Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "RAMOS, Daniel Dantas do Amaral"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    DissertaçãoAcesso aberto (Open Access)
    Classificação de arritmias cardíacas via rede neural convolucional com mecanismo de atenção local
    (Universidade Federal do Pará, 2025-09-22) RAMOS, Daniel Dantas do Amaral; CASTRO, Adriana Rosa Garcez; http://lattes.cnpq.br/5273686389382860; https://orcid.org/0000-0001-5884-4511; OLIVEIRA, Roberto Célio Limão de; OHASHI JÚNIOR, Orlando Shigueo; http://lattes.cnpq.br/4497607460894318; http://lattes.cnpq.br/8905793797626608; https://orcid.org/0000-0002-6640-3182
    As arritmias cardíacas representam alterações no ritmo ou frequência dos batimentos do coração e estão associadas a riscos significativos à saúde. O eletrocardiograma (ECG) permanece como o principal exame não invasivo para seu diagnóstico, sendo que a análise manual de longos registros é trabalhosa e sujeita a erros. Considerando as dificuldades provenientes da análise manual do sinais de ECG, sistemas automáticos de classificação de arritmias baseados em inteligência artificial vêm sendo propostos na literatura como alternativa promissora para apoio ao diagnóstico médico. Dentro deste contexto, este trabalho apresenta a proposta de um classificador automático de arritmias cardíacas baseado em Redes Neurais Convolucionais (CNN - Alexnet), com mecanismo de atenção local integrado a sua arquitetura, desenvolvido considerando o paradigma interpaciente. O estudo se concentrou na investigação e definição da técnica mais adequada, entre Gramian Angular Field (GAF) e Hilbert Space-Filling (HSFC), para a conversão dos sinais temporais de ECG em imagens, para serem utilizadas como entrada para a CNN e, em avaliar o impacto de diferentes configurações internas do mecanismo de atenção local proposto, especificamente no que diz respeito à escolha da função de ativação (Tangente Hiperbólica ou Sigmóide) e do tipo de kernel (fixo ou adaptativo). Para os experimentos foi utilizada a base de dados MIT-BIH Arrhythmia Database, sendo que o desempenho dos modelos treinados foi avaliado segundo medidas de desempenho padronizadas, como acurácia, precisão, sensibilidade, especificidade e F1-score. Os experimentos mostraram que a combinação GAF com função de ativação Tangente Hiperbólica e kernel adaptativo no módulo de atenção apresentou o melhor resultado, alcançando acurácia de 97,88
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2026 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA