Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "VIDAL, Douglas Almeida"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    DissertaçãoAcesso aberto (Open Access)
    Online learning for software defect prediction
    (Universidade Federal do Pará, 2025-02-28) VIDAL, Douglas Almeida; SERUFFO, Marcos César da Rocha; http://lattes.cnpq.br/3794198610723464; https://orcid.org/0000-0002-8106-0560; GONÇALVES, Glauco Estácio; http://lattes.cnpq.br/6157118581200722; https://orcid.org/0000-0003-1341-5339; KLAUTAU JUNIOR, Aldebaro Barreto da Rocha; RIKER, André Figueira; CARDOSO, Diego Lisboa; http://lattes.cnpq.br/1596629769697284; http://lattes.cnpq.br/2949449810540513; http://lattes.cnpq.br/0507944343674734; https://orcid.org/0000-0001-7773-2080; xxx; https://orcid.org/0000-0002-5971-3668
    A previsão de defeitos de software Just-in-Time (JIT-SDP) busca identificar mudanças no código que podem introduzir defeitos no momento em que são realizadas, permitindo uma correção antecipada e reduzindo custos de manutenção. No entanto, modelos tradicionais de JIT-SDP enfrentam dificuldades devido ao desvio de conceito e à necessidade de grandes quantidades de dados rotulados, tornando-os menos eficazes em ambientes dinâmicos de desenvolvimento de software. Esta dissertação apresenta o modelo Semi-supervised Stochastic Weight Averaging (S3WA), uma abordagem de aprendizado adaptativo que utiliza dados rotulados e não rotulados, ajustando-se dinamicamente às mudanças na distribuição dos dados. O modelo foi avaliado comparativamente a técnicas de aprendizado online de última geração em conjuntos de dados artificiais e reais, com foco especial no JIT-SDP. Os resultados mostram que o S3WA mantém uma maior precisão preditiva ao longo do tempo, lidando melhor com a desvio de conceito e reduzindo a dependência de dados rotulados. Esses achados demonstram o potencial das abordagens semissupervisionadas adaptativas para aprimorar a previsão de defeitos em tempo real em fluxos de trabalho de desenvolvimento de software.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2026 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA