Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "CARVALHO, Saulo Prado"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 2 de 2
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Observações e estimativas de propriedades térmicas do solo sob floresta e pastagem no leste da Amazônia
    (2013-09) CARVALHO, Saulo Prado; SOUZA, José Ricardo Santos de; MAKINO, Midori
    Temperature and heat flux variations in soils, at sites of the Caxiuanã native forest and a natural pasture in Marajó Island, were continuously monitored in the period between December, 2001 and February, 2005. The objective was to compare the thermal responses to the daily heating, of the soils of these two types of ecosystems present in eastern Amazonia, in order to subsidize regional climate models and the evaluation of deforestation effects. Besides the field measurements of the above mentioned variables, at three levels down to 0.50 m depth, this work presents estimates of the heat flux and soil properties such as: thermal diffusivity and conductivity, damping depth and propagation speed of the daily heating pulse, determined by analytical methods. The results showed the seasonal contrast and other significant differences between the responses of the two studied sites, especially regarding the role of the water contents on the vertical temperature profiles of each soil type. The observed fitting between the measurements and the computed values of the variables, indicates the possibility of generalization of the results to other similar ecosystems sites in Amazonia.
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Regimes térmico e hídrico em solos sob ecossistemas naturais e área agrícola no Leste da Amazônia
    (Universidade Federal do Pará, 2007-12-14) CARVALHO, Saulo Prado; SOUZA, José Ricardo Santos de; http://lattes.cnpq.br/2797414407717271
    Soils temperature and moisture are variables whose knowledge is required to Determine the energy and water budgets in the biosphere. The thermal and hydric regimes of soils beneath each ecosystem, present considerable variations, according to their mineralogy, the local climate and vegetation. In this context, soil temperatures and moistures were measured under three ecosystems existing over the eastern portion of the Amazon Region, namely: native forest (Caxiuana's National Forest, 01° 42' 30" S and 51° 31' 45" W), pasture area (Soure, 00° 43' 25" S and 48° 30' 29" W) and cultivated area (Igarape-Acu, 01° 07' 59" S and 47° 36' 55" W). Field data at the forest and pasture sites were collected between December, 2001 and February, 2005; while at the cultivated area, the monitoring was limited to the August, 2003 to February, 2005, period. These observations of soil physical variables were analyzed taken into consideration the simultaneously measured meteorological variables such as the incoming solar radiation flux and pluviometric precipitation, which directly impacted the soil variables at each site selected for study. The soil temperatures were monitored by means of thermal sondes at 0.05, 0.2 and 0.5 m depths. Heat fluximeters, measured heat flux at 0.05 and 0.2 m depth levels. The upper 0.3 m soil layer bulk moisture was measured by double probe Time Domain Reflectometer (TDR) sondes at each site. Analyses were made, considering the soil responses during the local dry and rainy seasons at these three representative ecosystems of eastern Amazonia. Apparent thermal diffusivity estimates were made by the amplitude and phase methods, using the daily heating pulse propagation data in these soils. The results showed quite different values. However, the first approach seemed to be more reliable and suitable to numerical modeling. As expected, considering their small vegetation cover, the soil temperatures at the upper levels, presented larger variations at the pasture and cultivated sites. Unexpectedly, the temperatures at 0.5 m depth beneath the forest showed larger amplitude variations than at 0.2 and 0.05 m depths. The numerical modeling of time variations of temperature, as function of depth, for each soil was made through the harmonic method. The results showed that the first harmonic represented over 90% of the total variation of the observed daily pulse of temperature for the pasture and cultivated areas at 0.2 and 0.05 m depths. Similar performance of the modeling was observed for the forest at 0.05 and 0.20 m levels. The magnitude of heat fluxes beneath the pasture and cultivated sites reached values six times larger than those observed beneath the soil of the forest. The results also show that, for the upper 0.30 m layer of soils, the bulk moisture beneath the forest is larger than under the other ecosystems studied in this work. This result apparently is due to the forest's protection against the soils surface evaporation. An analysis of the seasonal and daily behavior of the soils temperature and moisture in response to the incoming solar radiation and precipitation are presented. Case studies of the rate of soil moisture losses after significant water recharge by precipitation events were also analyzed. Some estimates of daily water depletion and even, night recharge of moisture by rising water from lower layers to the 0.30 m layer were made. This work analyzed the largest time series of soil temperature and moisture data taken at high sampling rates, available so far, for eastern Amazonia. It was possible to characterize the differences of these physical variables regimes, beneath three important ecosystems in this Region. Further studies of the minerals and organic materials in these soils, as well as the foliar area and biomass indexes of their vegetation covers, would improve the comprehension of the regimes described in this work.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA