Navegando por Autor "CASARTELLI, Cacilda"
Agora exibindo 1 - 4 de 4
- Resultados por página
- Opções de Ordenação
Artigo de Periódico Acesso aberto (Open Access) Cytogenetic description of breast fibroadenomas: alterations related solely to proliferation?(2001-08) BURBANO, Rommel Mario Rodriguéz; LIMA, Eleonidas Moura; KHAYAT, André Salim; BARBIERI Neto, J.; CABRAL, Isabel Rosa; BASTOS JR., L.; BAHIA, Marcelo de Oliveira; CASARTELLI, CacildaTwelve breast fibroadenomas were analyzed cytogenetically and only four were found to have clonal alterations. The presence of chromosomal alterations in fibroadenomas must be the consequence of the proliferating process and must not be related to the etiology of this type of lesion. In contrast, the few fibroadenomas that exhibit chromosomal alterations are likely to be those presenting a risk of neoplastic transformation. Clonal numerical alterations involved chromosomes 8, 18, 19, and 21. Of the chromosomal alterations found in the present study, only monosomy of chromosomes 19 and 21 has been reported in breast fibroadenomas. The loss of chromosome 21 was the most frequent alteration found in our sample. The study of benign proliferations and their comparison with chromosome alterations in their malignant counterparts ought to result in a better understanding of the genes acting on cell proliferation alone, and of the genes that cause these cells to exhibit varied behaviors such as recurrences, spontaneous regression and fast growth.Artigo de Periódico Acesso aberto (Open Access) Epigenetic alterations in human brain tumors in a Brazilian population(2006) ANSELMO, Nilson Praia; BELLO, Maria Josefa; GONZALEZ-GOMEZ, Pilar; DIAS, Luis Antonio Araújo; ALMEIDA, José Reinaldo Walter de; SANTOS, Marcelo José dos; HERRANZ, Juan Antonio Rey; CASARTELLI, CacildaAberrant methylation of CpG islands located in promoter regions represents one of the major mechanisms for silencing cancer-related genes in tumor cells. We determined the frequency of aberrant CpG island methylation for several tumor-associated genes: DAPK, MGMT, p14ARF, p16INK4a, TP73, RB1 and TIMP-3 in 55 brain tumors, consisting of 26 neuroepithelial tumors, 6 peripheral nerve tumors, 13 meningeal tumors and 10 metastatic brain tumors. Aberrant methylation of at least one of the seven genes studied was detected in 83.6% of the cases. The frequencies of aberrant methylation were: 40% for p14ARF, 38.2% for MGMT, 30.9% for, p16INK4a, 14.6% for TP73 and for TIMP-3, 12.7% for DAPK and 1.8% for RB1. These data suggest that the hypermethylation observed in the genes p14ARF, MGMT and p16INK4a is a very important event in the formation or progression of brain tumors, since the inactivation of these genes directly interferes with the cell cycle or DNA repair. The altered methylation rate of the other genes has already been reported to be related to tumorigenesis, but the low methylation rate of RB1 found in tumors in our sample is different from that so far reported in the literature, suggesting that perhaps hypermethylation of the promoter is not the main event in the inactivation of this gene. Our results suggest that hypermethylation of the promoter region is a very common event in nervous system tumors.Artigo de Periódico Acesso aberto (Open Access) Investigation of single-strand conformational polymorphism of the TP53 gene in women with a family history of breast cancer(2000-11) BURBANO, Rommel Mario Rodriguéz; MEDEIROS, Arnaldo Correia de; MELLO, Adriano Azevedo de; LEMOS, José Alexandre Rodrigues de; BAHIA, Marcelo de Oliveira; CASARTELLI, CacildaBreast cancer in families with germ line mutations in the TP53 gene has been described in the medical literature. Mutation screening for susceptibility genes should allow effective prophylactic and preventive measures. Using single-strand conformational polymorphism, we screened for mutations in exons 5, 6, 7 and 8 of gene TP53 in the peripheral blood of 8 young non-affected members (17 to 36 years old) of families with a history of breast cancer. Studies of this type on young patients (mean age, 25 years) are very rare in the literature. The identification of these mutations would contribute to genetic counseling of members of families with predisposition to breast cancer. The results obtained did not show any polymorphism indicating mutation. In our sample, the familial tumorigenesis is probably related to other gene etiologies.Artigo de Periódico Acesso aberto (Open Access) Methylation status of ANAPC1, CDKN2A and TP53 promoter genes in individuals with gastric cancer(2008-06) LIMA, Eleonidas Moura; LEAL, Mariana Ferreira; BURBANO, Rommel Mario Rodriguéz; KHAYAT, André Salim; ASSUMPÇÃO, Paulo Pimentel de; BELLO, Maria Josefa; HERRANZ, Juan Antonio Rey; SMITH, Marília de Arruda Cardoso; CASARTELLI, CacildaGastric cancer is the forth most frequent malignancy and the second most common cause of cancer death worldwide. DNA methylation is the most studied epigenetic alteration, occurring through a methyl radical addition to the cytosine base adjacent to guanine. Many tumor genes are inactivated by DNA methylation in gastric cancer. We evaluated the DNA methylation status of ANAPC1, CDKN2A and TP53 by methylation-specific PCR in 20 diffuse- and 26 intestinal-type gastric cancer samples and 20 normal gastric mucosa in individuals from Northern Brazil. All gastric cancer samples were advanced stage adenocarcinomas. Gastric samples were surgically obtained at the João de Barros Barreto University Hospital, State of Pará, and were stored at -80°C before DNA extraction. Patients had never been submitted to chemotherapy or radiotherapy, nor did they have any other diagnosed cancer. None of the gastric cancer samples presented methylated DNA sequences for ANAPC1 and TP53. CDKN2A methylation was not detected in any normal gastric mucosa; however, the CDKN2A promoter was methylated in 30.4% of gastric cancer samples, with 35% methylation in diffuse-type and 26.9% in intestinal-type cancers. CDKN2A methylation was associated with the carcinogenesis process for ~30% diffuse-type and intestinal-type compared to non-neoplastic samples. Thus, ANAPC1 and TP53 methylation was probably not implicated in gastric carcinogenesis in our samples. CDKN2A can be implicated in the carcinogenesis process of only a subset of gastric neoplasias.
