Programa de Pós-Graduação em Matemática Aplicada - PPGMA/UNICAMP
URI Permanente desta comunidadehttps://repositorio.ufpa.br/handle/2011/9741
Navegar
Navegando Programa de Pós-Graduação em Matemática Aplicada - PPGMA/UNICAMP por Assunto "Métodos de Galerkin"
Agora exibindo 1 - 1 de 1
- Resultados por página
- Opções de Ordenação
Dissertação Acesso aberto (Open Access) Onda elástica: Galerkin com direções alternadas(Universidade Estadual de Campinas, 1988-12-09) FERNANDES, José Augusto Nunes; BEZERRA, Maria Cristina CunhaNosso ponto de partida foi o estudo da teoria da elasticidade até a dedução da equação do movimento para um meio elástico homogêneo isotrápico, equação esta que servirá de modelo para a obtenção do deslocamento. Estudamos ainda as soluções analíticas da onda livre, ou seja, aquela em que o termo fonte é desprezado. Na busca de soluções discretas para a equação do movimento na presença do termo fonte (situação esta de maior sentido prático), tentamos inicialmente atacar diretamente esta equação pelo método de Galerkin e chegamos a um sistema de equações diferenciais que seria de complexa resolução. Resolvemos então adotar a sugestão proposta em [1], [2], [5], [6], onde o deslocamento e a fonte são decompostos de maneira adequada. Chega-se então a duas equações da onda acústica em termos de potenciais que, desde que conhecidos, nos permitem calcular o deslocamento através de simples derivaçóes. Com relação aos métodos numéricos de resolução de ondas acústicas, inicialmente tentamos o método de Galerkin e tivemos problemas quanto a espaço de mem6ria. quer seja a nível de microcomputadores pessoais tipo IBM-PC, ou mesmo no computador VAX/VMS. Versão 4.5 da UNICAMP. Optamos então pelo método da colocação natural com B-Splines e pela colocação ortogonal nos nós gaussianos da partição [13], neste caminho nos deparamos com problemas de instabilidade numérica. Fizemos uso então do método de Galerkin com direções alternadas [3]; o problema de instabilidade é contornado pela introdução de um novo termo envolvendo um parâmetro independente da partição no espaço ou no tempo. Este método mostrou-se eficiente para nossos propósitos. Desenvolvemos também um software correspondente que pode ser usado nas duas equações acústica, surgidas em decorrência da decomposição em ondas longitudinal e transversal. Tomando por base as proposições de [3] e [4] apresentaremos a solução para essas equações em função dos potenciais, obtendo daí o deslocamento correspondente a uma determinada fonte, para uma única camada, com condição de contorno explicitada e condições iniciais características do nosso problema. Encerrando o trabalho apresentaremos as conclusões e sugestões que acreditamos serão de validade para trabalhos posteriores.
