Navegando por Autor "MIYAGAWA, Helder Kiyoshi"
Agora exibindo 1 - 2 de 2
- Resultados por página
- Opções de Ordenação
Tese Acesso aberto (Open Access) Análise da transferência de calor convectiva por transformada integral em canais com paredes onduladas(Universidade Federal do Pará, 2019-12-13) MIYAGAWA, Helder Kiyoshi; QUARESMA, João Nazareno Nonato; http://lattes.cnpq.br/7826389991864785; https://orcid.org/0000-0001-9365-7498The hybrid numerical-analytical approach known as the Generalized Integral Transformation Technique (GITT) is employed in the solution of the Navier-Stokes and energy equations that mathematically model the convective heat transfer in corrugated wall channels. The flow is considered laminar, incompressible, and two-dimensional involving a Newtonian fluid with temperature-independent physical properties, while wall temperatures are kept constant along the length of the channel. The streamfunction formulation is adopted, which eliminates the pressure field and automatically satisfies the continuity equation. Extensive convergence analyses are performed for the streamfunction and temperature fields, as well as for the product of friction factor by the Reynolds number and the local Nusselt number to demonstrate the robustness of the method. Verification of GITT results is also performed by comparing the centerline velocity, product of friction factor by the Reynolds number, average temperature, and local Nusselt number with those results obtained with the commercial COMSOL Multiphysics simulation software showing good agreement. The influence of parameters such as Reynolds number, wavy wall amplitude, number of waves, and phase between wall corrugations on the fields of velocity, temperature, and entropy generation are also analyzed, demonstrating their importance for convective heat transfer intensification and energy optimization.Dissertação Acesso aberto (Open Access) A técnica da transformada integral generalizada no escoamento em dutos bidimensionais de geometria irregular na forma senoidal(Universidade Federal do Pará, 2014-02-28) MIYAGAWA, Helder Kiyoshi; QUARESMA, João Nazareno Nonato; http://lattes.cnpq.br/7826389991864785The Generalized Integral Transform Technique is applied solve the Navier-Stokes equations for an irregular geometry duct in sinusoidal shape in an incomprehensible and laminar flow. The formulation was used in terms of current function. A general filter has been adopted that adapts to the irregular contour to increase the convergence of the solution. Different geometries were analyzed by modifying the length ratio (λ/a) and the height ratio (Hmin/Hmax) for Reynolds number in the range 25-400. For the same Reynolds number rising one of the two geometrical parameters the flow recirculation is lower and the decrease of the parameters increases the flow recirculation. The recirculation for λ/a = 16 and Hmin/Hmax = 0.7 is low in Reynolds = 400. Considering the configuration where λ/a = 4 and Hmin/Hmax = 0.3 the flow recirculation is observed at low Reynolds numbers (Re = 25). The friction factor, based on the viscous forces, calculated showed the same pattern of the literature.
