Navegando por Orientadores "PERES, Carlos Augusto da Silva"
Agora exibindo 1 - 2 de 2
- Resultados por página
- Opções de Ordenação
Item Acesso aberto (Open Access) Movimentos sazonais de vertebrados terrestres entre florestas periodicamente alagadas e de terra firme(Universidade Federal do Pará, 2014-04-01) COSTA, Hugo Cardoso de Moura; PERES, Carlos Augusto da Silva; http://lattes.cnpq.br/9267735737569372The flood pulse is the main factor structuring and differentiating the ecological communities of Amazonian unflooded (terra firme) and seasonally-flooded (várzea) forests as they require unique adaptations to survive the prolonged annual floods. Therefore, várzea and terra firme forests hammer out a spatio-temporal mosaic of resource availability, which may result in landscape scale seasonal movements of terrestrial vertebrates between adjacent forest types. Yet the lateral movements of terrestrial vertebrates between hydrologically distinct neighbouring forest types exhibiting staggered resource availability remains poorly understood, despite the important implications of this spatial dynamic for the ecology and conservation of forest wildlife. We examined the hypothesis of seasonal movements between two adjacent forest types at two contiguous sustainable-use forest reserves in Western Brazilian Amazonia, investigating the effects of water level, landscape and anthropogenic disturbance on the overall species richness, composition, and abundance of nine major vertebrate trophic guilds. Species richness differed in neighboring terra firme forests between the high-and low-water phases of the flood pulse and terra firme forests were more species rich than várzea forests. There were clear differences in species composition between both forest types and seasons. Generalized Linear Models showed that water level was the main factor explaining aggregate abundance of all species and three trophic guilds. Anthropogenic disturbance and geographic setting of camera trap stations, including distance to the nearest urban center, the number of residents of the nearest community, elevation and the surrounding area of várzea of each camera trap station, had a variety of effects on the terrestrial vertebrate assemblage. Overall vertebrate biomass increased with distance from the nearest urban center. Our results indicate that the persistence of viable populations of large terrestrial vertebrates adjacent to major Amazonian rivers requires large, wellconnected forest landscapes encompassing different forest types to ensure large-scale lateral movements by forest wildlife.Item Acesso aberto (Open Access) Padrões de diversidade, ocupação e coexistência de mamíferos terrestres na região neotropical(Universidade Federal do Pará, 2019-05-10) SANTOS, Fernanda da Silva; JUEN, Leandro; http://lattes.cnpq.br/1369357248133029; PERES, Carlos Augusto da Silva; http://lattes.cnpq.br/9267735737569372Community structure and diversity result from a complex and dynamic phenomenon, determined by a large number of processes in space and time, which are driven by environmental conditions, spatial factors, resource availability, and species interactions, including competition and predation. This study used the terrestrial mammal group as a model to investigate part of the processes shaping communities, and to understand patterns of diversity, occupancy, and coexistence in the Neotropical forests. Data from a long-term camera trapping monitoring of terrestrial vertebrates across eight protected area sites were combined. The study sites comprise eight areas distributed through six countries (Costa Rica [1], Panama [1], Ecuador [1], Peru [2], Suriname [1] e Brazil [2]), and include both intact forest and fragmented forest landscapes. Firstly, β diversity was estimated among the eight mammal communities to identify: which sites and species contributed to differences in the variation of community composition (LCBD and SCBD, respectively); which process (species replacement or richness difference) explain the observed β-diversity patterns; and which factors affect local contribution (LCBD) and species contribution (SCBD) to β diversity. Posteriorly, data from five sympatric cat species [jaguar (Panthera onca), puma (Puma concolor), ocelot (Leopardus pardalis), jaguarundi (Herpailurus yagouaroundi) and margay (Leopardus wiedii)], that potentially occur across the eight sites, were used to examine mechanisms that allow coexistence among ecologically similar species. Finally, data from one of the sites was used to test the hypothesis that terrestrial mammals, mainly frugivores and granivores, move seasonally as a response to resource availability fluctuation (e.g., water and fruits) between rainy and dry seasons in a terra-firme forest. The results indicated that fragmented forests contribute more to β diversity than intact forest sites, and that variation in species composition is determined by richness difference rather than replacement. The eleven species ranked as the most important in structuring the communities were also the ones with the highest abundance variation among sites. Regarding felids’ coexistence, the study reveals an apparent spatial and temporal partitioning for most species pairs, with prey abundance being more important than species interactions to the local occurrence and spatial distribution of Neotropical forest cats. Concerning seasonal dynamics, only three species presented differences on occupancy between dry and rainy seasons, while the other analyzed species did not seem to move as a response to variation in water and food availability. In summary, the results provide a broad characterization of terrestrial mammals occurring in the Neotropical region, assessing their conservation status, factors that influence their occurrence, as well as the spatial and temporal patterns of several felid species along eight Neotropical protected forests.