Navegando por Autor "GARCIA, Tarcyane Barata"
Agora exibindo 1 - 2 de 2
- Resultados por página
- Opções de Ordenação
Dissertação Acesso aberto (Open Access) Efeitos do fator de crescimento do nervo sobre os níveis extracelulares de glutamato e compostos tióis na retina embrionária de galinha(Universidade Federal do Pará, 2011-04-20) GARCIA, Tarcyane Barata; SILVA, Anderson Manoel Herculano Oliveira da; http://lattes.cnpq.br/8407177208423247Nerve growth factor (NGF) belongs to the neurotrophin family and induces its effects through activation of two distinct receptor types. NGF was first described by Rita Levi-Montalcini and collaborators as an important factor involved in nerve differentiation and survival. Another role for NGF has been established in neurotransmitter release in the hippocampus, developing visual cortex and cerebellar neuron. However, this phenomenon has not been demonstrated in retina to date. We therefore investigated whether NGF can modulate the glutamate release in the retinal tissue at its peak of the neurotrophic activity (E10-E12). In addition this, we aimed to study the mechanisms of this effect about its dependence on extracellular Ca2+ and participation of Na+-dependent and Na+-independent glutamate transporters. Since high levels of glutamate signalization have been implicated in the oxidative stress, we also investigated the effects of NGF on the thiols compounds. We used intact retinal tissue from chicken embryos (E11) incubated with NGF (10, 50, 100 ng/ml) for different periods (15, 30, 45, 60, 120 min). Extracellular glutamate and thiols content was measured by HPLC methods and colorimetric assay, respectively. We found that NGF rapidly enhances the release of basal glutamate and it can induce thiol release in a more prolonged time of incubation, as well. Interestingly, the NGF-induced increase in the extracellular levels of glutamate was blocked by Ca2+-free medium only in retina treated for 15 min. Retina incubated for 30 min showed a non-vesicular NGF-induced glutamate release. Since glutamate and thiol release was not blocked by Zn2+, we suggested the possible involvement of system Xc- in both processes.NGF-induced increase in the extracellular thiol could be an important protective mechanism enabling retinal neurons to maintain their redox status during development.Artigo de Periódico Acesso aberto (Open Access) Local inhibition of nitrergic activity in tenotomized rats accelerates muscle regeneration by increasing fiber area and decreasing central core lesions(Universidade Federal do Pará, 2017-02) SEABRA, Aline Damasceno; MORAES, Suellen Alessandra Soares de; BATISTA, Evander de Jesus Oliveira; GARCIA, Tarcyane Barata; SOUZA, Martha Costa de; OLIVEIRA, Karen Renata Matos; SILVA, Anderson Manoel Herculano Oliveira daMuscular atrophy is a progressive degeneration characterized by muscular proteolysis, loss of mass and decrease in fiber area. Tendon rupture induces muscular atrophy due to an intrinsic functional connection. Local inhibition of nitric oxide synthase (NOS) by No-nitro-L-arginine methyl ester (L-NAME) accelerates tendon histological recovery and induces functional improvement. Here we evaluate the effects of such local nitrergic inhibition on the pattern of soleus muscle regeneration after tenotomy. Adult male Wistar rats (240 to 280 g) were divided into four experimental groups: control (n=4), tenotomized (n=6), vehicle (n=6), and L-NAME (n=6). Muscular atrophy was induced by calcaneal tendon rupture in rats. Changes in muscle wet weight and total protein levels were determined by the Bradford method, and muscle fiber area and central core lesion (CCL) occurrence were evaluated by histochemical assays. Compared to tenotomized (69.3±22%) and vehicle groups (68.1%±17%), L-NAME treatment induced an increase in total protein level (108.3±21%) after 21 days post-injury. A reduction in fiber areas was observed in tenotomized (56.3±1.3%) and vehicle groups (53.9±3.9%). However, L-NAME treatment caused an increase in this parameter (69.3±1.6%). Such events were preceded by a remarkable reduction in the number of fibers with CCL in L-NAME-treated animals (12±2%), but not in tenotomized (21±2.5%) and vehicle groups (19.6±2.8%). Altogether, our data reveal that inhibition of tendon NOS contributed to the attenuation of atrophy and acceleration of muscle regeneration.
