Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "RIBEIRO, Hebe Morganne Campos"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 3 de 3
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Avaliação atual da qualidade das águas dos lagos Bolonha e Água Preta, situados na área fisiográfica do Utinga (Belém-PA).
    (Universidade Federal do Pará, 1992-12-17) RIBEIRO, Hebe Morganne Campos; LIMA, Waterloo Napoleão de; http://lattes.cnpq.br/1229104235556506
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Classificação de estratos florestais utilizando redes neurais artificiais e dados de sensoriamento remoto
    (Instituto de Pesquisas Ambientais em Bacias Hidrográficas, 2016-09) GONÇALVES, Wanderson Gonçalves e; RIBEIRO, Hebe Morganne Campos; SÁ, José Alberto Silva de; MORALES, Gundisalvo Piratoba; FERREIRA FILHO, Hélio Raymundo; ALMEIDA, Arthur da Costa
    This study classified forest types using neural network data from a forest inventory provided by the "Florestal e da Biodiversidade do Estado do Pará" (IDEFLOR-BIO), and Bands 3, 4 and 5 of TM from the Landsat satellite. The information from the satellite images was extracted using QGIS software 2.8.1 Wien and was used as a database for training neural networks belonging to the software tools package MATLAB(r) R2011b. The neural networks were trained to classify two forest types: Rain Forest of Lowland Emerging Canopy (Dbe) and Rain Forest of Lowland Emerging Canopy plus Open with palm trees (Dbe + Abp) in the Mamuru Arapiuns glebes of Pará State, and were evaluated in terms of the indicators confusion matrix, overall accuracy, the Kappa coefficient, and the receiver operating characteristics chart (ROC). The best result of classification was obtained by the probabilistic neural network of radial basis function (RBF) newpnn, with an overall accuracy of 88%, and a Kappa coefficient of 76%, showing it to be a very good classifier, and demonstrating the potential of this methodology to provide ecosystem services, particularly in anthropogenic areas in the Amazon that adopt agricultural systems with low carbon emissions.
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Riscos socioeconômicos e ambientais em municípios banhados pelos afluentes do Rio Amazonas
    (Universidade Federal do Pará, 2017-10) COUTINHO, Eliane de Castro; ROCHA, Edson José Paulino da; LIMA, Aline Maria Meiguins de; RIBEIRO, Hebe Morganne Campos; GUTIERREZ, Lucy Anne Cardoso Lobão; BARBOSA, Ana Julia Soares; PAES, Gleicy Karen Abdon Alves; BISPO, Carlos José Capela; TAVARES, Paulo Amador
    Municipalities in the Amazon are constantly affected by droughts and floods, and these socioeconomic and environmental risks mainly affect the local population. These precipitation extremes cause severe changes in rivers' hydrology, on both a temporal and a spatial scale. The intended objective of this study therefore was to determine the socioeconomic and environmental risk of municipalities affected by the tributaries and by the main channel of the Amazon River in relation to extreme precipitation events. We used monthly and annual precipitation data from 1982 to 2012 and social data from 2010 (urban, elderly, female and child populations, income and education level) for 47 localities in the Amazon Basin. We concluded that the risk was highest during flood events, particularly in smaller states (Acre and Roraima), and that vulnerability was greater in larger states (Amazonas and Pará). However, the population in the municipalities along the Amazon River have moderate to very strong socioeconomic and environmental risk because of the vulnerability associated with high urbanization and poverty, and threat of floods and droughts ranging from moderate to high.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA