Programa de Pós-Graduação em Ciência e Engenharia de Materiais - PPGCEM/Ananindeua
URI Permanente desta comunidadehttps://repositorio.ufpa.br/handle/2011/12420
Navegar
Navegando Programa de Pós-Graduação em Ciência e Engenharia de Materiais - PPGCEM/Ananindeua por Assunto "Aluminosilicates"
Agora exibindo 1 - 2 de 2
- Resultados por página
- Opções de Ordenação
Item Acesso aberto (Open Access) Estudo das propriedades mecânicas e microestruturais de materiais cimentícios geopoliméricos produzidos a partir de metacaulim e escória de alto forno(Universidade Federal do Pará, 2023-06-21) ALMEIDA, Bianca Mendes; SILVA, Alisson Clay Rios da; http://lattes.cnpq.br/7389345867032737; https://orcid.org/0000-0001-9186-2287The environmental impacts caused by the production of Portland Cement point to the urgency of reducing the use of this binder mainly due to the CO2 emission and energy consumption that occur during its production process. In the search for alternative materials, geopolymeric cement has shown promise, both in terms of mechanical performance and conservation of natural resources. These cements are obtained from natural raw materials containing aluminosilicates activated by an alkaline solution. In this work, geopolymeric cement paste, mortar and concrete were developed using metakaolin, blast furnace slag and alkaline solution of sodium hydroxide and sodium silicate. The main objectives included evaluating the influence of blast furnace slag on the mechanical properties of geopolymer pastes, varying its addition in mass (30% to 60%), evaluating the influence of sand in geopolymer mortar varying its addition in the paste with better performance of 20% to 70%, and finally, the addition of gravel 0 in two mixtures. The results showed that the paste reached a maximum compressive strength of 36.5 MPa with 35% slag in the matrix. This value rose to 41.15 MPa in the mortar with the incorporation of 40% sand. For concrete, the best result was found for the mixture that contained less crushed stone. The results of the concrete were compared with the CPV-ARI Portland cement concrete by setting some dosing parameters such as binder consumption and water/binder ratio. Other properties investigated included setting time, slump, flexural tensile strength and microstructural analysis by SEM. Geopolymeric concrete was superior to Portland by up to 21.16%, reaching compressive strength of 41.8 MPa, flexural traction of 4.87 MPa and better matrix/aggregate adhesion in the mixture with less addition of gravel 0. The results obtained for geopolymers enable their application in civil works that demand materials that reach high strenght in the initial ages, precast and paving industries.Item Acesso aberto (Open Access) Produção de agregados sintéticos para construção civil a partir de materiais geopoliméricos(Universidade Federal do Pará, 2023-06-20) CRUZ, Kamila Sindy Pinheiro da; SILVA, Alisson Clay Rios da; http://lattes.cnpq.br/7389345867032737; http://lattes.cnpq.br/7389345867032737The civil construction industry is one of the sectors of the economy that consume the most natural resources, from the production of inputs to the execution of the work, which can significantly affect the environment and the quality of life of the population. Geopolymers are inorganic polymers with great ecological potential, produced from aluminosilicates and synthesized by alkaline solutions, providing the material with better mechanical resistance. Geopolymeric cement is a high-tech material developed using clay minerals, with characteristics such as durability, mechanical resistance, strong adhesion, heat resistance, in addition to being easily mixed and applied. The present study sought, through a correct proportion of the components that constitute the geopolymer, the production of a Geopolymeric Synthetic Aggregate (ASG), making variations with percentages of blast furnace slag and variations in the alkaline concentration of sodium hydroxide (NaOH). Soon after, physical tests were carried out on the powdered materials to verify the fineness index, loss on fire and moisture content of kaolin, metakaolin and blast furnace slag. The samples underwent characterization and the main analyzes involved in the process were: X-ray diffraction (DRX), infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and EDS. A compression test was also carried out on the geopolymer synthetic aggregate specimen. The results of the compressive strength test indicated that the specimen with a percentage of 35% blast furnace slag and an alkaline concentration of sodium hydroxide at 10 molar presented better results. In the analysis of the microstructure of the paste, a dense morphology was observed, which gives the material high resistance to compression.