Navegando por Autor "ALVES, Elton Rafael"
Agora exibindo 1 - 2 de 2
- Resultados por página
- Opções de Ordenação
Dissertação Acesso aberto (Open Access) Mineração de dados baseada em inteligência computacional: uma aplicação à determinação da tipologia de curvas de cargas(Universidade Federal do Pará, 2011-09-13) ALVES, Elton Rafael; BEZERRA, Ubiratan Holanda; http://lattes.cnpq.br/6542769654042813As concessionárias de energia, para garantir que sua rede seja confiável, necessitam realizar um procedimento para estudo e análise baseado em funções de entrega de energia nos pontos de consumo. Este estudo, geralmente chamado de planejamento de sistemas de distribuição de energia elétrica, é essencial para garantir que variações na demanda de energia não afetem o desempenho do sistema, que deverá se manter operando de maneira técnica e economicamente viável. Nestes estudos, geralmente são analisados, demanda, tipologia de curva de carga, fator de carga e outros aspectos das cargas existentes. Considerando então a importância da determinação das tipologias de curvas de cargas para as concessionárias de energia em seu processo de planejamento, a Companhia de Eletricidade do Amapá (CEA) realizou uma campanha de medidas de curvas de carga de transformadores de distribuição para obtenção das tipologias de curvas de carga que caracterizam seus consumidores. Neste trabalho apresentam-se os resultados satisfatórios obtidos a partir da utilização de Mineração de Dados baseada em Inteligência Computacional (Mapas Auto-Organizáveis de Kohonen) para seleção das curvas típicas e determinação das tipologias de curvas de carga de consumidores residenciais e industriais da cidade de Macapá, localizada no estado do Amapá. O mapa auto-organizável de Kohonen é um tipo de Rede Neural Artificial que combina operações de projeção e agrupamento, permitindo a realização de análise exploratória de dados, com o objetivo de produzir descrições sumarizadas de grandes conjuntos de dados.Tese Acesso aberto (Open Access) Previsão de raios utilizando técnicas de inteligência computacional e dados de sondagem atmosférica por satélite(Universidade Federal do Pará, 2017-11-30) ALVES, Elton Rafael; SÁ, José Alberto Silva de; http://lattes.cnpq.br/9459574384403283; COSTA JÚNIOR, Carlos Tavares da; http://lattes.cnpq.br/6328549183075122As descargas atmosféricas oferecem grande risco à população e às atividades que envolvem diferentes sistemas como telecomunicações, transmissão de energia elétrica, transporte e dentre outros. A previsão de ocorrência de raios pode contribuir para minimizar os riscos deste fenômeno natural. Com isso, esta tese apresenta uma proposta de modelo de previsão de raios baseada na utilização de dados de sondagens atmosféricas por satélite, validado com dados históricos de raios para áreas de estudo da região Amazônica no Brasil, mediante um estudo que considerou cinco casos de período de validade de previsão de raios: caso 1 (uma hora), caso 2 (duas horas), caso 3 (três horas), caso 4 (quatro horas) e caso 5 (cinco horas). Foram utilizadas duas metodologias diferentes de previsão: a primeira versão do previsor utilizou os dados de todas as áreas do estudo na formação aleatória dos conjuntos de treinamento, validação e teste. Em uma segunda versão, não se utilizou o critério de aleatoriedade dos dados na formação dos conjuntos de treinamento e teste, e os mesmos foram limitados para cada área do estudo, de forma a criar previsões individualizadas por área geográfica estudada. A ferramenta de engenharia utilizada para previsão foi uma Rede Neural Artificial (RNA) treinada com o algoritmo Levenberg-Marquardt backpropagation com a finalidade de classificar as modelagens preditivas de raios. A classificação consistiu na possibilidade de prever a ocorrência ou ausência de raios a partir do perfil vertical de temperatura do ar (temperatura do ar e temperatura do ponto de orvalho) obtido pelo satélite NOAA-19. Os resultados obtidos pela RNA, na primeira abordagem, foram comparados com metodologias tradicionais estabelecidas na literatura de previsão de raios, na segunda abordagem os resultados obtidos mostraram a saída do previsor para dados reais de teste. Os resultados de ambas abordagens mostraram que a RNA foi capaz de identificar adequadamente a que classe pertence um novo exemplo em relação às categorias de ocorrência ou ausência de raios. Para a primeira abordagem, obteve-se o melhor desempenho para caso 5, com uma acurácia de teste de 95,6%, enquanto que para a segunda abordagem obteve-se uma acurácia geral de teste de 82,04%.
