Teses em Engenharia Elétrica (Doutorado) - PPGEE/ITEC
URI Permanente para esta coleçãohttps://repositorio.ufpa.br/handle/2011/2317
O Doutorado Acadêmico inicio-se em 1998 e pertence ao Programa de Pós-Graduação em Engenharia Elétrica (PPGEE) do Instituto de Tecnologia (ITEC) da Universidade Federal do Pará (UFPA).
Navegar
Navegando Teses em Engenharia Elétrica (Doutorado) - PPGEE/ITEC por Orientadores "AFFONSO, Carolina de Mattos"
Agora exibindo 1 - 3 de 3
- Resultados por página
- Opções de Ordenação
Tese Acesso aberto (Open Access) Alocação ótima de geração distribuída em redes de distribuição utilizando algoritmo híbrido baseado em cuckoo search e algoritmo genético(Universidade Federal do Pará, 2018-09-02) OLIVEIRA, Victoria Yukie Matsunaga de; AFFONSO, Carolina de Mattos; http://lattes.cnpq.br/2228901515752720Esta tese de doutorado propõe um novo algoritmo Cuckoo Search (CS) chamado Cuckoo-GRN (Cuckoo Search with Genetically Replaced Nests), que incorpora benefícios do algoritmo genético (GA) no algoritmo CS. O método proposto trata os ninhos abandonados do CS de maneira mais eficiente, substituindo-os geneticamente. Isto melhora significativamente o desempenho do algoritmo, estabelecendo o equilíbrio ideal entre a diversificação e a intensificação de busca. O novo algoritmo é utilizado para otimizar a localização e o dimensionamento de unidades de geração distribuída em um sistema de distribuição, a fim de minimizar as perdas de energia ativa, melhorando a estabilidade da tensão do sistema e o perfil de tensão. Alocações de uma ou mais unidades de geração distribuída são consideradas. O algoritmo proposto é extensivamente testado em funções matemáticas de benchmark, bem como nos sistemas de distribuição de 33 e 119 barras. Os resultados da simulação mostram que o Cuckoo-GRN pode levar a uma melhora substancial de desempenho em relação ao algoritmo CS original e a outras técnicas atualmente conhecidas na literatura, não apenas em termos de convergência, mas também de precisão da solução.Tese Acesso aberto (Open Access) Modelo híbrido baseado em séries temporais e redes neurais para previsão da geração de energia eólica(Universidade Federal do Pará, 2018-08-30) ALENCAR, David Barbosa de; OLIVEIRA, Roberto Célio Limão de; http://lattes.cnpq.br/4497607460894318; AFFONSO, Carolina de Mattos; http://lattes.cnpq.br/2228901515752720A geração de energia elétrica através de turbinas eólicas é uma das alternativas praticamente inesgotáveis de geração de energia elétrica. Ela é considerada uma fonte de energia limpa, porém ainda necessita de muita pesquisa para desenvolvimento de ciência e tecnologias que assegurem uma uniformidade na geração, propiciando uma maior participação desta fonte na matriz energética tanto no Brasil quanto no mundo, pois o vento apresenta bruscas variações na velocidade, densidade e em outras variáveis importantes. Nos sistemas elétricos de base eólica, cada horizonte de previsão é aplicado em um determinado segmento específico, previsão de minutos, horas, semanas, meses e anos futuros do comportamento do vento, desta forma pode-se avaliar a disponibilidade de energia para o próximo período, uma informação relevante no despacho das unidades geradoras e no controle do sistema elétrico. Esta tese teve como proposta, desenvolver modelos de previsão a ultra curto, curto, médio e longo prazo da velocidade do vento, baseado em técnicas de inteligência computacional, usando modelos de Redes Neurais Artificiais, SARIMA e modelos híbridos e prever a capacidade da geração de potência para cada horizonte. Para aplicação da metodologia utilizou-se as variáveis meteorológicas do banco de dados do sistema de organização nacional de dados ambientais SONDA, estação de Petrolina, do período de 01 de janeiro de 2004 à 31 de março de 2017. O desempenho dos modelos foi comparado com 5, 10 e 20 passos para frente, considerando minutos, horas, dias, semanas, meses e anos como horizonte de previsão. O modelo hibrido obteve melhor resposta na previsões dentre as quais destacou-se o horizonte de horas.Tese Acesso aberto (Open Access) Previsão multi-passos a frente do preço de energia elétrica de curto prazo no mercado brasileiro(Universidade Federal do Pará, 2014-11-28) RESTON FILHO, José Carlos; OLIVEIRA, Roberto Célio Limão de; http://lattes.cnpq.br/4497607460894318; AFFONSO, Carolina de Mattos; http://lattes.cnpq.br/2228901515752720A predição do preço da energia elétrica é uma questão importante para todos os participantes do mercado, para que decidam as estratégias mais adequadas e estabeleçam os contratos bilaterais que maximizem seus lucros e minimizem os seus riscos. O preço da energia tipicamente exibe sazonalidade, alta volatilidade e picos. Além disso, o preço da energia é influenciado por muitos fatores, tais como: demanda de energia, clima e preço de combustíveis. Este trabalho propõe uma nova abordagem híbrida para a predição de preços de energia no mercado de curto prazo. Tal abordagem combina os filtros autorregressivos integrados de médias móveis (ARIMA) e modelos de Redes Neurais (RNA) numa estrutura em cascata e utiliza variáveis explanatórias. Um processo em dois passos é aplicado. Na primeira etapa, as variáveis explanatórias são preditas. Na segunda etapa, os preços de energia são preditos usando os valores futuros das variáveis exploratórias. O modelo proposto considera uma predição de 12 passos (semanas) a frente e é aplicada ao mercado brasileiro, que possui características únicas de comportamento e adota o despacho centralizado baseado em custo. Os resultados mostram uma boa capacidade de predição de picos de preço e uma exatidão satisfatória de acordo com as medidas de erro e testes de perda de cauda quando comparado com técnicas tradicionais. Em caráter complementar, é proposto um modelo classificador composto de árvores de decisão e RNA, com objetivo de explicitar as regras de formação de preços e, em conjunto com o modelo preditor, atuar como uma ferramenta atrativa para mitigar os riscos da comercialização de energia.
