Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "CURCINO, Gabrielle dos Anjos"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    TeseAcesso aberto (Open Access)
    Custo de oportunidade (trade-off) para diferentes estratégias de manutenção de trilhos ferroviários na Amazônia
    (Universidade Federal do Pará, 2022-12-22) CURCINO, Gabrielle dos Anjos; BRAGA, Eduardo de Magalhães; http://lattes.cnpq.br/4783553888547500
    A manutenção emergencial dos ativos ferroviários na Amazônia brasileira tem gerado perdas de receita e custos de oportunidade. O objetivo geral deste estudo foi identificar a importância do custo de oportunidade na tomada de decisão para estratégias de manutenção corretiva e preventiva. A metodologia propôs a modelagem das variáveis referentes aos dados econômicos e operacionais da manutenção ferroviária nos últimos dez anos, por aprendizado de máquina não paramétrico Gradient Boosting Regression Tree, e hibridizando-o com a análise do custo de oportunidade para o trade-off decisão de uma ferrovia de minério na Amazônia brasileira. Os resultados mostraram que o GBDT foi eficiente em ajustar os dados de treinamento com r2 igual a um. Da mesma forma, os dados do teste apresentaram valores de r2 satisfatórios, próximos a um, onde se obteve o grau de importância das variáveis independentes na predição das variáveis dependentes. O método de Pearson foi utilizado para construir a matriz de correlação para cada par de variáveis. A partir do modelo gerado, foram criados oito grupos de previsão para o ano de 2022. Em seguida, foram estabelecidos níveis de conflito, sugeridos pela literatura econômica, entre os cenários de previsão, onde o custo de oportunidade foi identificado entre as alternativas com melhor benefício às estratégias de manutenção. Dessa forma, o custo de oportunidade aliado ao aprendizado de máquina serve como um instrumento para auxiliar as empresas na busca por melhores decisões de manutenção, o que contribui para o aprimoramento da gestão dos ativos ferroviários. O estudo do custo de oportunidade a partir de uma análise trade off baseada em predições do custo das estratégias de manutenção através da modelagem por Machine Learning - Gradient Boosting Regression é um objetivo inédito na literatura.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2026 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA