Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Agrupamento - Técnicas"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    DissertaçãoAcesso aberto (Open Access)
    Agrupamento de fornos de redução de alumínio utilizando os algoritmos Affinity Propagation, Mapa auto–organizável de Kohonen (som), Fuzzy C–Means e K–Means
    (Universidade Federal do Pará, 2017-10-11) LIMA, Flávia Ayana Nascimento de; CARDOSO, Diego Lisboa; http://lattes.cnpq.br/0507944343674734; OLIVEIRA, Roberto Célio Limão de; http://lattes.cnpq.br/4497607460894318
    O constante avanço da tecnologia requer medidas que beneficiem as indústrias em busca do lucro e da competitividade. Em relação à indústria de minerais, o processo de fundição de alumínio geralmente possui grande número de células, também chamado de forno ou cuba de redução, produzindo alumínio em um procedimento contínuo e complexo. Um monitoramento analítico é essencial para aumentar a vantagem competitiva dessa indústria, por exemplo, durante a operação, algumas células compartilham comportamentos semelhantes às outras, formando grupos ou clusters de células. Esses clusters dependem de padrões de dados geralmente implícitos ou invisíveis para a operação, mas que podem ser encontrados por meio da análise de dados. Neste trabalho, são apresentadas quatro técnicas de agrupamento, o Affinity Propagation, o mapa auto–organizável de Kohonen (SOM), o algoritmo difuso Fuzzy C–Means (FCM) e o K–Means. Essas técnicas são utilizadas para encontrar e agrupar as células que apresentam comportamentos semelhantes, de acordo com sete variáveis tais como as que consiste no processo de redução do alumínio. Este trabalho visa trazer o benefício do agrupamento, principalmente pela simplificação da análise da linha de produção do alumínio, uma vez que um grande número de células pode se resumir em um único grupo, o que pode fornecer informações mais compactas para o controle e a modelagem dos dados. Este benefício de identificar os dados que possuem características semelhantes e agrupá–los faz com que a análise dos grupos se torne mais simples para quem irá manusear esses dados futuramente. Nesse trabalho de dissertação também será feito a identificação da quantidade ideal de grupo em cada técnica utilizada.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2026 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA