Navegando por Autor "SILVA, Denilson Luz da"
Agora exibindo 1 - 3 de 3
- Resultados por página
- Opções de Ordenação
Item Acesso aberto (Open Access) Desorption of heavy metals from ion exchange resin with water and carbon dioxide(2006-06) SILVA, Denilson Luz da; BRUNNER, GerdAdsorption and regeneration of ion exchange resins were studied using a subcritical solution of a CO2-H2O mixture and a fixed bed column. The commercial Amberlite IRC-50/IRC-86 cation exchange resins and Amberlite IRA-67 anion exchange resin were tested for heavy metals (Pb, Cu, Cd) adsorption from a solution with different initial metal concentrations at different temperatures. After adsorption, the loaded resins were regenerated with water and carbon dioxide at different temperatures and a pressure of 25 MPa. The efficiency of the IRC-50 resin was lower than that of the IRC-86 resin for the adsorption of metals like Cd, Cu and Pb. Results obtained for desorption of these metals indicated that the process could be used for Cd and in principle for Cu. Sorption of metal ions depended strongly on feed concentration. Mathematical modeling of the metal desorption process was carried out successfully as an extraction process. For this purpose, the VTII Model, which is applied to extraction from solids using supercritical solvents, was used in this work.Item Acesso aberto (Open Access) Obtenção e caracterização de carvão ativado de caroço de buriti (Mauritia flexuosa L. f.) para a avaliação do processo de adsorção de cobre (II)(Instituto Nacional de Pesquisas da Amazônia, 2013-03) PINTO, Marcos Vinicios de Souza; SILVA, Denilson Luz da; SARAIVA, Augusto Cesar FonsecaIn the Amazon region some industries discharges copper into watercourse that in high concentrations is toxic to the biota. The removal of copper from industrial effluent is performed by several processes such as adsorption. This work shows the result of copper (II) adsorption on activated carbon obtained from buriti kernel, carbonized at 400 °C and activated at 900 °C. The activated carbon was characterized according to specific area, pore size, apparent and real density, porosity, scanning electron microscopy, ash content, pH, moisture, fixed carbon and surface functional groups. The study of adsorption equilibrium evaluated the influence of the coal particles diameter, contact time adsorbent/adsorbate, pH and copper (II) solution initial concentration on copper (II) remotion. The results showed a higher removal efficiency of copper (II) to the diameter D < 0.595 mm, contact time of 300 minutes, pH of 4.01 and the copper (II) initial concentrations of 50 and 80 mg L-1. The mathematical model of Langmuir was the best fit to the adsorption equilibrium data. From the contact time of 15 minutes, all the equilibrium concentrations were below the allowed maximum of 1,0 mg L-1 provided by law for discharging effluents into receiving bodies.Item Acesso aberto (Open Access) Zeólita A sintetizada a partir de rejeitos do processo de beneficiamento de caulim(2012-06) SANTANA, Daniela Lira de; SARAIVA, Augusto Cesar Fonseca; NEVES, Roberto de Freitas; SILVA, Denilson Luz daRaw materials were used to synthesize zeolite A as an alternative and more economical source of silica and aluminum, using waste from the kaolin of the paper industry. Zeolites are crystalline substances with a structure characterized by a framework of linked tetrahedra, each one consisting of four oxygen atoms surrounding a cation. The development of processes for the synthesis of zeolites is of great interest for use in the areas of purification, adsorption and catalysis.The starting materials for the synthesis of zeolite A consisted of wastes from kaolin beneficiation of paper companies of Pará state, Brazil.The zeolite was obtained after calcination at 85 and 110 ºC during 24 h.The chracterization of the starting material was performed by X-ray diffraction, chemical analysis, thermogravimetric and differential thermal analysis, and scanning electron microscopy.The characterization of zeolite A was done by X-ray diffraction and scanning electron microscopy. The kaolin waste used as starting material showed to be essentially kaolinite mineral. For the temperatures and time used in the synthesis it was possible to form the crystalline phase of zeolite A for the two starting materials.