Programa de Pós-Graduação em Engenharia de Infraestrutura e Desenvolvimento Energético - PPGINDE/NDAE/Tucuruí
URI Permanente desta comunidadehttps://repositorio.ufpa.br/handle/2011/9400
Navegar
Navegando Programa de Pós-Graduação em Engenharia de Infraestrutura e Desenvolvimento Energético - PPGINDE/NDAE/Tucuruí por Assunto "Addition of fiber"
Agora exibindo 1 - 1 de 1
- Resultados por página
- Opções de Ordenação
Item Acesso aberto (Open Access) Análise experimental de consolos curtos de concreto armado com fibras e variação da armadura de costura(Universidade Federal do Pará, 2023-11-23) QUEIROZ, Daniel Pessanha de; LIMA NETO, Aarão Ferreira; http://lattes.cnpq.br/0287664572311345; https://orcid.org/0000-0002-5911-1368Short armoured concrete consoles are pre-molded structural elements, arranged in balance, which function as a load support. This work aims to analyze experimentally the behavior of short consoles of armed concrete with variation of sewing armour area and application of a fixed content for steel fibers, polyethylene and polypropylene. Ten symmetrical specimens were analyzed, where four speciments did not contain sewing armor and possessed respectively the steel fibers (CA), polyethylene (CPE), polypropylene (CPP) and a fiber-free (CSF). Four specimens with six sewing armor Ø6.3 mm and used steel fibres respectively (C6Ø6.3A), polyethylene (C6Ø6.3PE), polypropylene (C6Ø6.3PP) and a fiber-free (C6Ø6.3SF). One specimen with six armor Ø5.0 mm seam and polyethylene fiber (C6Ø5.0PE). One specimen with eight armor Ø5.0 mm seam with polyethylene fiber (C8Ø5.0PE). They are presented, analyzed and discussed the results of: deformations of concrete and main traction armor and sewing; breaking modes; cracking maps and patterns; end resistance and loads of consoles; as well as the efficiency factors of biela, subsequently these topics above should be compared with those obtained by Abrantes (2019) and with what advocates the regulatory standards ABNT NBR 9062 (2017), NBR 6118 (2023), EUROCODE 2 (2010) and ACI 318 (2014). It is concluded that they have achieved better results compounds that received the addition of fibers. In terms of compression, traction and modulus of elasticity, comparing the matrix without and with fibres, polyethylene was 15%, steel 18% and polypropylene 21% more efficient, respectively. It can be seen that for each test a different fibre performed better. In general, C8Ø5.0PE achieved good results in all analyses, despite not being the specimen with the largest seam reinforcement area. This result is justified by the arrangement of the reinforcement inside the concrete, as well as the presence of the polyethylene fibre.