Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "PINTO, Thiago Moreira"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    DissertaçãoAcesso aberto (Open Access)
    Estimativa de parâmetros aplicados em modelos epidemiológicos
    (Universidade Federal do Pará, 2022-01-28) PINTO, Thiago Moreira; ESTUMANO, Diego Cardoso; http://lattes.cnpq.br/5521162828533153
    Neste estudo foi selecionada a técnica bayesiana de Monte Carlo via Cadeia de Markov (MCMC) para estimativa dos parâmetros das equações diferenciais dos modelos compartimentais SQUIDER1 e SEIR2 , buscando refletir a propagação da Covid-19 no estado do Pará. Foi elaborado um algoritmo em Matlab reproduzindo a técnica de MCMC que utiliza processos estocásticos e simula um passeio aleatório, onde temos os possíveis valores do parâmetro amostrados aleatoriamente. Ao fazer uma amostragem proporcional à probabilidade dos valores, alcançou-se uma distribuição de probabilidade que se aproximou dos dados para conseguir ajustar os parâmetros do modelo e convergiu para a distribuição estacionária de interesse. Os parâmetros estimados neste trabalho para os modelos SQUIDER e SEIR foram comparados aos dados reais e aplicadas as métricas de Akaike Information Criterion (AIC) corrigido e Bayesian Information Criteria (BIC) para melhor definir o modelo que melhor representa o fenômeno de propagação da Covid-19 no estado do Pará. Como resultados foram obtidos histogramas que indicam uma convergência de parâmetros no modelo SQUIDER, o que não aconteceu com o modelo SEIR. Pela aplicação do AIC e BIC foi demonstrado que o modelo SQUIDER é o modelo que melhor representeou a propagação da Covid-19 no estado do Pará e possui um potencial de ser utilizado como modelo preditivo.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2026 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA