Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "ROCHA, Rafael de Lima"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    DissertaçãoAcesso aberto (Open Access)
    Redes neurais convolucionais aplicadas à inspeção de componentes do vagão ferroviário
    (Universidade Federal do Pará, 2020-02-03) ROCHA, Rafael de Lima; GOMES, Ana Claudia da Silva; http://lattes.cnpq.br/9898138854277399; SILVA, Cleison Daniel; http://lattes.cnpq.br/1445401605385329; https://orcid.org/0000-0001-8280-2928
    O vagão ferroviário é um dos patrimônios mais importantes em uma empresa mineradora, onde toneladas de minério são transportados por este diariamente, além disso, o vagão ferroviário pode ser utilizado para o transporte de pessoas. Por isso, a inspeção de defeitos em componentes estruturais do vagão ferroviário é uma atividade de suma importância, possibilitando evitar problemas na logística da ferrovia, assim como prevenir acidentes. A tarefa de inspeção é realizada visualmente por um técnico operacional que está exposto a acidentes no local em que a inspeção é realizada, além da possibilidade de erro humano devido ao estresse, fadiga e outros. O pad é componente ferroviário analisado neste trabalho, onde este é responsável pela suspensão primária, papel que é importante na dinâmica dos vagões. Assim, o intuito deste trabalho é utilizar técnicas de aprendizado profundo, especificamente redes neurais convolucionais (CNN) para a realização da inspeção do componente. A CNN classifica a imagem do componente estrutural analisado em relação aos possíveis estados em que ele se encontra na ferrovia, pad ausente, pad não danificado e pad danificado. Além disso, pretende-se investigar a contribuição da imagem do componente no domínio da frequência obtida através da magnitude e fase da transformada discreta de Fourier (DFT) da imagem original (domínio espacial) no processo de classificação da CNN. As técnicas de equalização de histograma e o aumento do número de imagens através do data augmentation também são examinadas, de modo a avaliar suas colaborações na melhoria no desempenho de classificação. Os resultados da inspeção do pad por CNN demonstram-se bastante inspiradores, em especial quando é utilizada a imagem espacial do componente em conjunto da imagem da magnitude da DFT da imagem de origem como entradas da CNN, que se demonstram superiores quando é utilizada somente a imagem original (espacial) do componente, atingindo uma acurácia de classificação de 95,65%. Em especial, o método que utiliza o aumento do número de imagens de treinamento pelo data augmentation e as imagens do domínio espacial e da frequência (magnitude) é o que alcança a maior acurácia, com 97,47%, que representa aproximadamente 385,5 imagens classificadas corretamente de um total de 395,2 imagens.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA