Navegando por Autor "VIEIRA, Wildney Wallacy da Silva"
Agora exibindo 1 - 2 de 2
- Resultados por página
- Opções de Ordenação
Dissertação Acesso aberto (Open Access) Análise de velocidade por otimização do semblance na reflexão sísmica(Universidade Federal do Pará, 2010) VIEIRA, Wildney Wallacy da Silva; LEITE, Lourenildo Williame Barbosa; http://lattes.cnpq.br/8588738536047617Este trabalho teve como objetivo geral desenvolver uma metodologia sistemática para a inversão de dados de reflexão sísmica em arranjo ponto-médio-comum (PMC), partindo do caso 1D de variação vertical de velocidade e espessura que permite a obtenção de modelos de velocidades intervalares, vint,n, as espessuras intervalares, zn, e as velocidades média-quadrática, vRMS,n, em seções PMC individualizadas. Uma consequência disso é a transformação direta destes valores do tempo para profundidade. Como contribuição a análise de velocidade, foram desenvolvidos dois métodos para atacar o problema baseado na estimativa de velocidade intervalar. O primeiro método foi baseado na marcação manual em seções PMC, e inversão por ajuste de curvas no sentido dos quadrados-mínimos. O segundo método foi baseado na otimização da função semblance para se obter uma marcação automática. A metodologia combinou dois tipos de otimização: um Método Global (Método Price ou Simplex), e um Método Local (Gradiente de Segunda Ordem ou Conjugado), submetidos a informação à priori e vínculos. A marcação de eventos na seção tempo-distância faz parte dos processos de inversão, e os pontos marcados constituem os dados de entrada juntamente com as informações à priori do modelo a ser ajustado. A marcação deve, por princípio, evitar eventos que representem múltiplas, difrações e interseções, e numa seção pode ser feita mais de 50 marcações de eventos, enquanto que num mapa semblance não se consegue marcar mais de 10 eventos de reflexão. A aplicação deste trabalho é voltada a dados sísmicos de bacias sedimentares em ambientes marinhos para se obter uma distribuição de velocidades para a subsuperfície, onde o modelo plano-horizontal é aplicado em seções PMC individualizadas, e cuja solução pode ser usada como um modelo inicial em processos posteriores. Os dados reais da Bacia Marinha usados neste trabalho foram levantados pela PETROBRAS em 1985, e a linha sísmica selecionada foi a de número L5519 da Bacia do Camamu, e o PMC apresentado é a de número 237. A linha é composta de 1098 pontos de tiro, com arranjo unilateraldireito. O intervalo de amostragem é 4 ms. O espaçamento entre os geofones é 13,34 m com o primeiro geofone localizado a 300 m da fonte. O espaçamento entre as fontes é de 26,68 m. Como conclusão geral, o método de estimativa de velocidade intervalar apresentada neste trabalho fica como suporte alternativo ao processo de análise de velocidades, onde se faz necessário um controle sobre a sequência de inversão dos PMCs ao longo da linha sísmica para que a solução possa ser usada como modelo inicial ao imageamento, e posterior inversão tomográfica. Como etapas futuras, podemos propor trabalhos voltados direto e especificamente a análise de velocidade sísmica estendendo o caso 2D de otimização do semblance ao caso 3D, estender o presente estudo para o caso baseado na teoria do raio imagem com a finalidade de produzir um mapa continuo de velocidades para toda a seção sísmica de forma automática.Tese Acesso aberto (Open Access) Post-imaging analysis of pressure prediction in productive sedimentary basins for oil and gas exploration(Universidade Federal do Pará, 2015-05-26) VIEIRA, Wildney Wallacy da Silva; LEITE, Lourenildo Williame Barbosa; http://lattes.cnpq.br/8588738536047617Esta tese tem vários aspectos relacionados à modelagem de bacia sedimentar na exploração de óleo e gás, e com duas divisões gerais: estimativa de parâmetros, e predição de pressão. Para a estrutura do presente trabalho, o primeiro tópico está relacionada com a análise de velocidade e meios efetivos, onde se estima uma distribuição para a velocidade da onda P no tempo, seguido da transformação para a profundidade, e usar um modelo efetivo para a densidade e para a distribuição de velocidades da onda S. A razão para esta focalização inicialmente destas estimativas é porque eles representam a principal informação de base que se pode ter a partir do domínio sísmico, de onde os outros parâmetros sísmicos podem ser calculados, e que serve de base para a segunda parte deste trabalho. O segundo tópico está relacionado à cálculo de tensão, deformação e pressão na subsuperfície utilizando os dados das velocidades das ondas P e S e os modelos de densidade, com a finalidade de localizar áreas de altas e baixas pressões que atuam como bombas de sucção naturais para a mecânica da acumulação de óleo e gás em zonas produtivas e camadas reservatórios. Destacamos na segunda parte para a apresentação, chamar atenção para a sensibilidade do mapeamento de pressão em função da variação de velocidade e densidade. Classificamos a primeira divisão como dedicado ao processamento e imageamento sísmico convencional, e nomeamos a segunda divisão como predição de tensão-deformação-pressão pós-imageamento. Como o objetivo final da geofísica é obter imagens da subsuperfície sob diferentes propriedades, o cálculo de tensão só faz total sentido para o caso de dados reais, e isto faz com que os dados adquiridos seja obrigatoriamente em três componentes. Uma conclusão importante dos experimentos numéricos, mostramos que a pressão não tem um comportamento trivial, uma vez que pode diminuir com a profundidade e criar bombas naturais responsáveis pelo acúmulo de fluidos. A teoria de meios porosos baseia-se integralmente em geometria diferencial, porque esta disciplina matemática lida com propriedades geométricas coletivos para reservatórios reais. Mostrouse que tais propriedades coletivas são, nomeadamente, a porosidade, a área da superfície específica, a curvatura média e a curvatura Gaussiana. Por exemplo, meios fraturados tem, como regra, uma pequena porosidade, mas área da superfície específica muito grande, o que cria a razão 𝛾 = 𝑣𝑆/𝑣𝑃 anômala e alta, e isto significa um coeficiente de Poisson, 𝜎, negativo. Outra conclusão é relacionado ao cálculo da descontinuidade de pressão entre sólido e líquido, o que depende da estrutura de poros.
