Programa de Pós-Graduação em Engenharia Elétrica - PPGEE/ITEC
URI Permanente desta comunidadehttps://repositorio.ufpa.br/handle/2011/2314
O Programa de Pós-Graduação em Engenharia Elétrica (PPGEE) do Instituto de Tecnologia (ITEC) da Universidade Federal do Pará (UFPA) foi o primeiro e é considerado o melhor programa de pós-graduação em Engenharia Elétrica da Região Amazônica. As atividades acadêmicas regulares dos cursos de mestrado e doutorado são desenvolvidas principalmente nas Faculdades de Engenharia Elétrica e Engenharia de Computação, supervisionadas pela Coordenação do Programa de Pós-Graduação em Engenharia Elétrica (CPPGEE).
Navegar
Navegando Programa de Pós-Graduação em Engenharia Elétrica - PPGEE/ITEC por Assunto "ABCD Parameters"
Agora exibindo 1 - 1 de 1
- Resultados por página
- Opções de Ordenação
Item Acesso aberto (Open Access) Determinação da função de transferência de enlaces metálicos a partir de medições de impedância de entrada(Universidade Federal do Pará, 2012-04-02) RODRIGUES, Roberto Menezes; COSTA, João Crisóstomo Weyl Albuquerque; http://lattes.cnpq.br/9622051867672434The digital subscriber line (DSL) technology aims at exploiting the full potential of the telephone metallic lines on providing broadband access. On the other hand, the telephone lines may have distinct transmission capacities due to differences on their topologies. Therefore, it is important to measure the actual transmission capacity of each line before the DSL service deployment. This process is called line qualification. The determination of the transmission capacity of metallic lines requires previous determination of their transfer function. The existent qualification techniques determine the transfer function from the communication between equipments at the central office and the customer’s premises or indirectly, from knowledge about the topology of the line under test. Both processes are not in line with a pre-deployment scenario since they imply additional costs with the dispatching of technicians to the subscriber’s site, dependency of updated records about the telephone network (rarely available) or use of sophisticated line topology techniques. Therefore, the goal of this work is to propose a method for determining the transfer function of metallic lines with the following features: it does not need previous knowledge about the line topology, it uses information collected just at the central office (CO) and it does not require any human intervention at the subscriber’s site. Essentially, the general form of the proposed method analytically describes the transfer function of the line under test in function of its short and open-circuited input impedances, taken from the CO, and its asymmetry. Additionally, an algorithm that derives the short-circuited input impedance from the envelopes of the open-circuited one was developed. By applying this algorithm together with the general form of the proposed method, it is possible to determine the transfer function from just an open-circuited input impedance measurement and without any human intervention at the subscriber’s site. The proposed method was evaluated in two steps. The first step concerns the evaluation of the general form of the method. Specifically, the tests involve baseline comparison using simulated data for threeline topologies, application of the method to a bunch of simulated data generated from an arbitrary lines generator, and evaluation using measurements performed in laboratory for eight real test lines. The second step concerns the joint application of the general form of the method and the algorithm that estimates the short-circuited input impedance to measured data for two of the test lines reproduced in laboratory. The results for simulated data indicate that the general form of the proposed method is efficient, providing estimates well below the defined threshold (< 3 dB per DSL tone). For measurements, the general form of the method has estimated the transfer function of seven from the test lines with deviation per tone below 1.5 dB, but it failed for the line with two bridged-taps, being one very close to the subscriber’s site. Concerning the joint application of the general form of the proposed method and the algorithm that estimates the short-circuited input impedance, the transfer function estimations have been equivalent to those provided by the general form of the method, but with significant deviations in the beginning and in the end of the frequency band. These significant deviations are due to the current version of the envelope detector block of the algorithm that has limited performance, especially for lines with more than two serial sections.