Teses em Engenharia Elétrica (Doutorado) - PPGEE/ITEC
URI Permanente para esta coleçãohttps://repositorio.ufpa.br/handle/2011/2317
O Doutorado Acadêmico inicio-se em 1998 e pertence ao Programa de Pós-Graduação em Engenharia Elétrica (PPGEE) do Instituto de Tecnologia (ITEC) da Universidade Federal do Pará (UFPA).
Navegar
Navegando Teses em Engenharia Elétrica (Doutorado) - PPGEE/ITEC por Afiliação "UNAMA - Universidade da Amazônia"
Agora exibindo 1 - 2 de 2
- Resultados por página
- Opções de Ordenação
Tese Acesso aberto (Open Access) Análise de desempenho de algoritmos para classificação de sequências representando faltas do tipo curto-circuito em linhas de transmissão de energia elétrica(Universidade Federal do Pará, 2019-12-05) FREIRE, Jean Carlos Arouche; MORAIS, Jefferson Magalhães de; http://lattes.cnpq.br/5219735119295290; CASTRO, Adriana Rosa Garcez; http://lattes.cnpq.br/5273686389382860A manutenção da qualidade de energia em sistemas elétricos de potência depende do tratamento dos principais distúrbios que possam surgir em sua geração, transmissão e distribuição. Dentro deste contexto, muitos estudos vêm sendo desenvolvidos com o objetivo de realizar a detecção e classificação de faltas do tipo curto-circuito em sistemas elétricos através da análise do comportamento do sinal elétrico. Os sistemas de classificação de faltas em linha de transmissão podem ser divididos em dois tipos: sistemas de classificação on-line e pós-falta. No cenário pósfalta as sequências do sinal a serem avaliadas para a classificação possuem comprimento (duração) variável. Na classificação de sequências é possível utilizar classificadores convencionais tais como Redes Neurais Artificiais, Máquinas de Vetores de Suporte, K-vizinhos mais próximos e Árvore de Decisão (Floresta aleatória). Nestes casos, o processo de classificação geralmente requer um pré-processamento das sequências ou um estágio de front end que converta os dados bruto em parâmetros sensíveis para alimentar o classificador, o que pode aumentar o custo computacional do sistema de classificação. Uma alternativa para este problema é a arquitetura de classificação de sequências baseada em quadros (FBSC - Frame Based Sequence Classification). O problema da arquitetura FBSC é que esta possui muitos graus de liberdade na concepção do modelo (front end mais classificador) devendo este ser avaliado usando um conjunto de dados completo e uma metodologia rigorosa para evitar conclusões tendenciosas. Considerando a importância do uso de metodologias para classificação de faltas do tipo curto-circuito eficientes e principalmente com baixo custo computacional, este trabalho apresenta os resultados do estudo desenvolvido de análise do algoritmo KNN (K-vizinhos mais próximo) associado a medida de similaridade de Alinhamento Temporal Dinâmico (DTW) e do algoritmo HMM (Modelo Oculto de Markov) para a tarefa de classificação de faltas. Estas duas técnicas permitem o uso direto dos dados sem a necessidade de utilização de front ends, além de possuírem a capacidade de poder tratar séries temporais multivariadas e de tamanho variável, que é o caso das sequências de sinais para o caso pós-falta. Para desenvolvimento dos dois sistemas propostos para classificação foram utilizados dados simulados de faltas do tipo curto-circuito oriundos da base de dados pública UFPAFaults. Para comparação de resultados com metodologias já apresentadas na literatura para o problema, foi também avaliada, para o mesmo banco de dados, a arquitetura FBSC. No caso da arquitetura FBSC, diferentes front ends e classificadores foram utilizados. A avaliação comparativa foi realizada a partir da medida de taxa de erro, custo computacional e testes estatísticos. Os resultados obtidos mostraram que o classificador baseado no HMM se mostrou mais adequado para o problema de classificação de faltas do tipo curto-circuito em linhas de transmissão.Tese Acesso aberto (Open Access) Desenvolvimento de metodologias para a localização de intruso em ambientes indoor(Universidade Federal do Pará, 2010-03-30) ARAÚJO, Josivaldo de Souza; SOUZA SOBRINHO, Carlos Leônidas da Silva; http://lattes.cnpq.br/1450994881555781O presente trabalho propõe metodologias para detectar a presença e localizar um intruso em ambientes indoor, 2-D e 3-D, sendo que neste último, utiliza-se um sistema cooperativo de antenas e, em ambos os casos, o sistema é baseado em radares multiestáticos. Para obter uma alta resolução, o radar opera com pulsos UWB, que possuem amplitude espectral máxima em 1 GHz para ambientes 2-D e, pulsos de banda larga com frequências entre 200 MHz e 500 MHz para ambientes 3-D. A estimativa de localização, para os ambientes bidimensionais, é feita pela técnica de otimização Enxame de Partículas - PSO (Particle Swarm Optimization), pelo método de Newton com eliminação de Gauss e pelo método dos mínimos quadrados com eliminação de Gauss. Para o ambiente tridimensional, foi desenvolvida uma metodologia vetorial que estima uma possível região de localização do intruso. Para a simulação das ondas eletromagnéticas se utiliza o método numérico FDTD (Diferenças Finitas no Domínio do Tempo) associado à técnica de absorção UPML (Uniaxial Perfectly Matched Layer) com o objetivo de truncar o domínio de análise simulando uma propagação ao infinito. Para a análise do ambiente em 2-D foi desenvolvido o ACOR-UWB-2-D e para o ambiente 3-D foi utilizado o software LANE SAGS.
