Programa de Pós-Graduação em Engenharia Mecânica - PPGEM /ITEC
URI Permanente desta comunidadehttps://repositorio.ufpa.br/handle/2011/2341
O Programa de Pós-Graduação em Engenharia Mecânica (PPGEM) do Instituto de Tecnologia (ITEC) da Universidade Federal do Pará(UFPA). Tem por objetivo formar recursos humanos qualificados, e incentivar a pesquisa e o aprofundamento dos estudos técnicos e científicos relacionados ao campo de atuação da Engenharia Mecânica com aplicação na realidade e necessidades da região amazônica.
Navegar
Navegando Programa de Pós-Graduação em Engenharia Mecânica - PPGEM /ITEC por Agência de fomento "Vale S.A."
Agora exibindo 1 - 2 de 2
- Resultados por página
- Opções de Ordenação
Dissertação Acesso aberto (Open Access) Análise da forma da partícula na aplicação do Método dos Elementos Discretos (DEM)(Universidade Federal do Pará, 2013-08-06) SANTOS, Elias Gomes dos; MESQUITA, André Luiz Amarante; http://lattes.cnpq.br/1331279630816662This work analyzes the effect of particle shape through the Discrete Element Method (DEM). Are employed four particles with different shapes and sphericity – one spherical and three non-spherical. The repose angle is the main tool to evaluating of the flow. The analysis starts with the calibration of the spherical particle using available literature data, then theses calibrated parameters are employed for the flow simulation of the non-spherical particles. Comparisons are performed on the computational effort, and this information is used to verify the advantages that the spherical particle provides on the three other shapes. In this scenario, procedures were developed to help in the calibration process of the repose angle, based in the knowledge of the sensitivity of some DEM parameters. The results show the influence of non-spherical shapes and, mainly, that is possible to obtain with the spherical shape, similar flows to the non-spherical shapes with computational gain.Dissertação Acesso aberto (Open Access) Influência da convecção termossolutal na transição colunar/equiaxial em ligas Al-Si sob condições unidirecionais e transitórias de extração de calor(Universidade Federal do Pará, 2011) MOUTINHO, Andréa Moreira; MOREIRA, Antonio Luciano Seabra; http://lattes.cnpq.br/0667768010106721The macrostructure of cast ingots consists of three different zones, that is, the chill, columnar, and equiaxed zones respectively. The origin of each one has been the subject of numerous experimental and theoretical researches in the field of metallurgy because of the well-known correlation between grain structures and mechanical properties. The structure is almost determined in the solidification process, so it is essential to control the solidification process. Despite this effort there is as yet no way that the macrostructure of an ingot can be predicted nor even any clear agreement on how the columnar to equiaxed transition (CET) actually occurs. The CET during solidification has been studied for many years and experimental observations show that the position of the CET and the size of the equiaxed grains is dependent on thermal conditions associated with the casting process including alloy system, alloy composition, melt superheat, mold temperature, mold material, heat-transfer coefficients at the metal-mold interface, cooling rate, casting size, melt convection, transport of solute, and the concentration of nucleating particles. The objective of this contribution is the presentation of experimental results on the CET in three hypoeutectic Al-Si alloys during the horizontal unsteady-state directional solidification in a cooled mold. The thermal contact condition at the metal/mold interface was also standardized with the heat extracting surface being polished. Thermocouples have been connected with the metal, and the time– temperature data have been recorded automatically. A combined theoretical and experimental approach is applied to quantitatively determine the solidification thermal parameters such as transient heat-transfer coefficients, tip growth rates, thermal gradients, and cooling rates which affect the structure transition. The experimental and calculated values have shown a very good agreement. A comparative study between the results of this article and those from the literature proposed to investigate the CET during upward vertical solidification of Al-Si hypoeutectic alloys is also presented.
