

performance, accounting for hardware costs and if an implementation could reach the desired

rates. A good approach would be an implementation in FPGA, on which we can develop

hardware in a flexible manner.

Bibliography

[1] G.9701, “ITU-T:Fast Access to Subscriber Terminals(FAST),” 2014.

[2] I. Reed and G. Solomom, “Polynomial codes over certain finite fields,” SIAM Journal of

Applied Math, vol. 8, pp. 300–304, 1960.

[3] G. Ungerboeck, “Channel coding with multilevel/phase signals,” Information Theory,

IEEE Transactions on, vol. 28, no. 1, pp. 55–67, Jan 1982.

[4] R. G. Gallager, “Low-Density Parity-Check Codes,” Ph.D. dissertation, Cambridge, MA:

MIT Press, 1963.

[5] S.-Y. Chung, G. D. Forney, T. J. Richardson, and R. Urbanke, “On the Design of Low-

Density Parity-Check Codes within 0.0045 dB of the Shannon Limit,” IEEE Communi-

cations Letters, vol. 5, no. 2, pp. 58–60, Feb. 2001.

[6] J. Neckebroek, M. Moeneclaey, M. Guenach, M. Timmers, and J. Maes, “Comparison

of error-control schemes for high-rate communication over short DSL loops affected by

impulsive noise,” in Communications (ICC), 2013 IEEE International Conference on,

June 2013, pp. 4014–4019.

[7] S. Lin and D. C. Jr., Error Control Coding: Fundamentals and Applications. Prentice-

Hall, 1983.

[8] R. H. Morelos-Zaragoza, The Art of Error correcting Coding. John Wiley e Sons, Ltd.,

2002.

[9] J. C. Moreira and P. G. Farrell, Essentials of Error-Control Coding. John Wiley e Sons,

Ltd., 2006.

[10] C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical

Journal, vol. 28, 1948.

61

BIBLIOGRAPHY 62

[11] R. C. Bose and D. K. Ray-Chaudhuri, “On a class of error correcting binary group codes,”

Information and Control, vol. 3, pp. 68–79, March 1960.

[12] E. R. Berlekamp, “On decoding binary Bose-Chaudhuri-Hocquenghem codes,” IEEE

Trans. Inf. Theory, vol. IT-11, pp. 577–580, October 1965.

[13] J. L. Massey, “Step-by-step decoding of the Bose-Chaudhuri-Hocquenghem codes,” IEEE

Trans. Inf. Theory, vol. IT-11, pp. 580–585, October 1965.

[14] D. MacKay, “Good error-correcting codes based on very sparse matrices,” Information

Theory, IEEE Transactions on, vol. 45, no. 2, pp. 399 –431, mar 1999.

[15] S. J. Johnson, Iterative Error Correction Turbo, Low-Density Parity-Check and Repeat-

Accumulate Codes. Cambridge, 2009.

[16] T. J. Richardson and R. Urbanke, “Efficient encoding of low-density parity-check codes,”

IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 638–656, Feb. 2001.

[17] G.993.2, “ITU-T:Very high speed digital subscriber line transceivers 2 (VDSL2),” 2010.

[18] G.9960, “ITU-T:Unified high-speed wire-line based home networking transceivers - Sys-

tem architecture and physical layer specification,” 2010.

[19] S. Myung, K. Yang, and J. Kim, “Quasi-Cyclic LDPC Codes for Fast Encoding,” IEEE

Trans. Inf. Theory, vol. 51, no. 8, pp. 2894–2900, Aug. 2005.

	List of Figures
	List of Tables
	List of Symbols
	Introduction
	Fundamentals of channel coding
	Channel Coding
	Block codes
	Convolutional codes

	Reed-Solomon codes
	Finite fields
	Encoding
	Decoding

	Trellis-coded modulation
	Encoding/Mapping
	Decoding/Demapping

	Low-Density Parity-Check codes
	Encoding
	Decoding

	Standards Overview
	G.fast forward error correction
	Reed-Solomon
	Encoding
	Decoding
	Shortening
	Unshortening

	Interleaving
	Deinterleaving

	Trellis-coded modulation
	Bit extraction
	Encoding
	QAM modulation
	QAM demodulation
	Decoding

	G.hn forward error correction
	LDPC
	Encoding
	Puncturing
	Constellation Mapper
	Demapper
	Depuncturing
	Decoding

	Results
	Error correction performance
	Metrics
	Simulation
	Results

	Complexity
	Metrics
	Results
	G.fast complexity
	G.hn complexity
	Remarks

	Conclusion
	Future works

	Bibliography

