Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Orientadores

Navegando por Orientadores "PASCA, Gabriel Adolfo Cabrera"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 2 de 2
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Desenvolvimento e caracterização de bioplásticos de fécula de mandioca com extrato alcoólico de Vismia Guianensis
    (Universidade Federal do Pará, 2024-08-27) SANTOS, Josiel Ferreira; PASCA, Gabriel Adolfo Cabrera; http://lattes.cnpq.br/5642784995274060; https://orcid.org/0000-0002-9411-0889
    This work investigates the incorporation of the alcoholic extract of Vismia Guianensis (EAVG) cassava starch, aiming to improve its bioplastic properties. Cassava starch was dissolved in distilled water at the following concentrations with 0.2%, 0.5% and 1.0% EAVG under controlled temperature at the gelatinization point (~70 °C) and then molded to form bioplastics. The prepared samples were characterized by Attenuated Total Reflectance/Fourier Transform Infrared Spectroscopy (ATR/FTIR), Thermogravimetric and Thermal Differential Analysis (TGA-DTA), X-ray Diffraction (XRD), Scanning Electron Microscopy/Energy Spectroscopy Dispersive (SEM/EDS), Atomic Force Microscopy (AFM) and mechanical assays, providing insights into chemical composition, thermal stability, crystallinity, surface morphology and mechanical properties. These techniques comprehensively characterized cassava starch bioplastics with EAVG addition, highlighting their enhanced mechanical properties. The results demonstrated that EAVG played an effective role as a plasticizer, increasing the flexibility, resistance and stability of the biofilm that has a thickness of 0.8 mm, and supports a traction of 4.19 to 18.43 MPa. This study justifies EAVG as a promising additive for the production of biocompatible and sustainable materials, suitable for numerous applications in biodegradable plastics. EAVG presents a path forward for the advancement of bioplastics with improved mechanical, thermal and functional properties, with a promising future in terms of their contribution to new developments in these areas.
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Formação de heteroestruturas compostas por microtubos de Cu/Cu2O/CuO decorados com nanocristais de CoO
    (Universidade Federal do Pará, 2024-08-21) SANTOS, Suzilene Vasconcelos dos; PASCA, Gabriel Adolfo Cabrera; http://lattes.cnpq.br/5642784995274060; https://orcid.org/0000-0002-9411-0889
    A particularly important class of micro/nanostructured materials is that of transition metal oxides. In this work, copper and cobalt oxides are used to obtain micro/nanostructures. Copper (II) oxide (CuO) and copper (I) oxide (Cu2O) are p-type semiconductors, widely studied due to their peculiar characteristics and potential technological applications. Specifically, copper (Cu) microwires with approximately 50 μm in diameter and 4 cm in length, extracted from discarded cellphone earphones, were subjected to thermal treatments at 600°C with different synthesis parameters to obtain CuO microtubes. On the other hand, cobalt acetate was used in the synthesis of nanoparticles through the chemical method called thermal decomposition, which uses organometallic salts in organic solvents, being a suitable method for the synthesis of CoO nanostructures. Metallic cobalt and its oxides have been intensively studied due to numerous applications enhanced by their properties. CoO nanoparticles exhibit instability in the hexagonal close-packed Wurtzite structure (hcp - space group P63mc). This implies that, depending on the synthesis parameters, phase transition can occur, that is, from CoO-hcp to CoO-fcc (face-centered cubic phase - space group Fm3m), which is considered the most stable phase for CoO. However, in order to obtain a hierarchical structure of CuO microtubes decorated with CoO nanoparticles, this work uses different synthesis methodologies to produce a micro-nano-hierarchical structure. In this study, X-ray diffraction was used to identify the crystalline structures present in the microwires and nanoparticles, highlighting the influence of the time parameter on the phase transition of both structures. The morphological characterization of the samples was performed using scanning electron microscopy (for the microwires) and transmission electron microscopy (for the nanoparticles). Raman spectroscopy was also employed to obtain information about the sample surfaces. With these characterization techniques, it was possible to determine the elemental and structural composition of the microtubes and nanoparticles composed of copper and cobalt oxides, as well as to evaluate the influence of the laser on the nanoparticle samples. Thus, a Cu/Cu2O/CuO heterostructure with CoO monocrystals on the surface was developed, presenting potential sensory properties.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA