Teses em Engenharia Elétrica (Doutorado) - PPGEE/ITEC
URI Permanente para esta coleçãohttps://repositorio.ufpa.br/handle/2011/2317
O Doutorado Acadêmico inicio-se em 1998 e pertence ao Programa de Pós-Graduação em Engenharia Elétrica (PPGEE) do Instituto de Tecnologia (ITEC) da Universidade Federal do Pará (UFPA).
Navegar
Navegando Teses em Engenharia Elétrica (Doutorado) - PPGEE/ITEC por Autor "ALVES, Elton Rafael"
Agora exibindo 1 - 1 de 1
- Resultados por página
- Opções de Ordenação
Item Acesso aberto (Open Access) Previsão de raios utilizando técnicas de inteligência computacional e dados de sondagem atmosférica por satélite(Universidade Federal do Pará, 2017-11-30) ALVES, Elton Rafael; SÁ, José Alberto Silva de; http://lattes.cnpq.br/9459574384403283; COSTA JÚNIOR, Carlos Tavares da; http://lattes.cnpq.br/6328549183075122Atmospheric discharges offer great risks to the population and activities that involve different systems such as telecommunications, energy distribution and transportation and among others. Lightning prediction can contribute to minimize the risks of this natural phenomenon. Therefore, this thesis presents a model for lightning prediction based on satellite atmospheric sounding data, validated with lightning data for study areas of the Amazon region in Brazil, through an investigation that considered five period cases for validation of lightning prediction: case 1 (one hour), case 2 (two hours), case 3 (three hours), case 4 (four hours) and case 5 (five hours). Two different forecasting methodologies were used: the first version of the predictor used data from all study areas in the random formation of the sets training, validation and test. In a second version, we did not use the criterion of randomness of the data in the formation of the training and test sets, and same were limited for each area of the study, in order to create individualized forecasts by geographical area studied. The machine learning technique used to predict lightning was the Artificial Neural Network (ANN) trained with Levenberg-Marquardt backpropagation algorithm to classify modeling related to lightning prediction. This classification relied on the possibility of lightning prediction from the vertical profile of air temperature obtained from satellite NOAA-19. The results obtained by RNA, in the first approach, were compared with traditional methodologies established in the lightning prediction literature, in the second approach the results obtained showed the predictor's output for real test data. Results show that ANN was capable of identifying adequately the class to which a new event belongs to in relation to categories of occurrence and absence of lightning. For the first approach, the best performance for case 5 was obtained, with a test accuracy of 95.6%, while for the second approach a general test accuracy of 82.04% was obtained.